xref: /linux/net/mptcp/protocol.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
mptcp_fallback_tcp_ops(const struct sock * sk)62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 	unsigned short family = READ_ONCE(sk->sk_family);
65 
66 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
67 	if (family == AF_INET6)
68 		return &inet6_stream_ops;
69 #endif
70 	WARN_ON_ONCE(family != AF_INET);
71 	return &inet_stream_ops;
72 }
73 
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
75 {
76 	struct net *net = sock_net((struct sock *)msk);
77 
78 	if (__mptcp_check_fallback(msk))
79 		return true;
80 
81 	/* The caller possibly is not holding the msk socket lock, but
82 	 * in the fallback case only the current subflow is touching
83 	 * the OoO queue.
84 	 */
85 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
86 		return false;
87 
88 	spin_lock_bh(&msk->fallback_lock);
89 	if (!msk->allow_infinite_fallback) {
90 		spin_unlock_bh(&msk->fallback_lock);
91 		return false;
92 	}
93 
94 	msk->allow_subflows = false;
95 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
96 	__MPTCP_INC_STATS(net, fb_mib);
97 	spin_unlock_bh(&msk->fallback_lock);
98 	return true;
99 }
100 
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
113 	WRITE_ONCE(msk->first, ssock->sk);
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	subflow->subflow_id = msk->subflow_id++;
119 
120 	/* This is the first subflow, always with id 0 */
121 	WRITE_ONCE(subflow->local_id, 0);
122 	mptcp_sock_graft(msk->first, sk->sk_socket);
123 	iput(SOCK_INODE(ssock));
124 
125 	return 0;
126 }
127 
128 /* If the MPC handshake is not started, returns the first subflow,
129  * eventually allocating it.
130  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
132 {
133 	struct sock *sk = (struct sock *)msk;
134 	int ret;
135 
136 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
137 		return ERR_PTR(-EINVAL);
138 
139 	if (!msk->first) {
140 		ret = __mptcp_socket_create(msk);
141 		if (ret)
142 			return ERR_PTR(ret);
143 	}
144 
145 	return msk->first;
146 }
147 
mptcp_drop(struct sock * sk,struct sk_buff * skb)148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
149 {
150 	sk_drops_skbadd(sk, skb);
151 	__kfree_skb(skb);
152 }
153 
__mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta)154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
155 				 struct sk_buff *from, bool *fragstolen,
156 				 int *delta)
157 {
158 	int limit = READ_ONCE(sk->sk_rcvbuf);
159 
160 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
161 	    MPTCP_SKB_CB(from)->offset ||
162 	    ((to->len + from->len) > (limit >> 3)) ||
163 	    !skb_try_coalesce(to, from, fragstolen, delta))
164 		return false;
165 
166 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
167 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
168 		 to->len, MPTCP_SKB_CB(from)->end_seq);
169 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
170 	return true;
171 }
172 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
174 			       struct sk_buff *from)
175 {
176 	bool fragstolen;
177 	int delta;
178 
179 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
180 		return false;
181 
182 	/* note the fwd memory can reach a negative value after accounting
183 	 * for the delta, but the later skb free will restore a non
184 	 * negative one
185 	 */
186 	atomic_add(delta, &sk->sk_rmem_alloc);
187 	sk_mem_charge(sk, delta);
188 	kfree_skb_partial(from, fragstolen);
189 
190 	return true;
191 }
192 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
194 				   struct sk_buff *from)
195 {
196 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
197 		return false;
198 
199 	return mptcp_try_coalesce((struct sock *)msk, to, from);
200 }
201 
202 /* "inspired" by tcp_rcvbuf_grow(), main difference:
203  * - mptcp does not maintain a msk-level window clamp
204  * - returns true when  the receive buffer is actually updated
205  */
mptcp_rcvbuf_grow(struct sock * sk,u32 newval)206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
207 {
208 	struct mptcp_sock *msk = mptcp_sk(sk);
209 	const struct net *net = sock_net(sk);
210 	u32 rcvwin, rcvbuf, cap, oldval;
211 	u64 grow;
212 
213 	oldval = msk->rcvq_space.space;
214 	msk->rcvq_space.space = newval;
215 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
216 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
217 		return false;
218 
219 	/* DRS is always one RTT late. */
220 	rcvwin = newval << 1;
221 
222 	/* slow start: allow the sender to double its rate. */
223 	grow = (u64)rcvwin * (newval - oldval);
224 	do_div(grow, oldval);
225 	rcvwin += grow << 1;
226 
227 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
228 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
229 
230 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
231 
232 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
233 	if (rcvbuf > sk->sk_rcvbuf) {
234 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
235 		return true;
236 	}
237 	return false;
238 }
239 
240 /* "inspired" by tcp_data_queue_ofo(), main differences:
241  * - use mptcp seqs
242  * - don't cope with sacks
243  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
245 {
246 	struct sock *sk = (struct sock *)msk;
247 	struct rb_node **p, *parent;
248 	u64 seq, end_seq, max_seq;
249 	struct sk_buff *skb1;
250 
251 	seq = MPTCP_SKB_CB(skb)->map_seq;
252 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
253 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
254 
255 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
256 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
257 	if (after64(end_seq, max_seq)) {
258 		/* out of window */
259 		mptcp_drop(sk, skb);
260 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
261 			 (unsigned long long)end_seq - (unsigned long)max_seq,
262 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
264 		return;
265 	}
266 
267 	p = &msk->out_of_order_queue.rb_node;
268 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
269 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
270 		rb_link_node(&skb->rbnode, NULL, p);
271 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
272 		msk->ooo_last_skb = skb;
273 		goto end;
274 	}
275 
276 	/* with 2 subflows, adding at end of ooo queue is quite likely
277 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
278 	 */
279 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
280 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
281 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
282 		return;
283 	}
284 
285 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
286 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
287 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
288 		parent = &msk->ooo_last_skb->rbnode;
289 		p = &parent->rb_right;
290 		goto insert;
291 	}
292 
293 	/* Find place to insert this segment. Handle overlaps on the way. */
294 	parent = NULL;
295 	while (*p) {
296 		parent = *p;
297 		skb1 = rb_to_skb(parent);
298 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
299 			p = &parent->rb_left;
300 			continue;
301 		}
302 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
304 				/* All the bits are present. Drop. */
305 				mptcp_drop(sk, skb);
306 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
307 				return;
308 			}
309 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
310 				/* partial overlap:
311 				 *     |     skb      |
312 				 *  |     skb1    |
313 				 * continue traversing
314 				 */
315 			} else {
316 				/* skb's seq == skb1's seq and skb covers skb1.
317 				 * Replace skb1 with skb.
318 				 */
319 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
320 						&msk->out_of_order_queue);
321 				mptcp_drop(sk, skb1);
322 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 				goto merge_right;
324 			}
325 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
326 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
327 			return;
328 		}
329 		p = &parent->rb_right;
330 	}
331 
332 insert:
333 	/* Insert segment into RB tree. */
334 	rb_link_node(&skb->rbnode, parent, p);
335 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
336 
337 merge_right:
338 	/* Remove other segments covered by skb. */
339 	while ((skb1 = skb_rb_next(skb)) != NULL) {
340 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
341 			break;
342 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
343 		mptcp_drop(sk, skb1);
344 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
345 	}
346 	/* If there is no skb after us, we are the last_skb ! */
347 	if (!skb1)
348 		msk->ooo_last_skb = skb;
349 
350 end:
351 	skb_condense(skb);
352 	skb_set_owner_r(skb, sk);
353 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
354 	if (sk->sk_socket)
355 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
356 }
357 
mptcp_init_skb(struct sock * ssk,struct sk_buff * skb,int offset,int copy_len)358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
359 			   int copy_len)
360 {
361 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
362 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
363 
364 	/* the skb map_seq accounts for the skb offset:
365 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
366 	 * value
367 	 */
368 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
369 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
370 	MPTCP_SKB_CB(skb)->offset = offset;
371 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
372 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
373 
374 	__skb_unlink(skb, &ssk->sk_receive_queue);
375 
376 	skb_ext_reset(skb);
377 	skb_dst_drop(skb);
378 }
379 
__mptcp_move_skb(struct sock * sk,struct sk_buff * skb)380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
381 {
382 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
383 	struct mptcp_sock *msk = mptcp_sk(sk);
384 	struct sk_buff *tail;
385 
386 	mptcp_borrow_fwdmem(sk, skb);
387 
388 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
389 		/* in sequence */
390 		msk->bytes_received += copy_len;
391 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
392 		tail = skb_peek_tail(&sk->sk_receive_queue);
393 		if (tail && mptcp_try_coalesce(sk, tail, skb))
394 			return true;
395 
396 		skb_set_owner_r(skb, sk);
397 		__skb_queue_tail(&sk->sk_receive_queue, skb);
398 		return true;
399 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
400 		mptcp_data_queue_ofo(msk, skb);
401 		return false;
402 	}
403 
404 	/* old data, keep it simple and drop the whole pkt, sender
405 	 * will retransmit as needed, if needed.
406 	 */
407 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
408 	mptcp_drop(sk, skb);
409 	return false;
410 }
411 
mptcp_stop_rtx_timer(struct sock * sk)412 static void mptcp_stop_rtx_timer(struct sock *sk)
413 {
414 	sk_stop_timer(sk, &sk->mptcp_retransmit_timer);
415 	mptcp_sk(sk)->timer_ival = 0;
416 }
417 
mptcp_close_wake_up(struct sock * sk)418 static void mptcp_close_wake_up(struct sock *sk)
419 {
420 	if (sock_flag(sk, SOCK_DEAD))
421 		return;
422 
423 	sk->sk_state_change(sk);
424 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
425 	    sk->sk_state == TCP_CLOSE)
426 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
427 	else
428 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
429 }
430 
mptcp_shutdown_subflows(struct mptcp_sock * msk)431 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
432 {
433 	struct mptcp_subflow_context *subflow;
434 
435 	mptcp_for_each_subflow(msk, subflow) {
436 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
437 		bool slow;
438 
439 		slow = lock_sock_fast(ssk);
440 		tcp_shutdown(ssk, SEND_SHUTDOWN);
441 		unlock_sock_fast(ssk, slow);
442 	}
443 }
444 
445 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)446 static bool mptcp_pending_data_fin_ack(struct sock *sk)
447 {
448 	struct mptcp_sock *msk = mptcp_sk(sk);
449 
450 	return ((1 << sk->sk_state) &
451 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
452 	       msk->write_seq == READ_ONCE(msk->snd_una);
453 }
454 
mptcp_check_data_fin_ack(struct sock * sk)455 static void mptcp_check_data_fin_ack(struct sock *sk)
456 {
457 	struct mptcp_sock *msk = mptcp_sk(sk);
458 
459 	/* Look for an acknowledged DATA_FIN */
460 	if (mptcp_pending_data_fin_ack(sk)) {
461 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
462 
463 		switch (sk->sk_state) {
464 		case TCP_FIN_WAIT1:
465 			mptcp_set_state(sk, TCP_FIN_WAIT2);
466 			break;
467 		case TCP_CLOSING:
468 		case TCP_LAST_ACK:
469 			mptcp_shutdown_subflows(msk);
470 			mptcp_set_state(sk, TCP_CLOSE);
471 			break;
472 		}
473 
474 		mptcp_close_wake_up(sk);
475 	}
476 }
477 
478 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)479 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
480 {
481 	struct mptcp_sock *msk = mptcp_sk(sk);
482 
483 	if (READ_ONCE(msk->rcv_data_fin) &&
484 	    ((1 << inet_sk_state_load(sk)) &
485 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
486 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
487 
488 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
489 			if (seq)
490 				*seq = rcv_data_fin_seq;
491 
492 			return true;
493 		}
494 	}
495 
496 	return false;
497 }
498 
mptcp_set_datafin_timeout(struct sock * sk)499 static void mptcp_set_datafin_timeout(struct sock *sk)
500 {
501 	struct inet_connection_sock *icsk = inet_csk(sk);
502 	u32 retransmits;
503 
504 	retransmits = min_t(u32, icsk->icsk_retransmits,
505 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
506 
507 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
508 }
509 
__mptcp_set_timeout(struct sock * sk,long tout)510 static void __mptcp_set_timeout(struct sock *sk, long tout)
511 {
512 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
513 }
514 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)515 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
516 {
517 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
518 
519 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
520 	       tcp_timeout_expires(ssk) - jiffies : 0;
521 }
522 
mptcp_set_timeout(struct sock * sk)523 static void mptcp_set_timeout(struct sock *sk)
524 {
525 	struct mptcp_subflow_context *subflow;
526 	long tout = 0;
527 
528 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
529 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
530 	__mptcp_set_timeout(sk, tout);
531 }
532 
tcp_can_send_ack(const struct sock * ssk)533 static inline bool tcp_can_send_ack(const struct sock *ssk)
534 {
535 	return !((1 << inet_sk_state_load(ssk)) &
536 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
537 }
538 
__mptcp_subflow_send_ack(struct sock * ssk)539 void __mptcp_subflow_send_ack(struct sock *ssk)
540 {
541 	if (tcp_can_send_ack(ssk))
542 		tcp_send_ack(ssk);
543 }
544 
mptcp_subflow_send_ack(struct sock * ssk)545 static void mptcp_subflow_send_ack(struct sock *ssk)
546 {
547 	bool slow;
548 
549 	slow = lock_sock_fast(ssk);
550 	__mptcp_subflow_send_ack(ssk);
551 	unlock_sock_fast(ssk, slow);
552 }
553 
mptcp_send_ack(struct mptcp_sock * msk)554 static void mptcp_send_ack(struct mptcp_sock *msk)
555 {
556 	struct mptcp_subflow_context *subflow;
557 
558 	mptcp_for_each_subflow(msk, subflow)
559 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
560 }
561 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)562 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
563 {
564 	bool slow;
565 
566 	slow = lock_sock_fast(ssk);
567 	if (tcp_can_send_ack(ssk))
568 		tcp_cleanup_rbuf(ssk, copied);
569 	unlock_sock_fast(ssk, slow);
570 }
571 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)572 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
573 {
574 	const struct inet_connection_sock *icsk = inet_csk(ssk);
575 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
576 	const struct tcp_sock *tp = tcp_sk(ssk);
577 
578 	return (ack_pending & ICSK_ACK_SCHED) &&
579 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
580 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
581 		 (rx_empty && ack_pending &
582 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
583 }
584 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)585 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
586 {
587 	int old_space = READ_ONCE(msk->old_wspace);
588 	struct mptcp_subflow_context *subflow;
589 	struct sock *sk = (struct sock *)msk;
590 	int space =  __mptcp_space(sk);
591 	bool cleanup, rx_empty;
592 
593 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
594 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
595 
596 	mptcp_for_each_subflow(msk, subflow) {
597 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
598 
599 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
600 			mptcp_subflow_cleanup_rbuf(ssk, copied);
601 	}
602 }
603 
mptcp_check_data_fin(struct sock * sk)604 static void mptcp_check_data_fin(struct sock *sk)
605 {
606 	struct mptcp_sock *msk = mptcp_sk(sk);
607 	u64 rcv_data_fin_seq;
608 
609 	/* Need to ack a DATA_FIN received from a peer while this side
610 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
611 	 * msk->rcv_data_fin was set when parsing the incoming options
612 	 * at the subflow level and the msk lock was not held, so this
613 	 * is the first opportunity to act on the DATA_FIN and change
614 	 * the msk state.
615 	 *
616 	 * If we are caught up to the sequence number of the incoming
617 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
618 	 * not caught up, do nothing and let the recv code send DATA_ACK
619 	 * when catching up.
620 	 */
621 
622 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
623 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
624 		WRITE_ONCE(msk->rcv_data_fin, 0);
625 
626 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
627 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
628 
629 		switch (sk->sk_state) {
630 		case TCP_ESTABLISHED:
631 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
632 			break;
633 		case TCP_FIN_WAIT1:
634 			mptcp_set_state(sk, TCP_CLOSING);
635 			break;
636 		case TCP_FIN_WAIT2:
637 			mptcp_shutdown_subflows(msk);
638 			mptcp_set_state(sk, TCP_CLOSE);
639 			break;
640 		default:
641 			/* Other states not expected */
642 			WARN_ON_ONCE(1);
643 			break;
644 		}
645 
646 		if (!__mptcp_check_fallback(msk))
647 			mptcp_send_ack(msk);
648 		mptcp_close_wake_up(sk);
649 	}
650 }
651 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)652 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
653 {
654 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
655 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
656 		mptcp_subflow_reset(ssk);
657 	}
658 }
659 
__mptcp_add_backlog(struct sock * sk,struct mptcp_subflow_context * subflow,struct sk_buff * skb)660 static void __mptcp_add_backlog(struct sock *sk,
661 				struct mptcp_subflow_context *subflow,
662 				struct sk_buff *skb)
663 {
664 	struct mptcp_sock *msk = mptcp_sk(sk);
665 	struct sk_buff *tail = NULL;
666 	struct sock *ssk = skb->sk;
667 	bool fragstolen;
668 	int delta;
669 
670 	if (unlikely(sk->sk_state == TCP_CLOSE)) {
671 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
672 		return;
673 	}
674 
675 	/* Try to coalesce with the last skb in our backlog */
676 	if (!list_empty(&msk->backlog_list))
677 		tail = list_last_entry(&msk->backlog_list, struct sk_buff, list);
678 
679 	if (tail && MPTCP_SKB_CB(skb)->map_seq == MPTCP_SKB_CB(tail)->end_seq &&
680 	    ssk == tail->sk &&
681 	    __mptcp_try_coalesce(sk, tail, skb, &fragstolen, &delta)) {
682 		skb->truesize -= delta;
683 		kfree_skb_partial(skb, fragstolen);
684 		__mptcp_subflow_lend_fwdmem(subflow, delta);
685 		goto account;
686 	}
687 
688 	list_add_tail(&skb->list, &msk->backlog_list);
689 	mptcp_subflow_lend_fwdmem(subflow, skb);
690 	delta = skb->truesize;
691 
692 account:
693 	WRITE_ONCE(msk->backlog_len, msk->backlog_len + delta);
694 
695 	/* Possibly not accept()ed yet, keep track of memory not CG
696 	 * accounted, mptcp_graft_subflows() will handle it.
697 	 */
698 	if (!mem_cgroup_from_sk(ssk))
699 		msk->backlog_unaccounted += delta;
700 }
701 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk,bool own_msk)702 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
703 					   struct sock *ssk, bool own_msk)
704 {
705 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
706 	struct sock *sk = (struct sock *)msk;
707 	bool more_data_avail;
708 	struct tcp_sock *tp;
709 	bool ret = false;
710 
711 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
712 	tp = tcp_sk(ssk);
713 	do {
714 		u32 map_remaining, offset;
715 		u32 seq = tp->copied_seq;
716 		struct sk_buff *skb;
717 		bool fin;
718 
719 		/* try to move as much data as available */
720 		map_remaining = subflow->map_data_len -
721 				mptcp_subflow_get_map_offset(subflow);
722 
723 		skb = skb_peek(&ssk->sk_receive_queue);
724 		if (unlikely(!skb))
725 			break;
726 
727 		if (__mptcp_check_fallback(msk)) {
728 			/* Under fallback skbs have no MPTCP extension and TCP could
729 			 * collapse them between the dummy map creation and the
730 			 * current dequeue. Be sure to adjust the map size.
731 			 */
732 			map_remaining = skb->len;
733 			subflow->map_data_len = skb->len;
734 		}
735 
736 		offset = seq - TCP_SKB_CB(skb)->seq;
737 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
738 		if (fin)
739 			seq++;
740 
741 		if (offset < skb->len) {
742 			size_t len = skb->len - offset;
743 
744 			mptcp_init_skb(ssk, skb, offset, len);
745 
746 			if (own_msk && sk_rmem_alloc_get(sk) < sk->sk_rcvbuf) {
747 				mptcp_subflow_lend_fwdmem(subflow, skb);
748 				ret |= __mptcp_move_skb(sk, skb);
749 			} else {
750 				__mptcp_add_backlog(sk, subflow, skb);
751 			}
752 			seq += len;
753 
754 			if (unlikely(map_remaining < len)) {
755 				DEBUG_NET_WARN_ON_ONCE(1);
756 				mptcp_dss_corruption(msk, ssk);
757 			}
758 		} else {
759 			if (unlikely(!fin)) {
760 				DEBUG_NET_WARN_ON_ONCE(1);
761 				mptcp_dss_corruption(msk, ssk);
762 			}
763 
764 			sk_eat_skb(ssk, skb);
765 		}
766 
767 		WRITE_ONCE(tp->copied_seq, seq);
768 		more_data_avail = mptcp_subflow_data_available(ssk);
769 
770 	} while (more_data_avail);
771 
772 	if (ret)
773 		msk->last_data_recv = tcp_jiffies32;
774 	return ret;
775 }
776 
__mptcp_ofo_queue(struct mptcp_sock * msk)777 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
778 {
779 	struct sock *sk = (struct sock *)msk;
780 	struct sk_buff *skb, *tail;
781 	bool moved = false;
782 	struct rb_node *p;
783 	u64 end_seq;
784 
785 	p = rb_first(&msk->out_of_order_queue);
786 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
787 	while (p) {
788 		skb = rb_to_skb(p);
789 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
790 			break;
791 
792 		p = rb_next(p);
793 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
794 
795 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
796 				      msk->ack_seq))) {
797 			mptcp_drop(sk, skb);
798 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
799 			continue;
800 		}
801 
802 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
803 		tail = skb_peek_tail(&sk->sk_receive_queue);
804 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
805 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
806 
807 			/* skip overlapping data, if any */
808 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
809 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
810 				 delta);
811 			MPTCP_SKB_CB(skb)->offset += delta;
812 			MPTCP_SKB_CB(skb)->map_seq += delta;
813 			__skb_queue_tail(&sk->sk_receive_queue, skb);
814 		}
815 		msk->bytes_received += end_seq - msk->ack_seq;
816 		WRITE_ONCE(msk->ack_seq, end_seq);
817 		moved = true;
818 	}
819 	return moved;
820 }
821 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)822 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
823 {
824 	int err = sock_error(ssk);
825 	int ssk_state;
826 
827 	if (!err)
828 		return false;
829 
830 	/* only propagate errors on fallen-back sockets or
831 	 * on MPC connect
832 	 */
833 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
834 		return false;
835 
836 	/* We need to propagate only transition to CLOSE state.
837 	 * Orphaned socket will see such state change via
838 	 * subflow_sched_work_if_closed() and that path will properly
839 	 * destroy the msk as needed.
840 	 */
841 	ssk_state = inet_sk_state_load(ssk);
842 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
843 		mptcp_set_state(sk, ssk_state);
844 	WRITE_ONCE(sk->sk_err, -err);
845 
846 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
847 	smp_wmb();
848 	sk_error_report(sk);
849 	return true;
850 }
851 
__mptcp_error_report(struct sock * sk)852 void __mptcp_error_report(struct sock *sk)
853 {
854 	struct mptcp_subflow_context *subflow;
855 	struct mptcp_sock *msk = mptcp_sk(sk);
856 
857 	mptcp_for_each_subflow(msk, subflow)
858 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
859 			break;
860 }
861 
862 /* In most cases we will be able to lock the mptcp socket.  If its already
863  * owned, we need to defer to the work queue to avoid ABBA deadlock.
864  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)865 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
866 {
867 	struct sock *sk = (struct sock *)msk;
868 	bool moved;
869 
870 	moved = __mptcp_move_skbs_from_subflow(msk, ssk, true);
871 	__mptcp_ofo_queue(msk);
872 	if (unlikely(ssk->sk_err))
873 		__mptcp_subflow_error_report(sk, ssk);
874 
875 	/* If the moves have caught up with the DATA_FIN sequence number
876 	 * it's time to ack the DATA_FIN and change socket state, but
877 	 * this is not a good place to change state. Let the workqueue
878 	 * do it.
879 	 */
880 	if (mptcp_pending_data_fin(sk, NULL))
881 		mptcp_schedule_work(sk);
882 	return moved;
883 }
884 
mptcp_data_ready(struct sock * sk,struct sock * ssk)885 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
886 {
887 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
888 	struct mptcp_sock *msk = mptcp_sk(sk);
889 
890 	/* The peer can send data while we are shutting down this
891 	 * subflow at subflow destruction time, but we must avoid enqueuing
892 	 * more data to the msk receive queue
893 	 */
894 	if (unlikely(subflow->closing))
895 		return;
896 
897 	mptcp_data_lock(sk);
898 	if (!sock_owned_by_user(sk)) {
899 		/* Wake-up the reader only for in-sequence data */
900 		if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
901 			sk->sk_data_ready(sk);
902 	} else {
903 		__mptcp_move_skbs_from_subflow(msk, ssk, false);
904 	}
905 	mptcp_data_unlock(sk);
906 }
907 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)908 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
909 {
910 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
911 	msk->allow_infinite_fallback = false;
912 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
913 }
914 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)915 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
916 {
917 	struct sock *sk = (struct sock *)msk;
918 
919 	if (sk->sk_state != TCP_ESTABLISHED)
920 		return false;
921 
922 	spin_lock_bh(&msk->fallback_lock);
923 	if (!msk->allow_subflows) {
924 		spin_unlock_bh(&msk->fallback_lock);
925 		return false;
926 	}
927 	mptcp_subflow_joined(msk, ssk);
928 	spin_unlock_bh(&msk->fallback_lock);
929 
930 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
931 	mptcp_sockopt_sync_locked(msk, ssk);
932 	mptcp_stop_tout_timer(sk);
933 	__mptcp_propagate_sndbuf(sk, ssk);
934 	return true;
935 }
936 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)937 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
938 {
939 	struct mptcp_subflow_context *tmp, *subflow;
940 	struct mptcp_sock *msk = mptcp_sk(sk);
941 
942 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
943 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
944 		bool slow = lock_sock_fast(ssk);
945 
946 		list_move_tail(&subflow->node, &msk->conn_list);
947 		if (!__mptcp_finish_join(msk, ssk))
948 			mptcp_subflow_reset(ssk);
949 		unlock_sock_fast(ssk, slow);
950 	}
951 }
952 
mptcp_rtx_timer_pending(struct sock * sk)953 static bool mptcp_rtx_timer_pending(struct sock *sk)
954 {
955 	return timer_pending(&sk->mptcp_retransmit_timer);
956 }
957 
mptcp_reset_rtx_timer(struct sock * sk)958 static void mptcp_reset_rtx_timer(struct sock *sk)
959 {
960 	unsigned long tout;
961 
962 	/* prevent rescheduling on close */
963 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
964 		return;
965 
966 	tout = mptcp_sk(sk)->timer_ival;
967 	sk_reset_timer(sk, &sk->mptcp_retransmit_timer, jiffies + tout);
968 }
969 
mptcp_schedule_work(struct sock * sk)970 bool mptcp_schedule_work(struct sock *sk)
971 {
972 	if (inet_sk_state_load(sk) == TCP_CLOSE)
973 		return false;
974 
975 	/* Get a reference on this socket, mptcp_worker() will release it.
976 	 * As mptcp_worker() might complete before us, we can not avoid
977 	 * a sock_hold()/sock_put() if schedule_work() returns false.
978 	 */
979 	sock_hold(sk);
980 
981 	if (schedule_work(&mptcp_sk(sk)->work))
982 		return true;
983 
984 	sock_put(sk);
985 	return false;
986 }
987 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)988 static bool mptcp_skb_can_collapse_to(u64 write_seq,
989 				      const struct sk_buff *skb,
990 				      const struct mptcp_ext *mpext)
991 {
992 	if (!tcp_skb_can_collapse_to(skb))
993 		return false;
994 
995 	/* can collapse only if MPTCP level sequence is in order and this
996 	 * mapping has not been xmitted yet
997 	 */
998 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
999 	       !mpext->frozen;
1000 }
1001 
1002 /* we can append data to the given data frag if:
1003  * - there is space available in the backing page_frag
1004  * - the data frag tail matches the current page_frag free offset
1005  * - the data frag end sequence number matches the current write seq
1006  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)1007 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
1008 				       const struct page_frag *pfrag,
1009 				       const struct mptcp_data_frag *df)
1010 {
1011 	return df && pfrag->page == df->page &&
1012 		pfrag->size - pfrag->offset > 0 &&
1013 		pfrag->offset == (df->offset + df->data_len) &&
1014 		df->data_seq + df->data_len == msk->write_seq;
1015 }
1016 
dfrag_uncharge(struct sock * sk,int len)1017 static void dfrag_uncharge(struct sock *sk, int len)
1018 {
1019 	sk_mem_uncharge(sk, len);
1020 	sk_wmem_queued_add(sk, -len);
1021 }
1022 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)1023 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
1024 {
1025 	int len = dfrag->data_len + dfrag->overhead;
1026 
1027 	list_del(&dfrag->list);
1028 	dfrag_uncharge(sk, len);
1029 	put_page(dfrag->page);
1030 }
1031 
1032 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1033 static void __mptcp_clean_una(struct sock *sk)
1034 {
1035 	struct mptcp_sock *msk = mptcp_sk(sk);
1036 	struct mptcp_data_frag *dtmp, *dfrag;
1037 	u64 snd_una;
1038 
1039 	snd_una = msk->snd_una;
1040 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1041 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1042 			break;
1043 
1044 		if (unlikely(dfrag == msk->first_pending)) {
1045 			/* in recovery mode can see ack after the current snd head */
1046 			if (WARN_ON_ONCE(!msk->recovery))
1047 				break;
1048 
1049 			msk->first_pending = mptcp_send_next(sk);
1050 		}
1051 
1052 		dfrag_clear(sk, dfrag);
1053 	}
1054 
1055 	dfrag = mptcp_rtx_head(sk);
1056 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1057 		u64 delta = snd_una - dfrag->data_seq;
1058 
1059 		/* prevent wrap around in recovery mode */
1060 		if (unlikely(delta > dfrag->already_sent)) {
1061 			if (WARN_ON_ONCE(!msk->recovery))
1062 				goto out;
1063 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1064 				goto out;
1065 			dfrag->already_sent += delta - dfrag->already_sent;
1066 		}
1067 
1068 		dfrag->data_seq += delta;
1069 		dfrag->offset += delta;
1070 		dfrag->data_len -= delta;
1071 		dfrag->already_sent -= delta;
1072 
1073 		dfrag_uncharge(sk, delta);
1074 	}
1075 
1076 	/* all retransmitted data acked, recovery completed */
1077 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1078 		msk->recovery = false;
1079 
1080 out:
1081 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1082 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1083 			mptcp_stop_rtx_timer(sk);
1084 	} else {
1085 		mptcp_reset_rtx_timer(sk);
1086 	}
1087 
1088 	if (mptcp_pending_data_fin_ack(sk))
1089 		mptcp_schedule_work(sk);
1090 }
1091 
__mptcp_clean_una_wakeup(struct sock * sk)1092 static void __mptcp_clean_una_wakeup(struct sock *sk)
1093 {
1094 	lockdep_assert_held_once(&sk->sk_lock.slock);
1095 
1096 	__mptcp_clean_una(sk);
1097 	mptcp_write_space(sk);
1098 }
1099 
mptcp_clean_una_wakeup(struct sock * sk)1100 static void mptcp_clean_una_wakeup(struct sock *sk)
1101 {
1102 	mptcp_data_lock(sk);
1103 	__mptcp_clean_una_wakeup(sk);
1104 	mptcp_data_unlock(sk);
1105 }
1106 
mptcp_enter_memory_pressure(struct sock * sk)1107 static void mptcp_enter_memory_pressure(struct sock *sk)
1108 {
1109 	struct mptcp_subflow_context *subflow;
1110 	struct mptcp_sock *msk = mptcp_sk(sk);
1111 	bool first = true;
1112 
1113 	mptcp_for_each_subflow(msk, subflow) {
1114 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1115 
1116 		if (first && !ssk->sk_bypass_prot_mem) {
1117 			tcp_enter_memory_pressure(ssk);
1118 			first = false;
1119 		}
1120 
1121 		sk_stream_moderate_sndbuf(ssk);
1122 	}
1123 	__mptcp_sync_sndbuf(sk);
1124 }
1125 
1126 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1127  * data
1128  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1129 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1130 {
1131 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1132 					pfrag, sk->sk_allocation)))
1133 		return true;
1134 
1135 	mptcp_enter_memory_pressure(sk);
1136 	return false;
1137 }
1138 
1139 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1140 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1141 		      int orig_offset)
1142 {
1143 	int offset = ALIGN(orig_offset, sizeof(long));
1144 	struct mptcp_data_frag *dfrag;
1145 
1146 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1147 	dfrag->data_len = 0;
1148 	dfrag->data_seq = msk->write_seq;
1149 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1150 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1151 	dfrag->already_sent = 0;
1152 	dfrag->page = pfrag->page;
1153 
1154 	return dfrag;
1155 }
1156 
1157 struct mptcp_sendmsg_info {
1158 	int mss_now;
1159 	int size_goal;
1160 	u16 limit;
1161 	u16 sent;
1162 	unsigned int flags;
1163 	bool data_lock_held;
1164 };
1165 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1166 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1167 				    u64 data_seq, int avail_size)
1168 {
1169 	u64 window_end = mptcp_wnd_end(msk);
1170 	u64 mptcp_snd_wnd;
1171 
1172 	if (__mptcp_check_fallback(msk))
1173 		return avail_size;
1174 
1175 	mptcp_snd_wnd = window_end - data_seq;
1176 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1177 
1178 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1179 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1180 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1181 	}
1182 
1183 	return avail_size;
1184 }
1185 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1186 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1187 {
1188 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1189 
1190 	if (!mpext)
1191 		return false;
1192 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1193 	return true;
1194 }
1195 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1196 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1197 {
1198 	struct sk_buff *skb;
1199 
1200 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1201 	if (likely(skb)) {
1202 		if (likely(__mptcp_add_ext(skb, gfp))) {
1203 			skb_reserve(skb, MAX_TCP_HEADER);
1204 			skb->ip_summed = CHECKSUM_PARTIAL;
1205 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1206 			return skb;
1207 		}
1208 		__kfree_skb(skb);
1209 	} else {
1210 		mptcp_enter_memory_pressure(sk);
1211 	}
1212 	return NULL;
1213 }
1214 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1215 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1216 {
1217 	struct sk_buff *skb;
1218 
1219 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1220 	if (!skb)
1221 		return NULL;
1222 
1223 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1224 		tcp_skb_entail(ssk, skb);
1225 		return skb;
1226 	}
1227 	tcp_skb_tsorted_anchor_cleanup(skb);
1228 	kfree_skb(skb);
1229 	return NULL;
1230 }
1231 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1232 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1233 {
1234 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1235 
1236 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1237 }
1238 
1239 /* note: this always recompute the csum on the whole skb, even
1240  * if we just appended a single frag. More status info needed
1241  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1242 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1243 {
1244 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1245 	__wsum csum = ~csum_unfold(mpext->csum);
1246 	int offset = skb->len - added;
1247 
1248 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1249 }
1250 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1251 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1252 				      struct sock *ssk,
1253 				      struct mptcp_ext *mpext)
1254 {
1255 	if (!mpext)
1256 		return;
1257 
1258 	mpext->infinite_map = 1;
1259 	mpext->data_len = 0;
1260 
1261 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1262 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1263 		mptcp_subflow_reset(ssk);
1264 		return;
1265 	}
1266 
1267 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1268 }
1269 
1270 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1271 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1272 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1273 			      struct mptcp_data_frag *dfrag,
1274 			      struct mptcp_sendmsg_info *info)
1275 {
1276 	u64 data_seq = dfrag->data_seq + info->sent;
1277 	int offset = dfrag->offset + info->sent;
1278 	struct mptcp_sock *msk = mptcp_sk(sk);
1279 	bool zero_window_probe = false;
1280 	struct mptcp_ext *mpext = NULL;
1281 	bool can_coalesce = false;
1282 	bool reuse_skb = true;
1283 	struct sk_buff *skb;
1284 	size_t copy;
1285 	int i;
1286 
1287 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1288 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1289 
1290 	if (WARN_ON_ONCE(info->sent > info->limit ||
1291 			 info->limit > dfrag->data_len))
1292 		return 0;
1293 
1294 	if (unlikely(!__tcp_can_send(ssk)))
1295 		return -EAGAIN;
1296 
1297 	/* compute send limit */
1298 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1299 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1300 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1301 	copy = info->size_goal;
1302 
1303 	skb = tcp_write_queue_tail(ssk);
1304 	if (skb && copy > skb->len) {
1305 		/* Limit the write to the size available in the
1306 		 * current skb, if any, so that we create at most a new skb.
1307 		 * Explicitly tells TCP internals to avoid collapsing on later
1308 		 * queue management operation, to avoid breaking the ext <->
1309 		 * SSN association set here
1310 		 */
1311 		mpext = mptcp_get_ext(skb);
1312 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1313 			TCP_SKB_CB(skb)->eor = 1;
1314 			tcp_mark_push(tcp_sk(ssk), skb);
1315 			goto alloc_skb;
1316 		}
1317 
1318 		i = skb_shinfo(skb)->nr_frags;
1319 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1320 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1321 			tcp_mark_push(tcp_sk(ssk), skb);
1322 			goto alloc_skb;
1323 		}
1324 
1325 		copy -= skb->len;
1326 	} else {
1327 alloc_skb:
1328 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1329 		if (!skb)
1330 			return -ENOMEM;
1331 
1332 		i = skb_shinfo(skb)->nr_frags;
1333 		reuse_skb = false;
1334 		mpext = mptcp_get_ext(skb);
1335 	}
1336 
1337 	/* Zero window and all data acked? Probe. */
1338 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1339 	if (copy == 0) {
1340 		u64 snd_una = READ_ONCE(msk->snd_una);
1341 
1342 		/* No need for zero probe if there are any data pending
1343 		 * either at the msk or ssk level; skb is the current write
1344 		 * queue tail and can be empty at this point.
1345 		 */
1346 		if (snd_una != msk->snd_nxt || skb->len ||
1347 		    skb != tcp_send_head(ssk)) {
1348 			tcp_remove_empty_skb(ssk);
1349 			return 0;
1350 		}
1351 
1352 		zero_window_probe = true;
1353 		data_seq = snd_una - 1;
1354 		copy = 1;
1355 	}
1356 
1357 	copy = min_t(size_t, copy, info->limit - info->sent);
1358 	if (!sk_wmem_schedule(ssk, copy)) {
1359 		tcp_remove_empty_skb(ssk);
1360 		return -ENOMEM;
1361 	}
1362 
1363 	if (can_coalesce) {
1364 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1365 	} else {
1366 		get_page(dfrag->page);
1367 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1368 	}
1369 
1370 	skb->len += copy;
1371 	skb->data_len += copy;
1372 	skb->truesize += copy;
1373 	sk_wmem_queued_add(ssk, copy);
1374 	sk_mem_charge(ssk, copy);
1375 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1376 	TCP_SKB_CB(skb)->end_seq += copy;
1377 	tcp_skb_pcount_set(skb, 0);
1378 
1379 	/* on skb reuse we just need to update the DSS len */
1380 	if (reuse_skb) {
1381 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1382 		mpext->data_len += copy;
1383 		goto out;
1384 	}
1385 
1386 	memset(mpext, 0, sizeof(*mpext));
1387 	mpext->data_seq = data_seq;
1388 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1389 	mpext->data_len = copy;
1390 	mpext->use_map = 1;
1391 	mpext->dsn64 = 1;
1392 
1393 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1394 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1395 		 mpext->dsn64);
1396 
1397 	if (zero_window_probe) {
1398 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1399 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1400 		mpext->frozen = 1;
1401 		if (READ_ONCE(msk->csum_enabled))
1402 			mptcp_update_data_checksum(skb, copy);
1403 		tcp_push_pending_frames(ssk);
1404 		return 0;
1405 	}
1406 out:
1407 	if (READ_ONCE(msk->csum_enabled))
1408 		mptcp_update_data_checksum(skb, copy);
1409 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1410 		mptcp_update_infinite_map(msk, ssk, mpext);
1411 	trace_mptcp_sendmsg_frag(mpext);
1412 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1413 	return copy;
1414 }
1415 
1416 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1417 					 sizeof(struct tcphdr) - \
1418 					 MAX_TCP_OPTION_SPACE - \
1419 					 sizeof(struct ipv6hdr) - \
1420 					 sizeof(struct frag_hdr))
1421 
1422 struct subflow_send_info {
1423 	struct sock *ssk;
1424 	u64 linger_time;
1425 };
1426 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1427 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1428 {
1429 	if (!subflow->stale)
1430 		return;
1431 
1432 	subflow->stale = 0;
1433 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1434 }
1435 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1436 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1437 {
1438 	if (unlikely(subflow->stale)) {
1439 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1440 
1441 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1442 			return false;
1443 
1444 		mptcp_subflow_set_active(subflow);
1445 	}
1446 	return __mptcp_subflow_active(subflow);
1447 }
1448 
1449 #define SSK_MODE_ACTIVE	0
1450 #define SSK_MODE_BACKUP	1
1451 #define SSK_MODE_MAX	2
1452 
1453 /* implement the mptcp packet scheduler;
1454  * returns the subflow that will transmit the next DSS
1455  * additionally updates the rtx timeout
1456  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1457 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1458 {
1459 	struct subflow_send_info send_info[SSK_MODE_MAX];
1460 	struct mptcp_subflow_context *subflow;
1461 	struct sock *sk = (struct sock *)msk;
1462 	u32 pace, burst, wmem;
1463 	int i, nr_active = 0;
1464 	struct sock *ssk;
1465 	u64 linger_time;
1466 	long tout = 0;
1467 
1468 	/* pick the subflow with the lower wmem/wspace ratio */
1469 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1470 		send_info[i].ssk = NULL;
1471 		send_info[i].linger_time = -1;
1472 	}
1473 
1474 	mptcp_for_each_subflow(msk, subflow) {
1475 		bool backup = subflow->backup || subflow->request_bkup;
1476 
1477 		trace_mptcp_subflow_get_send(subflow);
1478 		ssk =  mptcp_subflow_tcp_sock(subflow);
1479 		if (!mptcp_subflow_active(subflow))
1480 			continue;
1481 
1482 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1483 		nr_active += !backup;
1484 		pace = subflow->avg_pacing_rate;
1485 		if (unlikely(!pace)) {
1486 			/* init pacing rate from socket */
1487 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1488 			pace = subflow->avg_pacing_rate;
1489 			if (!pace)
1490 				continue;
1491 		}
1492 
1493 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1494 		if (linger_time < send_info[backup].linger_time) {
1495 			send_info[backup].ssk = ssk;
1496 			send_info[backup].linger_time = linger_time;
1497 		}
1498 	}
1499 	__mptcp_set_timeout(sk, tout);
1500 
1501 	/* pick the best backup if no other subflow is active */
1502 	if (!nr_active)
1503 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1504 
1505 	/* According to the blest algorithm, to avoid HoL blocking for the
1506 	 * faster flow, we need to:
1507 	 * - estimate the faster flow linger time
1508 	 * - use the above to estimate the amount of byte transferred
1509 	 *   by the faster flow
1510 	 * - check that the amount of queued data is greater than the above,
1511 	 *   otherwise do not use the picked, slower, subflow
1512 	 * We select the subflow with the shorter estimated time to flush
1513 	 * the queued mem, which basically ensure the above. We just need
1514 	 * to check that subflow has a non empty cwin.
1515 	 */
1516 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1517 	if (!ssk || !sk_stream_memory_free(ssk))
1518 		return NULL;
1519 
1520 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1521 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1522 	if (!burst)
1523 		return ssk;
1524 
1525 	subflow = mptcp_subflow_ctx(ssk);
1526 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1527 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1528 					   burst + wmem);
1529 	msk->snd_burst = burst;
1530 	return ssk;
1531 }
1532 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1533 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1534 {
1535 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1536 	release_sock(ssk);
1537 }
1538 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1539 static void mptcp_update_post_push(struct mptcp_sock *msk,
1540 				   struct mptcp_data_frag *dfrag,
1541 				   u32 sent)
1542 {
1543 	u64 snd_nxt_new = dfrag->data_seq;
1544 
1545 	dfrag->already_sent += sent;
1546 
1547 	msk->snd_burst -= sent;
1548 
1549 	snd_nxt_new += dfrag->already_sent;
1550 
1551 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1552 	 * is recovering after a failover. In that event, this re-sends
1553 	 * old segments.
1554 	 *
1555 	 * Thus compute snd_nxt_new candidate based on
1556 	 * the dfrag->data_seq that was sent and the data
1557 	 * that has been handed to the subflow for transmission
1558 	 * and skip update in case it was old dfrag.
1559 	 */
1560 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1561 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1562 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1563 	}
1564 }
1565 
mptcp_check_and_set_pending(struct sock * sk)1566 void mptcp_check_and_set_pending(struct sock *sk)
1567 {
1568 	if (mptcp_send_head(sk)) {
1569 		mptcp_data_lock(sk);
1570 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1571 		mptcp_data_unlock(sk);
1572 	}
1573 }
1574 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1575 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1576 				  struct mptcp_sendmsg_info *info)
1577 {
1578 	struct mptcp_sock *msk = mptcp_sk(sk);
1579 	struct mptcp_data_frag *dfrag;
1580 	int len, copied = 0, err = 0;
1581 
1582 	while ((dfrag = mptcp_send_head(sk))) {
1583 		info->sent = dfrag->already_sent;
1584 		info->limit = dfrag->data_len;
1585 		len = dfrag->data_len - dfrag->already_sent;
1586 		while (len > 0) {
1587 			int ret = 0;
1588 
1589 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1590 			if (ret <= 0) {
1591 				err = copied ? : ret;
1592 				goto out;
1593 			}
1594 
1595 			info->sent += ret;
1596 			copied += ret;
1597 			len -= ret;
1598 
1599 			mptcp_update_post_push(msk, dfrag, ret);
1600 		}
1601 		msk->first_pending = mptcp_send_next(sk);
1602 
1603 		if (msk->snd_burst <= 0 ||
1604 		    !sk_stream_memory_free(ssk) ||
1605 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1606 			err = copied;
1607 			goto out;
1608 		}
1609 		mptcp_set_timeout(sk);
1610 	}
1611 	err = copied;
1612 
1613 out:
1614 	if (err > 0)
1615 		msk->last_data_sent = tcp_jiffies32;
1616 	return err;
1617 }
1618 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1619 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1620 {
1621 	struct sock *prev_ssk = NULL, *ssk = NULL;
1622 	struct mptcp_sock *msk = mptcp_sk(sk);
1623 	struct mptcp_sendmsg_info info = {
1624 				.flags = flags,
1625 	};
1626 	bool do_check_data_fin = false;
1627 	int push_count = 1;
1628 
1629 	while (mptcp_send_head(sk) && (push_count > 0)) {
1630 		struct mptcp_subflow_context *subflow;
1631 		int ret = 0;
1632 
1633 		if (mptcp_sched_get_send(msk))
1634 			break;
1635 
1636 		push_count = 0;
1637 
1638 		mptcp_for_each_subflow(msk, subflow) {
1639 			if (READ_ONCE(subflow->scheduled)) {
1640 				mptcp_subflow_set_scheduled(subflow, false);
1641 
1642 				prev_ssk = ssk;
1643 				ssk = mptcp_subflow_tcp_sock(subflow);
1644 				if (ssk != prev_ssk) {
1645 					/* First check. If the ssk has changed since
1646 					 * the last round, release prev_ssk
1647 					 */
1648 					if (prev_ssk)
1649 						mptcp_push_release(prev_ssk, &info);
1650 
1651 					/* Need to lock the new subflow only if different
1652 					 * from the previous one, otherwise we are still
1653 					 * helding the relevant lock
1654 					 */
1655 					lock_sock(ssk);
1656 				}
1657 
1658 				push_count++;
1659 
1660 				ret = __subflow_push_pending(sk, ssk, &info);
1661 				if (ret <= 0) {
1662 					if (ret != -EAGAIN ||
1663 					    (1 << ssk->sk_state) &
1664 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1665 						push_count--;
1666 					continue;
1667 				}
1668 				do_check_data_fin = true;
1669 			}
1670 		}
1671 	}
1672 
1673 	/* at this point we held the socket lock for the last subflow we used */
1674 	if (ssk)
1675 		mptcp_push_release(ssk, &info);
1676 
1677 	/* ensure the rtx timer is running */
1678 	if (!mptcp_rtx_timer_pending(sk))
1679 		mptcp_reset_rtx_timer(sk);
1680 	if (do_check_data_fin)
1681 		mptcp_check_send_data_fin(sk);
1682 }
1683 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1684 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1685 {
1686 	struct mptcp_sock *msk = mptcp_sk(sk);
1687 	struct mptcp_sendmsg_info info = {
1688 		.data_lock_held = true,
1689 	};
1690 	bool keep_pushing = true;
1691 	struct sock *xmit_ssk;
1692 	int copied = 0;
1693 
1694 	info.flags = 0;
1695 	while (mptcp_send_head(sk) && keep_pushing) {
1696 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1697 		int ret = 0;
1698 
1699 		/* check for a different subflow usage only after
1700 		 * spooling the first chunk of data
1701 		 */
1702 		if (first) {
1703 			mptcp_subflow_set_scheduled(subflow, false);
1704 			ret = __subflow_push_pending(sk, ssk, &info);
1705 			first = false;
1706 			if (ret <= 0)
1707 				break;
1708 			copied += ret;
1709 			continue;
1710 		}
1711 
1712 		if (mptcp_sched_get_send(msk))
1713 			goto out;
1714 
1715 		if (READ_ONCE(subflow->scheduled)) {
1716 			mptcp_subflow_set_scheduled(subflow, false);
1717 			ret = __subflow_push_pending(sk, ssk, &info);
1718 			if (ret <= 0)
1719 				keep_pushing = false;
1720 			copied += ret;
1721 		}
1722 
1723 		mptcp_for_each_subflow(msk, subflow) {
1724 			if (READ_ONCE(subflow->scheduled)) {
1725 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1726 				if (xmit_ssk != ssk) {
1727 					mptcp_subflow_delegate(subflow,
1728 							       MPTCP_DELEGATE_SEND);
1729 					keep_pushing = false;
1730 				}
1731 			}
1732 		}
1733 	}
1734 
1735 out:
1736 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1737 	 * not going to flush it via release_sock()
1738 	 */
1739 	if (copied) {
1740 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1741 			 info.size_goal);
1742 		if (!mptcp_rtx_timer_pending(sk))
1743 			mptcp_reset_rtx_timer(sk);
1744 
1745 		if (msk->snd_data_fin_enable &&
1746 		    msk->snd_nxt + 1 == msk->write_seq)
1747 			mptcp_schedule_work(sk);
1748 	}
1749 }
1750 
1751 static int mptcp_disconnect(struct sock *sk, int flags);
1752 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1753 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1754 				  size_t len, int *copied_syn)
1755 {
1756 	unsigned int saved_flags = msg->msg_flags;
1757 	struct mptcp_sock *msk = mptcp_sk(sk);
1758 	struct sock *ssk;
1759 	int ret;
1760 
1761 	/* on flags based fastopen the mptcp is supposed to create the
1762 	 * first subflow right now. Otherwise we are in the defer_connect
1763 	 * path, and the first subflow must be already present.
1764 	 * Since the defer_connect flag is cleared after the first succsful
1765 	 * fastopen attempt, no need to check for additional subflow status.
1766 	 */
1767 	if (msg->msg_flags & MSG_FASTOPEN) {
1768 		ssk = __mptcp_nmpc_sk(msk);
1769 		if (IS_ERR(ssk))
1770 			return PTR_ERR(ssk);
1771 	}
1772 	if (!msk->first)
1773 		return -EINVAL;
1774 
1775 	ssk = msk->first;
1776 
1777 	lock_sock(ssk);
1778 	msg->msg_flags |= MSG_DONTWAIT;
1779 	msk->fastopening = 1;
1780 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1781 	msk->fastopening = 0;
1782 	msg->msg_flags = saved_flags;
1783 	release_sock(ssk);
1784 
1785 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1786 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1787 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1788 					    msg->msg_namelen, msg->msg_flags, 1);
1789 
1790 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1791 		 * case of any error, except timeout or signal
1792 		 */
1793 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1794 			*copied_syn = 0;
1795 	} else if (ret && ret != -EINPROGRESS) {
1796 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1797 		 * __inet_stream_connect() can fail, due to looking check,
1798 		 * see mptcp_disconnect().
1799 		 * Attempt it again outside the problematic scope.
1800 		 */
1801 		if (!mptcp_disconnect(sk, 0)) {
1802 			sk->sk_disconnects++;
1803 			sk->sk_socket->state = SS_UNCONNECTED;
1804 		}
1805 	}
1806 	inet_clear_bit(DEFER_CONNECT, sk);
1807 
1808 	return ret;
1809 }
1810 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1811 static int do_copy_data_nocache(struct sock *sk, int copy,
1812 				struct iov_iter *from, char *to)
1813 {
1814 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1815 		if (!copy_from_iter_full_nocache(to, copy, from))
1816 			return -EFAULT;
1817 	} else if (!copy_from_iter_full(to, copy, from)) {
1818 		return -EFAULT;
1819 	}
1820 	return 0;
1821 }
1822 
1823 /* open-code sk_stream_memory_free() plus sent limit computation to
1824  * avoid indirect calls in fast-path.
1825  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1826  * annotations.
1827  */
mptcp_send_limit(const struct sock * sk)1828 static u32 mptcp_send_limit(const struct sock *sk)
1829 {
1830 	const struct mptcp_sock *msk = mptcp_sk(sk);
1831 	u32 limit, not_sent;
1832 
1833 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1834 		return 0;
1835 
1836 	limit = mptcp_notsent_lowat(sk);
1837 	if (limit == UINT_MAX)
1838 		return UINT_MAX;
1839 
1840 	not_sent = msk->write_seq - msk->snd_nxt;
1841 	if (not_sent >= limit)
1842 		return 0;
1843 
1844 	return limit - not_sent;
1845 }
1846 
mptcp_rps_record_subflows(const struct mptcp_sock * msk)1847 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1848 {
1849 	struct mptcp_subflow_context *subflow;
1850 
1851 	if (!rfs_is_needed())
1852 		return;
1853 
1854 	mptcp_for_each_subflow(msk, subflow) {
1855 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1856 
1857 		sock_rps_record_flow(ssk);
1858 	}
1859 }
1860 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1861 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1862 {
1863 	struct mptcp_sock *msk = mptcp_sk(sk);
1864 	struct page_frag *pfrag;
1865 	size_t copied = 0;
1866 	int ret = 0;
1867 	long timeo;
1868 
1869 	/* silently ignore everything else */
1870 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1871 
1872 	lock_sock(sk);
1873 
1874 	mptcp_rps_record_subflows(msk);
1875 
1876 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1877 		     msg->msg_flags & MSG_FASTOPEN)) {
1878 		int copied_syn = 0;
1879 
1880 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1881 		copied += copied_syn;
1882 		if (ret == -EINPROGRESS && copied_syn > 0)
1883 			goto out;
1884 		else if (ret)
1885 			goto do_error;
1886 	}
1887 
1888 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1889 
1890 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1891 		ret = sk_stream_wait_connect(sk, &timeo);
1892 		if (ret)
1893 			goto do_error;
1894 	}
1895 
1896 	ret = -EPIPE;
1897 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1898 		goto do_error;
1899 
1900 	pfrag = sk_page_frag(sk);
1901 
1902 	while (msg_data_left(msg)) {
1903 		int total_ts, frag_truesize = 0;
1904 		struct mptcp_data_frag *dfrag;
1905 		bool dfrag_collapsed;
1906 		size_t psize, offset;
1907 		u32 copy_limit;
1908 
1909 		/* ensure fitting the notsent_lowat() constraint */
1910 		copy_limit = mptcp_send_limit(sk);
1911 		if (!copy_limit)
1912 			goto wait_for_memory;
1913 
1914 		/* reuse tail pfrag, if possible, or carve a new one from the
1915 		 * page allocator
1916 		 */
1917 		dfrag = mptcp_pending_tail(sk);
1918 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1919 		if (!dfrag_collapsed) {
1920 			if (!mptcp_page_frag_refill(sk, pfrag))
1921 				goto wait_for_memory;
1922 
1923 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1924 			frag_truesize = dfrag->overhead;
1925 		}
1926 
1927 		/* we do not bound vs wspace, to allow a single packet.
1928 		 * memory accounting will prevent execessive memory usage
1929 		 * anyway
1930 		 */
1931 		offset = dfrag->offset + dfrag->data_len;
1932 		psize = pfrag->size - offset;
1933 		psize = min_t(size_t, psize, msg_data_left(msg));
1934 		psize = min_t(size_t, psize, copy_limit);
1935 		total_ts = psize + frag_truesize;
1936 
1937 		if (!sk_wmem_schedule(sk, total_ts))
1938 			goto wait_for_memory;
1939 
1940 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1941 					   page_address(dfrag->page) + offset);
1942 		if (ret)
1943 			goto do_error;
1944 
1945 		/* data successfully copied into the write queue */
1946 		sk_forward_alloc_add(sk, -total_ts);
1947 		copied += psize;
1948 		dfrag->data_len += psize;
1949 		frag_truesize += psize;
1950 		pfrag->offset += frag_truesize;
1951 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1952 
1953 		/* charge data on mptcp pending queue to the msk socket
1954 		 * Note: we charge such data both to sk and ssk
1955 		 */
1956 		sk_wmem_queued_add(sk, frag_truesize);
1957 		if (!dfrag_collapsed) {
1958 			get_page(dfrag->page);
1959 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1960 			if (!msk->first_pending)
1961 				msk->first_pending = dfrag;
1962 		}
1963 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1964 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1965 			 !dfrag_collapsed);
1966 
1967 		continue;
1968 
1969 wait_for_memory:
1970 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1971 		__mptcp_push_pending(sk, msg->msg_flags);
1972 		ret = sk_stream_wait_memory(sk, &timeo);
1973 		if (ret)
1974 			goto do_error;
1975 	}
1976 
1977 	if (copied)
1978 		__mptcp_push_pending(sk, msg->msg_flags);
1979 
1980 out:
1981 	release_sock(sk);
1982 	return copied;
1983 
1984 do_error:
1985 	if (copied)
1986 		goto out;
1987 
1988 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1989 	goto out;
1990 }
1991 
1992 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1993 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,int copied_total,struct scm_timestamping_internal * tss,int * cmsg_flags)1994 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1995 				size_t len, int flags, int copied_total,
1996 				struct scm_timestamping_internal *tss,
1997 				int *cmsg_flags)
1998 {
1999 	struct mptcp_sock *msk = mptcp_sk(sk);
2000 	struct sk_buff *skb, *tmp;
2001 	int total_data_len = 0;
2002 	int copied = 0;
2003 
2004 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
2005 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
2006 		u32 data_len = skb->len - offset;
2007 		u32 count;
2008 		int err;
2009 
2010 		if (flags & MSG_PEEK) {
2011 			/* skip already peeked skbs */
2012 			if (total_data_len + data_len <= copied_total) {
2013 				total_data_len += data_len;
2014 				continue;
2015 			}
2016 
2017 			/* skip the already peeked data in the current skb */
2018 			delta = copied_total - total_data_len;
2019 			offset += delta;
2020 			data_len -= delta;
2021 		}
2022 
2023 		count = min_t(size_t, len - copied, data_len);
2024 		if (!(flags & MSG_TRUNC)) {
2025 			err = skb_copy_datagram_msg(skb, offset, msg, count);
2026 			if (unlikely(err < 0)) {
2027 				if (!copied)
2028 					return err;
2029 				break;
2030 			}
2031 		}
2032 
2033 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2034 			tcp_update_recv_tstamps(skb, tss);
2035 			*cmsg_flags |= MPTCP_CMSG_TS;
2036 		}
2037 
2038 		copied += count;
2039 
2040 		if (!(flags & MSG_PEEK)) {
2041 			msk->bytes_consumed += count;
2042 			if (count < data_len) {
2043 				MPTCP_SKB_CB(skb)->offset += count;
2044 				MPTCP_SKB_CB(skb)->map_seq += count;
2045 				break;
2046 			}
2047 
2048 			/* avoid the indirect call, we know the destructor is sock_rfree */
2049 			skb->destructor = NULL;
2050 			skb->sk = NULL;
2051 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2052 			sk_mem_uncharge(sk, skb->truesize);
2053 			__skb_unlink(skb, &sk->sk_receive_queue);
2054 			skb_attempt_defer_free(skb);
2055 		}
2056 
2057 		if (copied >= len)
2058 			break;
2059 	}
2060 
2061 	mptcp_rcv_space_adjust(msk, copied);
2062 	return copied;
2063 }
2064 
2065 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2066  *
2067  * Only difference: Use highest rtt estimate of the subflows in use.
2068  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2069 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2070 {
2071 	struct mptcp_subflow_context *subflow;
2072 	struct sock *sk = (struct sock *)msk;
2073 	u8 scaling_ratio = U8_MAX;
2074 	u32 time, advmss = 1;
2075 	u64 rtt_us, mstamp;
2076 
2077 	msk_owned_by_me(msk);
2078 
2079 	if (copied <= 0)
2080 		return;
2081 
2082 	if (!msk->rcvspace_init)
2083 		mptcp_rcv_space_init(msk, msk->first);
2084 
2085 	msk->rcvq_space.copied += copied;
2086 
2087 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2088 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2089 
2090 	rtt_us = msk->rcvq_space.rtt_us;
2091 	if (rtt_us && time < (rtt_us >> 3))
2092 		return;
2093 
2094 	rtt_us = 0;
2095 	mptcp_for_each_subflow(msk, subflow) {
2096 		const struct tcp_sock *tp;
2097 		u64 sf_rtt_us;
2098 		u32 sf_advmss;
2099 
2100 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2101 
2102 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2103 		sf_advmss = READ_ONCE(tp->advmss);
2104 
2105 		rtt_us = max(sf_rtt_us, rtt_us);
2106 		advmss = max(sf_advmss, advmss);
2107 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2108 	}
2109 
2110 	msk->rcvq_space.rtt_us = rtt_us;
2111 	msk->scaling_ratio = scaling_ratio;
2112 	if (time < (rtt_us >> 3) || rtt_us == 0)
2113 		return;
2114 
2115 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2116 		goto new_measure;
2117 
2118 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2119 		/* Make subflows follow along.  If we do not do this, we
2120 		 * get drops at subflow level if skbs can't be moved to
2121 		 * the mptcp rx queue fast enough (announced rcv_win can
2122 		 * exceed ssk->sk_rcvbuf).
2123 		 */
2124 		mptcp_for_each_subflow(msk, subflow) {
2125 			struct sock *ssk;
2126 			bool slow;
2127 
2128 			ssk = mptcp_subflow_tcp_sock(subflow);
2129 			slow = lock_sock_fast(ssk);
2130 			/* subflows can be added before tcp_init_transfer() */
2131 			if (tcp_sk(ssk)->rcvq_space.space)
2132 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2133 			unlock_sock_fast(ssk, slow);
2134 		}
2135 	}
2136 
2137 new_measure:
2138 	msk->rcvq_space.copied = 0;
2139 	msk->rcvq_space.time = mstamp;
2140 }
2141 
__mptcp_move_skbs(struct sock * sk,struct list_head * skbs,u32 * delta)2142 static bool __mptcp_move_skbs(struct sock *sk, struct list_head *skbs, u32 *delta)
2143 {
2144 	struct sk_buff *skb = list_first_entry(skbs, struct sk_buff, list);
2145 	struct mptcp_sock *msk = mptcp_sk(sk);
2146 	bool moved = false;
2147 
2148 	*delta = 0;
2149 	while (1) {
2150 		/* If the msk recvbuf is full stop, don't drop */
2151 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2152 			break;
2153 
2154 		prefetch(skb->next);
2155 		list_del(&skb->list);
2156 		*delta += skb->truesize;
2157 
2158 		moved |= __mptcp_move_skb(sk, skb);
2159 		if (list_empty(skbs))
2160 			break;
2161 
2162 		skb = list_first_entry(skbs, struct sk_buff, list);
2163 	}
2164 
2165 	__mptcp_ofo_queue(msk);
2166 	if (moved)
2167 		mptcp_check_data_fin((struct sock *)msk);
2168 	return moved;
2169 }
2170 
mptcp_can_spool_backlog(struct sock * sk,struct list_head * skbs)2171 static bool mptcp_can_spool_backlog(struct sock *sk, struct list_head *skbs)
2172 {
2173 	struct mptcp_sock *msk = mptcp_sk(sk);
2174 
2175 	/* After CG initialization, subflows should never add skb before
2176 	 * gaining the CG themself.
2177 	 */
2178 	DEBUG_NET_WARN_ON_ONCE(msk->backlog_unaccounted && sk->sk_socket &&
2179 			       mem_cgroup_from_sk(sk));
2180 
2181 	/* Don't spool the backlog if the rcvbuf is full. */
2182 	if (list_empty(&msk->backlog_list) ||
2183 	    sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2184 		return false;
2185 
2186 	INIT_LIST_HEAD(skbs);
2187 	list_splice_init(&msk->backlog_list, skbs);
2188 	return true;
2189 }
2190 
mptcp_backlog_spooled(struct sock * sk,u32 moved,struct list_head * skbs)2191 static void mptcp_backlog_spooled(struct sock *sk, u32 moved,
2192 				  struct list_head *skbs)
2193 {
2194 	struct mptcp_sock *msk = mptcp_sk(sk);
2195 
2196 	WRITE_ONCE(msk->backlog_len, msk->backlog_len - moved);
2197 	list_splice(skbs, &msk->backlog_list);
2198 }
2199 
mptcp_move_skbs(struct sock * sk)2200 static bool mptcp_move_skbs(struct sock *sk)
2201 {
2202 	struct list_head skbs;
2203 	bool enqueued = false;
2204 	u32 moved;
2205 
2206 	mptcp_data_lock(sk);
2207 	while (mptcp_can_spool_backlog(sk, &skbs)) {
2208 		mptcp_data_unlock(sk);
2209 		enqueued |= __mptcp_move_skbs(sk, &skbs, &moved);
2210 
2211 		mptcp_data_lock(sk);
2212 		mptcp_backlog_spooled(sk, moved, &skbs);
2213 	}
2214 	mptcp_data_unlock(sk);
2215 	return enqueued;
2216 }
2217 
mptcp_inq_hint(const struct sock * sk)2218 static unsigned int mptcp_inq_hint(const struct sock *sk)
2219 {
2220 	const struct mptcp_sock *msk = mptcp_sk(sk);
2221 	const struct sk_buff *skb;
2222 
2223 	skb = skb_peek(&sk->sk_receive_queue);
2224 	if (skb) {
2225 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2226 
2227 		if (hint_val >= INT_MAX)
2228 			return INT_MAX;
2229 
2230 		return (unsigned int)hint_val;
2231 	}
2232 
2233 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2234 		return 1;
2235 
2236 	return 0;
2237 }
2238 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2239 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2240 			 int flags, int *addr_len)
2241 {
2242 	struct mptcp_sock *msk = mptcp_sk(sk);
2243 	struct scm_timestamping_internal tss;
2244 	int copied = 0, cmsg_flags = 0;
2245 	int target;
2246 	long timeo;
2247 
2248 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2249 	if (unlikely(flags & MSG_ERRQUEUE))
2250 		return inet_recv_error(sk, msg, len, addr_len);
2251 
2252 	lock_sock(sk);
2253 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2254 		copied = -ENOTCONN;
2255 		goto out_err;
2256 	}
2257 
2258 	mptcp_rps_record_subflows(msk);
2259 
2260 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2261 
2262 	len = min_t(size_t, len, INT_MAX);
2263 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2264 
2265 	if (unlikely(msk->recvmsg_inq))
2266 		cmsg_flags = MPTCP_CMSG_INQ;
2267 
2268 	while (copied < len) {
2269 		int err, bytes_read;
2270 
2271 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2272 						  copied, &tss, &cmsg_flags);
2273 		if (unlikely(bytes_read < 0)) {
2274 			if (!copied)
2275 				copied = bytes_read;
2276 			goto out_err;
2277 		}
2278 
2279 		copied += bytes_read;
2280 
2281 		if (!list_empty(&msk->backlog_list) && mptcp_move_skbs(sk))
2282 			continue;
2283 
2284 		/* only the MPTCP socket status is relevant here. The exit
2285 		 * conditions mirror closely tcp_recvmsg()
2286 		 */
2287 		if (copied >= target)
2288 			break;
2289 
2290 		if (copied) {
2291 			if (sk->sk_err ||
2292 			    sk->sk_state == TCP_CLOSE ||
2293 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2294 			    !timeo ||
2295 			    signal_pending(current))
2296 				break;
2297 		} else {
2298 			if (sk->sk_err) {
2299 				copied = sock_error(sk);
2300 				break;
2301 			}
2302 
2303 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2304 				break;
2305 
2306 			if (sk->sk_state == TCP_CLOSE) {
2307 				copied = -ENOTCONN;
2308 				break;
2309 			}
2310 
2311 			if (!timeo) {
2312 				copied = -EAGAIN;
2313 				break;
2314 			}
2315 
2316 			if (signal_pending(current)) {
2317 				copied = sock_intr_errno(timeo);
2318 				break;
2319 			}
2320 		}
2321 
2322 		pr_debug("block timeout %ld\n", timeo);
2323 		mptcp_cleanup_rbuf(msk, copied);
2324 		err = sk_wait_data(sk, &timeo, NULL);
2325 		if (err < 0) {
2326 			err = copied ? : err;
2327 			goto out_err;
2328 		}
2329 	}
2330 
2331 	mptcp_cleanup_rbuf(msk, copied);
2332 
2333 out_err:
2334 	if (cmsg_flags && copied >= 0) {
2335 		if (cmsg_flags & MPTCP_CMSG_TS)
2336 			tcp_recv_timestamp(msg, sk, &tss);
2337 
2338 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2339 			unsigned int inq = mptcp_inq_hint(sk);
2340 
2341 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2342 		}
2343 	}
2344 
2345 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2346 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2347 
2348 	release_sock(sk);
2349 	return copied;
2350 }
2351 
mptcp_retransmit_timer(struct timer_list * t)2352 static void mptcp_retransmit_timer(struct timer_list *t)
2353 {
2354 	struct sock *sk = timer_container_of(sk, t, mptcp_retransmit_timer);
2355 	struct mptcp_sock *msk = mptcp_sk(sk);
2356 
2357 	bh_lock_sock(sk);
2358 	if (!sock_owned_by_user(sk)) {
2359 		/* we need a process context to retransmit */
2360 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2361 			mptcp_schedule_work(sk);
2362 	} else {
2363 		/* delegate our work to tcp_release_cb() */
2364 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2365 	}
2366 	bh_unlock_sock(sk);
2367 	sock_put(sk);
2368 }
2369 
mptcp_tout_timer(struct timer_list * t)2370 static void mptcp_tout_timer(struct timer_list *t)
2371 {
2372 	struct inet_connection_sock *icsk =
2373 		timer_container_of(icsk, t, mptcp_tout_timer);
2374 	struct sock *sk = &icsk->icsk_inet.sk;
2375 
2376 	mptcp_schedule_work(sk);
2377 	sock_put(sk);
2378 }
2379 
2380 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2381  * level.
2382  *
2383  * A backup subflow is returned only if that is the only kind available.
2384  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2385 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2386 {
2387 	struct sock *backup = NULL, *pick = NULL;
2388 	struct mptcp_subflow_context *subflow;
2389 	int min_stale_count = INT_MAX;
2390 
2391 	mptcp_for_each_subflow(msk, subflow) {
2392 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2393 
2394 		if (!__mptcp_subflow_active(subflow))
2395 			continue;
2396 
2397 		/* still data outstanding at TCP level? skip this */
2398 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2399 			mptcp_pm_subflow_chk_stale(msk, ssk);
2400 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2401 			continue;
2402 		}
2403 
2404 		if (subflow->backup || subflow->request_bkup) {
2405 			if (!backup)
2406 				backup = ssk;
2407 			continue;
2408 		}
2409 
2410 		if (!pick)
2411 			pick = ssk;
2412 	}
2413 
2414 	if (pick)
2415 		return pick;
2416 
2417 	/* use backup only if there are no progresses anywhere */
2418 	return min_stale_count > 1 ? backup : NULL;
2419 }
2420 
__mptcp_retransmit_pending_data(struct sock * sk)2421 bool __mptcp_retransmit_pending_data(struct sock *sk)
2422 {
2423 	struct mptcp_data_frag *cur, *rtx_head;
2424 	struct mptcp_sock *msk = mptcp_sk(sk);
2425 
2426 	if (__mptcp_check_fallback(msk))
2427 		return false;
2428 
2429 	/* the closing socket has some data untransmitted and/or unacked:
2430 	 * some data in the mptcp rtx queue has not really xmitted yet.
2431 	 * keep it simple and re-inject the whole mptcp level rtx queue
2432 	 */
2433 	mptcp_data_lock(sk);
2434 	__mptcp_clean_una_wakeup(sk);
2435 	rtx_head = mptcp_rtx_head(sk);
2436 	if (!rtx_head) {
2437 		mptcp_data_unlock(sk);
2438 		return false;
2439 	}
2440 
2441 	msk->recovery_snd_nxt = msk->snd_nxt;
2442 	msk->recovery = true;
2443 	mptcp_data_unlock(sk);
2444 
2445 	msk->first_pending = rtx_head;
2446 	msk->snd_burst = 0;
2447 
2448 	/* be sure to clear the "sent status" on all re-injected fragments */
2449 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2450 		if (!cur->already_sent)
2451 			break;
2452 		cur->already_sent = 0;
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 /* flags for __mptcp_close_ssk() */
2459 #define MPTCP_CF_PUSH		BIT(1)
2460 
2461 /* be sure to send a reset only if the caller asked for it, also
2462  * clean completely the subflow status when the subflow reaches
2463  * TCP_CLOSE state
2464  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2465 static void __mptcp_subflow_disconnect(struct sock *ssk,
2466 				       struct mptcp_subflow_context *subflow,
2467 				       unsigned int flags)
2468 {
2469 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2470 	    subflow->send_fastclose) {
2471 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2472 		 * disconnect should never fail
2473 		 */
2474 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2475 		mptcp_subflow_ctx_reset(subflow);
2476 	} else {
2477 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2478 	}
2479 }
2480 
2481 /* subflow sockets can be either outgoing (connect) or incoming
2482  * (accept).
2483  *
2484  * Outgoing subflows use in-kernel sockets.
2485  * Incoming subflows do not have their own 'struct socket' allocated,
2486  * so we need to use tcp_close() after detaching them from the mptcp
2487  * parent socket.
2488  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2489 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2490 			      struct mptcp_subflow_context *subflow,
2491 			      unsigned int flags)
2492 {
2493 	struct mptcp_sock *msk = mptcp_sk(sk);
2494 	bool dispose_it, need_push = false;
2495 	int fwd_remaining;
2496 
2497 	/* Do not pass RX data to the msk, even if the subflow socket is not
2498 	 * going to be freed (i.e. even for the first subflow on graceful
2499 	 * subflow close.
2500 	 */
2501 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2502 	subflow->closing = 1;
2503 
2504 	/* Borrow the fwd allocated page left-over; fwd memory for the subflow
2505 	 * could be negative at this point, but will be reach zero soon - when
2506 	 * the data allocated using such fragment will be freed.
2507 	 */
2508 	if (subflow->lent_mem_frag) {
2509 		fwd_remaining = PAGE_SIZE - subflow->lent_mem_frag;
2510 		sk_forward_alloc_add(sk, fwd_remaining);
2511 		sk_forward_alloc_add(ssk, -fwd_remaining);
2512 		subflow->lent_mem_frag = 0;
2513 	}
2514 
2515 	/* If the first subflow moved to a close state before accept, e.g. due
2516 	 * to an incoming reset or listener shutdown, the subflow socket is
2517 	 * already deleted by inet_child_forget() and the mptcp socket can't
2518 	 * survive too.
2519 	 */
2520 	if (msk->in_accept_queue && msk->first == ssk &&
2521 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2522 		/* ensure later check in mptcp_worker() will dispose the msk */
2523 		sock_set_flag(sk, SOCK_DEAD);
2524 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2525 		mptcp_subflow_drop_ctx(ssk);
2526 		goto out_release;
2527 	}
2528 
2529 	dispose_it = msk->free_first || ssk != msk->first;
2530 	if (dispose_it)
2531 		list_del(&subflow->node);
2532 
2533 	if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2534 		tcp_set_state(ssk, TCP_CLOSE);
2535 
2536 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2537 	if (!dispose_it) {
2538 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2539 		release_sock(ssk);
2540 
2541 		goto out;
2542 	}
2543 
2544 	subflow->disposable = 1;
2545 
2546 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2547 	 * the ssk has been already destroyed, we just need to release the
2548 	 * reference owned by msk;
2549 	 */
2550 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2551 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2552 		kfree_rcu(subflow, rcu);
2553 	} else {
2554 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2555 		__tcp_close(ssk, 0);
2556 
2557 		/* close acquired an extra ref */
2558 		__sock_put(ssk);
2559 	}
2560 
2561 out_release:
2562 	__mptcp_subflow_error_report(sk, ssk);
2563 	release_sock(ssk);
2564 
2565 	sock_put(ssk);
2566 
2567 	if (ssk == msk->first)
2568 		WRITE_ONCE(msk->first, NULL);
2569 
2570 out:
2571 	__mptcp_sync_sndbuf(sk);
2572 	if (need_push)
2573 		__mptcp_push_pending(sk, 0);
2574 
2575 	/* Catch every 'all subflows closed' scenario, including peers silently
2576 	 * closing them, e.g. due to timeout.
2577 	 * For established sockets, allow an additional timeout before closing,
2578 	 * as the protocol can still create more subflows.
2579 	 */
2580 	if (list_is_singular(&msk->conn_list) && msk->first &&
2581 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2582 		if (sk->sk_state != TCP_ESTABLISHED ||
2583 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2584 			mptcp_set_state(sk, TCP_CLOSE);
2585 			mptcp_close_wake_up(sk);
2586 		} else {
2587 			mptcp_start_tout_timer(sk);
2588 		}
2589 	}
2590 }
2591 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2592 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2593 		     struct mptcp_subflow_context *subflow)
2594 {
2595 	struct mptcp_sock *msk = mptcp_sk(sk);
2596 	struct sk_buff *skb;
2597 
2598 	/* The first subflow can already be closed and still in the list */
2599 	if (subflow->close_event_done)
2600 		return;
2601 
2602 	subflow->close_event_done = true;
2603 
2604 	if (sk->sk_state == TCP_ESTABLISHED)
2605 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2606 
2607 	/* Remove any reference from the backlog to this ssk; backlog skbs consume
2608 	 * space in the msk receive queue, no need to touch sk->sk_rmem_alloc
2609 	 */
2610 	list_for_each_entry(skb, &msk->backlog_list, list) {
2611 		if (skb->sk != ssk)
2612 			continue;
2613 
2614 		atomic_sub(skb->truesize, &skb->sk->sk_rmem_alloc);
2615 		skb->sk = NULL;
2616 	}
2617 
2618 	/* subflow aborted before reaching the fully_established status
2619 	 * attempt the creation of the next subflow
2620 	 */
2621 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2622 
2623 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2624 }
2625 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2626 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2627 {
2628 	return 0;
2629 }
2630 
__mptcp_close_subflow(struct sock * sk)2631 static void __mptcp_close_subflow(struct sock *sk)
2632 {
2633 	struct mptcp_subflow_context *subflow, *tmp;
2634 	struct mptcp_sock *msk = mptcp_sk(sk);
2635 
2636 	might_sleep();
2637 
2638 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2639 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2640 		int ssk_state = inet_sk_state_load(ssk);
2641 
2642 		if (ssk_state != TCP_CLOSE &&
2643 		    (ssk_state != TCP_CLOSE_WAIT ||
2644 		     inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2645 		     __mptcp_check_fallback(msk)))
2646 			continue;
2647 
2648 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2649 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2650 			continue;
2651 
2652 		mptcp_close_ssk(sk, ssk, subflow);
2653 	}
2654 
2655 }
2656 
mptcp_close_tout_expired(const struct sock * sk)2657 static bool mptcp_close_tout_expired(const struct sock *sk)
2658 {
2659 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2660 	    sk->sk_state == TCP_CLOSE)
2661 		return false;
2662 
2663 	return time_after32(tcp_jiffies32,
2664 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2665 }
2666 
mptcp_check_fastclose(struct mptcp_sock * msk)2667 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2668 {
2669 	struct mptcp_subflow_context *subflow, *tmp;
2670 	struct sock *sk = (struct sock *)msk;
2671 
2672 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2673 		return;
2674 
2675 	mptcp_token_destroy(msk);
2676 
2677 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2678 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2679 		bool slow;
2680 
2681 		slow = lock_sock_fast(tcp_sk);
2682 		if (tcp_sk->sk_state != TCP_CLOSE) {
2683 			mptcp_send_active_reset_reason(tcp_sk);
2684 			tcp_set_state(tcp_sk, TCP_CLOSE);
2685 		}
2686 		unlock_sock_fast(tcp_sk, slow);
2687 	}
2688 
2689 	/* Mirror the tcp_reset() error propagation */
2690 	switch (sk->sk_state) {
2691 	case TCP_SYN_SENT:
2692 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2693 		break;
2694 	case TCP_CLOSE_WAIT:
2695 		WRITE_ONCE(sk->sk_err, EPIPE);
2696 		break;
2697 	case TCP_CLOSE:
2698 		return;
2699 	default:
2700 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2701 	}
2702 
2703 	mptcp_set_state(sk, TCP_CLOSE);
2704 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2705 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2706 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2707 
2708 	/* the calling mptcp_worker will properly destroy the socket */
2709 	if (sock_flag(sk, SOCK_DEAD))
2710 		return;
2711 
2712 	sk->sk_state_change(sk);
2713 	sk_error_report(sk);
2714 }
2715 
__mptcp_retrans(struct sock * sk)2716 static void __mptcp_retrans(struct sock *sk)
2717 {
2718 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2719 	struct mptcp_sock *msk = mptcp_sk(sk);
2720 	struct mptcp_subflow_context *subflow;
2721 	struct mptcp_data_frag *dfrag;
2722 	struct sock *ssk;
2723 	int ret, err;
2724 	u16 len = 0;
2725 
2726 	mptcp_clean_una_wakeup(sk);
2727 
2728 	/* first check ssk: need to kick "stale" logic */
2729 	err = mptcp_sched_get_retrans(msk);
2730 	dfrag = mptcp_rtx_head(sk);
2731 	if (!dfrag) {
2732 		if (mptcp_data_fin_enabled(msk)) {
2733 			struct inet_connection_sock *icsk = inet_csk(sk);
2734 
2735 			WRITE_ONCE(icsk->icsk_retransmits,
2736 				   icsk->icsk_retransmits + 1);
2737 			mptcp_set_datafin_timeout(sk);
2738 			mptcp_send_ack(msk);
2739 
2740 			goto reset_timer;
2741 		}
2742 
2743 		if (!mptcp_send_head(sk))
2744 			goto clear_scheduled;
2745 
2746 		goto reset_timer;
2747 	}
2748 
2749 	if (err)
2750 		goto reset_timer;
2751 
2752 	mptcp_for_each_subflow(msk, subflow) {
2753 		if (READ_ONCE(subflow->scheduled)) {
2754 			u16 copied = 0;
2755 
2756 			mptcp_subflow_set_scheduled(subflow, false);
2757 
2758 			ssk = mptcp_subflow_tcp_sock(subflow);
2759 
2760 			lock_sock(ssk);
2761 
2762 			/* limit retransmission to the bytes already sent on some subflows */
2763 			info.sent = 0;
2764 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2765 								    dfrag->already_sent;
2766 
2767 			/*
2768 			 * make the whole retrans decision, xmit, disallow
2769 			 * fallback atomic
2770 			 */
2771 			spin_lock_bh(&msk->fallback_lock);
2772 			if (__mptcp_check_fallback(msk)) {
2773 				spin_unlock_bh(&msk->fallback_lock);
2774 				release_sock(ssk);
2775 				goto clear_scheduled;
2776 			}
2777 
2778 			while (info.sent < info.limit) {
2779 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2780 				if (ret <= 0)
2781 					break;
2782 
2783 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2784 				copied += ret;
2785 				info.sent += ret;
2786 			}
2787 			if (copied) {
2788 				len = max(copied, len);
2789 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2790 					 info.size_goal);
2791 				msk->allow_infinite_fallback = false;
2792 			}
2793 			spin_unlock_bh(&msk->fallback_lock);
2794 
2795 			release_sock(ssk);
2796 		}
2797 	}
2798 
2799 	msk->bytes_retrans += len;
2800 	dfrag->already_sent = max(dfrag->already_sent, len);
2801 
2802 reset_timer:
2803 	mptcp_check_and_set_pending(sk);
2804 
2805 	if (!mptcp_rtx_timer_pending(sk))
2806 		mptcp_reset_rtx_timer(sk);
2807 
2808 clear_scheduled:
2809 	/* If no rtx data was available or in case of fallback, there
2810 	 * could be left-over scheduled subflows; clear them all
2811 	 * or later xmit could use bad ones
2812 	 */
2813 	mptcp_for_each_subflow(msk, subflow)
2814 		if (READ_ONCE(subflow->scheduled))
2815 			mptcp_subflow_set_scheduled(subflow, false);
2816 }
2817 
2818 /* schedule the timeout timer for the relevant event: either close timeout
2819  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2820  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2821 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2822 {
2823 	struct sock *sk = (struct sock *)msk;
2824 	unsigned long timeout, close_timeout;
2825 
2826 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2827 		return;
2828 
2829 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2830 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2831 
2832 	/* the close timeout takes precedence on the fail one, and here at least one of
2833 	 * them is active
2834 	 */
2835 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2836 
2837 	sk_reset_timer(sk, &inet_csk(sk)->mptcp_tout_timer, timeout);
2838 }
2839 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2840 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2841 {
2842 	struct sock *ssk = msk->first;
2843 	bool slow;
2844 
2845 	if (!ssk)
2846 		return;
2847 
2848 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2849 
2850 	slow = lock_sock_fast(ssk);
2851 	mptcp_subflow_reset(ssk);
2852 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2853 	unlock_sock_fast(ssk, slow);
2854 }
2855 
mptcp_backlog_purge(struct sock * sk)2856 static void mptcp_backlog_purge(struct sock *sk)
2857 {
2858 	struct mptcp_sock *msk = mptcp_sk(sk);
2859 	struct sk_buff *tmp, *skb;
2860 	LIST_HEAD(backlog);
2861 
2862 	mptcp_data_lock(sk);
2863 	list_splice_init(&msk->backlog_list, &backlog);
2864 	msk->backlog_len = 0;
2865 	mptcp_data_unlock(sk);
2866 
2867 	list_for_each_entry_safe(skb, tmp, &backlog, list) {
2868 		mptcp_borrow_fwdmem(sk, skb);
2869 		kfree_skb_reason(skb, SKB_DROP_REASON_SOCKET_CLOSE);
2870 	}
2871 	sk_mem_reclaim(sk);
2872 }
2873 
mptcp_do_fastclose(struct sock * sk)2874 static void mptcp_do_fastclose(struct sock *sk)
2875 {
2876 	struct mptcp_subflow_context *subflow, *tmp;
2877 	struct mptcp_sock *msk = mptcp_sk(sk);
2878 
2879 	mptcp_set_state(sk, TCP_CLOSE);
2880 	mptcp_backlog_purge(sk);
2881 
2882 	/* Explicitly send the fastclose reset as need */
2883 	if (__mptcp_check_fallback(msk))
2884 		return;
2885 
2886 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2887 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2888 
2889 		lock_sock(ssk);
2890 
2891 		/* Some subflow socket states don't allow/need a reset.*/
2892 		if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2893 			goto unlock;
2894 
2895 		subflow->send_fastclose = 1;
2896 
2897 		/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2898 		 * issue in __tcp_select_window(), see tcp_disconnect().
2899 		 */
2900 		inet_csk(ssk)->icsk_ack.rcv_mss = TCP_MIN_MSS;
2901 
2902 		tcp_send_active_reset(ssk, ssk->sk_allocation,
2903 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2904 unlock:
2905 		release_sock(ssk);
2906 	}
2907 }
2908 
mptcp_worker(struct work_struct * work)2909 static void mptcp_worker(struct work_struct *work)
2910 {
2911 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2912 	struct sock *sk = (struct sock *)msk;
2913 	unsigned long fail_tout;
2914 	int state;
2915 
2916 	lock_sock(sk);
2917 	state = sk->sk_state;
2918 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2919 		goto unlock;
2920 
2921 	mptcp_check_fastclose(msk);
2922 
2923 	mptcp_pm_worker(msk);
2924 
2925 	mptcp_check_send_data_fin(sk);
2926 	mptcp_check_data_fin_ack(sk);
2927 	mptcp_check_data_fin(sk);
2928 
2929 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2930 		__mptcp_close_subflow(sk);
2931 
2932 	if (mptcp_close_tout_expired(sk)) {
2933 		struct mptcp_subflow_context *subflow, *tmp;
2934 
2935 		mptcp_do_fastclose(sk);
2936 		mptcp_for_each_subflow_safe(msk, subflow, tmp)
2937 			__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2938 		mptcp_close_wake_up(sk);
2939 	}
2940 
2941 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2942 		__mptcp_destroy_sock(sk);
2943 		goto unlock;
2944 	}
2945 
2946 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2947 		__mptcp_retrans(sk);
2948 
2949 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2950 	if (fail_tout && time_after(jiffies, fail_tout))
2951 		mptcp_mp_fail_no_response(msk);
2952 
2953 unlock:
2954 	release_sock(sk);
2955 	sock_put(sk);
2956 }
2957 
__mptcp_init_sock(struct sock * sk)2958 static void __mptcp_init_sock(struct sock *sk)
2959 {
2960 	struct mptcp_sock *msk = mptcp_sk(sk);
2961 
2962 	INIT_LIST_HEAD(&msk->conn_list);
2963 	INIT_LIST_HEAD(&msk->join_list);
2964 	INIT_LIST_HEAD(&msk->rtx_queue);
2965 	INIT_LIST_HEAD(&msk->backlog_list);
2966 	INIT_WORK(&msk->work, mptcp_worker);
2967 	msk->out_of_order_queue = RB_ROOT;
2968 	msk->first_pending = NULL;
2969 	msk->timer_ival = TCP_RTO_MIN;
2970 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2971 	msk->backlog_len = 0;
2972 
2973 	WRITE_ONCE(msk->first, NULL);
2974 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2975 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2976 	msk->allow_infinite_fallback = true;
2977 	msk->allow_subflows = true;
2978 	msk->recovery = false;
2979 	msk->subflow_id = 1;
2980 	msk->last_data_sent = tcp_jiffies32;
2981 	msk->last_data_recv = tcp_jiffies32;
2982 	msk->last_ack_recv = tcp_jiffies32;
2983 
2984 	mptcp_pm_data_init(msk);
2985 	spin_lock_init(&msk->fallback_lock);
2986 
2987 	/* re-use the csk retrans timer for MPTCP-level retrans */
2988 	timer_setup(&sk->mptcp_retransmit_timer, mptcp_retransmit_timer, 0);
2989 	timer_setup(&msk->sk.mptcp_tout_timer, mptcp_tout_timer, 0);
2990 }
2991 
mptcp_ca_reset(struct sock * sk)2992 static void mptcp_ca_reset(struct sock *sk)
2993 {
2994 	struct inet_connection_sock *icsk = inet_csk(sk);
2995 
2996 	tcp_assign_congestion_control(sk);
2997 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2998 		sizeof(mptcp_sk(sk)->ca_name));
2999 
3000 	/* no need to keep a reference to the ops, the name will suffice */
3001 	tcp_cleanup_congestion_control(sk);
3002 	icsk->icsk_ca_ops = NULL;
3003 }
3004 
mptcp_init_sock(struct sock * sk)3005 static int mptcp_init_sock(struct sock *sk)
3006 {
3007 	struct net *net = sock_net(sk);
3008 	int ret;
3009 
3010 	__mptcp_init_sock(sk);
3011 
3012 	if (!mptcp_is_enabled(net))
3013 		return -ENOPROTOOPT;
3014 
3015 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
3016 		return -ENOMEM;
3017 
3018 	rcu_read_lock();
3019 	ret = mptcp_init_sched(mptcp_sk(sk),
3020 			       mptcp_sched_find(mptcp_get_scheduler(net)));
3021 	rcu_read_unlock();
3022 	if (ret)
3023 		return ret;
3024 
3025 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
3026 
3027 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
3028 	 * propagate the correct value
3029 	 */
3030 	mptcp_ca_reset(sk);
3031 
3032 	sk_sockets_allocated_inc(sk);
3033 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
3034 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
3035 
3036 	return 0;
3037 }
3038 
__mptcp_clear_xmit(struct sock * sk)3039 static void __mptcp_clear_xmit(struct sock *sk)
3040 {
3041 	struct mptcp_sock *msk = mptcp_sk(sk);
3042 	struct mptcp_data_frag *dtmp, *dfrag;
3043 
3044 	msk->first_pending = NULL;
3045 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
3046 		dfrag_clear(sk, dfrag);
3047 }
3048 
mptcp_cancel_work(struct sock * sk)3049 void mptcp_cancel_work(struct sock *sk)
3050 {
3051 	struct mptcp_sock *msk = mptcp_sk(sk);
3052 
3053 	if (cancel_work_sync(&msk->work))
3054 		__sock_put(sk);
3055 }
3056 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)3057 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
3058 {
3059 	lock_sock(ssk);
3060 
3061 	switch (ssk->sk_state) {
3062 	case TCP_LISTEN:
3063 		if (!(how & RCV_SHUTDOWN))
3064 			break;
3065 		fallthrough;
3066 	case TCP_SYN_SENT:
3067 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
3068 		break;
3069 	default:
3070 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
3071 			pr_debug("Fallback\n");
3072 			ssk->sk_shutdown |= how;
3073 			tcp_shutdown(ssk, how);
3074 
3075 			/* simulate the data_fin ack reception to let the state
3076 			 * machine move forward
3077 			 */
3078 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
3079 			mptcp_schedule_work(sk);
3080 		} else {
3081 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
3082 			tcp_send_ack(ssk);
3083 			if (!mptcp_rtx_timer_pending(sk))
3084 				mptcp_reset_rtx_timer(sk);
3085 		}
3086 		break;
3087 	}
3088 
3089 	release_sock(ssk);
3090 }
3091 
mptcp_set_state(struct sock * sk,int state)3092 void mptcp_set_state(struct sock *sk, int state)
3093 {
3094 	int oldstate = sk->sk_state;
3095 
3096 	switch (state) {
3097 	case TCP_ESTABLISHED:
3098 		if (oldstate != TCP_ESTABLISHED)
3099 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3100 		break;
3101 	case TCP_CLOSE_WAIT:
3102 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
3103 		 * MPTCP "accepted" sockets will be created later on. So no
3104 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
3105 		 */
3106 		break;
3107 	default:
3108 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
3109 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
3110 	}
3111 
3112 	inet_sk_state_store(sk, state);
3113 }
3114 
3115 static const unsigned char new_state[16] = {
3116 	/* current state:     new state:      action:	*/
3117 	[0 /* (Invalid) */] = TCP_CLOSE,
3118 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3119 	[TCP_SYN_SENT]      = TCP_CLOSE,
3120 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3121 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3122 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3123 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3124 	[TCP_CLOSE]         = TCP_CLOSE,
3125 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3126 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3127 	[TCP_LISTEN]        = TCP_CLOSE,
3128 	[TCP_CLOSING]       = TCP_CLOSING,
3129 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3130 };
3131 
mptcp_close_state(struct sock * sk)3132 static int mptcp_close_state(struct sock *sk)
3133 {
3134 	int next = (int)new_state[sk->sk_state];
3135 	int ns = next & TCP_STATE_MASK;
3136 
3137 	mptcp_set_state(sk, ns);
3138 
3139 	return next & TCP_ACTION_FIN;
3140 }
3141 
mptcp_check_send_data_fin(struct sock * sk)3142 static void mptcp_check_send_data_fin(struct sock *sk)
3143 {
3144 	struct mptcp_subflow_context *subflow;
3145 	struct mptcp_sock *msk = mptcp_sk(sk);
3146 
3147 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3148 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3149 		 msk->snd_nxt, msk->write_seq);
3150 
3151 	/* we still need to enqueue subflows or not really shutting down,
3152 	 * skip this
3153 	 */
3154 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3155 	    mptcp_send_head(sk))
3156 		return;
3157 
3158 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3159 
3160 	mptcp_for_each_subflow(msk, subflow) {
3161 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3162 
3163 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3164 	}
3165 }
3166 
__mptcp_wr_shutdown(struct sock * sk)3167 static void __mptcp_wr_shutdown(struct sock *sk)
3168 {
3169 	struct mptcp_sock *msk = mptcp_sk(sk);
3170 
3171 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3172 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3173 		 !!mptcp_send_head(sk));
3174 
3175 	/* will be ignored by fallback sockets */
3176 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3177 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3178 
3179 	mptcp_check_send_data_fin(sk);
3180 }
3181 
__mptcp_destroy_sock(struct sock * sk)3182 static void __mptcp_destroy_sock(struct sock *sk)
3183 {
3184 	struct mptcp_sock *msk = mptcp_sk(sk);
3185 
3186 	pr_debug("msk=%p\n", msk);
3187 
3188 	might_sleep();
3189 
3190 	mptcp_stop_rtx_timer(sk);
3191 	sk_stop_timer(sk, &inet_csk(sk)->mptcp_tout_timer);
3192 	msk->pm.status = 0;
3193 	mptcp_release_sched(msk);
3194 
3195 	sk->sk_prot->destroy(sk);
3196 
3197 	sk_stream_kill_queues(sk);
3198 	xfrm_sk_free_policy(sk);
3199 
3200 	sock_put(sk);
3201 }
3202 
__mptcp_unaccepted_force_close(struct sock * sk)3203 void __mptcp_unaccepted_force_close(struct sock *sk)
3204 {
3205 	sock_set_flag(sk, SOCK_DEAD);
3206 	mptcp_do_fastclose(sk);
3207 	__mptcp_destroy_sock(sk);
3208 }
3209 
mptcp_check_readable(struct sock * sk)3210 static __poll_t mptcp_check_readable(struct sock *sk)
3211 {
3212 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3213 }
3214 
mptcp_check_listen_stop(struct sock * sk)3215 static void mptcp_check_listen_stop(struct sock *sk)
3216 {
3217 	struct sock *ssk;
3218 
3219 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3220 		return;
3221 
3222 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3223 	ssk = mptcp_sk(sk)->first;
3224 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3225 		return;
3226 
3227 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3228 	tcp_set_state(ssk, TCP_CLOSE);
3229 	mptcp_subflow_queue_clean(sk, ssk);
3230 	inet_csk_listen_stop(ssk);
3231 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3232 	release_sock(ssk);
3233 }
3234 
__mptcp_close(struct sock * sk,long timeout)3235 bool __mptcp_close(struct sock *sk, long timeout)
3236 {
3237 	struct mptcp_subflow_context *subflow;
3238 	struct mptcp_sock *msk = mptcp_sk(sk);
3239 	bool do_cancel_work = false;
3240 	int subflows_alive = 0;
3241 
3242 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3243 
3244 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3245 		mptcp_check_listen_stop(sk);
3246 		mptcp_set_state(sk, TCP_CLOSE);
3247 		goto cleanup;
3248 	}
3249 
3250 	if (mptcp_data_avail(msk) || timeout < 0) {
3251 		/* If the msk has read data, or the caller explicitly ask it,
3252 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3253 		 */
3254 		mptcp_do_fastclose(sk);
3255 		timeout = 0;
3256 	} else if (mptcp_close_state(sk)) {
3257 		__mptcp_wr_shutdown(sk);
3258 	}
3259 
3260 	sk_stream_wait_close(sk, timeout);
3261 
3262 cleanup:
3263 	/* orphan all the subflows */
3264 	mptcp_for_each_subflow(msk, subflow) {
3265 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3266 		bool slow = lock_sock_fast_nested(ssk);
3267 
3268 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3269 
3270 		/* since the close timeout takes precedence on the fail one,
3271 		 * cancel the latter
3272 		 */
3273 		if (ssk == msk->first)
3274 			subflow->fail_tout = 0;
3275 
3276 		/* detach from the parent socket, but allow data_ready to
3277 		 * push incoming data into the mptcp stack, to properly ack it
3278 		 */
3279 		ssk->sk_socket = NULL;
3280 		ssk->sk_wq = NULL;
3281 		unlock_sock_fast(ssk, slow);
3282 	}
3283 	sock_orphan(sk);
3284 
3285 	/* all the subflows are closed, only timeout can change the msk
3286 	 * state, let's not keep resources busy for no reasons
3287 	 */
3288 	if (subflows_alive == 0)
3289 		mptcp_set_state(sk, TCP_CLOSE);
3290 
3291 	sock_hold(sk);
3292 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3293 	mptcp_pm_connection_closed(msk);
3294 
3295 	if (sk->sk_state == TCP_CLOSE) {
3296 		__mptcp_destroy_sock(sk);
3297 		do_cancel_work = true;
3298 	} else {
3299 		mptcp_start_tout_timer(sk);
3300 	}
3301 
3302 	return do_cancel_work;
3303 }
3304 
mptcp_close(struct sock * sk,long timeout)3305 static void mptcp_close(struct sock *sk, long timeout)
3306 {
3307 	bool do_cancel_work;
3308 
3309 	lock_sock(sk);
3310 
3311 	do_cancel_work = __mptcp_close(sk, timeout);
3312 	release_sock(sk);
3313 	if (do_cancel_work)
3314 		mptcp_cancel_work(sk);
3315 
3316 	sock_put(sk);
3317 }
3318 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3319 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3320 {
3321 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3322 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3323 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3324 
3325 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3326 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3327 
3328 	if (msk6 && ssk6) {
3329 		msk6->saddr = ssk6->saddr;
3330 		msk6->flow_label = ssk6->flow_label;
3331 	}
3332 #endif
3333 
3334 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3335 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3336 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3337 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3338 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3339 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3340 }
3341 
mptcp_destroy_common(struct mptcp_sock * msk)3342 static void mptcp_destroy_common(struct mptcp_sock *msk)
3343 {
3344 	struct mptcp_subflow_context *subflow, *tmp;
3345 	struct sock *sk = (struct sock *)msk;
3346 
3347 	__mptcp_clear_xmit(sk);
3348 	mptcp_backlog_purge(sk);
3349 
3350 	/* join list will be eventually flushed (with rst) at sock lock release time */
3351 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3352 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3353 
3354 	__skb_queue_purge(&sk->sk_receive_queue);
3355 	skb_rbtree_purge(&msk->out_of_order_queue);
3356 
3357 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3358 	 * inet_sock_destruct() will dispose it
3359 	 */
3360 	mptcp_token_destroy(msk);
3361 	mptcp_pm_destroy(msk);
3362 }
3363 
mptcp_disconnect(struct sock * sk,int flags)3364 static int mptcp_disconnect(struct sock *sk, int flags)
3365 {
3366 	struct mptcp_sock *msk = mptcp_sk(sk);
3367 
3368 	/* We are on the fastopen error path. We can't call straight into the
3369 	 * subflows cleanup code due to lock nesting (we are already under
3370 	 * msk->firstsocket lock).
3371 	 */
3372 	if (msk->fastopening)
3373 		return -EBUSY;
3374 
3375 	mptcp_check_listen_stop(sk);
3376 	mptcp_set_state(sk, TCP_CLOSE);
3377 
3378 	mptcp_stop_rtx_timer(sk);
3379 	mptcp_stop_tout_timer(sk);
3380 
3381 	mptcp_pm_connection_closed(msk);
3382 
3383 	/* msk->subflow is still intact, the following will not free the first
3384 	 * subflow
3385 	 */
3386 	mptcp_do_fastclose(sk);
3387 	mptcp_destroy_common(msk);
3388 
3389 	/* The first subflow is already in TCP_CLOSE status, the following
3390 	 * can't overlap with a fallback anymore
3391 	 */
3392 	spin_lock_bh(&msk->fallback_lock);
3393 	msk->allow_subflows = true;
3394 	msk->allow_infinite_fallback = true;
3395 	WRITE_ONCE(msk->flags, 0);
3396 	spin_unlock_bh(&msk->fallback_lock);
3397 
3398 	msk->cb_flags = 0;
3399 	msk->recovery = false;
3400 	WRITE_ONCE(msk->can_ack, false);
3401 	WRITE_ONCE(msk->fully_established, false);
3402 	WRITE_ONCE(msk->rcv_data_fin, false);
3403 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3404 	WRITE_ONCE(msk->rcv_fastclose, false);
3405 	WRITE_ONCE(msk->use_64bit_ack, false);
3406 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3407 	mptcp_pm_data_reset(msk);
3408 	mptcp_ca_reset(sk);
3409 	msk->bytes_consumed = 0;
3410 	msk->bytes_acked = 0;
3411 	msk->bytes_received = 0;
3412 	msk->bytes_sent = 0;
3413 	msk->bytes_retrans = 0;
3414 	msk->rcvspace_init = 0;
3415 
3416 	/* for fallback's sake */
3417 	WRITE_ONCE(msk->ack_seq, 0);
3418 
3419 	WRITE_ONCE(sk->sk_shutdown, 0);
3420 	sk_error_report(sk);
3421 	return 0;
3422 }
3423 
3424 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3425 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3426 {
3427 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3428 
3429 	return &msk6->np;
3430 }
3431 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3432 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3433 {
3434 	const struct ipv6_pinfo *np = inet6_sk(sk);
3435 	struct ipv6_txoptions *opt;
3436 	struct ipv6_pinfo *newnp;
3437 
3438 	newnp = inet6_sk(newsk);
3439 
3440 	rcu_read_lock();
3441 	opt = rcu_dereference(np->opt);
3442 	if (opt) {
3443 		opt = ipv6_dup_options(newsk, opt);
3444 		if (!opt)
3445 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3446 	}
3447 	RCU_INIT_POINTER(newnp->opt, opt);
3448 	rcu_read_unlock();
3449 }
3450 #endif
3451 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3452 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3453 {
3454 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3455 	const struct inet_sock *inet = inet_sk(sk);
3456 	struct inet_sock *newinet;
3457 
3458 	newinet = inet_sk(newsk);
3459 
3460 	rcu_read_lock();
3461 	inet_opt = rcu_dereference(inet->inet_opt);
3462 	if (inet_opt) {
3463 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3464 				      inet_opt->opt.optlen, GFP_ATOMIC);
3465 		if (!newopt)
3466 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3467 	}
3468 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3469 	rcu_read_unlock();
3470 }
3471 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3472 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3473 				 const struct mptcp_options_received *mp_opt,
3474 				 struct sock *ssk,
3475 				 struct request_sock *req)
3476 {
3477 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3478 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3479 	struct mptcp_subflow_context *subflow;
3480 	struct mptcp_sock *msk;
3481 
3482 	if (!nsk)
3483 		return NULL;
3484 
3485 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3486 	if (nsk->sk_family == AF_INET6)
3487 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3488 #endif
3489 
3490 	__mptcp_init_sock(nsk);
3491 
3492 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3493 	if (nsk->sk_family == AF_INET6)
3494 		mptcp_copy_ip6_options(nsk, sk);
3495 	else
3496 #endif
3497 		mptcp_copy_ip_options(nsk, sk);
3498 
3499 	msk = mptcp_sk(nsk);
3500 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3501 	WRITE_ONCE(msk->token, subflow_req->token);
3502 	msk->in_accept_queue = 1;
3503 	WRITE_ONCE(msk->fully_established, false);
3504 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3505 		WRITE_ONCE(msk->csum_enabled, true);
3506 
3507 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3508 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3509 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3510 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3511 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3512 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3513 
3514 	/* passive msk is created after the first/MPC subflow */
3515 	msk->subflow_id = 2;
3516 
3517 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3518 	security_inet_csk_clone(nsk, req);
3519 
3520 	/* this can't race with mptcp_close(), as the msk is
3521 	 * not yet exposted to user-space
3522 	 */
3523 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3524 
3525 	/* The msk maintain a ref to each subflow in the connections list */
3526 	WRITE_ONCE(msk->first, ssk);
3527 	subflow = mptcp_subflow_ctx(ssk);
3528 	list_add(&subflow->node, &msk->conn_list);
3529 	sock_hold(ssk);
3530 
3531 	/* new mpc subflow takes ownership of the newly
3532 	 * created mptcp socket
3533 	 */
3534 	mptcp_token_accept(subflow_req, msk);
3535 
3536 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3537 	 * uses the correct data
3538 	 */
3539 	mptcp_copy_inaddrs(nsk, ssk);
3540 	__mptcp_propagate_sndbuf(nsk, ssk);
3541 
3542 	mptcp_rcv_space_init(msk, ssk);
3543 
3544 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3545 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3546 	bh_unlock_sock(nsk);
3547 
3548 	/* note: the newly allocated socket refcount is 2 now */
3549 	return nsk;
3550 }
3551 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3552 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3553 {
3554 	const struct tcp_sock *tp = tcp_sk(ssk);
3555 
3556 	msk->rcvspace_init = 1;
3557 	msk->rcvq_space.copied = 0;
3558 	msk->rcvq_space.rtt_us = 0;
3559 
3560 	msk->rcvq_space.time = tp->tcp_mstamp;
3561 
3562 	/* initial rcv_space offering made to peer */
3563 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3564 				      TCP_INIT_CWND * tp->advmss);
3565 	if (msk->rcvq_space.space == 0)
3566 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3567 }
3568 
mptcp_destroy(struct sock * sk)3569 static void mptcp_destroy(struct sock *sk)
3570 {
3571 	struct mptcp_sock *msk = mptcp_sk(sk);
3572 
3573 	/* allow the following to close even the initial subflow */
3574 	msk->free_first = 1;
3575 	mptcp_destroy_common(msk);
3576 	sk_sockets_allocated_dec(sk);
3577 }
3578 
__mptcp_data_acked(struct sock * sk)3579 void __mptcp_data_acked(struct sock *sk)
3580 {
3581 	if (!sock_owned_by_user(sk))
3582 		__mptcp_clean_una(sk);
3583 	else
3584 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3585 }
3586 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3587 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3588 {
3589 	if (!sock_owned_by_user(sk))
3590 		__mptcp_subflow_push_pending(sk, ssk, false);
3591 	else
3592 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3593 }
3594 
3595 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3596 				      BIT(MPTCP_RETRANSMIT) | \
3597 				      BIT(MPTCP_FLUSH_JOIN_LIST))
3598 
3599 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3600 static void mptcp_release_cb(struct sock *sk)
3601 	__must_hold(&sk->sk_lock.slock)
3602 {
3603 	struct mptcp_sock *msk = mptcp_sk(sk);
3604 
3605 	for (;;) {
3606 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3607 		struct list_head join_list, skbs;
3608 		bool spool_bl;
3609 		u32 moved;
3610 
3611 		spool_bl = mptcp_can_spool_backlog(sk, &skbs);
3612 		if (!flags && !spool_bl)
3613 			break;
3614 
3615 		INIT_LIST_HEAD(&join_list);
3616 		list_splice_init(&msk->join_list, &join_list);
3617 
3618 		/* the following actions acquire the subflow socket lock
3619 		 *
3620 		 * 1) can't be invoked in atomic scope
3621 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3622 		 *    datapath acquires the msk socket spinlock while helding
3623 		 *    the subflow socket lock
3624 		 */
3625 		msk->cb_flags &= ~flags;
3626 		spin_unlock_bh(&sk->sk_lock.slock);
3627 
3628 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3629 			__mptcp_flush_join_list(sk, &join_list);
3630 		if (flags & BIT(MPTCP_PUSH_PENDING))
3631 			__mptcp_push_pending(sk, 0);
3632 		if (flags & BIT(MPTCP_RETRANSMIT))
3633 			__mptcp_retrans(sk);
3634 		if (spool_bl && __mptcp_move_skbs(sk, &skbs, &moved)) {
3635 			/* notify ack seq update */
3636 			mptcp_cleanup_rbuf(msk, 0);
3637 			sk->sk_data_ready(sk);
3638 		}
3639 
3640 		cond_resched();
3641 		spin_lock_bh(&sk->sk_lock.slock);
3642 		if (spool_bl)
3643 			mptcp_backlog_spooled(sk, moved, &skbs);
3644 	}
3645 
3646 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3647 		__mptcp_clean_una_wakeup(sk);
3648 	if (unlikely(msk->cb_flags)) {
3649 		/* be sure to sync the msk state before taking actions
3650 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3651 		 * On sk release avoid actions depending on the first subflow
3652 		 */
3653 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3654 			__mptcp_sync_state(sk, msk->pending_state);
3655 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3656 			__mptcp_error_report(sk);
3657 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3658 			__mptcp_sync_sndbuf(sk);
3659 	}
3660 }
3661 
3662 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3663  * TCP can't schedule delack timer before the subflow is fully established.
3664  * MPTCP uses the delack timer to do 3rd ack retransmissions
3665  */
schedule_3rdack_retransmission(struct sock * ssk)3666 static void schedule_3rdack_retransmission(struct sock *ssk)
3667 {
3668 	struct inet_connection_sock *icsk = inet_csk(ssk);
3669 	struct tcp_sock *tp = tcp_sk(ssk);
3670 	unsigned long timeout;
3671 
3672 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3673 		return;
3674 
3675 	/* reschedule with a timeout above RTT, as we must look only for drop */
3676 	if (tp->srtt_us)
3677 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3678 	else
3679 		timeout = TCP_TIMEOUT_INIT;
3680 	timeout += jiffies;
3681 
3682 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3683 	smp_store_release(&icsk->icsk_ack.pending,
3684 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3685 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3686 }
3687 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3688 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3689 {
3690 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3691 	struct sock *sk = subflow->conn;
3692 
3693 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3694 		mptcp_data_lock(sk);
3695 		if (!sock_owned_by_user(sk))
3696 			__mptcp_subflow_push_pending(sk, ssk, true);
3697 		else
3698 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3699 		mptcp_data_unlock(sk);
3700 	}
3701 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3702 		mptcp_data_lock(sk);
3703 		if (!sock_owned_by_user(sk))
3704 			__mptcp_sync_sndbuf(sk);
3705 		else
3706 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3707 		mptcp_data_unlock(sk);
3708 	}
3709 	if (status & BIT(MPTCP_DELEGATE_ACK))
3710 		schedule_3rdack_retransmission(ssk);
3711 }
3712 
mptcp_hash(struct sock * sk)3713 static int mptcp_hash(struct sock *sk)
3714 {
3715 	/* should never be called,
3716 	 * we hash the TCP subflows not the MPTCP socket
3717 	 */
3718 	WARN_ON_ONCE(1);
3719 	return 0;
3720 }
3721 
mptcp_unhash(struct sock * sk)3722 static void mptcp_unhash(struct sock *sk)
3723 {
3724 	/* called from sk_common_release(), but nothing to do here */
3725 }
3726 
mptcp_get_port(struct sock * sk,unsigned short snum)3727 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3728 {
3729 	struct mptcp_sock *msk = mptcp_sk(sk);
3730 
3731 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3732 	if (WARN_ON_ONCE(!msk->first))
3733 		return -EINVAL;
3734 
3735 	return inet_csk_get_port(msk->first, snum);
3736 }
3737 
mptcp_finish_connect(struct sock * ssk)3738 void mptcp_finish_connect(struct sock *ssk)
3739 {
3740 	struct mptcp_subflow_context *subflow;
3741 	struct mptcp_sock *msk;
3742 	struct sock *sk;
3743 
3744 	subflow = mptcp_subflow_ctx(ssk);
3745 	sk = subflow->conn;
3746 	msk = mptcp_sk(sk);
3747 
3748 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3749 
3750 	subflow->map_seq = subflow->iasn;
3751 	subflow->map_subflow_seq = 1;
3752 
3753 	/* the socket is not connected yet, no msk/subflow ops can access/race
3754 	 * accessing the field below
3755 	 */
3756 	WRITE_ONCE(msk->local_key, subflow->local_key);
3757 
3758 	mptcp_pm_new_connection(msk, ssk, 0);
3759 }
3760 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3761 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3762 {
3763 	write_lock_bh(&sk->sk_callback_lock);
3764 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3765 	sk_set_socket(sk, parent);
3766 	write_unlock_bh(&sk->sk_callback_lock);
3767 }
3768 
3769 /* Can be called without holding the msk socket lock; use the callback lock
3770  * to avoid {READ_,WRITE_}ONCE annotations on sk_socket.
3771  */
mptcp_sock_check_graft(struct sock * sk,struct sock * ssk)3772 static void mptcp_sock_check_graft(struct sock *sk, struct sock *ssk)
3773 {
3774 	struct socket *sock;
3775 
3776 	write_lock_bh(&sk->sk_callback_lock);
3777 	sock = sk->sk_socket;
3778 	write_unlock_bh(&sk->sk_callback_lock);
3779 	if (sock) {
3780 		mptcp_sock_graft(ssk, sock);
3781 		__mptcp_inherit_cgrp_data(sk, ssk);
3782 		__mptcp_inherit_memcg(sk, ssk, GFP_ATOMIC);
3783 	}
3784 }
3785 
mptcp_finish_join(struct sock * ssk)3786 bool mptcp_finish_join(struct sock *ssk)
3787 {
3788 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3789 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3790 	struct sock *parent = (void *)msk;
3791 	bool ret = true;
3792 
3793 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3794 
3795 	/* mptcp socket already closing? */
3796 	if (!mptcp_is_fully_established(parent)) {
3797 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3798 		return false;
3799 	}
3800 
3801 	/* Active subflow, already present inside the conn_list; is grafted
3802 	 * either by __mptcp_subflow_connect() or accept.
3803 	 */
3804 	if (!list_empty(&subflow->node)) {
3805 		spin_lock_bh(&msk->fallback_lock);
3806 		if (!msk->allow_subflows) {
3807 			spin_unlock_bh(&msk->fallback_lock);
3808 			return false;
3809 		}
3810 		mptcp_subflow_joined(msk, ssk);
3811 		spin_unlock_bh(&msk->fallback_lock);
3812 		mptcp_propagate_sndbuf(parent, ssk);
3813 		return true;
3814 	}
3815 
3816 	if (!mptcp_pm_allow_new_subflow(msk)) {
3817 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3818 		goto err_prohibited;
3819 	}
3820 
3821 	/* If we can't acquire msk socket lock here, let the release callback
3822 	 * handle it
3823 	 */
3824 	mptcp_data_lock(parent);
3825 	if (!sock_owned_by_user(parent)) {
3826 		ret = __mptcp_finish_join(msk, ssk);
3827 		if (ret) {
3828 			sock_hold(ssk);
3829 			list_add_tail(&subflow->node, &msk->conn_list);
3830 			mptcp_sock_check_graft(parent, ssk);
3831 		}
3832 	} else {
3833 		sock_hold(ssk);
3834 		list_add_tail(&subflow->node, &msk->join_list);
3835 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3836 
3837 		/* In case of later failures, __mptcp_flush_join_list() will
3838 		 * properly orphan the ssk via mptcp_close_ssk().
3839 		 */
3840 		mptcp_sock_check_graft(parent, ssk);
3841 	}
3842 	mptcp_data_unlock(parent);
3843 
3844 	if (!ret) {
3845 err_prohibited:
3846 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3847 		return false;
3848 	}
3849 
3850 	return true;
3851 }
3852 
mptcp_shutdown(struct sock * sk,int how)3853 static void mptcp_shutdown(struct sock *sk, int how)
3854 {
3855 	pr_debug("sk=%p, how=%d\n", sk, how);
3856 
3857 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3858 		__mptcp_wr_shutdown(sk);
3859 }
3860 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3861 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3862 {
3863 	const struct sock *sk = (void *)msk;
3864 	u64 delta;
3865 
3866 	if (sk->sk_state == TCP_LISTEN)
3867 		return -EINVAL;
3868 
3869 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3870 		return 0;
3871 
3872 	delta = msk->write_seq - v;
3873 	if (__mptcp_check_fallback(msk) && msk->first) {
3874 		struct tcp_sock *tp = tcp_sk(msk->first);
3875 
3876 		/* the first subflow is disconnected after close - see
3877 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3878 		 * so ignore that status, too.
3879 		 */
3880 		if (!((1 << msk->first->sk_state) &
3881 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3882 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3883 	}
3884 	if (delta > INT_MAX)
3885 		delta = INT_MAX;
3886 
3887 	return (int)delta;
3888 }
3889 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3890 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3891 {
3892 	struct mptcp_sock *msk = mptcp_sk(sk);
3893 	bool slow;
3894 
3895 	switch (cmd) {
3896 	case SIOCINQ:
3897 		if (sk->sk_state == TCP_LISTEN)
3898 			return -EINVAL;
3899 
3900 		lock_sock(sk);
3901 		if (mptcp_move_skbs(sk))
3902 			mptcp_cleanup_rbuf(msk, 0);
3903 		*karg = mptcp_inq_hint(sk);
3904 		release_sock(sk);
3905 		break;
3906 	case SIOCOUTQ:
3907 		slow = lock_sock_fast(sk);
3908 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3909 		unlock_sock_fast(sk, slow);
3910 		break;
3911 	case SIOCOUTQNSD:
3912 		slow = lock_sock_fast(sk);
3913 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3914 		unlock_sock_fast(sk, slow);
3915 		break;
3916 	default:
3917 		return -ENOIOCTLCMD;
3918 	}
3919 
3920 	return 0;
3921 }
3922 
mptcp_connect(struct sock * sk,struct sockaddr_unsized * uaddr,int addr_len)3923 static int mptcp_connect(struct sock *sk, struct sockaddr_unsized *uaddr,
3924 			 int addr_len)
3925 {
3926 	struct mptcp_subflow_context *subflow;
3927 	struct mptcp_sock *msk = mptcp_sk(sk);
3928 	int err = -EINVAL;
3929 	struct sock *ssk;
3930 
3931 	ssk = __mptcp_nmpc_sk(msk);
3932 	if (IS_ERR(ssk))
3933 		return PTR_ERR(ssk);
3934 
3935 	mptcp_set_state(sk, TCP_SYN_SENT);
3936 	subflow = mptcp_subflow_ctx(ssk);
3937 #ifdef CONFIG_TCP_MD5SIG
3938 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3939 	 * TCP option space.
3940 	 */
3941 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3942 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3943 #endif
3944 	if (subflow->request_mptcp) {
3945 		if (mptcp_active_should_disable(sk))
3946 			mptcp_early_fallback(msk, subflow,
3947 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3948 		else if (mptcp_token_new_connect(ssk) < 0)
3949 			mptcp_early_fallback(msk, subflow,
3950 					     MPTCP_MIB_TOKENFALLBACKINIT);
3951 	}
3952 
3953 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3954 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3955 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3956 	if (likely(!__mptcp_check_fallback(msk)))
3957 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3958 
3959 	/* if reaching here via the fastopen/sendmsg path, the caller already
3960 	 * acquired the subflow socket lock, too.
3961 	 */
3962 	if (!msk->fastopening)
3963 		lock_sock(ssk);
3964 
3965 	/* the following mirrors closely a very small chunk of code from
3966 	 * __inet_stream_connect()
3967 	 */
3968 	if (ssk->sk_state != TCP_CLOSE)
3969 		goto out;
3970 
3971 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3972 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3973 		if (err)
3974 			goto out;
3975 	}
3976 
3977 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3978 	if (err < 0)
3979 		goto out;
3980 
3981 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3982 
3983 out:
3984 	if (!msk->fastopening)
3985 		release_sock(ssk);
3986 
3987 	/* on successful connect, the msk state will be moved to established by
3988 	 * subflow_finish_connect()
3989 	 */
3990 	if (unlikely(err)) {
3991 		/* avoid leaving a dangling token in an unconnected socket */
3992 		mptcp_token_destroy(msk);
3993 		mptcp_set_state(sk, TCP_CLOSE);
3994 		return err;
3995 	}
3996 
3997 	mptcp_copy_inaddrs(sk, ssk);
3998 	return 0;
3999 }
4000 
4001 static struct proto mptcp_prot = {
4002 	.name		= "MPTCP",
4003 	.owner		= THIS_MODULE,
4004 	.init		= mptcp_init_sock,
4005 	.connect	= mptcp_connect,
4006 	.disconnect	= mptcp_disconnect,
4007 	.close		= mptcp_close,
4008 	.setsockopt	= mptcp_setsockopt,
4009 	.getsockopt	= mptcp_getsockopt,
4010 	.shutdown	= mptcp_shutdown,
4011 	.destroy	= mptcp_destroy,
4012 	.sendmsg	= mptcp_sendmsg,
4013 	.ioctl		= mptcp_ioctl,
4014 	.recvmsg	= mptcp_recvmsg,
4015 	.release_cb	= mptcp_release_cb,
4016 	.hash		= mptcp_hash,
4017 	.unhash		= mptcp_unhash,
4018 	.get_port	= mptcp_get_port,
4019 	.stream_memory_free	= mptcp_stream_memory_free,
4020 	.sockets_allocated	= &mptcp_sockets_allocated,
4021 
4022 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
4023 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
4024 
4025 	.memory_pressure	= &tcp_memory_pressure,
4026 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
4027 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
4028 	.sysctl_mem	= sysctl_tcp_mem,
4029 	.obj_size	= sizeof(struct mptcp_sock),
4030 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
4031 	.no_autobind	= true,
4032 };
4033 
mptcp_bind(struct socket * sock,struct sockaddr_unsized * uaddr,int addr_len)4034 static int mptcp_bind(struct socket *sock, struct sockaddr_unsized *uaddr, int addr_len)
4035 {
4036 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4037 	struct sock *ssk, *sk = sock->sk;
4038 	int err = -EINVAL;
4039 
4040 	lock_sock(sk);
4041 	ssk = __mptcp_nmpc_sk(msk);
4042 	if (IS_ERR(ssk)) {
4043 		err = PTR_ERR(ssk);
4044 		goto unlock;
4045 	}
4046 
4047 	if (sk->sk_family == AF_INET)
4048 		err = inet_bind_sk(ssk, uaddr, addr_len);
4049 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4050 	else if (sk->sk_family == AF_INET6)
4051 		err = inet6_bind_sk(ssk, uaddr, addr_len);
4052 #endif
4053 	if (!err)
4054 		mptcp_copy_inaddrs(sk, ssk);
4055 
4056 unlock:
4057 	release_sock(sk);
4058 	return err;
4059 }
4060 
mptcp_listen(struct socket * sock,int backlog)4061 static int mptcp_listen(struct socket *sock, int backlog)
4062 {
4063 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4064 	struct sock *sk = sock->sk;
4065 	struct sock *ssk;
4066 	int err;
4067 
4068 	pr_debug("msk=%p\n", msk);
4069 
4070 	lock_sock(sk);
4071 
4072 	err = -EINVAL;
4073 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
4074 		goto unlock;
4075 
4076 	ssk = __mptcp_nmpc_sk(msk);
4077 	if (IS_ERR(ssk)) {
4078 		err = PTR_ERR(ssk);
4079 		goto unlock;
4080 	}
4081 
4082 	mptcp_set_state(sk, TCP_LISTEN);
4083 	sock_set_flag(sk, SOCK_RCU_FREE);
4084 
4085 	lock_sock(ssk);
4086 	err = __inet_listen_sk(ssk, backlog);
4087 	release_sock(ssk);
4088 	mptcp_set_state(sk, inet_sk_state_load(ssk));
4089 
4090 	if (!err) {
4091 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
4092 		mptcp_copy_inaddrs(sk, ssk);
4093 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
4094 	}
4095 
4096 unlock:
4097 	release_sock(sk);
4098 	return err;
4099 }
4100 
mptcp_graft_subflows(struct sock * sk)4101 static void mptcp_graft_subflows(struct sock *sk)
4102 {
4103 	struct mptcp_subflow_context *subflow;
4104 	struct mptcp_sock *msk = mptcp_sk(sk);
4105 
4106 	if (mem_cgroup_sockets_enabled) {
4107 		LIST_HEAD(join_list);
4108 
4109 		/* Subflows joining after __inet_accept() will get the
4110 		 * mem CG properly initialized at mptcp_finish_join() time,
4111 		 * but subflows pending in join_list need explicit
4112 		 * initialization before flushing `backlog_unaccounted`
4113 		 * or MPTCP can later unexpectedly observe unaccounted memory.
4114 		 */
4115 		mptcp_data_lock(sk);
4116 		list_splice_init(&msk->join_list, &join_list);
4117 		mptcp_data_unlock(sk);
4118 
4119 		__mptcp_flush_join_list(sk, &join_list);
4120 	}
4121 
4122 	mptcp_for_each_subflow(msk, subflow) {
4123 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4124 
4125 		lock_sock(ssk);
4126 
4127 		/* Set ssk->sk_socket of accept()ed flows to mptcp socket.
4128 		 * This is needed so NOSPACE flag can be set from tcp stack.
4129 		 */
4130 		if (!ssk->sk_socket)
4131 			mptcp_sock_graft(ssk, sk->sk_socket);
4132 
4133 		if (!mem_cgroup_sk_enabled(sk))
4134 			goto unlock;
4135 
4136 		__mptcp_inherit_cgrp_data(sk, ssk);
4137 		__mptcp_inherit_memcg(sk, ssk, GFP_KERNEL);
4138 
4139 unlock:
4140 		release_sock(ssk);
4141 	}
4142 
4143 	if (mem_cgroup_sk_enabled(sk)) {
4144 		gfp_t gfp = GFP_KERNEL | __GFP_NOFAIL;
4145 		int amt;
4146 
4147 		/* Account the backlog memory; prior accept() is aware of
4148 		 * fwd and rmem only.
4149 		 */
4150 		mptcp_data_lock(sk);
4151 		amt = sk_mem_pages(sk->sk_forward_alloc +
4152 				   msk->backlog_unaccounted +
4153 				   atomic_read(&sk->sk_rmem_alloc)) -
4154 		      sk_mem_pages(sk->sk_forward_alloc +
4155 				   atomic_read(&sk->sk_rmem_alloc));
4156 		msk->backlog_unaccounted = 0;
4157 		mptcp_data_unlock(sk);
4158 
4159 		if (amt)
4160 			mem_cgroup_sk_charge(sk, amt, gfp);
4161 	}
4162 }
4163 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)4164 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
4165 			       struct proto_accept_arg *arg)
4166 {
4167 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
4168 	struct sock *ssk, *newsk;
4169 
4170 	pr_debug("msk=%p\n", msk);
4171 
4172 	/* Buggy applications can call accept on socket states other then LISTEN
4173 	 * but no need to allocate the first subflow just to error out.
4174 	 */
4175 	ssk = READ_ONCE(msk->first);
4176 	if (!ssk)
4177 		return -EINVAL;
4178 
4179 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
4180 	newsk = inet_csk_accept(ssk, arg);
4181 	if (!newsk)
4182 		return arg->err;
4183 
4184 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
4185 	if (sk_is_mptcp(newsk)) {
4186 		struct mptcp_subflow_context *subflow;
4187 		struct sock *new_mptcp_sock;
4188 
4189 		subflow = mptcp_subflow_ctx(newsk);
4190 		new_mptcp_sock = subflow->conn;
4191 
4192 		/* is_mptcp should be false if subflow->conn is missing, see
4193 		 * subflow_syn_recv_sock()
4194 		 */
4195 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
4196 			tcp_sk(newsk)->is_mptcp = 0;
4197 			goto tcpfallback;
4198 		}
4199 
4200 		newsk = new_mptcp_sock;
4201 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
4202 
4203 		newsk->sk_kern_sock = arg->kern;
4204 		lock_sock(newsk);
4205 		__inet_accept(sock, newsock, newsk);
4206 
4207 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
4208 		msk = mptcp_sk(newsk);
4209 		msk->in_accept_queue = 0;
4210 
4211 		mptcp_graft_subflows(newsk);
4212 		mptcp_rps_record_subflows(msk);
4213 
4214 		/* Do late cleanup for the first subflow as necessary. Also
4215 		 * deal with bad peers not doing a complete shutdown.
4216 		 */
4217 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4218 			if (unlikely(list_is_singular(&msk->conn_list)))
4219 				mptcp_set_state(newsk, TCP_CLOSE);
4220 			mptcp_close_ssk(newsk, msk->first,
4221 					mptcp_subflow_ctx(msk->first));
4222 		}
4223 	} else {
4224 tcpfallback:
4225 		newsk->sk_kern_sock = arg->kern;
4226 		lock_sock(newsk);
4227 		__inet_accept(sock, newsock, newsk);
4228 		/* we are being invoked after accepting a non-mp-capable
4229 		 * flow: sk is a tcp_sk, not an mptcp one.
4230 		 *
4231 		 * Hand the socket over to tcp so all further socket ops
4232 		 * bypass mptcp.
4233 		 */
4234 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4235 			   mptcp_fallback_tcp_ops(newsock->sk));
4236 	}
4237 	release_sock(newsk);
4238 
4239 	return 0;
4240 }
4241 
mptcp_check_writeable(struct mptcp_sock * msk)4242 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4243 {
4244 	struct sock *sk = (struct sock *)msk;
4245 
4246 	if (__mptcp_stream_is_writeable(sk, 1))
4247 		return EPOLLOUT | EPOLLWRNORM;
4248 
4249 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4250 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4251 	if (__mptcp_stream_is_writeable(sk, 1))
4252 		return EPOLLOUT | EPOLLWRNORM;
4253 
4254 	return 0;
4255 }
4256 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4257 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4258 			   struct poll_table_struct *wait)
4259 {
4260 	struct sock *sk = sock->sk;
4261 	struct mptcp_sock *msk;
4262 	__poll_t mask = 0;
4263 	u8 shutdown;
4264 	int state;
4265 
4266 	msk = mptcp_sk(sk);
4267 	sock_poll_wait(file, sock, wait);
4268 
4269 	state = inet_sk_state_load(sk);
4270 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4271 	if (state == TCP_LISTEN) {
4272 		struct sock *ssk = READ_ONCE(msk->first);
4273 
4274 		if (WARN_ON_ONCE(!ssk))
4275 			return 0;
4276 
4277 		return inet_csk_listen_poll(ssk);
4278 	}
4279 
4280 	shutdown = READ_ONCE(sk->sk_shutdown);
4281 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4282 		mask |= EPOLLHUP;
4283 	if (shutdown & RCV_SHUTDOWN)
4284 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4285 
4286 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4287 		mask |= mptcp_check_readable(sk);
4288 		if (shutdown & SEND_SHUTDOWN)
4289 			mask |= EPOLLOUT | EPOLLWRNORM;
4290 		else
4291 			mask |= mptcp_check_writeable(msk);
4292 	} else if (state == TCP_SYN_SENT &&
4293 		   inet_test_bit(DEFER_CONNECT, sk)) {
4294 		/* cf tcp_poll() note about TFO */
4295 		mask |= EPOLLOUT | EPOLLWRNORM;
4296 	}
4297 
4298 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4299 	smp_rmb();
4300 	if (READ_ONCE(sk->sk_err))
4301 		mask |= EPOLLERR;
4302 
4303 	return mask;
4304 }
4305 
4306 static const struct proto_ops mptcp_stream_ops = {
4307 	.family		   = PF_INET,
4308 	.owner		   = THIS_MODULE,
4309 	.release	   = inet_release,
4310 	.bind		   = mptcp_bind,
4311 	.connect	   = inet_stream_connect,
4312 	.socketpair	   = sock_no_socketpair,
4313 	.accept		   = mptcp_stream_accept,
4314 	.getname	   = inet_getname,
4315 	.poll		   = mptcp_poll,
4316 	.ioctl		   = inet_ioctl,
4317 	.gettstamp	   = sock_gettstamp,
4318 	.listen		   = mptcp_listen,
4319 	.shutdown	   = inet_shutdown,
4320 	.setsockopt	   = sock_common_setsockopt,
4321 	.getsockopt	   = sock_common_getsockopt,
4322 	.sendmsg	   = inet_sendmsg,
4323 	.recvmsg	   = inet_recvmsg,
4324 	.mmap		   = sock_no_mmap,
4325 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4326 };
4327 
4328 static struct inet_protosw mptcp_protosw = {
4329 	.type		= SOCK_STREAM,
4330 	.protocol	= IPPROTO_MPTCP,
4331 	.prot		= &mptcp_prot,
4332 	.ops		= &mptcp_stream_ops,
4333 	.flags		= INET_PROTOSW_ICSK,
4334 };
4335 
mptcp_napi_poll(struct napi_struct * napi,int budget)4336 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4337 {
4338 	struct mptcp_delegated_action *delegated;
4339 	struct mptcp_subflow_context *subflow;
4340 	int work_done = 0;
4341 
4342 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4343 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4344 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4345 
4346 		bh_lock_sock_nested(ssk);
4347 		if (!sock_owned_by_user(ssk)) {
4348 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4349 		} else {
4350 			/* tcp_release_cb_override already processed
4351 			 * the action or will do at next release_sock().
4352 			 * In both case must dequeue the subflow here - on the same
4353 			 * CPU that scheduled it.
4354 			 */
4355 			smp_wmb();
4356 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4357 		}
4358 		bh_unlock_sock(ssk);
4359 		sock_put(ssk);
4360 
4361 		if (++work_done == budget)
4362 			return budget;
4363 	}
4364 
4365 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4366 	 * will not try accessing the NULL napi->dev ptr
4367 	 */
4368 	napi_complete_done(napi, 0);
4369 	return work_done;
4370 }
4371 
mptcp_proto_init(void)4372 void __init mptcp_proto_init(void)
4373 {
4374 	struct mptcp_delegated_action *delegated;
4375 	int cpu;
4376 
4377 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4378 
4379 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4380 		panic("Failed to allocate MPTCP pcpu counter\n");
4381 
4382 	mptcp_napi_dev = alloc_netdev_dummy(0);
4383 	if (!mptcp_napi_dev)
4384 		panic("Failed to allocate MPTCP dummy netdev\n");
4385 	for_each_possible_cpu(cpu) {
4386 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4387 		INIT_LIST_HEAD(&delegated->head);
4388 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4389 				  mptcp_napi_poll);
4390 		napi_enable(&delegated->napi);
4391 	}
4392 
4393 	mptcp_subflow_init();
4394 	mptcp_pm_init();
4395 	mptcp_sched_init();
4396 	mptcp_token_init();
4397 
4398 	if (proto_register(&mptcp_prot, 1) != 0)
4399 		panic("Failed to register MPTCP proto.\n");
4400 
4401 	inet_register_protosw(&mptcp_protosw);
4402 
4403 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4404 }
4405 
4406 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4407 static const struct proto_ops mptcp_v6_stream_ops = {
4408 	.family		   = PF_INET6,
4409 	.owner		   = THIS_MODULE,
4410 	.release	   = inet6_release,
4411 	.bind		   = mptcp_bind,
4412 	.connect	   = inet_stream_connect,
4413 	.socketpair	   = sock_no_socketpair,
4414 	.accept		   = mptcp_stream_accept,
4415 	.getname	   = inet6_getname,
4416 	.poll		   = mptcp_poll,
4417 	.ioctl		   = inet6_ioctl,
4418 	.gettstamp	   = sock_gettstamp,
4419 	.listen		   = mptcp_listen,
4420 	.shutdown	   = inet_shutdown,
4421 	.setsockopt	   = sock_common_setsockopt,
4422 	.getsockopt	   = sock_common_getsockopt,
4423 	.sendmsg	   = inet6_sendmsg,
4424 	.recvmsg	   = inet6_recvmsg,
4425 	.mmap		   = sock_no_mmap,
4426 #ifdef CONFIG_COMPAT
4427 	.compat_ioctl	   = inet6_compat_ioctl,
4428 #endif
4429 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4430 };
4431 
4432 static struct proto mptcp_v6_prot;
4433 
4434 static struct inet_protosw mptcp_v6_protosw = {
4435 	.type		= SOCK_STREAM,
4436 	.protocol	= IPPROTO_MPTCP,
4437 	.prot		= &mptcp_v6_prot,
4438 	.ops		= &mptcp_v6_stream_ops,
4439 	.flags		= INET_PROTOSW_ICSK,
4440 };
4441 
mptcp_proto_v6_init(void)4442 int __init mptcp_proto_v6_init(void)
4443 {
4444 	int err;
4445 
4446 	mptcp_v6_prot = mptcp_prot;
4447 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4448 	mptcp_v6_prot.slab = NULL;
4449 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4450 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4451 
4452 	err = proto_register(&mptcp_v6_prot, 1);
4453 	if (err)
4454 		return err;
4455 
4456 	err = inet6_register_protosw(&mptcp_v6_protosw);
4457 	if (err)
4458 		proto_unregister(&mptcp_v6_prot);
4459 
4460 	return err;
4461 }
4462 #endif
4463