xref: /linux/net/mctp/neigh.c (revision 27dfc44e1ba30d2d49675e21918bf4b3b3b59fa6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Management Component Transport Protocol (MCTP) - routing
4  * implementation.
5  *
6  * This is currently based on a simple routing table, with no dst cache. The
7  * number of routes should stay fairly small, so the lookup cost is small.
8  *
9  * Copyright (c) 2021 Code Construct
10  * Copyright (c) 2021 Google
11  */
12 
13 #include <linux/idr.h>
14 #include <linux/mctp.h>
15 #include <linux/netdevice.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/skbuff.h>
18 
19 #include <net/mctp.h>
20 #include <net/mctpdevice.h>
21 #include <net/netlink.h>
22 #include <net/sock.h>
23 
24 static int mctp_neigh_add(struct mctp_dev *mdev, mctp_eid_t eid,
25 			  enum mctp_neigh_source source,
26 			  size_t lladdr_len, const void *lladdr)
27 {
28 	struct net *net = dev_net(mdev->dev);
29 	struct mctp_neigh *neigh;
30 	int rc;
31 
32 	mutex_lock(&net->mctp.neigh_lock);
33 	if (mctp_neigh_lookup(mdev, eid, NULL) == 0) {
34 		rc = -EEXIST;
35 		goto out;
36 	}
37 
38 	if (lladdr_len > sizeof(neigh->ha)) {
39 		rc = -EINVAL;
40 		goto out;
41 	}
42 
43 	neigh = kzalloc(sizeof(*neigh), GFP_KERNEL);
44 	if (!neigh) {
45 		rc = -ENOMEM;
46 		goto out;
47 	}
48 	INIT_LIST_HEAD(&neigh->list);
49 	neigh->dev = mdev;
50 	mctp_dev_hold(neigh->dev);
51 	neigh->eid = eid;
52 	neigh->source = source;
53 	memcpy(neigh->ha, lladdr, lladdr_len);
54 
55 	list_add_rcu(&neigh->list, &net->mctp.neighbours);
56 	rc = 0;
57 out:
58 	mutex_unlock(&net->mctp.neigh_lock);
59 	return rc;
60 }
61 
62 static void __mctp_neigh_free(struct rcu_head *rcu)
63 {
64 	struct mctp_neigh *neigh = container_of(rcu, struct mctp_neigh, rcu);
65 
66 	mctp_dev_put(neigh->dev);
67 	kfree(neigh);
68 }
69 
70 /* Removes all neighbour entries referring to a device */
71 void mctp_neigh_remove_dev(struct mctp_dev *mdev)
72 {
73 	struct net *net = dev_net(mdev->dev);
74 	struct mctp_neigh *neigh, *tmp;
75 
76 	mutex_lock(&net->mctp.neigh_lock);
77 	list_for_each_entry_safe(neigh, tmp, &net->mctp.neighbours, list) {
78 		if (neigh->dev == mdev) {
79 			list_del_rcu(&neigh->list);
80 			/* TODO: immediate RTM_DELNEIGH */
81 			call_rcu(&neigh->rcu, __mctp_neigh_free);
82 		}
83 	}
84 
85 	mutex_unlock(&net->mctp.neigh_lock);
86 }
87 
88 static int mctp_neigh_remove(struct mctp_dev *mdev, mctp_eid_t eid,
89 			     enum mctp_neigh_source source)
90 {
91 	struct net *net = dev_net(mdev->dev);
92 	struct mctp_neigh *neigh, *tmp;
93 	bool dropped = false;
94 
95 	mutex_lock(&net->mctp.neigh_lock);
96 	list_for_each_entry_safe(neigh, tmp, &net->mctp.neighbours, list) {
97 		if (neigh->dev == mdev && neigh->eid == eid &&
98 		    neigh->source == source) {
99 			list_del_rcu(&neigh->list);
100 			/* TODO: immediate RTM_DELNEIGH */
101 			call_rcu(&neigh->rcu, __mctp_neigh_free);
102 			dropped = true;
103 		}
104 	}
105 
106 	mutex_unlock(&net->mctp.neigh_lock);
107 	return dropped ? 0 : -ENOENT;
108 }
109 
110 static const struct nla_policy nd_mctp_policy[NDA_MAX + 1] = {
111 	[NDA_DST]		= { .type = NLA_U8 },
112 	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
113 };
114 
115 static int mctp_rtm_newneigh(struct sk_buff *skb, struct nlmsghdr *nlh,
116 			     struct netlink_ext_ack *extack)
117 {
118 	struct net *net = sock_net(skb->sk);
119 	struct net_device *dev;
120 	struct mctp_dev *mdev;
121 	struct ndmsg *ndm;
122 	struct nlattr *tb[NDA_MAX + 1];
123 	int rc;
124 	mctp_eid_t eid;
125 	void *lladdr;
126 	int lladdr_len;
127 
128 	rc = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, nd_mctp_policy,
129 			 extack);
130 	if (rc < 0) {
131 		NL_SET_ERR_MSG(extack, "lladdr too large?");
132 		return rc;
133 	}
134 
135 	if (!tb[NDA_DST]) {
136 		NL_SET_ERR_MSG(extack, "Neighbour EID must be specified");
137 		return -EINVAL;
138 	}
139 
140 	if (!tb[NDA_LLADDR]) {
141 		NL_SET_ERR_MSG(extack, "Neighbour lladdr must be specified");
142 		return -EINVAL;
143 	}
144 
145 	eid = nla_get_u8(tb[NDA_DST]);
146 	if (!mctp_address_unicast(eid)) {
147 		NL_SET_ERR_MSG(extack, "Invalid neighbour EID");
148 		return -EINVAL;
149 	}
150 
151 	lladdr = nla_data(tb[NDA_LLADDR]);
152 	lladdr_len = nla_len(tb[NDA_LLADDR]);
153 
154 	ndm = nlmsg_data(nlh);
155 
156 	dev = __dev_get_by_index(net, ndm->ndm_ifindex);
157 	if (!dev)
158 		return -ENODEV;
159 
160 	mdev = mctp_dev_get_rtnl(dev);
161 	if (!mdev)
162 		return -ENODEV;
163 
164 	if (lladdr_len != dev->addr_len) {
165 		NL_SET_ERR_MSG(extack, "Wrong lladdr length");
166 		return -EINVAL;
167 	}
168 
169 	return mctp_neigh_add(mdev, eid, MCTP_NEIGH_STATIC,
170 			lladdr_len, lladdr);
171 }
172 
173 static int mctp_rtm_delneigh(struct sk_buff *skb, struct nlmsghdr *nlh,
174 			     struct netlink_ext_ack *extack)
175 {
176 	struct net *net = sock_net(skb->sk);
177 	struct nlattr *tb[NDA_MAX + 1];
178 	struct net_device *dev;
179 	struct mctp_dev *mdev;
180 	struct ndmsg *ndm;
181 	int rc;
182 	mctp_eid_t eid;
183 
184 	rc = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, nd_mctp_policy,
185 			 extack);
186 	if (rc < 0) {
187 		NL_SET_ERR_MSG(extack, "incorrect format");
188 		return rc;
189 	}
190 
191 	if (!tb[NDA_DST]) {
192 		NL_SET_ERR_MSG(extack, "Neighbour EID must be specified");
193 		return -EINVAL;
194 	}
195 	eid = nla_get_u8(tb[NDA_DST]);
196 
197 	ndm = nlmsg_data(nlh);
198 	dev = __dev_get_by_index(net, ndm->ndm_ifindex);
199 	if (!dev)
200 		return -ENODEV;
201 
202 	mdev = mctp_dev_get_rtnl(dev);
203 	if (!mdev)
204 		return -ENODEV;
205 
206 	return mctp_neigh_remove(mdev, eid, MCTP_NEIGH_STATIC);
207 }
208 
209 static int mctp_fill_neigh(struct sk_buff *skb, u32 portid, u32 seq, int event,
210 			   unsigned int flags, struct mctp_neigh *neigh)
211 {
212 	struct net_device *dev = neigh->dev->dev;
213 	struct nlmsghdr *nlh;
214 	struct ndmsg *hdr;
215 
216 	nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
217 	if (!nlh)
218 		return -EMSGSIZE;
219 
220 	hdr = nlmsg_data(nlh);
221 	hdr->ndm_family = AF_MCTP;
222 	hdr->ndm_ifindex = dev->ifindex;
223 	hdr->ndm_state = 0; // TODO other state bits?
224 	if (neigh->source == MCTP_NEIGH_STATIC)
225 		hdr->ndm_state |= NUD_PERMANENT;
226 	hdr->ndm_flags = 0;
227 	hdr->ndm_type = RTN_UNICAST; // TODO: is loopback RTN_LOCAL?
228 
229 	if (nla_put_u8(skb, NDA_DST, neigh->eid))
230 		goto cancel;
231 
232 	if (nla_put(skb, NDA_LLADDR, dev->addr_len, neigh->ha))
233 		goto cancel;
234 
235 	nlmsg_end(skb, nlh);
236 
237 	return 0;
238 cancel:
239 	nlmsg_cancel(skb, nlh);
240 	return -EMSGSIZE;
241 }
242 
243 static int mctp_rtm_getneigh(struct sk_buff *skb, struct netlink_callback *cb)
244 {
245 	struct net *net = sock_net(skb->sk);
246 	int rc, idx, req_ifindex;
247 	struct mctp_neigh *neigh;
248 	struct ndmsg *ndmsg;
249 	struct {
250 		int idx;
251 	} *cbctx = (void *)cb->ctx;
252 
253 	ndmsg = nlmsg_data(cb->nlh);
254 	req_ifindex = ndmsg->ndm_ifindex;
255 
256 	idx = 0;
257 	rcu_read_lock();
258 	list_for_each_entry_rcu(neigh, &net->mctp.neighbours, list) {
259 		if (idx < cbctx->idx)
260 			goto cont;
261 
262 		rc = 0;
263 		if (req_ifindex == 0 || req_ifindex == neigh->dev->dev->ifindex)
264 			rc = mctp_fill_neigh(skb, NETLINK_CB(cb->skb).portid,
265 					     cb->nlh->nlmsg_seq,
266 					     RTM_NEWNEIGH, NLM_F_MULTI, neigh);
267 
268 		if (rc)
269 			break;
270 cont:
271 		idx++;
272 	}
273 	rcu_read_unlock();
274 
275 	cbctx->idx = idx;
276 	return skb->len;
277 }
278 
279 int mctp_neigh_lookup(struct mctp_dev *mdev, mctp_eid_t eid, void *ret_hwaddr)
280 {
281 	struct net *net = dev_net(mdev->dev);
282 	struct mctp_neigh *neigh;
283 	int rc = -EHOSTUNREACH; // TODO: or ENOENT?
284 
285 	rcu_read_lock();
286 	list_for_each_entry_rcu(neigh, &net->mctp.neighbours, list) {
287 		if (mdev == neigh->dev && eid == neigh->eid) {
288 			if (ret_hwaddr)
289 				memcpy(ret_hwaddr, neigh->ha,
290 				       sizeof(neigh->ha));
291 			rc = 0;
292 			break;
293 		}
294 	}
295 	rcu_read_unlock();
296 	return rc;
297 }
298 
299 /* namespace registration */
300 static int __net_init mctp_neigh_net_init(struct net *net)
301 {
302 	struct netns_mctp *ns = &net->mctp;
303 
304 	INIT_LIST_HEAD(&ns->neighbours);
305 	mutex_init(&ns->neigh_lock);
306 	return 0;
307 }
308 
309 static void __net_exit mctp_neigh_net_exit(struct net *net)
310 {
311 	struct netns_mctp *ns = &net->mctp;
312 	struct mctp_neigh *neigh;
313 
314 	list_for_each_entry(neigh, &ns->neighbours, list)
315 		call_rcu(&neigh->rcu, __mctp_neigh_free);
316 }
317 
318 /* net namespace implementation */
319 
320 static struct pernet_operations mctp_net_ops = {
321 	.init = mctp_neigh_net_init,
322 	.exit = mctp_neigh_net_exit,
323 };
324 
325 int __init mctp_neigh_init(void)
326 {
327 	rtnl_register_module(THIS_MODULE, PF_MCTP, RTM_NEWNEIGH,
328 			     mctp_rtm_newneigh, NULL, 0);
329 	rtnl_register_module(THIS_MODULE, PF_MCTP, RTM_DELNEIGH,
330 			     mctp_rtm_delneigh, NULL, 0);
331 	rtnl_register_module(THIS_MODULE, PF_MCTP, RTM_GETNEIGH,
332 			     NULL, mctp_rtm_getneigh, 0);
333 
334 	return register_pernet_subsys(&mctp_net_ops);
335 }
336 
337 void __exit mctp_neigh_exit(void)
338 {
339 	unregister_pernet_subsys(&mctp_net_ops);
340 	rtnl_unregister(PF_MCTP, RTM_GETNEIGH);
341 	rtnl_unregister(PF_MCTP, RTM_DELNEIGH);
342 	rtnl_unregister(PF_MCTP, RTM_NEWNEIGH);
343 }
344