xref: /linux/net/mptcp/protocol.c (revision 8e621c9a337555c914cf1664605edfaa6f839774)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Multipath TCP
3  *
4  * Copyright (c) 2017 - 2019, Intel Corporation.
5  */
6 
7 #define pr_fmt(fmt) "MPTCP: " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/netdevice.h>
12 #include <linux/sched/signal.h>
13 #include <linux/atomic.h>
14 #include <net/aligned_data.h>
15 #include <net/rps.h>
16 #include <net/sock.h>
17 #include <net/inet_common.h>
18 #include <net/inet_hashtables.h>
19 #include <net/protocol.h>
20 #include <net/tcp_states.h>
21 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
22 #include <net/transp_v6.h>
23 #endif
24 #include <net/mptcp.h>
25 #include <net/hotdata.h>
26 #include <net/xfrm.h>
27 #include <asm/ioctls.h>
28 #include "protocol.h"
29 #include "mib.h"
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/mptcp.h>
33 
34 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
35 struct mptcp6_sock {
36 	struct mptcp_sock msk;
37 	struct ipv6_pinfo np;
38 };
39 #endif
40 
41 enum {
42 	MPTCP_CMSG_TS = BIT(0),
43 	MPTCP_CMSG_INQ = BIT(1),
44 };
45 
46 static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
47 
48 static void __mptcp_destroy_sock(struct sock *sk);
49 static void mptcp_check_send_data_fin(struct sock *sk);
50 
51 DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions) = {
52 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
53 };
54 static struct net_device *mptcp_napi_dev;
55 
56 /* Returns end sequence number of the receiver's advertised window */
mptcp_wnd_end(const struct mptcp_sock * msk)57 static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
58 {
59 	return READ_ONCE(msk->wnd_end);
60 }
61 
mptcp_fallback_tcp_ops(const struct sock * sk)62 static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
63 {
64 	unsigned short family = READ_ONCE(sk->sk_family);
65 
66 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
67 	if (family == AF_INET6)
68 		return &inet6_stream_ops;
69 #endif
70 	WARN_ON_ONCE(family != AF_INET);
71 	return &inet_stream_ops;
72 }
73 
__mptcp_try_fallback(struct mptcp_sock * msk,int fb_mib)74 bool __mptcp_try_fallback(struct mptcp_sock *msk, int fb_mib)
75 {
76 	struct net *net = sock_net((struct sock *)msk);
77 
78 	if (__mptcp_check_fallback(msk))
79 		return true;
80 
81 	/* The caller possibly is not holding the msk socket lock, but
82 	 * in the fallback case only the current subflow is touching
83 	 * the OoO queue.
84 	 */
85 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
86 		return false;
87 
88 	spin_lock_bh(&msk->fallback_lock);
89 	if (!msk->allow_infinite_fallback) {
90 		spin_unlock_bh(&msk->fallback_lock);
91 		return false;
92 	}
93 
94 	msk->allow_subflows = false;
95 	set_bit(MPTCP_FALLBACK_DONE, &msk->flags);
96 	__MPTCP_INC_STATS(net, fb_mib);
97 	spin_unlock_bh(&msk->fallback_lock);
98 	return true;
99 }
100 
__mptcp_socket_create(struct mptcp_sock * msk)101 static int __mptcp_socket_create(struct mptcp_sock *msk)
102 {
103 	struct mptcp_subflow_context *subflow;
104 	struct sock *sk = (struct sock *)msk;
105 	struct socket *ssock;
106 	int err;
107 
108 	err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
109 	if (err)
110 		return err;
111 
112 	msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
113 	WRITE_ONCE(msk->first, ssock->sk);
114 	subflow = mptcp_subflow_ctx(ssock->sk);
115 	list_add(&subflow->node, &msk->conn_list);
116 	sock_hold(ssock->sk);
117 	subflow->request_mptcp = 1;
118 	subflow->subflow_id = msk->subflow_id++;
119 
120 	/* This is the first subflow, always with id 0 */
121 	WRITE_ONCE(subflow->local_id, 0);
122 	mptcp_sock_graft(msk->first, sk->sk_socket);
123 	iput(SOCK_INODE(ssock));
124 
125 	return 0;
126 }
127 
128 /* If the MPC handshake is not started, returns the first subflow,
129  * eventually allocating it.
130  */
__mptcp_nmpc_sk(struct mptcp_sock * msk)131 struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
132 {
133 	struct sock *sk = (struct sock *)msk;
134 	int ret;
135 
136 	if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
137 		return ERR_PTR(-EINVAL);
138 
139 	if (!msk->first) {
140 		ret = __mptcp_socket_create(msk);
141 		if (ret)
142 			return ERR_PTR(ret);
143 	}
144 
145 	return msk->first;
146 }
147 
mptcp_drop(struct sock * sk,struct sk_buff * skb)148 static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
149 {
150 	sk_drops_skbadd(sk, skb);
151 	__kfree_skb(skb);
152 }
153 
__mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta)154 static bool __mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
155 				 struct sk_buff *from, bool *fragstolen,
156 				 int *delta)
157 {
158 	int limit = READ_ONCE(sk->sk_rcvbuf);
159 
160 	if (unlikely(MPTCP_SKB_CB(to)->cant_coalesce) ||
161 	    MPTCP_SKB_CB(from)->offset ||
162 	    ((to->len + from->len) > (limit >> 3)) ||
163 	    !skb_try_coalesce(to, from, fragstolen, delta))
164 		return false;
165 
166 	pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
167 		 MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
168 		 to->len, MPTCP_SKB_CB(from)->end_seq);
169 	MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
170 	return true;
171 }
172 
mptcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from)173 static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
174 			       struct sk_buff *from)
175 {
176 	bool fragstolen;
177 	int delta;
178 
179 	if (!__mptcp_try_coalesce(sk, to, from, &fragstolen, &delta))
180 		return false;
181 
182 	/* note the fwd memory can reach a negative value after accounting
183 	 * for the delta, but the later skb free will restore a non
184 	 * negative one
185 	 */
186 	atomic_add(delta, &sk->sk_rmem_alloc);
187 	sk_mem_charge(sk, delta);
188 	kfree_skb_partial(from, fragstolen);
189 
190 	return true;
191 }
192 
mptcp_ooo_try_coalesce(struct mptcp_sock * msk,struct sk_buff * to,struct sk_buff * from)193 static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
194 				   struct sk_buff *from)
195 {
196 	if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
197 		return false;
198 
199 	return mptcp_try_coalesce((struct sock *)msk, to, from);
200 }
201 
202 /* "inspired" by tcp_rcvbuf_grow(), main difference:
203  * - mptcp does not maintain a msk-level window clamp
204  * - returns true when  the receive buffer is actually updated
205  */
mptcp_rcvbuf_grow(struct sock * sk,u32 newval)206 static bool mptcp_rcvbuf_grow(struct sock *sk, u32 newval)
207 {
208 	struct mptcp_sock *msk = mptcp_sk(sk);
209 	const struct net *net = sock_net(sk);
210 	u32 rcvwin, rcvbuf, cap, oldval;
211 	u64 grow;
212 
213 	oldval = msk->rcvq_space.space;
214 	msk->rcvq_space.space = newval;
215 	if (!READ_ONCE(net->ipv4.sysctl_tcp_moderate_rcvbuf) ||
216 	    (sk->sk_userlocks & SOCK_RCVBUF_LOCK))
217 		return false;
218 
219 	/* DRS is always one RTT late. */
220 	rcvwin = newval << 1;
221 
222 	/* slow start: allow the sender to double its rate. */
223 	grow = (u64)rcvwin * (newval - oldval);
224 	do_div(grow, oldval);
225 	rcvwin += grow << 1;
226 
227 	if (!RB_EMPTY_ROOT(&msk->out_of_order_queue))
228 		rcvwin += MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq - msk->ack_seq;
229 
230 	cap = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
231 
232 	rcvbuf = min_t(u32, mptcp_space_from_win(sk, rcvwin), cap);
233 	if (rcvbuf > sk->sk_rcvbuf) {
234 		WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
235 		return true;
236 	}
237 	return false;
238 }
239 
240 /* "inspired" by tcp_data_queue_ofo(), main differences:
241  * - use mptcp seqs
242  * - don't cope with sacks
243  */
mptcp_data_queue_ofo(struct mptcp_sock * msk,struct sk_buff * skb)244 static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
245 {
246 	struct sock *sk = (struct sock *)msk;
247 	struct rb_node **p, *parent;
248 	u64 seq, end_seq, max_seq;
249 	struct sk_buff *skb1;
250 
251 	seq = MPTCP_SKB_CB(skb)->map_seq;
252 	end_seq = MPTCP_SKB_CB(skb)->end_seq;
253 	max_seq = atomic64_read(&msk->rcv_wnd_sent);
254 
255 	pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
256 		 RB_EMPTY_ROOT(&msk->out_of_order_queue));
257 	if (after64(end_seq, max_seq)) {
258 		/* out of window */
259 		mptcp_drop(sk, skb);
260 		pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
261 			 (unsigned long long)end_seq - (unsigned long)max_seq,
262 			 (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
263 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
264 		return;
265 	}
266 
267 	p = &msk->out_of_order_queue.rb_node;
268 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
269 	if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
270 		rb_link_node(&skb->rbnode, NULL, p);
271 		rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
272 		msk->ooo_last_skb = skb;
273 		goto end;
274 	}
275 
276 	/* with 2 subflows, adding at end of ooo queue is quite likely
277 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
278 	 */
279 	if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
280 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
281 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
282 		return;
283 	}
284 
285 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
286 	if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
287 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
288 		parent = &msk->ooo_last_skb->rbnode;
289 		p = &parent->rb_right;
290 		goto insert;
291 	}
292 
293 	/* Find place to insert this segment. Handle overlaps on the way. */
294 	parent = NULL;
295 	while (*p) {
296 		parent = *p;
297 		skb1 = rb_to_skb(parent);
298 		if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
299 			p = &parent->rb_left;
300 			continue;
301 		}
302 		if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
303 			if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
304 				/* All the bits are present. Drop. */
305 				mptcp_drop(sk, skb);
306 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
307 				return;
308 			}
309 			if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
310 				/* partial overlap:
311 				 *     |     skb      |
312 				 *  |     skb1    |
313 				 * continue traversing
314 				 */
315 			} else {
316 				/* skb's seq == skb1's seq and skb covers skb1.
317 				 * Replace skb1 with skb.
318 				 */
319 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
320 						&msk->out_of_order_queue);
321 				mptcp_drop(sk, skb1);
322 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
323 				goto merge_right;
324 			}
325 		} else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
326 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
327 			return;
328 		}
329 		p = &parent->rb_right;
330 	}
331 
332 insert:
333 	/* Insert segment into RB tree. */
334 	rb_link_node(&skb->rbnode, parent, p);
335 	rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
336 
337 merge_right:
338 	/* Remove other segments covered by skb. */
339 	while ((skb1 = skb_rb_next(skb)) != NULL) {
340 		if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
341 			break;
342 		rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
343 		mptcp_drop(sk, skb1);
344 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
345 	}
346 	/* If there is no skb after us, we are the last_skb ! */
347 	if (!skb1)
348 		msk->ooo_last_skb = skb;
349 
350 end:
351 	skb_condense(skb);
352 	skb_set_owner_r(skb, sk);
353 	/* do not grow rcvbuf for not-yet-accepted or orphaned sockets. */
354 	if (sk->sk_socket)
355 		mptcp_rcvbuf_grow(sk, msk->rcvq_space.space);
356 }
357 
mptcp_init_skb(struct sock * ssk,struct sk_buff * skb,int offset,int copy_len)358 static void mptcp_init_skb(struct sock *ssk, struct sk_buff *skb, int offset,
359 			   int copy_len)
360 {
361 	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
362 	bool has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
363 
364 	/* the skb map_seq accounts for the skb offset:
365 	 * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
366 	 * value
367 	 */
368 	MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
369 	MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
370 	MPTCP_SKB_CB(skb)->offset = offset;
371 	MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
372 	MPTCP_SKB_CB(skb)->cant_coalesce = 0;
373 
374 	__skb_unlink(skb, &ssk->sk_receive_queue);
375 
376 	skb_ext_reset(skb);
377 	skb_dst_drop(skb);
378 }
379 
__mptcp_move_skb(struct sock * sk,struct sk_buff * skb)380 static bool __mptcp_move_skb(struct sock *sk, struct sk_buff *skb)
381 {
382 	u64 copy_len = MPTCP_SKB_CB(skb)->end_seq - MPTCP_SKB_CB(skb)->map_seq;
383 	struct mptcp_sock *msk = mptcp_sk(sk);
384 	struct sk_buff *tail;
385 
386 	/* try to fetch required memory from subflow */
387 	if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
388 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
389 		goto drop;
390 	}
391 
392 	if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
393 		/* in sequence */
394 		msk->bytes_received += copy_len;
395 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
396 		tail = skb_peek_tail(&sk->sk_receive_queue);
397 		if (tail && mptcp_try_coalesce(sk, tail, skb))
398 			return true;
399 
400 		skb_set_owner_r(skb, sk);
401 		__skb_queue_tail(&sk->sk_receive_queue, skb);
402 		return true;
403 	} else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
404 		mptcp_data_queue_ofo(msk, skb);
405 		return false;
406 	}
407 
408 	/* old data, keep it simple and drop the whole pkt, sender
409 	 * will retransmit as needed, if needed.
410 	 */
411 	MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
412 drop:
413 	mptcp_drop(sk, skb);
414 	return false;
415 }
416 
mptcp_stop_rtx_timer(struct sock * sk)417 static void mptcp_stop_rtx_timer(struct sock *sk)
418 {
419 	struct inet_connection_sock *icsk = inet_csk(sk);
420 
421 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
422 	mptcp_sk(sk)->timer_ival = 0;
423 }
424 
mptcp_close_wake_up(struct sock * sk)425 static void mptcp_close_wake_up(struct sock *sk)
426 {
427 	if (sock_flag(sk, SOCK_DEAD))
428 		return;
429 
430 	sk->sk_state_change(sk);
431 	if (sk->sk_shutdown == SHUTDOWN_MASK ||
432 	    sk->sk_state == TCP_CLOSE)
433 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
434 	else
435 		sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
436 }
437 
mptcp_shutdown_subflows(struct mptcp_sock * msk)438 static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
439 {
440 	struct mptcp_subflow_context *subflow;
441 
442 	mptcp_for_each_subflow(msk, subflow) {
443 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
444 		bool slow;
445 
446 		slow = lock_sock_fast(ssk);
447 		tcp_shutdown(ssk, SEND_SHUTDOWN);
448 		unlock_sock_fast(ssk, slow);
449 	}
450 }
451 
452 /* called under the msk socket lock */
mptcp_pending_data_fin_ack(struct sock * sk)453 static bool mptcp_pending_data_fin_ack(struct sock *sk)
454 {
455 	struct mptcp_sock *msk = mptcp_sk(sk);
456 
457 	return ((1 << sk->sk_state) &
458 		(TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
459 	       msk->write_seq == READ_ONCE(msk->snd_una);
460 }
461 
mptcp_check_data_fin_ack(struct sock * sk)462 static void mptcp_check_data_fin_ack(struct sock *sk)
463 {
464 	struct mptcp_sock *msk = mptcp_sk(sk);
465 
466 	/* Look for an acknowledged DATA_FIN */
467 	if (mptcp_pending_data_fin_ack(sk)) {
468 		WRITE_ONCE(msk->snd_data_fin_enable, 0);
469 
470 		switch (sk->sk_state) {
471 		case TCP_FIN_WAIT1:
472 			mptcp_set_state(sk, TCP_FIN_WAIT2);
473 			break;
474 		case TCP_CLOSING:
475 		case TCP_LAST_ACK:
476 			mptcp_shutdown_subflows(msk);
477 			mptcp_set_state(sk, TCP_CLOSE);
478 			break;
479 		}
480 
481 		mptcp_close_wake_up(sk);
482 	}
483 }
484 
485 /* can be called with no lock acquired */
mptcp_pending_data_fin(struct sock * sk,u64 * seq)486 static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
487 {
488 	struct mptcp_sock *msk = mptcp_sk(sk);
489 
490 	if (READ_ONCE(msk->rcv_data_fin) &&
491 	    ((1 << inet_sk_state_load(sk)) &
492 	     (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
493 		u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
494 
495 		if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
496 			if (seq)
497 				*seq = rcv_data_fin_seq;
498 
499 			return true;
500 		}
501 	}
502 
503 	return false;
504 }
505 
mptcp_set_datafin_timeout(struct sock * sk)506 static void mptcp_set_datafin_timeout(struct sock *sk)
507 {
508 	struct inet_connection_sock *icsk = inet_csk(sk);
509 	u32 retransmits;
510 
511 	retransmits = min_t(u32, icsk->icsk_retransmits,
512 			    ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
513 
514 	mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
515 }
516 
__mptcp_set_timeout(struct sock * sk,long tout)517 static void __mptcp_set_timeout(struct sock *sk, long tout)
518 {
519 	mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
520 }
521 
mptcp_timeout_from_subflow(const struct mptcp_subflow_context * subflow)522 static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
523 {
524 	const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
525 
526 	return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
527 	       icsk_timeout(inet_csk(ssk)) - jiffies : 0;
528 }
529 
mptcp_set_timeout(struct sock * sk)530 static void mptcp_set_timeout(struct sock *sk)
531 {
532 	struct mptcp_subflow_context *subflow;
533 	long tout = 0;
534 
535 	mptcp_for_each_subflow(mptcp_sk(sk), subflow)
536 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
537 	__mptcp_set_timeout(sk, tout);
538 }
539 
tcp_can_send_ack(const struct sock * ssk)540 static inline bool tcp_can_send_ack(const struct sock *ssk)
541 {
542 	return !((1 << inet_sk_state_load(ssk)) &
543 	       (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
544 }
545 
__mptcp_subflow_send_ack(struct sock * ssk)546 void __mptcp_subflow_send_ack(struct sock *ssk)
547 {
548 	if (tcp_can_send_ack(ssk))
549 		tcp_send_ack(ssk);
550 }
551 
mptcp_subflow_send_ack(struct sock * ssk)552 static void mptcp_subflow_send_ack(struct sock *ssk)
553 {
554 	bool slow;
555 
556 	slow = lock_sock_fast(ssk);
557 	__mptcp_subflow_send_ack(ssk);
558 	unlock_sock_fast(ssk, slow);
559 }
560 
mptcp_send_ack(struct mptcp_sock * msk)561 static void mptcp_send_ack(struct mptcp_sock *msk)
562 {
563 	struct mptcp_subflow_context *subflow;
564 
565 	mptcp_for_each_subflow(msk, subflow)
566 		mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
567 }
568 
mptcp_subflow_cleanup_rbuf(struct sock * ssk,int copied)569 static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
570 {
571 	bool slow;
572 
573 	slow = lock_sock_fast(ssk);
574 	if (tcp_can_send_ack(ssk))
575 		tcp_cleanup_rbuf(ssk, copied);
576 	unlock_sock_fast(ssk, slow);
577 }
578 
mptcp_subflow_could_cleanup(const struct sock * ssk,bool rx_empty)579 static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
580 {
581 	const struct inet_connection_sock *icsk = inet_csk(ssk);
582 	u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
583 	const struct tcp_sock *tp = tcp_sk(ssk);
584 
585 	return (ack_pending & ICSK_ACK_SCHED) &&
586 		((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
587 		  READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
588 		 (rx_empty && ack_pending &
589 			      (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
590 }
591 
mptcp_cleanup_rbuf(struct mptcp_sock * msk,int copied)592 static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
593 {
594 	int old_space = READ_ONCE(msk->old_wspace);
595 	struct mptcp_subflow_context *subflow;
596 	struct sock *sk = (struct sock *)msk;
597 	int space =  __mptcp_space(sk);
598 	bool cleanup, rx_empty;
599 
600 	cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
601 	rx_empty = !sk_rmem_alloc_get(sk) && copied;
602 
603 	mptcp_for_each_subflow(msk, subflow) {
604 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
605 
606 		if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
607 			mptcp_subflow_cleanup_rbuf(ssk, copied);
608 	}
609 }
610 
mptcp_check_data_fin(struct sock * sk)611 static void mptcp_check_data_fin(struct sock *sk)
612 {
613 	struct mptcp_sock *msk = mptcp_sk(sk);
614 	u64 rcv_data_fin_seq;
615 
616 	/* Need to ack a DATA_FIN received from a peer while this side
617 	 * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
618 	 * msk->rcv_data_fin was set when parsing the incoming options
619 	 * at the subflow level and the msk lock was not held, so this
620 	 * is the first opportunity to act on the DATA_FIN and change
621 	 * the msk state.
622 	 *
623 	 * If we are caught up to the sequence number of the incoming
624 	 * DATA_FIN, send the DATA_ACK now and do state transition.  If
625 	 * not caught up, do nothing and let the recv code send DATA_ACK
626 	 * when catching up.
627 	 */
628 
629 	if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
630 		WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
631 		WRITE_ONCE(msk->rcv_data_fin, 0);
632 
633 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
634 		smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
635 
636 		switch (sk->sk_state) {
637 		case TCP_ESTABLISHED:
638 			mptcp_set_state(sk, TCP_CLOSE_WAIT);
639 			break;
640 		case TCP_FIN_WAIT1:
641 			mptcp_set_state(sk, TCP_CLOSING);
642 			break;
643 		case TCP_FIN_WAIT2:
644 			mptcp_shutdown_subflows(msk);
645 			mptcp_set_state(sk, TCP_CLOSE);
646 			break;
647 		default:
648 			/* Other states not expected */
649 			WARN_ON_ONCE(1);
650 			break;
651 		}
652 
653 		if (!__mptcp_check_fallback(msk))
654 			mptcp_send_ack(msk);
655 		mptcp_close_wake_up(sk);
656 	}
657 }
658 
mptcp_dss_corruption(struct mptcp_sock * msk,struct sock * ssk)659 static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
660 {
661 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_DSSCORRUPTIONFALLBACK)) {
662 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
663 		mptcp_subflow_reset(ssk);
664 	}
665 }
666 
__mptcp_move_skbs_from_subflow(struct mptcp_sock * msk,struct sock * ssk)667 static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
668 					   struct sock *ssk)
669 {
670 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
671 	struct sock *sk = (struct sock *)msk;
672 	bool more_data_avail;
673 	struct tcp_sock *tp;
674 	bool ret = false;
675 
676 	pr_debug("msk=%p ssk=%p\n", msk, ssk);
677 	tp = tcp_sk(ssk);
678 	do {
679 		u32 map_remaining, offset;
680 		u32 seq = tp->copied_seq;
681 		struct sk_buff *skb;
682 		bool fin;
683 
684 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
685 			break;
686 
687 		/* try to move as much data as available */
688 		map_remaining = subflow->map_data_len -
689 				mptcp_subflow_get_map_offset(subflow);
690 
691 		skb = skb_peek(&ssk->sk_receive_queue);
692 		if (unlikely(!skb))
693 			break;
694 
695 		if (__mptcp_check_fallback(msk)) {
696 			/* Under fallback skbs have no MPTCP extension and TCP could
697 			 * collapse them between the dummy map creation and the
698 			 * current dequeue. Be sure to adjust the map size.
699 			 */
700 			map_remaining = skb->len;
701 			subflow->map_data_len = skb->len;
702 		}
703 
704 		offset = seq - TCP_SKB_CB(skb)->seq;
705 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
706 		if (fin)
707 			seq++;
708 
709 		if (offset < skb->len) {
710 			size_t len = skb->len - offset;
711 
712 			mptcp_init_skb(ssk, skb, offset, len);
713 			skb_orphan(skb);
714 			ret = __mptcp_move_skb(sk, skb) || ret;
715 			seq += len;
716 
717 			if (unlikely(map_remaining < len)) {
718 				DEBUG_NET_WARN_ON_ONCE(1);
719 				mptcp_dss_corruption(msk, ssk);
720 			}
721 		} else {
722 			if (unlikely(!fin)) {
723 				DEBUG_NET_WARN_ON_ONCE(1);
724 				mptcp_dss_corruption(msk, ssk);
725 			}
726 
727 			sk_eat_skb(ssk, skb);
728 		}
729 
730 		WRITE_ONCE(tp->copied_seq, seq);
731 		more_data_avail = mptcp_subflow_data_available(ssk);
732 
733 	} while (more_data_avail);
734 
735 	if (ret)
736 		msk->last_data_recv = tcp_jiffies32;
737 	return ret;
738 }
739 
__mptcp_ofo_queue(struct mptcp_sock * msk)740 static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
741 {
742 	struct sock *sk = (struct sock *)msk;
743 	struct sk_buff *skb, *tail;
744 	bool moved = false;
745 	struct rb_node *p;
746 	u64 end_seq;
747 
748 	p = rb_first(&msk->out_of_order_queue);
749 	pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
750 	while (p) {
751 		skb = rb_to_skb(p);
752 		if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
753 			break;
754 
755 		p = rb_next(p);
756 		rb_erase(&skb->rbnode, &msk->out_of_order_queue);
757 
758 		if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
759 				      msk->ack_seq))) {
760 			mptcp_drop(sk, skb);
761 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
762 			continue;
763 		}
764 
765 		end_seq = MPTCP_SKB_CB(skb)->end_seq;
766 		tail = skb_peek_tail(&sk->sk_receive_queue);
767 		if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
768 			int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
769 
770 			/* skip overlapping data, if any */
771 			pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
772 				 MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
773 				 delta);
774 			MPTCP_SKB_CB(skb)->offset += delta;
775 			MPTCP_SKB_CB(skb)->map_seq += delta;
776 			__skb_queue_tail(&sk->sk_receive_queue, skb);
777 		}
778 		msk->bytes_received += end_seq - msk->ack_seq;
779 		WRITE_ONCE(msk->ack_seq, end_seq);
780 		moved = true;
781 	}
782 	return moved;
783 }
784 
__mptcp_subflow_error_report(struct sock * sk,struct sock * ssk)785 static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
786 {
787 	int err = sock_error(ssk);
788 	int ssk_state;
789 
790 	if (!err)
791 		return false;
792 
793 	/* only propagate errors on fallen-back sockets or
794 	 * on MPC connect
795 	 */
796 	if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
797 		return false;
798 
799 	/* We need to propagate only transition to CLOSE state.
800 	 * Orphaned socket will see such state change via
801 	 * subflow_sched_work_if_closed() and that path will properly
802 	 * destroy the msk as needed.
803 	 */
804 	ssk_state = inet_sk_state_load(ssk);
805 	if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
806 		mptcp_set_state(sk, ssk_state);
807 	WRITE_ONCE(sk->sk_err, -err);
808 
809 	/* This barrier is coupled with smp_rmb() in mptcp_poll() */
810 	smp_wmb();
811 	sk_error_report(sk);
812 	return true;
813 }
814 
__mptcp_error_report(struct sock * sk)815 void __mptcp_error_report(struct sock *sk)
816 {
817 	struct mptcp_subflow_context *subflow;
818 	struct mptcp_sock *msk = mptcp_sk(sk);
819 
820 	mptcp_for_each_subflow(msk, subflow)
821 		if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
822 			break;
823 }
824 
825 /* In most cases we will be able to lock the mptcp socket.  If its already
826  * owned, we need to defer to the work queue to avoid ABBA deadlock.
827  */
move_skbs_to_msk(struct mptcp_sock * msk,struct sock * ssk)828 static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
829 {
830 	struct sock *sk = (struct sock *)msk;
831 	bool moved;
832 
833 	moved = __mptcp_move_skbs_from_subflow(msk, ssk);
834 	__mptcp_ofo_queue(msk);
835 	if (unlikely(ssk->sk_err))
836 		__mptcp_subflow_error_report(sk, ssk);
837 
838 	/* If the moves have caught up with the DATA_FIN sequence number
839 	 * it's time to ack the DATA_FIN and change socket state, but
840 	 * this is not a good place to change state. Let the workqueue
841 	 * do it.
842 	 */
843 	if (mptcp_pending_data_fin(sk, NULL))
844 		mptcp_schedule_work(sk);
845 	return moved;
846 }
847 
__mptcp_data_ready(struct sock * sk,struct sock * ssk)848 static void __mptcp_data_ready(struct sock *sk, struct sock *ssk)
849 {
850 	struct mptcp_sock *msk = mptcp_sk(sk);
851 
852 	/* Wake-up the reader only for in-sequence data */
853 	if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
854 		sk->sk_data_ready(sk);
855 }
856 
mptcp_data_ready(struct sock * sk,struct sock * ssk)857 void mptcp_data_ready(struct sock *sk, struct sock *ssk)
858 {
859 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
860 
861 	/* The peer can send data while we are shutting down this
862 	 * subflow at msk destruction time, but we must avoid enqueuing
863 	 * more data to the msk receive queue
864 	 */
865 	if (unlikely(subflow->disposable))
866 		return;
867 
868 	mptcp_data_lock(sk);
869 	if (!sock_owned_by_user(sk))
870 		__mptcp_data_ready(sk, ssk);
871 	else
872 		__set_bit(MPTCP_DEQUEUE, &mptcp_sk(sk)->cb_flags);
873 	mptcp_data_unlock(sk);
874 }
875 
mptcp_subflow_joined(struct mptcp_sock * msk,struct sock * ssk)876 static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
877 {
878 	mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
879 	msk->allow_infinite_fallback = false;
880 	mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
881 }
882 
__mptcp_finish_join(struct mptcp_sock * msk,struct sock * ssk)883 static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
884 {
885 	struct sock *sk = (struct sock *)msk;
886 
887 	if (sk->sk_state != TCP_ESTABLISHED)
888 		return false;
889 
890 	spin_lock_bh(&msk->fallback_lock);
891 	if (!msk->allow_subflows) {
892 		spin_unlock_bh(&msk->fallback_lock);
893 		return false;
894 	}
895 	mptcp_subflow_joined(msk, ssk);
896 	spin_unlock_bh(&msk->fallback_lock);
897 
898 	/* attach to msk socket only after we are sure we will deal with it
899 	 * at close time
900 	 */
901 	if (sk->sk_socket && !ssk->sk_socket)
902 		mptcp_sock_graft(ssk, sk->sk_socket);
903 
904 	mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
905 	mptcp_sockopt_sync_locked(msk, ssk);
906 	mptcp_stop_tout_timer(sk);
907 	__mptcp_propagate_sndbuf(sk, ssk);
908 	return true;
909 }
910 
__mptcp_flush_join_list(struct sock * sk,struct list_head * join_list)911 static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
912 {
913 	struct mptcp_subflow_context *tmp, *subflow;
914 	struct mptcp_sock *msk = mptcp_sk(sk);
915 
916 	list_for_each_entry_safe(subflow, tmp, join_list, node) {
917 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
918 		bool slow = lock_sock_fast(ssk);
919 
920 		list_move_tail(&subflow->node, &msk->conn_list);
921 		if (!__mptcp_finish_join(msk, ssk))
922 			mptcp_subflow_reset(ssk);
923 		unlock_sock_fast(ssk, slow);
924 	}
925 }
926 
mptcp_rtx_timer_pending(struct sock * sk)927 static bool mptcp_rtx_timer_pending(struct sock *sk)
928 {
929 	return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
930 }
931 
mptcp_reset_rtx_timer(struct sock * sk)932 static void mptcp_reset_rtx_timer(struct sock *sk)
933 {
934 	struct inet_connection_sock *icsk = inet_csk(sk);
935 	unsigned long tout;
936 
937 	/* prevent rescheduling on close */
938 	if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
939 		return;
940 
941 	tout = mptcp_sk(sk)->timer_ival;
942 	sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
943 }
944 
mptcp_schedule_work(struct sock * sk)945 bool mptcp_schedule_work(struct sock *sk)
946 {
947 	if (inet_sk_state_load(sk) == TCP_CLOSE)
948 		return false;
949 
950 	/* Get a reference on this socket, mptcp_worker() will release it.
951 	 * As mptcp_worker() might complete before us, we can not avoid
952 	 * a sock_hold()/sock_put() if schedule_work() returns false.
953 	 */
954 	sock_hold(sk);
955 
956 	if (schedule_work(&mptcp_sk(sk)->work))
957 		return true;
958 
959 	sock_put(sk);
960 	return false;
961 }
962 
mptcp_skb_can_collapse_to(u64 write_seq,const struct sk_buff * skb,const struct mptcp_ext * mpext)963 static bool mptcp_skb_can_collapse_to(u64 write_seq,
964 				      const struct sk_buff *skb,
965 				      const struct mptcp_ext *mpext)
966 {
967 	if (!tcp_skb_can_collapse_to(skb))
968 		return false;
969 
970 	/* can collapse only if MPTCP level sequence is in order and this
971 	 * mapping has not been xmitted yet
972 	 */
973 	return mpext && mpext->data_seq + mpext->data_len == write_seq &&
974 	       !mpext->frozen;
975 }
976 
977 /* we can append data to the given data frag if:
978  * - there is space available in the backing page_frag
979  * - the data frag tail matches the current page_frag free offset
980  * - the data frag end sequence number matches the current write seq
981  */
mptcp_frag_can_collapse_to(const struct mptcp_sock * msk,const struct page_frag * pfrag,const struct mptcp_data_frag * df)982 static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
983 				       const struct page_frag *pfrag,
984 				       const struct mptcp_data_frag *df)
985 {
986 	return df && pfrag->page == df->page &&
987 		pfrag->size - pfrag->offset > 0 &&
988 		pfrag->offset == (df->offset + df->data_len) &&
989 		df->data_seq + df->data_len == msk->write_seq;
990 }
991 
dfrag_uncharge(struct sock * sk,int len)992 static void dfrag_uncharge(struct sock *sk, int len)
993 {
994 	sk_mem_uncharge(sk, len);
995 	sk_wmem_queued_add(sk, -len);
996 }
997 
dfrag_clear(struct sock * sk,struct mptcp_data_frag * dfrag)998 static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
999 {
1000 	int len = dfrag->data_len + dfrag->overhead;
1001 
1002 	list_del(&dfrag->list);
1003 	dfrag_uncharge(sk, len);
1004 	put_page(dfrag->page);
1005 }
1006 
1007 /* called under both the msk socket lock and the data lock */
__mptcp_clean_una(struct sock * sk)1008 static void __mptcp_clean_una(struct sock *sk)
1009 {
1010 	struct mptcp_sock *msk = mptcp_sk(sk);
1011 	struct mptcp_data_frag *dtmp, *dfrag;
1012 	u64 snd_una;
1013 
1014 	snd_una = msk->snd_una;
1015 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
1016 		if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
1017 			break;
1018 
1019 		if (unlikely(dfrag == msk->first_pending)) {
1020 			/* in recovery mode can see ack after the current snd head */
1021 			if (WARN_ON_ONCE(!msk->recovery))
1022 				break;
1023 
1024 			msk->first_pending = mptcp_send_next(sk);
1025 		}
1026 
1027 		dfrag_clear(sk, dfrag);
1028 	}
1029 
1030 	dfrag = mptcp_rtx_head(sk);
1031 	if (dfrag && after64(snd_una, dfrag->data_seq)) {
1032 		u64 delta = snd_una - dfrag->data_seq;
1033 
1034 		/* prevent wrap around in recovery mode */
1035 		if (unlikely(delta > dfrag->already_sent)) {
1036 			if (WARN_ON_ONCE(!msk->recovery))
1037 				goto out;
1038 			if (WARN_ON_ONCE(delta > dfrag->data_len))
1039 				goto out;
1040 			dfrag->already_sent += delta - dfrag->already_sent;
1041 		}
1042 
1043 		dfrag->data_seq += delta;
1044 		dfrag->offset += delta;
1045 		dfrag->data_len -= delta;
1046 		dfrag->already_sent -= delta;
1047 
1048 		dfrag_uncharge(sk, delta);
1049 	}
1050 
1051 	/* all retransmitted data acked, recovery completed */
1052 	if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
1053 		msk->recovery = false;
1054 
1055 out:
1056 	if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
1057 		if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
1058 			mptcp_stop_rtx_timer(sk);
1059 	} else {
1060 		mptcp_reset_rtx_timer(sk);
1061 	}
1062 
1063 	if (mptcp_pending_data_fin_ack(sk))
1064 		mptcp_schedule_work(sk);
1065 }
1066 
__mptcp_clean_una_wakeup(struct sock * sk)1067 static void __mptcp_clean_una_wakeup(struct sock *sk)
1068 {
1069 	lockdep_assert_held_once(&sk->sk_lock.slock);
1070 
1071 	__mptcp_clean_una(sk);
1072 	mptcp_write_space(sk);
1073 }
1074 
mptcp_clean_una_wakeup(struct sock * sk)1075 static void mptcp_clean_una_wakeup(struct sock *sk)
1076 {
1077 	mptcp_data_lock(sk);
1078 	__mptcp_clean_una_wakeup(sk);
1079 	mptcp_data_unlock(sk);
1080 }
1081 
mptcp_enter_memory_pressure(struct sock * sk)1082 static void mptcp_enter_memory_pressure(struct sock *sk)
1083 {
1084 	struct mptcp_subflow_context *subflow;
1085 	struct mptcp_sock *msk = mptcp_sk(sk);
1086 	bool first = true;
1087 
1088 	mptcp_for_each_subflow(msk, subflow) {
1089 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1090 
1091 		if (first)
1092 			tcp_enter_memory_pressure(ssk);
1093 		sk_stream_moderate_sndbuf(ssk);
1094 
1095 		first = false;
1096 	}
1097 	__mptcp_sync_sndbuf(sk);
1098 }
1099 
1100 /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
1101  * data
1102  */
mptcp_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1103 static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1104 {
1105 	if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
1106 					pfrag, sk->sk_allocation)))
1107 		return true;
1108 
1109 	mptcp_enter_memory_pressure(sk);
1110 	return false;
1111 }
1112 
1113 static struct mptcp_data_frag *
mptcp_carve_data_frag(const struct mptcp_sock * msk,struct page_frag * pfrag,int orig_offset)1114 mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
1115 		      int orig_offset)
1116 {
1117 	int offset = ALIGN(orig_offset, sizeof(long));
1118 	struct mptcp_data_frag *dfrag;
1119 
1120 	dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
1121 	dfrag->data_len = 0;
1122 	dfrag->data_seq = msk->write_seq;
1123 	dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
1124 	dfrag->offset = offset + sizeof(struct mptcp_data_frag);
1125 	dfrag->already_sent = 0;
1126 	dfrag->page = pfrag->page;
1127 
1128 	return dfrag;
1129 }
1130 
1131 struct mptcp_sendmsg_info {
1132 	int mss_now;
1133 	int size_goal;
1134 	u16 limit;
1135 	u16 sent;
1136 	unsigned int flags;
1137 	bool data_lock_held;
1138 };
1139 
mptcp_check_allowed_size(const struct mptcp_sock * msk,struct sock * ssk,u64 data_seq,int avail_size)1140 static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
1141 				    u64 data_seq, int avail_size)
1142 {
1143 	u64 window_end = mptcp_wnd_end(msk);
1144 	u64 mptcp_snd_wnd;
1145 
1146 	if (__mptcp_check_fallback(msk))
1147 		return avail_size;
1148 
1149 	mptcp_snd_wnd = window_end - data_seq;
1150 	avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
1151 
1152 	if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
1153 		tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
1154 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
1155 	}
1156 
1157 	return avail_size;
1158 }
1159 
__mptcp_add_ext(struct sk_buff * skb,gfp_t gfp)1160 static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
1161 {
1162 	struct skb_ext *mpext = __skb_ext_alloc(gfp);
1163 
1164 	if (!mpext)
1165 		return false;
1166 	__skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
1167 	return true;
1168 }
1169 
__mptcp_do_alloc_tx_skb(struct sock * sk,gfp_t gfp)1170 static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
1171 {
1172 	struct sk_buff *skb;
1173 
1174 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
1175 	if (likely(skb)) {
1176 		if (likely(__mptcp_add_ext(skb, gfp))) {
1177 			skb_reserve(skb, MAX_TCP_HEADER);
1178 			skb->ip_summed = CHECKSUM_PARTIAL;
1179 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
1180 			return skb;
1181 		}
1182 		__kfree_skb(skb);
1183 	} else {
1184 		mptcp_enter_memory_pressure(sk);
1185 	}
1186 	return NULL;
1187 }
1188 
__mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,gfp_t gfp)1189 static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
1190 {
1191 	struct sk_buff *skb;
1192 
1193 	skb = __mptcp_do_alloc_tx_skb(sk, gfp);
1194 	if (!skb)
1195 		return NULL;
1196 
1197 	if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
1198 		tcp_skb_entail(ssk, skb);
1199 		return skb;
1200 	}
1201 	tcp_skb_tsorted_anchor_cleanup(skb);
1202 	kfree_skb(skb);
1203 	return NULL;
1204 }
1205 
mptcp_alloc_tx_skb(struct sock * sk,struct sock * ssk,bool data_lock_held)1206 static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
1207 {
1208 	gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
1209 
1210 	return __mptcp_alloc_tx_skb(sk, ssk, gfp);
1211 }
1212 
1213 /* note: this always recompute the csum on the whole skb, even
1214  * if we just appended a single frag. More status info needed
1215  */
mptcp_update_data_checksum(struct sk_buff * skb,int added)1216 static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
1217 {
1218 	struct mptcp_ext *mpext = mptcp_get_ext(skb);
1219 	__wsum csum = ~csum_unfold(mpext->csum);
1220 	int offset = skb->len - added;
1221 
1222 	mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
1223 }
1224 
mptcp_update_infinite_map(struct mptcp_sock * msk,struct sock * ssk,struct mptcp_ext * mpext)1225 static void mptcp_update_infinite_map(struct mptcp_sock *msk,
1226 				      struct sock *ssk,
1227 				      struct mptcp_ext *mpext)
1228 {
1229 	if (!mpext)
1230 		return;
1231 
1232 	mpext->infinite_map = 1;
1233 	mpext->data_len = 0;
1234 
1235 	if (!mptcp_try_fallback(ssk, MPTCP_MIB_INFINITEMAPTX)) {
1236 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_FALLBACKFAILED);
1237 		mptcp_subflow_reset(ssk);
1238 		return;
1239 	}
1240 
1241 	mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
1242 }
1243 
1244 #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
1245 
mptcp_sendmsg_frag(struct sock * sk,struct sock * ssk,struct mptcp_data_frag * dfrag,struct mptcp_sendmsg_info * info)1246 static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
1247 			      struct mptcp_data_frag *dfrag,
1248 			      struct mptcp_sendmsg_info *info)
1249 {
1250 	u64 data_seq = dfrag->data_seq + info->sent;
1251 	int offset = dfrag->offset + info->sent;
1252 	struct mptcp_sock *msk = mptcp_sk(sk);
1253 	bool zero_window_probe = false;
1254 	struct mptcp_ext *mpext = NULL;
1255 	bool can_coalesce = false;
1256 	bool reuse_skb = true;
1257 	struct sk_buff *skb;
1258 	size_t copy;
1259 	int i;
1260 
1261 	pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
1262 		 msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
1263 
1264 	if (WARN_ON_ONCE(info->sent > info->limit ||
1265 			 info->limit > dfrag->data_len))
1266 		return 0;
1267 
1268 	if (unlikely(!__tcp_can_send(ssk)))
1269 		return -EAGAIN;
1270 
1271 	/* compute send limit */
1272 	if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
1273 		ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
1274 	info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
1275 	copy = info->size_goal;
1276 
1277 	skb = tcp_write_queue_tail(ssk);
1278 	if (skb && copy > skb->len) {
1279 		/* Limit the write to the size available in the
1280 		 * current skb, if any, so that we create at most a new skb.
1281 		 * Explicitly tells TCP internals to avoid collapsing on later
1282 		 * queue management operation, to avoid breaking the ext <->
1283 		 * SSN association set here
1284 		 */
1285 		mpext = mptcp_get_ext(skb);
1286 		if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
1287 			TCP_SKB_CB(skb)->eor = 1;
1288 			tcp_mark_push(tcp_sk(ssk), skb);
1289 			goto alloc_skb;
1290 		}
1291 
1292 		i = skb_shinfo(skb)->nr_frags;
1293 		can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
1294 		if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1295 			tcp_mark_push(tcp_sk(ssk), skb);
1296 			goto alloc_skb;
1297 		}
1298 
1299 		copy -= skb->len;
1300 	} else {
1301 alloc_skb:
1302 		skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
1303 		if (!skb)
1304 			return -ENOMEM;
1305 
1306 		i = skb_shinfo(skb)->nr_frags;
1307 		reuse_skb = false;
1308 		mpext = mptcp_get_ext(skb);
1309 	}
1310 
1311 	/* Zero window and all data acked? Probe. */
1312 	copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
1313 	if (copy == 0) {
1314 		u64 snd_una = READ_ONCE(msk->snd_una);
1315 
1316 		/* No need for zero probe if there are any data pending
1317 		 * either at the msk or ssk level; skb is the current write
1318 		 * queue tail and can be empty at this point.
1319 		 */
1320 		if (snd_una != msk->snd_nxt || skb->len ||
1321 		    skb != tcp_send_head(ssk)) {
1322 			tcp_remove_empty_skb(ssk);
1323 			return 0;
1324 		}
1325 
1326 		zero_window_probe = true;
1327 		data_seq = snd_una - 1;
1328 		copy = 1;
1329 	}
1330 
1331 	copy = min_t(size_t, copy, info->limit - info->sent);
1332 	if (!sk_wmem_schedule(ssk, copy)) {
1333 		tcp_remove_empty_skb(ssk);
1334 		return -ENOMEM;
1335 	}
1336 
1337 	if (can_coalesce) {
1338 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1339 	} else {
1340 		get_page(dfrag->page);
1341 		skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
1342 	}
1343 
1344 	skb->len += copy;
1345 	skb->data_len += copy;
1346 	skb->truesize += copy;
1347 	sk_wmem_queued_add(ssk, copy);
1348 	sk_mem_charge(ssk, copy);
1349 	WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
1350 	TCP_SKB_CB(skb)->end_seq += copy;
1351 	tcp_skb_pcount_set(skb, 0);
1352 
1353 	/* on skb reuse we just need to update the DSS len */
1354 	if (reuse_skb) {
1355 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1356 		mpext->data_len += copy;
1357 		goto out;
1358 	}
1359 
1360 	memset(mpext, 0, sizeof(*mpext));
1361 	mpext->data_seq = data_seq;
1362 	mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
1363 	mpext->data_len = copy;
1364 	mpext->use_map = 1;
1365 	mpext->dsn64 = 1;
1366 
1367 	pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
1368 		 mpext->data_seq, mpext->subflow_seq, mpext->data_len,
1369 		 mpext->dsn64);
1370 
1371 	if (zero_window_probe) {
1372 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_WINPROBE);
1373 		mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1374 		mpext->frozen = 1;
1375 		if (READ_ONCE(msk->csum_enabled))
1376 			mptcp_update_data_checksum(skb, copy);
1377 		tcp_push_pending_frames(ssk);
1378 		return 0;
1379 	}
1380 out:
1381 	if (READ_ONCE(msk->csum_enabled))
1382 		mptcp_update_data_checksum(skb, copy);
1383 	if (mptcp_subflow_ctx(ssk)->send_infinite_map)
1384 		mptcp_update_infinite_map(msk, ssk, mpext);
1385 	trace_mptcp_sendmsg_frag(mpext);
1386 	mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
1387 	return copy;
1388 }
1389 
1390 #define MPTCP_SEND_BURST_SIZE		((1 << 16) - \
1391 					 sizeof(struct tcphdr) - \
1392 					 MAX_TCP_OPTION_SPACE - \
1393 					 sizeof(struct ipv6hdr) - \
1394 					 sizeof(struct frag_hdr))
1395 
1396 struct subflow_send_info {
1397 	struct sock *ssk;
1398 	u64 linger_time;
1399 };
1400 
mptcp_subflow_set_active(struct mptcp_subflow_context * subflow)1401 void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
1402 {
1403 	if (!subflow->stale)
1404 		return;
1405 
1406 	subflow->stale = 0;
1407 	MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
1408 }
1409 
mptcp_subflow_active(struct mptcp_subflow_context * subflow)1410 bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
1411 {
1412 	if (unlikely(subflow->stale)) {
1413 		u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
1414 
1415 		if (subflow->stale_rcv_tstamp == rcv_tstamp)
1416 			return false;
1417 
1418 		mptcp_subflow_set_active(subflow);
1419 	}
1420 	return __mptcp_subflow_active(subflow);
1421 }
1422 
1423 #define SSK_MODE_ACTIVE	0
1424 #define SSK_MODE_BACKUP	1
1425 #define SSK_MODE_MAX	2
1426 
1427 /* implement the mptcp packet scheduler;
1428  * returns the subflow that will transmit the next DSS
1429  * additionally updates the rtx timeout
1430  */
mptcp_subflow_get_send(struct mptcp_sock * msk)1431 struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
1432 {
1433 	struct subflow_send_info send_info[SSK_MODE_MAX];
1434 	struct mptcp_subflow_context *subflow;
1435 	struct sock *sk = (struct sock *)msk;
1436 	u32 pace, burst, wmem;
1437 	int i, nr_active = 0;
1438 	struct sock *ssk;
1439 	u64 linger_time;
1440 	long tout = 0;
1441 
1442 	/* pick the subflow with the lower wmem/wspace ratio */
1443 	for (i = 0; i < SSK_MODE_MAX; ++i) {
1444 		send_info[i].ssk = NULL;
1445 		send_info[i].linger_time = -1;
1446 	}
1447 
1448 	mptcp_for_each_subflow(msk, subflow) {
1449 		bool backup = subflow->backup || subflow->request_bkup;
1450 
1451 		trace_mptcp_subflow_get_send(subflow);
1452 		ssk =  mptcp_subflow_tcp_sock(subflow);
1453 		if (!mptcp_subflow_active(subflow))
1454 			continue;
1455 
1456 		tout = max(tout, mptcp_timeout_from_subflow(subflow));
1457 		nr_active += !backup;
1458 		pace = subflow->avg_pacing_rate;
1459 		if (unlikely(!pace)) {
1460 			/* init pacing rate from socket */
1461 			subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
1462 			pace = subflow->avg_pacing_rate;
1463 			if (!pace)
1464 				continue;
1465 		}
1466 
1467 		linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
1468 		if (linger_time < send_info[backup].linger_time) {
1469 			send_info[backup].ssk = ssk;
1470 			send_info[backup].linger_time = linger_time;
1471 		}
1472 	}
1473 	__mptcp_set_timeout(sk, tout);
1474 
1475 	/* pick the best backup if no other subflow is active */
1476 	if (!nr_active)
1477 		send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
1478 
1479 	/* According to the blest algorithm, to avoid HoL blocking for the
1480 	 * faster flow, we need to:
1481 	 * - estimate the faster flow linger time
1482 	 * - use the above to estimate the amount of byte transferred
1483 	 *   by the faster flow
1484 	 * - check that the amount of queued data is greater than the above,
1485 	 *   otherwise do not use the picked, slower, subflow
1486 	 * We select the subflow with the shorter estimated time to flush
1487 	 * the queued mem, which basically ensure the above. We just need
1488 	 * to check that subflow has a non empty cwin.
1489 	 */
1490 	ssk = send_info[SSK_MODE_ACTIVE].ssk;
1491 	if (!ssk || !sk_stream_memory_free(ssk))
1492 		return NULL;
1493 
1494 	burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
1495 	wmem = READ_ONCE(ssk->sk_wmem_queued);
1496 	if (!burst)
1497 		return ssk;
1498 
1499 	subflow = mptcp_subflow_ctx(ssk);
1500 	subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
1501 					   READ_ONCE(ssk->sk_pacing_rate) * burst,
1502 					   burst + wmem);
1503 	msk->snd_burst = burst;
1504 	return ssk;
1505 }
1506 
mptcp_push_release(struct sock * ssk,struct mptcp_sendmsg_info * info)1507 static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
1508 {
1509 	tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
1510 	release_sock(ssk);
1511 }
1512 
mptcp_update_post_push(struct mptcp_sock * msk,struct mptcp_data_frag * dfrag,u32 sent)1513 static void mptcp_update_post_push(struct mptcp_sock *msk,
1514 				   struct mptcp_data_frag *dfrag,
1515 				   u32 sent)
1516 {
1517 	u64 snd_nxt_new = dfrag->data_seq;
1518 
1519 	dfrag->already_sent += sent;
1520 
1521 	msk->snd_burst -= sent;
1522 
1523 	snd_nxt_new += dfrag->already_sent;
1524 
1525 	/* snd_nxt_new can be smaller than snd_nxt in case mptcp
1526 	 * is recovering after a failover. In that event, this re-sends
1527 	 * old segments.
1528 	 *
1529 	 * Thus compute snd_nxt_new candidate based on
1530 	 * the dfrag->data_seq that was sent and the data
1531 	 * that has been handed to the subflow for transmission
1532 	 * and skip update in case it was old dfrag.
1533 	 */
1534 	if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
1535 		msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
1536 		WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
1537 	}
1538 }
1539 
mptcp_check_and_set_pending(struct sock * sk)1540 void mptcp_check_and_set_pending(struct sock *sk)
1541 {
1542 	if (mptcp_send_head(sk)) {
1543 		mptcp_data_lock(sk);
1544 		mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
1545 		mptcp_data_unlock(sk);
1546 	}
1547 }
1548 
__subflow_push_pending(struct sock * sk,struct sock * ssk,struct mptcp_sendmsg_info * info)1549 static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
1550 				  struct mptcp_sendmsg_info *info)
1551 {
1552 	struct mptcp_sock *msk = mptcp_sk(sk);
1553 	struct mptcp_data_frag *dfrag;
1554 	int len, copied = 0, err = 0;
1555 
1556 	while ((dfrag = mptcp_send_head(sk))) {
1557 		info->sent = dfrag->already_sent;
1558 		info->limit = dfrag->data_len;
1559 		len = dfrag->data_len - dfrag->already_sent;
1560 		while (len > 0) {
1561 			int ret = 0;
1562 
1563 			ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
1564 			if (ret <= 0) {
1565 				err = copied ? : ret;
1566 				goto out;
1567 			}
1568 
1569 			info->sent += ret;
1570 			copied += ret;
1571 			len -= ret;
1572 
1573 			mptcp_update_post_push(msk, dfrag, ret);
1574 		}
1575 		msk->first_pending = mptcp_send_next(sk);
1576 
1577 		if (msk->snd_burst <= 0 ||
1578 		    !sk_stream_memory_free(ssk) ||
1579 		    !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
1580 			err = copied;
1581 			goto out;
1582 		}
1583 		mptcp_set_timeout(sk);
1584 	}
1585 	err = copied;
1586 
1587 out:
1588 	if (err > 0)
1589 		msk->last_data_sent = tcp_jiffies32;
1590 	return err;
1591 }
1592 
__mptcp_push_pending(struct sock * sk,unsigned int flags)1593 void __mptcp_push_pending(struct sock *sk, unsigned int flags)
1594 {
1595 	struct sock *prev_ssk = NULL, *ssk = NULL;
1596 	struct mptcp_sock *msk = mptcp_sk(sk);
1597 	struct mptcp_sendmsg_info info = {
1598 				.flags = flags,
1599 	};
1600 	bool do_check_data_fin = false;
1601 	int push_count = 1;
1602 
1603 	while (mptcp_send_head(sk) && (push_count > 0)) {
1604 		struct mptcp_subflow_context *subflow;
1605 		int ret = 0;
1606 
1607 		if (mptcp_sched_get_send(msk))
1608 			break;
1609 
1610 		push_count = 0;
1611 
1612 		mptcp_for_each_subflow(msk, subflow) {
1613 			if (READ_ONCE(subflow->scheduled)) {
1614 				mptcp_subflow_set_scheduled(subflow, false);
1615 
1616 				prev_ssk = ssk;
1617 				ssk = mptcp_subflow_tcp_sock(subflow);
1618 				if (ssk != prev_ssk) {
1619 					/* First check. If the ssk has changed since
1620 					 * the last round, release prev_ssk
1621 					 */
1622 					if (prev_ssk)
1623 						mptcp_push_release(prev_ssk, &info);
1624 
1625 					/* Need to lock the new subflow only if different
1626 					 * from the previous one, otherwise we are still
1627 					 * helding the relevant lock
1628 					 */
1629 					lock_sock(ssk);
1630 				}
1631 
1632 				push_count++;
1633 
1634 				ret = __subflow_push_pending(sk, ssk, &info);
1635 				if (ret <= 0) {
1636 					if (ret != -EAGAIN ||
1637 					    (1 << ssk->sk_state) &
1638 					     (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
1639 						push_count--;
1640 					continue;
1641 				}
1642 				do_check_data_fin = true;
1643 			}
1644 		}
1645 	}
1646 
1647 	/* at this point we held the socket lock for the last subflow we used */
1648 	if (ssk)
1649 		mptcp_push_release(ssk, &info);
1650 
1651 	/* ensure the rtx timer is running */
1652 	if (!mptcp_rtx_timer_pending(sk))
1653 		mptcp_reset_rtx_timer(sk);
1654 	if (do_check_data_fin)
1655 		mptcp_check_send_data_fin(sk);
1656 }
1657 
__mptcp_subflow_push_pending(struct sock * sk,struct sock * ssk,bool first)1658 static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
1659 {
1660 	struct mptcp_sock *msk = mptcp_sk(sk);
1661 	struct mptcp_sendmsg_info info = {
1662 		.data_lock_held = true,
1663 	};
1664 	bool keep_pushing = true;
1665 	struct sock *xmit_ssk;
1666 	int copied = 0;
1667 
1668 	info.flags = 0;
1669 	while (mptcp_send_head(sk) && keep_pushing) {
1670 		struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
1671 		int ret = 0;
1672 
1673 		/* check for a different subflow usage only after
1674 		 * spooling the first chunk of data
1675 		 */
1676 		if (first) {
1677 			mptcp_subflow_set_scheduled(subflow, false);
1678 			ret = __subflow_push_pending(sk, ssk, &info);
1679 			first = false;
1680 			if (ret <= 0)
1681 				break;
1682 			copied += ret;
1683 			continue;
1684 		}
1685 
1686 		if (mptcp_sched_get_send(msk))
1687 			goto out;
1688 
1689 		if (READ_ONCE(subflow->scheduled)) {
1690 			mptcp_subflow_set_scheduled(subflow, false);
1691 			ret = __subflow_push_pending(sk, ssk, &info);
1692 			if (ret <= 0)
1693 				keep_pushing = false;
1694 			copied += ret;
1695 		}
1696 
1697 		mptcp_for_each_subflow(msk, subflow) {
1698 			if (READ_ONCE(subflow->scheduled)) {
1699 				xmit_ssk = mptcp_subflow_tcp_sock(subflow);
1700 				if (xmit_ssk != ssk) {
1701 					mptcp_subflow_delegate(subflow,
1702 							       MPTCP_DELEGATE_SEND);
1703 					keep_pushing = false;
1704 				}
1705 			}
1706 		}
1707 	}
1708 
1709 out:
1710 	/* __mptcp_alloc_tx_skb could have released some wmem and we are
1711 	 * not going to flush it via release_sock()
1712 	 */
1713 	if (copied) {
1714 		tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
1715 			 info.size_goal);
1716 		if (!mptcp_rtx_timer_pending(sk))
1717 			mptcp_reset_rtx_timer(sk);
1718 
1719 		if (msk->snd_data_fin_enable &&
1720 		    msk->snd_nxt + 1 == msk->write_seq)
1721 			mptcp_schedule_work(sk);
1722 	}
1723 }
1724 
1725 static int mptcp_disconnect(struct sock *sk, int flags);
1726 
mptcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,size_t len,int * copied_syn)1727 static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1728 				  size_t len, int *copied_syn)
1729 {
1730 	unsigned int saved_flags = msg->msg_flags;
1731 	struct mptcp_sock *msk = mptcp_sk(sk);
1732 	struct sock *ssk;
1733 	int ret;
1734 
1735 	/* on flags based fastopen the mptcp is supposed to create the
1736 	 * first subflow right now. Otherwise we are in the defer_connect
1737 	 * path, and the first subflow must be already present.
1738 	 * Since the defer_connect flag is cleared after the first succsful
1739 	 * fastopen attempt, no need to check for additional subflow status.
1740 	 */
1741 	if (msg->msg_flags & MSG_FASTOPEN) {
1742 		ssk = __mptcp_nmpc_sk(msk);
1743 		if (IS_ERR(ssk))
1744 			return PTR_ERR(ssk);
1745 	}
1746 	if (!msk->first)
1747 		return -EINVAL;
1748 
1749 	ssk = msk->first;
1750 
1751 	lock_sock(ssk);
1752 	msg->msg_flags |= MSG_DONTWAIT;
1753 	msk->fastopening = 1;
1754 	ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
1755 	msk->fastopening = 0;
1756 	msg->msg_flags = saved_flags;
1757 	release_sock(ssk);
1758 
1759 	/* do the blocking bits of inet_stream_connect outside the ssk socket lock */
1760 	if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
1761 		ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
1762 					    msg->msg_namelen, msg->msg_flags, 1);
1763 
1764 		/* Keep the same behaviour of plain TCP: zero the copied bytes in
1765 		 * case of any error, except timeout or signal
1766 		 */
1767 		if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
1768 			*copied_syn = 0;
1769 	} else if (ret && ret != -EINPROGRESS) {
1770 		/* The disconnect() op called by tcp_sendmsg_fastopen()/
1771 		 * __inet_stream_connect() can fail, due to looking check,
1772 		 * see mptcp_disconnect().
1773 		 * Attempt it again outside the problematic scope.
1774 		 */
1775 		if (!mptcp_disconnect(sk, 0)) {
1776 			sk->sk_disconnects++;
1777 			sk->sk_socket->state = SS_UNCONNECTED;
1778 		}
1779 	}
1780 	inet_clear_bit(DEFER_CONNECT, sk);
1781 
1782 	return ret;
1783 }
1784 
do_copy_data_nocache(struct sock * sk,int copy,struct iov_iter * from,char * to)1785 static int do_copy_data_nocache(struct sock *sk, int copy,
1786 				struct iov_iter *from, char *to)
1787 {
1788 	if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1789 		if (!copy_from_iter_full_nocache(to, copy, from))
1790 			return -EFAULT;
1791 	} else if (!copy_from_iter_full(to, copy, from)) {
1792 		return -EFAULT;
1793 	}
1794 	return 0;
1795 }
1796 
1797 /* open-code sk_stream_memory_free() plus sent limit computation to
1798  * avoid indirect calls in fast-path.
1799  * Called under the msk socket lock, so we can avoid a bunch of ONCE
1800  * annotations.
1801  */
mptcp_send_limit(const struct sock * sk)1802 static u32 mptcp_send_limit(const struct sock *sk)
1803 {
1804 	const struct mptcp_sock *msk = mptcp_sk(sk);
1805 	u32 limit, not_sent;
1806 
1807 	if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
1808 		return 0;
1809 
1810 	limit = mptcp_notsent_lowat(sk);
1811 	if (limit == UINT_MAX)
1812 		return UINT_MAX;
1813 
1814 	not_sent = msk->write_seq - msk->snd_nxt;
1815 	if (not_sent >= limit)
1816 		return 0;
1817 
1818 	return limit - not_sent;
1819 }
1820 
mptcp_rps_record_subflows(const struct mptcp_sock * msk)1821 static void mptcp_rps_record_subflows(const struct mptcp_sock *msk)
1822 {
1823 	struct mptcp_subflow_context *subflow;
1824 
1825 	if (!rfs_is_needed())
1826 		return;
1827 
1828 	mptcp_for_each_subflow(msk, subflow) {
1829 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
1830 
1831 		sock_rps_record_flow(ssk);
1832 	}
1833 }
1834 
mptcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1835 static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1836 {
1837 	struct mptcp_sock *msk = mptcp_sk(sk);
1838 	struct page_frag *pfrag;
1839 	size_t copied = 0;
1840 	int ret = 0;
1841 	long timeo;
1842 
1843 	/* silently ignore everything else */
1844 	msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
1845 
1846 	lock_sock(sk);
1847 
1848 	mptcp_rps_record_subflows(msk);
1849 
1850 	if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
1851 		     msg->msg_flags & MSG_FASTOPEN)) {
1852 		int copied_syn = 0;
1853 
1854 		ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
1855 		copied += copied_syn;
1856 		if (ret == -EINPROGRESS && copied_syn > 0)
1857 			goto out;
1858 		else if (ret)
1859 			goto do_error;
1860 	}
1861 
1862 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1863 
1864 	if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
1865 		ret = sk_stream_wait_connect(sk, &timeo);
1866 		if (ret)
1867 			goto do_error;
1868 	}
1869 
1870 	ret = -EPIPE;
1871 	if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
1872 		goto do_error;
1873 
1874 	pfrag = sk_page_frag(sk);
1875 
1876 	while (msg_data_left(msg)) {
1877 		int total_ts, frag_truesize = 0;
1878 		struct mptcp_data_frag *dfrag;
1879 		bool dfrag_collapsed;
1880 		size_t psize, offset;
1881 		u32 copy_limit;
1882 
1883 		/* ensure fitting the notsent_lowat() constraint */
1884 		copy_limit = mptcp_send_limit(sk);
1885 		if (!copy_limit)
1886 			goto wait_for_memory;
1887 
1888 		/* reuse tail pfrag, if possible, or carve a new one from the
1889 		 * page allocator
1890 		 */
1891 		dfrag = mptcp_pending_tail(sk);
1892 		dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
1893 		if (!dfrag_collapsed) {
1894 			if (!mptcp_page_frag_refill(sk, pfrag))
1895 				goto wait_for_memory;
1896 
1897 			dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
1898 			frag_truesize = dfrag->overhead;
1899 		}
1900 
1901 		/* we do not bound vs wspace, to allow a single packet.
1902 		 * memory accounting will prevent execessive memory usage
1903 		 * anyway
1904 		 */
1905 		offset = dfrag->offset + dfrag->data_len;
1906 		psize = pfrag->size - offset;
1907 		psize = min_t(size_t, psize, msg_data_left(msg));
1908 		psize = min_t(size_t, psize, copy_limit);
1909 		total_ts = psize + frag_truesize;
1910 
1911 		if (!sk_wmem_schedule(sk, total_ts))
1912 			goto wait_for_memory;
1913 
1914 		ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
1915 					   page_address(dfrag->page) + offset);
1916 		if (ret)
1917 			goto do_error;
1918 
1919 		/* data successfully copied into the write queue */
1920 		sk_forward_alloc_add(sk, -total_ts);
1921 		copied += psize;
1922 		dfrag->data_len += psize;
1923 		frag_truesize += psize;
1924 		pfrag->offset += frag_truesize;
1925 		WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
1926 
1927 		/* charge data on mptcp pending queue to the msk socket
1928 		 * Note: we charge such data both to sk and ssk
1929 		 */
1930 		sk_wmem_queued_add(sk, frag_truesize);
1931 		if (!dfrag_collapsed) {
1932 			get_page(dfrag->page);
1933 			list_add_tail(&dfrag->list, &msk->rtx_queue);
1934 			if (!msk->first_pending)
1935 				msk->first_pending = dfrag;
1936 		}
1937 		pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
1938 			 dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
1939 			 !dfrag_collapsed);
1940 
1941 		continue;
1942 
1943 wait_for_memory:
1944 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1945 		__mptcp_push_pending(sk, msg->msg_flags);
1946 		ret = sk_stream_wait_memory(sk, &timeo);
1947 		if (ret)
1948 			goto do_error;
1949 	}
1950 
1951 	if (copied)
1952 		__mptcp_push_pending(sk, msg->msg_flags);
1953 
1954 out:
1955 	release_sock(sk);
1956 	return copied;
1957 
1958 do_error:
1959 	if (copied)
1960 		goto out;
1961 
1962 	copied = sk_stream_error(sk, msg->msg_flags, ret);
1963 	goto out;
1964 }
1965 
1966 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
1967 
__mptcp_recvmsg_mskq(struct sock * sk,struct msghdr * msg,size_t len,int flags,int copied_total,struct scm_timestamping_internal * tss,int * cmsg_flags)1968 static int __mptcp_recvmsg_mskq(struct sock *sk, struct msghdr *msg,
1969 				size_t len, int flags, int copied_total,
1970 				struct scm_timestamping_internal *tss,
1971 				int *cmsg_flags)
1972 {
1973 	struct mptcp_sock *msk = mptcp_sk(sk);
1974 	struct sk_buff *skb, *tmp;
1975 	int total_data_len = 0;
1976 	int copied = 0;
1977 
1978 	skb_queue_walk_safe(&sk->sk_receive_queue, skb, tmp) {
1979 		u32 delta, offset = MPTCP_SKB_CB(skb)->offset;
1980 		u32 data_len = skb->len - offset;
1981 		u32 count;
1982 		int err;
1983 
1984 		if (flags & MSG_PEEK) {
1985 			/* skip already peeked skbs */
1986 			if (total_data_len + data_len <= copied_total) {
1987 				total_data_len += data_len;
1988 				continue;
1989 			}
1990 
1991 			/* skip the already peeked data in the current skb */
1992 			delta = copied_total - total_data_len;
1993 			offset += delta;
1994 			data_len -= delta;
1995 		}
1996 
1997 		count = min_t(size_t, len - copied, data_len);
1998 		if (!(flags & MSG_TRUNC)) {
1999 			err = skb_copy_datagram_msg(skb, offset, msg, count);
2000 			if (unlikely(err < 0)) {
2001 				if (!copied)
2002 					return err;
2003 				break;
2004 			}
2005 		}
2006 
2007 		if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
2008 			tcp_update_recv_tstamps(skb, tss);
2009 			*cmsg_flags |= MPTCP_CMSG_TS;
2010 		}
2011 
2012 		copied += count;
2013 
2014 		if (!(flags & MSG_PEEK)) {
2015 			msk->bytes_consumed += count;
2016 			if (count < data_len) {
2017 				MPTCP_SKB_CB(skb)->offset += count;
2018 				MPTCP_SKB_CB(skb)->map_seq += count;
2019 				break;
2020 			}
2021 
2022 			/* avoid the indirect call, we know the destructor is sock_rfree */
2023 			skb->destructor = NULL;
2024 			skb->sk = NULL;
2025 			atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
2026 			sk_mem_uncharge(sk, skb->truesize);
2027 			__skb_unlink(skb, &sk->sk_receive_queue);
2028 			skb_attempt_defer_free(skb);
2029 		}
2030 
2031 		if (copied >= len)
2032 			break;
2033 	}
2034 
2035 	mptcp_rcv_space_adjust(msk, copied);
2036 	return copied;
2037 }
2038 
2039 /* receive buffer autotuning.  See tcp_rcv_space_adjust for more information.
2040  *
2041  * Only difference: Use highest rtt estimate of the subflows in use.
2042  */
mptcp_rcv_space_adjust(struct mptcp_sock * msk,int copied)2043 static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
2044 {
2045 	struct mptcp_subflow_context *subflow;
2046 	struct sock *sk = (struct sock *)msk;
2047 	u8 scaling_ratio = U8_MAX;
2048 	u32 time, advmss = 1;
2049 	u64 rtt_us, mstamp;
2050 
2051 	msk_owned_by_me(msk);
2052 
2053 	if (copied <= 0)
2054 		return;
2055 
2056 	if (!msk->rcvspace_init)
2057 		mptcp_rcv_space_init(msk, msk->first);
2058 
2059 	msk->rcvq_space.copied += copied;
2060 
2061 	mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
2062 	time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
2063 
2064 	rtt_us = msk->rcvq_space.rtt_us;
2065 	if (rtt_us && time < (rtt_us >> 3))
2066 		return;
2067 
2068 	rtt_us = 0;
2069 	mptcp_for_each_subflow(msk, subflow) {
2070 		const struct tcp_sock *tp;
2071 		u64 sf_rtt_us;
2072 		u32 sf_advmss;
2073 
2074 		tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
2075 
2076 		sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
2077 		sf_advmss = READ_ONCE(tp->advmss);
2078 
2079 		rtt_us = max(sf_rtt_us, rtt_us);
2080 		advmss = max(sf_advmss, advmss);
2081 		scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
2082 	}
2083 
2084 	msk->rcvq_space.rtt_us = rtt_us;
2085 	msk->scaling_ratio = scaling_ratio;
2086 	if (time < (rtt_us >> 3) || rtt_us == 0)
2087 		return;
2088 
2089 	if (msk->rcvq_space.copied <= msk->rcvq_space.space)
2090 		goto new_measure;
2091 
2092 	if (mptcp_rcvbuf_grow(sk, msk->rcvq_space.copied)) {
2093 		/* Make subflows follow along.  If we do not do this, we
2094 		 * get drops at subflow level if skbs can't be moved to
2095 		 * the mptcp rx queue fast enough (announced rcv_win can
2096 		 * exceed ssk->sk_rcvbuf).
2097 		 */
2098 		mptcp_for_each_subflow(msk, subflow) {
2099 			struct sock *ssk;
2100 			bool slow;
2101 
2102 			ssk = mptcp_subflow_tcp_sock(subflow);
2103 			slow = lock_sock_fast(ssk);
2104 			/* subflows can be added before tcp_init_transfer() */
2105 			if (tcp_sk(ssk)->rcvq_space.space)
2106 				tcp_rcvbuf_grow(ssk, msk->rcvq_space.copied);
2107 			unlock_sock_fast(ssk, slow);
2108 		}
2109 	}
2110 
2111 new_measure:
2112 	msk->rcvq_space.copied = 0;
2113 	msk->rcvq_space.time = mstamp;
2114 }
2115 
2116 static struct mptcp_subflow_context *
__mptcp_first_ready_from(struct mptcp_sock * msk,struct mptcp_subflow_context * subflow)2117 __mptcp_first_ready_from(struct mptcp_sock *msk,
2118 			 struct mptcp_subflow_context *subflow)
2119 {
2120 	struct mptcp_subflow_context *start_subflow = subflow;
2121 
2122 	while (!READ_ONCE(subflow->data_avail)) {
2123 		subflow = mptcp_next_subflow(msk, subflow);
2124 		if (subflow == start_subflow)
2125 			return NULL;
2126 	}
2127 	return subflow;
2128 }
2129 
__mptcp_move_skbs(struct sock * sk)2130 static bool __mptcp_move_skbs(struct sock *sk)
2131 {
2132 	struct mptcp_subflow_context *subflow;
2133 	struct mptcp_sock *msk = mptcp_sk(sk);
2134 	bool ret = false;
2135 
2136 	if (list_empty(&msk->conn_list))
2137 		return false;
2138 
2139 	subflow = list_first_entry(&msk->conn_list,
2140 				   struct mptcp_subflow_context, node);
2141 	for (;;) {
2142 		struct sock *ssk;
2143 		bool slowpath;
2144 
2145 		/*
2146 		 * As an optimization avoid traversing the subflows list
2147 		 * and ev. acquiring the subflow socket lock before baling out
2148 		 */
2149 		if (sk_rmem_alloc_get(sk) > sk->sk_rcvbuf)
2150 			break;
2151 
2152 		subflow = __mptcp_first_ready_from(msk, subflow);
2153 		if (!subflow)
2154 			break;
2155 
2156 		ssk = mptcp_subflow_tcp_sock(subflow);
2157 		slowpath = lock_sock_fast(ssk);
2158 		ret = __mptcp_move_skbs_from_subflow(msk, ssk) || ret;
2159 		if (unlikely(ssk->sk_err))
2160 			__mptcp_error_report(sk);
2161 		unlock_sock_fast(ssk, slowpath);
2162 
2163 		subflow = mptcp_next_subflow(msk, subflow);
2164 	}
2165 
2166 	__mptcp_ofo_queue(msk);
2167 	if (ret)
2168 		mptcp_check_data_fin((struct sock *)msk);
2169 	return ret;
2170 }
2171 
mptcp_inq_hint(const struct sock * sk)2172 static unsigned int mptcp_inq_hint(const struct sock *sk)
2173 {
2174 	const struct mptcp_sock *msk = mptcp_sk(sk);
2175 	const struct sk_buff *skb;
2176 
2177 	skb = skb_peek(&sk->sk_receive_queue);
2178 	if (skb) {
2179 		u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
2180 
2181 		if (hint_val >= INT_MAX)
2182 			return INT_MAX;
2183 
2184 		return (unsigned int)hint_val;
2185 	}
2186 
2187 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
2188 		return 1;
2189 
2190 	return 0;
2191 }
2192 
mptcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2193 static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2194 			 int flags, int *addr_len)
2195 {
2196 	struct mptcp_sock *msk = mptcp_sk(sk);
2197 	struct scm_timestamping_internal tss;
2198 	int copied = 0, cmsg_flags = 0;
2199 	int target;
2200 	long timeo;
2201 
2202 	/* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
2203 	if (unlikely(flags & MSG_ERRQUEUE))
2204 		return inet_recv_error(sk, msg, len, addr_len);
2205 
2206 	lock_sock(sk);
2207 	if (unlikely(sk->sk_state == TCP_LISTEN)) {
2208 		copied = -ENOTCONN;
2209 		goto out_err;
2210 	}
2211 
2212 	mptcp_rps_record_subflows(msk);
2213 
2214 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2215 
2216 	len = min_t(size_t, len, INT_MAX);
2217 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2218 
2219 	if (unlikely(msk->recvmsg_inq))
2220 		cmsg_flags = MPTCP_CMSG_INQ;
2221 
2222 	while (copied < len) {
2223 		int err, bytes_read;
2224 
2225 		bytes_read = __mptcp_recvmsg_mskq(sk, msg, len - copied, flags,
2226 						  copied, &tss, &cmsg_flags);
2227 		if (unlikely(bytes_read < 0)) {
2228 			if (!copied)
2229 				copied = bytes_read;
2230 			goto out_err;
2231 		}
2232 
2233 		copied += bytes_read;
2234 
2235 		if (skb_queue_empty(&sk->sk_receive_queue) && __mptcp_move_skbs(sk))
2236 			continue;
2237 
2238 		/* only the MPTCP socket status is relevant here. The exit
2239 		 * conditions mirror closely tcp_recvmsg()
2240 		 */
2241 		if (copied >= target)
2242 			break;
2243 
2244 		if (copied) {
2245 			if (sk->sk_err ||
2246 			    sk->sk_state == TCP_CLOSE ||
2247 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2248 			    !timeo ||
2249 			    signal_pending(current))
2250 				break;
2251 		} else {
2252 			if (sk->sk_err) {
2253 				copied = sock_error(sk);
2254 				break;
2255 			}
2256 
2257 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2258 				break;
2259 
2260 			if (sk->sk_state == TCP_CLOSE) {
2261 				copied = -ENOTCONN;
2262 				break;
2263 			}
2264 
2265 			if (!timeo) {
2266 				copied = -EAGAIN;
2267 				break;
2268 			}
2269 
2270 			if (signal_pending(current)) {
2271 				copied = sock_intr_errno(timeo);
2272 				break;
2273 			}
2274 		}
2275 
2276 		pr_debug("block timeout %ld\n", timeo);
2277 		mptcp_cleanup_rbuf(msk, copied);
2278 		err = sk_wait_data(sk, &timeo, NULL);
2279 		if (err < 0) {
2280 			err = copied ? : err;
2281 			goto out_err;
2282 		}
2283 	}
2284 
2285 	mptcp_cleanup_rbuf(msk, copied);
2286 
2287 out_err:
2288 	if (cmsg_flags && copied >= 0) {
2289 		if (cmsg_flags & MPTCP_CMSG_TS)
2290 			tcp_recv_timestamp(msg, sk, &tss);
2291 
2292 		if (cmsg_flags & MPTCP_CMSG_INQ) {
2293 			unsigned int inq = mptcp_inq_hint(sk);
2294 
2295 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2296 		}
2297 	}
2298 
2299 	pr_debug("msk=%p rx queue empty=%d copied=%d\n",
2300 		 msk, skb_queue_empty(&sk->sk_receive_queue), copied);
2301 
2302 	release_sock(sk);
2303 	return copied;
2304 }
2305 
mptcp_retransmit_timer(struct timer_list * t)2306 static void mptcp_retransmit_timer(struct timer_list *t)
2307 {
2308 	struct inet_connection_sock *icsk = timer_container_of(icsk, t,
2309 							       icsk_retransmit_timer);
2310 	struct sock *sk = &icsk->icsk_inet.sk;
2311 	struct mptcp_sock *msk = mptcp_sk(sk);
2312 
2313 	bh_lock_sock(sk);
2314 	if (!sock_owned_by_user(sk)) {
2315 		/* we need a process context to retransmit */
2316 		if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
2317 			mptcp_schedule_work(sk);
2318 	} else {
2319 		/* delegate our work to tcp_release_cb() */
2320 		__set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
2321 	}
2322 	bh_unlock_sock(sk);
2323 	sock_put(sk);
2324 }
2325 
mptcp_tout_timer(struct timer_list * t)2326 static void mptcp_tout_timer(struct timer_list *t)
2327 {
2328 	struct sock *sk = timer_container_of(sk, t, sk_timer);
2329 
2330 	mptcp_schedule_work(sk);
2331 	sock_put(sk);
2332 }
2333 
2334 /* Find an idle subflow.  Return NULL if there is unacked data at tcp
2335  * level.
2336  *
2337  * A backup subflow is returned only if that is the only kind available.
2338  */
mptcp_subflow_get_retrans(struct mptcp_sock * msk)2339 struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
2340 {
2341 	struct sock *backup = NULL, *pick = NULL;
2342 	struct mptcp_subflow_context *subflow;
2343 	int min_stale_count = INT_MAX;
2344 
2345 	mptcp_for_each_subflow(msk, subflow) {
2346 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2347 
2348 		if (!__mptcp_subflow_active(subflow))
2349 			continue;
2350 
2351 		/* still data outstanding at TCP level? skip this */
2352 		if (!tcp_rtx_and_write_queues_empty(ssk)) {
2353 			mptcp_pm_subflow_chk_stale(msk, ssk);
2354 			min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
2355 			continue;
2356 		}
2357 
2358 		if (subflow->backup || subflow->request_bkup) {
2359 			if (!backup)
2360 				backup = ssk;
2361 			continue;
2362 		}
2363 
2364 		if (!pick)
2365 			pick = ssk;
2366 	}
2367 
2368 	if (pick)
2369 		return pick;
2370 
2371 	/* use backup only if there are no progresses anywhere */
2372 	return min_stale_count > 1 ? backup : NULL;
2373 }
2374 
__mptcp_retransmit_pending_data(struct sock * sk)2375 bool __mptcp_retransmit_pending_data(struct sock *sk)
2376 {
2377 	struct mptcp_data_frag *cur, *rtx_head;
2378 	struct mptcp_sock *msk = mptcp_sk(sk);
2379 
2380 	if (__mptcp_check_fallback(msk))
2381 		return false;
2382 
2383 	/* the closing socket has some data untransmitted and/or unacked:
2384 	 * some data in the mptcp rtx queue has not really xmitted yet.
2385 	 * keep it simple and re-inject the whole mptcp level rtx queue
2386 	 */
2387 	mptcp_data_lock(sk);
2388 	__mptcp_clean_una_wakeup(sk);
2389 	rtx_head = mptcp_rtx_head(sk);
2390 	if (!rtx_head) {
2391 		mptcp_data_unlock(sk);
2392 		return false;
2393 	}
2394 
2395 	msk->recovery_snd_nxt = msk->snd_nxt;
2396 	msk->recovery = true;
2397 	mptcp_data_unlock(sk);
2398 
2399 	msk->first_pending = rtx_head;
2400 	msk->snd_burst = 0;
2401 
2402 	/* be sure to clear the "sent status" on all re-injected fragments */
2403 	list_for_each_entry(cur, &msk->rtx_queue, list) {
2404 		if (!cur->already_sent)
2405 			break;
2406 		cur->already_sent = 0;
2407 	}
2408 
2409 	return true;
2410 }
2411 
2412 /* flags for __mptcp_close_ssk() */
2413 #define MPTCP_CF_PUSH		BIT(1)
2414 
2415 /* be sure to send a reset only if the caller asked for it, also
2416  * clean completely the subflow status when the subflow reaches
2417  * TCP_CLOSE state
2418  */
__mptcp_subflow_disconnect(struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2419 static void __mptcp_subflow_disconnect(struct sock *ssk,
2420 				       struct mptcp_subflow_context *subflow,
2421 				       unsigned int flags)
2422 {
2423 	if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
2424 	    subflow->send_fastclose) {
2425 		/* The MPTCP code never wait on the subflow sockets, TCP-level
2426 		 * disconnect should never fail
2427 		 */
2428 		WARN_ON_ONCE(tcp_disconnect(ssk, 0));
2429 		mptcp_subflow_ctx_reset(subflow);
2430 	} else {
2431 		tcp_shutdown(ssk, SEND_SHUTDOWN);
2432 	}
2433 }
2434 
2435 /* subflow sockets can be either outgoing (connect) or incoming
2436  * (accept).
2437  *
2438  * Outgoing subflows use in-kernel sockets.
2439  * Incoming subflows do not have their own 'struct socket' allocated,
2440  * so we need to use tcp_close() after detaching them from the mptcp
2441  * parent socket.
2442  */
__mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow,unsigned int flags)2443 static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2444 			      struct mptcp_subflow_context *subflow,
2445 			      unsigned int flags)
2446 {
2447 	struct mptcp_sock *msk = mptcp_sk(sk);
2448 	bool dispose_it, need_push = false;
2449 
2450 	/* If the first subflow moved to a close state before accept, e.g. due
2451 	 * to an incoming reset or listener shutdown, the subflow socket is
2452 	 * already deleted by inet_child_forget() and the mptcp socket can't
2453 	 * survive too.
2454 	 */
2455 	if (msk->in_accept_queue && msk->first == ssk &&
2456 	    (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
2457 		/* ensure later check in mptcp_worker() will dispose the msk */
2458 		sock_set_flag(sk, SOCK_DEAD);
2459 		mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
2460 		lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2461 		mptcp_subflow_drop_ctx(ssk);
2462 		goto out_release;
2463 	}
2464 
2465 	dispose_it = msk->free_first || ssk != msk->first;
2466 	if (dispose_it)
2467 		list_del(&subflow->node);
2468 
2469 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
2470 
2471 	if (subflow->send_fastclose && ssk->sk_state != TCP_CLOSE)
2472 		tcp_set_state(ssk, TCP_CLOSE);
2473 
2474 	need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
2475 	if (!dispose_it) {
2476 		__mptcp_subflow_disconnect(ssk, subflow, flags);
2477 		release_sock(ssk);
2478 
2479 		goto out;
2480 	}
2481 
2482 	subflow->disposable = 1;
2483 
2484 	/* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
2485 	 * the ssk has been already destroyed, we just need to release the
2486 	 * reference owned by msk;
2487 	 */
2488 	if (!inet_csk(ssk)->icsk_ulp_ops) {
2489 		WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
2490 		kfree_rcu(subflow, rcu);
2491 	} else {
2492 		/* otherwise tcp will dispose of the ssk and subflow ctx */
2493 		__tcp_close(ssk, 0);
2494 
2495 		/* close acquired an extra ref */
2496 		__sock_put(ssk);
2497 	}
2498 
2499 out_release:
2500 	__mptcp_subflow_error_report(sk, ssk);
2501 	release_sock(ssk);
2502 
2503 	sock_put(ssk);
2504 
2505 	if (ssk == msk->first)
2506 		WRITE_ONCE(msk->first, NULL);
2507 
2508 out:
2509 	__mptcp_sync_sndbuf(sk);
2510 	if (need_push)
2511 		__mptcp_push_pending(sk, 0);
2512 
2513 	/* Catch every 'all subflows closed' scenario, including peers silently
2514 	 * closing them, e.g. due to timeout.
2515 	 * For established sockets, allow an additional timeout before closing,
2516 	 * as the protocol can still create more subflows.
2517 	 */
2518 	if (list_is_singular(&msk->conn_list) && msk->first &&
2519 	    inet_sk_state_load(msk->first) == TCP_CLOSE) {
2520 		if (sk->sk_state != TCP_ESTABLISHED ||
2521 		    msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
2522 			mptcp_set_state(sk, TCP_CLOSE);
2523 			mptcp_close_wake_up(sk);
2524 		} else {
2525 			mptcp_start_tout_timer(sk);
2526 		}
2527 	}
2528 }
2529 
mptcp_close_ssk(struct sock * sk,struct sock * ssk,struct mptcp_subflow_context * subflow)2530 void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
2531 		     struct mptcp_subflow_context *subflow)
2532 {
2533 	/* The first subflow can already be closed and still in the list */
2534 	if (subflow->close_event_done)
2535 		return;
2536 
2537 	subflow->close_event_done = true;
2538 
2539 	if (sk->sk_state == TCP_ESTABLISHED)
2540 		mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
2541 
2542 	/* subflow aborted before reaching the fully_established status
2543 	 * attempt the creation of the next subflow
2544 	 */
2545 	mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
2546 
2547 	__mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
2548 }
2549 
mptcp_sync_mss(struct sock * sk,u32 pmtu)2550 static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
2551 {
2552 	return 0;
2553 }
2554 
__mptcp_close_subflow(struct sock * sk)2555 static void __mptcp_close_subflow(struct sock *sk)
2556 {
2557 	struct mptcp_subflow_context *subflow, *tmp;
2558 	struct mptcp_sock *msk = mptcp_sk(sk);
2559 
2560 	might_sleep();
2561 
2562 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2563 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2564 		int ssk_state = inet_sk_state_load(ssk);
2565 
2566 		if (ssk_state != TCP_CLOSE &&
2567 		    (ssk_state != TCP_CLOSE_WAIT ||
2568 		     inet_sk_state_load(sk) != TCP_ESTABLISHED ||
2569 		     __mptcp_check_fallback(msk)))
2570 			continue;
2571 
2572 		/* 'subflow_data_ready' will re-sched once rx queue is empty */
2573 		if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
2574 			continue;
2575 
2576 		mptcp_close_ssk(sk, ssk, subflow);
2577 	}
2578 
2579 }
2580 
mptcp_close_tout_expired(const struct sock * sk)2581 static bool mptcp_close_tout_expired(const struct sock *sk)
2582 {
2583 	if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
2584 	    sk->sk_state == TCP_CLOSE)
2585 		return false;
2586 
2587 	return time_after32(tcp_jiffies32,
2588 		  inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
2589 }
2590 
mptcp_check_fastclose(struct mptcp_sock * msk)2591 static void mptcp_check_fastclose(struct mptcp_sock *msk)
2592 {
2593 	struct mptcp_subflow_context *subflow, *tmp;
2594 	struct sock *sk = (struct sock *)msk;
2595 
2596 	if (likely(!READ_ONCE(msk->rcv_fastclose)))
2597 		return;
2598 
2599 	mptcp_token_destroy(msk);
2600 
2601 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2602 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
2603 		bool slow;
2604 
2605 		slow = lock_sock_fast(tcp_sk);
2606 		if (tcp_sk->sk_state != TCP_CLOSE) {
2607 			mptcp_send_active_reset_reason(tcp_sk);
2608 			tcp_set_state(tcp_sk, TCP_CLOSE);
2609 		}
2610 		unlock_sock_fast(tcp_sk, slow);
2611 	}
2612 
2613 	/* Mirror the tcp_reset() error propagation */
2614 	switch (sk->sk_state) {
2615 	case TCP_SYN_SENT:
2616 		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
2617 		break;
2618 	case TCP_CLOSE_WAIT:
2619 		WRITE_ONCE(sk->sk_err, EPIPE);
2620 		break;
2621 	case TCP_CLOSE:
2622 		return;
2623 	default:
2624 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2625 	}
2626 
2627 	mptcp_set_state(sk, TCP_CLOSE);
2628 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2629 	smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
2630 	set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
2631 
2632 	/* the calling mptcp_worker will properly destroy the socket */
2633 	if (sock_flag(sk, SOCK_DEAD))
2634 		return;
2635 
2636 	sk->sk_state_change(sk);
2637 	sk_error_report(sk);
2638 }
2639 
__mptcp_retrans(struct sock * sk)2640 static void __mptcp_retrans(struct sock *sk)
2641 {
2642 	struct mptcp_sendmsg_info info = { .data_lock_held = true, };
2643 	struct mptcp_sock *msk = mptcp_sk(sk);
2644 	struct mptcp_subflow_context *subflow;
2645 	struct mptcp_data_frag *dfrag;
2646 	struct sock *ssk;
2647 	int ret, err;
2648 	u16 len = 0;
2649 
2650 	mptcp_clean_una_wakeup(sk);
2651 
2652 	/* first check ssk: need to kick "stale" logic */
2653 	err = mptcp_sched_get_retrans(msk);
2654 	dfrag = mptcp_rtx_head(sk);
2655 	if (!dfrag) {
2656 		if (mptcp_data_fin_enabled(msk)) {
2657 			struct inet_connection_sock *icsk = inet_csk(sk);
2658 
2659 			WRITE_ONCE(icsk->icsk_retransmits,
2660 				   icsk->icsk_retransmits + 1);
2661 			mptcp_set_datafin_timeout(sk);
2662 			mptcp_send_ack(msk);
2663 
2664 			goto reset_timer;
2665 		}
2666 
2667 		if (!mptcp_send_head(sk))
2668 			return;
2669 
2670 		goto reset_timer;
2671 	}
2672 
2673 	if (err)
2674 		goto reset_timer;
2675 
2676 	mptcp_for_each_subflow(msk, subflow) {
2677 		if (READ_ONCE(subflow->scheduled)) {
2678 			u16 copied = 0;
2679 
2680 			mptcp_subflow_set_scheduled(subflow, false);
2681 
2682 			ssk = mptcp_subflow_tcp_sock(subflow);
2683 
2684 			lock_sock(ssk);
2685 
2686 			/* limit retransmission to the bytes already sent on some subflows */
2687 			info.sent = 0;
2688 			info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
2689 								    dfrag->already_sent;
2690 
2691 			/*
2692 			 * make the whole retrans decision, xmit, disallow
2693 			 * fallback atomic
2694 			 */
2695 			spin_lock_bh(&msk->fallback_lock);
2696 			if (__mptcp_check_fallback(msk)) {
2697 				spin_unlock_bh(&msk->fallback_lock);
2698 				release_sock(ssk);
2699 				return;
2700 			}
2701 
2702 			while (info.sent < info.limit) {
2703 				ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
2704 				if (ret <= 0)
2705 					break;
2706 
2707 				MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
2708 				copied += ret;
2709 				info.sent += ret;
2710 			}
2711 			if (copied) {
2712 				len = max(copied, len);
2713 				tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
2714 					 info.size_goal);
2715 				msk->allow_infinite_fallback = false;
2716 			}
2717 			spin_unlock_bh(&msk->fallback_lock);
2718 
2719 			release_sock(ssk);
2720 		}
2721 	}
2722 
2723 	msk->bytes_retrans += len;
2724 	dfrag->already_sent = max(dfrag->already_sent, len);
2725 
2726 reset_timer:
2727 	mptcp_check_and_set_pending(sk);
2728 
2729 	if (!mptcp_rtx_timer_pending(sk))
2730 		mptcp_reset_rtx_timer(sk);
2731 }
2732 
2733 /* schedule the timeout timer for the relevant event: either close timeout
2734  * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
2735  */
mptcp_reset_tout_timer(struct mptcp_sock * msk,unsigned long fail_tout)2736 void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
2737 {
2738 	struct sock *sk = (struct sock *)msk;
2739 	unsigned long timeout, close_timeout;
2740 
2741 	if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
2742 		return;
2743 
2744 	close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
2745 			tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
2746 
2747 	/* the close timeout takes precedence on the fail one, and here at least one of
2748 	 * them is active
2749 	 */
2750 	timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
2751 
2752 	sk_reset_timer(sk, &sk->sk_timer, timeout);
2753 }
2754 
mptcp_mp_fail_no_response(struct mptcp_sock * msk)2755 static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
2756 {
2757 	struct sock *ssk = msk->first;
2758 	bool slow;
2759 
2760 	if (!ssk)
2761 		return;
2762 
2763 	pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
2764 
2765 	slow = lock_sock_fast(ssk);
2766 	mptcp_subflow_reset(ssk);
2767 	WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
2768 	unlock_sock_fast(ssk, slow);
2769 }
2770 
mptcp_do_fastclose(struct sock * sk)2771 static void mptcp_do_fastclose(struct sock *sk)
2772 {
2773 	struct mptcp_subflow_context *subflow, *tmp;
2774 	struct mptcp_sock *msk = mptcp_sk(sk);
2775 
2776 	mptcp_set_state(sk, TCP_CLOSE);
2777 
2778 	/* Explicitly send the fastclose reset as need */
2779 	if (__mptcp_check_fallback(msk))
2780 		return;
2781 
2782 	mptcp_for_each_subflow_safe(msk, subflow, tmp) {
2783 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
2784 
2785 		lock_sock(ssk);
2786 
2787 		/* Some subflow socket states don't allow/need a reset.*/
2788 		if ((1 << ssk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
2789 			goto unlock;
2790 
2791 		subflow->send_fastclose = 1;
2792 		tcp_send_active_reset(ssk, ssk->sk_allocation,
2793 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
2794 unlock:
2795 		release_sock(ssk);
2796 	}
2797 }
2798 
mptcp_worker(struct work_struct * work)2799 static void mptcp_worker(struct work_struct *work)
2800 {
2801 	struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
2802 	struct sock *sk = (struct sock *)msk;
2803 	unsigned long fail_tout;
2804 	int state;
2805 
2806 	lock_sock(sk);
2807 	state = sk->sk_state;
2808 	if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
2809 		goto unlock;
2810 
2811 	mptcp_check_fastclose(msk);
2812 
2813 	mptcp_pm_worker(msk);
2814 
2815 	mptcp_check_send_data_fin(sk);
2816 	mptcp_check_data_fin_ack(sk);
2817 	mptcp_check_data_fin(sk);
2818 
2819 	if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
2820 		__mptcp_close_subflow(sk);
2821 
2822 	if (mptcp_close_tout_expired(sk)) {
2823 		struct mptcp_subflow_context *subflow, *tmp;
2824 
2825 		mptcp_do_fastclose(sk);
2826 		mptcp_for_each_subflow_safe(msk, subflow, tmp)
2827 			__mptcp_close_ssk(sk, subflow->tcp_sock, subflow, 0);
2828 		mptcp_close_wake_up(sk);
2829 	}
2830 
2831 	if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
2832 		__mptcp_destroy_sock(sk);
2833 		goto unlock;
2834 	}
2835 
2836 	if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
2837 		__mptcp_retrans(sk);
2838 
2839 	fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
2840 	if (fail_tout && time_after(jiffies, fail_tout))
2841 		mptcp_mp_fail_no_response(msk);
2842 
2843 unlock:
2844 	release_sock(sk);
2845 	sock_put(sk);
2846 }
2847 
__mptcp_init_sock(struct sock * sk)2848 static void __mptcp_init_sock(struct sock *sk)
2849 {
2850 	struct mptcp_sock *msk = mptcp_sk(sk);
2851 
2852 	INIT_LIST_HEAD(&msk->conn_list);
2853 	INIT_LIST_HEAD(&msk->join_list);
2854 	INIT_LIST_HEAD(&msk->rtx_queue);
2855 	INIT_WORK(&msk->work, mptcp_worker);
2856 	msk->out_of_order_queue = RB_ROOT;
2857 	msk->first_pending = NULL;
2858 	msk->timer_ival = TCP_RTO_MIN;
2859 	msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
2860 
2861 	WRITE_ONCE(msk->first, NULL);
2862 	inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
2863 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
2864 	msk->allow_infinite_fallback = true;
2865 	msk->allow_subflows = true;
2866 	msk->recovery = false;
2867 	msk->subflow_id = 1;
2868 	msk->last_data_sent = tcp_jiffies32;
2869 	msk->last_data_recv = tcp_jiffies32;
2870 	msk->last_ack_recv = tcp_jiffies32;
2871 
2872 	mptcp_pm_data_init(msk);
2873 	spin_lock_init(&msk->fallback_lock);
2874 
2875 	/* re-use the csk retrans timer for MPTCP-level retrans */
2876 	timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
2877 	timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
2878 }
2879 
mptcp_ca_reset(struct sock * sk)2880 static void mptcp_ca_reset(struct sock *sk)
2881 {
2882 	struct inet_connection_sock *icsk = inet_csk(sk);
2883 
2884 	tcp_assign_congestion_control(sk);
2885 	strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
2886 		sizeof(mptcp_sk(sk)->ca_name));
2887 
2888 	/* no need to keep a reference to the ops, the name will suffice */
2889 	tcp_cleanup_congestion_control(sk);
2890 	icsk->icsk_ca_ops = NULL;
2891 }
2892 
mptcp_init_sock(struct sock * sk)2893 static int mptcp_init_sock(struct sock *sk)
2894 {
2895 	struct net *net = sock_net(sk);
2896 	int ret;
2897 
2898 	__mptcp_init_sock(sk);
2899 
2900 	if (!mptcp_is_enabled(net))
2901 		return -ENOPROTOOPT;
2902 
2903 	if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
2904 		return -ENOMEM;
2905 
2906 	rcu_read_lock();
2907 	ret = mptcp_init_sched(mptcp_sk(sk),
2908 			       mptcp_sched_find(mptcp_get_scheduler(net)));
2909 	rcu_read_unlock();
2910 	if (ret)
2911 		return ret;
2912 
2913 	set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2914 
2915 	/* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
2916 	 * propagate the correct value
2917 	 */
2918 	mptcp_ca_reset(sk);
2919 
2920 	sk_sockets_allocated_inc(sk);
2921 	sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
2922 	sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
2923 
2924 	return 0;
2925 }
2926 
__mptcp_clear_xmit(struct sock * sk)2927 static void __mptcp_clear_xmit(struct sock *sk)
2928 {
2929 	struct mptcp_sock *msk = mptcp_sk(sk);
2930 	struct mptcp_data_frag *dtmp, *dfrag;
2931 
2932 	msk->first_pending = NULL;
2933 	list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
2934 		dfrag_clear(sk, dfrag);
2935 }
2936 
mptcp_cancel_work(struct sock * sk)2937 void mptcp_cancel_work(struct sock *sk)
2938 {
2939 	struct mptcp_sock *msk = mptcp_sk(sk);
2940 
2941 	if (cancel_work_sync(&msk->work))
2942 		__sock_put(sk);
2943 }
2944 
mptcp_subflow_shutdown(struct sock * sk,struct sock * ssk,int how)2945 void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
2946 {
2947 	lock_sock(ssk);
2948 
2949 	switch (ssk->sk_state) {
2950 	case TCP_LISTEN:
2951 		if (!(how & RCV_SHUTDOWN))
2952 			break;
2953 		fallthrough;
2954 	case TCP_SYN_SENT:
2955 		WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
2956 		break;
2957 	default:
2958 		if (__mptcp_check_fallback(mptcp_sk(sk))) {
2959 			pr_debug("Fallback\n");
2960 			ssk->sk_shutdown |= how;
2961 			tcp_shutdown(ssk, how);
2962 
2963 			/* simulate the data_fin ack reception to let the state
2964 			 * machine move forward
2965 			 */
2966 			WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
2967 			mptcp_schedule_work(sk);
2968 		} else {
2969 			pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
2970 			tcp_send_ack(ssk);
2971 			if (!mptcp_rtx_timer_pending(sk))
2972 				mptcp_reset_rtx_timer(sk);
2973 		}
2974 		break;
2975 	}
2976 
2977 	release_sock(ssk);
2978 }
2979 
mptcp_set_state(struct sock * sk,int state)2980 void mptcp_set_state(struct sock *sk, int state)
2981 {
2982 	int oldstate = sk->sk_state;
2983 
2984 	switch (state) {
2985 	case TCP_ESTABLISHED:
2986 		if (oldstate != TCP_ESTABLISHED)
2987 			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2988 		break;
2989 	case TCP_CLOSE_WAIT:
2990 		/* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
2991 		 * MPTCP "accepted" sockets will be created later on. So no
2992 		 * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
2993 		 */
2994 		break;
2995 	default:
2996 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2997 			MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
2998 	}
2999 
3000 	inet_sk_state_store(sk, state);
3001 }
3002 
3003 static const unsigned char new_state[16] = {
3004 	/* current state:     new state:      action:	*/
3005 	[0 /* (Invalid) */] = TCP_CLOSE,
3006 	[TCP_ESTABLISHED]   = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3007 	[TCP_SYN_SENT]      = TCP_CLOSE,
3008 	[TCP_SYN_RECV]      = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3009 	[TCP_FIN_WAIT1]     = TCP_FIN_WAIT1,
3010 	[TCP_FIN_WAIT2]     = TCP_FIN_WAIT2,
3011 	[TCP_TIME_WAIT]     = TCP_CLOSE,	/* should not happen ! */
3012 	[TCP_CLOSE]         = TCP_CLOSE,
3013 	[TCP_CLOSE_WAIT]    = TCP_LAST_ACK  | TCP_ACTION_FIN,
3014 	[TCP_LAST_ACK]      = TCP_LAST_ACK,
3015 	[TCP_LISTEN]        = TCP_CLOSE,
3016 	[TCP_CLOSING]       = TCP_CLOSING,
3017 	[TCP_NEW_SYN_RECV]  = TCP_CLOSE,	/* should not happen ! */
3018 };
3019 
mptcp_close_state(struct sock * sk)3020 static int mptcp_close_state(struct sock *sk)
3021 {
3022 	int next = (int)new_state[sk->sk_state];
3023 	int ns = next & TCP_STATE_MASK;
3024 
3025 	mptcp_set_state(sk, ns);
3026 
3027 	return next & TCP_ACTION_FIN;
3028 }
3029 
mptcp_check_send_data_fin(struct sock * sk)3030 static void mptcp_check_send_data_fin(struct sock *sk)
3031 {
3032 	struct mptcp_subflow_context *subflow;
3033 	struct mptcp_sock *msk = mptcp_sk(sk);
3034 
3035 	pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
3036 		 msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
3037 		 msk->snd_nxt, msk->write_seq);
3038 
3039 	/* we still need to enqueue subflows or not really shutting down,
3040 	 * skip this
3041 	 */
3042 	if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
3043 	    mptcp_send_head(sk))
3044 		return;
3045 
3046 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3047 
3048 	mptcp_for_each_subflow(msk, subflow) {
3049 		struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
3050 
3051 		mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
3052 	}
3053 }
3054 
__mptcp_wr_shutdown(struct sock * sk)3055 static void __mptcp_wr_shutdown(struct sock *sk)
3056 {
3057 	struct mptcp_sock *msk = mptcp_sk(sk);
3058 
3059 	pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
3060 		 msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
3061 		 !!mptcp_send_head(sk));
3062 
3063 	/* will be ignored by fallback sockets */
3064 	WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
3065 	WRITE_ONCE(msk->snd_data_fin_enable, 1);
3066 
3067 	mptcp_check_send_data_fin(sk);
3068 }
3069 
__mptcp_destroy_sock(struct sock * sk)3070 static void __mptcp_destroy_sock(struct sock *sk)
3071 {
3072 	struct mptcp_sock *msk = mptcp_sk(sk);
3073 
3074 	pr_debug("msk=%p\n", msk);
3075 
3076 	might_sleep();
3077 
3078 	mptcp_stop_rtx_timer(sk);
3079 	sk_stop_timer(sk, &sk->sk_timer);
3080 	msk->pm.status = 0;
3081 	mptcp_release_sched(msk);
3082 
3083 	sk->sk_prot->destroy(sk);
3084 
3085 	sk_stream_kill_queues(sk);
3086 	xfrm_sk_free_policy(sk);
3087 
3088 	sock_put(sk);
3089 }
3090 
__mptcp_unaccepted_force_close(struct sock * sk)3091 void __mptcp_unaccepted_force_close(struct sock *sk)
3092 {
3093 	sock_set_flag(sk, SOCK_DEAD);
3094 	mptcp_do_fastclose(sk);
3095 	__mptcp_destroy_sock(sk);
3096 }
3097 
mptcp_check_readable(struct sock * sk)3098 static __poll_t mptcp_check_readable(struct sock *sk)
3099 {
3100 	return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
3101 }
3102 
mptcp_check_listen_stop(struct sock * sk)3103 static void mptcp_check_listen_stop(struct sock *sk)
3104 {
3105 	struct sock *ssk;
3106 
3107 	if (inet_sk_state_load(sk) != TCP_LISTEN)
3108 		return;
3109 
3110 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3111 	ssk = mptcp_sk(sk)->first;
3112 	if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
3113 		return;
3114 
3115 	lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
3116 	tcp_set_state(ssk, TCP_CLOSE);
3117 	mptcp_subflow_queue_clean(sk, ssk);
3118 	inet_csk_listen_stop(ssk);
3119 	mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
3120 	release_sock(ssk);
3121 }
3122 
__mptcp_close(struct sock * sk,long timeout)3123 bool __mptcp_close(struct sock *sk, long timeout)
3124 {
3125 	struct mptcp_subflow_context *subflow;
3126 	struct mptcp_sock *msk = mptcp_sk(sk);
3127 	bool do_cancel_work = false;
3128 	int subflows_alive = 0;
3129 
3130 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3131 
3132 	if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
3133 		mptcp_check_listen_stop(sk);
3134 		mptcp_set_state(sk, TCP_CLOSE);
3135 		goto cleanup;
3136 	}
3137 
3138 	if (mptcp_data_avail(msk) || timeout < 0) {
3139 		/* If the msk has read data, or the caller explicitly ask it,
3140 		 * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
3141 		 */
3142 		mptcp_do_fastclose(sk);
3143 		timeout = 0;
3144 	} else if (mptcp_close_state(sk)) {
3145 		__mptcp_wr_shutdown(sk);
3146 	}
3147 
3148 	sk_stream_wait_close(sk, timeout);
3149 
3150 cleanup:
3151 	/* orphan all the subflows */
3152 	mptcp_for_each_subflow(msk, subflow) {
3153 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
3154 		bool slow = lock_sock_fast_nested(ssk);
3155 
3156 		subflows_alive += ssk->sk_state != TCP_CLOSE;
3157 
3158 		/* since the close timeout takes precedence on the fail one,
3159 		 * cancel the latter
3160 		 */
3161 		if (ssk == msk->first)
3162 			subflow->fail_tout = 0;
3163 
3164 		/* detach from the parent socket, but allow data_ready to
3165 		 * push incoming data into the mptcp stack, to properly ack it
3166 		 */
3167 		ssk->sk_socket = NULL;
3168 		ssk->sk_wq = NULL;
3169 		unlock_sock_fast(ssk, slow);
3170 	}
3171 	sock_orphan(sk);
3172 
3173 	/* all the subflows are closed, only timeout can change the msk
3174 	 * state, let's not keep resources busy for no reasons
3175 	 */
3176 	if (subflows_alive == 0)
3177 		mptcp_set_state(sk, TCP_CLOSE);
3178 
3179 	sock_hold(sk);
3180 	pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
3181 	mptcp_pm_connection_closed(msk);
3182 
3183 	if (sk->sk_state == TCP_CLOSE) {
3184 		__mptcp_destroy_sock(sk);
3185 		do_cancel_work = true;
3186 	} else {
3187 		mptcp_start_tout_timer(sk);
3188 	}
3189 
3190 	return do_cancel_work;
3191 }
3192 
mptcp_close(struct sock * sk,long timeout)3193 static void mptcp_close(struct sock *sk, long timeout)
3194 {
3195 	bool do_cancel_work;
3196 
3197 	lock_sock(sk);
3198 
3199 	do_cancel_work = __mptcp_close(sk, timeout);
3200 	release_sock(sk);
3201 	if (do_cancel_work)
3202 		mptcp_cancel_work(sk);
3203 
3204 	sock_put(sk);
3205 }
3206 
mptcp_copy_inaddrs(struct sock * msk,const struct sock * ssk)3207 static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
3208 {
3209 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3210 	const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
3211 	struct ipv6_pinfo *msk6 = inet6_sk(msk);
3212 
3213 	msk->sk_v6_daddr = ssk->sk_v6_daddr;
3214 	msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
3215 
3216 	if (msk6 && ssk6) {
3217 		msk6->saddr = ssk6->saddr;
3218 		msk6->flow_label = ssk6->flow_label;
3219 	}
3220 #endif
3221 
3222 	inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
3223 	inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
3224 	inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
3225 	inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
3226 	inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
3227 	inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
3228 }
3229 
mptcp_disconnect(struct sock * sk,int flags)3230 static int mptcp_disconnect(struct sock *sk, int flags)
3231 {
3232 	struct mptcp_sock *msk = mptcp_sk(sk);
3233 
3234 	/* We are on the fastopen error path. We can't call straight into the
3235 	 * subflows cleanup code due to lock nesting (we are already under
3236 	 * msk->firstsocket lock).
3237 	 */
3238 	if (msk->fastopening)
3239 		return -EBUSY;
3240 
3241 	mptcp_check_listen_stop(sk);
3242 	mptcp_set_state(sk, TCP_CLOSE);
3243 
3244 	mptcp_stop_rtx_timer(sk);
3245 	mptcp_stop_tout_timer(sk);
3246 
3247 	mptcp_pm_connection_closed(msk);
3248 
3249 	/* msk->subflow is still intact, the following will not free the first
3250 	 * subflow
3251 	 */
3252 	mptcp_do_fastclose(sk);
3253 	mptcp_destroy_common(msk);
3254 
3255 	/* The first subflow is already in TCP_CLOSE status, the following
3256 	 * can't overlap with a fallback anymore
3257 	 */
3258 	spin_lock_bh(&msk->fallback_lock);
3259 	msk->allow_subflows = true;
3260 	msk->allow_infinite_fallback = true;
3261 	WRITE_ONCE(msk->flags, 0);
3262 	spin_unlock_bh(&msk->fallback_lock);
3263 
3264 	msk->cb_flags = 0;
3265 	msk->recovery = false;
3266 	WRITE_ONCE(msk->can_ack, false);
3267 	WRITE_ONCE(msk->fully_established, false);
3268 	WRITE_ONCE(msk->rcv_data_fin, false);
3269 	WRITE_ONCE(msk->snd_data_fin_enable, false);
3270 	WRITE_ONCE(msk->rcv_fastclose, false);
3271 	WRITE_ONCE(msk->use_64bit_ack, false);
3272 	WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
3273 	mptcp_pm_data_reset(msk);
3274 	mptcp_ca_reset(sk);
3275 	msk->bytes_consumed = 0;
3276 	msk->bytes_acked = 0;
3277 	msk->bytes_received = 0;
3278 	msk->bytes_sent = 0;
3279 	msk->bytes_retrans = 0;
3280 	msk->rcvspace_init = 0;
3281 
3282 	WRITE_ONCE(sk->sk_shutdown, 0);
3283 	sk_error_report(sk);
3284 	return 0;
3285 }
3286 
3287 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
mptcp_inet6_sk(const struct sock * sk)3288 static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
3289 {
3290 	struct mptcp6_sock *msk6 = container_of(mptcp_sk(sk), struct mptcp6_sock, msk);
3291 
3292 	return &msk6->np;
3293 }
3294 
mptcp_copy_ip6_options(struct sock * newsk,const struct sock * sk)3295 static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
3296 {
3297 	const struct ipv6_pinfo *np = inet6_sk(sk);
3298 	struct ipv6_txoptions *opt;
3299 	struct ipv6_pinfo *newnp;
3300 
3301 	newnp = inet6_sk(newsk);
3302 
3303 	rcu_read_lock();
3304 	opt = rcu_dereference(np->opt);
3305 	if (opt) {
3306 		opt = ipv6_dup_options(newsk, opt);
3307 		if (!opt)
3308 			net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
3309 	}
3310 	RCU_INIT_POINTER(newnp->opt, opt);
3311 	rcu_read_unlock();
3312 }
3313 #endif
3314 
mptcp_copy_ip_options(struct sock * newsk,const struct sock * sk)3315 static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
3316 {
3317 	struct ip_options_rcu *inet_opt, *newopt = NULL;
3318 	const struct inet_sock *inet = inet_sk(sk);
3319 	struct inet_sock *newinet;
3320 
3321 	newinet = inet_sk(newsk);
3322 
3323 	rcu_read_lock();
3324 	inet_opt = rcu_dereference(inet->inet_opt);
3325 	if (inet_opt) {
3326 		newopt = sock_kmemdup(newsk, inet_opt, sizeof(*inet_opt) +
3327 				      inet_opt->opt.optlen, GFP_ATOMIC);
3328 		if (!newopt)
3329 			net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
3330 	}
3331 	RCU_INIT_POINTER(newinet->inet_opt, newopt);
3332 	rcu_read_unlock();
3333 }
3334 
mptcp_sk_clone_init(const struct sock * sk,const struct mptcp_options_received * mp_opt,struct sock * ssk,struct request_sock * req)3335 struct sock *mptcp_sk_clone_init(const struct sock *sk,
3336 				 const struct mptcp_options_received *mp_opt,
3337 				 struct sock *ssk,
3338 				 struct request_sock *req)
3339 {
3340 	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
3341 	struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
3342 	struct mptcp_subflow_context *subflow;
3343 	struct mptcp_sock *msk;
3344 
3345 	if (!nsk)
3346 		return NULL;
3347 
3348 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3349 	if (nsk->sk_family == AF_INET6)
3350 		inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
3351 #endif
3352 
3353 	__mptcp_init_sock(nsk);
3354 
3355 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3356 	if (nsk->sk_family == AF_INET6)
3357 		mptcp_copy_ip6_options(nsk, sk);
3358 	else
3359 #endif
3360 		mptcp_copy_ip_options(nsk, sk);
3361 
3362 	msk = mptcp_sk(nsk);
3363 	WRITE_ONCE(msk->local_key, subflow_req->local_key);
3364 	WRITE_ONCE(msk->token, subflow_req->token);
3365 	msk->in_accept_queue = 1;
3366 	WRITE_ONCE(msk->fully_established, false);
3367 	if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
3368 		WRITE_ONCE(msk->csum_enabled, true);
3369 
3370 	WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
3371 	WRITE_ONCE(msk->snd_nxt, msk->write_seq);
3372 	WRITE_ONCE(msk->snd_una, msk->write_seq);
3373 	WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
3374 	msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
3375 	mptcp_init_sched(msk, mptcp_sk(sk)->sched);
3376 
3377 	/* passive msk is created after the first/MPC subflow */
3378 	msk->subflow_id = 2;
3379 
3380 	sock_reset_flag(nsk, SOCK_RCU_FREE);
3381 	security_inet_csk_clone(nsk, req);
3382 
3383 	/* this can't race with mptcp_close(), as the msk is
3384 	 * not yet exposted to user-space
3385 	 */
3386 	mptcp_set_state(nsk, TCP_ESTABLISHED);
3387 
3388 	/* The msk maintain a ref to each subflow in the connections list */
3389 	WRITE_ONCE(msk->first, ssk);
3390 	subflow = mptcp_subflow_ctx(ssk);
3391 	list_add(&subflow->node, &msk->conn_list);
3392 	sock_hold(ssk);
3393 
3394 	/* new mpc subflow takes ownership of the newly
3395 	 * created mptcp socket
3396 	 */
3397 	mptcp_token_accept(subflow_req, msk);
3398 
3399 	/* set msk addresses early to ensure mptcp_pm_get_local_id()
3400 	 * uses the correct data
3401 	 */
3402 	mptcp_copy_inaddrs(nsk, ssk);
3403 	__mptcp_propagate_sndbuf(nsk, ssk);
3404 
3405 	mptcp_rcv_space_init(msk, ssk);
3406 
3407 	if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
3408 		__mptcp_subflow_fully_established(msk, subflow, mp_opt);
3409 	bh_unlock_sock(nsk);
3410 
3411 	/* note: the newly allocated socket refcount is 2 now */
3412 	return nsk;
3413 }
3414 
mptcp_rcv_space_init(struct mptcp_sock * msk,const struct sock * ssk)3415 void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
3416 {
3417 	const struct tcp_sock *tp = tcp_sk(ssk);
3418 
3419 	msk->rcvspace_init = 1;
3420 	msk->rcvq_space.copied = 0;
3421 	msk->rcvq_space.rtt_us = 0;
3422 
3423 	msk->rcvq_space.time = tp->tcp_mstamp;
3424 
3425 	/* initial rcv_space offering made to peer */
3426 	msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
3427 				      TCP_INIT_CWND * tp->advmss);
3428 	if (msk->rcvq_space.space == 0)
3429 		msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
3430 }
3431 
mptcp_destroy_common(struct mptcp_sock * msk)3432 void mptcp_destroy_common(struct mptcp_sock *msk)
3433 {
3434 	struct mptcp_subflow_context *subflow, *tmp;
3435 	struct sock *sk = (struct sock *)msk;
3436 
3437 	__mptcp_clear_xmit(sk);
3438 
3439 	/* join list will be eventually flushed (with rst) at sock lock release time */
3440 	mptcp_for_each_subflow_safe(msk, subflow, tmp)
3441 		__mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, 0);
3442 
3443 	__skb_queue_purge(&sk->sk_receive_queue);
3444 	skb_rbtree_purge(&msk->out_of_order_queue);
3445 
3446 	/* move all the rx fwd alloc into the sk_mem_reclaim_final in
3447 	 * inet_sock_destruct() will dispose it
3448 	 */
3449 	mptcp_token_destroy(msk);
3450 	mptcp_pm_destroy(msk);
3451 }
3452 
mptcp_destroy(struct sock * sk)3453 static void mptcp_destroy(struct sock *sk)
3454 {
3455 	struct mptcp_sock *msk = mptcp_sk(sk);
3456 
3457 	/* allow the following to close even the initial subflow */
3458 	msk->free_first = 1;
3459 	mptcp_destroy_common(msk);
3460 	sk_sockets_allocated_dec(sk);
3461 }
3462 
__mptcp_data_acked(struct sock * sk)3463 void __mptcp_data_acked(struct sock *sk)
3464 {
3465 	if (!sock_owned_by_user(sk))
3466 		__mptcp_clean_una(sk);
3467 	else
3468 		__set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
3469 }
3470 
__mptcp_check_push(struct sock * sk,struct sock * ssk)3471 void __mptcp_check_push(struct sock *sk, struct sock *ssk)
3472 {
3473 	if (!sock_owned_by_user(sk))
3474 		__mptcp_subflow_push_pending(sk, ssk, false);
3475 	else
3476 		__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3477 }
3478 
3479 #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
3480 				      BIT(MPTCP_RETRANSMIT) | \
3481 				      BIT(MPTCP_FLUSH_JOIN_LIST) | \
3482 				      BIT(MPTCP_DEQUEUE))
3483 
3484 /* processes deferred events and flush wmem */
mptcp_release_cb(struct sock * sk)3485 static void mptcp_release_cb(struct sock *sk)
3486 	__must_hold(&sk->sk_lock.slock)
3487 {
3488 	struct mptcp_sock *msk = mptcp_sk(sk);
3489 
3490 	for (;;) {
3491 		unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
3492 		struct list_head join_list;
3493 
3494 		if (!flags)
3495 			break;
3496 
3497 		INIT_LIST_HEAD(&join_list);
3498 		list_splice_init(&msk->join_list, &join_list);
3499 
3500 		/* the following actions acquire the subflow socket lock
3501 		 *
3502 		 * 1) can't be invoked in atomic scope
3503 		 * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
3504 		 *    datapath acquires the msk socket spinlock while helding
3505 		 *    the subflow socket lock
3506 		 */
3507 		msk->cb_flags &= ~flags;
3508 		spin_unlock_bh(&sk->sk_lock.slock);
3509 
3510 		if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
3511 			__mptcp_flush_join_list(sk, &join_list);
3512 		if (flags & BIT(MPTCP_PUSH_PENDING))
3513 			__mptcp_push_pending(sk, 0);
3514 		if (flags & BIT(MPTCP_RETRANSMIT))
3515 			__mptcp_retrans(sk);
3516 		if ((flags & BIT(MPTCP_DEQUEUE)) && __mptcp_move_skbs(sk)) {
3517 			/* notify ack seq update */
3518 			mptcp_cleanup_rbuf(msk, 0);
3519 			sk->sk_data_ready(sk);
3520 		}
3521 
3522 		cond_resched();
3523 		spin_lock_bh(&sk->sk_lock.slock);
3524 	}
3525 
3526 	if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
3527 		__mptcp_clean_una_wakeup(sk);
3528 	if (unlikely(msk->cb_flags)) {
3529 		/* be sure to sync the msk state before taking actions
3530 		 * depending on sk_state (MPTCP_ERROR_REPORT)
3531 		 * On sk release avoid actions depending on the first subflow
3532 		 */
3533 		if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
3534 			__mptcp_sync_state(sk, msk->pending_state);
3535 		if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
3536 			__mptcp_error_report(sk);
3537 		if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
3538 			__mptcp_sync_sndbuf(sk);
3539 	}
3540 }
3541 
3542 /* MP_JOIN client subflow must wait for 4th ack before sending any data:
3543  * TCP can't schedule delack timer before the subflow is fully established.
3544  * MPTCP uses the delack timer to do 3rd ack retransmissions
3545  */
schedule_3rdack_retransmission(struct sock * ssk)3546 static void schedule_3rdack_retransmission(struct sock *ssk)
3547 {
3548 	struct inet_connection_sock *icsk = inet_csk(ssk);
3549 	struct tcp_sock *tp = tcp_sk(ssk);
3550 	unsigned long timeout;
3551 
3552 	if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
3553 		return;
3554 
3555 	/* reschedule with a timeout above RTT, as we must look only for drop */
3556 	if (tp->srtt_us)
3557 		timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
3558 	else
3559 		timeout = TCP_TIMEOUT_INIT;
3560 	timeout += jiffies;
3561 
3562 	WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
3563 	smp_store_release(&icsk->icsk_ack.pending,
3564 			  icsk->icsk_ack.pending | ICSK_ACK_SCHED | ICSK_ACK_TIMER);
3565 	sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
3566 }
3567 
mptcp_subflow_process_delegated(struct sock * ssk,long status)3568 void mptcp_subflow_process_delegated(struct sock *ssk, long status)
3569 {
3570 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3571 	struct sock *sk = subflow->conn;
3572 
3573 	if (status & BIT(MPTCP_DELEGATE_SEND)) {
3574 		mptcp_data_lock(sk);
3575 		if (!sock_owned_by_user(sk))
3576 			__mptcp_subflow_push_pending(sk, ssk, true);
3577 		else
3578 			__set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
3579 		mptcp_data_unlock(sk);
3580 	}
3581 	if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
3582 		mptcp_data_lock(sk);
3583 		if (!sock_owned_by_user(sk))
3584 			__mptcp_sync_sndbuf(sk);
3585 		else
3586 			__set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
3587 		mptcp_data_unlock(sk);
3588 	}
3589 	if (status & BIT(MPTCP_DELEGATE_ACK))
3590 		schedule_3rdack_retransmission(ssk);
3591 }
3592 
mptcp_hash(struct sock * sk)3593 static int mptcp_hash(struct sock *sk)
3594 {
3595 	/* should never be called,
3596 	 * we hash the TCP subflows not the MPTCP socket
3597 	 */
3598 	WARN_ON_ONCE(1);
3599 	return 0;
3600 }
3601 
mptcp_unhash(struct sock * sk)3602 static void mptcp_unhash(struct sock *sk)
3603 {
3604 	/* called from sk_common_release(), but nothing to do here */
3605 }
3606 
mptcp_get_port(struct sock * sk,unsigned short snum)3607 static int mptcp_get_port(struct sock *sk, unsigned short snum)
3608 {
3609 	struct mptcp_sock *msk = mptcp_sk(sk);
3610 
3611 	pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
3612 	if (WARN_ON_ONCE(!msk->first))
3613 		return -EINVAL;
3614 
3615 	return inet_csk_get_port(msk->first, snum);
3616 }
3617 
mptcp_finish_connect(struct sock * ssk)3618 void mptcp_finish_connect(struct sock *ssk)
3619 {
3620 	struct mptcp_subflow_context *subflow;
3621 	struct mptcp_sock *msk;
3622 	struct sock *sk;
3623 
3624 	subflow = mptcp_subflow_ctx(ssk);
3625 	sk = subflow->conn;
3626 	msk = mptcp_sk(sk);
3627 
3628 	pr_debug("msk=%p, token=%u\n", sk, subflow->token);
3629 
3630 	subflow->map_seq = subflow->iasn;
3631 	subflow->map_subflow_seq = 1;
3632 
3633 	/* the socket is not connected yet, no msk/subflow ops can access/race
3634 	 * accessing the field below
3635 	 */
3636 	WRITE_ONCE(msk->local_key, subflow->local_key);
3637 
3638 	mptcp_pm_new_connection(msk, ssk, 0);
3639 }
3640 
mptcp_sock_graft(struct sock * sk,struct socket * parent)3641 void mptcp_sock_graft(struct sock *sk, struct socket *parent)
3642 {
3643 	write_lock_bh(&sk->sk_callback_lock);
3644 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
3645 	sk_set_socket(sk, parent);
3646 	write_unlock_bh(&sk->sk_callback_lock);
3647 }
3648 
mptcp_finish_join(struct sock * ssk)3649 bool mptcp_finish_join(struct sock *ssk)
3650 {
3651 	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
3652 	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
3653 	struct sock *parent = (void *)msk;
3654 	bool ret = true;
3655 
3656 	pr_debug("msk=%p, subflow=%p\n", msk, subflow);
3657 
3658 	/* mptcp socket already closing? */
3659 	if (!mptcp_is_fully_established(parent)) {
3660 		subflow->reset_reason = MPTCP_RST_EMPTCP;
3661 		return false;
3662 	}
3663 
3664 	/* active subflow, already present inside the conn_list */
3665 	if (!list_empty(&subflow->node)) {
3666 		spin_lock_bh(&msk->fallback_lock);
3667 		if (!msk->allow_subflows) {
3668 			spin_unlock_bh(&msk->fallback_lock);
3669 			return false;
3670 		}
3671 		mptcp_subflow_joined(msk, ssk);
3672 		spin_unlock_bh(&msk->fallback_lock);
3673 		mptcp_propagate_sndbuf(parent, ssk);
3674 		return true;
3675 	}
3676 
3677 	if (!mptcp_pm_allow_new_subflow(msk)) {
3678 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_JOINREJECTED);
3679 		goto err_prohibited;
3680 	}
3681 
3682 	/* If we can't acquire msk socket lock here, let the release callback
3683 	 * handle it
3684 	 */
3685 	mptcp_data_lock(parent);
3686 	if (!sock_owned_by_user(parent)) {
3687 		ret = __mptcp_finish_join(msk, ssk);
3688 		if (ret) {
3689 			sock_hold(ssk);
3690 			list_add_tail(&subflow->node, &msk->conn_list);
3691 		}
3692 	} else {
3693 		sock_hold(ssk);
3694 		list_add_tail(&subflow->node, &msk->join_list);
3695 		__set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
3696 	}
3697 	mptcp_data_unlock(parent);
3698 
3699 	if (!ret) {
3700 err_prohibited:
3701 		subflow->reset_reason = MPTCP_RST_EPROHIBIT;
3702 		return false;
3703 	}
3704 
3705 	return true;
3706 }
3707 
mptcp_shutdown(struct sock * sk,int how)3708 static void mptcp_shutdown(struct sock *sk, int how)
3709 {
3710 	pr_debug("sk=%p, how=%d\n", sk, how);
3711 
3712 	if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
3713 		__mptcp_wr_shutdown(sk);
3714 }
3715 
mptcp_ioctl_outq(const struct mptcp_sock * msk,u64 v)3716 static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
3717 {
3718 	const struct sock *sk = (void *)msk;
3719 	u64 delta;
3720 
3721 	if (sk->sk_state == TCP_LISTEN)
3722 		return -EINVAL;
3723 
3724 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
3725 		return 0;
3726 
3727 	delta = msk->write_seq - v;
3728 	if (__mptcp_check_fallback(msk) && msk->first) {
3729 		struct tcp_sock *tp = tcp_sk(msk->first);
3730 
3731 		/* the first subflow is disconnected after close - see
3732 		 * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
3733 		 * so ignore that status, too.
3734 		 */
3735 		if (!((1 << msk->first->sk_state) &
3736 		      (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
3737 			delta += READ_ONCE(tp->write_seq) - tp->snd_una;
3738 	}
3739 	if (delta > INT_MAX)
3740 		delta = INT_MAX;
3741 
3742 	return (int)delta;
3743 }
3744 
mptcp_ioctl(struct sock * sk,int cmd,int * karg)3745 static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
3746 {
3747 	struct mptcp_sock *msk = mptcp_sk(sk);
3748 	bool slow;
3749 
3750 	switch (cmd) {
3751 	case SIOCINQ:
3752 		if (sk->sk_state == TCP_LISTEN)
3753 			return -EINVAL;
3754 
3755 		lock_sock(sk);
3756 		if (__mptcp_move_skbs(sk))
3757 			mptcp_cleanup_rbuf(msk, 0);
3758 		*karg = mptcp_inq_hint(sk);
3759 		release_sock(sk);
3760 		break;
3761 	case SIOCOUTQ:
3762 		slow = lock_sock_fast(sk);
3763 		*karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
3764 		unlock_sock_fast(sk, slow);
3765 		break;
3766 	case SIOCOUTQNSD:
3767 		slow = lock_sock_fast(sk);
3768 		*karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
3769 		unlock_sock_fast(sk, slow);
3770 		break;
3771 	default:
3772 		return -ENOIOCTLCMD;
3773 	}
3774 
3775 	return 0;
3776 }
3777 
mptcp_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)3778 static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
3779 {
3780 	struct mptcp_subflow_context *subflow;
3781 	struct mptcp_sock *msk = mptcp_sk(sk);
3782 	int err = -EINVAL;
3783 	struct sock *ssk;
3784 
3785 	ssk = __mptcp_nmpc_sk(msk);
3786 	if (IS_ERR(ssk))
3787 		return PTR_ERR(ssk);
3788 
3789 	mptcp_set_state(sk, TCP_SYN_SENT);
3790 	subflow = mptcp_subflow_ctx(ssk);
3791 #ifdef CONFIG_TCP_MD5SIG
3792 	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
3793 	 * TCP option space.
3794 	 */
3795 	if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
3796 		mptcp_early_fallback(msk, subflow, MPTCP_MIB_MD5SIGFALLBACK);
3797 #endif
3798 	if (subflow->request_mptcp) {
3799 		if (mptcp_active_should_disable(sk))
3800 			mptcp_early_fallback(msk, subflow,
3801 					     MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
3802 		else if (mptcp_token_new_connect(ssk) < 0)
3803 			mptcp_early_fallback(msk, subflow,
3804 					     MPTCP_MIB_TOKENFALLBACKINIT);
3805 	}
3806 
3807 	WRITE_ONCE(msk->write_seq, subflow->idsn);
3808 	WRITE_ONCE(msk->snd_nxt, subflow->idsn);
3809 	WRITE_ONCE(msk->snd_una, subflow->idsn);
3810 	if (likely(!__mptcp_check_fallback(msk)))
3811 		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
3812 
3813 	/* if reaching here via the fastopen/sendmsg path, the caller already
3814 	 * acquired the subflow socket lock, too.
3815 	 */
3816 	if (!msk->fastopening)
3817 		lock_sock(ssk);
3818 
3819 	/* the following mirrors closely a very small chunk of code from
3820 	 * __inet_stream_connect()
3821 	 */
3822 	if (ssk->sk_state != TCP_CLOSE)
3823 		goto out;
3824 
3825 	if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
3826 		err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
3827 		if (err)
3828 			goto out;
3829 	}
3830 
3831 	err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
3832 	if (err < 0)
3833 		goto out;
3834 
3835 	inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
3836 
3837 out:
3838 	if (!msk->fastopening)
3839 		release_sock(ssk);
3840 
3841 	/* on successful connect, the msk state will be moved to established by
3842 	 * subflow_finish_connect()
3843 	 */
3844 	if (unlikely(err)) {
3845 		/* avoid leaving a dangling token in an unconnected socket */
3846 		mptcp_token_destroy(msk);
3847 		mptcp_set_state(sk, TCP_CLOSE);
3848 		return err;
3849 	}
3850 
3851 	mptcp_copy_inaddrs(sk, ssk);
3852 	return 0;
3853 }
3854 
3855 static struct proto mptcp_prot = {
3856 	.name		= "MPTCP",
3857 	.owner		= THIS_MODULE,
3858 	.init		= mptcp_init_sock,
3859 	.connect	= mptcp_connect,
3860 	.disconnect	= mptcp_disconnect,
3861 	.close		= mptcp_close,
3862 	.setsockopt	= mptcp_setsockopt,
3863 	.getsockopt	= mptcp_getsockopt,
3864 	.shutdown	= mptcp_shutdown,
3865 	.destroy	= mptcp_destroy,
3866 	.sendmsg	= mptcp_sendmsg,
3867 	.ioctl		= mptcp_ioctl,
3868 	.recvmsg	= mptcp_recvmsg,
3869 	.release_cb	= mptcp_release_cb,
3870 	.hash		= mptcp_hash,
3871 	.unhash		= mptcp_unhash,
3872 	.get_port	= mptcp_get_port,
3873 	.stream_memory_free	= mptcp_stream_memory_free,
3874 	.sockets_allocated	= &mptcp_sockets_allocated,
3875 
3876 	.memory_allocated	= &net_aligned_data.tcp_memory_allocated,
3877 	.per_cpu_fw_alloc	= &tcp_memory_per_cpu_fw_alloc,
3878 
3879 	.memory_pressure	= &tcp_memory_pressure,
3880 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_wmem),
3881 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_tcp_rmem),
3882 	.sysctl_mem	= sysctl_tcp_mem,
3883 	.obj_size	= sizeof(struct mptcp_sock),
3884 	.slab_flags	= SLAB_TYPESAFE_BY_RCU,
3885 	.no_autobind	= true,
3886 };
3887 
mptcp_bind(struct socket * sock,struct sockaddr * uaddr,int addr_len)3888 static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3889 {
3890 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3891 	struct sock *ssk, *sk = sock->sk;
3892 	int err = -EINVAL;
3893 
3894 	lock_sock(sk);
3895 	ssk = __mptcp_nmpc_sk(msk);
3896 	if (IS_ERR(ssk)) {
3897 		err = PTR_ERR(ssk);
3898 		goto unlock;
3899 	}
3900 
3901 	if (sk->sk_family == AF_INET)
3902 		err = inet_bind_sk(ssk, uaddr, addr_len);
3903 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
3904 	else if (sk->sk_family == AF_INET6)
3905 		err = inet6_bind_sk(ssk, uaddr, addr_len);
3906 #endif
3907 	if (!err)
3908 		mptcp_copy_inaddrs(sk, ssk);
3909 
3910 unlock:
3911 	release_sock(sk);
3912 	return err;
3913 }
3914 
mptcp_listen(struct socket * sock,int backlog)3915 static int mptcp_listen(struct socket *sock, int backlog)
3916 {
3917 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3918 	struct sock *sk = sock->sk;
3919 	struct sock *ssk;
3920 	int err;
3921 
3922 	pr_debug("msk=%p\n", msk);
3923 
3924 	lock_sock(sk);
3925 
3926 	err = -EINVAL;
3927 	if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
3928 		goto unlock;
3929 
3930 	ssk = __mptcp_nmpc_sk(msk);
3931 	if (IS_ERR(ssk)) {
3932 		err = PTR_ERR(ssk);
3933 		goto unlock;
3934 	}
3935 
3936 	mptcp_set_state(sk, TCP_LISTEN);
3937 	sock_set_flag(sk, SOCK_RCU_FREE);
3938 
3939 	lock_sock(ssk);
3940 	err = __inet_listen_sk(ssk, backlog);
3941 	release_sock(ssk);
3942 	mptcp_set_state(sk, inet_sk_state_load(ssk));
3943 
3944 	if (!err) {
3945 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3946 		mptcp_copy_inaddrs(sk, ssk);
3947 		mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
3948 	}
3949 
3950 unlock:
3951 	release_sock(sk);
3952 	return err;
3953 }
3954 
mptcp_stream_accept(struct socket * sock,struct socket * newsock,struct proto_accept_arg * arg)3955 static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
3956 			       struct proto_accept_arg *arg)
3957 {
3958 	struct mptcp_sock *msk = mptcp_sk(sock->sk);
3959 	struct sock *ssk, *newsk;
3960 
3961 	pr_debug("msk=%p\n", msk);
3962 
3963 	/* Buggy applications can call accept on socket states other then LISTEN
3964 	 * but no need to allocate the first subflow just to error out.
3965 	 */
3966 	ssk = READ_ONCE(msk->first);
3967 	if (!ssk)
3968 		return -EINVAL;
3969 
3970 	pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
3971 	newsk = inet_csk_accept(ssk, arg);
3972 	if (!newsk)
3973 		return arg->err;
3974 
3975 	pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
3976 	if (sk_is_mptcp(newsk)) {
3977 		struct mptcp_subflow_context *subflow;
3978 		struct sock *new_mptcp_sock;
3979 
3980 		subflow = mptcp_subflow_ctx(newsk);
3981 		new_mptcp_sock = subflow->conn;
3982 
3983 		/* is_mptcp should be false if subflow->conn is missing, see
3984 		 * subflow_syn_recv_sock()
3985 		 */
3986 		if (WARN_ON_ONCE(!new_mptcp_sock)) {
3987 			tcp_sk(newsk)->is_mptcp = 0;
3988 			goto tcpfallback;
3989 		}
3990 
3991 		newsk = new_mptcp_sock;
3992 		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
3993 
3994 		newsk->sk_kern_sock = arg->kern;
3995 		lock_sock(newsk);
3996 		__inet_accept(sock, newsock, newsk);
3997 
3998 		set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
3999 		msk = mptcp_sk(newsk);
4000 		msk->in_accept_queue = 0;
4001 
4002 		/* set ssk->sk_socket of accept()ed flows to mptcp socket.
4003 		 * This is needed so NOSPACE flag can be set from tcp stack.
4004 		 */
4005 		mptcp_for_each_subflow(msk, subflow) {
4006 			struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4007 
4008 			if (!ssk->sk_socket)
4009 				mptcp_sock_graft(ssk, newsock);
4010 		}
4011 
4012 		mptcp_rps_record_subflows(msk);
4013 
4014 		/* Do late cleanup for the first subflow as necessary. Also
4015 		 * deal with bad peers not doing a complete shutdown.
4016 		 */
4017 		if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
4018 			__mptcp_close_ssk(newsk, msk->first,
4019 					  mptcp_subflow_ctx(msk->first), 0);
4020 			if (unlikely(list_is_singular(&msk->conn_list)))
4021 				mptcp_set_state(newsk, TCP_CLOSE);
4022 		}
4023 	} else {
4024 tcpfallback:
4025 		newsk->sk_kern_sock = arg->kern;
4026 		lock_sock(newsk);
4027 		__inet_accept(sock, newsock, newsk);
4028 		/* we are being invoked after accepting a non-mp-capable
4029 		 * flow: sk is a tcp_sk, not an mptcp one.
4030 		 *
4031 		 * Hand the socket over to tcp so all further socket ops
4032 		 * bypass mptcp.
4033 		 */
4034 		WRITE_ONCE(newsock->sk->sk_socket->ops,
4035 			   mptcp_fallback_tcp_ops(newsock->sk));
4036 	}
4037 	release_sock(newsk);
4038 
4039 	return 0;
4040 }
4041 
mptcp_check_writeable(struct mptcp_sock * msk)4042 static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
4043 {
4044 	struct sock *sk = (struct sock *)msk;
4045 
4046 	if (__mptcp_stream_is_writeable(sk, 1))
4047 		return EPOLLOUT | EPOLLWRNORM;
4048 
4049 	set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
4050 	smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
4051 	if (__mptcp_stream_is_writeable(sk, 1))
4052 		return EPOLLOUT | EPOLLWRNORM;
4053 
4054 	return 0;
4055 }
4056 
mptcp_poll(struct file * file,struct socket * sock,struct poll_table_struct * wait)4057 static __poll_t mptcp_poll(struct file *file, struct socket *sock,
4058 			   struct poll_table_struct *wait)
4059 {
4060 	struct sock *sk = sock->sk;
4061 	struct mptcp_sock *msk;
4062 	__poll_t mask = 0;
4063 	u8 shutdown;
4064 	int state;
4065 
4066 	msk = mptcp_sk(sk);
4067 	sock_poll_wait(file, sock, wait);
4068 
4069 	state = inet_sk_state_load(sk);
4070 	pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
4071 	if (state == TCP_LISTEN) {
4072 		struct sock *ssk = READ_ONCE(msk->first);
4073 
4074 		if (WARN_ON_ONCE(!ssk))
4075 			return 0;
4076 
4077 		return inet_csk_listen_poll(ssk);
4078 	}
4079 
4080 	shutdown = READ_ONCE(sk->sk_shutdown);
4081 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
4082 		mask |= EPOLLHUP;
4083 	if (shutdown & RCV_SHUTDOWN)
4084 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
4085 
4086 	if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
4087 		mask |= mptcp_check_readable(sk);
4088 		if (shutdown & SEND_SHUTDOWN)
4089 			mask |= EPOLLOUT | EPOLLWRNORM;
4090 		else
4091 			mask |= mptcp_check_writeable(msk);
4092 	} else if (state == TCP_SYN_SENT &&
4093 		   inet_test_bit(DEFER_CONNECT, sk)) {
4094 		/* cf tcp_poll() note about TFO */
4095 		mask |= EPOLLOUT | EPOLLWRNORM;
4096 	}
4097 
4098 	/* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
4099 	smp_rmb();
4100 	if (READ_ONCE(sk->sk_err))
4101 		mask |= EPOLLERR;
4102 
4103 	return mask;
4104 }
4105 
4106 static const struct proto_ops mptcp_stream_ops = {
4107 	.family		   = PF_INET,
4108 	.owner		   = THIS_MODULE,
4109 	.release	   = inet_release,
4110 	.bind		   = mptcp_bind,
4111 	.connect	   = inet_stream_connect,
4112 	.socketpair	   = sock_no_socketpair,
4113 	.accept		   = mptcp_stream_accept,
4114 	.getname	   = inet_getname,
4115 	.poll		   = mptcp_poll,
4116 	.ioctl		   = inet_ioctl,
4117 	.gettstamp	   = sock_gettstamp,
4118 	.listen		   = mptcp_listen,
4119 	.shutdown	   = inet_shutdown,
4120 	.setsockopt	   = sock_common_setsockopt,
4121 	.getsockopt	   = sock_common_getsockopt,
4122 	.sendmsg	   = inet_sendmsg,
4123 	.recvmsg	   = inet_recvmsg,
4124 	.mmap		   = sock_no_mmap,
4125 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4126 };
4127 
4128 static struct inet_protosw mptcp_protosw = {
4129 	.type		= SOCK_STREAM,
4130 	.protocol	= IPPROTO_MPTCP,
4131 	.prot		= &mptcp_prot,
4132 	.ops		= &mptcp_stream_ops,
4133 	.flags		= INET_PROTOSW_ICSK,
4134 };
4135 
mptcp_napi_poll(struct napi_struct * napi,int budget)4136 static int mptcp_napi_poll(struct napi_struct *napi, int budget)
4137 {
4138 	struct mptcp_delegated_action *delegated;
4139 	struct mptcp_subflow_context *subflow;
4140 	int work_done = 0;
4141 
4142 	delegated = container_of(napi, struct mptcp_delegated_action, napi);
4143 	while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
4144 		struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
4145 
4146 		bh_lock_sock_nested(ssk);
4147 		if (!sock_owned_by_user(ssk)) {
4148 			mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
4149 		} else {
4150 			/* tcp_release_cb_override already processed
4151 			 * the action or will do at next release_sock().
4152 			 * In both case must dequeue the subflow here - on the same
4153 			 * CPU that scheduled it.
4154 			 */
4155 			smp_wmb();
4156 			clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
4157 		}
4158 		bh_unlock_sock(ssk);
4159 		sock_put(ssk);
4160 
4161 		if (++work_done == budget)
4162 			return budget;
4163 	}
4164 
4165 	/* always provide a 0 'work_done' argument, so that napi_complete_done
4166 	 * will not try accessing the NULL napi->dev ptr
4167 	 */
4168 	napi_complete_done(napi, 0);
4169 	return work_done;
4170 }
4171 
mptcp_proto_init(void)4172 void __init mptcp_proto_init(void)
4173 {
4174 	struct mptcp_delegated_action *delegated;
4175 	int cpu;
4176 
4177 	mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
4178 
4179 	if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
4180 		panic("Failed to allocate MPTCP pcpu counter\n");
4181 
4182 	mptcp_napi_dev = alloc_netdev_dummy(0);
4183 	if (!mptcp_napi_dev)
4184 		panic("Failed to allocate MPTCP dummy netdev\n");
4185 	for_each_possible_cpu(cpu) {
4186 		delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
4187 		INIT_LIST_HEAD(&delegated->head);
4188 		netif_napi_add_tx(mptcp_napi_dev, &delegated->napi,
4189 				  mptcp_napi_poll);
4190 		napi_enable(&delegated->napi);
4191 	}
4192 
4193 	mptcp_subflow_init();
4194 	mptcp_pm_init();
4195 	mptcp_sched_init();
4196 	mptcp_token_init();
4197 
4198 	if (proto_register(&mptcp_prot, 1) != 0)
4199 		panic("Failed to register MPTCP proto.\n");
4200 
4201 	inet_register_protosw(&mptcp_protosw);
4202 
4203 	BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
4204 }
4205 
4206 #if IS_ENABLED(CONFIG_MPTCP_IPV6)
4207 static const struct proto_ops mptcp_v6_stream_ops = {
4208 	.family		   = PF_INET6,
4209 	.owner		   = THIS_MODULE,
4210 	.release	   = inet6_release,
4211 	.bind		   = mptcp_bind,
4212 	.connect	   = inet_stream_connect,
4213 	.socketpair	   = sock_no_socketpair,
4214 	.accept		   = mptcp_stream_accept,
4215 	.getname	   = inet6_getname,
4216 	.poll		   = mptcp_poll,
4217 	.ioctl		   = inet6_ioctl,
4218 	.gettstamp	   = sock_gettstamp,
4219 	.listen		   = mptcp_listen,
4220 	.shutdown	   = inet_shutdown,
4221 	.setsockopt	   = sock_common_setsockopt,
4222 	.getsockopt	   = sock_common_getsockopt,
4223 	.sendmsg	   = inet6_sendmsg,
4224 	.recvmsg	   = inet6_recvmsg,
4225 	.mmap		   = sock_no_mmap,
4226 #ifdef CONFIG_COMPAT
4227 	.compat_ioctl	   = inet6_compat_ioctl,
4228 #endif
4229 	.set_rcvlowat	   = mptcp_set_rcvlowat,
4230 };
4231 
4232 static struct proto mptcp_v6_prot;
4233 
4234 static struct inet_protosw mptcp_v6_protosw = {
4235 	.type		= SOCK_STREAM,
4236 	.protocol	= IPPROTO_MPTCP,
4237 	.prot		= &mptcp_v6_prot,
4238 	.ops		= &mptcp_v6_stream_ops,
4239 	.flags		= INET_PROTOSW_ICSK,
4240 };
4241 
mptcp_proto_v6_init(void)4242 int __init mptcp_proto_v6_init(void)
4243 {
4244 	int err;
4245 
4246 	mptcp_v6_prot = mptcp_prot;
4247 	strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
4248 	mptcp_v6_prot.slab = NULL;
4249 	mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
4250 	mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
4251 
4252 	err = proto_register(&mptcp_v6_prot, 1);
4253 	if (err)
4254 		return err;
4255 
4256 	err = inet6_register_protosw(&mptcp_v6_protosw);
4257 	if (err)
4258 		proto_unregister(&mptcp_v6_prot);
4259 
4260 	return err;
4261 }
4262 #endif
4263