1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Management Component Transport Protocol (MCTP) - routing 4 * implementation. 5 * 6 * This is currently based on a simple routing table, with no dst cache. The 7 * number of routes should stay fairly small, so the lookup cost is small. 8 * 9 * Copyright (c) 2021 Code Construct 10 * Copyright (c) 2021 Google 11 */ 12 13 #include <linux/idr.h> 14 #include <linux/kconfig.h> 15 #include <linux/mctp.h> 16 #include <linux/netdevice.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/skbuff.h> 19 20 #include <uapi/linux/if_arp.h> 21 22 #include <net/mctp.h> 23 #include <net/mctpdevice.h> 24 #include <net/netlink.h> 25 #include <net/sock.h> 26 27 #include <trace/events/mctp.h> 28 29 static const unsigned int mctp_message_maxlen = 64 * 1024; 30 static const unsigned long mctp_key_lifetime = 6 * CONFIG_HZ; 31 32 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev); 33 34 /* route output callbacks */ 35 static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb) 36 { 37 kfree_skb(skb); 38 return 0; 39 } 40 41 static struct mctp_sock *mctp_lookup_bind(struct net *net, struct sk_buff *skb) 42 { 43 struct mctp_skb_cb *cb = mctp_cb(skb); 44 struct mctp_hdr *mh; 45 struct sock *sk; 46 u8 type; 47 48 WARN_ON(!rcu_read_lock_held()); 49 50 /* TODO: look up in skb->cb? */ 51 mh = mctp_hdr(skb); 52 53 if (!skb_headlen(skb)) 54 return NULL; 55 56 type = (*(u8 *)skb->data) & 0x7f; 57 58 sk_for_each_rcu(sk, &net->mctp.binds) { 59 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 60 61 if (msk->bind_net != MCTP_NET_ANY && msk->bind_net != cb->net) 62 continue; 63 64 if (msk->bind_type != type) 65 continue; 66 67 if (!mctp_address_matches(msk->bind_addr, mh->dest)) 68 continue; 69 70 return msk; 71 } 72 73 return NULL; 74 } 75 76 /* A note on the key allocations. 77 * 78 * struct net->mctp.keys contains our set of currently-allocated keys for 79 * MCTP tag management. The lookup tuple for these is the peer EID, 80 * local EID and MCTP tag. 81 * 82 * In some cases, the peer EID may be MCTP_EID_ANY: for example, when a 83 * broadcast message is sent, we may receive responses from any peer EID. 84 * Because the broadcast dest address is equivalent to ANY, we create 85 * a key with (local = local-eid, peer = ANY). This allows a match on the 86 * incoming broadcast responses from any peer. 87 * 88 * We perform lookups when packets are received, and when tags are allocated 89 * in two scenarios: 90 * 91 * - when a packet is sent, with a locally-owned tag: we need to find an 92 * unused tag value for the (local, peer) EID pair. 93 * 94 * - when a tag is manually allocated: we need to find an unused tag value 95 * for the peer EID, but don't have a specific local EID at that stage. 96 * 97 * in the latter case, on successful allocation, we end up with a tag with 98 * (local = ANY, peer = peer-eid). 99 * 100 * So, the key set allows both a local EID of ANY, as well as a peer EID of 101 * ANY in the lookup tuple. Both may be ANY if we prealloc for a broadcast. 102 * The matching (in mctp_key_match()) during lookup allows the match value to 103 * be ANY in either the dest or source addresses. 104 * 105 * When allocating (+ inserting) a tag, we need to check for conflicts amongst 106 * the existing tag set. This requires macthing either exactly on the local 107 * and peer addresses, or either being ANY. 108 */ 109 110 static bool mctp_key_match(struct mctp_sk_key *key, unsigned int net, 111 mctp_eid_t local, mctp_eid_t peer, u8 tag) 112 { 113 if (key->net != net) 114 return false; 115 116 if (!mctp_address_matches(key->local_addr, local)) 117 return false; 118 119 if (!mctp_address_matches(key->peer_addr, peer)) 120 return false; 121 122 if (key->tag != tag) 123 return false; 124 125 return true; 126 } 127 128 /* returns a key (with key->lock held, and refcounted), or NULL if no such 129 * key exists. 130 */ 131 static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb, 132 unsigned int netid, mctp_eid_t peer, 133 unsigned long *irqflags) 134 __acquires(&key->lock) 135 { 136 struct mctp_sk_key *key, *ret; 137 unsigned long flags; 138 struct mctp_hdr *mh; 139 u8 tag; 140 141 mh = mctp_hdr(skb); 142 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 143 144 ret = NULL; 145 spin_lock_irqsave(&net->mctp.keys_lock, flags); 146 147 hlist_for_each_entry(key, &net->mctp.keys, hlist) { 148 if (!mctp_key_match(key, netid, mh->dest, peer, tag)) 149 continue; 150 151 spin_lock(&key->lock); 152 if (key->valid) { 153 refcount_inc(&key->refs); 154 ret = key; 155 break; 156 } 157 spin_unlock(&key->lock); 158 } 159 160 if (ret) { 161 spin_unlock(&net->mctp.keys_lock); 162 *irqflags = flags; 163 } else { 164 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 165 } 166 167 return ret; 168 } 169 170 static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk, 171 unsigned int net, 172 mctp_eid_t local, mctp_eid_t peer, 173 u8 tag, gfp_t gfp) 174 { 175 struct mctp_sk_key *key; 176 177 key = kzalloc(sizeof(*key), gfp); 178 if (!key) 179 return NULL; 180 181 key->net = net; 182 key->peer_addr = peer; 183 key->local_addr = local; 184 key->tag = tag; 185 key->sk = &msk->sk; 186 key->valid = true; 187 spin_lock_init(&key->lock); 188 refcount_set(&key->refs, 1); 189 sock_hold(key->sk); 190 191 return key; 192 } 193 194 void mctp_key_unref(struct mctp_sk_key *key) 195 { 196 unsigned long flags; 197 198 if (!refcount_dec_and_test(&key->refs)) 199 return; 200 201 /* even though no refs exist here, the lock allows us to stay 202 * consistent with the locking requirement of mctp_dev_release_key 203 */ 204 spin_lock_irqsave(&key->lock, flags); 205 mctp_dev_release_key(key->dev, key); 206 spin_unlock_irqrestore(&key->lock, flags); 207 208 sock_put(key->sk); 209 kfree(key); 210 } 211 212 static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk) 213 { 214 struct net *net = sock_net(&msk->sk); 215 struct mctp_sk_key *tmp; 216 unsigned long flags; 217 int rc = 0; 218 219 spin_lock_irqsave(&net->mctp.keys_lock, flags); 220 221 if (sock_flag(&msk->sk, SOCK_DEAD)) { 222 rc = -EINVAL; 223 goto out_unlock; 224 } 225 226 hlist_for_each_entry(tmp, &net->mctp.keys, hlist) { 227 if (mctp_key_match(tmp, key->net, key->local_addr, 228 key->peer_addr, key->tag)) { 229 spin_lock(&tmp->lock); 230 if (tmp->valid) 231 rc = -EEXIST; 232 spin_unlock(&tmp->lock); 233 if (rc) 234 break; 235 } 236 } 237 238 if (!rc) { 239 refcount_inc(&key->refs); 240 key->expiry = jiffies + mctp_key_lifetime; 241 timer_reduce(&msk->key_expiry, key->expiry); 242 243 hlist_add_head(&key->hlist, &net->mctp.keys); 244 hlist_add_head(&key->sklist, &msk->keys); 245 } 246 247 out_unlock: 248 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 249 250 return rc; 251 } 252 253 /* Helper for mctp_route_input(). 254 * We're done with the key; unlock and unref the key. 255 * For the usual case of automatic expiry we remove the key from lists. 256 * In the case that manual allocation is set on a key we release the lock 257 * and local ref, reset reassembly, but don't remove from lists. 258 */ 259 static void __mctp_key_done_in(struct mctp_sk_key *key, struct net *net, 260 unsigned long flags, unsigned long reason) 261 __releases(&key->lock) 262 { 263 struct sk_buff *skb; 264 265 trace_mctp_key_release(key, reason); 266 skb = key->reasm_head; 267 key->reasm_head = NULL; 268 269 if (!key->manual_alloc) { 270 key->reasm_dead = true; 271 key->valid = false; 272 mctp_dev_release_key(key->dev, key); 273 } 274 spin_unlock_irqrestore(&key->lock, flags); 275 276 if (!key->manual_alloc) { 277 spin_lock_irqsave(&net->mctp.keys_lock, flags); 278 if (!hlist_unhashed(&key->hlist)) { 279 hlist_del_init(&key->hlist); 280 hlist_del_init(&key->sklist); 281 mctp_key_unref(key); 282 } 283 spin_unlock_irqrestore(&net->mctp.keys_lock, flags); 284 } 285 286 /* and one for the local reference */ 287 mctp_key_unref(key); 288 289 kfree_skb(skb); 290 } 291 292 #ifdef CONFIG_MCTP_FLOWS 293 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) 294 { 295 struct mctp_flow *flow; 296 297 flow = skb_ext_add(skb, SKB_EXT_MCTP); 298 if (!flow) 299 return; 300 301 refcount_inc(&key->refs); 302 flow->key = key; 303 } 304 305 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) 306 { 307 struct mctp_sk_key *key; 308 struct mctp_flow *flow; 309 310 flow = skb_ext_find(skb, SKB_EXT_MCTP); 311 if (!flow) 312 return; 313 314 key = flow->key; 315 316 if (WARN_ON(key->dev && key->dev != dev)) 317 return; 318 319 mctp_dev_set_key(dev, key); 320 } 321 #else 322 static void mctp_skb_set_flow(struct sk_buff *skb, struct mctp_sk_key *key) {} 323 static void mctp_flow_prepare_output(struct sk_buff *skb, struct mctp_dev *dev) {} 324 #endif 325 326 static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb) 327 { 328 struct mctp_hdr *hdr = mctp_hdr(skb); 329 u8 exp_seq, this_seq; 330 331 this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT) 332 & MCTP_HDR_SEQ_MASK; 333 334 if (!key->reasm_head) { 335 /* Since we're manipulating the shared frag_list, ensure it isn't 336 * shared with any other SKBs. 337 */ 338 key->reasm_head = skb_unshare(skb, GFP_ATOMIC); 339 if (!key->reasm_head) 340 return -ENOMEM; 341 342 key->reasm_tailp = &(skb_shinfo(key->reasm_head)->frag_list); 343 key->last_seq = this_seq; 344 return 0; 345 } 346 347 exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK; 348 349 if (this_seq != exp_seq) 350 return -EINVAL; 351 352 if (key->reasm_head->len + skb->len > mctp_message_maxlen) 353 return -EINVAL; 354 355 skb->next = NULL; 356 skb->sk = NULL; 357 *key->reasm_tailp = skb; 358 key->reasm_tailp = &skb->next; 359 360 key->last_seq = this_seq; 361 362 key->reasm_head->data_len += skb->len; 363 key->reasm_head->len += skb->len; 364 key->reasm_head->truesize += skb->truesize; 365 366 return 0; 367 } 368 369 static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb) 370 { 371 struct mctp_sk_key *key, *any_key = NULL; 372 struct net *net = dev_net(skb->dev); 373 struct mctp_sock *msk; 374 struct mctp_hdr *mh; 375 unsigned int netid; 376 unsigned long f; 377 u8 tag, flags; 378 int rc; 379 380 msk = NULL; 381 rc = -EINVAL; 382 383 /* We may be receiving a locally-routed packet; drop source sk 384 * accounting. 385 * 386 * From here, we will either queue the skb - either to a frag_queue, or 387 * to a receiving socket. When that succeeds, we clear the skb pointer; 388 * a non-NULL skb on exit will be otherwise unowned, and hence 389 * kfree_skb()-ed. 390 */ 391 skb_orphan(skb); 392 393 /* ensure we have enough data for a header and a type */ 394 if (skb->len < sizeof(struct mctp_hdr) + 1) 395 goto out; 396 397 /* grab header, advance data ptr */ 398 mh = mctp_hdr(skb); 399 netid = mctp_cb(skb)->net; 400 skb_pull(skb, sizeof(struct mctp_hdr)); 401 402 if (mh->ver != 1) 403 goto out; 404 405 flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM); 406 tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 407 408 rcu_read_lock(); 409 410 /* lookup socket / reasm context, exactly matching (src,dest,tag). 411 * we hold a ref on the key, and key->lock held. 412 */ 413 key = mctp_lookup_key(net, skb, netid, mh->src, &f); 414 415 if (flags & MCTP_HDR_FLAG_SOM) { 416 if (key) { 417 msk = container_of(key->sk, struct mctp_sock, sk); 418 } else { 419 /* first response to a broadcast? do a more general 420 * key lookup to find the socket, but don't use this 421 * key for reassembly - we'll create a more specific 422 * one for future packets if required (ie, !EOM). 423 * 424 * this lookup requires key->peer to be MCTP_ADDR_ANY, 425 * it doesn't match just any key->peer. 426 */ 427 any_key = mctp_lookup_key(net, skb, netid, 428 MCTP_ADDR_ANY, &f); 429 if (any_key) { 430 msk = container_of(any_key->sk, 431 struct mctp_sock, sk); 432 spin_unlock_irqrestore(&any_key->lock, f); 433 } 434 } 435 436 if (!key && !msk && (tag & MCTP_HDR_FLAG_TO)) 437 msk = mctp_lookup_bind(net, skb); 438 439 if (!msk) { 440 rc = -ENOENT; 441 goto out_unlock; 442 } 443 444 /* single-packet message? deliver to socket, clean up any 445 * pending key. 446 */ 447 if (flags & MCTP_HDR_FLAG_EOM) { 448 rc = sock_queue_rcv_skb(&msk->sk, skb); 449 if (!rc) 450 skb = NULL; 451 if (key) { 452 /* we've hit a pending reassembly; not much we 453 * can do but drop it 454 */ 455 __mctp_key_done_in(key, net, f, 456 MCTP_TRACE_KEY_REPLIED); 457 key = NULL; 458 } 459 goto out_unlock; 460 } 461 462 /* broadcast response or a bind() - create a key for further 463 * packets for this message 464 */ 465 if (!key) { 466 key = mctp_key_alloc(msk, netid, mh->dest, mh->src, 467 tag, GFP_ATOMIC); 468 if (!key) { 469 rc = -ENOMEM; 470 goto out_unlock; 471 } 472 473 /* we can queue without the key lock here, as the 474 * key isn't observable yet 475 */ 476 mctp_frag_queue(key, skb); 477 478 /* if the key_add fails, we've raced with another 479 * SOM packet with the same src, dest and tag. There's 480 * no way to distinguish future packets, so all we 481 * can do is drop; we'll free the skb on exit from 482 * this function. 483 */ 484 rc = mctp_key_add(key, msk); 485 if (!rc) { 486 trace_mctp_key_acquire(key); 487 skb = NULL; 488 } 489 490 /* we don't need to release key->lock on exit, so 491 * clean up here and suppress the unlock via 492 * setting to NULL 493 */ 494 mctp_key_unref(key); 495 key = NULL; 496 497 } else { 498 if (key->reasm_head || key->reasm_dead) { 499 /* duplicate start? drop everything */ 500 __mctp_key_done_in(key, net, f, 501 MCTP_TRACE_KEY_INVALIDATED); 502 rc = -EEXIST; 503 key = NULL; 504 } else { 505 rc = mctp_frag_queue(key, skb); 506 if (!rc) 507 skb = NULL; 508 } 509 } 510 511 } else if (key) { 512 /* this packet continues a previous message; reassemble 513 * using the message-specific key 514 */ 515 516 /* we need to be continuing an existing reassembly... */ 517 if (!key->reasm_head) 518 rc = -EINVAL; 519 else 520 rc = mctp_frag_queue(key, skb); 521 522 if (rc) 523 goto out_unlock; 524 525 /* we've queued; the queue owns the skb now */ 526 skb = NULL; 527 528 /* end of message? deliver to socket, and we're done with 529 * the reassembly/response key 530 */ 531 if (flags & MCTP_HDR_FLAG_EOM) { 532 rc = sock_queue_rcv_skb(key->sk, key->reasm_head); 533 if (!rc) 534 key->reasm_head = NULL; 535 __mctp_key_done_in(key, net, f, MCTP_TRACE_KEY_REPLIED); 536 key = NULL; 537 } 538 539 } else { 540 /* not a start, no matching key */ 541 rc = -ENOENT; 542 } 543 544 out_unlock: 545 rcu_read_unlock(); 546 if (key) { 547 spin_unlock_irqrestore(&key->lock, f); 548 mctp_key_unref(key); 549 } 550 if (any_key) 551 mctp_key_unref(any_key); 552 out: 553 kfree_skb(skb); 554 return rc; 555 } 556 557 static unsigned int mctp_route_mtu(struct mctp_route *rt) 558 { 559 return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu); 560 } 561 562 static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb) 563 { 564 struct mctp_skb_cb *cb = mctp_cb(skb); 565 struct mctp_hdr *hdr = mctp_hdr(skb); 566 char daddr_buf[MAX_ADDR_LEN]; 567 char *daddr = NULL; 568 unsigned int mtu; 569 int rc; 570 571 skb->protocol = htons(ETH_P_MCTP); 572 573 mtu = READ_ONCE(skb->dev->mtu); 574 if (skb->len > mtu) { 575 kfree_skb(skb); 576 return -EMSGSIZE; 577 } 578 579 if (cb->ifindex) { 580 /* direct route; use the hwaddr we stashed in sendmsg */ 581 if (cb->halen != skb->dev->addr_len) { 582 /* sanity check, sendmsg should have already caught this */ 583 kfree_skb(skb); 584 return -EMSGSIZE; 585 } 586 daddr = cb->haddr; 587 } else { 588 /* If lookup fails let the device handle daddr==NULL */ 589 if (mctp_neigh_lookup(route->dev, hdr->dest, daddr_buf) == 0) 590 daddr = daddr_buf; 591 } 592 593 rc = dev_hard_header(skb, skb->dev, ntohs(skb->protocol), 594 daddr, skb->dev->dev_addr, skb->len); 595 if (rc < 0) { 596 kfree_skb(skb); 597 return -EHOSTUNREACH; 598 } 599 600 mctp_flow_prepare_output(skb, route->dev); 601 602 rc = dev_queue_xmit(skb); 603 if (rc) 604 rc = net_xmit_errno(rc); 605 606 return rc; 607 } 608 609 /* route alloc/release */ 610 static void mctp_route_release(struct mctp_route *rt) 611 { 612 if (refcount_dec_and_test(&rt->refs)) { 613 mctp_dev_put(rt->dev); 614 kfree_rcu(rt, rcu); 615 } 616 } 617 618 /* returns a route with the refcount at 1 */ 619 static struct mctp_route *mctp_route_alloc(void) 620 { 621 struct mctp_route *rt; 622 623 rt = kzalloc(sizeof(*rt), GFP_KERNEL); 624 if (!rt) 625 return NULL; 626 627 INIT_LIST_HEAD(&rt->list); 628 refcount_set(&rt->refs, 1); 629 rt->output = mctp_route_discard; 630 631 return rt; 632 } 633 634 unsigned int mctp_default_net(struct net *net) 635 { 636 return READ_ONCE(net->mctp.default_net); 637 } 638 639 int mctp_default_net_set(struct net *net, unsigned int index) 640 { 641 if (index == 0) 642 return -EINVAL; 643 WRITE_ONCE(net->mctp.default_net, index); 644 return 0; 645 } 646 647 /* tag management */ 648 static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key, 649 struct mctp_sock *msk) 650 { 651 struct netns_mctp *mns = &net->mctp; 652 653 lockdep_assert_held(&mns->keys_lock); 654 655 key->expiry = jiffies + mctp_key_lifetime; 656 timer_reduce(&msk->key_expiry, key->expiry); 657 658 /* we hold the net->key_lock here, allowing updates to both 659 * then net and sk 660 */ 661 hlist_add_head_rcu(&key->hlist, &mns->keys); 662 hlist_add_head_rcu(&key->sklist, &msk->keys); 663 refcount_inc(&key->refs); 664 } 665 666 /* Allocate a locally-owned tag value for (local, peer), and reserve 667 * it for the socket msk 668 */ 669 struct mctp_sk_key *mctp_alloc_local_tag(struct mctp_sock *msk, 670 unsigned int netid, 671 mctp_eid_t local, mctp_eid_t peer, 672 bool manual, u8 *tagp) 673 { 674 struct net *net = sock_net(&msk->sk); 675 struct netns_mctp *mns = &net->mctp; 676 struct mctp_sk_key *key, *tmp; 677 unsigned long flags; 678 u8 tagbits; 679 680 /* for NULL destination EIDs, we may get a response from any peer */ 681 if (peer == MCTP_ADDR_NULL) 682 peer = MCTP_ADDR_ANY; 683 684 /* be optimistic, alloc now */ 685 key = mctp_key_alloc(msk, netid, local, peer, 0, GFP_KERNEL); 686 if (!key) 687 return ERR_PTR(-ENOMEM); 688 689 /* 8 possible tag values */ 690 tagbits = 0xff; 691 692 spin_lock_irqsave(&mns->keys_lock, flags); 693 694 /* Walk through the existing keys, looking for potential conflicting 695 * tags. If we find a conflict, clear that bit from tagbits 696 */ 697 hlist_for_each_entry(tmp, &mns->keys, hlist) { 698 /* We can check the lookup fields (*_addr, tag) without the 699 * lock held, they don't change over the lifetime of the key. 700 */ 701 702 /* tags are net-specific */ 703 if (tmp->net != netid) 704 continue; 705 706 /* if we don't own the tag, it can't conflict */ 707 if (tmp->tag & MCTP_HDR_FLAG_TO) 708 continue; 709 710 /* Since we're avoiding conflicting entries, match peer and 711 * local addresses, including with a wildcard on ANY. See 712 * 'A note on key allocations' for background. 713 */ 714 if (peer != MCTP_ADDR_ANY && 715 !mctp_address_matches(tmp->peer_addr, peer)) 716 continue; 717 718 if (local != MCTP_ADDR_ANY && 719 !mctp_address_matches(tmp->local_addr, local)) 720 continue; 721 722 spin_lock(&tmp->lock); 723 /* key must still be valid. If we find a match, clear the 724 * potential tag value 725 */ 726 if (tmp->valid) 727 tagbits &= ~(1 << tmp->tag); 728 spin_unlock(&tmp->lock); 729 730 if (!tagbits) 731 break; 732 } 733 734 if (tagbits) { 735 key->tag = __ffs(tagbits); 736 mctp_reserve_tag(net, key, msk); 737 trace_mctp_key_acquire(key); 738 739 key->manual_alloc = manual; 740 *tagp = key->tag; 741 } 742 743 spin_unlock_irqrestore(&mns->keys_lock, flags); 744 745 if (!tagbits) { 746 mctp_key_unref(key); 747 return ERR_PTR(-EBUSY); 748 } 749 750 return key; 751 } 752 753 static struct mctp_sk_key *mctp_lookup_prealloc_tag(struct mctp_sock *msk, 754 unsigned int netid, 755 mctp_eid_t daddr, 756 u8 req_tag, u8 *tagp) 757 { 758 struct net *net = sock_net(&msk->sk); 759 struct netns_mctp *mns = &net->mctp; 760 struct mctp_sk_key *key, *tmp; 761 unsigned long flags; 762 763 req_tag &= ~(MCTP_TAG_PREALLOC | MCTP_TAG_OWNER); 764 key = NULL; 765 766 spin_lock_irqsave(&mns->keys_lock, flags); 767 768 hlist_for_each_entry(tmp, &mns->keys, hlist) { 769 if (tmp->net != netid) 770 continue; 771 772 if (tmp->tag != req_tag) 773 continue; 774 775 if (!mctp_address_matches(tmp->peer_addr, daddr)) 776 continue; 777 778 if (!tmp->manual_alloc) 779 continue; 780 781 spin_lock(&tmp->lock); 782 if (tmp->valid) { 783 key = tmp; 784 refcount_inc(&key->refs); 785 spin_unlock(&tmp->lock); 786 break; 787 } 788 spin_unlock(&tmp->lock); 789 } 790 spin_unlock_irqrestore(&mns->keys_lock, flags); 791 792 if (!key) 793 return ERR_PTR(-ENOENT); 794 795 if (tagp) 796 *tagp = key->tag; 797 798 return key; 799 } 800 801 /* routing lookups */ 802 static bool mctp_rt_match_eid(struct mctp_route *rt, 803 unsigned int net, mctp_eid_t eid) 804 { 805 return READ_ONCE(rt->dev->net) == net && 806 rt->min <= eid && rt->max >= eid; 807 } 808 809 /* compares match, used for duplicate prevention */ 810 static bool mctp_rt_compare_exact(struct mctp_route *rt1, 811 struct mctp_route *rt2) 812 { 813 ASSERT_RTNL(); 814 return rt1->dev->net == rt2->dev->net && 815 rt1->min == rt2->min && 816 rt1->max == rt2->max; 817 } 818 819 struct mctp_route *mctp_route_lookup(struct net *net, unsigned int dnet, 820 mctp_eid_t daddr) 821 { 822 struct mctp_route *tmp, *rt = NULL; 823 824 rcu_read_lock(); 825 826 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { 827 /* TODO: add metrics */ 828 if (mctp_rt_match_eid(tmp, dnet, daddr)) { 829 if (refcount_inc_not_zero(&tmp->refs)) { 830 rt = tmp; 831 break; 832 } 833 } 834 } 835 836 rcu_read_unlock(); 837 838 return rt; 839 } 840 841 static struct mctp_route *mctp_route_lookup_null(struct net *net, 842 struct net_device *dev) 843 { 844 struct mctp_route *tmp, *rt = NULL; 845 846 rcu_read_lock(); 847 848 list_for_each_entry_rcu(tmp, &net->mctp.routes, list) { 849 if (tmp->dev->dev == dev && tmp->type == RTN_LOCAL && 850 refcount_inc_not_zero(&tmp->refs)) { 851 rt = tmp; 852 break; 853 } 854 } 855 856 rcu_read_unlock(); 857 858 return rt; 859 } 860 861 static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb, 862 unsigned int mtu, u8 tag) 863 { 864 const unsigned int hlen = sizeof(struct mctp_hdr); 865 struct mctp_hdr *hdr, *hdr2; 866 unsigned int pos, size, headroom; 867 struct sk_buff *skb2; 868 int rc; 869 u8 seq; 870 871 hdr = mctp_hdr(skb); 872 seq = 0; 873 rc = 0; 874 875 if (mtu < hlen + 1) { 876 kfree_skb(skb); 877 return -EMSGSIZE; 878 } 879 880 /* keep same headroom as the original skb */ 881 headroom = skb_headroom(skb); 882 883 /* we've got the header */ 884 skb_pull(skb, hlen); 885 886 for (pos = 0; pos < skb->len;) { 887 /* size of message payload */ 888 size = min(mtu - hlen, skb->len - pos); 889 890 skb2 = alloc_skb(headroom + hlen + size, GFP_KERNEL); 891 if (!skb2) { 892 rc = -ENOMEM; 893 break; 894 } 895 896 /* generic skb copy */ 897 skb2->protocol = skb->protocol; 898 skb2->priority = skb->priority; 899 skb2->dev = skb->dev; 900 memcpy(skb2->cb, skb->cb, sizeof(skb2->cb)); 901 902 if (skb->sk) 903 skb_set_owner_w(skb2, skb->sk); 904 905 /* establish packet */ 906 skb_reserve(skb2, headroom); 907 skb_reset_network_header(skb2); 908 skb_put(skb2, hlen + size); 909 skb2->transport_header = skb2->network_header + hlen; 910 911 /* copy header fields, calculate SOM/EOM flags & seq */ 912 hdr2 = mctp_hdr(skb2); 913 hdr2->ver = hdr->ver; 914 hdr2->dest = hdr->dest; 915 hdr2->src = hdr->src; 916 hdr2->flags_seq_tag = tag & 917 (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO); 918 919 if (pos == 0) 920 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM; 921 922 if (pos + size == skb->len) 923 hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM; 924 925 hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT; 926 927 /* copy message payload */ 928 skb_copy_bits(skb, pos, skb_transport_header(skb2), size); 929 930 /* we need to copy the extensions, for MCTP flow data */ 931 skb_ext_copy(skb2, skb); 932 933 /* do route */ 934 rc = rt->output(rt, skb2); 935 if (rc) 936 break; 937 938 seq = (seq + 1) & MCTP_HDR_SEQ_MASK; 939 pos += size; 940 } 941 942 consume_skb(skb); 943 return rc; 944 } 945 946 int mctp_local_output(struct sock *sk, struct mctp_route *rt, 947 struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag) 948 { 949 struct mctp_sock *msk = container_of(sk, struct mctp_sock, sk); 950 struct mctp_skb_cb *cb = mctp_cb(skb); 951 struct mctp_route tmp_rt = {0}; 952 struct mctp_sk_key *key; 953 struct mctp_hdr *hdr; 954 unsigned long flags; 955 unsigned int netid; 956 unsigned int mtu; 957 mctp_eid_t saddr; 958 bool ext_rt; 959 int rc; 960 u8 tag; 961 962 rc = -ENODEV; 963 964 if (rt) { 965 ext_rt = false; 966 if (WARN_ON(!rt->dev)) 967 goto out_release; 968 969 } else if (cb->ifindex) { 970 struct net_device *dev; 971 972 ext_rt = true; 973 rt = &tmp_rt; 974 975 rcu_read_lock(); 976 dev = dev_get_by_index_rcu(sock_net(sk), cb->ifindex); 977 if (!dev) { 978 rcu_read_unlock(); 979 goto out_free; 980 } 981 rt->dev = __mctp_dev_get(dev); 982 rcu_read_unlock(); 983 984 if (!rt->dev) 985 goto out_release; 986 987 /* establish temporary route - we set up enough to keep 988 * mctp_route_output happy 989 */ 990 rt->output = mctp_route_output; 991 rt->mtu = 0; 992 993 } else { 994 rc = -EINVAL; 995 goto out_free; 996 } 997 998 spin_lock_irqsave(&rt->dev->addrs_lock, flags); 999 if (rt->dev->num_addrs == 0) { 1000 rc = -EHOSTUNREACH; 1001 } else { 1002 /* use the outbound interface's first address as our source */ 1003 saddr = rt->dev->addrs[0]; 1004 rc = 0; 1005 } 1006 spin_unlock_irqrestore(&rt->dev->addrs_lock, flags); 1007 netid = READ_ONCE(rt->dev->net); 1008 1009 if (rc) 1010 goto out_release; 1011 1012 if (req_tag & MCTP_TAG_OWNER) { 1013 if (req_tag & MCTP_TAG_PREALLOC) 1014 key = mctp_lookup_prealloc_tag(msk, netid, daddr, 1015 req_tag, &tag); 1016 else 1017 key = mctp_alloc_local_tag(msk, netid, saddr, daddr, 1018 false, &tag); 1019 1020 if (IS_ERR(key)) { 1021 rc = PTR_ERR(key); 1022 goto out_release; 1023 } 1024 mctp_skb_set_flow(skb, key); 1025 /* done with the key in this scope */ 1026 mctp_key_unref(key); 1027 tag |= MCTP_HDR_FLAG_TO; 1028 } else { 1029 key = NULL; 1030 tag = req_tag & MCTP_TAG_MASK; 1031 } 1032 1033 skb->protocol = htons(ETH_P_MCTP); 1034 skb->priority = 0; 1035 skb_reset_transport_header(skb); 1036 skb_push(skb, sizeof(struct mctp_hdr)); 1037 skb_reset_network_header(skb); 1038 skb->dev = rt->dev->dev; 1039 1040 /* cb->net will have been set on initial ingress */ 1041 cb->src = saddr; 1042 1043 /* set up common header fields */ 1044 hdr = mctp_hdr(skb); 1045 hdr->ver = 1; 1046 hdr->dest = daddr; 1047 hdr->src = saddr; 1048 1049 mtu = mctp_route_mtu(rt); 1050 1051 if (skb->len + sizeof(struct mctp_hdr) <= mtu) { 1052 hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | 1053 MCTP_HDR_FLAG_EOM | tag; 1054 rc = rt->output(rt, skb); 1055 } else { 1056 rc = mctp_do_fragment_route(rt, skb, mtu, tag); 1057 } 1058 1059 /* route output functions consume the skb, even on error */ 1060 skb = NULL; 1061 1062 out_release: 1063 if (!ext_rt) 1064 mctp_route_release(rt); 1065 1066 mctp_dev_put(tmp_rt.dev); 1067 1068 out_free: 1069 kfree_skb(skb); 1070 return rc; 1071 } 1072 1073 /* route management */ 1074 static int mctp_route_add(struct mctp_dev *mdev, mctp_eid_t daddr_start, 1075 unsigned int daddr_extent, unsigned int mtu, 1076 unsigned char type) 1077 { 1078 int (*rtfn)(struct mctp_route *rt, struct sk_buff *skb); 1079 struct net *net = dev_net(mdev->dev); 1080 struct mctp_route *rt, *ert; 1081 1082 if (!mctp_address_unicast(daddr_start)) 1083 return -EINVAL; 1084 1085 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1086 return -EINVAL; 1087 1088 switch (type) { 1089 case RTN_LOCAL: 1090 rtfn = mctp_route_input; 1091 break; 1092 case RTN_UNICAST: 1093 rtfn = mctp_route_output; 1094 break; 1095 default: 1096 return -EINVAL; 1097 } 1098 1099 rt = mctp_route_alloc(); 1100 if (!rt) 1101 return -ENOMEM; 1102 1103 rt->min = daddr_start; 1104 rt->max = daddr_start + daddr_extent; 1105 rt->mtu = mtu; 1106 rt->dev = mdev; 1107 mctp_dev_hold(rt->dev); 1108 rt->type = type; 1109 rt->output = rtfn; 1110 1111 ASSERT_RTNL(); 1112 /* Prevent duplicate identical routes. */ 1113 list_for_each_entry(ert, &net->mctp.routes, list) { 1114 if (mctp_rt_compare_exact(rt, ert)) { 1115 mctp_route_release(rt); 1116 return -EEXIST; 1117 } 1118 } 1119 1120 list_add_rcu(&rt->list, &net->mctp.routes); 1121 1122 return 0; 1123 } 1124 1125 static int mctp_route_remove(struct mctp_dev *mdev, mctp_eid_t daddr_start, 1126 unsigned int daddr_extent, unsigned char type) 1127 { 1128 struct net *net = dev_net(mdev->dev); 1129 struct mctp_route *rt, *tmp; 1130 mctp_eid_t daddr_end; 1131 bool dropped; 1132 1133 if (daddr_extent > 0xff || daddr_start + daddr_extent >= 255) 1134 return -EINVAL; 1135 1136 daddr_end = daddr_start + daddr_extent; 1137 dropped = false; 1138 1139 ASSERT_RTNL(); 1140 1141 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1142 if (rt->dev == mdev && 1143 rt->min == daddr_start && rt->max == daddr_end && 1144 rt->type == type) { 1145 list_del_rcu(&rt->list); 1146 /* TODO: immediate RTM_DELROUTE */ 1147 mctp_route_release(rt); 1148 dropped = true; 1149 } 1150 } 1151 1152 return dropped ? 0 : -ENOENT; 1153 } 1154 1155 int mctp_route_add_local(struct mctp_dev *mdev, mctp_eid_t addr) 1156 { 1157 return mctp_route_add(mdev, addr, 0, 0, RTN_LOCAL); 1158 } 1159 1160 int mctp_route_remove_local(struct mctp_dev *mdev, mctp_eid_t addr) 1161 { 1162 return mctp_route_remove(mdev, addr, 0, RTN_LOCAL); 1163 } 1164 1165 /* removes all entries for a given device */ 1166 void mctp_route_remove_dev(struct mctp_dev *mdev) 1167 { 1168 struct net *net = dev_net(mdev->dev); 1169 struct mctp_route *rt, *tmp; 1170 1171 ASSERT_RTNL(); 1172 list_for_each_entry_safe(rt, tmp, &net->mctp.routes, list) { 1173 if (rt->dev == mdev) { 1174 list_del_rcu(&rt->list); 1175 /* TODO: immediate RTM_DELROUTE */ 1176 mctp_route_release(rt); 1177 } 1178 } 1179 } 1180 1181 /* Incoming packet-handling */ 1182 1183 static int mctp_pkttype_receive(struct sk_buff *skb, struct net_device *dev, 1184 struct packet_type *pt, 1185 struct net_device *orig_dev) 1186 { 1187 struct net *net = dev_net(dev); 1188 struct mctp_dev *mdev; 1189 struct mctp_skb_cb *cb; 1190 struct mctp_route *rt; 1191 struct mctp_hdr *mh; 1192 1193 rcu_read_lock(); 1194 mdev = __mctp_dev_get(dev); 1195 rcu_read_unlock(); 1196 if (!mdev) { 1197 /* basic non-data sanity checks */ 1198 goto err_drop; 1199 } 1200 1201 if (!pskb_may_pull(skb, sizeof(struct mctp_hdr))) 1202 goto err_drop; 1203 1204 skb_reset_transport_header(skb); 1205 skb_reset_network_header(skb); 1206 1207 /* We have enough for a header; decode and route */ 1208 mh = mctp_hdr(skb); 1209 if (mh->ver < MCTP_VER_MIN || mh->ver > MCTP_VER_MAX) 1210 goto err_drop; 1211 1212 /* source must be valid unicast or null; drop reserved ranges and 1213 * broadcast 1214 */ 1215 if (!(mctp_address_unicast(mh->src) || mctp_address_null(mh->src))) 1216 goto err_drop; 1217 1218 /* dest address: as above, but allow broadcast */ 1219 if (!(mctp_address_unicast(mh->dest) || mctp_address_null(mh->dest) || 1220 mctp_address_broadcast(mh->dest))) 1221 goto err_drop; 1222 1223 /* MCTP drivers must populate halen/haddr */ 1224 if (dev->type == ARPHRD_MCTP) { 1225 cb = mctp_cb(skb); 1226 } else { 1227 cb = __mctp_cb(skb); 1228 cb->halen = 0; 1229 } 1230 cb->net = READ_ONCE(mdev->net); 1231 cb->ifindex = dev->ifindex; 1232 1233 rt = mctp_route_lookup(net, cb->net, mh->dest); 1234 1235 /* NULL EID, but addressed to our physical address */ 1236 if (!rt && mh->dest == MCTP_ADDR_NULL && skb->pkt_type == PACKET_HOST) 1237 rt = mctp_route_lookup_null(net, dev); 1238 1239 if (!rt) 1240 goto err_drop; 1241 1242 rt->output(rt, skb); 1243 mctp_route_release(rt); 1244 mctp_dev_put(mdev); 1245 1246 return NET_RX_SUCCESS; 1247 1248 err_drop: 1249 kfree_skb(skb); 1250 mctp_dev_put(mdev); 1251 return NET_RX_DROP; 1252 } 1253 1254 static struct packet_type mctp_packet_type = { 1255 .type = cpu_to_be16(ETH_P_MCTP), 1256 .func = mctp_pkttype_receive, 1257 }; 1258 1259 /* netlink interface */ 1260 1261 static const struct nla_policy rta_mctp_policy[RTA_MAX + 1] = { 1262 [RTA_DST] = { .type = NLA_U8 }, 1263 [RTA_METRICS] = { .type = NLA_NESTED }, 1264 [RTA_OIF] = { .type = NLA_U32 }, 1265 }; 1266 1267 /* Common part for RTM_NEWROUTE and RTM_DELROUTE parsing. 1268 * tb must hold RTA_MAX+1 elements. 1269 */ 1270 static int mctp_route_nlparse(struct sk_buff *skb, struct nlmsghdr *nlh, 1271 struct netlink_ext_ack *extack, 1272 struct nlattr **tb, struct rtmsg **rtm, 1273 struct mctp_dev **mdev, mctp_eid_t *daddr_start) 1274 { 1275 struct net *net = sock_net(skb->sk); 1276 struct net_device *dev; 1277 unsigned int ifindex; 1278 int rc; 1279 1280 rc = nlmsg_parse(nlh, sizeof(struct rtmsg), tb, RTA_MAX, 1281 rta_mctp_policy, extack); 1282 if (rc < 0) { 1283 NL_SET_ERR_MSG(extack, "incorrect format"); 1284 return rc; 1285 } 1286 1287 if (!tb[RTA_DST]) { 1288 NL_SET_ERR_MSG(extack, "dst EID missing"); 1289 return -EINVAL; 1290 } 1291 *daddr_start = nla_get_u8(tb[RTA_DST]); 1292 1293 if (!tb[RTA_OIF]) { 1294 NL_SET_ERR_MSG(extack, "ifindex missing"); 1295 return -EINVAL; 1296 } 1297 ifindex = nla_get_u32(tb[RTA_OIF]); 1298 1299 *rtm = nlmsg_data(nlh); 1300 if ((*rtm)->rtm_family != AF_MCTP) { 1301 NL_SET_ERR_MSG(extack, "route family must be AF_MCTP"); 1302 return -EINVAL; 1303 } 1304 1305 dev = __dev_get_by_index(net, ifindex); 1306 if (!dev) { 1307 NL_SET_ERR_MSG(extack, "bad ifindex"); 1308 return -ENODEV; 1309 } 1310 *mdev = mctp_dev_get_rtnl(dev); 1311 if (!*mdev) 1312 return -ENODEV; 1313 1314 if (dev->flags & IFF_LOOPBACK) { 1315 NL_SET_ERR_MSG(extack, "no routes to loopback"); 1316 return -EINVAL; 1317 } 1318 1319 return 0; 1320 } 1321 1322 static const struct nla_policy rta_metrics_policy[RTAX_MAX + 1] = { 1323 [RTAX_MTU] = { .type = NLA_U32 }, 1324 }; 1325 1326 static int mctp_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1327 struct netlink_ext_ack *extack) 1328 { 1329 struct nlattr *tb[RTA_MAX + 1]; 1330 struct nlattr *tbx[RTAX_MAX + 1]; 1331 mctp_eid_t daddr_start; 1332 struct mctp_dev *mdev; 1333 struct rtmsg *rtm; 1334 unsigned int mtu; 1335 int rc; 1336 1337 rc = mctp_route_nlparse(skb, nlh, extack, tb, 1338 &rtm, &mdev, &daddr_start); 1339 if (rc < 0) 1340 return rc; 1341 1342 if (rtm->rtm_type != RTN_UNICAST) { 1343 NL_SET_ERR_MSG(extack, "rtm_type must be RTN_UNICAST"); 1344 return -EINVAL; 1345 } 1346 1347 mtu = 0; 1348 if (tb[RTA_METRICS]) { 1349 rc = nla_parse_nested(tbx, RTAX_MAX, tb[RTA_METRICS], 1350 rta_metrics_policy, NULL); 1351 if (rc < 0) 1352 return rc; 1353 if (tbx[RTAX_MTU]) 1354 mtu = nla_get_u32(tbx[RTAX_MTU]); 1355 } 1356 1357 rc = mctp_route_add(mdev, daddr_start, rtm->rtm_dst_len, mtu, 1358 rtm->rtm_type); 1359 return rc; 1360 } 1361 1362 static int mctp_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, 1363 struct netlink_ext_ack *extack) 1364 { 1365 struct nlattr *tb[RTA_MAX + 1]; 1366 mctp_eid_t daddr_start; 1367 struct mctp_dev *mdev; 1368 struct rtmsg *rtm; 1369 int rc; 1370 1371 rc = mctp_route_nlparse(skb, nlh, extack, tb, 1372 &rtm, &mdev, &daddr_start); 1373 if (rc < 0) 1374 return rc; 1375 1376 /* we only have unicast routes */ 1377 if (rtm->rtm_type != RTN_UNICAST) 1378 return -EINVAL; 1379 1380 rc = mctp_route_remove(mdev, daddr_start, rtm->rtm_dst_len, RTN_UNICAST); 1381 return rc; 1382 } 1383 1384 static int mctp_fill_rtinfo(struct sk_buff *skb, struct mctp_route *rt, 1385 u32 portid, u32 seq, int event, unsigned int flags) 1386 { 1387 struct nlmsghdr *nlh; 1388 struct rtmsg *hdr; 1389 void *metrics; 1390 1391 nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags); 1392 if (!nlh) 1393 return -EMSGSIZE; 1394 1395 hdr = nlmsg_data(nlh); 1396 hdr->rtm_family = AF_MCTP; 1397 1398 /* we use the _len fields as a number of EIDs, rather than 1399 * a number of bits in the address 1400 */ 1401 hdr->rtm_dst_len = rt->max - rt->min; 1402 hdr->rtm_src_len = 0; 1403 hdr->rtm_tos = 0; 1404 hdr->rtm_table = RT_TABLE_DEFAULT; 1405 hdr->rtm_protocol = RTPROT_STATIC; /* everything is user-defined */ 1406 hdr->rtm_scope = RT_SCOPE_LINK; /* TODO: scope in mctp_route? */ 1407 hdr->rtm_type = rt->type; 1408 1409 if (nla_put_u8(skb, RTA_DST, rt->min)) 1410 goto cancel; 1411 1412 metrics = nla_nest_start_noflag(skb, RTA_METRICS); 1413 if (!metrics) 1414 goto cancel; 1415 1416 if (rt->mtu) { 1417 if (nla_put_u32(skb, RTAX_MTU, rt->mtu)) 1418 goto cancel; 1419 } 1420 1421 nla_nest_end(skb, metrics); 1422 1423 if (rt->dev) { 1424 if (nla_put_u32(skb, RTA_OIF, rt->dev->dev->ifindex)) 1425 goto cancel; 1426 } 1427 1428 /* TODO: conditional neighbour physaddr? */ 1429 1430 nlmsg_end(skb, nlh); 1431 1432 return 0; 1433 1434 cancel: 1435 nlmsg_cancel(skb, nlh); 1436 return -EMSGSIZE; 1437 } 1438 1439 static int mctp_dump_rtinfo(struct sk_buff *skb, struct netlink_callback *cb) 1440 { 1441 struct net *net = sock_net(skb->sk); 1442 struct mctp_route *rt; 1443 int s_idx, idx; 1444 1445 /* TODO: allow filtering on route data, possibly under 1446 * cb->strict_check 1447 */ 1448 1449 /* TODO: change to struct overlay */ 1450 s_idx = cb->args[0]; 1451 idx = 0; 1452 1453 rcu_read_lock(); 1454 list_for_each_entry_rcu(rt, &net->mctp.routes, list) { 1455 if (idx++ < s_idx) 1456 continue; 1457 if (mctp_fill_rtinfo(skb, rt, 1458 NETLINK_CB(cb->skb).portid, 1459 cb->nlh->nlmsg_seq, 1460 RTM_NEWROUTE, NLM_F_MULTI) < 0) 1461 break; 1462 } 1463 1464 rcu_read_unlock(); 1465 cb->args[0] = idx; 1466 1467 return skb->len; 1468 } 1469 1470 /* net namespace implementation */ 1471 static int __net_init mctp_routes_net_init(struct net *net) 1472 { 1473 struct netns_mctp *ns = &net->mctp; 1474 1475 INIT_LIST_HEAD(&ns->routes); 1476 INIT_HLIST_HEAD(&ns->binds); 1477 mutex_init(&ns->bind_lock); 1478 INIT_HLIST_HEAD(&ns->keys); 1479 spin_lock_init(&ns->keys_lock); 1480 WARN_ON(mctp_default_net_set(net, MCTP_INITIAL_DEFAULT_NET)); 1481 return 0; 1482 } 1483 1484 static void __net_exit mctp_routes_net_exit(struct net *net) 1485 { 1486 struct mctp_route *rt; 1487 1488 rcu_read_lock(); 1489 list_for_each_entry_rcu(rt, &net->mctp.routes, list) 1490 mctp_route_release(rt); 1491 rcu_read_unlock(); 1492 } 1493 1494 static struct pernet_operations mctp_net_ops = { 1495 .init = mctp_routes_net_init, 1496 .exit = mctp_routes_net_exit, 1497 }; 1498 1499 static const struct rtnl_msg_handler mctp_route_rtnl_msg_handlers[] = { 1500 {THIS_MODULE, PF_MCTP, RTM_NEWROUTE, mctp_newroute, NULL, 0}, 1501 {THIS_MODULE, PF_MCTP, RTM_DELROUTE, mctp_delroute, NULL, 0}, 1502 {THIS_MODULE, PF_MCTP, RTM_GETROUTE, NULL, mctp_dump_rtinfo, 0}, 1503 }; 1504 1505 int __init mctp_routes_init(void) 1506 { 1507 int err; 1508 1509 dev_add_pack(&mctp_packet_type); 1510 1511 err = register_pernet_subsys(&mctp_net_ops); 1512 if (err) 1513 goto err_pernet; 1514 1515 err = rtnl_register_many(mctp_route_rtnl_msg_handlers); 1516 if (err) 1517 goto err_rtnl; 1518 1519 return 0; 1520 1521 err_rtnl: 1522 unregister_pernet_subsys(&mctp_net_ops); 1523 err_pernet: 1524 dev_remove_pack(&mctp_packet_type); 1525 return err; 1526 } 1527 1528 void mctp_routes_exit(void) 1529 { 1530 rtnl_unregister_many(mctp_route_rtnl_msg_handlers); 1531 unregister_pernet_subsys(&mctp_net_ops); 1532 dev_remove_pack(&mctp_packet_type); 1533 } 1534 1535 #if IS_ENABLED(CONFIG_MCTP_TEST) 1536 #include "test/route-test.c" 1537 #endif 1538