1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Management Component Transport Protocol (MCTP) - routing 4 * implementation. 5 * 6 * This is currently based on a simple routing table, with no dst cache. The 7 * number of routes should stay fairly small, so the lookup cost is small. 8 * 9 * Copyright (c) 2021 Code Construct 10 * Copyright (c) 2021 Google 11 */ 12 13 #include <linux/idr.h> 14 #include <linux/kconfig.h> 15 #include <linux/mctp.h> 16 #include <linux/netdevice.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/skbuff.h> 19 20 #include <kunit/static_stub.h> 21 22 #include <uapi/linux/if_arp.h> 23 24 #include <net/mctp.h> 25 #include <net/mctpdevice.h> 26 #include <net/netlink.h> 27 #include <net/sock.h> 28 29 #include <trace/events/mctp.h> 30 31 static const unsigned int mctp_message_maxlen = 64 * 1024; 32 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ; 33 34 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev); 35 36 /* route output callbacks */ 37 static int mctp_dst_discard(struct mctp_dst *dst, struct sk_buff *skb) 38 { 39 kfree_skb(skb); 40 return 0; 41 } 42 43 static struct mctp_sock *mctp_lookup_bind_details(struct net *net, 44 struct sk_buff *skb, 45 u8 type, u8 dest, 46 u8 src, bool allow_net_any) 47 { 48 struct mctp_skb_cb *cb = mctp_cb(skb); 49 struct sock *sk; 50 u8 hash; 51 52 WARN_ON_ONCE(!rcu_read_lock_held()); 53 54 hash = mctp_bind_hash(type, dest, src); 55 56 sk_for_each_rcu(sk, &net->mctp.binds[hash]) { 57 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 58 59 if (!allow_net_any && msk->bind_net == MCTP_NET_ANY) 60 continue; 61 62 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net) 63 continue; 64 65 if (msk->bind_type != type) 66 continue; 67 68 if (msk->bind_peer_set && 69 !mctp_address_matches(msk->bind_peer_addr, src)) 70 continue; 71 72 if (!mctp_address_matches(msk->bind_local_addr, dest)) 73 continue; 74 75 return msk; 76 } 77 78 return NULL; 79 } 80 81 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb) 82 { 83 struct mctp_sock *msk; 84 struct mctp_hdr *mh; 85 u8 type; 86 87 /* TODO: look up in skb->cb? */ 88 mh = mctp_hdr(skb); 89 90 if (!skb_headlen(skb)) 91 return NULL; 92 93 type = (*(u8 *)skb->data) & 0x7f; 94 95 /* Look for binds in order of widening scope. A given destination or 96 * source address also implies matching on a particular network. 97 * 98 * - Matching destination and source 99 * - Matching destination 100 * - Matching source 101 * - Matching network, any address 102 * - Any network or address 103 */ 104 105 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, mh->src, 106 false); 107 if (msk) 108 return msk; 109 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, mh->src, 110 false); 111 if (msk) 112 return msk; 113 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, MCTP_ADDR_ANY, 114 false); 115 if (msk) 116 return msk; 117 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, 118 MCTP_ADDR_ANY, false); 119 if (msk) 120 return msk; 121 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, 122 MCTP_ADDR_ANY, true); 123 if (msk) 124 return msk; 125 126 return NULL; 127 } 128 129 /* A note on the key allocations. 130 * 131 * struct net->mctp.keys contains our set of currently-allocated keys for 132 * MCTP tag management. The lookup tuple for these is the peer EID, 133 * local EID and MCTP tag. 134 * 135 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a 136 * broadcast message is sent, we may receive responses from any peer EID. 137 * Because the broadcast dest address is equivalent to ANY, we create 138 * a key with (local = local-eid, peer = ANY). This allows a match on the 139 * incoming broadcast responses from any peer. 140 * 141 * We perform lookups when packets are received, and when tags are allocated 142 * in two scenarios: 143 * 144 * - when a packet is sent, with a locally-owned tag: we need to find an 145 * unused tag value for the (local, peer) EID pair. 146 * 147 * - when a tag is manually allocated: we need to find an unused tag value 148 * for the peer EID, but don't have a specific local EID at that stage. 149 * 150 * in the latter case, on successful allocation, we end up with a tag with 151 * (local = ANY, peer = peer-eid). 152 * 153 * So, the key set allows both a local EID of ANY, as well as a peer EID of 154 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast. 155 * The matching (in mctp_key_match()) during lookup allows the match value to 156 * be ANY in either the dest or source addresses. 157 * 158 * When allocating (+ inserting) a tag, we need to check for conflicts amongst 159 * the existing tag set. This requires macthing either exactly on the local 160 * and peer addresses, or either being ANY. 161 */ 162 163 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net, 164 mctp_eid_t local, mctp_eid_t peer, u8 tag) 165 { 166 if (key->net != net) 167 return false; 168 169 if (!mctp_address_matches(key->local_addr, local)) 170 return false; 171 172 if (!mctp_address_matches(key->peer_addr, peer)) 173 return false; 174 175 if (key->tag != tag) 176 return false; 177 178 return true; 179 } 180 181 /* returns a key (with key->lock held, and refcounted), or NULL if no such 182 * key exists. 183 */ 184 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb, 185 unsigned int netid, mctp_eid_t peer, 186 unsigned long *irqflags) 187 __acquires(&key->lock) 188 { 189 struct mctp_sk_key *key, *ret; 190 unsigned long flags; 191 struct mctp_hdr *mh; 192 u8 tag; 193 194 mh = mctp_hdr(skb); 195 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 196 197 ret = NULL; 198 spin_lock_irqsave(&net->mctp.keys_lock, flags); 199 200 hlist_for_each_entry(key, &net->mctp.keys, hlist) { 201 if (!mctp_key_match(key, netid, mh->dest, peer, tag)) 202 continue; 203 204 spin_lock(&key->lock); 205 if (key->valid) { 206 refcount_inc(&key->refs); 207 ret = key; 208 break; 209 } 210 spin_unlock(&key->lock); 211 } 212 213 if (ret) { 214 spin_unlock(&net->mctp.keys_lock); 215 *irqflags = flags; 216 } else { 217 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 218 } 219 220 return ret; 221 } 222 223 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk, 224 unsigned int net, 225 mctp_eid_t local, mctp_eid_t peer, 226 u8 tag, gfp_t gfp) 227 { 228 struct mctp_sk_key *key; 229 230 key = kzalloc(sizeof(*key), gfp); 231 if (!key) 232 return NULL; 233 234 key->net = net; 235 key->peer_addr = peer; 236 key->local_addr = local; 237 key->tag = tag; 238 key->sk = &msk->sk; 239 key->valid = true; 240 spin_lock_init(&key->lock); 241 refcount_set(&key->refs, 1); 242 sock_hold(key->sk); 243 244 return key; 245 } 246 247 void mctp_key_unref(struct mctp_sk_key *key) 248 { 249 unsigned long flags; 250 251 if (!refcount_dec_and_test(&key->refs)) 252 return; 253 254 /* even though no refs exist here, the lock allows us to stay 255 * consistent with the locking requirement of mctp_dev_release_key 256 */ 257 spin_lock_irqsave(&key->lock, flags); 258 mctp_dev_release_key(key->dev, key); 259 spin_unlock_irqrestore(&key->lock, flags); 260 261 sock_put(key->sk); 262 kfree(key); 263 } 264 265 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk) 266 { 267 struct net *net = sock_net(&msk->sk); 268 struct mctp_sk_key *tmp; 269 unsigned long flags; 270 int rc = 0; 271 272 spin_lock_irqsave(&net->mctp.keys_lock, flags); 273 274 if (sock_flag(&msk->sk, SOCK_DEAD)) { 275 rc = -EINVAL; 276 goto out_unlock; 277 } 278 279 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) { 280 if (mctp_key_match(tmp, key->net, key->local_addr, 281 key->peer_addr, key->tag)) { 282 spin_lock(&tmp->lock); 283 if (tmp->valid) 284 rc = -EEXIST; 285 spin_unlock(&tmp->lock); 286 if (rc) 287 break; 288 } 289 } 290 291 if (!rc) { 292 refcount_inc(&key->refs); 293 key->expiry = jiffies + mctp_key_lifetime; 294 timer_reduce(&msk->key_expiry, key->expiry); 295 296 hlist_add_head(&key->hlist, &net->mctp.keys); 297 hlist_add_head(&key->sklist, &msk->keys); 298 } 299 300 out_unlock: 301 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 302 303 return rc; 304 } 305 306 /* Helper for mctp_route_input(). 307 * We're done with the key; unlock and unref the key. 308 * For the usual case of automatic expiry we remove the key from lists. 309 * In the case that manual allocation is set on a key we release the lock 310 * and local ref, reset reassembly, but don't remove from lists. 311 */ 312 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net, 313 unsigned long flags, unsigned long reason) 314 __releases(&key->lock) 315 { 316 struct sk_buff *skb; 317 318 trace_mctp_key_release(key, reason); 319 skb = key->reasm_head; 320 key->reasm_head = NULL; 321 322 if (!key->manual_alloc) { 323 key->reasm_dead = true; 324 key->valid = false; 325 mctp_dev_release_key(key->dev, key); 326 } 327 spin_unlock_irqrestore(&key->lock, flags); 328 329 if (!key->manual_alloc) { 330 spin_lock_irqsave(&net->mctp.keys_lock, flags); 331 if (!hlist_unhashed(&key->hlist)) { 332 hlist_del_init(&key->hlist); 333 hlist_del_init(&key->sklist); 334 mctp_key_unref(key); 335 } 336 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 337 } 338 339 /* and one for the local reference */ 340 mctp_key_unref(key); 341 342 kfree_skb(skb); 343 } 344 345 #ifdef CONFIG_MCTP_FLOWS 346 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) 347 { 348 struct mctp_flow *flow; 349 350 flow = skb_ext_add(skb, SKB_EXT_MCTP); 351 if (!flow) 352 return; 353 354 refcount_inc(&key->refs); 355 flow->key = key; 356 } 357 358 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) 359 { 360 struct mctp_sk_key *key; 361 struct mctp_flow *flow; 362 363 flow = skb_ext_find(skb, SKB_EXT_MCTP); 364 if (!flow) 365 return; 366 367 key = flow->key; 368 369 if (key->dev) { 370 WARN_ON(key->dev != dev); 371 return; 372 } 373 374 mctp_dev_set_key(dev, key); 375 } 376 #else 377 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {} 378 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {} 379 #endif 380 381 /* takes ownership of skb, both in success and failure cases */ 382 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb) 383 { 384 struct mctp_hdr *hdr = mctp_hdr(skb); 385 u8 exp_seq, this_seq; 386 387 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) 388 & MCTP_HDR_SEQ_MASK; 389 390 if (!key->reasm_head) { 391 /* Since we're manipulating the shared frag_list, ensure it 392 * isn't shared with any other SKBs. In the cloned case, 393 * this will free the skb; callers can no longer access it 394 * safely. 395 */ 396 key->reasm_head = skb_unshare(skb, GFP_ATOMIC); 397 if (!key->reasm_head) 398 return -ENOMEM; 399 400 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list); 401 key->last_seq = this_seq; 402 return 0; 403 } 404 405 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK; 406 407 if (this_seq != exp_seq) 408 goto err_free; 409 410 if (key->reasm_head->len + skb->len > mctp_message_maxlen) 411 goto err_free; 412 413 skb->next = NULL; 414 skb->sk = NULL; 415 *key->reasm_tailp = skb; 416 key->reasm_tailp = &skb->next; 417 418 key->last_seq = this_seq; 419 420 key->reasm_head->data_len += skb->len; 421 key->reasm_head->len += skb->len; 422 key->reasm_head->truesize += skb->truesize; 423 424 return 0; 425 426 err_free: 427 kfree_skb(skb); 428 return -EINVAL; 429 } 430 431 static int mctp_dst_input(struct mctp_dst *dst, struct sk_buff *skb) 432 { 433 struct mctp_sk_key *key, *any_key = NULL; 434 struct net *net = dev_net(skb->dev); 435 struct mctp_sock *msk; 436 struct mctp_hdr *mh; 437 unsigned int netid; 438 unsigned long f; 439 u8 tag, flags; 440 int rc; 441 442 msk = NULL; 443 rc = -EINVAL; 444 445 /* We may be receiving a locally-routed packet; drop source sk 446 * accounting. 447 * 448 * From here, we will either queue the skb - either to a frag_queue, or 449 * to a receiving socket. When that succeeds, we clear the skb pointer; 450 * a non-NULL skb on exit will be otherwise unowned, and hence 451 * kfree_skb()-ed. 452 */ 453 skb_orphan(skb); 454 455 if (skb->pkt_type == PACKET_OUTGOING) 456 skb->pkt_type = PACKET_LOOPBACK; 457 458 /* ensure we have enough data for a header and a type */ 459 if (skb->len < sizeof(struct mctp_hdr) + 1) 460 goto out; 461 462 /* grab header, advance data ptr */ 463 mh = mctp_hdr(skb); 464 netid = mctp_cb(skb)->net; 465 skb_pull(skb, sizeof(struct mctp_hdr)); 466 467 if (mh->ver != 1) 468 goto out; 469 470 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM); 471 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 472 473 rcu_read_lock(); 474 475 /* lookup socket / reasm context, exactly matching (src,dest,tag). 476 * we hold a ref on the key, and key->lock held. 477 */ 478 key = mctp_lookup_key(net, skb, netid, mh->src, &f); 479 480 if (flags & MCTP_HDR_FLAG_SOM) { 481 if (key) { 482 msk = container_of(key->sk, struct mctp_sock, sk); 483 } else { 484 /* first response to a broadcast? do a more general 485 * key lookup to find the socket, but don't use this 486 * key for reassembly - we'll create a more specific 487 * one for future packets if required (ie, !EOM). 488 * 489 * this lookup requires key->peer to be MCTP_ADDR_ANY, 490 * it doesn't match just any key->peer. 491 */ 492 any_key = mctp_lookup_key(net, skb, netid, 493 MCTP_ADDR_ANY, &f); 494 if (any_key) { 495 msk = container_of(any_key->sk, 496 struct mctp_sock, sk); 497 spin_unlock_irqrestore(&any_key->lock, f); 498 } 499 } 500 501 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO)) 502 msk = mctp_lookup_bind(net, skb); 503 504 if (!msk) { 505 rc = -ENOENT; 506 goto out_unlock; 507 } 508 509 /* single-packet message? deliver to socket, clean up any 510 * pending key. 511 */ 512 if (flags & MCTP_HDR_FLAG_EOM) { 513 rc = sock_queue_rcv_skb(&msk->sk, skb); 514 if (!rc) 515 skb = NULL; 516 if (key) { 517 /* we've hit a pending reassembly; not much we 518 * can do but drop it 519 */ 520 __mctp_key_done_in(key, net, f, 521 MCTP_TRACE_KEY_REPLIED); 522 key = NULL; 523 } 524 goto out_unlock; 525 } 526 527 /* broadcast response or a bind() - create a key for further 528 * packets for this message 529 */ 530 if (!key) { 531 key = mctp_key_alloc(msk, netid, mh->dest, mh->src, 532 tag, GFP_ATOMIC); 533 if (!key) { 534 rc = -ENOMEM; 535 goto out_unlock; 536 } 537 538 /* we can queue without the key lock here, as the 539 * key isn't observable yet 540 */ 541 mctp_frag_queue(key, skb); 542 skb = NULL; 543 544 /* if the key_add fails, we've raced with another 545 * SOM packet with the same src, dest and tag. There's 546 * no way to distinguish future packets, so all we 547 * can do is drop. 548 */ 549 rc = mctp_key_add(key, msk); 550 if (!rc) 551 trace_mctp_key_acquire(key); 552 553 /* we don't need to release key->lock on exit, so 554 * clean up here and suppress the unlock via 555 * setting to NULL 556 */ 557 mctp_key_unref(key); 558 key = NULL; 559 560 } else { 561 if (key->reasm_head || key->reasm_dead) { 562 /* duplicate start? drop everything */ 563 __mctp_key_done_in(key, net, f, 564 MCTP_TRACE_KEY_INVALIDATED); 565 rc = -EEXIST; 566 key = NULL; 567 } else { 568 rc = mctp_frag_queue(key, skb); 569 skb = NULL; 570 } 571 } 572 573 } else if (key) { 574 /* this packet continues a previous message; reassemble 575 * using the message-specific key 576 */ 577 578 /* we need to be continuing an existing reassembly... */ 579 if (!key->reasm_head) { 580 rc = -EINVAL; 581 } else { 582 rc = mctp_frag_queue(key, skb); 583 skb = NULL; 584 } 585 586 if (rc) 587 goto out_unlock; 588 589 /* end of message? deliver to socket, and we're done with 590 * the reassembly/response key 591 */ 592 if (flags & MCTP_HDR_FLAG_EOM) { 593 rc = sock_queue_rcv_skb(key->sk, key->reasm_head); 594 if (!rc) 595 key->reasm_head = NULL; 596 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); 597 key = NULL; 598 } 599 600 } else { 601 /* not a start, no matching key */ 602 rc = -ENOENT; 603 } 604 605 out_unlock: 606 rcu_read_unlock(); 607 if (key) { 608 spin_unlock_irqrestore(&key->lock, f); 609 mctp_key_unref(key); 610 } 611 if (any_key) 612 mctp_key_unref(any_key); 613 out: 614 kfree_skb(skb); 615 return rc; 616 } 617 618 static int mctp_dst_output(struct mctp_dst *dst, struct sk_buff *skb) 619 { 620 char daddr_buf[MAX_ADDR_LEN]; 621 char *daddr = NULL; 622 int rc; 623 624 skb->protocol = htons(ETH_P_MCTP); 625 skb->pkt_type = PACKET_OUTGOING; 626 627 if (skb->len > dst->mtu) { 628 kfree_skb(skb); 629 return -EMSGSIZE; 630 } 631 632 /* direct route; use the hwaddr we stashed in sendmsg */ 633 if (dst->halen) { 634 if (dst->halen != skb->dev->addr_len) { 635 /* sanity check, sendmsg should have already caught this */ 636 kfree_skb(skb); 637 return -EMSGSIZE; 638 } 639 daddr = dst->haddr; 640 } else { 641 /* If lookup fails let the device handle daddr==NULL */ 642 if (mctp_neigh_lookup(dst->dev, dst->nexthop, daddr_buf) == 0) 643 daddr = daddr_buf; 644 } 645 646 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol), 647 daddr, skb->dev->dev_addr, skb->len); 648 if (rc < 0) { 649 kfree_skb(skb); 650 return -EHOSTUNREACH; 651 } 652 653 mctp_flow_prepare_output(skb, dst->dev); 654 655 rc = dev_queue_xmit(skb); 656 if (rc) 657 rc = net_xmit_errno(rc); 658 659 return rc; 660 } 661 662 /* route alloc/release */ 663 static void mctp_route_release(struct mctp_route *rt) 664 { 665 if (refcount_dec_and_test(&rt->refs)) { 666 if (rt->dst_type == MCTP_ROUTE_DIRECT) 667 mctp_dev_put(rt->dev); 668 kfree_rcu(rt, rcu); 669 } 670 } 671 672 /* returns a route with the refcount at 1 */ 673 static struct mctp_route *mctp_route_alloc(void) 674 { 675 struct mctp_route *rt; 676 677 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 678 if (!rt) 679 return NULL; 680 681 INIT_LIST_HEAD(&rt->list); 682 refcount_set(&rt->refs, 1); 683 rt->output = mctp_dst_discard; 684 685 return rt; 686 } 687 688 unsigned int mctp_default_net(struct net *net) 689 { 690 return READ_ONCE(net->mctp.default_net); 691 } 692 693 int mctp_default_net_set(struct net *net, unsigned int index) 694 { 695 if (index == 0) 696 return -EINVAL; 697 WRITE_ONCE(net->mctp.default_net, index); 698 return 0; 699 } 700 701 /* tag management */ 702 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key, 703 struct mctp_sock *msk) 704 { 705 struct netns_mctp *mns = &net->mctp; 706 707 lockdep_assert_held(&mns->keys_lock); 708 709 key->expiry = jiffies + mctp_key_lifetime; 710 timer_reduce(&msk->key_expiry, key->expiry); 711 712 /* we hold the net->key_lock here, allowing updates to both 713 * then net and sk 714 */ 715 hlist_add_head_rcu(&key->hlist, &mns->keys); 716 hlist_add_head_rcu(&key->sklist, &msk->keys); 717 refcount_inc(&key->refs); 718 } 719 720 /* Allocate a locally-owned tag value for (local, peer), and reserve 721 * it for the socket msk 722 */ 723 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk, 724 unsigned int netid, 725 mctp_eid_t local, mctp_eid_t peer, 726 bool manual, u8 *tagp) 727 { 728 struct net *net = sock_net(&msk->sk); 729 struct netns_mctp *mns = &net->mctp; 730 struct mctp_sk_key *key, *tmp; 731 unsigned long flags; 732 u8 tagbits; 733 734 /* for NULL destination EIDs, we may get a response from any peer */ 735 if (peer == MCTP_ADDR_NULL) 736 peer = MCTP_ADDR_ANY; 737 738 /* be optimistic, alloc now */ 739 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL); 740 if (!key) 741 return ERR_PTR(-ENOMEM); 742 743 /* 8 possible tag values */ 744 tagbits = 0xff; 745 746 spin_lock_irqsave(&mns->keys_lock, flags); 747 748 /* Walk through the existing keys, looking for potential conflicting 749 * tags. If we find a conflict, clear that bit from tagbits 750 */ 751 hlist_for_each_entry(tmp, &mns->keys, hlist) { 752 /* We can check the lookup fields (*_addr, tag) without the 753 * lock held, they don't change over the lifetime of the key. 754 */ 755 756 /* tags are net-specific */ 757 if (tmp->net != netid) 758 continue; 759 760 /* if we don't own the tag, it can't conflict */ 761 if (tmp->tag & MCTP_HDR_FLAG_TO) 762 continue; 763 764 /* Since we're avoiding conflicting entries, match peer and 765 * local addresses, including with a wildcard on ANY. See 766 * 'A note on key allocations' for background. 767 */ 768 if (peer != MCTP_ADDR_ANY && 769 !mctp_address_matches(tmp->peer_addr, peer)) 770 continue; 771 772 if (local != MCTP_ADDR_ANY && 773 !mctp_address_matches(tmp->local_addr, local)) 774 continue; 775 776 spin_lock(&tmp->lock); 777 /* key must still be valid. If we find a match, clear the 778 * potential tag value 779 */ 780 if (tmp->valid) 781 tagbits &= ~(1 << tmp->tag); 782 spin_unlock(&tmp->lock); 783 784 if (!tagbits) 785 break; 786 } 787 788 if (tagbits) { 789 key->tag = __ffs(tagbits); 790 mctp_reserve_tag(net, key, msk); 791 trace_mctp_key_acquire(key); 792 793 key->manual_alloc = manual; 794 *tagp = key->tag; 795 } 796 797 spin_unlock_irqrestore(&mns->keys_lock, flags); 798 799 if (!tagbits) { 800 mctp_key_unref(key); 801 return ERR_PTR(-EBUSY); 802 } 803 804 return key; 805 } 806 807 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk, 808 unsigned int netid, 809 mctp_eid_t daddr, 810 u8 req_tag, u8 *tagp) 811 { 812 struct net *net = sock_net(&msk->sk); 813 struct netns_mctp *mns = &net->mctp; 814 struct mctp_sk_key *key, *tmp; 815 unsigned long flags; 816 817 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER); 818 key = NULL; 819 820 spin_lock_irqsave(&mns->keys_lock, flags); 821 822 hlist_for_each_entry(tmp, &mns->keys, hlist) { 823 if (tmp->net != netid) 824 continue; 825 826 if (tmp->tag != req_tag) 827 continue; 828 829 if (!mctp_address_matches(tmp->peer_addr, daddr)) 830 continue; 831 832 if (!tmp->manual_alloc) 833 continue; 834 835 spin_lock(&tmp->lock); 836 if (tmp->valid) { 837 key = tmp; 838 refcount_inc(&key->refs); 839 spin_unlock(&tmp->lock); 840 break; 841 } 842 spin_unlock(&tmp->lock); 843 } 844 spin_unlock_irqrestore(&mns->keys_lock, flags); 845 846 if (!key) 847 return ERR_PTR(-ENOENT); 848 849 if (tagp) 850 *tagp = key->tag; 851 852 return key; 853 } 854 855 /* routing lookups */ 856 static unsigned int mctp_route_netid(struct mctp_route *rt) 857 { 858 return rt->dst_type == MCTP_ROUTE_DIRECT ? 859 READ_ONCE(rt->dev->net) : rt->gateway.net; 860 } 861 862 static bool mctp_rt_match_eid(struct mctp_route *rt, 863 unsigned int net, mctp_eid_t eid) 864 { 865 return mctp_route_netid(rt) == net && 866 rt->min <= eid && rt->max >= eid; 867 } 868 869 /* compares match, used for duplicate prevention */ 870 static bool mctp_rt_compare_exact(struct mctp_route *rt1, 871 struct mctp_route *rt2) 872 { 873 ASSERT_RTNL(); 874 return mctp_route_netid(rt1) == mctp_route_netid(rt2) && 875 rt1->min == rt2->min && 876 rt1->max == rt2->max; 877 } 878 879 /* must only be called on a direct route, as the final output hop */ 880 static void mctp_dst_from_route(struct mctp_dst *dst, mctp_eid_t eid, 881 unsigned int mtu, struct mctp_route *route) 882 { 883 mctp_dev_hold(route->dev); 884 dst->nexthop = eid; 885 dst->dev = route->dev; 886 dst->mtu = READ_ONCE(dst->dev->dev->mtu); 887 if (mtu) 888 dst->mtu = min(dst->mtu, mtu); 889 dst->halen = 0; 890 dst->output = route->output; 891 } 892 893 int mctp_dst_from_extaddr(struct mctp_dst *dst, struct net *net, int ifindex, 894 unsigned char halen, const unsigned char *haddr) 895 { 896 struct net_device *netdev; 897 struct mctp_dev *dev; 898 int rc = -ENOENT; 899 900 if (halen > sizeof(dst->haddr)) 901 return -EINVAL; 902 903 rcu_read_lock(); 904 905 netdev = dev_get_by_index_rcu(net, ifindex); 906 if (!netdev) 907 goto out_unlock; 908 909 if (netdev->addr_len != halen) { 910 rc = -EINVAL; 911 goto out_unlock; 912 } 913 914 dev = __mctp_dev_get(netdev); 915 if (!dev) 916 goto out_unlock; 917 918 dst->dev = dev; 919 dst->mtu = READ_ONCE(netdev->mtu); 920 dst->halen = halen; 921 dst->output = mctp_dst_output; 922 dst->nexthop = 0; 923 memcpy(dst->haddr, haddr, halen); 924 925 rc = 0; 926 927 out_unlock: 928 rcu_read_unlock(); 929 return rc; 930 } 931 932 void mctp_dst_release(struct mctp_dst *dst) 933 { 934 mctp_dev_put(dst->dev); 935 } 936 937 static struct mctp_route *mctp_route_lookup_single(struct net *net, 938 unsigned int dnet, 939 mctp_eid_t daddr) 940 { 941 struct mctp_route *rt; 942 943 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 944 if (mctp_rt_match_eid(rt, dnet, daddr)) 945 return rt; 946 } 947 948 return NULL; 949 } 950 951 /* populates *dst on successful lookup, if set */ 952 int mctp_route_lookup(struct net *net, unsigned int dnet, 953 mctp_eid_t daddr, struct mctp_dst *dst) 954 { 955 const unsigned int max_depth = 32; 956 unsigned int depth, mtu = 0; 957 int rc = -EHOSTUNREACH; 958 959 rcu_read_lock(); 960 961 for (depth = 0; depth < max_depth; depth++) { 962 struct mctp_route *rt; 963 964 rt = mctp_route_lookup_single(net, dnet, daddr); 965 if (!rt) 966 break; 967 968 /* clamp mtu to the smallest in the path, allowing 0 969 * to specify no restrictions 970 */ 971 if (mtu && rt->mtu) 972 mtu = min(mtu, rt->mtu); 973 else 974 mtu = mtu ?: rt->mtu; 975 976 if (rt->dst_type == MCTP_ROUTE_DIRECT) { 977 if (dst) 978 mctp_dst_from_route(dst, daddr, mtu, rt); 979 rc = 0; 980 break; 981 982 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) { 983 daddr = rt->gateway.eid; 984 } 985 } 986 987 rcu_read_unlock(); 988 989 return rc; 990 } 991 992 static int mctp_route_lookup_null(struct net *net, struct net_device *dev, 993 struct mctp_dst *dst) 994 { 995 int rc = -EHOSTUNREACH; 996 struct mctp_route *rt; 997 998 rcu_read_lock(); 999 1000 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1001 if (rt->dst_type != MCTP_ROUTE_DIRECT || rt->type != RTN_LOCAL) 1002 continue; 1003 1004 if (rt->dev->dev != dev) 1005 continue; 1006 1007 mctp_dst_from_route(dst, 0, 0, rt); 1008 rc = 0; 1009 break; 1010 } 1011 1012 rcu_read_unlock(); 1013 1014 return rc; 1015 } 1016 1017 static int mctp_do_fragment_route(struct mctp_dst *dst, struct sk_buff *skb, 1018 unsigned int mtu, u8 tag) 1019 { 1020 const unsigned int hlen = sizeof(struct mctp_hdr); 1021 struct mctp_hdr *hdr, *hdr2; 1022 unsigned int pos, size, headroom; 1023 struct sk_buff *skb2; 1024 int rc; 1025 u8 seq; 1026 1027 hdr = mctp_hdr(skb); 1028 seq = 0; 1029 rc = 0; 1030 1031 if (mtu < hlen + 1) { 1032 kfree_skb(skb); 1033 return -EMSGSIZE; 1034 } 1035 1036 /* keep same headroom as the original skb */ 1037 headroom = skb_headroom(skb); 1038 1039 /* we've got the header */ 1040 skb_pull(skb, hlen); 1041 1042 for (pos = 0; pos < skb->len;) { 1043 /* size of message payload */ 1044 size = min(mtu - hlen, skb->len - pos); 1045 1046 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL); 1047 if (!skb2) { 1048 rc = -ENOMEM; 1049 break; 1050 } 1051 1052 /* generic skb copy */ 1053 skb2->protocol = skb->protocol; 1054 skb2->priority = skb->priority; 1055 skb2->dev = skb->dev; 1056 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb)); 1057 1058 if (skb->sk) 1059 skb_set_owner_w(skb2, skb->sk); 1060 1061 /* establish packet */ 1062 skb_reserve(skb2, headroom); 1063 skb_reset_network_header(skb2); 1064 skb_put(skb2, hlen + size); 1065 skb2->transport_header = skb2->network_header + hlen; 1066 1067 /* copy header fields, calculate SOM/EOM flags & seq */ 1068 hdr2 = mctp_hdr(skb2); 1069 hdr2->ver = hdr->ver; 1070 hdr2->dest = hdr->dest; 1071 hdr2->src = hdr->src; 1072 hdr2->flags_seq_tag = tag & 1073 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 1074 1075 if (pos == 0) 1076 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM; 1077 1078 if (pos + size == skb->len) 1079 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM; 1080 1081 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT; 1082 1083 /* copy message payload */ 1084 skb_copy_bits(skb, pos, skb_transport_header(skb2), size); 1085 1086 /* we need to copy the extensions, for MCTP flow data */ 1087 skb_ext_copy(skb2, skb); 1088 1089 /* do route */ 1090 rc = dst->output(dst, skb2); 1091 if (rc) 1092 break; 1093 1094 seq = (seq + 1) & MCTP_HDR_SEQ_MASK; 1095 pos += size; 1096 } 1097 1098 consume_skb(skb); 1099 return rc; 1100 } 1101 1102 int mctp_local_output(struct sock *sk, struct mctp_dst *dst, 1103 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag) 1104 { 1105 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 1106 struct mctp_sk_key *key; 1107 struct mctp_hdr *hdr; 1108 unsigned long flags; 1109 unsigned int netid; 1110 unsigned int mtu; 1111 mctp_eid_t saddr; 1112 int rc; 1113 u8 tag; 1114 1115 KUNIT_STATIC_STUB_REDIRECT(mctp_local_output, sk, dst, skb, daddr, 1116 req_tag); 1117 1118 rc = -ENODEV; 1119 1120 spin_lock_irqsave(&dst->dev->addrs_lock, flags); 1121 if (dst->dev->num_addrs == 0) { 1122 rc = -EHOSTUNREACH; 1123 } else { 1124 /* use the outbound interface's first address as our source */ 1125 saddr = dst->dev->addrs[0]; 1126 rc = 0; 1127 } 1128 spin_unlock_irqrestore(&dst->dev->addrs_lock, flags); 1129 netid = READ_ONCE(dst->dev->net); 1130 1131 if (rc) 1132 goto out_release; 1133 1134 if (req_tag & MCTP_TAG_OWNER) { 1135 if (req_tag & MCTP_TAG_PREALLOC) 1136 key = mctp_lookup_prealloc_tag(msk, netid, daddr, 1137 req_tag, &tag); 1138 else 1139 key = mctp_alloc_local_tag(msk, netid, saddr, daddr, 1140 false, &tag); 1141 1142 if (IS_ERR(key)) { 1143 rc = PTR_ERR(key); 1144 goto out_release; 1145 } 1146 mctp_skb_set_flow(skb, key); 1147 /* done with the key in this scope */ 1148 mctp_key_unref(key); 1149 tag |= MCTP_HDR_FLAG_TO; 1150 } else { 1151 key = NULL; 1152 tag = req_tag & MCTP_TAG_MASK; 1153 } 1154 1155 skb->pkt_type = PACKET_OUTGOING; 1156 skb->protocol = htons(ETH_P_MCTP); 1157 skb->priority = 0; 1158 skb_reset_transport_header(skb); 1159 skb_push(skb, sizeof(struct mctp_hdr)); 1160 skb_reset_network_header(skb); 1161 skb->dev = dst->dev->dev; 1162 1163 /* set up common header fields */ 1164 hdr = mctp_hdr(skb); 1165 hdr->ver = 1; 1166 hdr->dest = daddr; 1167 hdr->src = saddr; 1168 1169 mtu = dst->mtu; 1170 1171 if (skb->len + sizeof(struct mctp_hdr) <= mtu) { 1172 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | 1173 MCTP_HDR_FLAG_EOM | tag; 1174 rc = dst->output(dst, skb); 1175 } else { 1176 rc = mctp_do_fragment_route(dst, skb, mtu, tag); 1177 } 1178 1179 /* route output functions consume the skb, even on error */ 1180 skb = NULL; 1181 1182 out_release: 1183 kfree_skb(skb); 1184 return rc; 1185 } 1186 1187 /* route management */ 1188 1189 /* mctp_route_add(): Add the provided route, previously allocated via 1190 * mctp_route_alloc(). On success, takes ownership of @rt, which includes a 1191 * hold on rt->dev for usage in the route table. On failure a caller will want 1192 * to mctp_route_release(). 1193 * 1194 * We expect that the caller has set rt->type, rt->dst_type, rt->min, rt->max, 1195 * rt->mtu and either rt->dev (with a reference held appropriately) or 1196 * rt->gateway. Other fields will be populated. 1197 */ 1198 static int mctp_route_add(struct net *net, struct mctp_route *rt) 1199 { 1200 struct mctp_route *ert; 1201 1202 if (!mctp_address_unicast(rt->min) || !mctp_address_unicast(rt->max)) 1203 return -EINVAL; 1204 1205 if (rt->dst_type == MCTP_ROUTE_DIRECT && !rt->dev) 1206 return -EINVAL; 1207 1208 if (rt->dst_type == MCTP_ROUTE_GATEWAY && !rt->gateway.eid) 1209 return -EINVAL; 1210 1211 switch (rt->type) { 1212 case RTN_LOCAL: 1213 rt->output = mctp_dst_input; 1214 break; 1215 case RTN_UNICAST: 1216 rt->output = mctp_dst_output; 1217 break; 1218 default: 1219 return -EINVAL; 1220 } 1221 1222 ASSERT_RTNL(); 1223 1224 /* Prevent duplicate identical routes. */ 1225 list_for_each_entry(ert, &net->mctp.routes, list) { 1226 if (mctp_rt_compare_exact(rt, ert)) { 1227 return -EEXIST; 1228 } 1229 } 1230 1231 list_add_rcu(&rt->list, &net->mctp.routes); 1232 1233 return 0; 1234 } 1235 1236 static int mctp_route_remove(struct net *net, unsigned int netid, 1237 mctp_eid_t daddr_start, unsigned int daddr_extent, 1238 unsigned char type) 1239 { 1240 struct mctp_route *rt, *tmp; 1241 mctp_eid_t daddr_end; 1242 bool dropped; 1243 1244 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1245 return -EINVAL; 1246 1247 daddr_end = daddr_start + daddr_extent; 1248 dropped = false; 1249 1250 ASSERT_RTNL(); 1251 1252 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1253 if (mctp_route_netid(rt) == netid && 1254 rt->min == daddr_start && rt->max == daddr_end && 1255 rt->type == type) { 1256 list_del_rcu(&rt->list); 1257 /* TODO: immediate RTM_DELROUTE */ 1258 mctp_route_release(rt); 1259 dropped = true; 1260 } 1261 } 1262 1263 return dropped ? 0 : -ENOENT; 1264 } 1265 1266 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr) 1267 { 1268 struct mctp_route *rt; 1269 int rc; 1270 1271 rt = mctp_route_alloc(); 1272 if (!rt) 1273 return -ENOMEM; 1274 1275 rt->min = addr; 1276 rt->max = addr; 1277 rt->dst_type = MCTP_ROUTE_DIRECT; 1278 rt->dev = mdev; 1279 rt->type = RTN_LOCAL; 1280 1281 mctp_dev_hold(rt->dev); 1282 1283 rc = mctp_route_add(dev_net(mdev->dev), rt); 1284 if (rc) 1285 mctp_route_release(rt); 1286 1287 return rc; 1288 } 1289 1290 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr) 1291 { 1292 return mctp_route_remove(dev_net(mdev->dev), mdev->net, 1293 addr, 0, RTN_LOCAL); 1294 } 1295 1296 /* removes all entries for a given device */ 1297 void mctp_route_remove_dev(struct mctp_dev *mdev) 1298 { 1299 struct net *net = dev_net(mdev->dev); 1300 struct mctp_route *rt, *tmp; 1301 1302 ASSERT_RTNL(); 1303 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1304 if (rt->dst_type == MCTP_ROUTE_DIRECT && rt->dev == mdev) { 1305 list_del_rcu(&rt->list); 1306 /* TODO: immediate RTM_DELROUTE */ 1307 mctp_route_release(rt); 1308 } 1309 } 1310 } 1311 1312 /* Incoming packet-handling */ 1313 1314 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev, 1315 struct packet_type *pt, 1316 struct net_device *orig_dev) 1317 { 1318 struct net *net = dev_net(dev); 1319 struct mctp_dev *mdev; 1320 struct mctp_skb_cb *cb; 1321 struct mctp_dst dst; 1322 struct mctp_hdr *mh; 1323 int rc; 1324 1325 rcu_read_lock(); 1326 mdev = __mctp_dev_get(dev); 1327 rcu_read_unlock(); 1328 if (!mdev) { 1329 /* basic non-data sanity checks */ 1330 goto err_drop; 1331 } 1332 1333 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr))) 1334 goto err_drop; 1335 1336 skb_reset_transport_header(skb); 1337 skb_reset_network_header(skb); 1338 1339 /* We have enough for a header; decode and route */ 1340 mh = mctp_hdr(skb); 1341 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX) 1342 goto err_drop; 1343 1344 /* source must be valid unicast or null; drop reserved ranges and 1345 * broadcast 1346 */ 1347 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src))) 1348 goto err_drop; 1349 1350 /* dest address: as above, but allow broadcast */ 1351 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) || 1352 mctp_address_broadcast(mh->dest))) 1353 goto err_drop; 1354 1355 /* MCTP drivers must populate halen/haddr */ 1356 if (dev->type == ARPHRD_MCTP) { 1357 cb = mctp_cb(skb); 1358 } else { 1359 cb = __mctp_cb(skb); 1360 cb->halen = 0; 1361 } 1362 cb->net = READ_ONCE(mdev->net); 1363 cb->ifindex = dev->ifindex; 1364 1365 rc = mctp_route_lookup(net, cb->net, mh->dest, &dst); 1366 1367 /* NULL EID, but addressed to our physical address */ 1368 if (rc && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST) 1369 rc = mctp_route_lookup_null(net, dev, &dst); 1370 1371 if (rc) 1372 goto err_drop; 1373 1374 dst.output(&dst, skb); 1375 mctp_dst_release(&dst); 1376 mctp_dev_put(mdev); 1377 1378 return NET_RX_SUCCESS; 1379 1380 err_drop: 1381 kfree_skb(skb); 1382 mctp_dev_put(mdev); 1383 return NET_RX_DROP; 1384 } 1385 1386 static struct packet_type mctp_packet_type = { 1387 .type = cpu_to_be16(ETH_P_MCTP), 1388 .func = mctp_pkttype_receive, 1389 }; 1390 1391 /* netlink interface */ 1392 1393 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = { 1394 [RTA_DST] = { .type = NLA_U8 }, 1395 [RTA_METRICS] = { .type = NLA_NESTED }, 1396 [RTA_OIF] = { .type = NLA_U32 }, 1397 [RTA_GATEWAY] = NLA_POLICY_EXACT_LEN(sizeof(struct mctp_fq_addr)), 1398 }; 1399 1400 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = { 1401 [RTAX_MTU] = { .type = NLA_U32 }, 1402 }; 1403 1404 /* base parsing; common to both _lookup and _populate variants. 1405 * 1406 * For gateway routes (which have a RTA_GATEWAY, and no RTA_OIF), we populate 1407 * *gatweayp. for direct routes (RTA_OIF, no RTA_GATEWAY), we populate *mdev. 1408 */ 1409 static int mctp_route_nlparse_common(struct net *net, struct nlmsghdr *nlh, 1410 struct netlink_ext_ack *extack, 1411 struct nlattr **tb, struct rtmsg **rtm, 1412 struct mctp_dev **mdev, 1413 struct mctp_fq_addr *gatewayp, 1414 mctp_eid_t *daddr_start) 1415 { 1416 struct mctp_fq_addr *gateway = NULL; 1417 unsigned int ifindex = 0; 1418 struct net_device *dev; 1419 int rc; 1420 1421 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX, 1422 rta_mctp_policy, extack); 1423 if (rc < 0) { 1424 NL_SET_ERR_MSG(extack, "incorrect format"); 1425 return rc; 1426 } 1427 1428 if (!tb[RTA_DST]) { 1429 NL_SET_ERR_MSG(extack, "dst EID missing"); 1430 return -EINVAL; 1431 } 1432 *daddr_start = nla_get_u8(tb[RTA_DST]); 1433 1434 if (tb[RTA_OIF]) 1435 ifindex = nla_get_u32(tb[RTA_OIF]); 1436 1437 if (tb[RTA_GATEWAY]) 1438 gateway = nla_data(tb[RTA_GATEWAY]); 1439 1440 if (ifindex && gateway) { 1441 NL_SET_ERR_MSG(extack, 1442 "cannot specify both ifindex and gateway"); 1443 return -EINVAL; 1444 1445 } else if (ifindex) { 1446 dev = __dev_get_by_index(net, ifindex); 1447 if (!dev) { 1448 NL_SET_ERR_MSG(extack, "bad ifindex"); 1449 return -ENODEV; 1450 } 1451 *mdev = mctp_dev_get_rtnl(dev); 1452 if (!*mdev) 1453 return -ENODEV; 1454 gatewayp->eid = 0; 1455 1456 } else if (gateway) { 1457 if (!mctp_address_unicast(gateway->eid)) { 1458 NL_SET_ERR_MSG(extack, "bad gateway"); 1459 return -EINVAL; 1460 } 1461 1462 gatewayp->eid = gateway->eid; 1463 gatewayp->net = gateway->net != MCTP_NET_ANY ? 1464 gateway->net : 1465 READ_ONCE(net->mctp.default_net); 1466 *mdev = NULL; 1467 1468 } else { 1469 NL_SET_ERR_MSG(extack, "no route output provided"); 1470 return -EINVAL; 1471 } 1472 1473 *rtm = nlmsg_data(nlh); 1474 if ((*rtm)->rtm_family != AF_MCTP) { 1475 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP"); 1476 return -EINVAL; 1477 } 1478 1479 if ((*rtm)->rtm_type != RTN_UNICAST) { 1480 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST"); 1481 return -EINVAL; 1482 } 1483 1484 return 0; 1485 } 1486 1487 /* Route parsing for lookup operations; we only need the "route target" 1488 * components (ie., network and dest-EID range). 1489 */ 1490 static int mctp_route_nlparse_lookup(struct net *net, struct nlmsghdr *nlh, 1491 struct netlink_ext_ack *extack, 1492 unsigned char *type, unsigned int *netid, 1493 mctp_eid_t *daddr_start, 1494 unsigned int *daddr_extent) 1495 { 1496 struct nlattr *tb[RTA_MAX + 1]; 1497 struct mctp_fq_addr gw; 1498 struct mctp_dev *mdev; 1499 struct rtmsg *rtm; 1500 int rc; 1501 1502 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm, 1503 &mdev, &gw, daddr_start); 1504 if (rc) 1505 return rc; 1506 1507 if (mdev) { 1508 *netid = mdev->net; 1509 } else if (gw.eid) { 1510 *netid = gw.net; 1511 } else { 1512 /* bug: _nlparse_common should not allow this */ 1513 return -1; 1514 } 1515 1516 *type = rtm->rtm_type; 1517 *daddr_extent = rtm->rtm_dst_len; 1518 1519 return 0; 1520 } 1521 1522 /* Full route parse for RTM_NEWROUTE: populate @rt. On success, 1523 * MCTP_ROUTE_DIRECT routes (ie, those with a direct dev) will hold a reference 1524 * to that dev. 1525 */ 1526 static int mctp_route_nlparse_populate(struct net *net, struct nlmsghdr *nlh, 1527 struct netlink_ext_ack *extack, 1528 struct mctp_route *rt) 1529 { 1530 struct nlattr *tbx[RTAX_MAX + 1]; 1531 struct nlattr *tb[RTA_MAX + 1]; 1532 unsigned int daddr_extent; 1533 struct mctp_fq_addr gw; 1534 mctp_eid_t daddr_start; 1535 struct mctp_dev *dev; 1536 struct rtmsg *rtm; 1537 u32 mtu = 0; 1538 int rc; 1539 1540 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm, 1541 &dev, &gw, &daddr_start); 1542 if (rc) 1543 return rc; 1544 1545 daddr_extent = rtm->rtm_dst_len; 1546 1547 if (daddr_extent > 0xff || daddr_extent + daddr_start >= 255) { 1548 NL_SET_ERR_MSG(extack, "invalid eid range"); 1549 return -EINVAL; 1550 } 1551 1552 if (tb[RTA_METRICS]) { 1553 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS], 1554 rta_metrics_policy, NULL); 1555 if (rc < 0) { 1556 NL_SET_ERR_MSG(extack, "incorrect RTA_METRICS format"); 1557 return rc; 1558 } 1559 if (tbx[RTAX_MTU]) 1560 mtu = nla_get_u32(tbx[RTAX_MTU]); 1561 } 1562 1563 rt->type = rtm->rtm_type; 1564 rt->min = daddr_start; 1565 rt->max = daddr_start + daddr_extent; 1566 rt->mtu = mtu; 1567 if (gw.eid) { 1568 rt->dst_type = MCTP_ROUTE_GATEWAY; 1569 rt->gateway.eid = gw.eid; 1570 rt->gateway.net = gw.net; 1571 } else { 1572 rt->dst_type = MCTP_ROUTE_DIRECT; 1573 rt->dev = dev; 1574 mctp_dev_hold(rt->dev); 1575 } 1576 1577 return 0; 1578 } 1579 1580 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1581 struct netlink_ext_ack *extack) 1582 { 1583 struct net *net = sock_net(skb->sk); 1584 struct mctp_route *rt; 1585 int rc; 1586 1587 rt = mctp_route_alloc(); 1588 if (!rt) 1589 return -ENOMEM; 1590 1591 rc = mctp_route_nlparse_populate(net, nlh, extack, rt); 1592 if (rc < 0) 1593 goto err_free; 1594 1595 if (rt->dst_type == MCTP_ROUTE_DIRECT && 1596 rt->dev->dev->flags & IFF_LOOPBACK) { 1597 NL_SET_ERR_MSG(extack, "no routes to loopback"); 1598 rc = -EINVAL; 1599 goto err_free; 1600 } 1601 1602 rc = mctp_route_add(net, rt); 1603 if (!rc) 1604 return 0; 1605 1606 err_free: 1607 mctp_route_release(rt); 1608 return rc; 1609 } 1610 1611 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1612 struct netlink_ext_ack *extack) 1613 { 1614 struct net *net = sock_net(skb->sk); 1615 unsigned int netid, daddr_extent; 1616 unsigned char type = RTN_UNSPEC; 1617 mctp_eid_t daddr_start; 1618 int rc; 1619 1620 rc = mctp_route_nlparse_lookup(net, nlh, extack, &type, &netid, 1621 &daddr_start, &daddr_extent); 1622 if (rc < 0) 1623 return rc; 1624 1625 /* we only have unicast routes */ 1626 if (type != RTN_UNICAST) 1627 return -EINVAL; 1628 1629 rc = mctp_route_remove(net, netid, daddr_start, daddr_extent, type); 1630 return rc; 1631 } 1632 1633 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt, 1634 u32 portid, u32 seq, int event, unsigned int flags) 1635 { 1636 struct nlmsghdr *nlh; 1637 struct rtmsg *hdr; 1638 void *metrics; 1639 1640 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags); 1641 if (!nlh) 1642 return -EMSGSIZE; 1643 1644 hdr = nlmsg_data(nlh); 1645 hdr->rtm_family = AF_MCTP; 1646 1647 /* we use the _len fields as a number of EIDs, rather than 1648 * a number of bits in the address 1649 */ 1650 hdr->rtm_dst_len = rt->max - rt->min; 1651 hdr->rtm_src_len = 0; 1652 hdr->rtm_tos = 0; 1653 hdr->rtm_table = RT_TABLE_DEFAULT; 1654 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */ 1655 hdr->rtm_type = rt->type; 1656 1657 if (nla_put_u8(skb, RTA_DST, rt->min)) 1658 goto cancel; 1659 1660 metrics = nla_nest_start_noflag(skb, RTA_METRICS); 1661 if (!metrics) 1662 goto cancel; 1663 1664 if (rt->mtu) { 1665 if (nla_put_u32(skb, RTAX_MTU, rt->mtu)) 1666 goto cancel; 1667 } 1668 1669 nla_nest_end(skb, metrics); 1670 1671 if (rt->dst_type == MCTP_ROUTE_DIRECT) { 1672 hdr->rtm_scope = RT_SCOPE_LINK; 1673 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex)) 1674 goto cancel; 1675 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) { 1676 hdr->rtm_scope = RT_SCOPE_UNIVERSE; 1677 if (nla_put(skb, RTA_GATEWAY, 1678 sizeof(rt->gateway), &rt->gateway)) 1679 goto cancel; 1680 } 1681 1682 nlmsg_end(skb, nlh); 1683 1684 return 0; 1685 1686 cancel: 1687 nlmsg_cancel(skb, nlh); 1688 return -EMSGSIZE; 1689 } 1690 1691 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb) 1692 { 1693 struct net *net = sock_net(skb->sk); 1694 struct mctp_route *rt; 1695 int s_idx, idx; 1696 1697 /* TODO: allow filtering on route data, possibly under 1698 * cb->strict_check 1699 */ 1700 1701 /* TODO: change to struct overlay */ 1702 s_idx = cb->args[0]; 1703 idx = 0; 1704 1705 rcu_read_lock(); 1706 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1707 if (idx++ < s_idx) 1708 continue; 1709 if (mctp_fill_rtinfo(skb, rt, 1710 NETLINK_CB(cb->skb).portid, 1711 cb->nlh->nlmsg_seq, 1712 RTM_NEWROUTE, NLM_F_MULTI) < 0) 1713 break; 1714 } 1715 1716 rcu_read_unlock(); 1717 cb->args[0] = idx; 1718 1719 return skb->len; 1720 } 1721 1722 /* net namespace implementation */ 1723 static int __net_init mctp_routes_net_init(struct net *net) 1724 { 1725 struct netns_mctp *ns = &net->mctp; 1726 1727 INIT_LIST_HEAD(&ns->routes); 1728 hash_init(ns->binds); 1729 mutex_init(&ns->bind_lock); 1730 INIT_HLIST_HEAD(&ns->keys); 1731 spin_lock_init(&ns->keys_lock); 1732 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET)); 1733 return 0; 1734 } 1735 1736 static void __net_exit mctp_routes_net_exit(struct net *net) 1737 { 1738 struct mctp_route *rt; 1739 1740 rcu_read_lock(); 1741 list_for_each_entry_rcu(rt, &net->mctp.routes, list) 1742 mctp_route_release(rt); 1743 rcu_read_unlock(); 1744 } 1745 1746 static struct pernet_operations mctp_net_ops = { 1747 .init = mctp_routes_net_init, 1748 .exit = mctp_routes_net_exit, 1749 }; 1750 1751 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = { 1752 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0}, 1753 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0}, 1754 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0}, 1755 }; 1756 1757 int __init mctp_routes_init(void) 1758 { 1759 int err; 1760 1761 dev_add_pack(&mctp_packet_type); 1762 1763 err = register_pernet_subsys(&mctp_net_ops); 1764 if (err) 1765 goto err_pernet; 1766 1767 err = rtnl_register_many(mctp_route_rtnl_msg_handlers); 1768 if (err) 1769 goto err_rtnl; 1770 1771 return 0; 1772 1773 err_rtnl: 1774 unregister_pernet_subsys(&mctp_net_ops); 1775 err_pernet: 1776 dev_remove_pack(&mctp_packet_type); 1777 return err; 1778 } 1779 1780 void mctp_routes_exit(void) 1781 { 1782 rtnl_unregister_many(mctp_route_rtnl_msg_handlers); 1783 unregister_pernet_subsys(&mctp_net_ops); 1784 dev_remove_pack(&mctp_packet_type); 1785 } 1786 1787 #if IS_ENABLED(CONFIG_MCTP_TEST) 1788 #include "test/route-test.c" 1789 #endif 1790