xref: /linux/net/mctp/route.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Management Component Transport Protocol (MCTP) - routing
4  * implementation.
5  *
6  * This is currently based on a simple routing table, with no dst cache. The
7  * number of routes should stay fairly small, so the lookup cost is small.
8  *
9  * Copyright (c) 2021 Code Construct
10  * Copyright (c) 2021 Google
11  */
12 
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19 
20 #include <uapi/linux/if_arp.h>
21 
22 #include <net/mctp.h>
23 #include <net/mctpdevice.h>
24 #include <net/netlink.h>
25 #include <net/sock.h>
26 
27 #include <trace/events/mctp.h>
28 
29 static const unsigned int mctp_message_maxlen = 64 * 1024;
30 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
31 
32 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
33 
34 /* route output callbacks */
35 static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb)
36 {
37 	kfree_skb(skb);
38 	return 0;
39 }
40 
41 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
42 {
43 	struct mctp_skb_cb *cb = mctp_cb(skb);
44 	struct mctp_hdr *mh;
45 	struct sock *sk;
46 	u8 type;
47 
48 	WARN_ON(!rcu_read_lock_held());
49 
50 	/* TODO: look up in skb->cb? */
51 	mh = mctp_hdr(skb);
52 
53 	if (!skb_headlen(skb))
54 		return NULL;
55 
56 	type = (*(u8 *)skb->data) & 0x7f;
57 
58 	sk_for_each_rcu(sk, &net->mctp.binds) {
59 		struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
60 
61 		if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
62 			continue;
63 
64 		if (msk->bind_type != type)
65 			continue;
66 
67 		if (!mctp_address_matches(msk->bind_addr, mh->dest))
68 			continue;
69 
70 		return msk;
71 	}
72 
73 	return NULL;
74 }
75 
76 /* A note on the key allocations.
77  *
78  * struct net->mctp.keys contains our set of currently-allocated keys for
79  * MCTP tag management. The lookup tuple for these is the peer EID,
80  * local EID and MCTP tag.
81  *
82  * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
83  * broadcast message is sent, we may receive responses from any peer EID.
84  * Because the broadcast dest address is equivalent to ANY, we create
85  * a key with (local = local-eid, peer = ANY). This allows a match on the
86  * incoming broadcast responses from any peer.
87  *
88  * We perform lookups when packets are received, and when tags are allocated
89  * in two scenarios:
90  *
91  *  - when a packet is sent, with a locally-owned tag: we need to find an
92  *    unused tag value for the (local, peer) EID pair.
93  *
94  *  - when a tag is manually allocated: we need to find an unused tag value
95  *    for the peer EID, but don't have a specific local EID at that stage.
96  *
97  * in the latter case, on successful allocation, we end up with a tag with
98  * (local = ANY, peer = peer-eid).
99  *
100  * So, the key set allows both a local EID of ANY, as well as a peer EID of
101  * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
102  * The matching (in mctp_key_match()) during lookup allows the match value to
103  * be ANY in either the dest or source addresses.
104  *
105  * When allocating (+ inserting) a tag, we need to check for conflicts amongst
106  * the existing tag set. This requires macthing either exactly on the local
107  * and peer addresses, or either being ANY.
108  */
109 
110 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
111 			   mctp_eid_t local, mctp_eid_t peer, u8 tag)
112 {
113 	if (key->net != net)
114 		return false;
115 
116 	if (!mctp_address_matches(key->local_addr, local))
117 		return false;
118 
119 	if (!mctp_address_matches(key->peer_addr, peer))
120 		return false;
121 
122 	if (key->tag != tag)
123 		return false;
124 
125 	return true;
126 }
127 
128 /* returns a key (with key->lock held, and refcounted), or NULL if no such
129  * key exists.
130  */
131 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
132 					   unsigned int netid, mctp_eid_t peer,
133 					   unsigned long *irqflags)
134 	__acquires(&key->lock)
135 {
136 	struct mctp_sk_key *key, *ret;
137 	unsigned long flags;
138 	struct mctp_hdr *mh;
139 	u8 tag;
140 
141 	mh = mctp_hdr(skb);
142 	tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
143 
144 	ret = NULL;
145 	spin_lock_irqsave(&net->mctp.keys_lock, flags);
146 
147 	hlist_for_each_entry(key, &net->mctp.keys, hlist) {
148 		if (!mctp_key_match(key, netid, mh->dest, peer, tag))
149 			continue;
150 
151 		spin_lock(&key->lock);
152 		if (key->valid) {
153 			refcount_inc(&key->refs);
154 			ret = key;
155 			break;
156 		}
157 		spin_unlock(&key->lock);
158 	}
159 
160 	if (ret) {
161 		spin_unlock(&net->mctp.keys_lock);
162 		*irqflags = flags;
163 	} else {
164 		spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
165 	}
166 
167 	return ret;
168 }
169 
170 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
171 					  unsigned int net,
172 					  mctp_eid_t local, mctp_eid_t peer,
173 					  u8 tag, gfp_t gfp)
174 {
175 	struct mctp_sk_key *key;
176 
177 	key = kzalloc(sizeof(*key), gfp);
178 	if (!key)
179 		return NULL;
180 
181 	key->net = net;
182 	key->peer_addr = peer;
183 	key->local_addr = local;
184 	key->tag = tag;
185 	key->sk = &msk->sk;
186 	key->valid = true;
187 	spin_lock_init(&key->lock);
188 	refcount_set(&key->refs, 1);
189 	sock_hold(key->sk);
190 
191 	return key;
192 }
193 
194 void mctp_key_unref(struct mctp_sk_key *key)
195 {
196 	unsigned long flags;
197 
198 	if (!refcount_dec_and_test(&key->refs))
199 		return;
200 
201 	/* even though no refs exist here, the lock allows us to stay
202 	 * consistent with the locking requirement of mctp_dev_release_key
203 	 */
204 	spin_lock_irqsave(&key->lock, flags);
205 	mctp_dev_release_key(key->dev, key);
206 	spin_unlock_irqrestore(&key->lock, flags);
207 
208 	sock_put(key->sk);
209 	kfree(key);
210 }
211 
212 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
213 {
214 	struct net *net = sock_net(&msk->sk);
215 	struct mctp_sk_key *tmp;
216 	unsigned long flags;
217 	int rc = 0;
218 
219 	spin_lock_irqsave(&net->mctp.keys_lock, flags);
220 
221 	if (sock_flag(&msk->sk, SOCK_DEAD)) {
222 		rc = -EINVAL;
223 		goto out_unlock;
224 	}
225 
226 	hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
227 		if (mctp_key_match(tmp, key->net, key->local_addr,
228 				   key->peer_addr, key->tag)) {
229 			spin_lock(&tmp->lock);
230 			if (tmp->valid)
231 				rc = -EEXIST;
232 			spin_unlock(&tmp->lock);
233 			if (rc)
234 				break;
235 		}
236 	}
237 
238 	if (!rc) {
239 		refcount_inc(&key->refs);
240 		key->expiry = jiffies + mctp_key_lifetime;
241 		timer_reduce(&msk->key_expiry, key->expiry);
242 
243 		hlist_add_head(&key->hlist, &net->mctp.keys);
244 		hlist_add_head(&key->sklist, &msk->keys);
245 	}
246 
247 out_unlock:
248 	spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
249 
250 	return rc;
251 }
252 
253 /* Helper for mctp_route_input().
254  * We're done with the key; unlock and unref the key.
255  * For the usual case of automatic expiry we remove the key from lists.
256  * In the case that manual allocation is set on a key we release the lock
257  * and local ref, reset reassembly, but don't remove from lists.
258  */
259 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
260 			       unsigned long flags, unsigned long reason)
261 __releases(&key->lock)
262 {
263 	struct sk_buff *skb;
264 
265 	trace_mctp_key_release(key, reason);
266 	skb = key->reasm_head;
267 	key->reasm_head = NULL;
268 
269 	if (!key->manual_alloc) {
270 		key->reasm_dead = true;
271 		key->valid = false;
272 		mctp_dev_release_key(key->dev, key);
273 	}
274 	spin_unlock_irqrestore(&key->lock, flags);
275 
276 	if (!key->manual_alloc) {
277 		spin_lock_irqsave(&net->mctp.keys_lock, flags);
278 		if (!hlist_unhashed(&key->hlist)) {
279 			hlist_del_init(&key->hlist);
280 			hlist_del_init(&key->sklist);
281 			mctp_key_unref(key);
282 		}
283 		spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
284 	}
285 
286 	/* and one for the local reference */
287 	mctp_key_unref(key);
288 
289 	kfree_skb(skb);
290 }
291 
292 #ifdef CONFIG_MCTP_FLOWS
293 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
294 {
295 	struct mctp_flow *flow;
296 
297 	flow = skb_ext_add(skb, SKB_EXT_MCTP);
298 	if (!flow)
299 		return;
300 
301 	refcount_inc(&key->refs);
302 	flow->key = key;
303 }
304 
305 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
306 {
307 	struct mctp_sk_key *key;
308 	struct mctp_flow *flow;
309 
310 	flow = skb_ext_find(skb, SKB_EXT_MCTP);
311 	if (!flow)
312 		return;
313 
314 	key = flow->key;
315 
316 	if (WARN_ON(key->dev && key->dev != dev))
317 		return;
318 
319 	mctp_dev_set_key(dev, key);
320 }
321 #else
322 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
323 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
324 #endif
325 
326 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
327 {
328 	struct mctp_hdr *hdr = mctp_hdr(skb);
329 	u8 exp_seq, this_seq;
330 
331 	this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
332 		& MCTP_HDR_SEQ_MASK;
333 
334 	if (!key->reasm_head) {
335 		key->reasm_head = skb;
336 		key->reasm_tailp = &(skb_shinfo(skb)->frag_list);
337 		key->last_seq = this_seq;
338 		return 0;
339 	}
340 
341 	exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
342 
343 	if (this_seq != exp_seq)
344 		return -EINVAL;
345 
346 	if (key->reasm_head->len + skb->len > mctp_message_maxlen)
347 		return -EINVAL;
348 
349 	skb->next = NULL;
350 	skb->sk = NULL;
351 	*key->reasm_tailp = skb;
352 	key->reasm_tailp = &skb->next;
353 
354 	key->last_seq = this_seq;
355 
356 	key->reasm_head->data_len += skb->len;
357 	key->reasm_head->len += skb->len;
358 	key->reasm_head->truesize += skb->truesize;
359 
360 	return 0;
361 }
362 
363 static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
364 {
365 	struct mctp_sk_key *key, *any_key = NULL;
366 	struct net *net = dev_net(skb->dev);
367 	struct mctp_sock *msk;
368 	struct mctp_hdr *mh;
369 	unsigned int netid;
370 	unsigned long f;
371 	u8 tag, flags;
372 	int rc;
373 
374 	msk = NULL;
375 	rc = -EINVAL;
376 
377 	/* We may be receiving a locally-routed packet; drop source sk
378 	 * accounting.
379 	 *
380 	 * From here, we will either queue the skb - either to a frag_queue, or
381 	 * to a receiving socket. When that succeeds, we clear the skb pointer;
382 	 * a non-NULL skb on exit will be otherwise unowned, and hence
383 	 * kfree_skb()-ed.
384 	 */
385 	skb_orphan(skb);
386 
387 	/* ensure we have enough data for a header and a type */
388 	if (skb->len < sizeof(struct mctp_hdr) + 1)
389 		goto out;
390 
391 	/* grab header, advance data ptr */
392 	mh = mctp_hdr(skb);
393 	netid = mctp_cb(skb)->net;
394 	skb_pull(skb, sizeof(struct mctp_hdr));
395 
396 	if (mh->ver != 1)
397 		goto out;
398 
399 	flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
400 	tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
401 
402 	rcu_read_lock();
403 
404 	/* lookup socket / reasm context, exactly matching (src,dest,tag).
405 	 * we hold a ref on the key, and key->lock held.
406 	 */
407 	key = mctp_lookup_key(net, skb, netid, mh->src, &f);
408 
409 	if (flags & MCTP_HDR_FLAG_SOM) {
410 		if (key) {
411 			msk = container_of(key->sk, struct mctp_sock, sk);
412 		} else {
413 			/* first response to a broadcast? do a more general
414 			 * key lookup to find the socket, but don't use this
415 			 * key for reassembly - we'll create a more specific
416 			 * one for future packets if required (ie, !EOM).
417 			 *
418 			 * this lookup requires key->peer to be MCTP_ADDR_ANY,
419 			 * it doesn't match just any key->peer.
420 			 */
421 			any_key = mctp_lookup_key(net, skb, netid,
422 						  MCTP_ADDR_ANY, &f);
423 			if (any_key) {
424 				msk = container_of(any_key->sk,
425 						   struct mctp_sock, sk);
426 				spin_unlock_irqrestore(&any_key->lock, f);
427 			}
428 		}
429 
430 		if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
431 			msk = mctp_lookup_bind(net, skb);
432 
433 		if (!msk) {
434 			rc = -ENOENT;
435 			goto out_unlock;
436 		}
437 
438 		/* single-packet message? deliver to socket, clean up any
439 		 * pending key.
440 		 */
441 		if (flags & MCTP_HDR_FLAG_EOM) {
442 			rc = sock_queue_rcv_skb(&msk->sk, skb);
443 			if (!rc)
444 				skb = NULL;
445 			if (key) {
446 				/* we've hit a pending reassembly; not much we
447 				 * can do but drop it
448 				 */
449 				__mctp_key_done_in(key, net, f,
450 						   MCTP_TRACE_KEY_REPLIED);
451 				key = NULL;
452 			}
453 			goto out_unlock;
454 		}
455 
456 		/* broadcast response or a bind() - create a key for further
457 		 * packets for this message
458 		 */
459 		if (!key) {
460 			key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
461 					     tag, GFP_ATOMIC);
462 			if (!key) {
463 				rc = -ENOMEM;
464 				goto out_unlock;
465 			}
466 
467 			/* we can queue without the key lock here, as the
468 			 * key isn't observable yet
469 			 */
470 			mctp_frag_queue(key, skb);
471 
472 			/* if the key_add fails, we've raced with another
473 			 * SOM packet with the same src, dest and tag. There's
474 			 * no way to distinguish future packets, so all we
475 			 * can do is drop; we'll free the skb on exit from
476 			 * this function.
477 			 */
478 			rc = mctp_key_add(key, msk);
479 			if (!rc) {
480 				trace_mctp_key_acquire(key);
481 				skb = NULL;
482 			}
483 
484 			/* we don't need to release key->lock on exit, so
485 			 * clean up here and suppress the unlock via
486 			 * setting to NULL
487 			 */
488 			mctp_key_unref(key);
489 			key = NULL;
490 
491 		} else {
492 			if (key->reasm_head || key->reasm_dead) {
493 				/* duplicate start? drop everything */
494 				__mctp_key_done_in(key, net, f,
495 						   MCTP_TRACE_KEY_INVALIDATED);
496 				rc = -EEXIST;
497 				key = NULL;
498 			} else {
499 				rc = mctp_frag_queue(key, skb);
500 				if (!rc)
501 					skb = NULL;
502 			}
503 		}
504 
505 	} else if (key) {
506 		/* this packet continues a previous message; reassemble
507 		 * using the message-specific key
508 		 */
509 
510 		/* we need to be continuing an existing reassembly... */
511 		if (!key->reasm_head)
512 			rc = -EINVAL;
513 		else
514 			rc = mctp_frag_queue(key, skb);
515 
516 		if (rc)
517 			goto out_unlock;
518 
519 		/* we've queued; the queue owns the skb now */
520 		skb = NULL;
521 
522 		/* end of message? deliver to socket, and we're done with
523 		 * the reassembly/response key
524 		 */
525 		if (flags & MCTP_HDR_FLAG_EOM) {
526 			rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
527 			if (!rc)
528 				key->reasm_head = NULL;
529 			__mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
530 			key = NULL;
531 		}
532 
533 	} else {
534 		/* not a start, no matching key */
535 		rc = -ENOENT;
536 	}
537 
538 out_unlock:
539 	rcu_read_unlock();
540 	if (key) {
541 		spin_unlock_irqrestore(&key->lock, f);
542 		mctp_key_unref(key);
543 	}
544 	if (any_key)
545 		mctp_key_unref(any_key);
546 out:
547 	kfree_skb(skb);
548 	return rc;
549 }
550 
551 static unsigned int mctp_route_mtu(struct mctp_route *rt)
552 {
553 	return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu);
554 }
555 
556 static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb)
557 {
558 	struct mctp_skb_cb *cb = mctp_cb(skb);
559 	struct mctp_hdr *hdr = mctp_hdr(skb);
560 	char daddr_buf[MAX_ADDR_LEN];
561 	char *daddr = NULL;
562 	unsigned int mtu;
563 	int rc;
564 
565 	skb->protocol = htons(ETH_P_MCTP);
566 
567 	mtu = READ_ONCE(skb->dev->mtu);
568 	if (skb->len > mtu) {
569 		kfree_skb(skb);
570 		return -EMSGSIZE;
571 	}
572 
573 	if (cb->ifindex) {
574 		/* direct route; use the hwaddr we stashed in sendmsg */
575 		if (cb->halen != skb->dev->addr_len) {
576 			/* sanity check, sendmsg should have already caught this */
577 			kfree_skb(skb);
578 			return -EMSGSIZE;
579 		}
580 		daddr = cb->haddr;
581 	} else {
582 		/* If lookup fails let the device handle daddr==NULL */
583 		if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0)
584 			daddr = daddr_buf;
585 	}
586 
587 	rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
588 			     daddr, skb->dev->dev_addr, skb->len);
589 	if (rc < 0) {
590 		kfree_skb(skb);
591 		return -EHOSTUNREACH;
592 	}
593 
594 	mctp_flow_prepare_output(skb, route->dev);
595 
596 	rc = dev_queue_xmit(skb);
597 	if (rc)
598 		rc = net_xmit_errno(rc);
599 
600 	return rc;
601 }
602 
603 /* route alloc/release */
604 static void mctp_route_release(struct mctp_route *rt)
605 {
606 	if (refcount_dec_and_test(&rt->refs)) {
607 		mctp_dev_put(rt->dev);
608 		kfree_rcu(rt, rcu);
609 	}
610 }
611 
612 /* returns a route with the refcount at 1 */
613 static struct mctp_route *mctp_route_alloc(void)
614 {
615 	struct mctp_route *rt;
616 
617 	rt = kzalloc(sizeof(*rt), GFP_KERNEL);
618 	if (!rt)
619 		return NULL;
620 
621 	INIT_LIST_HEAD(&rt->list);
622 	refcount_set(&rt->refs, 1);
623 	rt->output = mctp_route_discard;
624 
625 	return rt;
626 }
627 
628 unsigned int mctp_default_net(struct net *net)
629 {
630 	return READ_ONCE(net->mctp.default_net);
631 }
632 
633 int mctp_default_net_set(struct net *net, unsigned int index)
634 {
635 	if (index == 0)
636 		return -EINVAL;
637 	WRITE_ONCE(net->mctp.default_net, index);
638 	return 0;
639 }
640 
641 /* tag management */
642 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
643 			     struct mctp_sock *msk)
644 {
645 	struct netns_mctp *mns = &net->mctp;
646 
647 	lockdep_assert_held(&mns->keys_lock);
648 
649 	key->expiry = jiffies + mctp_key_lifetime;
650 	timer_reduce(&msk->key_expiry, key->expiry);
651 
652 	/* we hold the net->key_lock here, allowing updates to both
653 	 * then net and sk
654 	 */
655 	hlist_add_head_rcu(&key->hlist, &mns->keys);
656 	hlist_add_head_rcu(&key->sklist, &msk->keys);
657 	refcount_inc(&key->refs);
658 }
659 
660 /* Allocate a locally-owned tag value for (local, peer), and reserve
661  * it for the socket msk
662  */
663 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
664 					 unsigned int netid,
665 					 mctp_eid_t local, mctp_eid_t peer,
666 					 bool manual, u8 *tagp)
667 {
668 	struct net *net = sock_net(&msk->sk);
669 	struct netns_mctp *mns = &net->mctp;
670 	struct mctp_sk_key *key, *tmp;
671 	unsigned long flags;
672 	u8 tagbits;
673 
674 	/* for NULL destination EIDs, we may get a response from any peer */
675 	if (peer == MCTP_ADDR_NULL)
676 		peer = MCTP_ADDR_ANY;
677 
678 	/* be optimistic, alloc now */
679 	key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
680 	if (!key)
681 		return ERR_PTR(-ENOMEM);
682 
683 	/* 8 possible tag values */
684 	tagbits = 0xff;
685 
686 	spin_lock_irqsave(&mns->keys_lock, flags);
687 
688 	/* Walk through the existing keys, looking for potential conflicting
689 	 * tags. If we find a conflict, clear that bit from tagbits
690 	 */
691 	hlist_for_each_entry(tmp, &mns->keys, hlist) {
692 		/* We can check the lookup fields (*_addr, tag) without the
693 		 * lock held, they don't change over the lifetime of the key.
694 		 */
695 
696 		/* tags are net-specific */
697 		if (tmp->net != netid)
698 			continue;
699 
700 		/* if we don't own the tag, it can't conflict */
701 		if (tmp->tag & MCTP_HDR_FLAG_TO)
702 			continue;
703 
704 		/* Since we're avoiding conflicting entries, match peer and
705 		 * local addresses, including with a wildcard on ANY. See
706 		 * 'A note on key allocations' for background.
707 		 */
708 		if (peer != MCTP_ADDR_ANY &&
709 		    !mctp_address_matches(tmp->peer_addr, peer))
710 			continue;
711 
712 		if (local != MCTP_ADDR_ANY &&
713 		    !mctp_address_matches(tmp->local_addr, local))
714 			continue;
715 
716 		spin_lock(&tmp->lock);
717 		/* key must still be valid. If we find a match, clear the
718 		 * potential tag value
719 		 */
720 		if (tmp->valid)
721 			tagbits &= ~(1 << tmp->tag);
722 		spin_unlock(&tmp->lock);
723 
724 		if (!tagbits)
725 			break;
726 	}
727 
728 	if (tagbits) {
729 		key->tag = __ffs(tagbits);
730 		mctp_reserve_tag(net, key, msk);
731 		trace_mctp_key_acquire(key);
732 
733 		key->manual_alloc = manual;
734 		*tagp = key->tag;
735 	}
736 
737 	spin_unlock_irqrestore(&mns->keys_lock, flags);
738 
739 	if (!tagbits) {
740 		mctp_key_unref(key);
741 		return ERR_PTR(-EBUSY);
742 	}
743 
744 	return key;
745 }
746 
747 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
748 						    unsigned int netid,
749 						    mctp_eid_t daddr,
750 						    u8 req_tag, u8 *tagp)
751 {
752 	struct net *net = sock_net(&msk->sk);
753 	struct netns_mctp *mns = &net->mctp;
754 	struct mctp_sk_key *key, *tmp;
755 	unsigned long flags;
756 
757 	req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
758 	key = NULL;
759 
760 	spin_lock_irqsave(&mns->keys_lock, flags);
761 
762 	hlist_for_each_entry(tmp, &mns->keys, hlist) {
763 		if (tmp->net != netid)
764 			continue;
765 
766 		if (tmp->tag != req_tag)
767 			continue;
768 
769 		if (!mctp_address_matches(tmp->peer_addr, daddr))
770 			continue;
771 
772 		if (!tmp->manual_alloc)
773 			continue;
774 
775 		spin_lock(&tmp->lock);
776 		if (tmp->valid) {
777 			key = tmp;
778 			refcount_inc(&key->refs);
779 			spin_unlock(&tmp->lock);
780 			break;
781 		}
782 		spin_unlock(&tmp->lock);
783 	}
784 	spin_unlock_irqrestore(&mns->keys_lock, flags);
785 
786 	if (!key)
787 		return ERR_PTR(-ENOENT);
788 
789 	if (tagp)
790 		*tagp = key->tag;
791 
792 	return key;
793 }
794 
795 /* routing lookups */
796 static bool mctp_rt_match_eid(struct mctp_route *rt,
797 			      unsigned int net, mctp_eid_t eid)
798 {
799 	return READ_ONCE(rt->dev->net) == net &&
800 		rt->min <= eid && rt->max >= eid;
801 }
802 
803 /* compares match, used for duplicate prevention */
804 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
805 				  struct mctp_route *rt2)
806 {
807 	ASSERT_RTNL();
808 	return rt1->dev->net == rt2->dev->net &&
809 		rt1->min == rt2->min &&
810 		rt1->max == rt2->max;
811 }
812 
813 struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet,
814 				     mctp_eid_t daddr)
815 {
816 	struct mctp_route *tmp, *rt = NULL;
817 
818 	rcu_read_lock();
819 
820 	list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
821 		/* TODO: add metrics */
822 		if (mctp_rt_match_eid(tmp, dnet, daddr)) {
823 			if (refcount_inc_not_zero(&tmp->refs)) {
824 				rt = tmp;
825 				break;
826 			}
827 		}
828 	}
829 
830 	rcu_read_unlock();
831 
832 	return rt;
833 }
834 
835 static struct mctp_route *mctp_route_lookup_null(struct net *net,
836 						 struct net_device *dev)
837 {
838 	struct mctp_route *tmp, *rt = NULL;
839 
840 	rcu_read_lock();
841 
842 	list_for_each_entry_rcu(tmp, &net->mctp.routes, list) {
843 		if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL &&
844 		    refcount_inc_not_zero(&tmp->refs)) {
845 			rt = tmp;
846 			break;
847 		}
848 	}
849 
850 	rcu_read_unlock();
851 
852 	return rt;
853 }
854 
855 static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb,
856 				  unsigned int mtu, u8 tag)
857 {
858 	const unsigned int hlen = sizeof(struct mctp_hdr);
859 	struct mctp_hdr *hdr, *hdr2;
860 	unsigned int pos, size, headroom;
861 	struct sk_buff *skb2;
862 	int rc;
863 	u8 seq;
864 
865 	hdr = mctp_hdr(skb);
866 	seq = 0;
867 	rc = 0;
868 
869 	if (mtu < hlen + 1) {
870 		kfree_skb(skb);
871 		return -EMSGSIZE;
872 	}
873 
874 	/* keep same headroom as the original skb */
875 	headroom = skb_headroom(skb);
876 
877 	/* we've got the header */
878 	skb_pull(skb, hlen);
879 
880 	for (pos = 0; pos < skb->len;) {
881 		/* size of message payload */
882 		size = min(mtu - hlen, skb->len - pos);
883 
884 		skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
885 		if (!skb2) {
886 			rc = -ENOMEM;
887 			break;
888 		}
889 
890 		/* generic skb copy */
891 		skb2->protocol = skb->protocol;
892 		skb2->priority = skb->priority;
893 		skb2->dev = skb->dev;
894 		memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
895 
896 		if (skb->sk)
897 			skb_set_owner_w(skb2, skb->sk);
898 
899 		/* establish packet */
900 		skb_reserve(skb2, headroom);
901 		skb_reset_network_header(skb2);
902 		skb_put(skb2, hlen + size);
903 		skb2->transport_header = skb2->network_header + hlen;
904 
905 		/* copy header fields, calculate SOM/EOM flags & seq */
906 		hdr2 = mctp_hdr(skb2);
907 		hdr2->ver = hdr->ver;
908 		hdr2->dest = hdr->dest;
909 		hdr2->src = hdr->src;
910 		hdr2->flags_seq_tag = tag &
911 			(MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
912 
913 		if (pos == 0)
914 			hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
915 
916 		if (pos + size == skb->len)
917 			hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
918 
919 		hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
920 
921 		/* copy message payload */
922 		skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
923 
924 		/* we need to copy the extensions, for MCTP flow data */
925 		skb_ext_copy(skb2, skb);
926 
927 		/* do route */
928 		rc = rt->output(rt, skb2);
929 		if (rc)
930 			break;
931 
932 		seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
933 		pos += size;
934 	}
935 
936 	consume_skb(skb);
937 	return rc;
938 }
939 
940 int mctp_local_output(struct sock *sk, struct mctp_route *rt,
941 		      struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
942 {
943 	struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
944 	struct mctp_skb_cb *cb = mctp_cb(skb);
945 	struct mctp_route tmp_rt = {0};
946 	struct mctp_sk_key *key;
947 	struct mctp_hdr *hdr;
948 	unsigned long flags;
949 	unsigned int netid;
950 	unsigned int mtu;
951 	mctp_eid_t saddr;
952 	bool ext_rt;
953 	int rc;
954 	u8 tag;
955 
956 	rc = -ENODEV;
957 
958 	if (rt) {
959 		ext_rt = false;
960 		if (WARN_ON(!rt->dev))
961 			goto out_release;
962 
963 	} else if (cb->ifindex) {
964 		struct net_device *dev;
965 
966 		ext_rt = true;
967 		rt = &tmp_rt;
968 
969 		rcu_read_lock();
970 		dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex);
971 		if (!dev) {
972 			rcu_read_unlock();
973 			goto out_free;
974 		}
975 		rt->dev = __mctp_dev_get(dev);
976 		rcu_read_unlock();
977 
978 		if (!rt->dev)
979 			goto out_release;
980 
981 		/* establish temporary route - we set up enough to keep
982 		 * mctp_route_output happy
983 		 */
984 		rt->output = mctp_route_output;
985 		rt->mtu = 0;
986 
987 	} else {
988 		rc = -EINVAL;
989 		goto out_free;
990 	}
991 
992 	spin_lock_irqsave(&rt->dev->addrs_lock, flags);
993 	if (rt->dev->num_addrs == 0) {
994 		rc = -EHOSTUNREACH;
995 	} else {
996 		/* use the outbound interface's first address as our source */
997 		saddr = rt->dev->addrs[0];
998 		rc = 0;
999 	}
1000 	spin_unlock_irqrestore(&rt->dev->addrs_lock, flags);
1001 	netid = READ_ONCE(rt->dev->net);
1002 
1003 	if (rc)
1004 		goto out_release;
1005 
1006 	if (req_tag & MCTP_TAG_OWNER) {
1007 		if (req_tag & MCTP_TAG_PREALLOC)
1008 			key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1009 						       req_tag, &tag);
1010 		else
1011 			key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1012 						   false, &tag);
1013 
1014 		if (IS_ERR(key)) {
1015 			rc = PTR_ERR(key);
1016 			goto out_release;
1017 		}
1018 		mctp_skb_set_flow(skb, key);
1019 		/* done with the key in this scope */
1020 		mctp_key_unref(key);
1021 		tag |= MCTP_HDR_FLAG_TO;
1022 	} else {
1023 		key = NULL;
1024 		tag = req_tag & MCTP_TAG_MASK;
1025 	}
1026 
1027 	skb->protocol = htons(ETH_P_MCTP);
1028 	skb->priority = 0;
1029 	skb_reset_transport_header(skb);
1030 	skb_push(skb, sizeof(struct mctp_hdr));
1031 	skb_reset_network_header(skb);
1032 	skb->dev = rt->dev->dev;
1033 
1034 	/* cb->net will have been set on initial ingress */
1035 	cb->src = saddr;
1036 
1037 	/* set up common header fields */
1038 	hdr = mctp_hdr(skb);
1039 	hdr->ver = 1;
1040 	hdr->dest = daddr;
1041 	hdr->src = saddr;
1042 
1043 	mtu = mctp_route_mtu(rt);
1044 
1045 	if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1046 		hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1047 			MCTP_HDR_FLAG_EOM | tag;
1048 		rc = rt->output(rt, skb);
1049 	} else {
1050 		rc = mctp_do_fragment_route(rt, skb, mtu, tag);
1051 	}
1052 
1053 	/* route output functions consume the skb, even on error */
1054 	skb = NULL;
1055 
1056 out_release:
1057 	if (!ext_rt)
1058 		mctp_route_release(rt);
1059 
1060 	mctp_dev_put(tmp_rt.dev);
1061 
1062 out_free:
1063 	kfree_skb(skb);
1064 	return rc;
1065 }
1066 
1067 /* route management */
1068 static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1069 			  unsigned int daddr_extent, unsigned int mtu,
1070 			  unsigned char type)
1071 {
1072 	int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb);
1073 	struct net *net = dev_net(mdev->dev);
1074 	struct mctp_route *rt, *ert;
1075 
1076 	if (!mctp_address_unicast(daddr_start))
1077 		return -EINVAL;
1078 
1079 	if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1080 		return -EINVAL;
1081 
1082 	switch (type) {
1083 	case RTN_LOCAL:
1084 		rtfn = mctp_route_input;
1085 		break;
1086 	case RTN_UNICAST:
1087 		rtfn = mctp_route_output;
1088 		break;
1089 	default:
1090 		return -EINVAL;
1091 	}
1092 
1093 	rt = mctp_route_alloc();
1094 	if (!rt)
1095 		return -ENOMEM;
1096 
1097 	rt->min = daddr_start;
1098 	rt->max = daddr_start + daddr_extent;
1099 	rt->mtu = mtu;
1100 	rt->dev = mdev;
1101 	mctp_dev_hold(rt->dev);
1102 	rt->type = type;
1103 	rt->output = rtfn;
1104 
1105 	ASSERT_RTNL();
1106 	/* Prevent duplicate identical routes. */
1107 	list_for_each_entry(ert, &net->mctp.routes, list) {
1108 		if (mctp_rt_compare_exact(rt, ert)) {
1109 			mctp_route_release(rt);
1110 			return -EEXIST;
1111 		}
1112 	}
1113 
1114 	list_add_rcu(&rt->list, &net->mctp.routes);
1115 
1116 	return 0;
1117 }
1118 
1119 static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start,
1120 			     unsigned int daddr_extent, unsigned char type)
1121 {
1122 	struct net *net = dev_net(mdev->dev);
1123 	struct mctp_route *rt, *tmp;
1124 	mctp_eid_t daddr_end;
1125 	bool dropped;
1126 
1127 	if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1128 		return -EINVAL;
1129 
1130 	daddr_end = daddr_start + daddr_extent;
1131 	dropped = false;
1132 
1133 	ASSERT_RTNL();
1134 
1135 	list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1136 		if (rt->dev == mdev &&
1137 		    rt->min == daddr_start && rt->max == daddr_end &&
1138 		    rt->type == type) {
1139 			list_del_rcu(&rt->list);
1140 			/* TODO: immediate RTM_DELROUTE */
1141 			mctp_route_release(rt);
1142 			dropped = true;
1143 		}
1144 	}
1145 
1146 	return dropped ? 0 : -ENOENT;
1147 }
1148 
1149 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1150 {
1151 	return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL);
1152 }
1153 
1154 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1155 {
1156 	return mctp_route_remove(mdev, addr, 0, RTN_LOCAL);
1157 }
1158 
1159 /* removes all entries for a given device */
1160 void mctp_route_remove_dev(struct mctp_dev *mdev)
1161 {
1162 	struct net *net = dev_net(mdev->dev);
1163 	struct mctp_route *rt, *tmp;
1164 
1165 	ASSERT_RTNL();
1166 	list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1167 		if (rt->dev == mdev) {
1168 			list_del_rcu(&rt->list);
1169 			/* TODO: immediate RTM_DELROUTE */
1170 			mctp_route_release(rt);
1171 		}
1172 	}
1173 }
1174 
1175 /* Incoming packet-handling */
1176 
1177 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1178 				struct packet_type *pt,
1179 				struct net_device *orig_dev)
1180 {
1181 	struct net *net = dev_net(dev);
1182 	struct mctp_dev *mdev;
1183 	struct mctp_skb_cb *cb;
1184 	struct mctp_route *rt;
1185 	struct mctp_hdr *mh;
1186 
1187 	rcu_read_lock();
1188 	mdev = __mctp_dev_get(dev);
1189 	rcu_read_unlock();
1190 	if (!mdev) {
1191 		/* basic non-data sanity checks */
1192 		goto err_drop;
1193 	}
1194 
1195 	if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1196 		goto err_drop;
1197 
1198 	skb_reset_transport_header(skb);
1199 	skb_reset_network_header(skb);
1200 
1201 	/* We have enough for a header; decode and route */
1202 	mh = mctp_hdr(skb);
1203 	if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1204 		goto err_drop;
1205 
1206 	/* source must be valid unicast or null; drop reserved ranges and
1207 	 * broadcast
1208 	 */
1209 	if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1210 		goto err_drop;
1211 
1212 	/* dest address: as above, but allow broadcast */
1213 	if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1214 	      mctp_address_broadcast(mh->dest)))
1215 		goto err_drop;
1216 
1217 	/* MCTP drivers must populate halen/haddr */
1218 	if (dev->type == ARPHRD_MCTP) {
1219 		cb = mctp_cb(skb);
1220 	} else {
1221 		cb = __mctp_cb(skb);
1222 		cb->halen = 0;
1223 	}
1224 	cb->net = READ_ONCE(mdev->net);
1225 	cb->ifindex = dev->ifindex;
1226 
1227 	rt = mctp_route_lookup(net, cb->net, mh->dest);
1228 
1229 	/* NULL EID, but addressed to our physical address */
1230 	if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1231 		rt = mctp_route_lookup_null(net, dev);
1232 
1233 	if (!rt)
1234 		goto err_drop;
1235 
1236 	rt->output(rt, skb);
1237 	mctp_route_release(rt);
1238 	mctp_dev_put(mdev);
1239 
1240 	return NET_RX_SUCCESS;
1241 
1242 err_drop:
1243 	kfree_skb(skb);
1244 	mctp_dev_put(mdev);
1245 	return NET_RX_DROP;
1246 }
1247 
1248 static struct packet_type mctp_packet_type = {
1249 	.type = cpu_to_be16(ETH_P_MCTP),
1250 	.func = mctp_pkttype_receive,
1251 };
1252 
1253 /* netlink interface */
1254 
1255 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1256 	[RTA_DST]		= { .type = NLA_U8 },
1257 	[RTA_METRICS]		= { .type = NLA_NESTED },
1258 	[RTA_OIF]		= { .type = NLA_U32 },
1259 };
1260 
1261 /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing.
1262  * tb must hold RTA_MAX+1 elements.
1263  */
1264 static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh,
1265 			      struct netlink_ext_ack *extack,
1266 			      struct nlattr **tb, struct rtmsg **rtm,
1267 			      struct mctp_dev **mdev, mctp_eid_t *daddr_start)
1268 {
1269 	struct net *net = sock_net(skb->sk);
1270 	struct net_device *dev;
1271 	unsigned int ifindex;
1272 	int rc;
1273 
1274 	rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1275 			 rta_mctp_policy, extack);
1276 	if (rc < 0) {
1277 		NL_SET_ERR_MSG(extack, "incorrect format");
1278 		return rc;
1279 	}
1280 
1281 	if (!tb[RTA_DST]) {
1282 		NL_SET_ERR_MSG(extack, "dst EID missing");
1283 		return -EINVAL;
1284 	}
1285 	*daddr_start = nla_get_u8(tb[RTA_DST]);
1286 
1287 	if (!tb[RTA_OIF]) {
1288 		NL_SET_ERR_MSG(extack, "ifindex missing");
1289 		return -EINVAL;
1290 	}
1291 	ifindex = nla_get_u32(tb[RTA_OIF]);
1292 
1293 	*rtm = nlmsg_data(nlh);
1294 	if ((*rtm)->rtm_family != AF_MCTP) {
1295 		NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1296 		return -EINVAL;
1297 	}
1298 
1299 	dev = __dev_get_by_index(net, ifindex);
1300 	if (!dev) {
1301 		NL_SET_ERR_MSG(extack, "bad ifindex");
1302 		return -ENODEV;
1303 	}
1304 	*mdev = mctp_dev_get_rtnl(dev);
1305 	if (!*mdev)
1306 		return -ENODEV;
1307 
1308 	if (dev->flags & IFF_LOOPBACK) {
1309 		NL_SET_ERR_MSG(extack, "no routes to loopback");
1310 		return -EINVAL;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1317 	[RTAX_MTU]		= { .type = NLA_U32 },
1318 };
1319 
1320 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1321 			 struct netlink_ext_ack *extack)
1322 {
1323 	struct nlattr *tb[RTA_MAX + 1];
1324 	struct nlattr *tbx[RTAX_MAX + 1];
1325 	mctp_eid_t daddr_start;
1326 	struct mctp_dev *mdev;
1327 	struct rtmsg *rtm;
1328 	unsigned int mtu;
1329 	int rc;
1330 
1331 	rc = mctp_route_nlparse(skb, nlh, extack, tb,
1332 				&rtm, &mdev, &daddr_start);
1333 	if (rc < 0)
1334 		return rc;
1335 
1336 	if (rtm->rtm_type != RTN_UNICAST) {
1337 		NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1338 		return -EINVAL;
1339 	}
1340 
1341 	mtu = 0;
1342 	if (tb[RTA_METRICS]) {
1343 		rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1344 				      rta_metrics_policy, NULL);
1345 		if (rc < 0)
1346 			return rc;
1347 		if (tbx[RTAX_MTU])
1348 			mtu = nla_get_u32(tbx[RTAX_MTU]);
1349 	}
1350 
1351 	rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu,
1352 			    rtm->rtm_type);
1353 	return rc;
1354 }
1355 
1356 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1357 			 struct netlink_ext_ack *extack)
1358 {
1359 	struct nlattr *tb[RTA_MAX + 1];
1360 	mctp_eid_t daddr_start;
1361 	struct mctp_dev *mdev;
1362 	struct rtmsg *rtm;
1363 	int rc;
1364 
1365 	rc = mctp_route_nlparse(skb, nlh, extack, tb,
1366 				&rtm, &mdev, &daddr_start);
1367 	if (rc < 0)
1368 		return rc;
1369 
1370 	/* we only have unicast routes */
1371 	if (rtm->rtm_type != RTN_UNICAST)
1372 		return -EINVAL;
1373 
1374 	rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST);
1375 	return rc;
1376 }
1377 
1378 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1379 			    u32 portid, u32 seq, int event, unsigned int flags)
1380 {
1381 	struct nlmsghdr *nlh;
1382 	struct rtmsg *hdr;
1383 	void *metrics;
1384 
1385 	nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1386 	if (!nlh)
1387 		return -EMSGSIZE;
1388 
1389 	hdr = nlmsg_data(nlh);
1390 	hdr->rtm_family = AF_MCTP;
1391 
1392 	/* we use the _len fields as a number of EIDs, rather than
1393 	 * a number of bits in the address
1394 	 */
1395 	hdr->rtm_dst_len = rt->max - rt->min;
1396 	hdr->rtm_src_len = 0;
1397 	hdr->rtm_tos = 0;
1398 	hdr->rtm_table = RT_TABLE_DEFAULT;
1399 	hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1400 	hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */
1401 	hdr->rtm_type = rt->type;
1402 
1403 	if (nla_put_u8(skb, RTA_DST, rt->min))
1404 		goto cancel;
1405 
1406 	metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1407 	if (!metrics)
1408 		goto cancel;
1409 
1410 	if (rt->mtu) {
1411 		if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1412 			goto cancel;
1413 	}
1414 
1415 	nla_nest_end(skb, metrics);
1416 
1417 	if (rt->dev) {
1418 		if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1419 			goto cancel;
1420 	}
1421 
1422 	/* TODO: conditional neighbour physaddr? */
1423 
1424 	nlmsg_end(skb, nlh);
1425 
1426 	return 0;
1427 
1428 cancel:
1429 	nlmsg_cancel(skb, nlh);
1430 	return -EMSGSIZE;
1431 }
1432 
1433 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1434 {
1435 	struct net *net = sock_net(skb->sk);
1436 	struct mctp_route *rt;
1437 	int s_idx, idx;
1438 
1439 	/* TODO: allow filtering on route data, possibly under
1440 	 * cb->strict_check
1441 	 */
1442 
1443 	/* TODO: change to struct overlay */
1444 	s_idx = cb->args[0];
1445 	idx = 0;
1446 
1447 	rcu_read_lock();
1448 	list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1449 		if (idx++ < s_idx)
1450 			continue;
1451 		if (mctp_fill_rtinfo(skb, rt,
1452 				     NETLINK_CB(cb->skb).portid,
1453 				     cb->nlh->nlmsg_seq,
1454 				     RTM_NEWROUTE, NLM_F_MULTI) < 0)
1455 			break;
1456 	}
1457 
1458 	rcu_read_unlock();
1459 	cb->args[0] = idx;
1460 
1461 	return skb->len;
1462 }
1463 
1464 /* net namespace implementation */
1465 static int __net_init mctp_routes_net_init(struct net *net)
1466 {
1467 	struct netns_mctp *ns = &net->mctp;
1468 
1469 	INIT_LIST_HEAD(&ns->routes);
1470 	INIT_HLIST_HEAD(&ns->binds);
1471 	mutex_init(&ns->bind_lock);
1472 	INIT_HLIST_HEAD(&ns->keys);
1473 	spin_lock_init(&ns->keys_lock);
1474 	WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1475 	return 0;
1476 }
1477 
1478 static void __net_exit mctp_routes_net_exit(struct net *net)
1479 {
1480 	struct mctp_route *rt;
1481 
1482 	rcu_read_lock();
1483 	list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1484 		mctp_route_release(rt);
1485 	rcu_read_unlock();
1486 }
1487 
1488 static struct pernet_operations mctp_net_ops = {
1489 	.init = mctp_routes_net_init,
1490 	.exit = mctp_routes_net_exit,
1491 };
1492 
1493 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1494 	{THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1495 	{THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1496 	{THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1497 };
1498 
1499 int __init mctp_routes_init(void)
1500 {
1501 	int err;
1502 
1503 	dev_add_pack(&mctp_packet_type);
1504 
1505 	err = register_pernet_subsys(&mctp_net_ops);
1506 	if (err)
1507 		goto err_pernet;
1508 
1509 	err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1510 	if (err)
1511 		goto err_rtnl;
1512 
1513 	return 0;
1514 
1515 err_rtnl:
1516 	unregister_pernet_subsys(&mctp_net_ops);
1517 err_pernet:
1518 	dev_remove_pack(&mctp_packet_type);
1519 	return err;
1520 }
1521 
1522 void mctp_routes_exit(void)
1523 {
1524 	rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1525 	unregister_pernet_subsys(&mctp_net_ops);
1526 	dev_remove_pack(&mctp_packet_type);
1527 }
1528 
1529 #if IS_ENABLED(CONFIG_MCTP_TEST)
1530 #include "test/route-test.c"
1531 #endif
1532