1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Management Component Transport Protocol (MCTP) - routing 4 * implementation. 5 * 6 * This is currently based on a simple routing table, with no dst cache. The 7 * number of routes should stay fairly small, so the lookup cost is small. 8 * 9 * Copyright (c) 2021 Code Construct 10 * Copyright (c) 2021 Google 11 */ 12 13 #include <linux/idr.h> 14 #include <linux/kconfig.h> 15 #include <linux/mctp.h> 16 #include <linux/netdevice.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/skbuff.h> 19 20 #include <kunit/static_stub.h> 21 22 #include <uapi/linux/if_arp.h> 23 24 #include <net/mctp.h> 25 #include <net/mctpdevice.h> 26 #include <net/netlink.h> 27 #include <net/sock.h> 28 29 #include <trace/events/mctp.h> 30 31 static const unsigned int mctp_message_maxlen = 64 * 1024; 32 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ; 33 34 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev); 35 36 /* route output callbacks */ 37 static int mctp_dst_discard(struct mctp_dst *dst, struct sk_buff *skb) 38 { 39 kfree_skb(skb); 40 return 0; 41 } 42 43 static struct mctp_sock *mctp_lookup_bind_details(struct net *net, 44 struct sk_buff *skb, 45 u8 type, u8 dest, 46 u8 src, bool allow_net_any) 47 { 48 struct mctp_skb_cb *cb = mctp_cb(skb); 49 struct sock *sk; 50 u8 hash; 51 52 WARN_ON_ONCE(!rcu_read_lock_held()); 53 54 hash = mctp_bind_hash(type, dest, src); 55 56 sk_for_each_rcu(sk, &net->mctp.binds[hash]) { 57 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 58 59 if (!allow_net_any && msk->bind_net == MCTP_NET_ANY) 60 continue; 61 62 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net) 63 continue; 64 65 if (msk->bind_type != type) 66 continue; 67 68 if (msk->bind_peer_set && 69 !mctp_address_matches(msk->bind_peer_addr, src)) 70 continue; 71 72 if (!mctp_address_matches(msk->bind_local_addr, dest)) 73 continue; 74 75 return msk; 76 } 77 78 return NULL; 79 } 80 81 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb) 82 { 83 struct mctp_sock *msk; 84 struct mctp_hdr *mh; 85 u8 type; 86 87 /* TODO: look up in skb->cb? */ 88 mh = mctp_hdr(skb); 89 90 if (!skb_headlen(skb)) 91 return NULL; 92 93 type = (*(u8 *)skb->data) & 0x7f; 94 95 /* Look for binds in order of widening scope. A given destination or 96 * source address also implies matching on a particular network. 97 * 98 * - Matching destination and source 99 * - Matching destination 100 * - Matching source 101 * - Matching network, any address 102 * - Any network or address 103 */ 104 105 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, mh->src, 106 false); 107 if (msk) 108 return msk; 109 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, mh->src, 110 false); 111 if (msk) 112 return msk; 113 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, MCTP_ADDR_ANY, 114 false); 115 if (msk) 116 return msk; 117 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, 118 MCTP_ADDR_ANY, false); 119 if (msk) 120 return msk; 121 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, 122 MCTP_ADDR_ANY, true); 123 if (msk) 124 return msk; 125 126 return NULL; 127 } 128 129 /* A note on the key allocations. 130 * 131 * struct net->mctp.keys contains our set of currently-allocated keys for 132 * MCTP tag management. The lookup tuple for these is the peer EID, 133 * local EID and MCTP tag. 134 * 135 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a 136 * broadcast message is sent, we may receive responses from any peer EID. 137 * Because the broadcast dest address is equivalent to ANY, we create 138 * a key with (local = local-eid, peer = ANY). This allows a match on the 139 * incoming broadcast responses from any peer. 140 * 141 * We perform lookups when packets are received, and when tags are allocated 142 * in two scenarios: 143 * 144 * - when a packet is sent, with a locally-owned tag: we need to find an 145 * unused tag value for the (local, peer) EID pair. 146 * 147 * - when a tag is manually allocated: we need to find an unused tag value 148 * for the peer EID, but don't have a specific local EID at that stage. 149 * 150 * in the latter case, on successful allocation, we end up with a tag with 151 * (local = ANY, peer = peer-eid). 152 * 153 * So, the key set allows both a local EID of ANY, as well as a peer EID of 154 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast. 155 * The matching (in mctp_key_match()) during lookup allows the match value to 156 * be ANY in either the dest or source addresses. 157 * 158 * When allocating (+ inserting) a tag, we need to check for conflicts amongst 159 * the existing tag set. This requires macthing either exactly on the local 160 * and peer addresses, or either being ANY. 161 */ 162 163 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net, 164 mctp_eid_t local, mctp_eid_t peer, u8 tag) 165 { 166 if (key->net != net) 167 return false; 168 169 if (!mctp_address_matches(key->local_addr, local)) 170 return false; 171 172 if (!mctp_address_matches(key->peer_addr, peer)) 173 return false; 174 175 if (key->tag != tag) 176 return false; 177 178 return true; 179 } 180 181 /* returns a key (with key->lock held, and refcounted), or NULL if no such 182 * key exists. 183 */ 184 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb, 185 unsigned int netid, mctp_eid_t peer, 186 unsigned long *irqflags) 187 __acquires(&key->lock) 188 { 189 struct mctp_sk_key *key, *ret; 190 unsigned long flags; 191 struct mctp_hdr *mh; 192 u8 tag; 193 194 mh = mctp_hdr(skb); 195 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 196 197 ret = NULL; 198 spin_lock_irqsave(&net->mctp.keys_lock, flags); 199 200 hlist_for_each_entry(key, &net->mctp.keys, hlist) { 201 if (!mctp_key_match(key, netid, mh->dest, peer, tag)) 202 continue; 203 204 spin_lock(&key->lock); 205 if (key->valid) { 206 refcount_inc(&key->refs); 207 ret = key; 208 break; 209 } 210 spin_unlock(&key->lock); 211 } 212 213 if (ret) { 214 spin_unlock(&net->mctp.keys_lock); 215 *irqflags = flags; 216 } else { 217 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 218 } 219 220 return ret; 221 } 222 223 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk, 224 unsigned int net, 225 mctp_eid_t local, mctp_eid_t peer, 226 u8 tag, gfp_t gfp) 227 { 228 struct mctp_sk_key *key; 229 230 key = kzalloc(sizeof(*key), gfp); 231 if (!key) 232 return NULL; 233 234 key->net = net; 235 key->peer_addr = peer; 236 key->local_addr = local; 237 key->tag = tag; 238 key->sk = &msk->sk; 239 key->valid = true; 240 spin_lock_init(&key->lock); 241 refcount_set(&key->refs, 1); 242 sock_hold(key->sk); 243 244 return key; 245 } 246 247 void mctp_key_unref(struct mctp_sk_key *key) 248 { 249 unsigned long flags; 250 251 if (!refcount_dec_and_test(&key->refs)) 252 return; 253 254 /* even though no refs exist here, the lock allows us to stay 255 * consistent with the locking requirement of mctp_dev_release_key 256 */ 257 spin_lock_irqsave(&key->lock, flags); 258 mctp_dev_release_key(key->dev, key); 259 spin_unlock_irqrestore(&key->lock, flags); 260 261 sock_put(key->sk); 262 kfree(key); 263 } 264 265 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk) 266 { 267 struct net *net = sock_net(&msk->sk); 268 struct mctp_sk_key *tmp; 269 unsigned long flags; 270 int rc = 0; 271 272 spin_lock_irqsave(&net->mctp.keys_lock, flags); 273 274 if (sock_flag(&msk->sk, SOCK_DEAD)) { 275 rc = -EINVAL; 276 goto out_unlock; 277 } 278 279 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) { 280 if (mctp_key_match(tmp, key->net, key->local_addr, 281 key->peer_addr, key->tag)) { 282 spin_lock(&tmp->lock); 283 if (tmp->valid) 284 rc = -EEXIST; 285 spin_unlock(&tmp->lock); 286 if (rc) 287 break; 288 } 289 } 290 291 if (!rc) { 292 refcount_inc(&key->refs); 293 key->expiry = jiffies + mctp_key_lifetime; 294 timer_reduce(&msk->key_expiry, key->expiry); 295 296 hlist_add_head(&key->hlist, &net->mctp.keys); 297 hlist_add_head(&key->sklist, &msk->keys); 298 } 299 300 out_unlock: 301 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 302 303 return rc; 304 } 305 306 /* Helper for mctp_route_input(). 307 * We're done with the key; unlock and unref the key. 308 * For the usual case of automatic expiry we remove the key from lists. 309 * In the case that manual allocation is set on a key we release the lock 310 * and local ref, reset reassembly, but don't remove from lists. 311 */ 312 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net, 313 unsigned long flags, unsigned long reason) 314 __releases(&key->lock) 315 { 316 struct sk_buff *skb; 317 318 trace_mctp_key_release(key, reason); 319 skb = key->reasm_head; 320 key->reasm_head = NULL; 321 322 if (!key->manual_alloc) { 323 key->reasm_dead = true; 324 key->valid = false; 325 mctp_dev_release_key(key->dev, key); 326 } 327 spin_unlock_irqrestore(&key->lock, flags); 328 329 if (!key->manual_alloc) { 330 spin_lock_irqsave(&net->mctp.keys_lock, flags); 331 if (!hlist_unhashed(&key->hlist)) { 332 hlist_del_init(&key->hlist); 333 hlist_del_init(&key->sklist); 334 mctp_key_unref(key); 335 } 336 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 337 } 338 339 /* and one for the local reference */ 340 mctp_key_unref(key); 341 342 kfree_skb(skb); 343 } 344 345 #ifdef CONFIG_MCTP_FLOWS 346 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) 347 { 348 struct mctp_flow *flow; 349 350 flow = skb_ext_add(skb, SKB_EXT_MCTP); 351 if (!flow) 352 return; 353 354 refcount_inc(&key->refs); 355 flow->key = key; 356 } 357 358 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) 359 { 360 struct mctp_sk_key *key; 361 struct mctp_flow *flow; 362 363 flow = skb_ext_find(skb, SKB_EXT_MCTP); 364 if (!flow) 365 return; 366 367 key = flow->key; 368 369 if (key->dev) { 370 WARN_ON(key->dev != dev); 371 return; 372 } 373 374 mctp_dev_set_key(dev, key); 375 } 376 #else 377 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {} 378 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {} 379 #endif 380 381 /* takes ownership of skb, both in success and failure cases */ 382 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb) 383 { 384 struct mctp_hdr *hdr = mctp_hdr(skb); 385 u8 exp_seq, this_seq; 386 387 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) 388 & MCTP_HDR_SEQ_MASK; 389 390 if (!key->reasm_head) { 391 /* Since we're manipulating the shared frag_list, ensure it 392 * isn't shared with any other SKBs. In the cloned case, 393 * this will free the skb; callers can no longer access it 394 * safely. 395 */ 396 key->reasm_head = skb_unshare(skb, GFP_ATOMIC); 397 if (!key->reasm_head) 398 return -ENOMEM; 399 400 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list); 401 key->last_seq = this_seq; 402 return 0; 403 } 404 405 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK; 406 407 if (this_seq != exp_seq) 408 goto err_free; 409 410 if (key->reasm_head->len + skb->len > mctp_message_maxlen) 411 goto err_free; 412 413 skb->next = NULL; 414 skb->sk = NULL; 415 *key->reasm_tailp = skb; 416 key->reasm_tailp = &skb->next; 417 418 key->last_seq = this_seq; 419 420 key->reasm_head->data_len += skb->len; 421 key->reasm_head->len += skb->len; 422 key->reasm_head->truesize += skb->truesize; 423 424 return 0; 425 426 err_free: 427 kfree_skb(skb); 428 return -EINVAL; 429 } 430 431 static int mctp_dst_input(struct mctp_dst *dst, struct sk_buff *skb) 432 { 433 struct mctp_sk_key *key, *any_key = NULL; 434 struct net *net = dev_net(skb->dev); 435 struct mctp_sock *msk; 436 struct mctp_hdr *mh; 437 unsigned int netid; 438 unsigned long f; 439 u8 tag, flags; 440 int rc; 441 442 msk = NULL; 443 rc = -EINVAL; 444 445 /* We may be receiving a locally-routed packet; drop source sk 446 * accounting. 447 * 448 * From here, we will either queue the skb - either to a frag_queue, or 449 * to a receiving socket. When that succeeds, we clear the skb pointer; 450 * a non-NULL skb on exit will be otherwise unowned, and hence 451 * kfree_skb()-ed. 452 */ 453 skb_orphan(skb); 454 455 if (skb->pkt_type == PACKET_OUTGOING) 456 skb->pkt_type = PACKET_LOOPBACK; 457 458 /* ensure we have enough data for a header and a type */ 459 if (skb->len < sizeof(struct mctp_hdr) + 1) 460 goto out; 461 462 /* grab header, advance data ptr */ 463 mh = mctp_hdr(skb); 464 netid = mctp_cb(skb)->net; 465 skb_pull(skb, sizeof(struct mctp_hdr)); 466 467 if (mh->ver != 1) 468 goto out; 469 470 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM); 471 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 472 473 rcu_read_lock(); 474 475 /* lookup socket / reasm context, exactly matching (src,dest,tag). 476 * we hold a ref on the key, and key->lock held. 477 */ 478 key = mctp_lookup_key(net, skb, netid, mh->src, &f); 479 480 if (flags & MCTP_HDR_FLAG_SOM) { 481 if (key) { 482 msk = container_of(key->sk, struct mctp_sock, sk); 483 } else { 484 /* first response to a broadcast? do a more general 485 * key lookup to find the socket, but don't use this 486 * key for reassembly - we'll create a more specific 487 * one for future packets if required (ie, !EOM). 488 * 489 * this lookup requires key->peer to be MCTP_ADDR_ANY, 490 * it doesn't match just any key->peer. 491 */ 492 any_key = mctp_lookup_key(net, skb, netid, 493 MCTP_ADDR_ANY, &f); 494 if (any_key) { 495 msk = container_of(any_key->sk, 496 struct mctp_sock, sk); 497 spin_unlock_irqrestore(&any_key->lock, f); 498 } 499 } 500 501 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO)) 502 msk = mctp_lookup_bind(net, skb); 503 504 if (!msk) { 505 rc = -ENOENT; 506 goto out_unlock; 507 } 508 509 /* single-packet message? deliver to socket, clean up any 510 * pending key. 511 */ 512 if (flags & MCTP_HDR_FLAG_EOM) { 513 rc = sock_queue_rcv_skb(&msk->sk, skb); 514 if (!rc) 515 skb = NULL; 516 if (key) { 517 /* we've hit a pending reassembly; not much we 518 * can do but drop it 519 */ 520 __mctp_key_done_in(key, net, f, 521 MCTP_TRACE_KEY_REPLIED); 522 key = NULL; 523 } 524 goto out_unlock; 525 } 526 527 /* broadcast response or a bind() - create a key for further 528 * packets for this message 529 */ 530 if (!key) { 531 key = mctp_key_alloc(msk, netid, mh->dest, mh->src, 532 tag, GFP_ATOMIC); 533 if (!key) { 534 rc = -ENOMEM; 535 goto out_unlock; 536 } 537 538 /* we can queue without the key lock here, as the 539 * key isn't observable yet 540 */ 541 mctp_frag_queue(key, skb); 542 skb = NULL; 543 544 /* if the key_add fails, we've raced with another 545 * SOM packet with the same src, dest and tag. There's 546 * no way to distinguish future packets, so all we 547 * can do is drop. 548 */ 549 rc = mctp_key_add(key, msk); 550 if (!rc) 551 trace_mctp_key_acquire(key); 552 553 /* we don't need to release key->lock on exit, so 554 * clean up here and suppress the unlock via 555 * setting to NULL 556 */ 557 mctp_key_unref(key); 558 key = NULL; 559 560 } else { 561 if (key->reasm_head || key->reasm_dead) { 562 /* duplicate start? drop everything */ 563 __mctp_key_done_in(key, net, f, 564 MCTP_TRACE_KEY_INVALIDATED); 565 rc = -EEXIST; 566 key = NULL; 567 } else { 568 rc = mctp_frag_queue(key, skb); 569 skb = NULL; 570 } 571 } 572 573 } else if (key) { 574 /* this packet continues a previous message; reassemble 575 * using the message-specific key 576 */ 577 578 /* we need to be continuing an existing reassembly... */ 579 if (!key->reasm_head) { 580 rc = -EINVAL; 581 } else { 582 rc = mctp_frag_queue(key, skb); 583 skb = NULL; 584 } 585 586 if (rc) 587 goto out_unlock; 588 589 /* end of message? deliver to socket, and we're done with 590 * the reassembly/response key 591 */ 592 if (flags & MCTP_HDR_FLAG_EOM) { 593 rc = sock_queue_rcv_skb(key->sk, key->reasm_head); 594 if (!rc) 595 key->reasm_head = NULL; 596 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); 597 key = NULL; 598 } 599 600 } else { 601 /* not a start, no matching key */ 602 rc = -ENOENT; 603 } 604 605 out_unlock: 606 rcu_read_unlock(); 607 if (key) { 608 spin_unlock_irqrestore(&key->lock, f); 609 mctp_key_unref(key); 610 } 611 if (any_key) 612 mctp_key_unref(any_key); 613 out: 614 kfree_skb(skb); 615 return rc; 616 } 617 618 static int mctp_dst_output(struct mctp_dst *dst, struct sk_buff *skb) 619 { 620 char daddr_buf[MAX_ADDR_LEN]; 621 char *daddr = NULL; 622 int rc; 623 624 skb->protocol = htons(ETH_P_MCTP); 625 skb->pkt_type = PACKET_OUTGOING; 626 skb->dev = dst->dev->dev; 627 628 if (skb->len > dst->mtu) { 629 kfree_skb(skb); 630 return -EMSGSIZE; 631 } 632 633 /* direct route; use the hwaddr we stashed in sendmsg */ 634 if (dst->halen) { 635 if (dst->halen != skb->dev->addr_len) { 636 /* sanity check, sendmsg should have already caught this */ 637 kfree_skb(skb); 638 return -EMSGSIZE; 639 } 640 daddr = dst->haddr; 641 } else { 642 /* If lookup fails let the device handle daddr==NULL */ 643 if (mctp_neigh_lookup(dst->dev, dst->nexthop, daddr_buf) == 0) 644 daddr = daddr_buf; 645 } 646 647 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol), 648 daddr, skb->dev->dev_addr, skb->len); 649 if (rc < 0) { 650 kfree_skb(skb); 651 return -EHOSTUNREACH; 652 } 653 654 mctp_flow_prepare_output(skb, dst->dev); 655 656 rc = dev_queue_xmit(skb); 657 if (rc) 658 rc = net_xmit_errno(rc); 659 660 return rc; 661 } 662 663 /* route alloc/release */ 664 static void mctp_route_release(struct mctp_route *rt) 665 { 666 if (refcount_dec_and_test(&rt->refs)) { 667 if (rt->dst_type == MCTP_ROUTE_DIRECT) 668 mctp_dev_put(rt->dev); 669 kfree_rcu(rt, rcu); 670 } 671 } 672 673 /* returns a route with the refcount at 1 */ 674 static struct mctp_route *mctp_route_alloc(void) 675 { 676 struct mctp_route *rt; 677 678 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 679 if (!rt) 680 return NULL; 681 682 INIT_LIST_HEAD(&rt->list); 683 refcount_set(&rt->refs, 1); 684 rt->output = mctp_dst_discard; 685 686 return rt; 687 } 688 689 unsigned int mctp_default_net(struct net *net) 690 { 691 return READ_ONCE(net->mctp.default_net); 692 } 693 694 int mctp_default_net_set(struct net *net, unsigned int index) 695 { 696 if (index == 0) 697 return -EINVAL; 698 WRITE_ONCE(net->mctp.default_net, index); 699 return 0; 700 } 701 702 /* tag management */ 703 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key, 704 struct mctp_sock *msk) 705 { 706 struct netns_mctp *mns = &net->mctp; 707 708 lockdep_assert_held(&mns->keys_lock); 709 710 key->expiry = jiffies + mctp_key_lifetime; 711 timer_reduce(&msk->key_expiry, key->expiry); 712 713 /* we hold the net->key_lock here, allowing updates to both 714 * then net and sk 715 */ 716 hlist_add_head_rcu(&key->hlist, &mns->keys); 717 hlist_add_head_rcu(&key->sklist, &msk->keys); 718 refcount_inc(&key->refs); 719 } 720 721 /* Allocate a locally-owned tag value for (local, peer), and reserve 722 * it for the socket msk 723 */ 724 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk, 725 unsigned int netid, 726 mctp_eid_t local, mctp_eid_t peer, 727 bool manual, u8 *tagp) 728 { 729 struct net *net = sock_net(&msk->sk); 730 struct netns_mctp *mns = &net->mctp; 731 struct mctp_sk_key *key, *tmp; 732 unsigned long flags; 733 u8 tagbits; 734 735 /* for NULL destination EIDs, we may get a response from any peer */ 736 if (peer == MCTP_ADDR_NULL) 737 peer = MCTP_ADDR_ANY; 738 739 /* be optimistic, alloc now */ 740 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL); 741 if (!key) 742 return ERR_PTR(-ENOMEM); 743 744 /* 8 possible tag values */ 745 tagbits = 0xff; 746 747 spin_lock_irqsave(&mns->keys_lock, flags); 748 749 /* Walk through the existing keys, looking for potential conflicting 750 * tags. If we find a conflict, clear that bit from tagbits 751 */ 752 hlist_for_each_entry(tmp, &mns->keys, hlist) { 753 /* We can check the lookup fields (*_addr, tag) without the 754 * lock held, they don't change over the lifetime of the key. 755 */ 756 757 /* tags are net-specific */ 758 if (tmp->net != netid) 759 continue; 760 761 /* if we don't own the tag, it can't conflict */ 762 if (tmp->tag & MCTP_HDR_FLAG_TO) 763 continue; 764 765 /* Since we're avoiding conflicting entries, match peer and 766 * local addresses, including with a wildcard on ANY. See 767 * 'A note on key allocations' for background. 768 */ 769 if (peer != MCTP_ADDR_ANY && 770 !mctp_address_matches(tmp->peer_addr, peer)) 771 continue; 772 773 if (local != MCTP_ADDR_ANY && 774 !mctp_address_matches(tmp->local_addr, local)) 775 continue; 776 777 spin_lock(&tmp->lock); 778 /* key must still be valid. If we find a match, clear the 779 * potential tag value 780 */ 781 if (tmp->valid) 782 tagbits &= ~(1 << tmp->tag); 783 spin_unlock(&tmp->lock); 784 785 if (!tagbits) 786 break; 787 } 788 789 if (tagbits) { 790 key->tag = __ffs(tagbits); 791 mctp_reserve_tag(net, key, msk); 792 trace_mctp_key_acquire(key); 793 794 key->manual_alloc = manual; 795 *tagp = key->tag; 796 } 797 798 spin_unlock_irqrestore(&mns->keys_lock, flags); 799 800 if (!tagbits) { 801 mctp_key_unref(key); 802 return ERR_PTR(-EBUSY); 803 } 804 805 return key; 806 } 807 808 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk, 809 unsigned int netid, 810 mctp_eid_t daddr, 811 u8 req_tag, u8 *tagp) 812 { 813 struct net *net = sock_net(&msk->sk); 814 struct netns_mctp *mns = &net->mctp; 815 struct mctp_sk_key *key, *tmp; 816 unsigned long flags; 817 818 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER); 819 key = NULL; 820 821 spin_lock_irqsave(&mns->keys_lock, flags); 822 823 hlist_for_each_entry(tmp, &mns->keys, hlist) { 824 if (tmp->net != netid) 825 continue; 826 827 if (tmp->tag != req_tag) 828 continue; 829 830 if (!mctp_address_matches(tmp->peer_addr, daddr)) 831 continue; 832 833 if (!tmp->manual_alloc) 834 continue; 835 836 spin_lock(&tmp->lock); 837 if (tmp->valid) { 838 key = tmp; 839 refcount_inc(&key->refs); 840 spin_unlock(&tmp->lock); 841 break; 842 } 843 spin_unlock(&tmp->lock); 844 } 845 spin_unlock_irqrestore(&mns->keys_lock, flags); 846 847 if (!key) 848 return ERR_PTR(-ENOENT); 849 850 if (tagp) 851 *tagp = key->tag; 852 853 return key; 854 } 855 856 /* routing lookups */ 857 static unsigned int mctp_route_netid(struct mctp_route *rt) 858 { 859 return rt->dst_type == MCTP_ROUTE_DIRECT ? 860 READ_ONCE(rt->dev->net) : rt->gateway.net; 861 } 862 863 static bool mctp_rt_match_eid(struct mctp_route *rt, 864 unsigned int net, mctp_eid_t eid) 865 { 866 return mctp_route_netid(rt) == net && 867 rt->min <= eid && rt->max >= eid; 868 } 869 870 /* compares match, used for duplicate prevention */ 871 static bool mctp_rt_compare_exact(struct mctp_route *rt1, 872 struct mctp_route *rt2) 873 { 874 ASSERT_RTNL(); 875 return mctp_route_netid(rt1) == mctp_route_netid(rt2) && 876 rt1->min == rt2->min && 877 rt1->max == rt2->max; 878 } 879 880 /* must only be called on a direct route, as the final output hop */ 881 static void mctp_dst_from_route(struct mctp_dst *dst, mctp_eid_t eid, 882 unsigned int mtu, struct mctp_route *route) 883 { 884 mctp_dev_hold(route->dev); 885 dst->nexthop = eid; 886 dst->dev = route->dev; 887 dst->mtu = READ_ONCE(dst->dev->dev->mtu); 888 if (mtu) 889 dst->mtu = min(dst->mtu, mtu); 890 dst->halen = 0; 891 dst->output = route->output; 892 } 893 894 int mctp_dst_from_extaddr(struct mctp_dst *dst, struct net *net, int ifindex, 895 unsigned char halen, const unsigned char *haddr) 896 { 897 struct net_device *netdev; 898 struct mctp_dev *dev; 899 int rc = -ENOENT; 900 901 if (halen > sizeof(dst->haddr)) 902 return -EINVAL; 903 904 rcu_read_lock(); 905 906 netdev = dev_get_by_index_rcu(net, ifindex); 907 if (!netdev) 908 goto out_unlock; 909 910 if (netdev->addr_len != halen) { 911 rc = -EINVAL; 912 goto out_unlock; 913 } 914 915 dev = __mctp_dev_get(netdev); 916 if (!dev) 917 goto out_unlock; 918 919 dst->dev = dev; 920 dst->mtu = READ_ONCE(netdev->mtu); 921 dst->halen = halen; 922 dst->output = mctp_dst_output; 923 dst->nexthop = 0; 924 memcpy(dst->haddr, haddr, halen); 925 926 rc = 0; 927 928 out_unlock: 929 rcu_read_unlock(); 930 return rc; 931 } 932 933 void mctp_dst_release(struct mctp_dst *dst) 934 { 935 mctp_dev_put(dst->dev); 936 } 937 938 static struct mctp_route *mctp_route_lookup_single(struct net *net, 939 unsigned int dnet, 940 mctp_eid_t daddr) 941 { 942 struct mctp_route *rt; 943 944 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 945 if (mctp_rt_match_eid(rt, dnet, daddr)) 946 return rt; 947 } 948 949 return NULL; 950 } 951 952 /* populates *dst on successful lookup, if set */ 953 int mctp_route_lookup(struct net *net, unsigned int dnet, 954 mctp_eid_t daddr, struct mctp_dst *dst) 955 { 956 const unsigned int max_depth = 32; 957 unsigned int depth, mtu = 0; 958 int rc = -EHOSTUNREACH; 959 960 rcu_read_lock(); 961 962 for (depth = 0; depth < max_depth; depth++) { 963 struct mctp_route *rt; 964 965 rt = mctp_route_lookup_single(net, dnet, daddr); 966 if (!rt) 967 break; 968 969 /* clamp mtu to the smallest in the path, allowing 0 970 * to specify no restrictions 971 */ 972 if (mtu && rt->mtu) 973 mtu = min(mtu, rt->mtu); 974 else 975 mtu = mtu ?: rt->mtu; 976 977 if (rt->dst_type == MCTP_ROUTE_DIRECT) { 978 if (dst) 979 mctp_dst_from_route(dst, daddr, mtu, rt); 980 rc = 0; 981 break; 982 983 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) { 984 daddr = rt->gateway.eid; 985 } 986 } 987 988 rcu_read_unlock(); 989 990 return rc; 991 } 992 993 static int mctp_route_lookup_null(struct net *net, struct net_device *dev, 994 struct mctp_dst *dst) 995 { 996 int rc = -EHOSTUNREACH; 997 struct mctp_route *rt; 998 999 rcu_read_lock(); 1000 1001 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1002 if (rt->dst_type != MCTP_ROUTE_DIRECT || rt->type != RTN_LOCAL) 1003 continue; 1004 1005 if (rt->dev->dev != dev) 1006 continue; 1007 1008 mctp_dst_from_route(dst, 0, 0, rt); 1009 rc = 0; 1010 break; 1011 } 1012 1013 rcu_read_unlock(); 1014 1015 return rc; 1016 } 1017 1018 static int mctp_do_fragment_route(struct mctp_dst *dst, struct sk_buff *skb, 1019 unsigned int mtu, u8 tag) 1020 { 1021 const unsigned int hlen = sizeof(struct mctp_hdr); 1022 struct mctp_hdr *hdr, *hdr2; 1023 unsigned int pos, size, headroom; 1024 struct sk_buff *skb2; 1025 int rc; 1026 u8 seq; 1027 1028 hdr = mctp_hdr(skb); 1029 seq = 0; 1030 rc = 0; 1031 1032 if (mtu < hlen + 1) { 1033 kfree_skb(skb); 1034 return -EMSGSIZE; 1035 } 1036 1037 /* keep same headroom as the original skb */ 1038 headroom = skb_headroom(skb); 1039 1040 /* we've got the header */ 1041 skb_pull(skb, hlen); 1042 1043 for (pos = 0; pos < skb->len;) { 1044 /* size of message payload */ 1045 size = min(mtu - hlen, skb->len - pos); 1046 1047 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL); 1048 if (!skb2) { 1049 rc = -ENOMEM; 1050 break; 1051 } 1052 1053 /* generic skb copy */ 1054 skb2->protocol = skb->protocol; 1055 skb2->priority = skb->priority; 1056 skb2->dev = skb->dev; 1057 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb)); 1058 1059 if (skb->sk) 1060 skb_set_owner_w(skb2, skb->sk); 1061 1062 /* establish packet */ 1063 skb_reserve(skb2, headroom); 1064 skb_reset_network_header(skb2); 1065 skb_put(skb2, hlen + size); 1066 skb2->transport_header = skb2->network_header + hlen; 1067 1068 /* copy header fields, calculate SOM/EOM flags & seq */ 1069 hdr2 = mctp_hdr(skb2); 1070 hdr2->ver = hdr->ver; 1071 hdr2->dest = hdr->dest; 1072 hdr2->src = hdr->src; 1073 hdr2->flags_seq_tag = tag & 1074 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 1075 1076 if (pos == 0) 1077 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM; 1078 1079 if (pos + size == skb->len) 1080 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM; 1081 1082 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT; 1083 1084 /* copy message payload */ 1085 skb_copy_bits(skb, pos, skb_transport_header(skb2), size); 1086 1087 /* we need to copy the extensions, for MCTP flow data */ 1088 skb_ext_copy(skb2, skb); 1089 1090 /* do route */ 1091 rc = dst->output(dst, skb2); 1092 if (rc) 1093 break; 1094 1095 seq = (seq + 1) & MCTP_HDR_SEQ_MASK; 1096 pos += size; 1097 } 1098 1099 consume_skb(skb); 1100 return rc; 1101 } 1102 1103 int mctp_local_output(struct sock *sk, struct mctp_dst *dst, 1104 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag) 1105 { 1106 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 1107 struct mctp_sk_key *key; 1108 struct mctp_hdr *hdr; 1109 unsigned long flags; 1110 unsigned int netid; 1111 unsigned int mtu; 1112 mctp_eid_t saddr; 1113 int rc; 1114 u8 tag; 1115 1116 KUNIT_STATIC_STUB_REDIRECT(mctp_local_output, sk, dst, skb, daddr, 1117 req_tag); 1118 1119 rc = -ENODEV; 1120 1121 spin_lock_irqsave(&dst->dev->addrs_lock, flags); 1122 if (dst->dev->num_addrs == 0) { 1123 rc = -EHOSTUNREACH; 1124 } else { 1125 /* use the outbound interface's first address as our source */ 1126 saddr = dst->dev->addrs[0]; 1127 rc = 0; 1128 } 1129 spin_unlock_irqrestore(&dst->dev->addrs_lock, flags); 1130 netid = READ_ONCE(dst->dev->net); 1131 1132 if (rc) 1133 goto out_release; 1134 1135 if (req_tag & MCTP_TAG_OWNER) { 1136 if (req_tag & MCTP_TAG_PREALLOC) 1137 key = mctp_lookup_prealloc_tag(msk, netid, daddr, 1138 req_tag, &tag); 1139 else 1140 key = mctp_alloc_local_tag(msk, netid, saddr, daddr, 1141 false, &tag); 1142 1143 if (IS_ERR(key)) { 1144 rc = PTR_ERR(key); 1145 goto out_release; 1146 } 1147 mctp_skb_set_flow(skb, key); 1148 /* done with the key in this scope */ 1149 mctp_key_unref(key); 1150 tag |= MCTP_HDR_FLAG_TO; 1151 } else { 1152 key = NULL; 1153 tag = req_tag & MCTP_TAG_MASK; 1154 } 1155 1156 skb->pkt_type = PACKET_OUTGOING; 1157 skb->protocol = htons(ETH_P_MCTP); 1158 skb->priority = 0; 1159 skb_reset_transport_header(skb); 1160 skb_push(skb, sizeof(struct mctp_hdr)); 1161 skb_reset_network_header(skb); 1162 skb->dev = dst->dev->dev; 1163 1164 /* set up common header fields */ 1165 hdr = mctp_hdr(skb); 1166 hdr->ver = 1; 1167 hdr->dest = daddr; 1168 hdr->src = saddr; 1169 1170 mtu = dst->mtu; 1171 1172 if (skb->len + sizeof(struct mctp_hdr) <= mtu) { 1173 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | 1174 MCTP_HDR_FLAG_EOM | tag; 1175 rc = dst->output(dst, skb); 1176 } else { 1177 rc = mctp_do_fragment_route(dst, skb, mtu, tag); 1178 } 1179 1180 /* route output functions consume the skb, even on error */ 1181 skb = NULL; 1182 1183 out_release: 1184 kfree_skb(skb); 1185 return rc; 1186 } 1187 1188 /* route management */ 1189 1190 /* mctp_route_add(): Add the provided route, previously allocated via 1191 * mctp_route_alloc(). On success, takes ownership of @rt, which includes a 1192 * hold on rt->dev for usage in the route table. On failure a caller will want 1193 * to mctp_route_release(). 1194 * 1195 * We expect that the caller has set rt->type, rt->dst_type, rt->min, rt->max, 1196 * rt->mtu and either rt->dev (with a reference held appropriately) or 1197 * rt->gateway. Other fields will be populated. 1198 */ 1199 static int mctp_route_add(struct net *net, struct mctp_route *rt) 1200 { 1201 struct mctp_route *ert; 1202 1203 if (!mctp_address_unicast(rt->min) || !mctp_address_unicast(rt->max)) 1204 return -EINVAL; 1205 1206 if (rt->dst_type == MCTP_ROUTE_DIRECT && !rt->dev) 1207 return -EINVAL; 1208 1209 if (rt->dst_type == MCTP_ROUTE_GATEWAY && !rt->gateway.eid) 1210 return -EINVAL; 1211 1212 switch (rt->type) { 1213 case RTN_LOCAL: 1214 rt->output = mctp_dst_input; 1215 break; 1216 case RTN_UNICAST: 1217 rt->output = mctp_dst_output; 1218 break; 1219 default: 1220 return -EINVAL; 1221 } 1222 1223 ASSERT_RTNL(); 1224 1225 /* Prevent duplicate identical routes. */ 1226 list_for_each_entry(ert, &net->mctp.routes, list) { 1227 if (mctp_rt_compare_exact(rt, ert)) { 1228 return -EEXIST; 1229 } 1230 } 1231 1232 list_add_rcu(&rt->list, &net->mctp.routes); 1233 1234 return 0; 1235 } 1236 1237 static int mctp_route_remove(struct net *net, unsigned int netid, 1238 mctp_eid_t daddr_start, unsigned int daddr_extent, 1239 unsigned char type) 1240 { 1241 struct mctp_route *rt, *tmp; 1242 mctp_eid_t daddr_end; 1243 bool dropped; 1244 1245 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1246 return -EINVAL; 1247 1248 daddr_end = daddr_start + daddr_extent; 1249 dropped = false; 1250 1251 ASSERT_RTNL(); 1252 1253 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1254 if (mctp_route_netid(rt) == netid && 1255 rt->min == daddr_start && rt->max == daddr_end && 1256 rt->type == type) { 1257 list_del_rcu(&rt->list); 1258 /* TODO: immediate RTM_DELROUTE */ 1259 mctp_route_release(rt); 1260 dropped = true; 1261 } 1262 } 1263 1264 return dropped ? 0 : -ENOENT; 1265 } 1266 1267 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr) 1268 { 1269 struct mctp_route *rt; 1270 int rc; 1271 1272 rt = mctp_route_alloc(); 1273 if (!rt) 1274 return -ENOMEM; 1275 1276 rt->min = addr; 1277 rt->max = addr; 1278 rt->dst_type = MCTP_ROUTE_DIRECT; 1279 rt->dev = mdev; 1280 rt->type = RTN_LOCAL; 1281 1282 mctp_dev_hold(rt->dev); 1283 1284 rc = mctp_route_add(dev_net(mdev->dev), rt); 1285 if (rc) 1286 mctp_route_release(rt); 1287 1288 return rc; 1289 } 1290 1291 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr) 1292 { 1293 return mctp_route_remove(dev_net(mdev->dev), mdev->net, 1294 addr, 0, RTN_LOCAL); 1295 } 1296 1297 /* removes all entries for a given device */ 1298 void mctp_route_remove_dev(struct mctp_dev *mdev) 1299 { 1300 struct net *net = dev_net(mdev->dev); 1301 struct mctp_route *rt, *tmp; 1302 1303 ASSERT_RTNL(); 1304 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1305 if (rt->dst_type == MCTP_ROUTE_DIRECT && rt->dev == mdev) { 1306 list_del_rcu(&rt->list); 1307 /* TODO: immediate RTM_DELROUTE */ 1308 mctp_route_release(rt); 1309 } 1310 } 1311 } 1312 1313 /* Incoming packet-handling */ 1314 1315 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev, 1316 struct packet_type *pt, 1317 struct net_device *orig_dev) 1318 { 1319 struct net *net = dev_net(dev); 1320 struct mctp_dev *mdev; 1321 struct mctp_skb_cb *cb; 1322 struct mctp_dst dst; 1323 struct mctp_hdr *mh; 1324 int rc; 1325 1326 rcu_read_lock(); 1327 mdev = __mctp_dev_get(dev); 1328 rcu_read_unlock(); 1329 if (!mdev) { 1330 /* basic non-data sanity checks */ 1331 goto err_drop; 1332 } 1333 1334 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr))) 1335 goto err_drop; 1336 1337 skb_reset_transport_header(skb); 1338 skb_reset_network_header(skb); 1339 1340 /* We have enough for a header; decode and route */ 1341 mh = mctp_hdr(skb); 1342 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX) 1343 goto err_drop; 1344 1345 /* source must be valid unicast or null; drop reserved ranges and 1346 * broadcast 1347 */ 1348 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src))) 1349 goto err_drop; 1350 1351 /* dest address: as above, but allow broadcast */ 1352 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) || 1353 mctp_address_broadcast(mh->dest))) 1354 goto err_drop; 1355 1356 /* MCTP drivers must populate halen/haddr */ 1357 if (dev->type == ARPHRD_MCTP) { 1358 cb = mctp_cb(skb); 1359 } else { 1360 cb = __mctp_cb(skb); 1361 cb->halen = 0; 1362 } 1363 cb->net = READ_ONCE(mdev->net); 1364 cb->ifindex = dev->ifindex; 1365 1366 rc = mctp_route_lookup(net, cb->net, mh->dest, &dst); 1367 1368 /* NULL EID, but addressed to our physical address */ 1369 if (rc && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST) 1370 rc = mctp_route_lookup_null(net, dev, &dst); 1371 1372 if (rc) 1373 goto err_drop; 1374 1375 dst.output(&dst, skb); 1376 mctp_dst_release(&dst); 1377 mctp_dev_put(mdev); 1378 1379 return NET_RX_SUCCESS; 1380 1381 err_drop: 1382 kfree_skb(skb); 1383 mctp_dev_put(mdev); 1384 return NET_RX_DROP; 1385 } 1386 1387 static struct packet_type mctp_packet_type = { 1388 .type = cpu_to_be16(ETH_P_MCTP), 1389 .func = mctp_pkttype_receive, 1390 }; 1391 1392 /* netlink interface */ 1393 1394 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = { 1395 [RTA_DST] = { .type = NLA_U8 }, 1396 [RTA_METRICS] = { .type = NLA_NESTED }, 1397 [RTA_OIF] = { .type = NLA_U32 }, 1398 [RTA_GATEWAY] = NLA_POLICY_EXACT_LEN(sizeof(struct mctp_fq_addr)), 1399 }; 1400 1401 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = { 1402 [RTAX_MTU] = { .type = NLA_U32 }, 1403 }; 1404 1405 /* base parsing; common to both _lookup and _populate variants. 1406 * 1407 * For gateway routes (which have a RTA_GATEWAY, and no RTA_OIF), we populate 1408 * *gatweayp. for direct routes (RTA_OIF, no RTA_GATEWAY), we populate *mdev. 1409 */ 1410 static int mctp_route_nlparse_common(struct net *net, struct nlmsghdr *nlh, 1411 struct netlink_ext_ack *extack, 1412 struct nlattr **tb, struct rtmsg **rtm, 1413 struct mctp_dev **mdev, 1414 struct mctp_fq_addr *gatewayp, 1415 mctp_eid_t *daddr_start) 1416 { 1417 struct mctp_fq_addr *gateway = NULL; 1418 unsigned int ifindex = 0; 1419 struct net_device *dev; 1420 int rc; 1421 1422 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX, 1423 rta_mctp_policy, extack); 1424 if (rc < 0) { 1425 NL_SET_ERR_MSG(extack, "incorrect format"); 1426 return rc; 1427 } 1428 1429 if (!tb[RTA_DST]) { 1430 NL_SET_ERR_MSG(extack, "dst EID missing"); 1431 return -EINVAL; 1432 } 1433 *daddr_start = nla_get_u8(tb[RTA_DST]); 1434 1435 if (tb[RTA_OIF]) 1436 ifindex = nla_get_u32(tb[RTA_OIF]); 1437 1438 if (tb[RTA_GATEWAY]) 1439 gateway = nla_data(tb[RTA_GATEWAY]); 1440 1441 if (ifindex && gateway) { 1442 NL_SET_ERR_MSG(extack, 1443 "cannot specify both ifindex and gateway"); 1444 return -EINVAL; 1445 1446 } else if (ifindex) { 1447 dev = __dev_get_by_index(net, ifindex); 1448 if (!dev) { 1449 NL_SET_ERR_MSG(extack, "bad ifindex"); 1450 return -ENODEV; 1451 } 1452 *mdev = mctp_dev_get_rtnl(dev); 1453 if (!*mdev) 1454 return -ENODEV; 1455 gatewayp->eid = 0; 1456 1457 } else if (gateway) { 1458 if (!mctp_address_unicast(gateway->eid)) { 1459 NL_SET_ERR_MSG(extack, "bad gateway"); 1460 return -EINVAL; 1461 } 1462 1463 gatewayp->eid = gateway->eid; 1464 gatewayp->net = gateway->net != MCTP_NET_ANY ? 1465 gateway->net : 1466 READ_ONCE(net->mctp.default_net); 1467 *mdev = NULL; 1468 1469 } else { 1470 NL_SET_ERR_MSG(extack, "no route output provided"); 1471 return -EINVAL; 1472 } 1473 1474 *rtm = nlmsg_data(nlh); 1475 if ((*rtm)->rtm_family != AF_MCTP) { 1476 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP"); 1477 return -EINVAL; 1478 } 1479 1480 if ((*rtm)->rtm_type != RTN_UNICAST) { 1481 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST"); 1482 return -EINVAL; 1483 } 1484 1485 return 0; 1486 } 1487 1488 /* Route parsing for lookup operations; we only need the "route target" 1489 * components (ie., network and dest-EID range). 1490 */ 1491 static int mctp_route_nlparse_lookup(struct net *net, struct nlmsghdr *nlh, 1492 struct netlink_ext_ack *extack, 1493 unsigned char *type, unsigned int *netid, 1494 mctp_eid_t *daddr_start, 1495 unsigned int *daddr_extent) 1496 { 1497 struct nlattr *tb[RTA_MAX + 1]; 1498 struct mctp_fq_addr gw; 1499 struct mctp_dev *mdev; 1500 struct rtmsg *rtm; 1501 int rc; 1502 1503 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm, 1504 &mdev, &gw, daddr_start); 1505 if (rc) 1506 return rc; 1507 1508 if (mdev) { 1509 *netid = mdev->net; 1510 } else if (gw.eid) { 1511 *netid = gw.net; 1512 } else { 1513 /* bug: _nlparse_common should not allow this */ 1514 return -1; 1515 } 1516 1517 *type = rtm->rtm_type; 1518 *daddr_extent = rtm->rtm_dst_len; 1519 1520 return 0; 1521 } 1522 1523 /* Full route parse for RTM_NEWROUTE: populate @rt. On success, 1524 * MCTP_ROUTE_DIRECT routes (ie, those with a direct dev) will hold a reference 1525 * to that dev. 1526 */ 1527 static int mctp_route_nlparse_populate(struct net *net, struct nlmsghdr *nlh, 1528 struct netlink_ext_ack *extack, 1529 struct mctp_route *rt) 1530 { 1531 struct nlattr *tbx[RTAX_MAX + 1]; 1532 struct nlattr *tb[RTA_MAX + 1]; 1533 unsigned int daddr_extent; 1534 struct mctp_fq_addr gw; 1535 mctp_eid_t daddr_start; 1536 struct mctp_dev *dev; 1537 struct rtmsg *rtm; 1538 u32 mtu = 0; 1539 int rc; 1540 1541 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm, 1542 &dev, &gw, &daddr_start); 1543 if (rc) 1544 return rc; 1545 1546 daddr_extent = rtm->rtm_dst_len; 1547 1548 if (daddr_extent > 0xff || daddr_extent + daddr_start >= 255) { 1549 NL_SET_ERR_MSG(extack, "invalid eid range"); 1550 return -EINVAL; 1551 } 1552 1553 if (tb[RTA_METRICS]) { 1554 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS], 1555 rta_metrics_policy, NULL); 1556 if (rc < 0) { 1557 NL_SET_ERR_MSG(extack, "incorrect RTA_METRICS format"); 1558 return rc; 1559 } 1560 if (tbx[RTAX_MTU]) 1561 mtu = nla_get_u32(tbx[RTAX_MTU]); 1562 } 1563 1564 rt->type = rtm->rtm_type; 1565 rt->min = daddr_start; 1566 rt->max = daddr_start + daddr_extent; 1567 rt->mtu = mtu; 1568 if (gw.eid) { 1569 rt->dst_type = MCTP_ROUTE_GATEWAY; 1570 rt->gateway.eid = gw.eid; 1571 rt->gateway.net = gw.net; 1572 } else { 1573 rt->dst_type = MCTP_ROUTE_DIRECT; 1574 rt->dev = dev; 1575 mctp_dev_hold(rt->dev); 1576 } 1577 1578 return 0; 1579 } 1580 1581 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1582 struct netlink_ext_ack *extack) 1583 { 1584 struct net *net = sock_net(skb->sk); 1585 struct mctp_route *rt; 1586 int rc; 1587 1588 rt = mctp_route_alloc(); 1589 if (!rt) 1590 return -ENOMEM; 1591 1592 rc = mctp_route_nlparse_populate(net, nlh, extack, rt); 1593 if (rc < 0) 1594 goto err_free; 1595 1596 if (rt->dst_type == MCTP_ROUTE_DIRECT && 1597 rt->dev->dev->flags & IFF_LOOPBACK) { 1598 NL_SET_ERR_MSG(extack, "no routes to loopback"); 1599 rc = -EINVAL; 1600 goto err_free; 1601 } 1602 1603 rc = mctp_route_add(net, rt); 1604 if (!rc) 1605 return 0; 1606 1607 err_free: 1608 mctp_route_release(rt); 1609 return rc; 1610 } 1611 1612 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1613 struct netlink_ext_ack *extack) 1614 { 1615 struct net *net = sock_net(skb->sk); 1616 unsigned int netid, daddr_extent; 1617 unsigned char type = RTN_UNSPEC; 1618 mctp_eid_t daddr_start; 1619 int rc; 1620 1621 rc = mctp_route_nlparse_lookup(net, nlh, extack, &type, &netid, 1622 &daddr_start, &daddr_extent); 1623 if (rc < 0) 1624 return rc; 1625 1626 /* we only have unicast routes */ 1627 if (type != RTN_UNICAST) 1628 return -EINVAL; 1629 1630 rc = mctp_route_remove(net, netid, daddr_start, daddr_extent, type); 1631 return rc; 1632 } 1633 1634 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt, 1635 u32 portid, u32 seq, int event, unsigned int flags) 1636 { 1637 struct nlmsghdr *nlh; 1638 struct rtmsg *hdr; 1639 void *metrics; 1640 1641 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags); 1642 if (!nlh) 1643 return -EMSGSIZE; 1644 1645 hdr = nlmsg_data(nlh); 1646 hdr->rtm_family = AF_MCTP; 1647 1648 /* we use the _len fields as a number of EIDs, rather than 1649 * a number of bits in the address 1650 */ 1651 hdr->rtm_dst_len = rt->max - rt->min; 1652 hdr->rtm_src_len = 0; 1653 hdr->rtm_tos = 0; 1654 hdr->rtm_table = RT_TABLE_DEFAULT; 1655 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */ 1656 hdr->rtm_type = rt->type; 1657 1658 if (nla_put_u8(skb, RTA_DST, rt->min)) 1659 goto cancel; 1660 1661 metrics = nla_nest_start_noflag(skb, RTA_METRICS); 1662 if (!metrics) 1663 goto cancel; 1664 1665 if (rt->mtu) { 1666 if (nla_put_u32(skb, RTAX_MTU, rt->mtu)) 1667 goto cancel; 1668 } 1669 1670 nla_nest_end(skb, metrics); 1671 1672 if (rt->dst_type == MCTP_ROUTE_DIRECT) { 1673 hdr->rtm_scope = RT_SCOPE_LINK; 1674 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex)) 1675 goto cancel; 1676 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) { 1677 hdr->rtm_scope = RT_SCOPE_UNIVERSE; 1678 if (nla_put(skb, RTA_GATEWAY, 1679 sizeof(rt->gateway), &rt->gateway)) 1680 goto cancel; 1681 } 1682 1683 nlmsg_end(skb, nlh); 1684 1685 return 0; 1686 1687 cancel: 1688 nlmsg_cancel(skb, nlh); 1689 return -EMSGSIZE; 1690 } 1691 1692 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb) 1693 { 1694 struct net *net = sock_net(skb->sk); 1695 struct mctp_route *rt; 1696 int s_idx, idx; 1697 1698 /* TODO: allow filtering on route data, possibly under 1699 * cb->strict_check 1700 */ 1701 1702 /* TODO: change to struct overlay */ 1703 s_idx = cb->args[0]; 1704 idx = 0; 1705 1706 rcu_read_lock(); 1707 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1708 if (idx++ < s_idx) 1709 continue; 1710 if (mctp_fill_rtinfo(skb, rt, 1711 NETLINK_CB(cb->skb).portid, 1712 cb->nlh->nlmsg_seq, 1713 RTM_NEWROUTE, NLM_F_MULTI) < 0) 1714 break; 1715 } 1716 1717 rcu_read_unlock(); 1718 cb->args[0] = idx; 1719 1720 return skb->len; 1721 } 1722 1723 /* net namespace implementation */ 1724 static int __net_init mctp_routes_net_init(struct net *net) 1725 { 1726 struct netns_mctp *ns = &net->mctp; 1727 1728 INIT_LIST_HEAD(&ns->routes); 1729 hash_init(ns->binds); 1730 mutex_init(&ns->bind_lock); 1731 INIT_HLIST_HEAD(&ns->keys); 1732 spin_lock_init(&ns->keys_lock); 1733 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET)); 1734 return 0; 1735 } 1736 1737 static void __net_exit mctp_routes_net_exit(struct net *net) 1738 { 1739 struct mctp_route *rt; 1740 1741 rcu_read_lock(); 1742 list_for_each_entry_rcu(rt, &net->mctp.routes, list) 1743 mctp_route_release(rt); 1744 rcu_read_unlock(); 1745 } 1746 1747 static struct pernet_operations mctp_net_ops = { 1748 .init = mctp_routes_net_init, 1749 .exit = mctp_routes_net_exit, 1750 }; 1751 1752 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = { 1753 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0}, 1754 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0}, 1755 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0}, 1756 }; 1757 1758 int __init mctp_routes_init(void) 1759 { 1760 int err; 1761 1762 dev_add_pack(&mctp_packet_type); 1763 1764 err = register_pernet_subsys(&mctp_net_ops); 1765 if (err) 1766 goto err_pernet; 1767 1768 err = rtnl_register_many(mctp_route_rtnl_msg_handlers); 1769 if (err) 1770 goto err_rtnl; 1771 1772 return 0; 1773 1774 err_rtnl: 1775 unregister_pernet_subsys(&mctp_net_ops); 1776 err_pernet: 1777 dev_remove_pack(&mctp_packet_type); 1778 return err; 1779 } 1780 1781 void mctp_routes_exit(void) 1782 { 1783 rtnl_unregister_many(mctp_route_rtnl_msg_handlers); 1784 unregister_pernet_subsys(&mctp_net_ops); 1785 dev_remove_pack(&mctp_packet_type); 1786 } 1787 1788 #if IS_ENABLED(CONFIG_MCTP_TEST) 1789 #include "test/route-test.c" 1790 #endif 1791