1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Management Component Transport Protocol (MCTP) - routing
4 * implementation.
5 *
6 * This is currently based on a simple routing table, with no dst cache. The
7 * number of routes should stay fairly small, so the lookup cost is small.
8 *
9 * Copyright (c) 2021 Code Construct
10 * Copyright (c) 2021 Google
11 */
12
13 #include <linux/idr.h>
14 #include <linux/kconfig.h>
15 #include <linux/mctp.h>
16 #include <linux/netdevice.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/skbuff.h>
19
20 #include <kunit/static_stub.h>
21
22 #include <uapi/linux/if_arp.h>
23
24 #include <net/mctp.h>
25 #include <net/mctpdevice.h>
26 #include <net/netlink.h>
27 #include <net/sock.h>
28
29 #include <trace/events/mctp.h>
30
31 static const unsigned int mctp_message_maxlen = 64 * 1024;
32 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ;
33
34 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev);
35
36 /* route output callbacks */
mctp_dst_discard(struct mctp_dst * dst,struct sk_buff * skb)37 static int mctp_dst_discard(struct mctp_dst *dst, struct sk_buff *skb)
38 {
39 kfree_skb(skb);
40 return 0;
41 }
42
mctp_lookup_bind_details(struct net * net,struct sk_buff * skb,u8 type,u8 dest,u8 src,bool allow_net_any)43 static struct mctp_sock *mctp_lookup_bind_details(struct net *net,
44 struct sk_buff *skb,
45 u8 type, u8 dest,
46 u8 src, bool allow_net_any)
47 {
48 struct mctp_skb_cb *cb = mctp_cb(skb);
49 struct sock *sk;
50 u8 hash;
51
52 WARN_ON_ONCE(!rcu_read_lock_held());
53
54 hash = mctp_bind_hash(type, dest, src);
55
56 sk_for_each_rcu(sk, &net->mctp.binds[hash]) {
57 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
58
59 if (!allow_net_any && msk->bind_net == MCTP_NET_ANY)
60 continue;
61
62 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net)
63 continue;
64
65 if (msk->bind_type != type)
66 continue;
67
68 if (msk->bind_peer_set &&
69 !mctp_address_matches(msk->bind_peer_addr, src))
70 continue;
71
72 if (!mctp_address_matches(msk->bind_local_addr, dest))
73 continue;
74
75 return msk;
76 }
77
78 return NULL;
79 }
80
mctp_lookup_bind(struct net * net,struct sk_buff * skb)81 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb)
82 {
83 struct mctp_sock *msk;
84 struct mctp_hdr *mh;
85 u8 type;
86
87 /* TODO: look up in skb->cb? */
88 mh = mctp_hdr(skb);
89
90 if (!skb_headlen(skb))
91 return NULL;
92
93 type = (*(u8 *)skb->data) & 0x7f;
94
95 /* Look for binds in order of widening scope. A given destination or
96 * source address also implies matching on a particular network.
97 *
98 * - Matching destination and source
99 * - Matching destination
100 * - Matching source
101 * - Matching network, any address
102 * - Any network or address
103 */
104
105 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, mh->src,
106 false);
107 if (msk)
108 return msk;
109 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY, mh->src,
110 false);
111 if (msk)
112 return msk;
113 msk = mctp_lookup_bind_details(net, skb, type, mh->dest, MCTP_ADDR_ANY,
114 false);
115 if (msk)
116 return msk;
117 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
118 MCTP_ADDR_ANY, false);
119 if (msk)
120 return msk;
121 msk = mctp_lookup_bind_details(net, skb, type, MCTP_ADDR_ANY,
122 MCTP_ADDR_ANY, true);
123 if (msk)
124 return msk;
125
126 return NULL;
127 }
128
129 /* A note on the key allocations.
130 *
131 * struct net->mctp.keys contains our set of currently-allocated keys for
132 * MCTP tag management. The lookup tuple for these is the peer EID,
133 * local EID and MCTP tag.
134 *
135 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a
136 * broadcast message is sent, we may receive responses from any peer EID.
137 * Because the broadcast dest address is equivalent to ANY, we create
138 * a key with (local = local-eid, peer = ANY). This allows a match on the
139 * incoming broadcast responses from any peer.
140 *
141 * We perform lookups when packets are received, and when tags are allocated
142 * in two scenarios:
143 *
144 * - when a packet is sent, with a locally-owned tag: we need to find an
145 * unused tag value for the (local, peer) EID pair.
146 *
147 * - when a tag is manually allocated: we need to find an unused tag value
148 * for the peer EID, but don't have a specific local EID at that stage.
149 *
150 * in the latter case, on successful allocation, we end up with a tag with
151 * (local = ANY, peer = peer-eid).
152 *
153 * So, the key set allows both a local EID of ANY, as well as a peer EID of
154 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast.
155 * The matching (in mctp_key_match()) during lookup allows the match value to
156 * be ANY in either the dest or source addresses.
157 *
158 * When allocating (+ inserting) a tag, we need to check for conflicts amongst
159 * the existing tag set. This requires macthing either exactly on the local
160 * and peer addresses, or either being ANY.
161 */
162
mctp_key_match(struct mctp_sk_key * key,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag)163 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net,
164 mctp_eid_t local, mctp_eid_t peer, u8 tag)
165 {
166 if (key->net != net)
167 return false;
168
169 if (!mctp_address_matches(key->local_addr, local))
170 return false;
171
172 if (!mctp_address_matches(key->peer_addr, peer))
173 return false;
174
175 if (key->tag != tag)
176 return false;
177
178 return true;
179 }
180
181 /* returns a key (with key->lock held, and refcounted), or NULL if no such
182 * key exists.
183 */
mctp_lookup_key(struct net * net,struct sk_buff * skb,unsigned int netid,mctp_eid_t peer,unsigned long * irqflags)184 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
185 unsigned int netid, mctp_eid_t peer,
186 unsigned long *irqflags)
187 __acquires(&key->lock)
188 {
189 struct mctp_sk_key *key, *ret;
190 unsigned long flags;
191 struct mctp_hdr *mh;
192 u8 tag;
193
194 mh = mctp_hdr(skb);
195 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
196
197 ret = NULL;
198 spin_lock_irqsave(&net->mctp.keys_lock, flags);
199
200 hlist_for_each_entry(key, &net->mctp.keys, hlist) {
201 if (!mctp_key_match(key, netid, mh->dest, peer, tag))
202 continue;
203
204 spin_lock(&key->lock);
205 if (key->valid) {
206 refcount_inc(&key->refs);
207 ret = key;
208 break;
209 }
210 spin_unlock(&key->lock);
211 }
212
213 if (ret) {
214 spin_unlock(&net->mctp.keys_lock);
215 *irqflags = flags;
216 } else {
217 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
218 }
219
220 return ret;
221 }
222
mctp_key_alloc(struct mctp_sock * msk,unsigned int net,mctp_eid_t local,mctp_eid_t peer,u8 tag,gfp_t gfp)223 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
224 unsigned int net,
225 mctp_eid_t local, mctp_eid_t peer,
226 u8 tag, gfp_t gfp)
227 {
228 struct mctp_sk_key *key;
229
230 key = kzalloc(sizeof(*key), gfp);
231 if (!key)
232 return NULL;
233
234 key->net = net;
235 key->peer_addr = peer;
236 key->local_addr = local;
237 key->tag = tag;
238 key->sk = &msk->sk;
239 key->valid = true;
240 spin_lock_init(&key->lock);
241 refcount_set(&key->refs, 1);
242 sock_hold(key->sk);
243
244 return key;
245 }
246
mctp_key_unref(struct mctp_sk_key * key)247 void mctp_key_unref(struct mctp_sk_key *key)
248 {
249 unsigned long flags;
250
251 if (!refcount_dec_and_test(&key->refs))
252 return;
253
254 /* even though no refs exist here, the lock allows us to stay
255 * consistent with the locking requirement of mctp_dev_release_key
256 */
257 spin_lock_irqsave(&key->lock, flags);
258 mctp_dev_release_key(key->dev, key);
259 spin_unlock_irqrestore(&key->lock, flags);
260
261 sock_put(key->sk);
262 kfree(key);
263 }
264
mctp_key_add(struct mctp_sk_key * key,struct mctp_sock * msk)265 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
266 {
267 struct net *net = sock_net(&msk->sk);
268 struct mctp_sk_key *tmp;
269 unsigned long flags;
270 int rc = 0;
271
272 spin_lock_irqsave(&net->mctp.keys_lock, flags);
273
274 if (sock_flag(&msk->sk, SOCK_DEAD)) {
275 rc = -EINVAL;
276 goto out_unlock;
277 }
278
279 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
280 if (mctp_key_match(tmp, key->net, key->local_addr,
281 key->peer_addr, key->tag)) {
282 spin_lock(&tmp->lock);
283 if (tmp->valid)
284 rc = -EEXIST;
285 spin_unlock(&tmp->lock);
286 if (rc)
287 break;
288 }
289 }
290
291 if (!rc) {
292 refcount_inc(&key->refs);
293 key->expiry = jiffies + mctp_key_lifetime;
294 timer_reduce(&msk->key_expiry, key->expiry);
295
296 hlist_add_head(&key->hlist, &net->mctp.keys);
297 hlist_add_head(&key->sklist, &msk->keys);
298 }
299
300 out_unlock:
301 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
302
303 return rc;
304 }
305
306 /* Helper for mctp_route_input().
307 * We're done with the key; unlock and unref the key.
308 * For the usual case of automatic expiry we remove the key from lists.
309 * In the case that manual allocation is set on a key we release the lock
310 * and local ref, reset reassembly, but don't remove from lists.
311 */
__mctp_key_done_in(struct mctp_sk_key * key,struct net * net,unsigned long flags,unsigned long reason)312 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net,
313 unsigned long flags, unsigned long reason)
314 __releases(&key->lock)
315 {
316 struct sk_buff *skb;
317
318 trace_mctp_key_release(key, reason);
319 skb = key->reasm_head;
320 key->reasm_head = NULL;
321
322 if (!key->manual_alloc) {
323 key->reasm_dead = true;
324 key->valid = false;
325 mctp_dev_release_key(key->dev, key);
326 }
327 spin_unlock_irqrestore(&key->lock, flags);
328
329 if (!key->manual_alloc) {
330 spin_lock_irqsave(&net->mctp.keys_lock, flags);
331 if (!hlist_unhashed(&key->hlist)) {
332 hlist_del_init(&key->hlist);
333 hlist_del_init(&key->sklist);
334 mctp_key_unref(key);
335 }
336 spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
337 }
338
339 /* and one for the local reference */
340 mctp_key_unref(key);
341
342 kfree_skb(skb);
343 }
344
345 #ifdef CONFIG_MCTP_FLOWS
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)346 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key)
347 {
348 struct mctp_flow *flow;
349
350 flow = skb_ext_add(skb, SKB_EXT_MCTP);
351 if (!flow)
352 return;
353
354 refcount_inc(&key->refs);
355 flow->key = key;
356 }
357
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)358 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev)
359 {
360 struct mctp_sk_key *key;
361 struct mctp_flow *flow;
362
363 flow = skb_ext_find(skb, SKB_EXT_MCTP);
364 if (!flow)
365 return;
366
367 key = flow->key;
368
369 if (key->dev) {
370 WARN_ON(key->dev != dev);
371 return;
372 }
373
374 mctp_dev_set_key(dev, key);
375 }
376 #else
mctp_skb_set_flow(struct sk_buff * skb,struct mctp_sk_key * key)377 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {}
mctp_flow_prepare_output(struct sk_buff * skb,struct mctp_dev * dev)378 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {}
379 #endif
380
381 /* takes ownership of skb, both in success and failure cases */
mctp_frag_queue(struct mctp_sk_key * key,struct sk_buff * skb)382 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
383 {
384 struct mctp_hdr *hdr = mctp_hdr(skb);
385 u8 exp_seq, this_seq;
386
387 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
388 & MCTP_HDR_SEQ_MASK;
389
390 if (!key->reasm_head) {
391 /* Since we're manipulating the shared frag_list, ensure it
392 * isn't shared with any other SKBs. In the cloned case,
393 * this will free the skb; callers can no longer access it
394 * safely.
395 */
396 key->reasm_head = skb_unshare(skb, GFP_ATOMIC);
397 if (!key->reasm_head)
398 return -ENOMEM;
399
400 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list);
401 key->last_seq = this_seq;
402 return 0;
403 }
404
405 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
406
407 if (this_seq != exp_seq)
408 goto err_free;
409
410 if (key->reasm_head->len + skb->len > mctp_message_maxlen)
411 goto err_free;
412
413 skb->next = NULL;
414 skb->sk = NULL;
415 *key->reasm_tailp = skb;
416 key->reasm_tailp = &skb->next;
417
418 key->last_seq = this_seq;
419
420 key->reasm_head->data_len += skb->len;
421 key->reasm_head->len += skb->len;
422 key->reasm_head->truesize += skb->truesize;
423
424 return 0;
425
426 err_free:
427 kfree_skb(skb);
428 return -EINVAL;
429 }
430
mctp_dst_input(struct mctp_dst * dst,struct sk_buff * skb)431 static int mctp_dst_input(struct mctp_dst *dst, struct sk_buff *skb)
432 {
433 struct mctp_sk_key *key, *any_key = NULL;
434 struct net *net = dev_net(skb->dev);
435 struct mctp_sock *msk;
436 struct mctp_hdr *mh;
437 unsigned int netid;
438 unsigned long f;
439 u8 tag, flags;
440 int rc;
441
442 msk = NULL;
443 rc = -EINVAL;
444
445 /* We may be receiving a locally-routed packet; drop source sk
446 * accounting.
447 *
448 * From here, we will either queue the skb - either to a frag_queue, or
449 * to a receiving socket. When that succeeds, we clear the skb pointer;
450 * a non-NULL skb on exit will be otherwise unowned, and hence
451 * kfree_skb()-ed.
452 */
453 skb_orphan(skb);
454
455 if (skb->pkt_type == PACKET_OUTGOING)
456 skb->pkt_type = PACKET_LOOPBACK;
457
458 /* ensure we have enough data for a header and a type */
459 if (skb->len < sizeof(struct mctp_hdr) + 1)
460 goto out;
461
462 /* grab header, advance data ptr */
463 mh = mctp_hdr(skb);
464 netid = mctp_cb(skb)->net;
465 skb_pull(skb, sizeof(struct mctp_hdr));
466
467 if (mh->ver != 1)
468 goto out;
469
470 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
471 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
472
473 rcu_read_lock();
474
475 /* lookup socket / reasm context, exactly matching (src,dest,tag).
476 * we hold a ref on the key, and key->lock held.
477 */
478 key = mctp_lookup_key(net, skb, netid, mh->src, &f);
479
480 if (flags & MCTP_HDR_FLAG_SOM) {
481 if (key) {
482 msk = container_of(key->sk, struct mctp_sock, sk);
483 } else {
484 /* first response to a broadcast? do a more general
485 * key lookup to find the socket, but don't use this
486 * key for reassembly - we'll create a more specific
487 * one for future packets if required (ie, !EOM).
488 *
489 * this lookup requires key->peer to be MCTP_ADDR_ANY,
490 * it doesn't match just any key->peer.
491 */
492 any_key = mctp_lookup_key(net, skb, netid,
493 MCTP_ADDR_ANY, &f);
494 if (any_key) {
495 msk = container_of(any_key->sk,
496 struct mctp_sock, sk);
497 spin_unlock_irqrestore(&any_key->lock, f);
498 }
499 }
500
501 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
502 msk = mctp_lookup_bind(net, skb);
503
504 if (!msk) {
505 rc = -ENOENT;
506 goto out_unlock;
507 }
508
509 /* single-packet message? deliver to socket, clean up any
510 * pending key.
511 */
512 if (flags & MCTP_HDR_FLAG_EOM) {
513 rc = sock_queue_rcv_skb(&msk->sk, skb);
514 if (!rc)
515 skb = NULL;
516 if (key) {
517 /* we've hit a pending reassembly; not much we
518 * can do but drop it
519 */
520 __mctp_key_done_in(key, net, f,
521 MCTP_TRACE_KEY_REPLIED);
522 key = NULL;
523 }
524 goto out_unlock;
525 }
526
527 /* broadcast response or a bind() - create a key for further
528 * packets for this message
529 */
530 if (!key) {
531 key = mctp_key_alloc(msk, netid, mh->dest, mh->src,
532 tag, GFP_ATOMIC);
533 if (!key) {
534 rc = -ENOMEM;
535 goto out_unlock;
536 }
537
538 /* we can queue without the key lock here, as the
539 * key isn't observable yet
540 */
541 mctp_frag_queue(key, skb);
542 skb = NULL;
543
544 /* if the key_add fails, we've raced with another
545 * SOM packet with the same src, dest and tag. There's
546 * no way to distinguish future packets, so all we
547 * can do is drop.
548 */
549 rc = mctp_key_add(key, msk);
550 if (!rc)
551 trace_mctp_key_acquire(key);
552
553 /* we don't need to release key->lock on exit, so
554 * clean up here and suppress the unlock via
555 * setting to NULL
556 */
557 mctp_key_unref(key);
558 key = NULL;
559
560 } else {
561 if (key->reasm_head || key->reasm_dead) {
562 /* duplicate start? drop everything */
563 __mctp_key_done_in(key, net, f,
564 MCTP_TRACE_KEY_INVALIDATED);
565 rc = -EEXIST;
566 key = NULL;
567 } else {
568 rc = mctp_frag_queue(key, skb);
569 skb = NULL;
570 }
571 }
572
573 } else if (key) {
574 /* this packet continues a previous message; reassemble
575 * using the message-specific key
576 */
577
578 /* we need to be continuing an existing reassembly... */
579 if (!key->reasm_head) {
580 rc = -EINVAL;
581 } else {
582 rc = mctp_frag_queue(key, skb);
583 skb = NULL;
584 }
585
586 if (rc)
587 goto out_unlock;
588
589 /* end of message? deliver to socket, and we're done with
590 * the reassembly/response key
591 */
592 if (flags & MCTP_HDR_FLAG_EOM) {
593 rc = sock_queue_rcv_skb(key->sk, key->reasm_head);
594 if (!rc)
595 key->reasm_head = NULL;
596 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED);
597 key = NULL;
598 }
599
600 } else {
601 /* not a start, no matching key */
602 rc = -ENOENT;
603 }
604
605 out_unlock:
606 rcu_read_unlock();
607 if (key) {
608 spin_unlock_irqrestore(&key->lock, f);
609 mctp_key_unref(key);
610 }
611 if (any_key)
612 mctp_key_unref(any_key);
613 out:
614 kfree_skb(skb);
615 return rc;
616 }
617
mctp_dst_output(struct mctp_dst * dst,struct sk_buff * skb)618 static int mctp_dst_output(struct mctp_dst *dst, struct sk_buff *skb)
619 {
620 char daddr_buf[MAX_ADDR_LEN];
621 char *daddr = NULL;
622 int rc;
623
624 skb->protocol = htons(ETH_P_MCTP);
625 skb->pkt_type = PACKET_OUTGOING;
626 skb->dev = dst->dev->dev;
627
628 if (skb->len > dst->mtu) {
629 kfree_skb(skb);
630 return -EMSGSIZE;
631 }
632
633 /* direct route; use the hwaddr we stashed in sendmsg */
634 if (dst->halen) {
635 if (dst->halen != skb->dev->addr_len) {
636 /* sanity check, sendmsg should have already caught this */
637 kfree_skb(skb);
638 return -EMSGSIZE;
639 }
640 daddr = dst->haddr;
641 } else {
642 /* If lookup fails let the device handle daddr==NULL */
643 if (mctp_neigh_lookup(dst->dev, dst->nexthop, daddr_buf) == 0)
644 daddr = daddr_buf;
645 }
646
647 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol),
648 daddr, skb->dev->dev_addr, skb->len);
649 if (rc < 0) {
650 kfree_skb(skb);
651 return -EHOSTUNREACH;
652 }
653
654 mctp_flow_prepare_output(skb, dst->dev);
655
656 rc = dev_queue_xmit(skb);
657 if (rc)
658 rc = net_xmit_errno(rc);
659
660 return rc;
661 }
662
663 /* route alloc/release */
mctp_route_release(struct mctp_route * rt)664 static void mctp_route_release(struct mctp_route *rt)
665 {
666 if (refcount_dec_and_test(&rt->refs)) {
667 if (rt->dst_type == MCTP_ROUTE_DIRECT)
668 mctp_dev_put(rt->dev);
669 kfree_rcu(rt, rcu);
670 }
671 }
672
673 /* returns a route with the refcount at 1 */
mctp_route_alloc(void)674 static struct mctp_route *mctp_route_alloc(void)
675 {
676 struct mctp_route *rt;
677
678 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
679 if (!rt)
680 return NULL;
681
682 INIT_LIST_HEAD(&rt->list);
683 refcount_set(&rt->refs, 1);
684 rt->output = mctp_dst_discard;
685
686 return rt;
687 }
688
mctp_default_net(struct net * net)689 unsigned int mctp_default_net(struct net *net)
690 {
691 return READ_ONCE(net->mctp.default_net);
692 }
693
mctp_default_net_set(struct net * net,unsigned int index)694 int mctp_default_net_set(struct net *net, unsigned int index)
695 {
696 if (index == 0)
697 return -EINVAL;
698 WRITE_ONCE(net->mctp.default_net, index);
699 return 0;
700 }
701
702 /* tag management */
mctp_reserve_tag(struct net * net,struct mctp_sk_key * key,struct mctp_sock * msk)703 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
704 struct mctp_sock *msk)
705 {
706 struct netns_mctp *mns = &net->mctp;
707
708 lockdep_assert_held(&mns->keys_lock);
709
710 key->expiry = jiffies + mctp_key_lifetime;
711 timer_reduce(&msk->key_expiry, key->expiry);
712
713 /* we hold the net->key_lock here, allowing updates to both
714 * then net and sk
715 */
716 hlist_add_head_rcu(&key->hlist, &mns->keys);
717 hlist_add_head_rcu(&key->sklist, &msk->keys);
718 refcount_inc(&key->refs);
719 }
720
721 /* Allocate a locally-owned tag value for (local, peer), and reserve
722 * it for the socket msk
723 */
mctp_alloc_local_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t local,mctp_eid_t peer,bool manual,u8 * tagp)724 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk,
725 unsigned int netid,
726 mctp_eid_t local, mctp_eid_t peer,
727 bool manual, u8 *tagp)
728 {
729 struct net *net = sock_net(&msk->sk);
730 struct netns_mctp *mns = &net->mctp;
731 struct mctp_sk_key *key, *tmp;
732 unsigned long flags;
733 u8 tagbits;
734
735 /* for NULL destination EIDs, we may get a response from any peer */
736 if (peer == MCTP_ADDR_NULL)
737 peer = MCTP_ADDR_ANY;
738
739 /* be optimistic, alloc now */
740 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL);
741 if (!key)
742 return ERR_PTR(-ENOMEM);
743
744 /* 8 possible tag values */
745 tagbits = 0xff;
746
747 spin_lock_irqsave(&mns->keys_lock, flags);
748
749 /* Walk through the existing keys, looking for potential conflicting
750 * tags. If we find a conflict, clear that bit from tagbits
751 */
752 hlist_for_each_entry(tmp, &mns->keys, hlist) {
753 /* We can check the lookup fields (*_addr, tag) without the
754 * lock held, they don't change over the lifetime of the key.
755 */
756
757 /* tags are net-specific */
758 if (tmp->net != netid)
759 continue;
760
761 /* if we don't own the tag, it can't conflict */
762 if (tmp->tag & MCTP_HDR_FLAG_TO)
763 continue;
764
765 /* Since we're avoiding conflicting entries, match peer and
766 * local addresses, including with a wildcard on ANY. See
767 * 'A note on key allocations' for background.
768 */
769 if (peer != MCTP_ADDR_ANY &&
770 !mctp_address_matches(tmp->peer_addr, peer))
771 continue;
772
773 if (local != MCTP_ADDR_ANY &&
774 !mctp_address_matches(tmp->local_addr, local))
775 continue;
776
777 spin_lock(&tmp->lock);
778 /* key must still be valid. If we find a match, clear the
779 * potential tag value
780 */
781 if (tmp->valid)
782 tagbits &= ~(1 << tmp->tag);
783 spin_unlock(&tmp->lock);
784
785 if (!tagbits)
786 break;
787 }
788
789 if (tagbits) {
790 key->tag = __ffs(tagbits);
791 mctp_reserve_tag(net, key, msk);
792 trace_mctp_key_acquire(key);
793
794 key->manual_alloc = manual;
795 *tagp = key->tag;
796 }
797
798 spin_unlock_irqrestore(&mns->keys_lock, flags);
799
800 if (!tagbits) {
801 mctp_key_unref(key);
802 return ERR_PTR(-EBUSY);
803 }
804
805 return key;
806 }
807
mctp_lookup_prealloc_tag(struct mctp_sock * msk,unsigned int netid,mctp_eid_t daddr,u8 req_tag,u8 * tagp)808 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk,
809 unsigned int netid,
810 mctp_eid_t daddr,
811 u8 req_tag, u8 *tagp)
812 {
813 struct net *net = sock_net(&msk->sk);
814 struct netns_mctp *mns = &net->mctp;
815 struct mctp_sk_key *key, *tmp;
816 unsigned long flags;
817
818 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER);
819 key = NULL;
820
821 spin_lock_irqsave(&mns->keys_lock, flags);
822
823 hlist_for_each_entry(tmp, &mns->keys, hlist) {
824 if (tmp->net != netid)
825 continue;
826
827 if (tmp->tag != req_tag)
828 continue;
829
830 if (!mctp_address_matches(tmp->peer_addr, daddr))
831 continue;
832
833 if (!tmp->manual_alloc)
834 continue;
835
836 spin_lock(&tmp->lock);
837 if (tmp->valid) {
838 key = tmp;
839 refcount_inc(&key->refs);
840 spin_unlock(&tmp->lock);
841 break;
842 }
843 spin_unlock(&tmp->lock);
844 }
845 spin_unlock_irqrestore(&mns->keys_lock, flags);
846
847 if (!key)
848 return ERR_PTR(-ENOENT);
849
850 if (tagp)
851 *tagp = key->tag;
852
853 return key;
854 }
855
856 /* routing lookups */
mctp_route_netid(struct mctp_route * rt)857 static unsigned int mctp_route_netid(struct mctp_route *rt)
858 {
859 return rt->dst_type == MCTP_ROUTE_DIRECT ?
860 READ_ONCE(rt->dev->net) : rt->gateway.net;
861 }
862
mctp_rt_match_eid(struct mctp_route * rt,unsigned int net,mctp_eid_t eid)863 static bool mctp_rt_match_eid(struct mctp_route *rt,
864 unsigned int net, mctp_eid_t eid)
865 {
866 return mctp_route_netid(rt) == net &&
867 rt->min <= eid && rt->max >= eid;
868 }
869
870 /* compares match, used for duplicate prevention */
mctp_rt_compare_exact(struct mctp_route * rt1,struct mctp_route * rt2)871 static bool mctp_rt_compare_exact(struct mctp_route *rt1,
872 struct mctp_route *rt2)
873 {
874 ASSERT_RTNL();
875 return mctp_route_netid(rt1) == mctp_route_netid(rt2) &&
876 rt1->min == rt2->min &&
877 rt1->max == rt2->max;
878 }
879
880 /* must only be called on a direct route, as the final output hop */
mctp_dst_from_route(struct mctp_dst * dst,mctp_eid_t eid,unsigned int mtu,struct mctp_route * route)881 static void mctp_dst_from_route(struct mctp_dst *dst, mctp_eid_t eid,
882 unsigned int mtu, struct mctp_route *route)
883 {
884 mctp_dev_hold(route->dev);
885 dst->nexthop = eid;
886 dst->dev = route->dev;
887 dst->mtu = READ_ONCE(dst->dev->dev->mtu);
888 if (mtu)
889 dst->mtu = min(dst->mtu, mtu);
890 dst->halen = 0;
891 dst->output = route->output;
892 }
893
mctp_dst_from_extaddr(struct mctp_dst * dst,struct net * net,int ifindex,unsigned char halen,const unsigned char * haddr)894 int mctp_dst_from_extaddr(struct mctp_dst *dst, struct net *net, int ifindex,
895 unsigned char halen, const unsigned char *haddr)
896 {
897 struct net_device *netdev;
898 struct mctp_dev *dev;
899 int rc = -ENOENT;
900
901 if (halen > sizeof(dst->haddr))
902 return -EINVAL;
903
904 rcu_read_lock();
905
906 netdev = dev_get_by_index_rcu(net, ifindex);
907 if (!netdev)
908 goto out_unlock;
909
910 if (netdev->addr_len != halen) {
911 rc = -EINVAL;
912 goto out_unlock;
913 }
914
915 dev = __mctp_dev_get(netdev);
916 if (!dev)
917 goto out_unlock;
918
919 dst->dev = dev;
920 dst->mtu = READ_ONCE(netdev->mtu);
921 dst->halen = halen;
922 dst->output = mctp_dst_output;
923 dst->nexthop = 0;
924 memcpy(dst->haddr, haddr, halen);
925
926 rc = 0;
927
928 out_unlock:
929 rcu_read_unlock();
930 return rc;
931 }
932
mctp_dst_release(struct mctp_dst * dst)933 void mctp_dst_release(struct mctp_dst *dst)
934 {
935 mctp_dev_put(dst->dev);
936 }
937
mctp_route_lookup_single(struct net * net,unsigned int dnet,mctp_eid_t daddr)938 static struct mctp_route *mctp_route_lookup_single(struct net *net,
939 unsigned int dnet,
940 mctp_eid_t daddr)
941 {
942 struct mctp_route *rt;
943
944 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
945 if (mctp_rt_match_eid(rt, dnet, daddr))
946 return rt;
947 }
948
949 return NULL;
950 }
951
952 /* populates *dst on successful lookup, if set */
mctp_route_lookup(struct net * net,unsigned int dnet,mctp_eid_t daddr,struct mctp_dst * dst)953 int mctp_route_lookup(struct net *net, unsigned int dnet,
954 mctp_eid_t daddr, struct mctp_dst *dst)
955 {
956 const unsigned int max_depth = 32;
957 unsigned int depth, mtu = 0;
958 int rc = -EHOSTUNREACH;
959
960 rcu_read_lock();
961
962 for (depth = 0; depth < max_depth; depth++) {
963 struct mctp_route *rt;
964
965 rt = mctp_route_lookup_single(net, dnet, daddr);
966 if (!rt)
967 break;
968
969 /* clamp mtu to the smallest in the path, allowing 0
970 * to specify no restrictions
971 */
972 if (mtu && rt->mtu)
973 mtu = min(mtu, rt->mtu);
974 else
975 mtu = mtu ?: rt->mtu;
976
977 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
978 if (dst)
979 mctp_dst_from_route(dst, daddr, mtu, rt);
980 rc = 0;
981 break;
982
983 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
984 daddr = rt->gateway.eid;
985 }
986 }
987
988 rcu_read_unlock();
989
990 return rc;
991 }
992
mctp_route_lookup_null(struct net * net,struct net_device * dev,struct mctp_dst * dst)993 static int mctp_route_lookup_null(struct net *net, struct net_device *dev,
994 struct mctp_dst *dst)
995 {
996 int rc = -EHOSTUNREACH;
997 struct mctp_route *rt;
998
999 rcu_read_lock();
1000
1001 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1002 if (rt->dst_type != MCTP_ROUTE_DIRECT || rt->type != RTN_LOCAL)
1003 continue;
1004
1005 if (rt->dev->dev != dev)
1006 continue;
1007
1008 mctp_dst_from_route(dst, 0, 0, rt);
1009 rc = 0;
1010 break;
1011 }
1012
1013 rcu_read_unlock();
1014
1015 return rc;
1016 }
1017
mctp_do_fragment_route(struct mctp_dst * dst,struct sk_buff * skb,unsigned int mtu,u8 tag)1018 static int mctp_do_fragment_route(struct mctp_dst *dst, struct sk_buff *skb,
1019 unsigned int mtu, u8 tag)
1020 {
1021 const unsigned int hlen = sizeof(struct mctp_hdr);
1022 struct mctp_hdr *hdr, *hdr2;
1023 unsigned int pos, size, headroom;
1024 struct sk_buff *skb2;
1025 int rc;
1026 u8 seq;
1027
1028 hdr = mctp_hdr(skb);
1029 seq = 0;
1030 rc = 0;
1031
1032 if (mtu < hlen + 1) {
1033 kfree_skb(skb);
1034 return -EMSGSIZE;
1035 }
1036
1037 /* keep same headroom as the original skb */
1038 headroom = skb_headroom(skb);
1039
1040 /* we've got the header */
1041 skb_pull(skb, hlen);
1042
1043 for (pos = 0; pos < skb->len;) {
1044 /* size of message payload */
1045 size = min(mtu - hlen, skb->len - pos);
1046
1047 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL);
1048 if (!skb2) {
1049 rc = -ENOMEM;
1050 break;
1051 }
1052
1053 /* generic skb copy */
1054 skb2->protocol = skb->protocol;
1055 skb2->priority = skb->priority;
1056 skb2->dev = skb->dev;
1057 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
1058
1059 if (skb->sk)
1060 skb_set_owner_w(skb2, skb->sk);
1061
1062 /* establish packet */
1063 skb_reserve(skb2, headroom);
1064 skb_reset_network_header(skb2);
1065 skb_put(skb2, hlen + size);
1066 skb2->transport_header = skb2->network_header + hlen;
1067
1068 /* copy header fields, calculate SOM/EOM flags & seq */
1069 hdr2 = mctp_hdr(skb2);
1070 hdr2->ver = hdr->ver;
1071 hdr2->dest = hdr->dest;
1072 hdr2->src = hdr->src;
1073 hdr2->flags_seq_tag = tag &
1074 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
1075
1076 if (pos == 0)
1077 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
1078
1079 if (pos + size == skb->len)
1080 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
1081
1082 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
1083
1084 /* copy message payload */
1085 skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
1086
1087 /* we need to copy the extensions, for MCTP flow data */
1088 skb_ext_copy(skb2, skb);
1089
1090 /* do route */
1091 rc = dst->output(dst, skb2);
1092 if (rc)
1093 break;
1094
1095 seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
1096 pos += size;
1097 }
1098
1099 consume_skb(skb);
1100 return rc;
1101 }
1102
mctp_local_output(struct sock * sk,struct mctp_dst * dst,struct sk_buff * skb,mctp_eid_t daddr,u8 req_tag)1103 int mctp_local_output(struct sock *sk, struct mctp_dst *dst,
1104 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
1105 {
1106 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk);
1107 struct mctp_sk_key *key;
1108 struct mctp_hdr *hdr;
1109 unsigned long flags;
1110 unsigned int netid;
1111 unsigned int mtu;
1112 mctp_eid_t saddr;
1113 int rc;
1114 u8 tag;
1115
1116 KUNIT_STATIC_STUB_REDIRECT(mctp_local_output, sk, dst, skb, daddr,
1117 req_tag);
1118
1119 rc = -ENODEV;
1120
1121 spin_lock_irqsave(&dst->dev->addrs_lock, flags);
1122 if (dst->dev->num_addrs == 0) {
1123 rc = -EHOSTUNREACH;
1124 } else {
1125 /* use the outbound interface's first address as our source */
1126 saddr = dst->dev->addrs[0];
1127 rc = 0;
1128 }
1129 spin_unlock_irqrestore(&dst->dev->addrs_lock, flags);
1130 netid = READ_ONCE(dst->dev->net);
1131
1132 if (rc)
1133 goto out_release;
1134
1135 if (req_tag & MCTP_TAG_OWNER) {
1136 if (req_tag & MCTP_TAG_PREALLOC)
1137 key = mctp_lookup_prealloc_tag(msk, netid, daddr,
1138 req_tag, &tag);
1139 else
1140 key = mctp_alloc_local_tag(msk, netid, saddr, daddr,
1141 false, &tag);
1142
1143 if (IS_ERR(key)) {
1144 rc = PTR_ERR(key);
1145 goto out_release;
1146 }
1147 mctp_skb_set_flow(skb, key);
1148 /* done with the key in this scope */
1149 mctp_key_unref(key);
1150 tag |= MCTP_HDR_FLAG_TO;
1151 } else {
1152 key = NULL;
1153 tag = req_tag & MCTP_TAG_MASK;
1154 }
1155
1156 skb->pkt_type = PACKET_OUTGOING;
1157 skb->protocol = htons(ETH_P_MCTP);
1158 skb->priority = 0;
1159 skb_reset_transport_header(skb);
1160 skb_push(skb, sizeof(struct mctp_hdr));
1161 skb_reset_network_header(skb);
1162 skb->dev = dst->dev->dev;
1163
1164 /* set up common header fields */
1165 hdr = mctp_hdr(skb);
1166 hdr->ver = 1;
1167 hdr->dest = daddr;
1168 hdr->src = saddr;
1169
1170 mtu = dst->mtu;
1171
1172 if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
1173 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM |
1174 MCTP_HDR_FLAG_EOM | tag;
1175 rc = dst->output(dst, skb);
1176 } else {
1177 rc = mctp_do_fragment_route(dst, skb, mtu, tag);
1178 }
1179
1180 /* route output functions consume the skb, even on error */
1181 skb = NULL;
1182
1183 out_release:
1184 kfree_skb(skb);
1185 return rc;
1186 }
1187
1188 /* route management */
1189
1190 /* mctp_route_add(): Add the provided route, previously allocated via
1191 * mctp_route_alloc(). On success, takes ownership of @rt, which includes a
1192 * hold on rt->dev for usage in the route table. On failure a caller will want
1193 * to mctp_route_release().
1194 *
1195 * We expect that the caller has set rt->type, rt->dst_type, rt->min, rt->max,
1196 * rt->mtu and either rt->dev (with a reference held appropriately) or
1197 * rt->gateway. Other fields will be populated.
1198 */
mctp_route_add(struct net * net,struct mctp_route * rt)1199 static int mctp_route_add(struct net *net, struct mctp_route *rt)
1200 {
1201 struct mctp_route *ert;
1202
1203 if (!mctp_address_unicast(rt->min) || !mctp_address_unicast(rt->max))
1204 return -EINVAL;
1205
1206 if (rt->dst_type == MCTP_ROUTE_DIRECT && !rt->dev)
1207 return -EINVAL;
1208
1209 if (rt->dst_type == MCTP_ROUTE_GATEWAY && !rt->gateway.eid)
1210 return -EINVAL;
1211
1212 switch (rt->type) {
1213 case RTN_LOCAL:
1214 rt->output = mctp_dst_input;
1215 break;
1216 case RTN_UNICAST:
1217 rt->output = mctp_dst_output;
1218 break;
1219 default:
1220 return -EINVAL;
1221 }
1222
1223 ASSERT_RTNL();
1224
1225 /* Prevent duplicate identical routes. */
1226 list_for_each_entry(ert, &net->mctp.routes, list) {
1227 if (mctp_rt_compare_exact(rt, ert)) {
1228 return -EEXIST;
1229 }
1230 }
1231
1232 list_add_rcu(&rt->list, &net->mctp.routes);
1233
1234 return 0;
1235 }
1236
mctp_route_remove(struct net * net,unsigned int netid,mctp_eid_t daddr_start,unsigned int daddr_extent,unsigned char type)1237 static int mctp_route_remove(struct net *net, unsigned int netid,
1238 mctp_eid_t daddr_start, unsigned int daddr_extent,
1239 unsigned char type)
1240 {
1241 struct mctp_route *rt, *tmp;
1242 mctp_eid_t daddr_end;
1243 bool dropped;
1244
1245 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255)
1246 return -EINVAL;
1247
1248 daddr_end = daddr_start + daddr_extent;
1249 dropped = false;
1250
1251 ASSERT_RTNL();
1252
1253 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1254 if (mctp_route_netid(rt) == netid &&
1255 rt->min == daddr_start && rt->max == daddr_end &&
1256 rt->type == type) {
1257 list_del_rcu(&rt->list);
1258 /* TODO: immediate RTM_DELROUTE */
1259 mctp_route_release(rt);
1260 dropped = true;
1261 }
1262 }
1263
1264 return dropped ? 0 : -ENOENT;
1265 }
1266
mctp_route_add_local(struct mctp_dev * mdev,mctp_eid_t addr)1267 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr)
1268 {
1269 struct mctp_route *rt;
1270 int rc;
1271
1272 rt = mctp_route_alloc();
1273 if (!rt)
1274 return -ENOMEM;
1275
1276 rt->min = addr;
1277 rt->max = addr;
1278 rt->dst_type = MCTP_ROUTE_DIRECT;
1279 rt->dev = mdev;
1280 rt->type = RTN_LOCAL;
1281
1282 mctp_dev_hold(rt->dev);
1283
1284 rc = mctp_route_add(dev_net(mdev->dev), rt);
1285 if (rc)
1286 mctp_route_release(rt);
1287
1288 return rc;
1289 }
1290
mctp_route_remove_local(struct mctp_dev * mdev,mctp_eid_t addr)1291 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr)
1292 {
1293 return mctp_route_remove(dev_net(mdev->dev), mdev->net,
1294 addr, 0, RTN_LOCAL);
1295 }
1296
1297 /* removes all entries for a given device */
mctp_route_remove_dev(struct mctp_dev * mdev)1298 void mctp_route_remove_dev(struct mctp_dev *mdev)
1299 {
1300 struct net *net = dev_net(mdev->dev);
1301 struct mctp_route *rt, *tmp;
1302
1303 ASSERT_RTNL();
1304 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) {
1305 if (rt->dst_type == MCTP_ROUTE_DIRECT && rt->dev == mdev) {
1306 list_del_rcu(&rt->list);
1307 /* TODO: immediate RTM_DELROUTE */
1308 mctp_route_release(rt);
1309 }
1310 }
1311 }
1312
1313 /* Incoming packet-handling */
1314
mctp_pkttype_receive(struct sk_buff * skb,struct net_device * dev,struct packet_type * pt,struct net_device * orig_dev)1315 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev,
1316 struct packet_type *pt,
1317 struct net_device *orig_dev)
1318 {
1319 struct net *net = dev_net(dev);
1320 struct mctp_dev *mdev;
1321 struct mctp_skb_cb *cb;
1322 struct mctp_dst dst;
1323 struct mctp_hdr *mh;
1324 int rc;
1325
1326 rcu_read_lock();
1327 mdev = __mctp_dev_get(dev);
1328 rcu_read_unlock();
1329 if (!mdev) {
1330 /* basic non-data sanity checks */
1331 goto err_drop;
1332 }
1333
1334 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr)))
1335 goto err_drop;
1336
1337 skb_reset_transport_header(skb);
1338 skb_reset_network_header(skb);
1339
1340 /* We have enough for a header; decode and route */
1341 mh = mctp_hdr(skb);
1342 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX)
1343 goto err_drop;
1344
1345 /* source must be valid unicast or null; drop reserved ranges and
1346 * broadcast
1347 */
1348 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src)))
1349 goto err_drop;
1350
1351 /* dest address: as above, but allow broadcast */
1352 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) ||
1353 mctp_address_broadcast(mh->dest)))
1354 goto err_drop;
1355
1356 /* MCTP drivers must populate halen/haddr */
1357 if (dev->type == ARPHRD_MCTP) {
1358 cb = mctp_cb(skb);
1359 } else {
1360 cb = __mctp_cb(skb);
1361 cb->halen = 0;
1362 }
1363 cb->net = READ_ONCE(mdev->net);
1364 cb->ifindex = dev->ifindex;
1365
1366 rc = mctp_route_lookup(net, cb->net, mh->dest, &dst);
1367
1368 /* NULL EID, but addressed to our physical address */
1369 if (rc && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST)
1370 rc = mctp_route_lookup_null(net, dev, &dst);
1371
1372 if (rc)
1373 goto err_drop;
1374
1375 dst.output(&dst, skb);
1376 mctp_dst_release(&dst);
1377 mctp_dev_put(mdev);
1378
1379 return NET_RX_SUCCESS;
1380
1381 err_drop:
1382 kfree_skb(skb);
1383 mctp_dev_put(mdev);
1384 return NET_RX_DROP;
1385 }
1386
1387 static struct packet_type mctp_packet_type = {
1388 .type = cpu_to_be16(ETH_P_MCTP),
1389 .func = mctp_pkttype_receive,
1390 };
1391
1392 /* netlink interface */
1393
1394 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = {
1395 [RTA_DST] = { .type = NLA_U8 },
1396 [RTA_METRICS] = { .type = NLA_NESTED },
1397 [RTA_OIF] = { .type = NLA_U32 },
1398 [RTA_GATEWAY] = NLA_POLICY_EXACT_LEN(sizeof(struct mctp_fq_addr)),
1399 };
1400
1401 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = {
1402 [RTAX_MTU] = { .type = NLA_U32 },
1403 };
1404
1405 /* base parsing; common to both _lookup and _populate variants.
1406 *
1407 * For gateway routes (which have a RTA_GATEWAY, and no RTA_OIF), we populate
1408 * *gatweayp. for direct routes (RTA_OIF, no RTA_GATEWAY), we populate *mdev.
1409 */
mctp_route_nlparse_common(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct nlattr ** tb,struct rtmsg ** rtm,struct mctp_dev ** mdev,struct mctp_fq_addr * gatewayp,mctp_eid_t * daddr_start)1410 static int mctp_route_nlparse_common(struct net *net, struct nlmsghdr *nlh,
1411 struct netlink_ext_ack *extack,
1412 struct nlattr **tb, struct rtmsg **rtm,
1413 struct mctp_dev **mdev,
1414 struct mctp_fq_addr *gatewayp,
1415 mctp_eid_t *daddr_start)
1416 {
1417 struct mctp_fq_addr *gateway = NULL;
1418 unsigned int ifindex = 0;
1419 struct net_device *dev;
1420 int rc;
1421
1422 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX,
1423 rta_mctp_policy, extack);
1424 if (rc < 0) {
1425 NL_SET_ERR_MSG(extack, "incorrect format");
1426 return rc;
1427 }
1428
1429 if (!tb[RTA_DST]) {
1430 NL_SET_ERR_MSG(extack, "dst EID missing");
1431 return -EINVAL;
1432 }
1433 *daddr_start = nla_get_u8(tb[RTA_DST]);
1434
1435 if (tb[RTA_OIF])
1436 ifindex = nla_get_u32(tb[RTA_OIF]);
1437
1438 if (tb[RTA_GATEWAY])
1439 gateway = nla_data(tb[RTA_GATEWAY]);
1440
1441 if (ifindex && gateway) {
1442 NL_SET_ERR_MSG(extack,
1443 "cannot specify both ifindex and gateway");
1444 return -EINVAL;
1445
1446 } else if (ifindex) {
1447 dev = __dev_get_by_index(net, ifindex);
1448 if (!dev) {
1449 NL_SET_ERR_MSG(extack, "bad ifindex");
1450 return -ENODEV;
1451 }
1452 *mdev = mctp_dev_get_rtnl(dev);
1453 if (!*mdev)
1454 return -ENODEV;
1455 gatewayp->eid = 0;
1456
1457 } else if (gateway) {
1458 if (!mctp_address_unicast(gateway->eid)) {
1459 NL_SET_ERR_MSG(extack, "bad gateway");
1460 return -EINVAL;
1461 }
1462
1463 gatewayp->eid = gateway->eid;
1464 gatewayp->net = gateway->net != MCTP_NET_ANY ?
1465 gateway->net :
1466 READ_ONCE(net->mctp.default_net);
1467 *mdev = NULL;
1468
1469 } else {
1470 NL_SET_ERR_MSG(extack, "no route output provided");
1471 return -EINVAL;
1472 }
1473
1474 *rtm = nlmsg_data(nlh);
1475 if ((*rtm)->rtm_family != AF_MCTP) {
1476 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP");
1477 return -EINVAL;
1478 }
1479
1480 if ((*rtm)->rtm_type != RTN_UNICAST) {
1481 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST");
1482 return -EINVAL;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* Route parsing for lookup operations; we only need the "route target"
1489 * components (ie., network and dest-EID range).
1490 */
mctp_route_nlparse_lookup(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,unsigned char * type,unsigned int * netid,mctp_eid_t * daddr_start,unsigned int * daddr_extent)1491 static int mctp_route_nlparse_lookup(struct net *net, struct nlmsghdr *nlh,
1492 struct netlink_ext_ack *extack,
1493 unsigned char *type, unsigned int *netid,
1494 mctp_eid_t *daddr_start,
1495 unsigned int *daddr_extent)
1496 {
1497 struct nlattr *tb[RTA_MAX + 1];
1498 struct mctp_fq_addr gw;
1499 struct mctp_dev *mdev;
1500 struct rtmsg *rtm;
1501 int rc;
1502
1503 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1504 &mdev, &gw, daddr_start);
1505 if (rc)
1506 return rc;
1507
1508 if (mdev) {
1509 *netid = mdev->net;
1510 } else if (gw.eid) {
1511 *netid = gw.net;
1512 } else {
1513 /* bug: _nlparse_common should not allow this */
1514 return -1;
1515 }
1516
1517 *type = rtm->rtm_type;
1518 *daddr_extent = rtm->rtm_dst_len;
1519
1520 return 0;
1521 }
1522
1523 /* Full route parse for RTM_NEWROUTE: populate @rt. On success,
1524 * MCTP_ROUTE_DIRECT routes (ie, those with a direct dev) will hold a reference
1525 * to that dev.
1526 */
mctp_route_nlparse_populate(struct net * net,struct nlmsghdr * nlh,struct netlink_ext_ack * extack,struct mctp_route * rt)1527 static int mctp_route_nlparse_populate(struct net *net, struct nlmsghdr *nlh,
1528 struct netlink_ext_ack *extack,
1529 struct mctp_route *rt)
1530 {
1531 struct nlattr *tbx[RTAX_MAX + 1];
1532 struct nlattr *tb[RTA_MAX + 1];
1533 unsigned int daddr_extent;
1534 struct mctp_fq_addr gw;
1535 mctp_eid_t daddr_start;
1536 struct mctp_dev *dev;
1537 struct rtmsg *rtm;
1538 u32 mtu = 0;
1539 int rc;
1540
1541 rc = mctp_route_nlparse_common(net, nlh, extack, tb, &rtm,
1542 &dev, &gw, &daddr_start);
1543 if (rc)
1544 return rc;
1545
1546 daddr_extent = rtm->rtm_dst_len;
1547
1548 if (daddr_extent > 0xff || daddr_extent + daddr_start >= 255) {
1549 NL_SET_ERR_MSG(extack, "invalid eid range");
1550 return -EINVAL;
1551 }
1552
1553 if (tb[RTA_METRICS]) {
1554 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS],
1555 rta_metrics_policy, NULL);
1556 if (rc < 0) {
1557 NL_SET_ERR_MSG(extack, "incorrect RTA_METRICS format");
1558 return rc;
1559 }
1560 if (tbx[RTAX_MTU])
1561 mtu = nla_get_u32(tbx[RTAX_MTU]);
1562 }
1563
1564 rt->type = rtm->rtm_type;
1565 rt->min = daddr_start;
1566 rt->max = daddr_start + daddr_extent;
1567 rt->mtu = mtu;
1568 if (gw.eid) {
1569 rt->dst_type = MCTP_ROUTE_GATEWAY;
1570 rt->gateway.eid = gw.eid;
1571 rt->gateway.net = gw.net;
1572 } else {
1573 rt->dst_type = MCTP_ROUTE_DIRECT;
1574 rt->dev = dev;
1575 mctp_dev_hold(rt->dev);
1576 }
1577
1578 return 0;
1579 }
1580
mctp_newroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1581 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1582 struct netlink_ext_ack *extack)
1583 {
1584 struct net *net = sock_net(skb->sk);
1585 struct mctp_route *rt;
1586 int rc;
1587
1588 rt = mctp_route_alloc();
1589 if (!rt)
1590 return -ENOMEM;
1591
1592 rc = mctp_route_nlparse_populate(net, nlh, extack, rt);
1593 if (rc < 0)
1594 goto err_free;
1595
1596 if (rt->dst_type == MCTP_ROUTE_DIRECT &&
1597 rt->dev->dev->flags & IFF_LOOPBACK) {
1598 NL_SET_ERR_MSG(extack, "no routes to loopback");
1599 rc = -EINVAL;
1600 goto err_free;
1601 }
1602
1603 rc = mctp_route_add(net, rt);
1604 if (!rc)
1605 return 0;
1606
1607 err_free:
1608 mctp_route_release(rt);
1609 return rc;
1610 }
1611
mctp_delroute(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)1612 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh,
1613 struct netlink_ext_ack *extack)
1614 {
1615 struct net *net = sock_net(skb->sk);
1616 unsigned int netid, daddr_extent;
1617 unsigned char type = RTN_UNSPEC;
1618 mctp_eid_t daddr_start;
1619 int rc;
1620
1621 rc = mctp_route_nlparse_lookup(net, nlh, extack, &type, &netid,
1622 &daddr_start, &daddr_extent);
1623 if (rc < 0)
1624 return rc;
1625
1626 /* we only have unicast routes */
1627 if (type != RTN_UNICAST)
1628 return -EINVAL;
1629
1630 rc = mctp_route_remove(net, netid, daddr_start, daddr_extent, type);
1631 return rc;
1632 }
1633
mctp_fill_rtinfo(struct sk_buff * skb,struct mctp_route * rt,u32 portid,u32 seq,int event,unsigned int flags)1634 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt,
1635 u32 portid, u32 seq, int event, unsigned int flags)
1636 {
1637 struct nlmsghdr *nlh;
1638 struct rtmsg *hdr;
1639 void *metrics;
1640
1641 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
1642 if (!nlh)
1643 return -EMSGSIZE;
1644
1645 hdr = nlmsg_data(nlh);
1646 hdr->rtm_family = AF_MCTP;
1647
1648 /* we use the _len fields as a number of EIDs, rather than
1649 * a number of bits in the address
1650 */
1651 hdr->rtm_dst_len = rt->max - rt->min;
1652 hdr->rtm_src_len = 0;
1653 hdr->rtm_tos = 0;
1654 hdr->rtm_table = RT_TABLE_DEFAULT;
1655 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */
1656 hdr->rtm_type = rt->type;
1657
1658 if (nla_put_u8(skb, RTA_DST, rt->min))
1659 goto cancel;
1660
1661 metrics = nla_nest_start_noflag(skb, RTA_METRICS);
1662 if (!metrics)
1663 goto cancel;
1664
1665 if (rt->mtu) {
1666 if (nla_put_u32(skb, RTAX_MTU, rt->mtu))
1667 goto cancel;
1668 }
1669
1670 nla_nest_end(skb, metrics);
1671
1672 if (rt->dst_type == MCTP_ROUTE_DIRECT) {
1673 hdr->rtm_scope = RT_SCOPE_LINK;
1674 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex))
1675 goto cancel;
1676 } else if (rt->dst_type == MCTP_ROUTE_GATEWAY) {
1677 hdr->rtm_scope = RT_SCOPE_UNIVERSE;
1678 if (nla_put(skb, RTA_GATEWAY,
1679 sizeof(rt->gateway), &rt->gateway))
1680 goto cancel;
1681 }
1682
1683 nlmsg_end(skb, nlh);
1684
1685 return 0;
1686
1687 cancel:
1688 nlmsg_cancel(skb, nlh);
1689 return -EMSGSIZE;
1690 }
1691
mctp_dump_rtinfo(struct sk_buff * skb,struct netlink_callback * cb)1692 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb)
1693 {
1694 struct net *net = sock_net(skb->sk);
1695 struct mctp_route *rt;
1696 int s_idx, idx;
1697
1698 /* TODO: allow filtering on route data, possibly under
1699 * cb->strict_check
1700 */
1701
1702 /* TODO: change to struct overlay */
1703 s_idx = cb->args[0];
1704 idx = 0;
1705
1706 rcu_read_lock();
1707 list_for_each_entry_rcu(rt, &net->mctp.routes, list) {
1708 if (idx++ < s_idx)
1709 continue;
1710 if (mctp_fill_rtinfo(skb, rt,
1711 NETLINK_CB(cb->skb).portid,
1712 cb->nlh->nlmsg_seq,
1713 RTM_NEWROUTE, NLM_F_MULTI) < 0)
1714 break;
1715 }
1716
1717 rcu_read_unlock();
1718 cb->args[0] = idx;
1719
1720 return skb->len;
1721 }
1722
1723 /* net namespace implementation */
mctp_routes_net_init(struct net * net)1724 static int __net_init mctp_routes_net_init(struct net *net)
1725 {
1726 struct netns_mctp *ns = &net->mctp;
1727
1728 INIT_LIST_HEAD(&ns->routes);
1729 hash_init(ns->binds);
1730 mutex_init(&ns->bind_lock);
1731 INIT_HLIST_HEAD(&ns->keys);
1732 spin_lock_init(&ns->keys_lock);
1733 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET));
1734 return 0;
1735 }
1736
mctp_routes_net_exit(struct net * net)1737 static void __net_exit mctp_routes_net_exit(struct net *net)
1738 {
1739 struct mctp_route *rt;
1740
1741 rcu_read_lock();
1742 list_for_each_entry_rcu(rt, &net->mctp.routes, list)
1743 mctp_route_release(rt);
1744 rcu_read_unlock();
1745 }
1746
1747 static struct pernet_operations mctp_net_ops = {
1748 .init = mctp_routes_net_init,
1749 .exit = mctp_routes_net_exit,
1750 };
1751
1752 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = {
1753 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0},
1754 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0},
1755 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0},
1756 };
1757
mctp_routes_init(void)1758 int __init mctp_routes_init(void)
1759 {
1760 int err;
1761
1762 dev_add_pack(&mctp_packet_type);
1763
1764 err = register_pernet_subsys(&mctp_net_ops);
1765 if (err)
1766 goto err_pernet;
1767
1768 err = rtnl_register_many(mctp_route_rtnl_msg_handlers);
1769 if (err)
1770 goto err_rtnl;
1771
1772 return 0;
1773
1774 err_rtnl:
1775 unregister_pernet_subsys(&mctp_net_ops);
1776 err_pernet:
1777 dev_remove_pack(&mctp_packet_type);
1778 return err;
1779 }
1780
mctp_routes_exit(void)1781 void mctp_routes_exit(void)
1782 {
1783 rtnl_unregister_many(mctp_route_rtnl_msg_handlers);
1784 unregister_pernet_subsys(&mctp_net_ops);
1785 dev_remove_pack(&mctp_packet_type);
1786 }
1787
1788 #if IS_ENABLED(CONFIG_MCTP_TEST)
1789 #include "test/route-test.c"
1790 #endif
1791