1 // SPDX-License-Identifier: GPL-2.0 2 /* Multipath TCP 3 * 4 * Copyright (c) 2017 - 2019, Intel Corporation. 5 */ 6 7 #define pr_fmt(fmt) "MPTCP: " fmt 8 9 #include <linux/kernel.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/sched/signal.h> 13 #include <linux/atomic.h> 14 #include <net/aligned_data.h> 15 #include <net/sock.h> 16 #include <net/inet_common.h> 17 #include <net/inet_hashtables.h> 18 #include <net/protocol.h> 19 #include <net/tcp_states.h> 20 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 21 #include <net/transp_v6.h> 22 #endif 23 #include <net/mptcp.h> 24 #include <net/hotdata.h> 25 #include <net/xfrm.h> 26 #include <asm/ioctls.h> 27 #include "protocol.h" 28 #include "mib.h" 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/mptcp.h> 32 33 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 34 struct mptcp6_sock { 35 struct mptcp_sock msk; 36 struct ipv6_pinfo np; 37 }; 38 #endif 39 40 enum { 41 MPTCP_CMSG_TS = BIT(0), 42 MPTCP_CMSG_INQ = BIT(1), 43 }; 44 45 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp; 46 47 static void __mptcp_destroy_sock(struct sock *sk); 48 static void mptcp_check_send_data_fin(struct sock *sk); 49 50 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = { 51 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 52 }; 53 static struct net_device *mptcp_napi_dev; 54 55 /* Returns end sequence number of the receiver's advertised window */ 56 static u64 mptcp_wnd_end(const struct mptcp_sock *msk) 57 { 58 return READ_ONCE(msk->wnd_end); 59 } 60 61 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk) 62 { 63 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 64 if (sk->sk_prot == &tcpv6_prot) 65 return &inet6_stream_ops; 66 #endif 67 WARN_ON_ONCE(sk->sk_prot != &tcp_prot); 68 return &inet_stream_ops; 69 } 70 71 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib) 72 { 73 struct net *net = sock_net((struct sock *)msk); 74 75 if (__mptcp_check_fallback(msk)) 76 return true; 77 78 spin_lock_bh(&msk->fallback_lock); 79 if (!msk->allow_infinite_fallback) { 80 spin_unlock_bh(&msk->fallback_lock); 81 return false; 82 } 83 84 msk->allow_subflows = false; 85 set_bit(MPTCP_FALLBACK_DONE, &msk->flags); 86 __MPTCP_INC_STATS(net, fb_mib); 87 spin_unlock_bh(&msk->fallback_lock); 88 return true; 89 } 90 91 static int __mptcp_socket_create(struct mptcp_sock *msk) 92 { 93 struct mptcp_subflow_context *subflow; 94 struct sock *sk = (struct sock *)msk; 95 struct socket *ssock; 96 int err; 97 98 err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock); 99 if (err) 100 return err; 101 102 msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio; 103 WRITE_ONCE(msk->first, ssock->sk); 104 subflow = mptcp_subflow_ctx(ssock->sk); 105 list_add(&subflow->node, &msk->conn_list); 106 sock_hold(ssock->sk); 107 subflow->request_mptcp = 1; 108 subflow->subflow_id = msk->subflow_id++; 109 110 /* This is the first subflow, always with id 0 */ 111 WRITE_ONCE(subflow->local_id, 0); 112 mptcp_sock_graft(msk->first, sk->sk_socket); 113 iput(SOCK_INODE(ssock)); 114 115 return 0; 116 } 117 118 /* If the MPC handshake is not started, returns the first subflow, 119 * eventually allocating it. 120 */ 121 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk) 122 { 123 struct sock *sk = (struct sock *)msk; 124 int ret; 125 126 if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 127 return ERR_PTR(-EINVAL); 128 129 if (!msk->first) { 130 ret = __mptcp_socket_create(msk); 131 if (ret) 132 return ERR_PTR(ret); 133 } 134 135 return msk->first; 136 } 137 138 static void mptcp_drop(struct sock *sk, struct sk_buff *skb) 139 { 140 sk_drops_add(sk, skb); 141 __kfree_skb(skb); 142 } 143 144 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to, 145 struct sk_buff *from) 146 { 147 bool fragstolen; 148 int delta; 149 150 if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) || 151 MPTCP_SKB_CB(from)->offset || 152 ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) || 153 !skb_try_coalesce(to, from, &fragstolen, &delta)) 154 return false; 155 156 pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n", 157 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq, 158 to->len, MPTCP_SKB_CB(from)->end_seq); 159 MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq; 160 161 /* note the fwd memory can reach a negative value after accounting 162 * for the delta, but the later skb free will restore a non 163 * negative one 164 */ 165 atomic_add(delta, &sk->sk_rmem_alloc); 166 sk_mem_charge(sk, delta); 167 kfree_skb_partial(from, fragstolen); 168 169 return true; 170 } 171 172 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to, 173 struct sk_buff *from) 174 { 175 if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq) 176 return false; 177 178 return mptcp_try_coalesce((struct sock *)msk, to, from); 179 } 180 181 /* "inspired" by tcp_data_queue_ofo(), main differences: 182 * - use mptcp seqs 183 * - don't cope with sacks 184 */ 185 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb) 186 { 187 struct sock *sk = (struct sock *)msk; 188 struct rb_node **p, *parent; 189 u64 seq, end_seq, max_seq; 190 struct sk_buff *skb1; 191 192 seq = MPTCP_SKB_CB(skb)->map_seq; 193 end_seq = MPTCP_SKB_CB(skb)->end_seq; 194 max_seq = atomic64_read(&msk->rcv_wnd_sent); 195 196 pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq, 197 RB_EMPTY_ROOT(&msk->out_of_order_queue)); 198 if (after64(end_seq, max_seq)) { 199 /* out of window */ 200 mptcp_drop(sk, skb); 201 pr_debug("oow by %lld, rcv_wnd_sent %llu\n", 202 (unsigned long long)end_seq - (unsigned long)max_seq, 203 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent)); 204 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW); 205 return; 206 } 207 208 p = &msk->out_of_order_queue.rb_node; 209 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE); 210 if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) { 211 rb_link_node(&skb->rbnode, NULL, p); 212 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 213 msk->ooo_last_skb = skb; 214 goto end; 215 } 216 217 /* with 2 subflows, adding at end of ooo queue is quite likely 218 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup. 219 */ 220 if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) { 221 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 222 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 223 return; 224 } 225 226 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */ 227 if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) { 228 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL); 229 parent = &msk->ooo_last_skb->rbnode; 230 p = &parent->rb_right; 231 goto insert; 232 } 233 234 /* Find place to insert this segment. Handle overlaps on the way. */ 235 parent = NULL; 236 while (*p) { 237 parent = *p; 238 skb1 = rb_to_skb(parent); 239 if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 240 p = &parent->rb_left; 241 continue; 242 } 243 if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) { 244 if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) { 245 /* All the bits are present. Drop. */ 246 mptcp_drop(sk, skb); 247 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 248 return; 249 } 250 if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) { 251 /* partial overlap: 252 * | skb | 253 * | skb1 | 254 * continue traversing 255 */ 256 } else { 257 /* skb's seq == skb1's seq and skb covers skb1. 258 * Replace skb1 with skb. 259 */ 260 rb_replace_node(&skb1->rbnode, &skb->rbnode, 261 &msk->out_of_order_queue); 262 mptcp_drop(sk, skb1); 263 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 264 goto merge_right; 265 } 266 } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) { 267 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE); 268 return; 269 } 270 p = &parent->rb_right; 271 } 272 273 insert: 274 /* Insert segment into RB tree. */ 275 rb_link_node(&skb->rbnode, parent, p); 276 rb_insert_color(&skb->rbnode, &msk->out_of_order_queue); 277 278 merge_right: 279 /* Remove other segments covered by skb. */ 280 while ((skb1 = skb_rb_next(skb)) != NULL) { 281 if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) 282 break; 283 rb_erase(&skb1->rbnode, &msk->out_of_order_queue); 284 mptcp_drop(sk, skb1); 285 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 286 } 287 /* If there is no skb after us, we are the last_skb ! */ 288 if (!skb1) 289 msk->ooo_last_skb = skb; 290 291 end: 292 skb_condense(skb); 293 skb_set_owner_r(skb, sk); 294 } 295 296 static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk, 297 struct sk_buff *skb, unsigned int offset, 298 size_t copy_len) 299 { 300 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 301 struct sock *sk = (struct sock *)msk; 302 struct sk_buff *tail; 303 bool has_rxtstamp; 304 305 __skb_unlink(skb, &ssk->sk_receive_queue); 306 307 skb_ext_reset(skb); 308 skb_orphan(skb); 309 310 /* try to fetch required memory from subflow */ 311 if (!sk_rmem_schedule(sk, skb, skb->truesize)) { 312 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED); 313 goto drop; 314 } 315 316 has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp; 317 318 /* the skb map_seq accounts for the skb offset: 319 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq 320 * value 321 */ 322 MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow); 323 MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len; 324 MPTCP_SKB_CB(skb)->offset = offset; 325 MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp; 326 MPTCP_SKB_CB(skb)->cant_coalesce = 0; 327 328 if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) { 329 /* in sequence */ 330 msk->bytes_received += copy_len; 331 WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len); 332 tail = skb_peek_tail(&sk->sk_receive_queue); 333 if (tail && mptcp_try_coalesce(sk, tail, skb)) 334 return true; 335 336 skb_set_owner_r(skb, sk); 337 __skb_queue_tail(&sk->sk_receive_queue, skb); 338 return true; 339 } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) { 340 mptcp_data_queue_ofo(msk, skb); 341 return false; 342 } 343 344 /* old data, keep it simple and drop the whole pkt, sender 345 * will retransmit as needed, if needed. 346 */ 347 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 348 drop: 349 mptcp_drop(sk, skb); 350 return false; 351 } 352 353 static void mptcp_stop_rtx_timer(struct sock *sk) 354 { 355 struct inet_connection_sock *icsk = inet_csk(sk); 356 357 sk_stop_timer(sk, &icsk->icsk_retransmit_timer); 358 mptcp_sk(sk)->timer_ival = 0; 359 } 360 361 static void mptcp_close_wake_up(struct sock *sk) 362 { 363 if (sock_flag(sk, SOCK_DEAD)) 364 return; 365 366 sk->sk_state_change(sk); 367 if (sk->sk_shutdown == SHUTDOWN_MASK || 368 sk->sk_state == TCP_CLOSE) 369 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); 370 else 371 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN); 372 } 373 374 /* called under the msk socket lock */ 375 static bool mptcp_pending_data_fin_ack(struct sock *sk) 376 { 377 struct mptcp_sock *msk = mptcp_sk(sk); 378 379 return ((1 << sk->sk_state) & 380 (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) && 381 msk->write_seq == READ_ONCE(msk->snd_una); 382 } 383 384 static void mptcp_check_data_fin_ack(struct sock *sk) 385 { 386 struct mptcp_sock *msk = mptcp_sk(sk); 387 388 /* Look for an acknowledged DATA_FIN */ 389 if (mptcp_pending_data_fin_ack(sk)) { 390 WRITE_ONCE(msk->snd_data_fin_enable, 0); 391 392 switch (sk->sk_state) { 393 case TCP_FIN_WAIT1: 394 mptcp_set_state(sk, TCP_FIN_WAIT2); 395 break; 396 case TCP_CLOSING: 397 case TCP_LAST_ACK: 398 mptcp_set_state(sk, TCP_CLOSE); 399 break; 400 } 401 402 mptcp_close_wake_up(sk); 403 } 404 } 405 406 /* can be called with no lock acquired */ 407 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq) 408 { 409 struct mptcp_sock *msk = mptcp_sk(sk); 410 411 if (READ_ONCE(msk->rcv_data_fin) && 412 ((1 << inet_sk_state_load(sk)) & 413 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) { 414 u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq); 415 416 if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) { 417 if (seq) 418 *seq = rcv_data_fin_seq; 419 420 return true; 421 } 422 } 423 424 return false; 425 } 426 427 static void mptcp_set_datafin_timeout(struct sock *sk) 428 { 429 struct inet_connection_sock *icsk = inet_csk(sk); 430 u32 retransmits; 431 432 retransmits = min_t(u32, icsk->icsk_retransmits, 433 ilog2(TCP_RTO_MAX / TCP_RTO_MIN)); 434 435 mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits; 436 } 437 438 static void __mptcp_set_timeout(struct sock *sk, long tout) 439 { 440 mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN; 441 } 442 443 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow) 444 { 445 const struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 446 447 return inet_csk(ssk)->icsk_pending && !subflow->stale_count ? 448 icsk_timeout(inet_csk(ssk)) - jiffies : 0; 449 } 450 451 static void mptcp_set_timeout(struct sock *sk) 452 { 453 struct mptcp_subflow_context *subflow; 454 long tout = 0; 455 456 mptcp_for_each_subflow(mptcp_sk(sk), subflow) 457 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 458 __mptcp_set_timeout(sk, tout); 459 } 460 461 static inline bool tcp_can_send_ack(const struct sock *ssk) 462 { 463 return !((1 << inet_sk_state_load(ssk)) & 464 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN)); 465 } 466 467 void __mptcp_subflow_send_ack(struct sock *ssk) 468 { 469 if (tcp_can_send_ack(ssk)) 470 tcp_send_ack(ssk); 471 } 472 473 static void mptcp_subflow_send_ack(struct sock *ssk) 474 { 475 bool slow; 476 477 slow = lock_sock_fast(ssk); 478 __mptcp_subflow_send_ack(ssk); 479 unlock_sock_fast(ssk, slow); 480 } 481 482 static void mptcp_send_ack(struct mptcp_sock *msk) 483 { 484 struct mptcp_subflow_context *subflow; 485 486 mptcp_for_each_subflow(msk, subflow) 487 mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow)); 488 } 489 490 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied) 491 { 492 bool slow; 493 494 slow = lock_sock_fast(ssk); 495 if (tcp_can_send_ack(ssk)) 496 tcp_cleanup_rbuf(ssk, copied); 497 unlock_sock_fast(ssk, slow); 498 } 499 500 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty) 501 { 502 const struct inet_connection_sock *icsk = inet_csk(ssk); 503 u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending); 504 const struct tcp_sock *tp = tcp_sk(ssk); 505 506 return (ack_pending & ICSK_ACK_SCHED) && 507 ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) > 508 READ_ONCE(icsk->icsk_ack.rcv_mss)) || 509 (rx_empty && ack_pending & 510 (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED))); 511 } 512 513 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied) 514 { 515 int old_space = READ_ONCE(msk->old_wspace); 516 struct mptcp_subflow_context *subflow; 517 struct sock *sk = (struct sock *)msk; 518 int space = __mptcp_space(sk); 519 bool cleanup, rx_empty; 520 521 cleanup = (space > 0) && (space >= (old_space << 1)) && copied; 522 rx_empty = !sk_rmem_alloc_get(sk) && copied; 523 524 mptcp_for_each_subflow(msk, subflow) { 525 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 526 527 if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty)) 528 mptcp_subflow_cleanup_rbuf(ssk, copied); 529 } 530 } 531 532 static bool mptcp_check_data_fin(struct sock *sk) 533 { 534 struct mptcp_sock *msk = mptcp_sk(sk); 535 u64 rcv_data_fin_seq; 536 bool ret = false; 537 538 /* Need to ack a DATA_FIN received from a peer while this side 539 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2. 540 * msk->rcv_data_fin was set when parsing the incoming options 541 * at the subflow level and the msk lock was not held, so this 542 * is the first opportunity to act on the DATA_FIN and change 543 * the msk state. 544 * 545 * If we are caught up to the sequence number of the incoming 546 * DATA_FIN, send the DATA_ACK now and do state transition. If 547 * not caught up, do nothing and let the recv code send DATA_ACK 548 * when catching up. 549 */ 550 551 if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) { 552 WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1); 553 WRITE_ONCE(msk->rcv_data_fin, 0); 554 555 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN); 556 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 557 558 switch (sk->sk_state) { 559 case TCP_ESTABLISHED: 560 mptcp_set_state(sk, TCP_CLOSE_WAIT); 561 break; 562 case TCP_FIN_WAIT1: 563 mptcp_set_state(sk, TCP_CLOSING); 564 break; 565 case TCP_FIN_WAIT2: 566 mptcp_set_state(sk, TCP_CLOSE); 567 break; 568 default: 569 /* Other states not expected */ 570 WARN_ON_ONCE(1); 571 break; 572 } 573 574 ret = true; 575 if (!__mptcp_check_fallback(msk)) 576 mptcp_send_ack(msk); 577 mptcp_close_wake_up(sk); 578 } 579 return ret; 580 } 581 582 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk) 583 { 584 if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) { 585 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET); 586 mptcp_subflow_reset(ssk); 587 } 588 } 589 590 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk, 591 struct sock *ssk) 592 { 593 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 594 struct sock *sk = (struct sock *)msk; 595 bool more_data_avail; 596 struct tcp_sock *tp; 597 bool ret = false; 598 599 pr_debug("msk=%p ssk=%p\n", msk, ssk); 600 tp = tcp_sk(ssk); 601 do { 602 u32 map_remaining, offset; 603 u32 seq = tp->copied_seq; 604 struct sk_buff *skb; 605 bool fin; 606 607 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 608 break; 609 610 /* try to move as much data as available */ 611 map_remaining = subflow->map_data_len - 612 mptcp_subflow_get_map_offset(subflow); 613 614 skb = skb_peek(&ssk->sk_receive_queue); 615 if (unlikely(!skb)) 616 break; 617 618 if (__mptcp_check_fallback(msk)) { 619 /* Under fallback skbs have no MPTCP extension and TCP could 620 * collapse them between the dummy map creation and the 621 * current dequeue. Be sure to adjust the map size. 622 */ 623 map_remaining = skb->len; 624 subflow->map_data_len = skb->len; 625 } 626 627 offset = seq - TCP_SKB_CB(skb)->seq; 628 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN; 629 if (fin) 630 seq++; 631 632 if (offset < skb->len) { 633 size_t len = skb->len - offset; 634 635 ret = __mptcp_move_skb(msk, ssk, skb, offset, len) || ret; 636 seq += len; 637 638 if (unlikely(map_remaining < len)) { 639 DEBUG_NET_WARN_ON_ONCE(1); 640 mptcp_dss_corruption(msk, ssk); 641 } 642 } else { 643 if (unlikely(!fin)) { 644 DEBUG_NET_WARN_ON_ONCE(1); 645 mptcp_dss_corruption(msk, ssk); 646 } 647 648 sk_eat_skb(ssk, skb); 649 } 650 651 WRITE_ONCE(tp->copied_seq, seq); 652 more_data_avail = mptcp_subflow_data_available(ssk); 653 654 } while (more_data_avail); 655 656 if (ret) 657 msk->last_data_recv = tcp_jiffies32; 658 return ret; 659 } 660 661 static bool __mptcp_ofo_queue(struct mptcp_sock *msk) 662 { 663 struct sock *sk = (struct sock *)msk; 664 struct sk_buff *skb, *tail; 665 bool moved = false; 666 struct rb_node *p; 667 u64 end_seq; 668 669 p = rb_first(&msk->out_of_order_queue); 670 pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue)); 671 while (p) { 672 skb = rb_to_skb(p); 673 if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) 674 break; 675 676 p = rb_next(p); 677 rb_erase(&skb->rbnode, &msk->out_of_order_queue); 678 679 if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq, 680 msk->ack_seq))) { 681 mptcp_drop(sk, skb); 682 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA); 683 continue; 684 } 685 686 end_seq = MPTCP_SKB_CB(skb)->end_seq; 687 tail = skb_peek_tail(&sk->sk_receive_queue); 688 if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) { 689 int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq; 690 691 /* skip overlapping data, if any */ 692 pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n", 693 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq, 694 delta); 695 MPTCP_SKB_CB(skb)->offset += delta; 696 MPTCP_SKB_CB(skb)->map_seq += delta; 697 __skb_queue_tail(&sk->sk_receive_queue, skb); 698 } 699 msk->bytes_received += end_seq - msk->ack_seq; 700 WRITE_ONCE(msk->ack_seq, end_seq); 701 moved = true; 702 } 703 return moved; 704 } 705 706 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk) 707 { 708 int err = sock_error(ssk); 709 int ssk_state; 710 711 if (!err) 712 return false; 713 714 /* only propagate errors on fallen-back sockets or 715 * on MPC connect 716 */ 717 if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk))) 718 return false; 719 720 /* We need to propagate only transition to CLOSE state. 721 * Orphaned socket will see such state change via 722 * subflow_sched_work_if_closed() and that path will properly 723 * destroy the msk as needed. 724 */ 725 ssk_state = inet_sk_state_load(ssk); 726 if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD)) 727 mptcp_set_state(sk, ssk_state); 728 WRITE_ONCE(sk->sk_err, -err); 729 730 /* This barrier is coupled with smp_rmb() in mptcp_poll() */ 731 smp_wmb(); 732 sk_error_report(sk); 733 return true; 734 } 735 736 void __mptcp_error_report(struct sock *sk) 737 { 738 struct mptcp_subflow_context *subflow; 739 struct mptcp_sock *msk = mptcp_sk(sk); 740 741 mptcp_for_each_subflow(msk, subflow) 742 if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow))) 743 break; 744 } 745 746 /* In most cases we will be able to lock the mptcp socket. If its already 747 * owned, we need to defer to the work queue to avoid ABBA deadlock. 748 */ 749 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk) 750 { 751 struct sock *sk = (struct sock *)msk; 752 bool moved; 753 754 moved = __mptcp_move_skbs_from_subflow(msk, ssk); 755 __mptcp_ofo_queue(msk); 756 if (unlikely(ssk->sk_err)) { 757 if (!sock_owned_by_user(sk)) 758 __mptcp_error_report(sk); 759 else 760 __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags); 761 } 762 763 /* If the moves have caught up with the DATA_FIN sequence number 764 * it's time to ack the DATA_FIN and change socket state, but 765 * this is not a good place to change state. Let the workqueue 766 * do it. 767 */ 768 if (mptcp_pending_data_fin(sk, NULL)) 769 mptcp_schedule_work(sk); 770 return moved; 771 } 772 773 static void __mptcp_rcvbuf_update(struct sock *sk, struct sock *ssk) 774 { 775 if (unlikely(ssk->sk_rcvbuf > sk->sk_rcvbuf)) 776 WRITE_ONCE(sk->sk_rcvbuf, ssk->sk_rcvbuf); 777 } 778 779 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk) 780 { 781 struct mptcp_sock *msk = mptcp_sk(sk); 782 783 __mptcp_rcvbuf_update(sk, ssk); 784 785 /* Wake-up the reader only for in-sequence data */ 786 if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk)) 787 sk->sk_data_ready(sk); 788 } 789 790 void mptcp_data_ready(struct sock *sk, struct sock *ssk) 791 { 792 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 793 794 /* The peer can send data while we are shutting down this 795 * subflow at msk destruction time, but we must avoid enqueuing 796 * more data to the msk receive queue 797 */ 798 if (unlikely(subflow->disposable)) 799 return; 800 801 mptcp_data_lock(sk); 802 if (!sock_owned_by_user(sk)) 803 __mptcp_data_ready(sk, ssk); 804 else 805 __set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags); 806 mptcp_data_unlock(sk); 807 } 808 809 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk) 810 { 811 mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq); 812 msk->allow_infinite_fallback = false; 813 mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC); 814 } 815 816 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk) 817 { 818 struct sock *sk = (struct sock *)msk; 819 820 if (sk->sk_state != TCP_ESTABLISHED) 821 return false; 822 823 spin_lock_bh(&msk->fallback_lock); 824 if (!msk->allow_subflows) { 825 spin_unlock_bh(&msk->fallback_lock); 826 return false; 827 } 828 mptcp_subflow_joined(msk, ssk); 829 spin_unlock_bh(&msk->fallback_lock); 830 831 /* attach to msk socket only after we are sure we will deal with it 832 * at close time 833 */ 834 if (sk->sk_socket && !ssk->sk_socket) 835 mptcp_sock_graft(ssk, sk->sk_socket); 836 837 mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++; 838 mptcp_sockopt_sync_locked(msk, ssk); 839 mptcp_stop_tout_timer(sk); 840 __mptcp_propagate_sndbuf(sk, ssk); 841 return true; 842 } 843 844 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list) 845 { 846 struct mptcp_subflow_context *tmp, *subflow; 847 struct mptcp_sock *msk = mptcp_sk(sk); 848 849 list_for_each_entry_safe(subflow, tmp, join_list, node) { 850 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 851 bool slow = lock_sock_fast(ssk); 852 853 list_move_tail(&subflow->node, &msk->conn_list); 854 if (!__mptcp_finish_join(msk, ssk)) 855 mptcp_subflow_reset(ssk); 856 unlock_sock_fast(ssk, slow); 857 } 858 } 859 860 static bool mptcp_rtx_timer_pending(struct sock *sk) 861 { 862 return timer_pending(&inet_csk(sk)->icsk_retransmit_timer); 863 } 864 865 static void mptcp_reset_rtx_timer(struct sock *sk) 866 { 867 struct inet_connection_sock *icsk = inet_csk(sk); 868 unsigned long tout; 869 870 /* prevent rescheduling on close */ 871 if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE)) 872 return; 873 874 tout = mptcp_sk(sk)->timer_ival; 875 sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout); 876 } 877 878 bool mptcp_schedule_work(struct sock *sk) 879 { 880 if (inet_sk_state_load(sk) != TCP_CLOSE && 881 schedule_work(&mptcp_sk(sk)->work)) { 882 /* each subflow already holds a reference to the sk, and the 883 * workqueue is invoked by a subflow, so sk can't go away here. 884 */ 885 sock_hold(sk); 886 return true; 887 } 888 return false; 889 } 890 891 static bool mptcp_skb_can_collapse_to(u64 write_seq, 892 const struct sk_buff *skb, 893 const struct mptcp_ext *mpext) 894 { 895 if (!tcp_skb_can_collapse_to(skb)) 896 return false; 897 898 /* can collapse only if MPTCP level sequence is in order and this 899 * mapping has not been xmitted yet 900 */ 901 return mpext && mpext->data_seq + mpext->data_len == write_seq && 902 !mpext->frozen; 903 } 904 905 /* we can append data to the given data frag if: 906 * - there is space available in the backing page_frag 907 * - the data frag tail matches the current page_frag free offset 908 * - the data frag end sequence number matches the current write seq 909 */ 910 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk, 911 const struct page_frag *pfrag, 912 const struct mptcp_data_frag *df) 913 { 914 return df && pfrag->page == df->page && 915 pfrag->size - pfrag->offset > 0 && 916 pfrag->offset == (df->offset + df->data_len) && 917 df->data_seq + df->data_len == msk->write_seq; 918 } 919 920 static void dfrag_uncharge(struct sock *sk, int len) 921 { 922 sk_mem_uncharge(sk, len); 923 sk_wmem_queued_add(sk, -len); 924 } 925 926 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag) 927 { 928 int len = dfrag->data_len + dfrag->overhead; 929 930 list_del(&dfrag->list); 931 dfrag_uncharge(sk, len); 932 put_page(dfrag->page); 933 } 934 935 /* called under both the msk socket lock and the data lock */ 936 static void __mptcp_clean_una(struct sock *sk) 937 { 938 struct mptcp_sock *msk = mptcp_sk(sk); 939 struct mptcp_data_frag *dtmp, *dfrag; 940 u64 snd_una; 941 942 snd_una = msk->snd_una; 943 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) { 944 if (after64(dfrag->data_seq + dfrag->data_len, snd_una)) 945 break; 946 947 if (unlikely(dfrag == msk->first_pending)) { 948 /* in recovery mode can see ack after the current snd head */ 949 if (WARN_ON_ONCE(!msk->recovery)) 950 break; 951 952 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 953 } 954 955 dfrag_clear(sk, dfrag); 956 } 957 958 dfrag = mptcp_rtx_head(sk); 959 if (dfrag && after64(snd_una, dfrag->data_seq)) { 960 u64 delta = snd_una - dfrag->data_seq; 961 962 /* prevent wrap around in recovery mode */ 963 if (unlikely(delta > dfrag->already_sent)) { 964 if (WARN_ON_ONCE(!msk->recovery)) 965 goto out; 966 if (WARN_ON_ONCE(delta > dfrag->data_len)) 967 goto out; 968 dfrag->already_sent += delta - dfrag->already_sent; 969 } 970 971 dfrag->data_seq += delta; 972 dfrag->offset += delta; 973 dfrag->data_len -= delta; 974 dfrag->already_sent -= delta; 975 976 dfrag_uncharge(sk, delta); 977 } 978 979 /* all retransmitted data acked, recovery completed */ 980 if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt)) 981 msk->recovery = false; 982 983 out: 984 if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) { 985 if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk)) 986 mptcp_stop_rtx_timer(sk); 987 } else { 988 mptcp_reset_rtx_timer(sk); 989 } 990 991 if (mptcp_pending_data_fin_ack(sk)) 992 mptcp_schedule_work(sk); 993 } 994 995 static void __mptcp_clean_una_wakeup(struct sock *sk) 996 { 997 lockdep_assert_held_once(&sk->sk_lock.slock); 998 999 __mptcp_clean_una(sk); 1000 mptcp_write_space(sk); 1001 } 1002 1003 static void mptcp_clean_una_wakeup(struct sock *sk) 1004 { 1005 mptcp_data_lock(sk); 1006 __mptcp_clean_una_wakeup(sk); 1007 mptcp_data_unlock(sk); 1008 } 1009 1010 static void mptcp_enter_memory_pressure(struct sock *sk) 1011 { 1012 struct mptcp_subflow_context *subflow; 1013 struct mptcp_sock *msk = mptcp_sk(sk); 1014 bool first = true; 1015 1016 mptcp_for_each_subflow(msk, subflow) { 1017 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 1018 1019 if (first) 1020 tcp_enter_memory_pressure(ssk); 1021 sk_stream_moderate_sndbuf(ssk); 1022 1023 first = false; 1024 } 1025 __mptcp_sync_sndbuf(sk); 1026 } 1027 1028 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of 1029 * data 1030 */ 1031 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag) 1032 { 1033 if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag), 1034 pfrag, sk->sk_allocation))) 1035 return true; 1036 1037 mptcp_enter_memory_pressure(sk); 1038 return false; 1039 } 1040 1041 static struct mptcp_data_frag * 1042 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag, 1043 int orig_offset) 1044 { 1045 int offset = ALIGN(orig_offset, sizeof(long)); 1046 struct mptcp_data_frag *dfrag; 1047 1048 dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset); 1049 dfrag->data_len = 0; 1050 dfrag->data_seq = msk->write_seq; 1051 dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag); 1052 dfrag->offset = offset + sizeof(struct mptcp_data_frag); 1053 dfrag->already_sent = 0; 1054 dfrag->page = pfrag->page; 1055 1056 return dfrag; 1057 } 1058 1059 struct mptcp_sendmsg_info { 1060 int mss_now; 1061 int size_goal; 1062 u16 limit; 1063 u16 sent; 1064 unsigned int flags; 1065 bool data_lock_held; 1066 }; 1067 1068 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk, 1069 u64 data_seq, int avail_size) 1070 { 1071 u64 window_end = mptcp_wnd_end(msk); 1072 u64 mptcp_snd_wnd; 1073 1074 if (__mptcp_check_fallback(msk)) 1075 return avail_size; 1076 1077 mptcp_snd_wnd = window_end - data_seq; 1078 avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size); 1079 1080 if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) { 1081 tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd); 1082 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED); 1083 } 1084 1085 return avail_size; 1086 } 1087 1088 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp) 1089 { 1090 struct skb_ext *mpext = __skb_ext_alloc(gfp); 1091 1092 if (!mpext) 1093 return false; 1094 __skb_ext_set(skb, SKB_EXT_MPTCP, mpext); 1095 return true; 1096 } 1097 1098 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp) 1099 { 1100 struct sk_buff *skb; 1101 1102 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp); 1103 if (likely(skb)) { 1104 if (likely(__mptcp_add_ext(skb, gfp))) { 1105 skb_reserve(skb, MAX_TCP_HEADER); 1106 skb->ip_summed = CHECKSUM_PARTIAL; 1107 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 1108 return skb; 1109 } 1110 __kfree_skb(skb); 1111 } else { 1112 mptcp_enter_memory_pressure(sk); 1113 } 1114 return NULL; 1115 } 1116 1117 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp) 1118 { 1119 struct sk_buff *skb; 1120 1121 skb = __mptcp_do_alloc_tx_skb(sk, gfp); 1122 if (!skb) 1123 return NULL; 1124 1125 if (likely(sk_wmem_schedule(ssk, skb->truesize))) { 1126 tcp_skb_entail(ssk, skb); 1127 return skb; 1128 } 1129 tcp_skb_tsorted_anchor_cleanup(skb); 1130 kfree_skb(skb); 1131 return NULL; 1132 } 1133 1134 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held) 1135 { 1136 gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation; 1137 1138 return __mptcp_alloc_tx_skb(sk, ssk, gfp); 1139 } 1140 1141 /* note: this always recompute the csum on the whole skb, even 1142 * if we just appended a single frag. More status info needed 1143 */ 1144 static void mptcp_update_data_checksum(struct sk_buff *skb, int added) 1145 { 1146 struct mptcp_ext *mpext = mptcp_get_ext(skb); 1147 __wsum csum = ~csum_unfold(mpext->csum); 1148 int offset = skb->len - added; 1149 1150 mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset)); 1151 } 1152 1153 static void mptcp_update_infinite_map(struct mptcp_sock *msk, 1154 struct sock *ssk, 1155 struct mptcp_ext *mpext) 1156 { 1157 if (!mpext) 1158 return; 1159 1160 mpext->infinite_map = 1; 1161 mpext->data_len = 0; 1162 1163 if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) { 1164 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED); 1165 mptcp_subflow_reset(ssk); 1166 return; 1167 } 1168 1169 mptcp_subflow_ctx(ssk)->send_infinite_map = 0; 1170 } 1171 1172 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1)) 1173 1174 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk, 1175 struct mptcp_data_frag *dfrag, 1176 struct mptcp_sendmsg_info *info) 1177 { 1178 u64 data_seq = dfrag->data_seq + info->sent; 1179 int offset = dfrag->offset + info->sent; 1180 struct mptcp_sock *msk = mptcp_sk(sk); 1181 bool zero_window_probe = false; 1182 struct mptcp_ext *mpext = NULL; 1183 bool can_coalesce = false; 1184 bool reuse_skb = true; 1185 struct sk_buff *skb; 1186 size_t copy; 1187 int i; 1188 1189 pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n", 1190 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent); 1191 1192 if (WARN_ON_ONCE(info->sent > info->limit || 1193 info->limit > dfrag->data_len)) 1194 return 0; 1195 1196 if (unlikely(!__tcp_can_send(ssk))) 1197 return -EAGAIN; 1198 1199 /* compute send limit */ 1200 if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE)) 1201 ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE; 1202 info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags); 1203 copy = info->size_goal; 1204 1205 skb = tcp_write_queue_tail(ssk); 1206 if (skb && copy > skb->len) { 1207 /* Limit the write to the size available in the 1208 * current skb, if any, so that we create at most a new skb. 1209 * Explicitly tells TCP internals to avoid collapsing on later 1210 * queue management operation, to avoid breaking the ext <-> 1211 * SSN association set here 1212 */ 1213 mpext = mptcp_get_ext(skb); 1214 if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) { 1215 TCP_SKB_CB(skb)->eor = 1; 1216 tcp_mark_push(tcp_sk(ssk), skb); 1217 goto alloc_skb; 1218 } 1219 1220 i = skb_shinfo(skb)->nr_frags; 1221 can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset); 1222 if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) { 1223 tcp_mark_push(tcp_sk(ssk), skb); 1224 goto alloc_skb; 1225 } 1226 1227 copy -= skb->len; 1228 } else { 1229 alloc_skb: 1230 skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held); 1231 if (!skb) 1232 return -ENOMEM; 1233 1234 i = skb_shinfo(skb)->nr_frags; 1235 reuse_skb = false; 1236 mpext = mptcp_get_ext(skb); 1237 } 1238 1239 /* Zero window and all data acked? Probe. */ 1240 copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy); 1241 if (copy == 0) { 1242 u64 snd_una = READ_ONCE(msk->snd_una); 1243 1244 if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) { 1245 tcp_remove_empty_skb(ssk); 1246 return 0; 1247 } 1248 1249 zero_window_probe = true; 1250 data_seq = snd_una - 1; 1251 copy = 1; 1252 } 1253 1254 copy = min_t(size_t, copy, info->limit - info->sent); 1255 if (!sk_wmem_schedule(ssk, copy)) { 1256 tcp_remove_empty_skb(ssk); 1257 return -ENOMEM; 1258 } 1259 1260 if (can_coalesce) { 1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1262 } else { 1263 get_page(dfrag->page); 1264 skb_fill_page_desc(skb, i, dfrag->page, offset, copy); 1265 } 1266 1267 skb->len += copy; 1268 skb->data_len += copy; 1269 skb->truesize += copy; 1270 sk_wmem_queued_add(ssk, copy); 1271 sk_mem_charge(ssk, copy); 1272 WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy); 1273 TCP_SKB_CB(skb)->end_seq += copy; 1274 tcp_skb_pcount_set(skb, 0); 1275 1276 /* on skb reuse we just need to update the DSS len */ 1277 if (reuse_skb) { 1278 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1279 mpext->data_len += copy; 1280 goto out; 1281 } 1282 1283 memset(mpext, 0, sizeof(*mpext)); 1284 mpext->data_seq = data_seq; 1285 mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq; 1286 mpext->data_len = copy; 1287 mpext->use_map = 1; 1288 mpext->dsn64 = 1; 1289 1290 pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n", 1291 mpext->data_seq, mpext->subflow_seq, mpext->data_len, 1292 mpext->dsn64); 1293 1294 if (zero_window_probe) { 1295 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1296 mpext->frozen = 1; 1297 if (READ_ONCE(msk->csum_enabled)) 1298 mptcp_update_data_checksum(skb, copy); 1299 tcp_push_pending_frames(ssk); 1300 return 0; 1301 } 1302 out: 1303 if (READ_ONCE(msk->csum_enabled)) 1304 mptcp_update_data_checksum(skb, copy); 1305 if (mptcp_subflow_ctx(ssk)->send_infinite_map) 1306 mptcp_update_infinite_map(msk, ssk, mpext); 1307 trace_mptcp_sendmsg_frag(mpext); 1308 mptcp_subflow_ctx(ssk)->rel_write_seq += copy; 1309 return copy; 1310 } 1311 1312 #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \ 1313 sizeof(struct tcphdr) - \ 1314 MAX_TCP_OPTION_SPACE - \ 1315 sizeof(struct ipv6hdr) - \ 1316 sizeof(struct frag_hdr)) 1317 1318 struct subflow_send_info { 1319 struct sock *ssk; 1320 u64 linger_time; 1321 }; 1322 1323 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow) 1324 { 1325 if (!subflow->stale) 1326 return; 1327 1328 subflow->stale = 0; 1329 MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER); 1330 } 1331 1332 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow) 1333 { 1334 if (unlikely(subflow->stale)) { 1335 u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp); 1336 1337 if (subflow->stale_rcv_tstamp == rcv_tstamp) 1338 return false; 1339 1340 mptcp_subflow_set_active(subflow); 1341 } 1342 return __mptcp_subflow_active(subflow); 1343 } 1344 1345 #define SSK_MODE_ACTIVE 0 1346 #define SSK_MODE_BACKUP 1 1347 #define SSK_MODE_MAX 2 1348 1349 /* implement the mptcp packet scheduler; 1350 * returns the subflow that will transmit the next DSS 1351 * additionally updates the rtx timeout 1352 */ 1353 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk) 1354 { 1355 struct subflow_send_info send_info[SSK_MODE_MAX]; 1356 struct mptcp_subflow_context *subflow; 1357 struct sock *sk = (struct sock *)msk; 1358 u32 pace, burst, wmem; 1359 int i, nr_active = 0; 1360 struct sock *ssk; 1361 u64 linger_time; 1362 long tout = 0; 1363 1364 /* pick the subflow with the lower wmem/wspace ratio */ 1365 for (i = 0; i < SSK_MODE_MAX; ++i) { 1366 send_info[i].ssk = NULL; 1367 send_info[i].linger_time = -1; 1368 } 1369 1370 mptcp_for_each_subflow(msk, subflow) { 1371 bool backup = subflow->backup || subflow->request_bkup; 1372 1373 trace_mptcp_subflow_get_send(subflow); 1374 ssk = mptcp_subflow_tcp_sock(subflow); 1375 if (!mptcp_subflow_active(subflow)) 1376 continue; 1377 1378 tout = max(tout, mptcp_timeout_from_subflow(subflow)); 1379 nr_active += !backup; 1380 pace = subflow->avg_pacing_rate; 1381 if (unlikely(!pace)) { 1382 /* init pacing rate from socket */ 1383 subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate); 1384 pace = subflow->avg_pacing_rate; 1385 if (!pace) 1386 continue; 1387 } 1388 1389 linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace); 1390 if (linger_time < send_info[backup].linger_time) { 1391 send_info[backup].ssk = ssk; 1392 send_info[backup].linger_time = linger_time; 1393 } 1394 } 1395 __mptcp_set_timeout(sk, tout); 1396 1397 /* pick the best backup if no other subflow is active */ 1398 if (!nr_active) 1399 send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk; 1400 1401 /* According to the blest algorithm, to avoid HoL blocking for the 1402 * faster flow, we need to: 1403 * - estimate the faster flow linger time 1404 * - use the above to estimate the amount of byte transferred 1405 * by the faster flow 1406 * - check that the amount of queued data is greater than the above, 1407 * otherwise do not use the picked, slower, subflow 1408 * We select the subflow with the shorter estimated time to flush 1409 * the queued mem, which basically ensure the above. We just need 1410 * to check that subflow has a non empty cwin. 1411 */ 1412 ssk = send_info[SSK_MODE_ACTIVE].ssk; 1413 if (!ssk || !sk_stream_memory_free(ssk)) 1414 return NULL; 1415 1416 burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt); 1417 wmem = READ_ONCE(ssk->sk_wmem_queued); 1418 if (!burst) 1419 return ssk; 1420 1421 subflow = mptcp_subflow_ctx(ssk); 1422 subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem + 1423 READ_ONCE(ssk->sk_pacing_rate) * burst, 1424 burst + wmem); 1425 msk->snd_burst = burst; 1426 return ssk; 1427 } 1428 1429 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info) 1430 { 1431 tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal); 1432 release_sock(ssk); 1433 } 1434 1435 static void mptcp_update_post_push(struct mptcp_sock *msk, 1436 struct mptcp_data_frag *dfrag, 1437 u32 sent) 1438 { 1439 u64 snd_nxt_new = dfrag->data_seq; 1440 1441 dfrag->already_sent += sent; 1442 1443 msk->snd_burst -= sent; 1444 1445 snd_nxt_new += dfrag->already_sent; 1446 1447 /* snd_nxt_new can be smaller than snd_nxt in case mptcp 1448 * is recovering after a failover. In that event, this re-sends 1449 * old segments. 1450 * 1451 * Thus compute snd_nxt_new candidate based on 1452 * the dfrag->data_seq that was sent and the data 1453 * that has been handed to the subflow for transmission 1454 * and skip update in case it was old dfrag. 1455 */ 1456 if (likely(after64(snd_nxt_new, msk->snd_nxt))) { 1457 msk->bytes_sent += snd_nxt_new - msk->snd_nxt; 1458 WRITE_ONCE(msk->snd_nxt, snd_nxt_new); 1459 } 1460 } 1461 1462 void mptcp_check_and_set_pending(struct sock *sk) 1463 { 1464 if (mptcp_send_head(sk)) { 1465 mptcp_data_lock(sk); 1466 mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING); 1467 mptcp_data_unlock(sk); 1468 } 1469 } 1470 1471 static int __subflow_push_pending(struct sock *sk, struct sock *ssk, 1472 struct mptcp_sendmsg_info *info) 1473 { 1474 struct mptcp_sock *msk = mptcp_sk(sk); 1475 struct mptcp_data_frag *dfrag; 1476 int len, copied = 0, err = 0; 1477 1478 while ((dfrag = mptcp_send_head(sk))) { 1479 info->sent = dfrag->already_sent; 1480 info->limit = dfrag->data_len; 1481 len = dfrag->data_len - dfrag->already_sent; 1482 while (len > 0) { 1483 int ret = 0; 1484 1485 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info); 1486 if (ret <= 0) { 1487 err = copied ? : ret; 1488 goto out; 1489 } 1490 1491 info->sent += ret; 1492 copied += ret; 1493 len -= ret; 1494 1495 mptcp_update_post_push(msk, dfrag, ret); 1496 } 1497 WRITE_ONCE(msk->first_pending, mptcp_send_next(sk)); 1498 1499 if (msk->snd_burst <= 0 || 1500 !sk_stream_memory_free(ssk) || 1501 !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) { 1502 err = copied; 1503 goto out; 1504 } 1505 mptcp_set_timeout(sk); 1506 } 1507 err = copied; 1508 1509 out: 1510 if (err > 0) 1511 msk->last_data_sent = tcp_jiffies32; 1512 return err; 1513 } 1514 1515 void __mptcp_push_pending(struct sock *sk, unsigned int flags) 1516 { 1517 struct sock *prev_ssk = NULL, *ssk = NULL; 1518 struct mptcp_sock *msk = mptcp_sk(sk); 1519 struct mptcp_sendmsg_info info = { 1520 .flags = flags, 1521 }; 1522 bool do_check_data_fin = false; 1523 int push_count = 1; 1524 1525 while (mptcp_send_head(sk) && (push_count > 0)) { 1526 struct mptcp_subflow_context *subflow; 1527 int ret = 0; 1528 1529 if (mptcp_sched_get_send(msk)) 1530 break; 1531 1532 push_count = 0; 1533 1534 mptcp_for_each_subflow(msk, subflow) { 1535 if (READ_ONCE(subflow->scheduled)) { 1536 mptcp_subflow_set_scheduled(subflow, false); 1537 1538 prev_ssk = ssk; 1539 ssk = mptcp_subflow_tcp_sock(subflow); 1540 if (ssk != prev_ssk) { 1541 /* First check. If the ssk has changed since 1542 * the last round, release prev_ssk 1543 */ 1544 if (prev_ssk) 1545 mptcp_push_release(prev_ssk, &info); 1546 1547 /* Need to lock the new subflow only if different 1548 * from the previous one, otherwise we are still 1549 * helding the relevant lock 1550 */ 1551 lock_sock(ssk); 1552 } 1553 1554 push_count++; 1555 1556 ret = __subflow_push_pending(sk, ssk, &info); 1557 if (ret <= 0) { 1558 if (ret != -EAGAIN || 1559 (1 << ssk->sk_state) & 1560 (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE)) 1561 push_count--; 1562 continue; 1563 } 1564 do_check_data_fin = true; 1565 } 1566 } 1567 } 1568 1569 /* at this point we held the socket lock for the last subflow we used */ 1570 if (ssk) 1571 mptcp_push_release(ssk, &info); 1572 1573 /* ensure the rtx timer is running */ 1574 if (!mptcp_rtx_timer_pending(sk)) 1575 mptcp_reset_rtx_timer(sk); 1576 if (do_check_data_fin) 1577 mptcp_check_send_data_fin(sk); 1578 } 1579 1580 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first) 1581 { 1582 struct mptcp_sock *msk = mptcp_sk(sk); 1583 struct mptcp_sendmsg_info info = { 1584 .data_lock_held = true, 1585 }; 1586 bool keep_pushing = true; 1587 struct sock *xmit_ssk; 1588 int copied = 0; 1589 1590 info.flags = 0; 1591 while (mptcp_send_head(sk) && keep_pushing) { 1592 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 1593 int ret = 0; 1594 1595 /* check for a different subflow usage only after 1596 * spooling the first chunk of data 1597 */ 1598 if (first) { 1599 mptcp_subflow_set_scheduled(subflow, false); 1600 ret = __subflow_push_pending(sk, ssk, &info); 1601 first = false; 1602 if (ret <= 0) 1603 break; 1604 copied += ret; 1605 continue; 1606 } 1607 1608 if (mptcp_sched_get_send(msk)) 1609 goto out; 1610 1611 if (READ_ONCE(subflow->scheduled)) { 1612 mptcp_subflow_set_scheduled(subflow, false); 1613 ret = __subflow_push_pending(sk, ssk, &info); 1614 if (ret <= 0) 1615 keep_pushing = false; 1616 copied += ret; 1617 } 1618 1619 mptcp_for_each_subflow(msk, subflow) { 1620 if (READ_ONCE(subflow->scheduled)) { 1621 xmit_ssk = mptcp_subflow_tcp_sock(subflow); 1622 if (xmit_ssk != ssk) { 1623 mptcp_subflow_delegate(subflow, 1624 MPTCP_DELEGATE_SEND); 1625 keep_pushing = false; 1626 } 1627 } 1628 } 1629 } 1630 1631 out: 1632 /* __mptcp_alloc_tx_skb could have released some wmem and we are 1633 * not going to flush it via release_sock() 1634 */ 1635 if (copied) { 1636 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 1637 info.size_goal); 1638 if (!mptcp_rtx_timer_pending(sk)) 1639 mptcp_reset_rtx_timer(sk); 1640 1641 if (msk->snd_data_fin_enable && 1642 msk->snd_nxt + 1 == msk->write_seq) 1643 mptcp_schedule_work(sk); 1644 } 1645 } 1646 1647 static int mptcp_disconnect(struct sock *sk, int flags); 1648 1649 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1650 size_t len, int *copied_syn) 1651 { 1652 unsigned int saved_flags = msg->msg_flags; 1653 struct mptcp_sock *msk = mptcp_sk(sk); 1654 struct sock *ssk; 1655 int ret; 1656 1657 /* on flags based fastopen the mptcp is supposed to create the 1658 * first subflow right now. Otherwise we are in the defer_connect 1659 * path, and the first subflow must be already present. 1660 * Since the defer_connect flag is cleared after the first succsful 1661 * fastopen attempt, no need to check for additional subflow status. 1662 */ 1663 if (msg->msg_flags & MSG_FASTOPEN) { 1664 ssk = __mptcp_nmpc_sk(msk); 1665 if (IS_ERR(ssk)) 1666 return PTR_ERR(ssk); 1667 } 1668 if (!msk->first) 1669 return -EINVAL; 1670 1671 ssk = msk->first; 1672 1673 lock_sock(ssk); 1674 msg->msg_flags |= MSG_DONTWAIT; 1675 msk->fastopening = 1; 1676 ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL); 1677 msk->fastopening = 0; 1678 msg->msg_flags = saved_flags; 1679 release_sock(ssk); 1680 1681 /* do the blocking bits of inet_stream_connect outside the ssk socket lock */ 1682 if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) { 1683 ret = __inet_stream_connect(sk->sk_socket, msg->msg_name, 1684 msg->msg_namelen, msg->msg_flags, 1); 1685 1686 /* Keep the same behaviour of plain TCP: zero the copied bytes in 1687 * case of any error, except timeout or signal 1688 */ 1689 if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR) 1690 *copied_syn = 0; 1691 } else if (ret && ret != -EINPROGRESS) { 1692 /* The disconnect() op called by tcp_sendmsg_fastopen()/ 1693 * __inet_stream_connect() can fail, due to looking check, 1694 * see mptcp_disconnect(). 1695 * Attempt it again outside the problematic scope. 1696 */ 1697 if (!mptcp_disconnect(sk, 0)) { 1698 sk->sk_disconnects++; 1699 sk->sk_socket->state = SS_UNCONNECTED; 1700 } 1701 } 1702 inet_clear_bit(DEFER_CONNECT, sk); 1703 1704 return ret; 1705 } 1706 1707 static int do_copy_data_nocache(struct sock *sk, int copy, 1708 struct iov_iter *from, char *to) 1709 { 1710 if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { 1711 if (!copy_from_iter_full_nocache(to, copy, from)) 1712 return -EFAULT; 1713 } else if (!copy_from_iter_full(to, copy, from)) { 1714 return -EFAULT; 1715 } 1716 return 0; 1717 } 1718 1719 /* open-code sk_stream_memory_free() plus sent limit computation to 1720 * avoid indirect calls in fast-path. 1721 * Called under the msk socket lock, so we can avoid a bunch of ONCE 1722 * annotations. 1723 */ 1724 static u32 mptcp_send_limit(const struct sock *sk) 1725 { 1726 const struct mptcp_sock *msk = mptcp_sk(sk); 1727 u32 limit, not_sent; 1728 1729 if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf)) 1730 return 0; 1731 1732 limit = mptcp_notsent_lowat(sk); 1733 if (limit == UINT_MAX) 1734 return UINT_MAX; 1735 1736 not_sent = msk->write_seq - msk->snd_nxt; 1737 if (not_sent >= limit) 1738 return 0; 1739 1740 return limit - not_sent; 1741 } 1742 1743 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) 1744 { 1745 struct mptcp_sock *msk = mptcp_sk(sk); 1746 struct page_frag *pfrag; 1747 size_t copied = 0; 1748 int ret = 0; 1749 long timeo; 1750 1751 /* silently ignore everything else */ 1752 msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN; 1753 1754 lock_sock(sk); 1755 1756 if (unlikely(inet_test_bit(DEFER_CONNECT, sk) || 1757 msg->msg_flags & MSG_FASTOPEN)) { 1758 int copied_syn = 0; 1759 1760 ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn); 1761 copied += copied_syn; 1762 if (ret == -EINPROGRESS && copied_syn > 0) 1763 goto out; 1764 else if (ret) 1765 goto do_error; 1766 } 1767 1768 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1769 1770 if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) { 1771 ret = sk_stream_wait_connect(sk, &timeo); 1772 if (ret) 1773 goto do_error; 1774 } 1775 1776 ret = -EPIPE; 1777 if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))) 1778 goto do_error; 1779 1780 pfrag = sk_page_frag(sk); 1781 1782 while (msg_data_left(msg)) { 1783 int total_ts, frag_truesize = 0; 1784 struct mptcp_data_frag *dfrag; 1785 bool dfrag_collapsed; 1786 size_t psize, offset; 1787 u32 copy_limit; 1788 1789 /* ensure fitting the notsent_lowat() constraint */ 1790 copy_limit = mptcp_send_limit(sk); 1791 if (!copy_limit) 1792 goto wait_for_memory; 1793 1794 /* reuse tail pfrag, if possible, or carve a new one from the 1795 * page allocator 1796 */ 1797 dfrag = mptcp_pending_tail(sk); 1798 dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag); 1799 if (!dfrag_collapsed) { 1800 if (!mptcp_page_frag_refill(sk, pfrag)) 1801 goto wait_for_memory; 1802 1803 dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset); 1804 frag_truesize = dfrag->overhead; 1805 } 1806 1807 /* we do not bound vs wspace, to allow a single packet. 1808 * memory accounting will prevent execessive memory usage 1809 * anyway 1810 */ 1811 offset = dfrag->offset + dfrag->data_len; 1812 psize = pfrag->size - offset; 1813 psize = min_t(size_t, psize, msg_data_left(msg)); 1814 psize = min_t(size_t, psize, copy_limit); 1815 total_ts = psize + frag_truesize; 1816 1817 if (!sk_wmem_schedule(sk, total_ts)) 1818 goto wait_for_memory; 1819 1820 ret = do_copy_data_nocache(sk, psize, &msg->msg_iter, 1821 page_address(dfrag->page) + offset); 1822 if (ret) 1823 goto do_error; 1824 1825 /* data successfully copied into the write queue */ 1826 sk_forward_alloc_add(sk, -total_ts); 1827 copied += psize; 1828 dfrag->data_len += psize; 1829 frag_truesize += psize; 1830 pfrag->offset += frag_truesize; 1831 WRITE_ONCE(msk->write_seq, msk->write_seq + psize); 1832 1833 /* charge data on mptcp pending queue to the msk socket 1834 * Note: we charge such data both to sk and ssk 1835 */ 1836 sk_wmem_queued_add(sk, frag_truesize); 1837 if (!dfrag_collapsed) { 1838 get_page(dfrag->page); 1839 list_add_tail(&dfrag->list, &msk->rtx_queue); 1840 if (!msk->first_pending) 1841 WRITE_ONCE(msk->first_pending, dfrag); 1842 } 1843 pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk, 1844 dfrag->data_seq, dfrag->data_len, dfrag->already_sent, 1845 !dfrag_collapsed); 1846 1847 continue; 1848 1849 wait_for_memory: 1850 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1851 __mptcp_push_pending(sk, msg->msg_flags); 1852 ret = sk_stream_wait_memory(sk, &timeo); 1853 if (ret) 1854 goto do_error; 1855 } 1856 1857 if (copied) 1858 __mptcp_push_pending(sk, msg->msg_flags); 1859 1860 out: 1861 release_sock(sk); 1862 return copied; 1863 1864 do_error: 1865 if (copied) 1866 goto out; 1867 1868 copied = sk_stream_error(sk, msg->msg_flags, ret); 1869 goto out; 1870 } 1871 1872 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied); 1873 1874 static int __mptcp_recvmsg_mskq(struct sock *sk, 1875 struct msghdr *msg, 1876 size_t len, int flags, 1877 struct scm_timestamping_internal *tss, 1878 int *cmsg_flags) 1879 { 1880 struct mptcp_sock *msk = mptcp_sk(sk); 1881 struct sk_buff *skb, *tmp; 1882 int copied = 0; 1883 1884 skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) { 1885 u32 offset = MPTCP_SKB_CB(skb)->offset; 1886 u32 data_len = skb->len - offset; 1887 u32 count = min_t(size_t, len - copied, data_len); 1888 int err; 1889 1890 if (!(flags & MSG_TRUNC)) { 1891 err = skb_copy_datagram_msg(skb, offset, msg, count); 1892 if (unlikely(err < 0)) { 1893 if (!copied) 1894 return err; 1895 break; 1896 } 1897 } 1898 1899 if (MPTCP_SKB_CB(skb)->has_rxtstamp) { 1900 tcp_update_recv_tstamps(skb, tss); 1901 *cmsg_flags |= MPTCP_CMSG_TS; 1902 } 1903 1904 copied += count; 1905 1906 if (count < data_len) { 1907 if (!(flags & MSG_PEEK)) { 1908 MPTCP_SKB_CB(skb)->offset += count; 1909 MPTCP_SKB_CB(skb)->map_seq += count; 1910 msk->bytes_consumed += count; 1911 } 1912 break; 1913 } 1914 1915 if (!(flags & MSG_PEEK)) { 1916 /* avoid the indirect call, we know the destructor is sock_wfree */ 1917 skb->destructor = NULL; 1918 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 1919 sk_mem_uncharge(sk, skb->truesize); 1920 __skb_unlink(skb, &sk->sk_receive_queue); 1921 __kfree_skb(skb); 1922 msk->bytes_consumed += count; 1923 } 1924 1925 if (copied >= len) 1926 break; 1927 } 1928 1929 mptcp_rcv_space_adjust(msk, copied); 1930 return copied; 1931 } 1932 1933 /* receive buffer autotuning. See tcp_rcv_space_adjust for more information. 1934 * 1935 * Only difference: Use highest rtt estimate of the subflows in use. 1936 */ 1937 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied) 1938 { 1939 struct mptcp_subflow_context *subflow; 1940 struct sock *sk = (struct sock *)msk; 1941 u8 scaling_ratio = U8_MAX; 1942 u32 time, advmss = 1; 1943 u64 rtt_us, mstamp; 1944 1945 msk_owned_by_me(msk); 1946 1947 if (copied <= 0) 1948 return; 1949 1950 if (!msk->rcvspace_init) 1951 mptcp_rcv_space_init(msk, msk->first); 1952 1953 msk->rcvq_space.copied += copied; 1954 1955 mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC); 1956 time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time); 1957 1958 rtt_us = msk->rcvq_space.rtt_us; 1959 if (rtt_us && time < (rtt_us >> 3)) 1960 return; 1961 1962 rtt_us = 0; 1963 mptcp_for_each_subflow(msk, subflow) { 1964 const struct tcp_sock *tp; 1965 u64 sf_rtt_us; 1966 u32 sf_advmss; 1967 1968 tp = tcp_sk(mptcp_subflow_tcp_sock(subflow)); 1969 1970 sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us); 1971 sf_advmss = READ_ONCE(tp->advmss); 1972 1973 rtt_us = max(sf_rtt_us, rtt_us); 1974 advmss = max(sf_advmss, advmss); 1975 scaling_ratio = min(tp->scaling_ratio, scaling_ratio); 1976 } 1977 1978 msk->rcvq_space.rtt_us = rtt_us; 1979 msk->scaling_ratio = scaling_ratio; 1980 if (time < (rtt_us >> 3) || rtt_us == 0) 1981 return; 1982 1983 if (msk->rcvq_space.copied <= msk->rcvq_space.space) 1984 goto new_measure; 1985 1986 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) && 1987 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) { 1988 u64 rcvwin, grow; 1989 int rcvbuf; 1990 1991 rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss; 1992 1993 grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space); 1994 1995 do_div(grow, msk->rcvq_space.space); 1996 rcvwin += (grow << 1); 1997 1998 rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin), 1999 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])); 2000 2001 if (rcvbuf > sk->sk_rcvbuf) { 2002 u32 window_clamp; 2003 2004 window_clamp = mptcp_win_from_space(sk, rcvbuf); 2005 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf); 2006 2007 /* Make subflows follow along. If we do not do this, we 2008 * get drops at subflow level if skbs can't be moved to 2009 * the mptcp rx queue fast enough (announced rcv_win can 2010 * exceed ssk->sk_rcvbuf). 2011 */ 2012 mptcp_for_each_subflow(msk, subflow) { 2013 struct sock *ssk; 2014 bool slow; 2015 2016 ssk = mptcp_subflow_tcp_sock(subflow); 2017 slow = lock_sock_fast(ssk); 2018 WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf); 2019 WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp); 2020 if (tcp_can_send_ack(ssk)) 2021 tcp_cleanup_rbuf(ssk, 1); 2022 unlock_sock_fast(ssk, slow); 2023 } 2024 } 2025 } 2026 2027 msk->rcvq_space.space = msk->rcvq_space.copied; 2028 new_measure: 2029 msk->rcvq_space.copied = 0; 2030 msk->rcvq_space.time = mstamp; 2031 } 2032 2033 static struct mptcp_subflow_context * 2034 __mptcp_first_ready_from(struct mptcp_sock *msk, 2035 struct mptcp_subflow_context *subflow) 2036 { 2037 struct mptcp_subflow_context *start_subflow = subflow; 2038 2039 while (!READ_ONCE(subflow->data_avail)) { 2040 subflow = mptcp_next_subflow(msk, subflow); 2041 if (subflow == start_subflow) 2042 return NULL; 2043 } 2044 return subflow; 2045 } 2046 2047 static bool __mptcp_move_skbs(struct sock *sk) 2048 { 2049 struct mptcp_subflow_context *subflow; 2050 struct mptcp_sock *msk = mptcp_sk(sk); 2051 bool ret = false; 2052 2053 if (list_empty(&msk->conn_list)) 2054 return false; 2055 2056 /* verify we can move any data from the subflow, eventually updating */ 2057 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) 2058 mptcp_for_each_subflow(msk, subflow) 2059 __mptcp_rcvbuf_update(sk, subflow->tcp_sock); 2060 2061 subflow = list_first_entry(&msk->conn_list, 2062 struct mptcp_subflow_context, node); 2063 for (;;) { 2064 struct sock *ssk; 2065 bool slowpath; 2066 2067 /* 2068 * As an optimization avoid traversing the subflows list 2069 * and ev. acquiring the subflow socket lock before baling out 2070 */ 2071 if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf) 2072 break; 2073 2074 subflow = __mptcp_first_ready_from(msk, subflow); 2075 if (!subflow) 2076 break; 2077 2078 ssk = mptcp_subflow_tcp_sock(subflow); 2079 slowpath = lock_sock_fast(ssk); 2080 ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret; 2081 if (unlikely(ssk->sk_err)) 2082 __mptcp_error_report(sk); 2083 unlock_sock_fast(ssk, slowpath); 2084 2085 subflow = mptcp_next_subflow(msk, subflow); 2086 } 2087 2088 __mptcp_ofo_queue(msk); 2089 if (ret) 2090 mptcp_check_data_fin((struct sock *)msk); 2091 return ret; 2092 } 2093 2094 static unsigned int mptcp_inq_hint(const struct sock *sk) 2095 { 2096 const struct mptcp_sock *msk = mptcp_sk(sk); 2097 const struct sk_buff *skb; 2098 2099 skb = skb_peek(&sk->sk_receive_queue); 2100 if (skb) { 2101 u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq; 2102 2103 if (hint_val >= INT_MAX) 2104 return INT_MAX; 2105 2106 return (unsigned int)hint_val; 2107 } 2108 2109 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 2110 return 1; 2111 2112 return 0; 2113 } 2114 2115 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 2116 int flags, int *addr_len) 2117 { 2118 struct mptcp_sock *msk = mptcp_sk(sk); 2119 struct scm_timestamping_internal tss; 2120 int copied = 0, cmsg_flags = 0; 2121 int target; 2122 long timeo; 2123 2124 /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */ 2125 if (unlikely(flags & MSG_ERRQUEUE)) 2126 return inet_recv_error(sk, msg, len, addr_len); 2127 2128 lock_sock(sk); 2129 if (unlikely(sk->sk_state == TCP_LISTEN)) { 2130 copied = -ENOTCONN; 2131 goto out_err; 2132 } 2133 2134 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); 2135 2136 len = min_t(size_t, len, INT_MAX); 2137 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 2138 2139 if (unlikely(msk->recvmsg_inq)) 2140 cmsg_flags = MPTCP_CMSG_INQ; 2141 2142 while (copied < len) { 2143 int err, bytes_read; 2144 2145 bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags, &tss, &cmsg_flags); 2146 if (unlikely(bytes_read < 0)) { 2147 if (!copied) 2148 copied = bytes_read; 2149 goto out_err; 2150 } 2151 2152 copied += bytes_read; 2153 2154 if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk)) 2155 continue; 2156 2157 /* only the MPTCP socket status is relevant here. The exit 2158 * conditions mirror closely tcp_recvmsg() 2159 */ 2160 if (copied >= target) 2161 break; 2162 2163 if (copied) { 2164 if (sk->sk_err || 2165 sk->sk_state == TCP_CLOSE || 2166 (sk->sk_shutdown & RCV_SHUTDOWN) || 2167 !timeo || 2168 signal_pending(current)) 2169 break; 2170 } else { 2171 if (sk->sk_err) { 2172 copied = sock_error(sk); 2173 break; 2174 } 2175 2176 if (sk->sk_shutdown & RCV_SHUTDOWN) { 2177 /* race breaker: the shutdown could be after the 2178 * previous receive queue check 2179 */ 2180 if (__mptcp_move_skbs(sk)) 2181 continue; 2182 break; 2183 } 2184 2185 if (sk->sk_state == TCP_CLOSE) { 2186 copied = -ENOTCONN; 2187 break; 2188 } 2189 2190 if (!timeo) { 2191 copied = -EAGAIN; 2192 break; 2193 } 2194 2195 if (signal_pending(current)) { 2196 copied = sock_intr_errno(timeo); 2197 break; 2198 } 2199 } 2200 2201 pr_debug("block timeout %ld\n", timeo); 2202 mptcp_cleanup_rbuf(msk, copied); 2203 err = sk_wait_data(sk, &timeo, NULL); 2204 if (err < 0) { 2205 err = copied ? : err; 2206 goto out_err; 2207 } 2208 } 2209 2210 mptcp_cleanup_rbuf(msk, copied); 2211 2212 out_err: 2213 if (cmsg_flags && copied >= 0) { 2214 if (cmsg_flags & MPTCP_CMSG_TS) 2215 tcp_recv_timestamp(msg, sk, &tss); 2216 2217 if (cmsg_flags & MPTCP_CMSG_INQ) { 2218 unsigned int inq = mptcp_inq_hint(sk); 2219 2220 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2221 } 2222 } 2223 2224 pr_debug("msk=%p rx queue empty=%d copied=%d\n", 2225 msk, skb_queue_empty(&sk->sk_receive_queue), copied); 2226 2227 release_sock(sk); 2228 return copied; 2229 } 2230 2231 static void mptcp_retransmit_timer(struct timer_list *t) 2232 { 2233 struct inet_connection_sock *icsk = timer_container_of(icsk, t, 2234 icsk_retransmit_timer); 2235 struct sock *sk = &icsk->icsk_inet.sk; 2236 struct mptcp_sock *msk = mptcp_sk(sk); 2237 2238 bh_lock_sock(sk); 2239 if (!sock_owned_by_user(sk)) { 2240 /* we need a process context to retransmit */ 2241 if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags)) 2242 mptcp_schedule_work(sk); 2243 } else { 2244 /* delegate our work to tcp_release_cb() */ 2245 __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags); 2246 } 2247 bh_unlock_sock(sk); 2248 sock_put(sk); 2249 } 2250 2251 static void mptcp_tout_timer(struct timer_list *t) 2252 { 2253 struct sock *sk = timer_container_of(sk, t, sk_timer); 2254 2255 mptcp_schedule_work(sk); 2256 sock_put(sk); 2257 } 2258 2259 /* Find an idle subflow. Return NULL if there is unacked data at tcp 2260 * level. 2261 * 2262 * A backup subflow is returned only if that is the only kind available. 2263 */ 2264 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk) 2265 { 2266 struct sock *backup = NULL, *pick = NULL; 2267 struct mptcp_subflow_context *subflow; 2268 int min_stale_count = INT_MAX; 2269 2270 mptcp_for_each_subflow(msk, subflow) { 2271 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2272 2273 if (!__mptcp_subflow_active(subflow)) 2274 continue; 2275 2276 /* still data outstanding at TCP level? skip this */ 2277 if (!tcp_rtx_and_write_queues_empty(ssk)) { 2278 mptcp_pm_subflow_chk_stale(msk, ssk); 2279 min_stale_count = min_t(int, min_stale_count, subflow->stale_count); 2280 continue; 2281 } 2282 2283 if (subflow->backup || subflow->request_bkup) { 2284 if (!backup) 2285 backup = ssk; 2286 continue; 2287 } 2288 2289 if (!pick) 2290 pick = ssk; 2291 } 2292 2293 if (pick) 2294 return pick; 2295 2296 /* use backup only if there are no progresses anywhere */ 2297 return min_stale_count > 1 ? backup : NULL; 2298 } 2299 2300 bool __mptcp_retransmit_pending_data(struct sock *sk) 2301 { 2302 struct mptcp_data_frag *cur, *rtx_head; 2303 struct mptcp_sock *msk = mptcp_sk(sk); 2304 2305 if (__mptcp_check_fallback(msk)) 2306 return false; 2307 2308 /* the closing socket has some data untransmitted and/or unacked: 2309 * some data in the mptcp rtx queue has not really xmitted yet. 2310 * keep it simple and re-inject the whole mptcp level rtx queue 2311 */ 2312 mptcp_data_lock(sk); 2313 __mptcp_clean_una_wakeup(sk); 2314 rtx_head = mptcp_rtx_head(sk); 2315 if (!rtx_head) { 2316 mptcp_data_unlock(sk); 2317 return false; 2318 } 2319 2320 msk->recovery_snd_nxt = msk->snd_nxt; 2321 msk->recovery = true; 2322 mptcp_data_unlock(sk); 2323 2324 msk->first_pending = rtx_head; 2325 msk->snd_burst = 0; 2326 2327 /* be sure to clear the "sent status" on all re-injected fragments */ 2328 list_for_each_entry(cur, &msk->rtx_queue, list) { 2329 if (!cur->already_sent) 2330 break; 2331 cur->already_sent = 0; 2332 } 2333 2334 return true; 2335 } 2336 2337 /* flags for __mptcp_close_ssk() */ 2338 #define MPTCP_CF_PUSH BIT(1) 2339 #define MPTCP_CF_FASTCLOSE BIT(2) 2340 2341 /* be sure to send a reset only if the caller asked for it, also 2342 * clean completely the subflow status when the subflow reaches 2343 * TCP_CLOSE state 2344 */ 2345 static void __mptcp_subflow_disconnect(struct sock *ssk, 2346 struct mptcp_subflow_context *subflow, 2347 unsigned int flags) 2348 { 2349 if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) || 2350 (flags & MPTCP_CF_FASTCLOSE)) { 2351 /* The MPTCP code never wait on the subflow sockets, TCP-level 2352 * disconnect should never fail 2353 */ 2354 WARN_ON_ONCE(tcp_disconnect(ssk, 0)); 2355 mptcp_subflow_ctx_reset(subflow); 2356 } else { 2357 tcp_shutdown(ssk, SEND_SHUTDOWN); 2358 } 2359 } 2360 2361 /* subflow sockets can be either outgoing (connect) or incoming 2362 * (accept). 2363 * 2364 * Outgoing subflows use in-kernel sockets. 2365 * Incoming subflows do not have their own 'struct socket' allocated, 2366 * so we need to use tcp_close() after detaching them from the mptcp 2367 * parent socket. 2368 */ 2369 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2370 struct mptcp_subflow_context *subflow, 2371 unsigned int flags) 2372 { 2373 struct mptcp_sock *msk = mptcp_sk(sk); 2374 bool dispose_it, need_push = false; 2375 2376 /* If the first subflow moved to a close state before accept, e.g. due 2377 * to an incoming reset or listener shutdown, the subflow socket is 2378 * already deleted by inet_child_forget() and the mptcp socket can't 2379 * survive too. 2380 */ 2381 if (msk->in_accept_queue && msk->first == ssk && 2382 (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) { 2383 /* ensure later check in mptcp_worker() will dispose the msk */ 2384 sock_set_flag(sk, SOCK_DEAD); 2385 mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1)); 2386 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2387 mptcp_subflow_drop_ctx(ssk); 2388 goto out_release; 2389 } 2390 2391 dispose_it = msk->free_first || ssk != msk->first; 2392 if (dispose_it) 2393 list_del(&subflow->node); 2394 2395 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 2396 2397 if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) { 2398 /* be sure to force the tcp_close path 2399 * to generate the egress reset 2400 */ 2401 ssk->sk_lingertime = 0; 2402 sock_set_flag(ssk, SOCK_LINGER); 2403 subflow->send_fastclose = 1; 2404 } 2405 2406 need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk); 2407 if (!dispose_it) { 2408 __mptcp_subflow_disconnect(ssk, subflow, flags); 2409 release_sock(ssk); 2410 2411 goto out; 2412 } 2413 2414 subflow->disposable = 1; 2415 2416 /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops 2417 * the ssk has been already destroyed, we just need to release the 2418 * reference owned by msk; 2419 */ 2420 if (!inet_csk(ssk)->icsk_ulp_ops) { 2421 WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD)); 2422 kfree_rcu(subflow, rcu); 2423 } else { 2424 /* otherwise tcp will dispose of the ssk and subflow ctx */ 2425 __tcp_close(ssk, 0); 2426 2427 /* close acquired an extra ref */ 2428 __sock_put(ssk); 2429 } 2430 2431 out_release: 2432 __mptcp_subflow_error_report(sk, ssk); 2433 release_sock(ssk); 2434 2435 sock_put(ssk); 2436 2437 if (ssk == msk->first) 2438 WRITE_ONCE(msk->first, NULL); 2439 2440 out: 2441 __mptcp_sync_sndbuf(sk); 2442 if (need_push) 2443 __mptcp_push_pending(sk, 0); 2444 2445 /* Catch every 'all subflows closed' scenario, including peers silently 2446 * closing them, e.g. due to timeout. 2447 * For established sockets, allow an additional timeout before closing, 2448 * as the protocol can still create more subflows. 2449 */ 2450 if (list_is_singular(&msk->conn_list) && msk->first && 2451 inet_sk_state_load(msk->first) == TCP_CLOSE) { 2452 if (sk->sk_state != TCP_ESTABLISHED || 2453 msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) { 2454 mptcp_set_state(sk, TCP_CLOSE); 2455 mptcp_close_wake_up(sk); 2456 } else { 2457 mptcp_start_tout_timer(sk); 2458 } 2459 } 2460 } 2461 2462 void mptcp_close_ssk(struct sock *sk, struct sock *ssk, 2463 struct mptcp_subflow_context *subflow) 2464 { 2465 /* The first subflow can already be closed and still in the list */ 2466 if (subflow->close_event_done) 2467 return; 2468 2469 subflow->close_event_done = true; 2470 2471 if (sk->sk_state == TCP_ESTABLISHED) 2472 mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL); 2473 2474 /* subflow aborted before reaching the fully_established status 2475 * attempt the creation of the next subflow 2476 */ 2477 mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow); 2478 2479 __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH); 2480 } 2481 2482 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu) 2483 { 2484 return 0; 2485 } 2486 2487 static void __mptcp_close_subflow(struct sock *sk) 2488 { 2489 struct mptcp_subflow_context *subflow, *tmp; 2490 struct mptcp_sock *msk = mptcp_sk(sk); 2491 2492 might_sleep(); 2493 2494 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2495 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 2496 int ssk_state = inet_sk_state_load(ssk); 2497 2498 if (ssk_state != TCP_CLOSE && 2499 (ssk_state != TCP_CLOSE_WAIT || 2500 inet_sk_state_load(sk) != TCP_ESTABLISHED)) 2501 continue; 2502 2503 /* 'subflow_data_ready' will re-sched once rx queue is empty */ 2504 if (!skb_queue_empty_lockless(&ssk->sk_receive_queue)) 2505 continue; 2506 2507 mptcp_close_ssk(sk, ssk, subflow); 2508 } 2509 2510 } 2511 2512 static bool mptcp_close_tout_expired(const struct sock *sk) 2513 { 2514 if (!inet_csk(sk)->icsk_mtup.probe_timestamp || 2515 sk->sk_state == TCP_CLOSE) 2516 return false; 2517 2518 return time_after32(tcp_jiffies32, 2519 inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk)); 2520 } 2521 2522 static void mptcp_check_fastclose(struct mptcp_sock *msk) 2523 { 2524 struct mptcp_subflow_context *subflow, *tmp; 2525 struct sock *sk = (struct sock *)msk; 2526 2527 if (likely(!READ_ONCE(msk->rcv_fastclose))) 2528 return; 2529 2530 mptcp_token_destroy(msk); 2531 2532 mptcp_for_each_subflow_safe(msk, subflow, tmp) { 2533 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2534 bool slow; 2535 2536 slow = lock_sock_fast(tcp_sk); 2537 if (tcp_sk->sk_state != TCP_CLOSE) { 2538 mptcp_send_active_reset_reason(tcp_sk); 2539 tcp_set_state(tcp_sk, TCP_CLOSE); 2540 } 2541 unlock_sock_fast(tcp_sk, slow); 2542 } 2543 2544 /* Mirror the tcp_reset() error propagation */ 2545 switch (sk->sk_state) { 2546 case TCP_SYN_SENT: 2547 WRITE_ONCE(sk->sk_err, ECONNREFUSED); 2548 break; 2549 case TCP_CLOSE_WAIT: 2550 WRITE_ONCE(sk->sk_err, EPIPE); 2551 break; 2552 case TCP_CLOSE: 2553 return; 2554 default: 2555 WRITE_ONCE(sk->sk_err, ECONNRESET); 2556 } 2557 2558 mptcp_set_state(sk, TCP_CLOSE); 2559 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 2560 smp_mb__before_atomic(); /* SHUTDOWN must be visible first */ 2561 set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags); 2562 2563 /* the calling mptcp_worker will properly destroy the socket */ 2564 if (sock_flag(sk, SOCK_DEAD)) 2565 return; 2566 2567 sk->sk_state_change(sk); 2568 sk_error_report(sk); 2569 } 2570 2571 static void __mptcp_retrans(struct sock *sk) 2572 { 2573 struct mptcp_sendmsg_info info = { .data_lock_held = true, }; 2574 struct mptcp_sock *msk = mptcp_sk(sk); 2575 struct mptcp_subflow_context *subflow; 2576 struct mptcp_data_frag *dfrag; 2577 struct sock *ssk; 2578 int ret, err; 2579 u16 len = 0; 2580 2581 mptcp_clean_una_wakeup(sk); 2582 2583 /* first check ssk: need to kick "stale" logic */ 2584 err = mptcp_sched_get_retrans(msk); 2585 dfrag = mptcp_rtx_head(sk); 2586 if (!dfrag) { 2587 if (mptcp_data_fin_enabled(msk)) { 2588 struct inet_connection_sock *icsk = inet_csk(sk); 2589 2590 icsk->icsk_retransmits++; 2591 mptcp_set_datafin_timeout(sk); 2592 mptcp_send_ack(msk); 2593 2594 goto reset_timer; 2595 } 2596 2597 if (!mptcp_send_head(sk)) 2598 return; 2599 2600 goto reset_timer; 2601 } 2602 2603 if (err) 2604 goto reset_timer; 2605 2606 mptcp_for_each_subflow(msk, subflow) { 2607 if (READ_ONCE(subflow->scheduled)) { 2608 u16 copied = 0; 2609 2610 mptcp_subflow_set_scheduled(subflow, false); 2611 2612 ssk = mptcp_subflow_tcp_sock(subflow); 2613 2614 lock_sock(ssk); 2615 2616 /* limit retransmission to the bytes already sent on some subflows */ 2617 info.sent = 0; 2618 info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len : 2619 dfrag->already_sent; 2620 2621 /* 2622 * make the whole retrans decision, xmit, disallow 2623 * fallback atomic 2624 */ 2625 spin_lock_bh(&msk->fallback_lock); 2626 if (__mptcp_check_fallback(msk)) { 2627 spin_unlock_bh(&msk->fallback_lock); 2628 release_sock(ssk); 2629 return; 2630 } 2631 2632 while (info.sent < info.limit) { 2633 ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info); 2634 if (ret <= 0) 2635 break; 2636 2637 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS); 2638 copied += ret; 2639 info.sent += ret; 2640 } 2641 if (copied) { 2642 len = max(copied, len); 2643 tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle, 2644 info.size_goal); 2645 msk->allow_infinite_fallback = false; 2646 } 2647 spin_unlock_bh(&msk->fallback_lock); 2648 2649 release_sock(ssk); 2650 } 2651 } 2652 2653 msk->bytes_retrans += len; 2654 dfrag->already_sent = max(dfrag->already_sent, len); 2655 2656 reset_timer: 2657 mptcp_check_and_set_pending(sk); 2658 2659 if (!mptcp_rtx_timer_pending(sk)) 2660 mptcp_reset_rtx_timer(sk); 2661 } 2662 2663 /* schedule the timeout timer for the relevant event: either close timeout 2664 * or mp_fail timeout. The close timeout takes precedence on the mp_fail one 2665 */ 2666 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout) 2667 { 2668 struct sock *sk = (struct sock *)msk; 2669 unsigned long timeout, close_timeout; 2670 2671 if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp) 2672 return; 2673 2674 close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp - 2675 tcp_jiffies32 + jiffies + mptcp_close_timeout(sk); 2676 2677 /* the close timeout takes precedence on the fail one, and here at least one of 2678 * them is active 2679 */ 2680 timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout; 2681 2682 sk_reset_timer(sk, &sk->sk_timer, timeout); 2683 } 2684 2685 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk) 2686 { 2687 struct sock *ssk = msk->first; 2688 bool slow; 2689 2690 if (!ssk) 2691 return; 2692 2693 pr_debug("MP_FAIL doesn't respond, reset the subflow\n"); 2694 2695 slow = lock_sock_fast(ssk); 2696 mptcp_subflow_reset(ssk); 2697 WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0); 2698 unlock_sock_fast(ssk, slow); 2699 } 2700 2701 static void mptcp_do_fastclose(struct sock *sk) 2702 { 2703 struct mptcp_subflow_context *subflow, *tmp; 2704 struct mptcp_sock *msk = mptcp_sk(sk); 2705 2706 mptcp_set_state(sk, TCP_CLOSE); 2707 mptcp_for_each_subflow_safe(msk, subflow, tmp) 2708 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), 2709 subflow, MPTCP_CF_FASTCLOSE); 2710 } 2711 2712 static void mptcp_worker(struct work_struct *work) 2713 { 2714 struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work); 2715 struct sock *sk = (struct sock *)msk; 2716 unsigned long fail_tout; 2717 int state; 2718 2719 lock_sock(sk); 2720 state = sk->sk_state; 2721 if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN))) 2722 goto unlock; 2723 2724 mptcp_check_fastclose(msk); 2725 2726 mptcp_pm_worker(msk); 2727 2728 mptcp_check_send_data_fin(sk); 2729 mptcp_check_data_fin_ack(sk); 2730 mptcp_check_data_fin(sk); 2731 2732 if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags)) 2733 __mptcp_close_subflow(sk); 2734 2735 if (mptcp_close_tout_expired(sk)) { 2736 mptcp_do_fastclose(sk); 2737 mptcp_close_wake_up(sk); 2738 } 2739 2740 if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) { 2741 __mptcp_destroy_sock(sk); 2742 goto unlock; 2743 } 2744 2745 if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags)) 2746 __mptcp_retrans(sk); 2747 2748 fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0; 2749 if (fail_tout && time_after(jiffies, fail_tout)) 2750 mptcp_mp_fail_no_response(msk); 2751 2752 unlock: 2753 release_sock(sk); 2754 sock_put(sk); 2755 } 2756 2757 static void __mptcp_init_sock(struct sock *sk) 2758 { 2759 struct mptcp_sock *msk = mptcp_sk(sk); 2760 2761 INIT_LIST_HEAD(&msk->conn_list); 2762 INIT_LIST_HEAD(&msk->join_list); 2763 INIT_LIST_HEAD(&msk->rtx_queue); 2764 INIT_WORK(&msk->work, mptcp_worker); 2765 msk->out_of_order_queue = RB_ROOT; 2766 msk->first_pending = NULL; 2767 msk->timer_ival = TCP_RTO_MIN; 2768 msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO; 2769 2770 WRITE_ONCE(msk->first, NULL); 2771 inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss; 2772 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 2773 msk->allow_infinite_fallback = true; 2774 msk->allow_subflows = true; 2775 msk->recovery = false; 2776 msk->subflow_id = 1; 2777 msk->last_data_sent = tcp_jiffies32; 2778 msk->last_data_recv = tcp_jiffies32; 2779 msk->last_ack_recv = tcp_jiffies32; 2780 2781 mptcp_pm_data_init(msk); 2782 spin_lock_init(&msk->fallback_lock); 2783 2784 /* re-use the csk retrans timer for MPTCP-level retrans */ 2785 timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0); 2786 timer_setup(&sk->sk_timer, mptcp_tout_timer, 0); 2787 } 2788 2789 static void mptcp_ca_reset(struct sock *sk) 2790 { 2791 struct inet_connection_sock *icsk = inet_csk(sk); 2792 2793 tcp_assign_congestion_control(sk); 2794 strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name, 2795 sizeof(mptcp_sk(sk)->ca_name)); 2796 2797 /* no need to keep a reference to the ops, the name will suffice */ 2798 tcp_cleanup_congestion_control(sk); 2799 icsk->icsk_ca_ops = NULL; 2800 } 2801 2802 static int mptcp_init_sock(struct sock *sk) 2803 { 2804 struct net *net = sock_net(sk); 2805 int ret; 2806 2807 __mptcp_init_sock(sk); 2808 2809 if (!mptcp_is_enabled(net)) 2810 return -ENOPROTOOPT; 2811 2812 if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net)) 2813 return -ENOMEM; 2814 2815 rcu_read_lock(); 2816 ret = mptcp_init_sched(mptcp_sk(sk), 2817 mptcp_sched_find(mptcp_get_scheduler(net))); 2818 rcu_read_unlock(); 2819 if (ret) 2820 return ret; 2821 2822 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags); 2823 2824 /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will 2825 * propagate the correct value 2826 */ 2827 mptcp_ca_reset(sk); 2828 2829 sk_sockets_allocated_inc(sk); 2830 sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]); 2831 sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]); 2832 2833 return 0; 2834 } 2835 2836 static void __mptcp_clear_xmit(struct sock *sk) 2837 { 2838 struct mptcp_sock *msk = mptcp_sk(sk); 2839 struct mptcp_data_frag *dtmp, *dfrag; 2840 2841 WRITE_ONCE(msk->first_pending, NULL); 2842 list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) 2843 dfrag_clear(sk, dfrag); 2844 } 2845 2846 void mptcp_cancel_work(struct sock *sk) 2847 { 2848 struct mptcp_sock *msk = mptcp_sk(sk); 2849 2850 if (cancel_work_sync(&msk->work)) 2851 __sock_put(sk); 2852 } 2853 2854 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how) 2855 { 2856 lock_sock(ssk); 2857 2858 switch (ssk->sk_state) { 2859 case TCP_LISTEN: 2860 if (!(how & RCV_SHUTDOWN)) 2861 break; 2862 fallthrough; 2863 case TCP_SYN_SENT: 2864 WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK)); 2865 break; 2866 default: 2867 if (__mptcp_check_fallback(mptcp_sk(sk))) { 2868 pr_debug("Fallback\n"); 2869 ssk->sk_shutdown |= how; 2870 tcp_shutdown(ssk, how); 2871 2872 /* simulate the data_fin ack reception to let the state 2873 * machine move forward 2874 */ 2875 WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt); 2876 mptcp_schedule_work(sk); 2877 } else { 2878 pr_debug("Sending DATA_FIN on subflow %p\n", ssk); 2879 tcp_send_ack(ssk); 2880 if (!mptcp_rtx_timer_pending(sk)) 2881 mptcp_reset_rtx_timer(sk); 2882 } 2883 break; 2884 } 2885 2886 release_sock(ssk); 2887 } 2888 2889 void mptcp_set_state(struct sock *sk, int state) 2890 { 2891 int oldstate = sk->sk_state; 2892 2893 switch (state) { 2894 case TCP_ESTABLISHED: 2895 if (oldstate != TCP_ESTABLISHED) 2896 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2897 break; 2898 case TCP_CLOSE_WAIT: 2899 /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state: 2900 * MPTCP "accepted" sockets will be created later on. So no 2901 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT. 2902 */ 2903 break; 2904 default: 2905 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT) 2906 MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB); 2907 } 2908 2909 inet_sk_state_store(sk, state); 2910 } 2911 2912 static const unsigned char new_state[16] = { 2913 /* current state: new state: action: */ 2914 [0 /* (Invalid) */] = TCP_CLOSE, 2915 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2916 [TCP_SYN_SENT] = TCP_CLOSE, 2917 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2918 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2919 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2920 [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */ 2921 [TCP_CLOSE] = TCP_CLOSE, 2922 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2923 [TCP_LAST_ACK] = TCP_LAST_ACK, 2924 [TCP_LISTEN] = TCP_CLOSE, 2925 [TCP_CLOSING] = TCP_CLOSING, 2926 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2927 }; 2928 2929 static int mptcp_close_state(struct sock *sk) 2930 { 2931 int next = (int)new_state[sk->sk_state]; 2932 int ns = next & TCP_STATE_MASK; 2933 2934 mptcp_set_state(sk, ns); 2935 2936 return next & TCP_ACTION_FIN; 2937 } 2938 2939 static void mptcp_check_send_data_fin(struct sock *sk) 2940 { 2941 struct mptcp_subflow_context *subflow; 2942 struct mptcp_sock *msk = mptcp_sk(sk); 2943 2944 pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n", 2945 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk), 2946 msk->snd_nxt, msk->write_seq); 2947 2948 /* we still need to enqueue subflows or not really shutting down, 2949 * skip this 2950 */ 2951 if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq || 2952 mptcp_send_head(sk)) 2953 return; 2954 2955 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 2956 2957 mptcp_for_each_subflow(msk, subflow) { 2958 struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow); 2959 2960 mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN); 2961 } 2962 } 2963 2964 static void __mptcp_wr_shutdown(struct sock *sk) 2965 { 2966 struct mptcp_sock *msk = mptcp_sk(sk); 2967 2968 pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n", 2969 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state, 2970 !!mptcp_send_head(sk)); 2971 2972 /* will be ignored by fallback sockets */ 2973 WRITE_ONCE(msk->write_seq, msk->write_seq + 1); 2974 WRITE_ONCE(msk->snd_data_fin_enable, 1); 2975 2976 mptcp_check_send_data_fin(sk); 2977 } 2978 2979 static void __mptcp_destroy_sock(struct sock *sk) 2980 { 2981 struct mptcp_sock *msk = mptcp_sk(sk); 2982 2983 pr_debug("msk=%p\n", msk); 2984 2985 might_sleep(); 2986 2987 mptcp_stop_rtx_timer(sk); 2988 sk_stop_timer(sk, &sk->sk_timer); 2989 msk->pm.status = 0; 2990 mptcp_release_sched(msk); 2991 2992 sk->sk_prot->destroy(sk); 2993 2994 sk_stream_kill_queues(sk); 2995 xfrm_sk_free_policy(sk); 2996 2997 sock_put(sk); 2998 } 2999 3000 void __mptcp_unaccepted_force_close(struct sock *sk) 3001 { 3002 sock_set_flag(sk, SOCK_DEAD); 3003 mptcp_do_fastclose(sk); 3004 __mptcp_destroy_sock(sk); 3005 } 3006 3007 static __poll_t mptcp_check_readable(struct sock *sk) 3008 { 3009 return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0; 3010 } 3011 3012 static void mptcp_check_listen_stop(struct sock *sk) 3013 { 3014 struct sock *ssk; 3015 3016 if (inet_sk_state_load(sk) != TCP_LISTEN) 3017 return; 3018 3019 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); 3020 ssk = mptcp_sk(sk)->first; 3021 if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN)) 3022 return; 3023 3024 lock_sock_nested(ssk, SINGLE_DEPTH_NESTING); 3025 tcp_set_state(ssk, TCP_CLOSE); 3026 mptcp_subflow_queue_clean(sk, ssk); 3027 inet_csk_listen_stop(ssk); 3028 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED); 3029 release_sock(ssk); 3030 } 3031 3032 bool __mptcp_close(struct sock *sk, long timeout) 3033 { 3034 struct mptcp_subflow_context *subflow; 3035 struct mptcp_sock *msk = mptcp_sk(sk); 3036 bool do_cancel_work = false; 3037 int subflows_alive = 0; 3038 3039 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK); 3040 3041 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) { 3042 mptcp_check_listen_stop(sk); 3043 mptcp_set_state(sk, TCP_CLOSE); 3044 goto cleanup; 3045 } 3046 3047 if (mptcp_data_avail(msk) || timeout < 0) { 3048 /* If the msk has read data, or the caller explicitly ask it, 3049 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose 3050 */ 3051 mptcp_do_fastclose(sk); 3052 timeout = 0; 3053 } else if (mptcp_close_state(sk)) { 3054 __mptcp_wr_shutdown(sk); 3055 } 3056 3057 sk_stream_wait_close(sk, timeout); 3058 3059 cleanup: 3060 /* orphan all the subflows */ 3061 mptcp_for_each_subflow(msk, subflow) { 3062 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3063 bool slow = lock_sock_fast_nested(ssk); 3064 3065 subflows_alive += ssk->sk_state != TCP_CLOSE; 3066 3067 /* since the close timeout takes precedence on the fail one, 3068 * cancel the latter 3069 */ 3070 if (ssk == msk->first) 3071 subflow->fail_tout = 0; 3072 3073 /* detach from the parent socket, but allow data_ready to 3074 * push incoming data into the mptcp stack, to properly ack it 3075 */ 3076 ssk->sk_socket = NULL; 3077 ssk->sk_wq = NULL; 3078 unlock_sock_fast(ssk, slow); 3079 } 3080 sock_orphan(sk); 3081 3082 /* all the subflows are closed, only timeout can change the msk 3083 * state, let's not keep resources busy for no reasons 3084 */ 3085 if (subflows_alive == 0) 3086 mptcp_set_state(sk, TCP_CLOSE); 3087 3088 sock_hold(sk); 3089 pr_debug("msk=%p state=%d\n", sk, sk->sk_state); 3090 mptcp_pm_connection_closed(msk); 3091 3092 if (sk->sk_state == TCP_CLOSE) { 3093 __mptcp_destroy_sock(sk); 3094 do_cancel_work = true; 3095 } else { 3096 mptcp_start_tout_timer(sk); 3097 } 3098 3099 return do_cancel_work; 3100 } 3101 3102 static void mptcp_close(struct sock *sk, long timeout) 3103 { 3104 bool do_cancel_work; 3105 3106 lock_sock(sk); 3107 3108 do_cancel_work = __mptcp_close(sk, timeout); 3109 release_sock(sk); 3110 if (do_cancel_work) 3111 mptcp_cancel_work(sk); 3112 3113 sock_put(sk); 3114 } 3115 3116 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk) 3117 { 3118 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3119 const struct ipv6_pinfo *ssk6 = inet6_sk(ssk); 3120 struct ipv6_pinfo *msk6 = inet6_sk(msk); 3121 3122 msk->sk_v6_daddr = ssk->sk_v6_daddr; 3123 msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr; 3124 3125 if (msk6 && ssk6) { 3126 msk6->saddr = ssk6->saddr; 3127 msk6->flow_label = ssk6->flow_label; 3128 } 3129 #endif 3130 3131 inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num; 3132 inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport; 3133 inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport; 3134 inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr; 3135 inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr; 3136 inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr; 3137 } 3138 3139 static int mptcp_disconnect(struct sock *sk, int flags) 3140 { 3141 struct mptcp_sock *msk = mptcp_sk(sk); 3142 3143 /* We are on the fastopen error path. We can't call straight into the 3144 * subflows cleanup code due to lock nesting (we are already under 3145 * msk->firstsocket lock). 3146 */ 3147 if (msk->fastopening) 3148 return -EBUSY; 3149 3150 mptcp_check_listen_stop(sk); 3151 mptcp_set_state(sk, TCP_CLOSE); 3152 3153 mptcp_stop_rtx_timer(sk); 3154 mptcp_stop_tout_timer(sk); 3155 3156 mptcp_pm_connection_closed(msk); 3157 3158 /* msk->subflow is still intact, the following will not free the first 3159 * subflow 3160 */ 3161 mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE); 3162 3163 /* The first subflow is already in TCP_CLOSE status, the following 3164 * can't overlap with a fallback anymore 3165 */ 3166 spin_lock_bh(&msk->fallback_lock); 3167 msk->allow_subflows = true; 3168 msk->allow_infinite_fallback = true; 3169 WRITE_ONCE(msk->flags, 0); 3170 spin_unlock_bh(&msk->fallback_lock); 3171 3172 msk->cb_flags = 0; 3173 msk->recovery = false; 3174 WRITE_ONCE(msk->can_ack, false); 3175 WRITE_ONCE(msk->fully_established, false); 3176 WRITE_ONCE(msk->rcv_data_fin, false); 3177 WRITE_ONCE(msk->snd_data_fin_enable, false); 3178 WRITE_ONCE(msk->rcv_fastclose, false); 3179 WRITE_ONCE(msk->use_64bit_ack, false); 3180 WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk))); 3181 mptcp_pm_data_reset(msk); 3182 mptcp_ca_reset(sk); 3183 msk->bytes_consumed = 0; 3184 msk->bytes_acked = 0; 3185 msk->bytes_received = 0; 3186 msk->bytes_sent = 0; 3187 msk->bytes_retrans = 0; 3188 msk->rcvspace_init = 0; 3189 3190 WRITE_ONCE(sk->sk_shutdown, 0); 3191 sk_error_report(sk); 3192 return 0; 3193 } 3194 3195 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3196 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk) 3197 { 3198 struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk); 3199 3200 return &msk6->np; 3201 } 3202 3203 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk) 3204 { 3205 const struct ipv6_pinfo *np = inet6_sk(sk); 3206 struct ipv6_txoptions *opt; 3207 struct ipv6_pinfo *newnp; 3208 3209 newnp = inet6_sk(newsk); 3210 3211 rcu_read_lock(); 3212 opt = rcu_dereference(np->opt); 3213 if (opt) { 3214 opt = ipv6_dup_options(newsk, opt); 3215 if (!opt) 3216 net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__); 3217 } 3218 RCU_INIT_POINTER(newnp->opt, opt); 3219 rcu_read_unlock(); 3220 } 3221 #endif 3222 3223 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk) 3224 { 3225 struct ip_options_rcu *inet_opt, *newopt = NULL; 3226 const struct inet_sock *inet = inet_sk(sk); 3227 struct inet_sock *newinet; 3228 3229 newinet = inet_sk(newsk); 3230 3231 rcu_read_lock(); 3232 inet_opt = rcu_dereference(inet->inet_opt); 3233 if (inet_opt) { 3234 newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) + 3235 inet_opt->opt.optlen, GFP_ATOMIC); 3236 if (!newopt) 3237 net_warn_ratelimited("%s: Failed to copy ip options\n", __func__); 3238 } 3239 RCU_INIT_POINTER(newinet->inet_opt, newopt); 3240 rcu_read_unlock(); 3241 } 3242 3243 struct sock *mptcp_sk_clone_init(const struct sock *sk, 3244 const struct mptcp_options_received *mp_opt, 3245 struct sock *ssk, 3246 struct request_sock *req) 3247 { 3248 struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req); 3249 struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC); 3250 struct mptcp_subflow_context *subflow; 3251 struct mptcp_sock *msk; 3252 3253 if (!nsk) 3254 return NULL; 3255 3256 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3257 if (nsk->sk_family == AF_INET6) 3258 inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk); 3259 #endif 3260 3261 __mptcp_init_sock(nsk); 3262 3263 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3264 if (nsk->sk_family == AF_INET6) 3265 mptcp_copy_ip6_options(nsk, sk); 3266 else 3267 #endif 3268 mptcp_copy_ip_options(nsk, sk); 3269 3270 msk = mptcp_sk(nsk); 3271 WRITE_ONCE(msk->local_key, subflow_req->local_key); 3272 WRITE_ONCE(msk->token, subflow_req->token); 3273 msk->in_accept_queue = 1; 3274 WRITE_ONCE(msk->fully_established, false); 3275 if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD) 3276 WRITE_ONCE(msk->csum_enabled, true); 3277 3278 WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1); 3279 WRITE_ONCE(msk->snd_nxt, msk->write_seq); 3280 WRITE_ONCE(msk->snd_una, msk->write_seq); 3281 WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd); 3282 msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq; 3283 mptcp_init_sched(msk, mptcp_sk(sk)->sched); 3284 3285 /* passive msk is created after the first/MPC subflow */ 3286 msk->subflow_id = 2; 3287 3288 sock_reset_flag(nsk, SOCK_RCU_FREE); 3289 security_inet_csk_clone(nsk, req); 3290 3291 /* this can't race with mptcp_close(), as the msk is 3292 * not yet exposted to user-space 3293 */ 3294 mptcp_set_state(nsk, TCP_ESTABLISHED); 3295 3296 /* The msk maintain a ref to each subflow in the connections list */ 3297 WRITE_ONCE(msk->first, ssk); 3298 subflow = mptcp_subflow_ctx(ssk); 3299 list_add(&subflow->node, &msk->conn_list); 3300 sock_hold(ssk); 3301 3302 /* new mpc subflow takes ownership of the newly 3303 * created mptcp socket 3304 */ 3305 mptcp_token_accept(subflow_req, msk); 3306 3307 /* set msk addresses early to ensure mptcp_pm_get_local_id() 3308 * uses the correct data 3309 */ 3310 mptcp_copy_inaddrs(nsk, ssk); 3311 __mptcp_propagate_sndbuf(nsk, ssk); 3312 3313 mptcp_rcv_space_init(msk, ssk); 3314 3315 if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK) 3316 __mptcp_subflow_fully_established(msk, subflow, mp_opt); 3317 bh_unlock_sock(nsk); 3318 3319 /* note: the newly allocated socket refcount is 2 now */ 3320 return nsk; 3321 } 3322 3323 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk) 3324 { 3325 const struct tcp_sock *tp = tcp_sk(ssk); 3326 3327 msk->rcvspace_init = 1; 3328 msk->rcvq_space.copied = 0; 3329 msk->rcvq_space.rtt_us = 0; 3330 3331 msk->rcvq_space.time = tp->tcp_mstamp; 3332 3333 /* initial rcv_space offering made to peer */ 3334 msk->rcvq_space.space = min_t(u32, tp->rcv_wnd, 3335 TCP_INIT_CWND * tp->advmss); 3336 if (msk->rcvq_space.space == 0) 3337 msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT; 3338 } 3339 3340 void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags) 3341 { 3342 struct mptcp_subflow_context *subflow, *tmp; 3343 struct sock *sk = (struct sock *)msk; 3344 3345 __mptcp_clear_xmit(sk); 3346 3347 /* join list will be eventually flushed (with rst) at sock lock release time */ 3348 mptcp_for_each_subflow_safe(msk, subflow, tmp) 3349 __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags); 3350 3351 __skb_queue_purge(&sk->sk_receive_queue); 3352 skb_rbtree_purge(&msk->out_of_order_queue); 3353 3354 /* move all the rx fwd alloc into the sk_mem_reclaim_final in 3355 * inet_sock_destruct() will dispose it 3356 */ 3357 mptcp_token_destroy(msk); 3358 mptcp_pm_destroy(msk); 3359 } 3360 3361 static void mptcp_destroy(struct sock *sk) 3362 { 3363 struct mptcp_sock *msk = mptcp_sk(sk); 3364 3365 /* allow the following to close even the initial subflow */ 3366 msk->free_first = 1; 3367 mptcp_destroy_common(msk, 0); 3368 sk_sockets_allocated_dec(sk); 3369 } 3370 3371 void __mptcp_data_acked(struct sock *sk) 3372 { 3373 if (!sock_owned_by_user(sk)) 3374 __mptcp_clean_una(sk); 3375 else 3376 __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags); 3377 } 3378 3379 void __mptcp_check_push(struct sock *sk, struct sock *ssk) 3380 { 3381 if (!mptcp_send_head(sk)) 3382 return; 3383 3384 if (!sock_owned_by_user(sk)) 3385 __mptcp_subflow_push_pending(sk, ssk, false); 3386 else 3387 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3388 } 3389 3390 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \ 3391 BIT(MPTCP_RETRANSMIT) | \ 3392 BIT(MPTCP_FLUSH_JOIN_LIST) | \ 3393 BIT(MPTCP_DEQUEUE)) 3394 3395 /* processes deferred events and flush wmem */ 3396 static void mptcp_release_cb(struct sock *sk) 3397 __must_hold(&sk->sk_lock.slock) 3398 { 3399 struct mptcp_sock *msk = mptcp_sk(sk); 3400 3401 for (;;) { 3402 unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED); 3403 struct list_head join_list; 3404 3405 if (!flags) 3406 break; 3407 3408 INIT_LIST_HEAD(&join_list); 3409 list_splice_init(&msk->join_list, &join_list); 3410 3411 /* the following actions acquire the subflow socket lock 3412 * 3413 * 1) can't be invoked in atomic scope 3414 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX 3415 * datapath acquires the msk socket spinlock while helding 3416 * the subflow socket lock 3417 */ 3418 msk->cb_flags &= ~flags; 3419 spin_unlock_bh(&sk->sk_lock.slock); 3420 3421 if (flags & BIT(MPTCP_FLUSH_JOIN_LIST)) 3422 __mptcp_flush_join_list(sk, &join_list); 3423 if (flags & BIT(MPTCP_PUSH_PENDING)) 3424 __mptcp_push_pending(sk, 0); 3425 if (flags & BIT(MPTCP_RETRANSMIT)) 3426 __mptcp_retrans(sk); 3427 if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) { 3428 /* notify ack seq update */ 3429 mptcp_cleanup_rbuf(msk, 0); 3430 sk->sk_data_ready(sk); 3431 } 3432 3433 cond_resched(); 3434 spin_lock_bh(&sk->sk_lock.slock); 3435 } 3436 3437 if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags)) 3438 __mptcp_clean_una_wakeup(sk); 3439 if (unlikely(msk->cb_flags)) { 3440 /* be sure to sync the msk state before taking actions 3441 * depending on sk_state (MPTCP_ERROR_REPORT) 3442 * On sk release avoid actions depending on the first subflow 3443 */ 3444 if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first) 3445 __mptcp_sync_state(sk, msk->pending_state); 3446 if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags)) 3447 __mptcp_error_report(sk); 3448 if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags)) 3449 __mptcp_sync_sndbuf(sk); 3450 } 3451 } 3452 3453 /* MP_JOIN client subflow must wait for 4th ack before sending any data: 3454 * TCP can't schedule delack timer before the subflow is fully established. 3455 * MPTCP uses the delack timer to do 3rd ack retransmissions 3456 */ 3457 static void schedule_3rdack_retransmission(struct sock *ssk) 3458 { 3459 struct inet_connection_sock *icsk = inet_csk(ssk); 3460 struct tcp_sock *tp = tcp_sk(ssk); 3461 unsigned long timeout; 3462 3463 if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established)) 3464 return; 3465 3466 /* reschedule with a timeout above RTT, as we must look only for drop */ 3467 if (tp->srtt_us) 3468 timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1)); 3469 else 3470 timeout = TCP_TIMEOUT_INIT; 3471 timeout += jiffies; 3472 3473 WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER); 3474 smp_store_release(&icsk->icsk_ack.pending, 3475 icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER); 3476 sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout); 3477 } 3478 3479 void mptcp_subflow_process_delegated(struct sock *ssk, long status) 3480 { 3481 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3482 struct sock *sk = subflow->conn; 3483 3484 if (status & BIT(MPTCP_DELEGATE_SEND)) { 3485 mptcp_data_lock(sk); 3486 if (!sock_owned_by_user(sk)) 3487 __mptcp_subflow_push_pending(sk, ssk, true); 3488 else 3489 __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags); 3490 mptcp_data_unlock(sk); 3491 } 3492 if (status & BIT(MPTCP_DELEGATE_SNDBUF)) { 3493 mptcp_data_lock(sk); 3494 if (!sock_owned_by_user(sk)) 3495 __mptcp_sync_sndbuf(sk); 3496 else 3497 __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags); 3498 mptcp_data_unlock(sk); 3499 } 3500 if (status & BIT(MPTCP_DELEGATE_ACK)) 3501 schedule_3rdack_retransmission(ssk); 3502 } 3503 3504 static int mptcp_hash(struct sock *sk) 3505 { 3506 /* should never be called, 3507 * we hash the TCP subflows not the MPTCP socket 3508 */ 3509 WARN_ON_ONCE(1); 3510 return 0; 3511 } 3512 3513 static void mptcp_unhash(struct sock *sk) 3514 { 3515 /* called from sk_common_release(), but nothing to do here */ 3516 } 3517 3518 static int mptcp_get_port(struct sock *sk, unsigned short snum) 3519 { 3520 struct mptcp_sock *msk = mptcp_sk(sk); 3521 3522 pr_debug("msk=%p, ssk=%p\n", msk, msk->first); 3523 if (WARN_ON_ONCE(!msk->first)) 3524 return -EINVAL; 3525 3526 return inet_csk_get_port(msk->first, snum); 3527 } 3528 3529 void mptcp_finish_connect(struct sock *ssk) 3530 { 3531 struct mptcp_subflow_context *subflow; 3532 struct mptcp_sock *msk; 3533 struct sock *sk; 3534 3535 subflow = mptcp_subflow_ctx(ssk); 3536 sk = subflow->conn; 3537 msk = mptcp_sk(sk); 3538 3539 pr_debug("msk=%p, token=%u\n", sk, subflow->token); 3540 3541 subflow->map_seq = subflow->iasn; 3542 subflow->map_subflow_seq = 1; 3543 3544 /* the socket is not connected yet, no msk/subflow ops can access/race 3545 * accessing the field below 3546 */ 3547 WRITE_ONCE(msk->local_key, subflow->local_key); 3548 3549 mptcp_pm_new_connection(msk, ssk, 0); 3550 } 3551 3552 void mptcp_sock_graft(struct sock *sk, struct socket *parent) 3553 { 3554 write_lock_bh(&sk->sk_callback_lock); 3555 rcu_assign_pointer(sk->sk_wq, &parent->wq); 3556 sk_set_socket(sk, parent); 3557 WRITE_ONCE(sk->sk_uid, SOCK_INODE(parent)->i_uid); 3558 write_unlock_bh(&sk->sk_callback_lock); 3559 } 3560 3561 bool mptcp_finish_join(struct sock *ssk) 3562 { 3563 struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk); 3564 struct mptcp_sock *msk = mptcp_sk(subflow->conn); 3565 struct sock *parent = (void *)msk; 3566 bool ret = true; 3567 3568 pr_debug("msk=%p, subflow=%p\n", msk, subflow); 3569 3570 /* mptcp socket already closing? */ 3571 if (!mptcp_is_fully_established(parent)) { 3572 subflow->reset_reason = MPTCP_RST_EMPTCP; 3573 return false; 3574 } 3575 3576 /* active subflow, already present inside the conn_list */ 3577 if (!list_empty(&subflow->node)) { 3578 spin_lock_bh(&msk->fallback_lock); 3579 if (!msk->allow_subflows) { 3580 spin_unlock_bh(&msk->fallback_lock); 3581 return false; 3582 } 3583 mptcp_subflow_joined(msk, ssk); 3584 spin_unlock_bh(&msk->fallback_lock); 3585 mptcp_propagate_sndbuf(parent, ssk); 3586 return true; 3587 } 3588 3589 if (!mptcp_pm_allow_new_subflow(msk)) { 3590 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED); 3591 goto err_prohibited; 3592 } 3593 3594 /* If we can't acquire msk socket lock here, let the release callback 3595 * handle it 3596 */ 3597 mptcp_data_lock(parent); 3598 if (!sock_owned_by_user(parent)) { 3599 ret = __mptcp_finish_join(msk, ssk); 3600 if (ret) { 3601 sock_hold(ssk); 3602 list_add_tail(&subflow->node, &msk->conn_list); 3603 } 3604 } else { 3605 sock_hold(ssk); 3606 list_add_tail(&subflow->node, &msk->join_list); 3607 __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags); 3608 } 3609 mptcp_data_unlock(parent); 3610 3611 if (!ret) { 3612 err_prohibited: 3613 subflow->reset_reason = MPTCP_RST_EPROHIBIT; 3614 return false; 3615 } 3616 3617 return true; 3618 } 3619 3620 static void mptcp_shutdown(struct sock *sk, int how) 3621 { 3622 pr_debug("sk=%p, how=%d\n", sk, how); 3623 3624 if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk)) 3625 __mptcp_wr_shutdown(sk); 3626 } 3627 3628 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v) 3629 { 3630 const struct sock *sk = (void *)msk; 3631 u64 delta; 3632 3633 if (sk->sk_state == TCP_LISTEN) 3634 return -EINVAL; 3635 3636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 3637 return 0; 3638 3639 delta = msk->write_seq - v; 3640 if (__mptcp_check_fallback(msk) && msk->first) { 3641 struct tcp_sock *tp = tcp_sk(msk->first); 3642 3643 /* the first subflow is disconnected after close - see 3644 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq 3645 * so ignore that status, too. 3646 */ 3647 if (!((1 << msk->first->sk_state) & 3648 (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE))) 3649 delta += READ_ONCE(tp->write_seq) - tp->snd_una; 3650 } 3651 if (delta > INT_MAX) 3652 delta = INT_MAX; 3653 3654 return (int)delta; 3655 } 3656 3657 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg) 3658 { 3659 struct mptcp_sock *msk = mptcp_sk(sk); 3660 bool slow; 3661 3662 switch (cmd) { 3663 case SIOCINQ: 3664 if (sk->sk_state == TCP_LISTEN) 3665 return -EINVAL; 3666 3667 lock_sock(sk); 3668 if (__mptcp_move_skbs(sk)) 3669 mptcp_cleanup_rbuf(msk, 0); 3670 *karg = mptcp_inq_hint(sk); 3671 release_sock(sk); 3672 break; 3673 case SIOCOUTQ: 3674 slow = lock_sock_fast(sk); 3675 *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una)); 3676 unlock_sock_fast(sk, slow); 3677 break; 3678 case SIOCOUTQNSD: 3679 slow = lock_sock_fast(sk); 3680 *karg = mptcp_ioctl_outq(msk, msk->snd_nxt); 3681 unlock_sock_fast(sk, slow); 3682 break; 3683 default: 3684 return -ENOIOCTLCMD; 3685 } 3686 3687 return 0; 3688 } 3689 3690 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) 3691 { 3692 struct mptcp_subflow_context *subflow; 3693 struct mptcp_sock *msk = mptcp_sk(sk); 3694 int err = -EINVAL; 3695 struct sock *ssk; 3696 3697 ssk = __mptcp_nmpc_sk(msk); 3698 if (IS_ERR(ssk)) 3699 return PTR_ERR(ssk); 3700 3701 mptcp_set_state(sk, TCP_SYN_SENT); 3702 subflow = mptcp_subflow_ctx(ssk); 3703 #ifdef CONFIG_TCP_MD5SIG 3704 /* no MPTCP if MD5SIG is enabled on this socket or we may run out of 3705 * TCP option space. 3706 */ 3707 if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info)) 3708 mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK); 3709 #endif 3710 if (subflow->request_mptcp) { 3711 if (mptcp_active_should_disable(sk)) 3712 mptcp_early_fallback(msk, subflow, 3713 MPTCP_MIB_MPCAPABLEACTIVEDISABLED); 3714 else if (mptcp_token_new_connect(ssk) < 0) 3715 mptcp_early_fallback(msk, subflow, 3716 MPTCP_MIB_TOKENFALLBACKINIT); 3717 } 3718 3719 WRITE_ONCE(msk->write_seq, subflow->idsn); 3720 WRITE_ONCE(msk->snd_nxt, subflow->idsn); 3721 WRITE_ONCE(msk->snd_una, subflow->idsn); 3722 if (likely(!__mptcp_check_fallback(msk))) 3723 MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE); 3724 3725 /* if reaching here via the fastopen/sendmsg path, the caller already 3726 * acquired the subflow socket lock, too. 3727 */ 3728 if (!msk->fastopening) 3729 lock_sock(ssk); 3730 3731 /* the following mirrors closely a very small chunk of code from 3732 * __inet_stream_connect() 3733 */ 3734 if (ssk->sk_state != TCP_CLOSE) 3735 goto out; 3736 3737 if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) { 3738 err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len); 3739 if (err) 3740 goto out; 3741 } 3742 3743 err = ssk->sk_prot->connect(ssk, uaddr, addr_len); 3744 if (err < 0) 3745 goto out; 3746 3747 inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk)); 3748 3749 out: 3750 if (!msk->fastopening) 3751 release_sock(ssk); 3752 3753 /* on successful connect, the msk state will be moved to established by 3754 * subflow_finish_connect() 3755 */ 3756 if (unlikely(err)) { 3757 /* avoid leaving a dangling token in an unconnected socket */ 3758 mptcp_token_destroy(msk); 3759 mptcp_set_state(sk, TCP_CLOSE); 3760 return err; 3761 } 3762 3763 mptcp_copy_inaddrs(sk, ssk); 3764 return 0; 3765 } 3766 3767 static struct proto mptcp_prot = { 3768 .name = "MPTCP", 3769 .owner = THIS_MODULE, 3770 .init = mptcp_init_sock, 3771 .connect = mptcp_connect, 3772 .disconnect = mptcp_disconnect, 3773 .close = mptcp_close, 3774 .setsockopt = mptcp_setsockopt, 3775 .getsockopt = mptcp_getsockopt, 3776 .shutdown = mptcp_shutdown, 3777 .destroy = mptcp_destroy, 3778 .sendmsg = mptcp_sendmsg, 3779 .ioctl = mptcp_ioctl, 3780 .recvmsg = mptcp_recvmsg, 3781 .release_cb = mptcp_release_cb, 3782 .hash = mptcp_hash, 3783 .unhash = mptcp_unhash, 3784 .get_port = mptcp_get_port, 3785 .stream_memory_free = mptcp_stream_memory_free, 3786 .sockets_allocated = &mptcp_sockets_allocated, 3787 3788 .memory_allocated = &net_aligned_data.tcp_memory_allocated, 3789 .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc, 3790 3791 .memory_pressure = &tcp_memory_pressure, 3792 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), 3793 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), 3794 .sysctl_mem = sysctl_tcp_mem, 3795 .obj_size = sizeof(struct mptcp_sock), 3796 .slab_flags = SLAB_TYPESAFE_BY_RCU, 3797 .no_autobind = true, 3798 }; 3799 3800 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 3801 { 3802 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3803 struct sock *ssk, *sk = sock->sk; 3804 int err = -EINVAL; 3805 3806 lock_sock(sk); 3807 ssk = __mptcp_nmpc_sk(msk); 3808 if (IS_ERR(ssk)) { 3809 err = PTR_ERR(ssk); 3810 goto unlock; 3811 } 3812 3813 if (sk->sk_family == AF_INET) 3814 err = inet_bind_sk(ssk, uaddr, addr_len); 3815 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 3816 else if (sk->sk_family == AF_INET6) 3817 err = inet6_bind_sk(ssk, uaddr, addr_len); 3818 #endif 3819 if (!err) 3820 mptcp_copy_inaddrs(sk, ssk); 3821 3822 unlock: 3823 release_sock(sk); 3824 return err; 3825 } 3826 3827 static int mptcp_listen(struct socket *sock, int backlog) 3828 { 3829 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3830 struct sock *sk = sock->sk; 3831 struct sock *ssk; 3832 int err; 3833 3834 pr_debug("msk=%p\n", msk); 3835 3836 lock_sock(sk); 3837 3838 err = -EINVAL; 3839 if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM) 3840 goto unlock; 3841 3842 ssk = __mptcp_nmpc_sk(msk); 3843 if (IS_ERR(ssk)) { 3844 err = PTR_ERR(ssk); 3845 goto unlock; 3846 } 3847 3848 mptcp_set_state(sk, TCP_LISTEN); 3849 sock_set_flag(sk, SOCK_RCU_FREE); 3850 3851 lock_sock(ssk); 3852 err = __inet_listen_sk(ssk, backlog); 3853 release_sock(ssk); 3854 mptcp_set_state(sk, inet_sk_state_load(ssk)); 3855 3856 if (!err) { 3857 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); 3858 mptcp_copy_inaddrs(sk, ssk); 3859 mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED); 3860 } 3861 3862 unlock: 3863 release_sock(sk); 3864 return err; 3865 } 3866 3867 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock, 3868 struct proto_accept_arg *arg) 3869 { 3870 struct mptcp_sock *msk = mptcp_sk(sock->sk); 3871 struct sock *ssk, *newsk; 3872 3873 pr_debug("msk=%p\n", msk); 3874 3875 /* Buggy applications can call accept on socket states other then LISTEN 3876 * but no need to allocate the first subflow just to error out. 3877 */ 3878 ssk = READ_ONCE(msk->first); 3879 if (!ssk) 3880 return -EINVAL; 3881 3882 pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk)); 3883 newsk = inet_csk_accept(ssk, arg); 3884 if (!newsk) 3885 return arg->err; 3886 3887 pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk)); 3888 if (sk_is_mptcp(newsk)) { 3889 struct mptcp_subflow_context *subflow; 3890 struct sock *new_mptcp_sock; 3891 3892 subflow = mptcp_subflow_ctx(newsk); 3893 new_mptcp_sock = subflow->conn; 3894 3895 /* is_mptcp should be false if subflow->conn is missing, see 3896 * subflow_syn_recv_sock() 3897 */ 3898 if (WARN_ON_ONCE(!new_mptcp_sock)) { 3899 tcp_sk(newsk)->is_mptcp = 0; 3900 goto tcpfallback; 3901 } 3902 3903 newsk = new_mptcp_sock; 3904 MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK); 3905 3906 newsk->sk_kern_sock = arg->kern; 3907 lock_sock(newsk); 3908 __inet_accept(sock, newsock, newsk); 3909 3910 set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags); 3911 msk = mptcp_sk(newsk); 3912 msk->in_accept_queue = 0; 3913 3914 /* set ssk->sk_socket of accept()ed flows to mptcp socket. 3915 * This is needed so NOSPACE flag can be set from tcp stack. 3916 */ 3917 mptcp_for_each_subflow(msk, subflow) { 3918 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 3919 3920 if (!ssk->sk_socket) 3921 mptcp_sock_graft(ssk, newsock); 3922 } 3923 3924 /* Do late cleanup for the first subflow as necessary. Also 3925 * deal with bad peers not doing a complete shutdown. 3926 */ 3927 if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) { 3928 __mptcp_close_ssk(newsk, msk->first, 3929 mptcp_subflow_ctx(msk->first), 0); 3930 if (unlikely(list_is_singular(&msk->conn_list))) 3931 mptcp_set_state(newsk, TCP_CLOSE); 3932 } 3933 } else { 3934 tcpfallback: 3935 newsk->sk_kern_sock = arg->kern; 3936 lock_sock(newsk); 3937 __inet_accept(sock, newsock, newsk); 3938 /* we are being invoked after accepting a non-mp-capable 3939 * flow: sk is a tcp_sk, not an mptcp one. 3940 * 3941 * Hand the socket over to tcp so all further socket ops 3942 * bypass mptcp. 3943 */ 3944 WRITE_ONCE(newsock->sk->sk_socket->ops, 3945 mptcp_fallback_tcp_ops(newsock->sk)); 3946 } 3947 release_sock(newsk); 3948 3949 return 0; 3950 } 3951 3952 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk) 3953 { 3954 struct sock *sk = (struct sock *)msk; 3955 3956 if (__mptcp_stream_is_writeable(sk, 1)) 3957 return EPOLLOUT | EPOLLWRNORM; 3958 3959 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 3960 smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */ 3961 if (__mptcp_stream_is_writeable(sk, 1)) 3962 return EPOLLOUT | EPOLLWRNORM; 3963 3964 return 0; 3965 } 3966 3967 static __poll_t mptcp_poll(struct file *file, struct socket *sock, 3968 struct poll_table_struct *wait) 3969 { 3970 struct sock *sk = sock->sk; 3971 struct mptcp_sock *msk; 3972 __poll_t mask = 0; 3973 u8 shutdown; 3974 int state; 3975 3976 msk = mptcp_sk(sk); 3977 sock_poll_wait(file, sock, wait); 3978 3979 state = inet_sk_state_load(sk); 3980 pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags); 3981 if (state == TCP_LISTEN) { 3982 struct sock *ssk = READ_ONCE(msk->first); 3983 3984 if (WARN_ON_ONCE(!ssk)) 3985 return 0; 3986 3987 return inet_csk_listen_poll(ssk); 3988 } 3989 3990 shutdown = READ_ONCE(sk->sk_shutdown); 3991 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 3992 mask |= EPOLLHUP; 3993 if (shutdown & RCV_SHUTDOWN) 3994 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 3995 3996 if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) { 3997 mask |= mptcp_check_readable(sk); 3998 if (shutdown & SEND_SHUTDOWN) 3999 mask |= EPOLLOUT | EPOLLWRNORM; 4000 else 4001 mask |= mptcp_check_writeable(msk); 4002 } else if (state == TCP_SYN_SENT && 4003 inet_test_bit(DEFER_CONNECT, sk)) { 4004 /* cf tcp_poll() note about TFO */ 4005 mask |= EPOLLOUT | EPOLLWRNORM; 4006 } 4007 4008 /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */ 4009 smp_rmb(); 4010 if (READ_ONCE(sk->sk_err)) 4011 mask |= EPOLLERR; 4012 4013 return mask; 4014 } 4015 4016 static const struct proto_ops mptcp_stream_ops = { 4017 .family = PF_INET, 4018 .owner = THIS_MODULE, 4019 .release = inet_release, 4020 .bind = mptcp_bind, 4021 .connect = inet_stream_connect, 4022 .socketpair = sock_no_socketpair, 4023 .accept = mptcp_stream_accept, 4024 .getname = inet_getname, 4025 .poll = mptcp_poll, 4026 .ioctl = inet_ioctl, 4027 .gettstamp = sock_gettstamp, 4028 .listen = mptcp_listen, 4029 .shutdown = inet_shutdown, 4030 .setsockopt = sock_common_setsockopt, 4031 .getsockopt = sock_common_getsockopt, 4032 .sendmsg = inet_sendmsg, 4033 .recvmsg = inet_recvmsg, 4034 .mmap = sock_no_mmap, 4035 .set_rcvlowat = mptcp_set_rcvlowat, 4036 }; 4037 4038 static struct inet_protosw mptcp_protosw = { 4039 .type = SOCK_STREAM, 4040 .protocol = IPPROTO_MPTCP, 4041 .prot = &mptcp_prot, 4042 .ops = &mptcp_stream_ops, 4043 .flags = INET_PROTOSW_ICSK, 4044 }; 4045 4046 static int mptcp_napi_poll(struct napi_struct *napi, int budget) 4047 { 4048 struct mptcp_delegated_action *delegated; 4049 struct mptcp_subflow_context *subflow; 4050 int work_done = 0; 4051 4052 delegated = container_of(napi, struct mptcp_delegated_action, napi); 4053 while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) { 4054 struct sock *ssk = mptcp_subflow_tcp_sock(subflow); 4055 4056 bh_lock_sock_nested(ssk); 4057 if (!sock_owned_by_user(ssk)) { 4058 mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0)); 4059 } else { 4060 /* tcp_release_cb_override already processed 4061 * the action or will do at next release_sock(). 4062 * In both case must dequeue the subflow here - on the same 4063 * CPU that scheduled it. 4064 */ 4065 smp_wmb(); 4066 clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status); 4067 } 4068 bh_unlock_sock(ssk); 4069 sock_put(ssk); 4070 4071 if (++work_done == budget) 4072 return budget; 4073 } 4074 4075 /* always provide a 0 'work_done' argument, so that napi_complete_done 4076 * will not try accessing the NULL napi->dev ptr 4077 */ 4078 napi_complete_done(napi, 0); 4079 return work_done; 4080 } 4081 4082 void __init mptcp_proto_init(void) 4083 { 4084 struct mptcp_delegated_action *delegated; 4085 int cpu; 4086 4087 mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo; 4088 4089 if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL)) 4090 panic("Failed to allocate MPTCP pcpu counter\n"); 4091 4092 mptcp_napi_dev = alloc_netdev_dummy(0); 4093 if (!mptcp_napi_dev) 4094 panic("Failed to allocate MPTCP dummy netdev\n"); 4095 for_each_possible_cpu(cpu) { 4096 delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu); 4097 INIT_LIST_HEAD(&delegated->head); 4098 netif_napi_add_tx(mptcp_napi_dev, &delegated->napi, 4099 mptcp_napi_poll); 4100 napi_enable(&delegated->napi); 4101 } 4102 4103 mptcp_subflow_init(); 4104 mptcp_pm_init(); 4105 mptcp_sched_init(); 4106 mptcp_token_init(); 4107 4108 if (proto_register(&mptcp_prot, 1) != 0) 4109 panic("Failed to register MPTCP proto.\n"); 4110 4111 inet_register_protosw(&mptcp_protosw); 4112 4113 BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb)); 4114 } 4115 4116 #if IS_ENABLED(CONFIG_MPTCP_IPV6) 4117 static const struct proto_ops mptcp_v6_stream_ops = { 4118 .family = PF_INET6, 4119 .owner = THIS_MODULE, 4120 .release = inet6_release, 4121 .bind = mptcp_bind, 4122 .connect = inet_stream_connect, 4123 .socketpair = sock_no_socketpair, 4124 .accept = mptcp_stream_accept, 4125 .getname = inet6_getname, 4126 .poll = mptcp_poll, 4127 .ioctl = inet6_ioctl, 4128 .gettstamp = sock_gettstamp, 4129 .listen = mptcp_listen, 4130 .shutdown = inet_shutdown, 4131 .setsockopt = sock_common_setsockopt, 4132 .getsockopt = sock_common_getsockopt, 4133 .sendmsg = inet6_sendmsg, 4134 .recvmsg = inet6_recvmsg, 4135 .mmap = sock_no_mmap, 4136 #ifdef CONFIG_COMPAT 4137 .compat_ioctl = inet6_compat_ioctl, 4138 #endif 4139 .set_rcvlowat = mptcp_set_rcvlowat, 4140 }; 4141 4142 static struct proto mptcp_v6_prot; 4143 4144 static struct inet_protosw mptcp_v6_protosw = { 4145 .type = SOCK_STREAM, 4146 .protocol = IPPROTO_MPTCP, 4147 .prot = &mptcp_v6_prot, 4148 .ops = &mptcp_v6_stream_ops, 4149 .flags = INET_PROTOSW_ICSK, 4150 }; 4151 4152 int __init mptcp_proto_v6_init(void) 4153 { 4154 int err; 4155 4156 mptcp_v6_prot = mptcp_prot; 4157 strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name)); 4158 mptcp_v6_prot.slab = NULL; 4159 mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock); 4160 mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np); 4161 4162 err = proto_register(&mptcp_v6_prot, 1); 4163 if (err) 4164 return err; 4165 4166 err = inet6_register_protosw(&mptcp_v6_protosw); 4167 if (err) 4168 proto_unregister(&mptcp_v6_prot); 4169 4170 return err; 4171 } 4172 #endif 4173