1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Management Component Transport Protocol (MCTP) - routing 4 * implementation. 5 * 6 * This is currently based on a simple routing table, with no dst cache. The 7 * number of routes should stay fairly small, so the lookup cost is small. 8 * 9 * Copyright (c) 2021 Code Construct 10 * Copyright (c) 2021 Google 11 */ 12 13 #include <linux/idr.h> 14 #include <linux/kconfig.h> 15 #include <linux/mctp.h> 16 #include <linux/netdevice.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/skbuff.h> 19 20 #include <uapi/linux/if_arp.h> 21 22 #include <net/mctp.h> 23 #include <net/mctpdevice.h> 24 #include <net/netlink.h> 25 #include <net/sock.h> 26 27 #include <trace/events/mctp.h> 28 29 static const unsigned int mctp_message_maxlen = 64 * 1024; 30 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ; 31 32 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev); 33 34 /* route output callbacks */ 35 static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb) 36 { 37 kfree_skb(skb); 38 return 0; 39 } 40 41 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb) 42 { 43 struct mctp_skb_cb *cb = mctp_cb(skb); 44 struct mctp_hdr *mh; 45 struct sock *sk; 46 u8 type; 47 48 WARN_ON(!rcu_read_lock_held()); 49 50 /* TODO: look up in skb->cb? */ 51 mh = mctp_hdr(skb); 52 53 if (!skb_headlen(skb)) 54 return NULL; 55 56 type = (*(u8 *)skb->data) & 0x7f; 57 58 sk_for_each_rcu(sk, &net->mctp.binds) { 59 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 60 61 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net) 62 continue; 63 64 if (msk->bind_type != type) 65 continue; 66 67 if (!mctp_address_matches(msk->bind_addr, mh->dest)) 68 continue; 69 70 return msk; 71 } 72 73 return NULL; 74 } 75 76 /* A note on the key allocations. 77 * 78 * struct net->mctp.keys contains our set of currently-allocated keys for 79 * MCTP tag management. The lookup tuple for these is the peer EID, 80 * local EID and MCTP tag. 81 * 82 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a 83 * broadcast message is sent, we may receive responses from any peer EID. 84 * Because the broadcast dest address is equivalent to ANY, we create 85 * a key with (local = local-eid, peer = ANY). This allows a match on the 86 * incoming broadcast responses from any peer. 87 * 88 * We perform lookups when packets are received, and when tags are allocated 89 * in two scenarios: 90 * 91 * - when a packet is sent, with a locally-owned tag: we need to find an 92 * unused tag value for the (local, peer) EID pair. 93 * 94 * - when a tag is manually allocated: we need to find an unused tag value 95 * for the peer EID, but don't have a specific local EID at that stage. 96 * 97 * in the latter case, on successful allocation, we end up with a tag with 98 * (local = ANY, peer = peer-eid). 99 * 100 * So, the key set allows both a local EID of ANY, as well as a peer EID of 101 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast. 102 * The matching (in mctp_key_match()) during lookup allows the match value to 103 * be ANY in either the dest or source addresses. 104 * 105 * When allocating (+ inserting) a tag, we need to check for conflicts amongst 106 * the existing tag set. This requires macthing either exactly on the local 107 * and peer addresses, or either being ANY. 108 */ 109 110 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net, 111 mctp_eid_t local, mctp_eid_t peer, u8 tag) 112 { 113 if (key->net != net) 114 return false; 115 116 if (!mctp_address_matches(key->local_addr, local)) 117 return false; 118 119 if (!mctp_address_matches(key->peer_addr, peer)) 120 return false; 121 122 if (key->tag != tag) 123 return false; 124 125 return true; 126 } 127 128 /* returns a key (with key->lock held, and refcounted), or NULL if no such 129 * key exists. 130 */ 131 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb, 132 unsigned int netid, mctp_eid_t peer, 133 unsigned long *irqflags) 134 __acquires(&key->lock) 135 { 136 struct mctp_sk_key *key, *ret; 137 unsigned long flags; 138 struct mctp_hdr *mh; 139 u8 tag; 140 141 mh = mctp_hdr(skb); 142 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 143 144 ret = NULL; 145 spin_lock_irqsave(&net->mctp.keys_lock, flags); 146 147 hlist_for_each_entry(key, &net->mctp.keys, hlist) { 148 if (!mctp_key_match(key, netid, mh->dest, peer, tag)) 149 continue; 150 151 spin_lock(&key->lock); 152 if (key->valid) { 153 refcount_inc(&key->refs); 154 ret = key; 155 break; 156 } 157 spin_unlock(&key->lock); 158 } 159 160 if (ret) { 161 spin_unlock(&net->mctp.keys_lock); 162 *irqflags = flags; 163 } else { 164 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 165 } 166 167 return ret; 168 } 169 170 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk, 171 unsigned int net, 172 mctp_eid_t local, mctp_eid_t peer, 173 u8 tag, gfp_t gfp) 174 { 175 struct mctp_sk_key *key; 176 177 key = kzalloc(sizeof(*key), gfp); 178 if (!key) 179 return NULL; 180 181 key->net = net; 182 key->peer_addr = peer; 183 key->local_addr = local; 184 key->tag = tag; 185 key->sk = &msk->sk; 186 key->valid = true; 187 spin_lock_init(&key->lock); 188 refcount_set(&key->refs, 1); 189 sock_hold(key->sk); 190 191 return key; 192 } 193 194 void mctp_key_unref(struct mctp_sk_key *key) 195 { 196 unsigned long flags; 197 198 if (!refcount_dec_and_test(&key->refs)) 199 return; 200 201 /* even though no refs exist here, the lock allows us to stay 202 * consistent with the locking requirement of mctp_dev_release_key 203 */ 204 spin_lock_irqsave(&key->lock, flags); 205 mctp_dev_release_key(key->dev, key); 206 spin_unlock_irqrestore(&key->lock, flags); 207 208 sock_put(key->sk); 209 kfree(key); 210 } 211 212 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk) 213 { 214 struct net *net = sock_net(&msk->sk); 215 struct mctp_sk_key *tmp; 216 unsigned long flags; 217 int rc = 0; 218 219 spin_lock_irqsave(&net->mctp.keys_lock, flags); 220 221 if (sock_flag(&msk->sk, SOCK_DEAD)) { 222 rc = -EINVAL; 223 goto out_unlock; 224 } 225 226 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) { 227 if (mctp_key_match(tmp, key->net, key->local_addr, 228 key->peer_addr, key->tag)) { 229 spin_lock(&tmp->lock); 230 if (tmp->valid) 231 rc = -EEXIST; 232 spin_unlock(&tmp->lock); 233 if (rc) 234 break; 235 } 236 } 237 238 if (!rc) { 239 refcount_inc(&key->refs); 240 key->expiry = jiffies + mctp_key_lifetime; 241 timer_reduce(&msk->key_expiry, key->expiry); 242 243 hlist_add_head(&key->hlist, &net->mctp.keys); 244 hlist_add_head(&key->sklist, &msk->keys); 245 } 246 247 out_unlock: 248 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 249 250 return rc; 251 } 252 253 /* Helper for mctp_route_input(). 254 * We're done with the key; unlock and unref the key. 255 * For the usual case of automatic expiry we remove the key from lists. 256 * In the case that manual allocation is set on a key we release the lock 257 * and local ref, reset reassembly, but don't remove from lists. 258 */ 259 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net, 260 unsigned long flags, unsigned long reason) 261 __releases(&key->lock) 262 { 263 struct sk_buff *skb; 264 265 trace_mctp_key_release(key, reason); 266 skb = key->reasm_head; 267 key->reasm_head = NULL; 268 269 if (!key->manual_alloc) { 270 key->reasm_dead = true; 271 key->valid = false; 272 mctp_dev_release_key(key->dev, key); 273 } 274 spin_unlock_irqrestore(&key->lock, flags); 275 276 if (!key->manual_alloc) { 277 spin_lock_irqsave(&net->mctp.keys_lock, flags); 278 if (!hlist_unhashed(&key->hlist)) { 279 hlist_del_init(&key->hlist); 280 hlist_del_init(&key->sklist); 281 mctp_key_unref(key); 282 } 283 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 284 } 285 286 /* and one for the local reference */ 287 mctp_key_unref(key); 288 289 kfree_skb(skb); 290 } 291 292 #ifdef CONFIG_MCTP_FLOWS 293 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) 294 { 295 struct mctp_flow *flow; 296 297 flow = skb_ext_add(skb, SKB_EXT_MCTP); 298 if (!flow) 299 return; 300 301 refcount_inc(&key->refs); 302 flow->key = key; 303 } 304 305 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) 306 { 307 struct mctp_sk_key *key; 308 struct mctp_flow *flow; 309 310 flow = skb_ext_find(skb, SKB_EXT_MCTP); 311 if (!flow) 312 return; 313 314 key = flow->key; 315 316 if (key->dev) { 317 WARN_ON(key->dev != dev); 318 return; 319 } 320 321 mctp_dev_set_key(dev, key); 322 } 323 #else 324 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {} 325 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {} 326 #endif 327 328 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb) 329 { 330 struct mctp_hdr *hdr = mctp_hdr(skb); 331 u8 exp_seq, this_seq; 332 333 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) 334 & MCTP_HDR_SEQ_MASK; 335 336 if (!key->reasm_head) { 337 /* Since we're manipulating the shared frag_list, ensure it isn't 338 * shared with any other SKBs. 339 */ 340 key->reasm_head = skb_unshare(skb, GFP_ATOMIC); 341 if (!key->reasm_head) 342 return -ENOMEM; 343 344 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list); 345 key->last_seq = this_seq; 346 return 0; 347 } 348 349 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK; 350 351 if (this_seq != exp_seq) 352 return -EINVAL; 353 354 if (key->reasm_head->len + skb->len > mctp_message_maxlen) 355 return -EINVAL; 356 357 skb->next = NULL; 358 skb->sk = NULL; 359 *key->reasm_tailp = skb; 360 key->reasm_tailp = &skb->next; 361 362 key->last_seq = this_seq; 363 364 key->reasm_head->data_len += skb->len; 365 key->reasm_head->len += skb->len; 366 key->reasm_head->truesize += skb->truesize; 367 368 return 0; 369 } 370 371 static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb) 372 { 373 struct mctp_sk_key *key, *any_key = NULL; 374 struct net *net = dev_net(skb->dev); 375 struct mctp_sock *msk; 376 struct mctp_hdr *mh; 377 unsigned int netid; 378 unsigned long f; 379 u8 tag, flags; 380 int rc; 381 382 msk = NULL; 383 rc = -EINVAL; 384 385 /* We may be receiving a locally-routed packet; drop source sk 386 * accounting. 387 * 388 * From here, we will either queue the skb - either to a frag_queue, or 389 * to a receiving socket. When that succeeds, we clear the skb pointer; 390 * a non-NULL skb on exit will be otherwise unowned, and hence 391 * kfree_skb()-ed. 392 */ 393 skb_orphan(skb); 394 395 /* ensure we have enough data for a header and a type */ 396 if (skb->len < sizeof(struct mctp_hdr) + 1) 397 goto out; 398 399 /* grab header, advance data ptr */ 400 mh = mctp_hdr(skb); 401 netid = mctp_cb(skb)->net; 402 skb_pull(skb, sizeof(struct mctp_hdr)); 403 404 if (mh->ver != 1) 405 goto out; 406 407 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM); 408 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 409 410 rcu_read_lock(); 411 412 /* lookup socket / reasm context, exactly matching (src,dest,tag). 413 * we hold a ref on the key, and key->lock held. 414 */ 415 key = mctp_lookup_key(net, skb, netid, mh->src, &f); 416 417 if (flags & MCTP_HDR_FLAG_SOM) { 418 if (key) { 419 msk = container_of(key->sk, struct mctp_sock, sk); 420 } else { 421 /* first response to a broadcast? do a more general 422 * key lookup to find the socket, but don't use this 423 * key for reassembly - we'll create a more specific 424 * one for future packets if required (ie, !EOM). 425 * 426 * this lookup requires key->peer to be MCTP_ADDR_ANY, 427 * it doesn't match just any key->peer. 428 */ 429 any_key = mctp_lookup_key(net, skb, netid, 430 MCTP_ADDR_ANY, &f); 431 if (any_key) { 432 msk = container_of(any_key->sk, 433 struct mctp_sock, sk); 434 spin_unlock_irqrestore(&any_key->lock, f); 435 } 436 } 437 438 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO)) 439 msk = mctp_lookup_bind(net, skb); 440 441 if (!msk) { 442 rc = -ENOENT; 443 goto out_unlock; 444 } 445 446 /* single-packet message? deliver to socket, clean up any 447 * pending key. 448 */ 449 if (flags & MCTP_HDR_FLAG_EOM) { 450 rc = sock_queue_rcv_skb(&msk->sk, skb); 451 if (!rc) 452 skb = NULL; 453 if (key) { 454 /* we've hit a pending reassembly; not much we 455 * can do but drop it 456 */ 457 __mctp_key_done_in(key, net, f, 458 MCTP_TRACE_KEY_REPLIED); 459 key = NULL; 460 } 461 goto out_unlock; 462 } 463 464 /* broadcast response or a bind() - create a key for further 465 * packets for this message 466 */ 467 if (!key) { 468 key = mctp_key_alloc(msk, netid, mh->dest, mh->src, 469 tag, GFP_ATOMIC); 470 if (!key) { 471 rc = -ENOMEM; 472 goto out_unlock; 473 } 474 475 /* we can queue without the key lock here, as the 476 * key isn't observable yet 477 */ 478 mctp_frag_queue(key, skb); 479 480 /* if the key_add fails, we've raced with another 481 * SOM packet with the same src, dest and tag. There's 482 * no way to distinguish future packets, so all we 483 * can do is drop; we'll free the skb on exit from 484 * this function. 485 */ 486 rc = mctp_key_add(key, msk); 487 if (!rc) { 488 trace_mctp_key_acquire(key); 489 skb = NULL; 490 } 491 492 /* we don't need to release key->lock on exit, so 493 * clean up here and suppress the unlock via 494 * setting to NULL 495 */ 496 mctp_key_unref(key); 497 key = NULL; 498 499 } else { 500 if (key->reasm_head || key->reasm_dead) { 501 /* duplicate start? drop everything */ 502 __mctp_key_done_in(key, net, f, 503 MCTP_TRACE_KEY_INVALIDATED); 504 rc = -EEXIST; 505 key = NULL; 506 } else { 507 rc = mctp_frag_queue(key, skb); 508 if (!rc) 509 skb = NULL; 510 } 511 } 512 513 } else if (key) { 514 /* this packet continues a previous message; reassemble 515 * using the message-specific key 516 */ 517 518 /* we need to be continuing an existing reassembly... */ 519 if (!key->reasm_head) 520 rc = -EINVAL; 521 else 522 rc = mctp_frag_queue(key, skb); 523 524 if (rc) 525 goto out_unlock; 526 527 /* we've queued; the queue owns the skb now */ 528 skb = NULL; 529 530 /* end of message? deliver to socket, and we're done with 531 * the reassembly/response key 532 */ 533 if (flags & MCTP_HDR_FLAG_EOM) { 534 rc = sock_queue_rcv_skb(key->sk, key->reasm_head); 535 if (!rc) 536 key->reasm_head = NULL; 537 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); 538 key = NULL; 539 } 540 541 } else { 542 /* not a start, no matching key */ 543 rc = -ENOENT; 544 } 545 546 out_unlock: 547 rcu_read_unlock(); 548 if (key) { 549 spin_unlock_irqrestore(&key->lock, f); 550 mctp_key_unref(key); 551 } 552 if (any_key) 553 mctp_key_unref(any_key); 554 out: 555 kfree_skb(skb); 556 return rc; 557 } 558 559 static unsigned int mctp_route_mtu(struct mctp_route *rt) 560 { 561 return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu); 562 } 563 564 static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb) 565 { 566 struct mctp_skb_cb *cb = mctp_cb(skb); 567 struct mctp_hdr *hdr = mctp_hdr(skb); 568 char daddr_buf[MAX_ADDR_LEN]; 569 char *daddr = NULL; 570 unsigned int mtu; 571 int rc; 572 573 skb->protocol = htons(ETH_P_MCTP); 574 575 mtu = READ_ONCE(skb->dev->mtu); 576 if (skb->len > mtu) { 577 kfree_skb(skb); 578 return -EMSGSIZE; 579 } 580 581 if (cb->ifindex) { 582 /* direct route; use the hwaddr we stashed in sendmsg */ 583 if (cb->halen != skb->dev->addr_len) { 584 /* sanity check, sendmsg should have already caught this */ 585 kfree_skb(skb); 586 return -EMSGSIZE; 587 } 588 daddr = cb->haddr; 589 } else { 590 /* If lookup fails let the device handle daddr==NULL */ 591 if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0) 592 daddr = daddr_buf; 593 } 594 595 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol), 596 daddr, skb->dev->dev_addr, skb->len); 597 if (rc < 0) { 598 kfree_skb(skb); 599 return -EHOSTUNREACH; 600 } 601 602 mctp_flow_prepare_output(skb, route->dev); 603 604 rc = dev_queue_xmit(skb); 605 if (rc) 606 rc = net_xmit_errno(rc); 607 608 return rc; 609 } 610 611 /* route alloc/release */ 612 static void mctp_route_release(struct mctp_route *rt) 613 { 614 if (refcount_dec_and_test(&rt->refs)) { 615 mctp_dev_put(rt->dev); 616 kfree_rcu(rt, rcu); 617 } 618 } 619 620 /* returns a route with the refcount at 1 */ 621 static struct mctp_route *mctp_route_alloc(void) 622 { 623 struct mctp_route *rt; 624 625 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 626 if (!rt) 627 return NULL; 628 629 INIT_LIST_HEAD(&rt->list); 630 refcount_set(&rt->refs, 1); 631 rt->output = mctp_route_discard; 632 633 return rt; 634 } 635 636 unsigned int mctp_default_net(struct net *net) 637 { 638 return READ_ONCE(net->mctp.default_net); 639 } 640 641 int mctp_default_net_set(struct net *net, unsigned int index) 642 { 643 if (index == 0) 644 return -EINVAL; 645 WRITE_ONCE(net->mctp.default_net, index); 646 return 0; 647 } 648 649 /* tag management */ 650 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key, 651 struct mctp_sock *msk) 652 { 653 struct netns_mctp *mns = &net->mctp; 654 655 lockdep_assert_held(&mns->keys_lock); 656 657 key->expiry = jiffies + mctp_key_lifetime; 658 timer_reduce(&msk->key_expiry, key->expiry); 659 660 /* we hold the net->key_lock here, allowing updates to both 661 * then net and sk 662 */ 663 hlist_add_head_rcu(&key->hlist, &mns->keys); 664 hlist_add_head_rcu(&key->sklist, &msk->keys); 665 refcount_inc(&key->refs); 666 } 667 668 /* Allocate a locally-owned tag value for (local, peer), and reserve 669 * it for the socket msk 670 */ 671 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk, 672 unsigned int netid, 673 mctp_eid_t local, mctp_eid_t peer, 674 bool manual, u8 *tagp) 675 { 676 struct net *net = sock_net(&msk->sk); 677 struct netns_mctp *mns = &net->mctp; 678 struct mctp_sk_key *key, *tmp; 679 unsigned long flags; 680 u8 tagbits; 681 682 /* for NULL destination EIDs, we may get a response from any peer */ 683 if (peer == MCTP_ADDR_NULL) 684 peer = MCTP_ADDR_ANY; 685 686 /* be optimistic, alloc now */ 687 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL); 688 if (!key) 689 return ERR_PTR(-ENOMEM); 690 691 /* 8 possible tag values */ 692 tagbits = 0xff; 693 694 spin_lock_irqsave(&mns->keys_lock, flags); 695 696 /* Walk through the existing keys, looking for potential conflicting 697 * tags. If we find a conflict, clear that bit from tagbits 698 */ 699 hlist_for_each_entry(tmp, &mns->keys, hlist) { 700 /* We can check the lookup fields (*_addr, tag) without the 701 * lock held, they don't change over the lifetime of the key. 702 */ 703 704 /* tags are net-specific */ 705 if (tmp->net != netid) 706 continue; 707 708 /* if we don't own the tag, it can't conflict */ 709 if (tmp->tag & MCTP_HDR_FLAG_TO) 710 continue; 711 712 /* Since we're avoiding conflicting entries, match peer and 713 * local addresses, including with a wildcard on ANY. See 714 * 'A note on key allocations' for background. 715 */ 716 if (peer != MCTP_ADDR_ANY && 717 !mctp_address_matches(tmp->peer_addr, peer)) 718 continue; 719 720 if (local != MCTP_ADDR_ANY && 721 !mctp_address_matches(tmp->local_addr, local)) 722 continue; 723 724 spin_lock(&tmp->lock); 725 /* key must still be valid. If we find a match, clear the 726 * potential tag value 727 */ 728 if (tmp->valid) 729 tagbits &= ~(1 << tmp->tag); 730 spin_unlock(&tmp->lock); 731 732 if (!tagbits) 733 break; 734 } 735 736 if (tagbits) { 737 key->tag = __ffs(tagbits); 738 mctp_reserve_tag(net, key, msk); 739 trace_mctp_key_acquire(key); 740 741 key->manual_alloc = manual; 742 *tagp = key->tag; 743 } 744 745 spin_unlock_irqrestore(&mns->keys_lock, flags); 746 747 if (!tagbits) { 748 mctp_key_unref(key); 749 return ERR_PTR(-EBUSY); 750 } 751 752 return key; 753 } 754 755 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk, 756 unsigned int netid, 757 mctp_eid_t daddr, 758 u8 req_tag, u8 *tagp) 759 { 760 struct net *net = sock_net(&msk->sk); 761 struct netns_mctp *mns = &net->mctp; 762 struct mctp_sk_key *key, *tmp; 763 unsigned long flags; 764 765 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER); 766 key = NULL; 767 768 spin_lock_irqsave(&mns->keys_lock, flags); 769 770 hlist_for_each_entry(tmp, &mns->keys, hlist) { 771 if (tmp->net != netid) 772 continue; 773 774 if (tmp->tag != req_tag) 775 continue; 776 777 if (!mctp_address_matches(tmp->peer_addr, daddr)) 778 continue; 779 780 if (!tmp->manual_alloc) 781 continue; 782 783 spin_lock(&tmp->lock); 784 if (tmp->valid) { 785 key = tmp; 786 refcount_inc(&key->refs); 787 spin_unlock(&tmp->lock); 788 break; 789 } 790 spin_unlock(&tmp->lock); 791 } 792 spin_unlock_irqrestore(&mns->keys_lock, flags); 793 794 if (!key) 795 return ERR_PTR(-ENOENT); 796 797 if (tagp) 798 *tagp = key->tag; 799 800 return key; 801 } 802 803 /* routing lookups */ 804 static bool mctp_rt_match_eid(struct mctp_route *rt, 805 unsigned int net, mctp_eid_t eid) 806 { 807 return READ_ONCE(rt->dev->net) == net && 808 rt->min <= eid && rt->max >= eid; 809 } 810 811 /* compares match, used for duplicate prevention */ 812 static bool mctp_rt_compare_exact(struct mctp_route *rt1, 813 struct mctp_route *rt2) 814 { 815 ASSERT_RTNL(); 816 return rt1->dev->net == rt2->dev->net && 817 rt1->min == rt2->min && 818 rt1->max == rt2->max; 819 } 820 821 struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet, 822 mctp_eid_t daddr) 823 { 824 struct mctp_route *tmp, *rt = NULL; 825 826 rcu_read_lock(); 827 828 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { 829 /* TODO: add metrics */ 830 if (mctp_rt_match_eid(tmp, dnet, daddr)) { 831 if (refcount_inc_not_zero(&tmp->refs)) { 832 rt = tmp; 833 break; 834 } 835 } 836 } 837 838 rcu_read_unlock(); 839 840 return rt; 841 } 842 843 static struct mctp_route *mctp_route_lookup_null(struct net *net, 844 struct net_device *dev) 845 { 846 struct mctp_route *tmp, *rt = NULL; 847 848 rcu_read_lock(); 849 850 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { 851 if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL && 852 refcount_inc_not_zero(&tmp->refs)) { 853 rt = tmp; 854 break; 855 } 856 } 857 858 rcu_read_unlock(); 859 860 return rt; 861 } 862 863 static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb, 864 unsigned int mtu, u8 tag) 865 { 866 const unsigned int hlen = sizeof(struct mctp_hdr); 867 struct mctp_hdr *hdr, *hdr2; 868 unsigned int pos, size, headroom; 869 struct sk_buff *skb2; 870 int rc; 871 u8 seq; 872 873 hdr = mctp_hdr(skb); 874 seq = 0; 875 rc = 0; 876 877 if (mtu < hlen + 1) { 878 kfree_skb(skb); 879 return -EMSGSIZE; 880 } 881 882 /* keep same headroom as the original skb */ 883 headroom = skb_headroom(skb); 884 885 /* we've got the header */ 886 skb_pull(skb, hlen); 887 888 for (pos = 0; pos < skb->len;) { 889 /* size of message payload */ 890 size = min(mtu - hlen, skb->len - pos); 891 892 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL); 893 if (!skb2) { 894 rc = -ENOMEM; 895 break; 896 } 897 898 /* generic skb copy */ 899 skb2->protocol = skb->protocol; 900 skb2->priority = skb->priority; 901 skb2->dev = skb->dev; 902 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb)); 903 904 if (skb->sk) 905 skb_set_owner_w(skb2, skb->sk); 906 907 /* establish packet */ 908 skb_reserve(skb2, headroom); 909 skb_reset_network_header(skb2); 910 skb_put(skb2, hlen + size); 911 skb2->transport_header = skb2->network_header + hlen; 912 913 /* copy header fields, calculate SOM/EOM flags & seq */ 914 hdr2 = mctp_hdr(skb2); 915 hdr2->ver = hdr->ver; 916 hdr2->dest = hdr->dest; 917 hdr2->src = hdr->src; 918 hdr2->flags_seq_tag = tag & 919 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 920 921 if (pos == 0) 922 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM; 923 924 if (pos + size == skb->len) 925 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM; 926 927 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT; 928 929 /* copy message payload */ 930 skb_copy_bits(skb, pos, skb_transport_header(skb2), size); 931 932 /* we need to copy the extensions, for MCTP flow data */ 933 skb_ext_copy(skb2, skb); 934 935 /* do route */ 936 rc = rt->output(rt, skb2); 937 if (rc) 938 break; 939 940 seq = (seq + 1) & MCTP_HDR_SEQ_MASK; 941 pos += size; 942 } 943 944 consume_skb(skb); 945 return rc; 946 } 947 948 int mctp_local_output(struct sock *sk, struct mctp_route *rt, 949 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag) 950 { 951 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 952 struct mctp_skb_cb *cb = mctp_cb(skb); 953 struct mctp_route tmp_rt = {0}; 954 struct mctp_sk_key *key; 955 struct mctp_hdr *hdr; 956 unsigned long flags; 957 unsigned int netid; 958 unsigned int mtu; 959 mctp_eid_t saddr; 960 bool ext_rt; 961 int rc; 962 u8 tag; 963 964 rc = -ENODEV; 965 966 if (rt) { 967 ext_rt = false; 968 if (WARN_ON(!rt->dev)) 969 goto out_release; 970 971 } else if (cb->ifindex) { 972 struct net_device *dev; 973 974 ext_rt = true; 975 rt = &tmp_rt; 976 977 rcu_read_lock(); 978 dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex); 979 if (!dev) { 980 rcu_read_unlock(); 981 goto out_free; 982 } 983 rt->dev = __mctp_dev_get(dev); 984 rcu_read_unlock(); 985 986 if (!rt->dev) 987 goto out_release; 988 989 /* establish temporary route - we set up enough to keep 990 * mctp_route_output happy 991 */ 992 rt->output = mctp_route_output; 993 rt->mtu = 0; 994 995 } else { 996 rc = -EINVAL; 997 goto out_free; 998 } 999 1000 spin_lock_irqsave(&rt->dev->addrs_lock, flags); 1001 if (rt->dev->num_addrs == 0) { 1002 rc = -EHOSTUNREACH; 1003 } else { 1004 /* use the outbound interface's first address as our source */ 1005 saddr = rt->dev->addrs[0]; 1006 rc = 0; 1007 } 1008 spin_unlock_irqrestore(&rt->dev->addrs_lock, flags); 1009 netid = READ_ONCE(rt->dev->net); 1010 1011 if (rc) 1012 goto out_release; 1013 1014 if (req_tag & MCTP_TAG_OWNER) { 1015 if (req_tag & MCTP_TAG_PREALLOC) 1016 key = mctp_lookup_prealloc_tag(msk, netid, daddr, 1017 req_tag, &tag); 1018 else 1019 key = mctp_alloc_local_tag(msk, netid, saddr, daddr, 1020 false, &tag); 1021 1022 if (IS_ERR(key)) { 1023 rc = PTR_ERR(key); 1024 goto out_release; 1025 } 1026 mctp_skb_set_flow(skb, key); 1027 /* done with the key in this scope */ 1028 mctp_key_unref(key); 1029 tag |= MCTP_HDR_FLAG_TO; 1030 } else { 1031 key = NULL; 1032 tag = req_tag & MCTP_TAG_MASK; 1033 } 1034 1035 skb->protocol = htons(ETH_P_MCTP); 1036 skb->priority = 0; 1037 skb_reset_transport_header(skb); 1038 skb_push(skb, sizeof(struct mctp_hdr)); 1039 skb_reset_network_header(skb); 1040 skb->dev = rt->dev->dev; 1041 1042 /* cb->net will have been set on initial ingress */ 1043 cb->src = saddr; 1044 1045 /* set up common header fields */ 1046 hdr = mctp_hdr(skb); 1047 hdr->ver = 1; 1048 hdr->dest = daddr; 1049 hdr->src = saddr; 1050 1051 mtu = mctp_route_mtu(rt); 1052 1053 if (skb->len + sizeof(struct mctp_hdr) <= mtu) { 1054 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | 1055 MCTP_HDR_FLAG_EOM | tag; 1056 rc = rt->output(rt, skb); 1057 } else { 1058 rc = mctp_do_fragment_route(rt, skb, mtu, tag); 1059 } 1060 1061 /* route output functions consume the skb, even on error */ 1062 skb = NULL; 1063 1064 out_release: 1065 if (!ext_rt) 1066 mctp_route_release(rt); 1067 1068 mctp_dev_put(tmp_rt.dev); 1069 1070 out_free: 1071 kfree_skb(skb); 1072 return rc; 1073 } 1074 1075 /* route management */ 1076 static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start, 1077 unsigned int daddr_extent, unsigned int mtu, 1078 unsigned char type) 1079 { 1080 int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb); 1081 struct net *net = dev_net(mdev->dev); 1082 struct mctp_route *rt, *ert; 1083 1084 if (!mctp_address_unicast(daddr_start)) 1085 return -EINVAL; 1086 1087 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1088 return -EINVAL; 1089 1090 switch (type) { 1091 case RTN_LOCAL: 1092 rtfn = mctp_route_input; 1093 break; 1094 case RTN_UNICAST: 1095 rtfn = mctp_route_output; 1096 break; 1097 default: 1098 return -EINVAL; 1099 } 1100 1101 rt = mctp_route_alloc(); 1102 if (!rt) 1103 return -ENOMEM; 1104 1105 rt->min = daddr_start; 1106 rt->max = daddr_start + daddr_extent; 1107 rt->mtu = mtu; 1108 rt->dev = mdev; 1109 mctp_dev_hold(rt->dev); 1110 rt->type = type; 1111 rt->output = rtfn; 1112 1113 ASSERT_RTNL(); 1114 /* Prevent duplicate identical routes. */ 1115 list_for_each_entry(ert, &net->mctp.routes, list) { 1116 if (mctp_rt_compare_exact(rt, ert)) { 1117 mctp_route_release(rt); 1118 return -EEXIST; 1119 } 1120 } 1121 1122 list_add_rcu(&rt->list, &net->mctp.routes); 1123 1124 return 0; 1125 } 1126 1127 static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start, 1128 unsigned int daddr_extent, unsigned char type) 1129 { 1130 struct net *net = dev_net(mdev->dev); 1131 struct mctp_route *rt, *tmp; 1132 mctp_eid_t daddr_end; 1133 bool dropped; 1134 1135 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1136 return -EINVAL; 1137 1138 daddr_end = daddr_start + daddr_extent; 1139 dropped = false; 1140 1141 ASSERT_RTNL(); 1142 1143 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1144 if (rt->dev == mdev && 1145 rt->min == daddr_start && rt->max == daddr_end && 1146 rt->type == type) { 1147 list_del_rcu(&rt->list); 1148 /* TODO: immediate RTM_DELROUTE */ 1149 mctp_route_release(rt); 1150 dropped = true; 1151 } 1152 } 1153 1154 return dropped ? 0 : -ENOENT; 1155 } 1156 1157 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr) 1158 { 1159 return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL); 1160 } 1161 1162 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr) 1163 { 1164 return mctp_route_remove(mdev, addr, 0, RTN_LOCAL); 1165 } 1166 1167 /* removes all entries for a given device */ 1168 void mctp_route_remove_dev(struct mctp_dev *mdev) 1169 { 1170 struct net *net = dev_net(mdev->dev); 1171 struct mctp_route *rt, *tmp; 1172 1173 ASSERT_RTNL(); 1174 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1175 if (rt->dev == mdev) { 1176 list_del_rcu(&rt->list); 1177 /* TODO: immediate RTM_DELROUTE */ 1178 mctp_route_release(rt); 1179 } 1180 } 1181 } 1182 1183 /* Incoming packet-handling */ 1184 1185 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev, 1186 struct packet_type *pt, 1187 struct net_device *orig_dev) 1188 { 1189 struct net *net = dev_net(dev); 1190 struct mctp_dev *mdev; 1191 struct mctp_skb_cb *cb; 1192 struct mctp_route *rt; 1193 struct mctp_hdr *mh; 1194 1195 rcu_read_lock(); 1196 mdev = __mctp_dev_get(dev); 1197 rcu_read_unlock(); 1198 if (!mdev) { 1199 /* basic non-data sanity checks */ 1200 goto err_drop; 1201 } 1202 1203 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr))) 1204 goto err_drop; 1205 1206 skb_reset_transport_header(skb); 1207 skb_reset_network_header(skb); 1208 1209 /* We have enough for a header; decode and route */ 1210 mh = mctp_hdr(skb); 1211 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX) 1212 goto err_drop; 1213 1214 /* source must be valid unicast or null; drop reserved ranges and 1215 * broadcast 1216 */ 1217 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src))) 1218 goto err_drop; 1219 1220 /* dest address: as above, but allow broadcast */ 1221 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) || 1222 mctp_address_broadcast(mh->dest))) 1223 goto err_drop; 1224 1225 /* MCTP drivers must populate halen/haddr */ 1226 if (dev->type == ARPHRD_MCTP) { 1227 cb = mctp_cb(skb); 1228 } else { 1229 cb = __mctp_cb(skb); 1230 cb->halen = 0; 1231 } 1232 cb->net = READ_ONCE(mdev->net); 1233 cb->ifindex = dev->ifindex; 1234 1235 rt = mctp_route_lookup(net, cb->net, mh->dest); 1236 1237 /* NULL EID, but addressed to our physical address */ 1238 if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST) 1239 rt = mctp_route_lookup_null(net, dev); 1240 1241 if (!rt) 1242 goto err_drop; 1243 1244 rt->output(rt, skb); 1245 mctp_route_release(rt); 1246 mctp_dev_put(mdev); 1247 1248 return NET_RX_SUCCESS; 1249 1250 err_drop: 1251 kfree_skb(skb); 1252 mctp_dev_put(mdev); 1253 return NET_RX_DROP; 1254 } 1255 1256 static struct packet_type mctp_packet_type = { 1257 .type = cpu_to_be16(ETH_P_MCTP), 1258 .func = mctp_pkttype_receive, 1259 }; 1260 1261 /* netlink interface */ 1262 1263 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = { 1264 [RTA_DST] = { .type = NLA_U8 }, 1265 [RTA_METRICS] = { .type = NLA_NESTED }, 1266 [RTA_OIF] = { .type = NLA_U32 }, 1267 }; 1268 1269 /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing. 1270 * tb must hold RTA_MAX+1 elements. 1271 */ 1272 static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh, 1273 struct netlink_ext_ack *extack, 1274 struct nlattr **tb, struct rtmsg **rtm, 1275 struct mctp_dev **mdev, mctp_eid_t *daddr_start) 1276 { 1277 struct net *net = sock_net(skb->sk); 1278 struct net_device *dev; 1279 unsigned int ifindex; 1280 int rc; 1281 1282 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX, 1283 rta_mctp_policy, extack); 1284 if (rc < 0) { 1285 NL_SET_ERR_MSG(extack, "incorrect format"); 1286 return rc; 1287 } 1288 1289 if (!tb[RTA_DST]) { 1290 NL_SET_ERR_MSG(extack, "dst EID missing"); 1291 return -EINVAL; 1292 } 1293 *daddr_start = nla_get_u8(tb[RTA_DST]); 1294 1295 if (!tb[RTA_OIF]) { 1296 NL_SET_ERR_MSG(extack, "ifindex missing"); 1297 return -EINVAL; 1298 } 1299 ifindex = nla_get_u32(tb[RTA_OIF]); 1300 1301 *rtm = nlmsg_data(nlh); 1302 if ((*rtm)->rtm_family != AF_MCTP) { 1303 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP"); 1304 return -EINVAL; 1305 } 1306 1307 dev = __dev_get_by_index(net, ifindex); 1308 if (!dev) { 1309 NL_SET_ERR_MSG(extack, "bad ifindex"); 1310 return -ENODEV; 1311 } 1312 *mdev = mctp_dev_get_rtnl(dev); 1313 if (!*mdev) 1314 return -ENODEV; 1315 1316 if (dev->flags & IFF_LOOPBACK) { 1317 NL_SET_ERR_MSG(extack, "no routes to loopback"); 1318 return -EINVAL; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = { 1325 [RTAX_MTU] = { .type = NLA_U32 }, 1326 }; 1327 1328 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1329 struct netlink_ext_ack *extack) 1330 { 1331 struct nlattr *tb[RTA_MAX + 1]; 1332 struct nlattr *tbx[RTAX_MAX + 1]; 1333 mctp_eid_t daddr_start; 1334 struct mctp_dev *mdev; 1335 struct rtmsg *rtm; 1336 unsigned int mtu; 1337 int rc; 1338 1339 rc = mctp_route_nlparse(skb, nlh, extack, tb, 1340 &rtm, &mdev, &daddr_start); 1341 if (rc < 0) 1342 return rc; 1343 1344 if (rtm->rtm_type != RTN_UNICAST) { 1345 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST"); 1346 return -EINVAL; 1347 } 1348 1349 mtu = 0; 1350 if (tb[RTA_METRICS]) { 1351 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS], 1352 rta_metrics_policy, NULL); 1353 if (rc < 0) 1354 return rc; 1355 if (tbx[RTAX_MTU]) 1356 mtu = nla_get_u32(tbx[RTAX_MTU]); 1357 } 1358 1359 rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu, 1360 rtm->rtm_type); 1361 return rc; 1362 } 1363 1364 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1365 struct netlink_ext_ack *extack) 1366 { 1367 struct nlattr *tb[RTA_MAX + 1]; 1368 mctp_eid_t daddr_start; 1369 struct mctp_dev *mdev; 1370 struct rtmsg *rtm; 1371 int rc; 1372 1373 rc = mctp_route_nlparse(skb, nlh, extack, tb, 1374 &rtm, &mdev, &daddr_start); 1375 if (rc < 0) 1376 return rc; 1377 1378 /* we only have unicast routes */ 1379 if (rtm->rtm_type != RTN_UNICAST) 1380 return -EINVAL; 1381 1382 rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST); 1383 return rc; 1384 } 1385 1386 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt, 1387 u32 portid, u32 seq, int event, unsigned int flags) 1388 { 1389 struct nlmsghdr *nlh; 1390 struct rtmsg *hdr; 1391 void *metrics; 1392 1393 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags); 1394 if (!nlh) 1395 return -EMSGSIZE; 1396 1397 hdr = nlmsg_data(nlh); 1398 hdr->rtm_family = AF_MCTP; 1399 1400 /* we use the _len fields as a number of EIDs, rather than 1401 * a number of bits in the address 1402 */ 1403 hdr->rtm_dst_len = rt->max - rt->min; 1404 hdr->rtm_src_len = 0; 1405 hdr->rtm_tos = 0; 1406 hdr->rtm_table = RT_TABLE_DEFAULT; 1407 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */ 1408 hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */ 1409 hdr->rtm_type = rt->type; 1410 1411 if (nla_put_u8(skb, RTA_DST, rt->min)) 1412 goto cancel; 1413 1414 metrics = nla_nest_start_noflag(skb, RTA_METRICS); 1415 if (!metrics) 1416 goto cancel; 1417 1418 if (rt->mtu) { 1419 if (nla_put_u32(skb, RTAX_MTU, rt->mtu)) 1420 goto cancel; 1421 } 1422 1423 nla_nest_end(skb, metrics); 1424 1425 if (rt->dev) { 1426 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex)) 1427 goto cancel; 1428 } 1429 1430 /* TODO: conditional neighbour physaddr? */ 1431 1432 nlmsg_end(skb, nlh); 1433 1434 return 0; 1435 1436 cancel: 1437 nlmsg_cancel(skb, nlh); 1438 return -EMSGSIZE; 1439 } 1440 1441 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb) 1442 { 1443 struct net *net = sock_net(skb->sk); 1444 struct mctp_route *rt; 1445 int s_idx, idx; 1446 1447 /* TODO: allow filtering on route data, possibly under 1448 * cb->strict_check 1449 */ 1450 1451 /* TODO: change to struct overlay */ 1452 s_idx = cb->args[0]; 1453 idx = 0; 1454 1455 rcu_read_lock(); 1456 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1457 if (idx++ < s_idx) 1458 continue; 1459 if (mctp_fill_rtinfo(skb, rt, 1460 NETLINK_CB(cb->skb).portid, 1461 cb->nlh->nlmsg_seq, 1462 RTM_NEWROUTE, NLM_F_MULTI) < 0) 1463 break; 1464 } 1465 1466 rcu_read_unlock(); 1467 cb->args[0] = idx; 1468 1469 return skb->len; 1470 } 1471 1472 /* net namespace implementation */ 1473 static int __net_init mctp_routes_net_init(struct net *net) 1474 { 1475 struct netns_mctp *ns = &net->mctp; 1476 1477 INIT_LIST_HEAD(&ns->routes); 1478 INIT_HLIST_HEAD(&ns->binds); 1479 mutex_init(&ns->bind_lock); 1480 INIT_HLIST_HEAD(&ns->keys); 1481 spin_lock_init(&ns->keys_lock); 1482 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET)); 1483 return 0; 1484 } 1485 1486 static void __net_exit mctp_routes_net_exit(struct net *net) 1487 { 1488 struct mctp_route *rt; 1489 1490 rcu_read_lock(); 1491 list_for_each_entry_rcu(rt, &net->mctp.routes, list) 1492 mctp_route_release(rt); 1493 rcu_read_unlock(); 1494 } 1495 1496 static struct pernet_operations mctp_net_ops = { 1497 .init = mctp_routes_net_init, 1498 .exit = mctp_routes_net_exit, 1499 }; 1500 1501 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = { 1502 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0}, 1503 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0}, 1504 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0}, 1505 }; 1506 1507 int __init mctp_routes_init(void) 1508 { 1509 int err; 1510 1511 dev_add_pack(&mctp_packet_type); 1512 1513 err = register_pernet_subsys(&mctp_net_ops); 1514 if (err) 1515 goto err_pernet; 1516 1517 err = rtnl_register_many(mctp_route_rtnl_msg_handlers); 1518 if (err) 1519 goto err_rtnl; 1520 1521 return 0; 1522 1523 err_rtnl: 1524 unregister_pernet_subsys(&mctp_net_ops); 1525 err_pernet: 1526 dev_remove_pack(&mctp_packet_type); 1527 return err; 1528 } 1529 1530 void mctp_routes_exit(void) 1531 { 1532 rtnl_unregister_many(mctp_route_rtnl_msg_handlers); 1533 unregister_pernet_subsys(&mctp_net_ops); 1534 dev_remove_pack(&mctp_packet_type); 1535 } 1536 1537 #if IS_ENABLED(CONFIG_MCTP_TEST) 1538 #include "test/route-test.c" 1539 #endif 1540