1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 50 enum nl80211_iftype type) 51 { 52 __le16 fc = hdr->frame_control; 53 54 if (ieee80211_is_data(fc)) { 55 if (len < 24) /* drop incorrect hdr len (data) */ 56 return NULL; 57 58 if (ieee80211_has_a4(fc)) 59 return NULL; 60 if (ieee80211_has_tods(fc)) 61 return hdr->addr1; 62 if (ieee80211_has_fromds(fc)) 63 return hdr->addr2; 64 65 return hdr->addr3; 66 } 67 68 if (ieee80211_is_s1g_beacon(fc)) { 69 struct ieee80211_ext *ext = (void *) hdr; 70 71 return ext->u.s1g_beacon.sa; 72 } 73 74 if (ieee80211_is_mgmt(fc)) { 75 if (len < 24) /* drop incorrect hdr len (mgmt) */ 76 return NULL; 77 return hdr->addr3; 78 } 79 80 if (ieee80211_is_ctl(fc)) { 81 if (ieee80211_is_pspoll(fc)) 82 return hdr->addr1; 83 84 if (ieee80211_is_back_req(fc)) { 85 switch (type) { 86 case NL80211_IFTYPE_STATION: 87 return hdr->addr2; 88 case NL80211_IFTYPE_AP: 89 case NL80211_IFTYPE_AP_VLAN: 90 return hdr->addr1; 91 default: 92 break; /* fall through to the return */ 93 } 94 } 95 } 96 97 return NULL; 98 } 99 EXPORT_SYMBOL(ieee80211_get_bssid); 100 101 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 102 { 103 struct sk_buff *skb; 104 struct ieee80211_hdr *hdr; 105 106 skb_queue_walk(&tx->skbs, skb) { 107 hdr = (struct ieee80211_hdr *) skb->data; 108 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 109 } 110 } 111 112 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 113 int rate, int erp, int short_preamble, 114 int shift) 115 { 116 int dur; 117 118 /* calculate duration (in microseconds, rounded up to next higher 119 * integer if it includes a fractional microsecond) to send frame of 120 * len bytes (does not include FCS) at the given rate. Duration will 121 * also include SIFS. 122 * 123 * rate is in 100 kbps, so divident is multiplied by 10 in the 124 * DIV_ROUND_UP() operations. 125 * 126 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 127 * is assumed to be 0 otherwise. 128 */ 129 130 if (band == NL80211_BAND_5GHZ || erp) { 131 /* 132 * OFDM: 133 * 134 * N_DBPS = DATARATE x 4 135 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 136 * (16 = SIGNAL time, 6 = tail bits) 137 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 138 * 139 * T_SYM = 4 usec 140 * 802.11a - 18.5.2: aSIFSTime = 16 usec 141 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 142 * signal ext = 6 usec 143 */ 144 dur = 16; /* SIFS + signal ext */ 145 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 146 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 147 148 /* IEEE 802.11-2012 18.3.2.4: all values above are: 149 * * times 4 for 5 MHz 150 * * times 2 for 10 MHz 151 */ 152 dur *= 1 << shift; 153 154 /* rates should already consider the channel bandwidth, 155 * don't apply divisor again. 156 */ 157 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 158 4 * rate); /* T_SYM x N_SYM */ 159 } else { 160 /* 161 * 802.11b or 802.11g with 802.11b compatibility: 162 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 163 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 164 * 165 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 166 * aSIFSTime = 10 usec 167 * aPreambleLength = 144 usec or 72 usec with short preamble 168 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 169 */ 170 dur = 10; /* aSIFSTime = 10 usec */ 171 dur += short_preamble ? (72 + 24) : (144 + 48); 172 173 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 174 } 175 176 return dur; 177 } 178 179 /* Exported duration function for driver use */ 180 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 181 struct ieee80211_vif *vif, 182 enum nl80211_band band, 183 size_t frame_len, 184 struct ieee80211_rate *rate) 185 { 186 struct ieee80211_sub_if_data *sdata; 187 u16 dur; 188 int erp, shift = 0; 189 bool short_preamble = false; 190 191 erp = 0; 192 if (vif) { 193 sdata = vif_to_sdata(vif); 194 short_preamble = sdata->vif.bss_conf.use_short_preamble; 195 if (sdata->deflink.operating_11g_mode) 196 erp = rate->flags & IEEE80211_RATE_ERP_G; 197 shift = ieee80211_vif_get_shift(vif); 198 } 199 200 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 201 short_preamble, shift); 202 203 return cpu_to_le16(dur); 204 } 205 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 206 207 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 208 struct ieee80211_vif *vif, size_t frame_len, 209 const struct ieee80211_tx_info *frame_txctl) 210 { 211 struct ieee80211_local *local = hw_to_local(hw); 212 struct ieee80211_rate *rate; 213 struct ieee80211_sub_if_data *sdata; 214 bool short_preamble; 215 int erp, shift = 0, bitrate; 216 u16 dur; 217 struct ieee80211_supported_band *sband; 218 219 sband = local->hw.wiphy->bands[frame_txctl->band]; 220 221 short_preamble = false; 222 223 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 224 225 erp = 0; 226 if (vif) { 227 sdata = vif_to_sdata(vif); 228 short_preamble = sdata->vif.bss_conf.use_short_preamble; 229 if (sdata->deflink.operating_11g_mode) 230 erp = rate->flags & IEEE80211_RATE_ERP_G; 231 shift = ieee80211_vif_get_shift(vif); 232 } 233 234 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 235 236 /* CTS duration */ 237 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 238 erp, short_preamble, shift); 239 /* Data frame duration */ 240 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 241 erp, short_preamble, shift); 242 /* ACK duration */ 243 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 244 erp, short_preamble, shift); 245 246 return cpu_to_le16(dur); 247 } 248 EXPORT_SYMBOL(ieee80211_rts_duration); 249 250 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 251 struct ieee80211_vif *vif, 252 size_t frame_len, 253 const struct ieee80211_tx_info *frame_txctl) 254 { 255 struct ieee80211_local *local = hw_to_local(hw); 256 struct ieee80211_rate *rate; 257 struct ieee80211_sub_if_data *sdata; 258 bool short_preamble; 259 int erp, shift = 0, bitrate; 260 u16 dur; 261 struct ieee80211_supported_band *sband; 262 263 sband = local->hw.wiphy->bands[frame_txctl->band]; 264 265 short_preamble = false; 266 267 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 268 erp = 0; 269 if (vif) { 270 sdata = vif_to_sdata(vif); 271 short_preamble = sdata->vif.bss_conf.use_short_preamble; 272 if (sdata->deflink.operating_11g_mode) 273 erp = rate->flags & IEEE80211_RATE_ERP_G; 274 shift = ieee80211_vif_get_shift(vif); 275 } 276 277 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 278 279 /* Data frame duration */ 280 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 281 erp, short_preamble, shift); 282 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 283 /* ACK duration */ 284 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 285 erp, short_preamble, shift); 286 } 287 288 return cpu_to_le16(dur); 289 } 290 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 291 292 static void wake_tx_push_queue(struct ieee80211_local *local, 293 struct ieee80211_sub_if_data *sdata, 294 struct ieee80211_txq *queue) 295 { 296 struct ieee80211_tx_control control = { 297 .sta = queue->sta, 298 }; 299 struct sk_buff *skb; 300 301 while (1) { 302 skb = ieee80211_tx_dequeue(&local->hw, queue); 303 if (!skb) 304 break; 305 306 drv_tx(local, &control, skb); 307 } 308 } 309 310 /* wake_tx_queue handler for driver not implementing a custom one*/ 311 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 312 struct ieee80211_txq *txq) 313 { 314 struct ieee80211_local *local = hw_to_local(hw); 315 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 316 struct ieee80211_txq *queue; 317 318 spin_lock(&local->handle_wake_tx_queue_lock); 319 320 /* Use ieee80211_next_txq() for airtime fairness accounting */ 321 ieee80211_txq_schedule_start(hw, txq->ac); 322 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 323 wake_tx_push_queue(local, sdata, queue); 324 ieee80211_return_txq(hw, queue, false); 325 } 326 ieee80211_txq_schedule_end(hw, txq->ac); 327 spin_unlock(&local->handle_wake_tx_queue_lock); 328 } 329 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 330 331 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 332 { 333 struct ieee80211_local *local = sdata->local; 334 struct ieee80211_vif *vif = &sdata->vif; 335 struct fq *fq = &local->fq; 336 struct ps_data *ps = NULL; 337 struct txq_info *txqi; 338 struct sta_info *sta; 339 int i; 340 341 local_bh_disable(); 342 spin_lock(&fq->lock); 343 344 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 345 goto out; 346 347 if (sdata->vif.type == NL80211_IFTYPE_AP) 348 ps = &sdata->bss->ps; 349 350 list_for_each_entry_rcu(sta, &local->sta_list, list) { 351 if (sdata != sta->sdata) 352 continue; 353 354 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 355 struct ieee80211_txq *txq = sta->sta.txq[i]; 356 357 if (!txq) 358 continue; 359 360 txqi = to_txq_info(txq); 361 362 if (ac != txq->ac) 363 continue; 364 365 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 366 &txqi->flags)) 367 continue; 368 369 spin_unlock(&fq->lock); 370 drv_wake_tx_queue(local, txqi); 371 spin_lock(&fq->lock); 372 } 373 } 374 375 if (!vif->txq) 376 goto out; 377 378 txqi = to_txq_info(vif->txq); 379 380 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 381 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 382 goto out; 383 384 spin_unlock(&fq->lock); 385 386 drv_wake_tx_queue(local, txqi); 387 local_bh_enable(); 388 return; 389 out: 390 spin_unlock(&fq->lock); 391 local_bh_enable(); 392 } 393 394 static void 395 __releases(&local->queue_stop_reason_lock) 396 __acquires(&local->queue_stop_reason_lock) 397 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 398 { 399 struct ieee80211_sub_if_data *sdata; 400 int n_acs = IEEE80211_NUM_ACS; 401 int i; 402 403 rcu_read_lock(); 404 405 if (local->hw.queues < IEEE80211_NUM_ACS) 406 n_acs = 1; 407 408 for (i = 0; i < local->hw.queues; i++) { 409 if (local->queue_stop_reasons[i]) 410 continue; 411 412 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 413 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 414 int ac; 415 416 for (ac = 0; ac < n_acs; ac++) { 417 int ac_queue = sdata->vif.hw_queue[ac]; 418 419 if (ac_queue == i || 420 sdata->vif.cab_queue == i) 421 __ieee80211_wake_txqs(sdata, ac); 422 } 423 } 424 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 425 } 426 427 rcu_read_unlock(); 428 } 429 430 void ieee80211_wake_txqs(struct tasklet_struct *t) 431 { 432 struct ieee80211_local *local = from_tasklet(local, t, 433 wake_txqs_tasklet); 434 unsigned long flags; 435 436 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 437 _ieee80211_wake_txqs(local, &flags); 438 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 439 } 440 441 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 442 enum queue_stop_reason reason, 443 bool refcounted, 444 unsigned long *flags) 445 { 446 struct ieee80211_local *local = hw_to_local(hw); 447 448 trace_wake_queue(local, queue, reason); 449 450 if (WARN_ON(queue >= hw->queues)) 451 return; 452 453 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 454 return; 455 456 if (!refcounted) { 457 local->q_stop_reasons[queue][reason] = 0; 458 } else { 459 local->q_stop_reasons[queue][reason]--; 460 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 461 local->q_stop_reasons[queue][reason] = 0; 462 } 463 464 if (local->q_stop_reasons[queue][reason] == 0) 465 __clear_bit(reason, &local->queue_stop_reasons[queue]); 466 467 if (local->queue_stop_reasons[queue] != 0) 468 /* someone still has this queue stopped */ 469 return; 470 471 if (!skb_queue_empty(&local->pending[queue])) 472 tasklet_schedule(&local->tx_pending_tasklet); 473 474 /* 475 * Calling _ieee80211_wake_txqs here can be a problem because it may 476 * release queue_stop_reason_lock which has been taken by 477 * __ieee80211_wake_queue's caller. It is certainly not very nice to 478 * release someone's lock, but it is fine because all the callers of 479 * __ieee80211_wake_queue call it right before releasing the lock. 480 */ 481 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 482 tasklet_schedule(&local->wake_txqs_tasklet); 483 else 484 _ieee80211_wake_txqs(local, flags); 485 } 486 487 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 488 enum queue_stop_reason reason, 489 bool refcounted) 490 { 491 struct ieee80211_local *local = hw_to_local(hw); 492 unsigned long flags; 493 494 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 495 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 496 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 497 } 498 499 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 500 { 501 ieee80211_wake_queue_by_reason(hw, queue, 502 IEEE80211_QUEUE_STOP_REASON_DRIVER, 503 false); 504 } 505 EXPORT_SYMBOL(ieee80211_wake_queue); 506 507 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 508 enum queue_stop_reason reason, 509 bool refcounted) 510 { 511 struct ieee80211_local *local = hw_to_local(hw); 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 set_bit(reason, &local->queue_stop_reasons[queue]); 524 } 525 526 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 527 enum queue_stop_reason reason, 528 bool refcounted) 529 { 530 struct ieee80211_local *local = hw_to_local(hw); 531 unsigned long flags; 532 533 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 534 __ieee80211_stop_queue(hw, queue, reason, refcounted); 535 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 536 } 537 538 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 539 { 540 ieee80211_stop_queue_by_reason(hw, queue, 541 IEEE80211_QUEUE_STOP_REASON_DRIVER, 542 false); 543 } 544 EXPORT_SYMBOL(ieee80211_stop_queue); 545 546 void ieee80211_add_pending_skb(struct ieee80211_local *local, 547 struct sk_buff *skb) 548 { 549 struct ieee80211_hw *hw = &local->hw; 550 unsigned long flags; 551 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 552 int queue = info->hw_queue; 553 554 if (WARN_ON(!info->control.vif)) { 555 ieee80211_free_txskb(&local->hw, skb); 556 return; 557 } 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 561 false); 562 __skb_queue_tail(&local->pending[queue], skb); 563 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 564 false, &flags); 565 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 566 } 567 568 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 569 struct sk_buff_head *skbs) 570 { 571 struct ieee80211_hw *hw = &local->hw; 572 struct sk_buff *skb; 573 unsigned long flags; 574 int queue, i; 575 576 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 577 while ((skb = skb_dequeue(skbs))) { 578 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 continue; 583 } 584 585 queue = info->hw_queue; 586 587 __ieee80211_stop_queue(hw, queue, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false); 590 591 __skb_queue_tail(&local->pending[queue], skb); 592 } 593 594 for (i = 0; i < hw->queues; i++) 595 __ieee80211_wake_queue(hw, i, 596 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 597 false, &flags); 598 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 599 } 600 601 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 602 unsigned long queues, 603 enum queue_stop_reason reason, 604 bool refcounted) 605 { 606 struct ieee80211_local *local = hw_to_local(hw); 607 unsigned long flags; 608 int i; 609 610 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 611 612 for_each_set_bit(i, &queues, hw->queues) 613 __ieee80211_stop_queue(hw, i, reason, refcounted); 614 615 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 616 } 617 618 void ieee80211_stop_queues(struct ieee80211_hw *hw) 619 { 620 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 621 IEEE80211_QUEUE_STOP_REASON_DRIVER, 622 false); 623 } 624 EXPORT_SYMBOL(ieee80211_stop_queues); 625 626 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 627 { 628 struct ieee80211_local *local = hw_to_local(hw); 629 unsigned long flags; 630 int ret; 631 632 if (WARN_ON(queue >= hw->queues)) 633 return true; 634 635 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 636 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 637 &local->queue_stop_reasons[queue]); 638 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 639 return ret; 640 } 641 EXPORT_SYMBOL(ieee80211_queue_stopped); 642 643 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 644 unsigned long queues, 645 enum queue_stop_reason reason, 646 bool refcounted) 647 { 648 struct ieee80211_local *local = hw_to_local(hw); 649 unsigned long flags; 650 int i; 651 652 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 653 654 for_each_set_bit(i, &queues, hw->queues) 655 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 656 657 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 658 } 659 660 void ieee80211_wake_queues(struct ieee80211_hw *hw) 661 { 662 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 663 IEEE80211_QUEUE_STOP_REASON_DRIVER, 664 false); 665 } 666 EXPORT_SYMBOL(ieee80211_wake_queues); 667 668 static unsigned int 669 ieee80211_get_vif_queues(struct ieee80211_local *local, 670 struct ieee80211_sub_if_data *sdata) 671 { 672 unsigned int queues; 673 674 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 675 int ac; 676 677 queues = 0; 678 679 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 680 queues |= BIT(sdata->vif.hw_queue[ac]); 681 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 682 queues |= BIT(sdata->vif.cab_queue); 683 } else { 684 /* all queues */ 685 queues = BIT(local->hw.queues) - 1; 686 } 687 688 return queues; 689 } 690 691 void __ieee80211_flush_queues(struct ieee80211_local *local, 692 struct ieee80211_sub_if_data *sdata, 693 unsigned int queues, bool drop) 694 { 695 if (!local->ops->flush) 696 return; 697 698 /* 699 * If no queue was set, or if the HW doesn't support 700 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 701 */ 702 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 703 queues = ieee80211_get_vif_queues(local, sdata); 704 705 ieee80211_stop_queues_by_reason(&local->hw, queues, 706 IEEE80211_QUEUE_STOP_REASON_FLUSH, 707 false); 708 709 drv_flush(local, sdata, queues, drop); 710 711 ieee80211_wake_queues_by_reason(&local->hw, queues, 712 IEEE80211_QUEUE_STOP_REASON_FLUSH, 713 false); 714 } 715 716 void ieee80211_flush_queues(struct ieee80211_local *local, 717 struct ieee80211_sub_if_data *sdata, bool drop) 718 { 719 __ieee80211_flush_queues(local, sdata, 0, drop); 720 } 721 722 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 723 struct ieee80211_sub_if_data *sdata, 724 enum queue_stop_reason reason) 725 { 726 ieee80211_stop_queues_by_reason(&local->hw, 727 ieee80211_get_vif_queues(local, sdata), 728 reason, true); 729 } 730 731 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 732 struct ieee80211_sub_if_data *sdata, 733 enum queue_stop_reason reason) 734 { 735 ieee80211_wake_queues_by_reason(&local->hw, 736 ieee80211_get_vif_queues(local, sdata), 737 reason, true); 738 } 739 740 static void __iterate_interfaces(struct ieee80211_local *local, 741 u32 iter_flags, 742 void (*iterator)(void *data, u8 *mac, 743 struct ieee80211_vif *vif), 744 void *data) 745 { 746 struct ieee80211_sub_if_data *sdata; 747 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 748 749 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 750 switch (sdata->vif.type) { 751 case NL80211_IFTYPE_MONITOR: 752 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 753 continue; 754 break; 755 case NL80211_IFTYPE_AP_VLAN: 756 continue; 757 default: 758 break; 759 } 760 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 761 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 762 continue; 763 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 764 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 765 continue; 766 if (ieee80211_sdata_running(sdata) || !active_only) 767 iterator(data, sdata->vif.addr, 768 &sdata->vif); 769 } 770 771 sdata = rcu_dereference_check(local->monitor_sdata, 772 lockdep_is_held(&local->iflist_mtx) || 773 lockdep_is_held(&local->hw.wiphy->mtx)); 774 if (sdata && 775 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 776 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 777 iterator(data, sdata->vif.addr, &sdata->vif); 778 } 779 780 void ieee80211_iterate_interfaces( 781 struct ieee80211_hw *hw, u32 iter_flags, 782 void (*iterator)(void *data, u8 *mac, 783 struct ieee80211_vif *vif), 784 void *data) 785 { 786 struct ieee80211_local *local = hw_to_local(hw); 787 788 mutex_lock(&local->iflist_mtx); 789 __iterate_interfaces(local, iter_flags, iterator, data); 790 mutex_unlock(&local->iflist_mtx); 791 } 792 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 793 794 void ieee80211_iterate_active_interfaces_atomic( 795 struct ieee80211_hw *hw, u32 iter_flags, 796 void (*iterator)(void *data, u8 *mac, 797 struct ieee80211_vif *vif), 798 void *data) 799 { 800 struct ieee80211_local *local = hw_to_local(hw); 801 802 rcu_read_lock(); 803 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 804 iterator, data); 805 rcu_read_unlock(); 806 } 807 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 808 809 void ieee80211_iterate_active_interfaces_mtx( 810 struct ieee80211_hw *hw, u32 iter_flags, 811 void (*iterator)(void *data, u8 *mac, 812 struct ieee80211_vif *vif), 813 void *data) 814 { 815 struct ieee80211_local *local = hw_to_local(hw); 816 817 lockdep_assert_wiphy(hw->wiphy); 818 819 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 820 iterator, data); 821 } 822 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 823 824 static void __iterate_stations(struct ieee80211_local *local, 825 void (*iterator)(void *data, 826 struct ieee80211_sta *sta), 827 void *data) 828 { 829 struct sta_info *sta; 830 831 list_for_each_entry_rcu(sta, &local->sta_list, list) { 832 if (!sta->uploaded) 833 continue; 834 835 iterator(data, &sta->sta); 836 } 837 } 838 839 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 840 void (*iterator)(void *data, 841 struct ieee80211_sta *sta), 842 void *data) 843 { 844 struct ieee80211_local *local = hw_to_local(hw); 845 846 rcu_read_lock(); 847 __iterate_stations(local, iterator, data); 848 rcu_read_unlock(); 849 } 850 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 851 852 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 853 { 854 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 855 856 if (!ieee80211_sdata_running(sdata) || 857 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 858 return NULL; 859 return &sdata->vif; 860 } 861 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 862 863 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 864 { 865 if (!vif) 866 return NULL; 867 868 return &vif_to_sdata(vif)->wdev; 869 } 870 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 871 872 /* 873 * Nothing should have been stuffed into the workqueue during 874 * the suspend->resume cycle. Since we can't check each caller 875 * of this function if we are already quiescing / suspended, 876 * check here and don't WARN since this can actually happen when 877 * the rx path (for example) is racing against __ieee80211_suspend 878 * and suspending / quiescing was set after the rx path checked 879 * them. 880 */ 881 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 882 { 883 if (local->quiescing || (local->suspended && !local->resuming)) { 884 pr_warn("queueing ieee80211 work while going to suspend\n"); 885 return false; 886 } 887 888 return true; 889 } 890 891 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 892 { 893 struct ieee80211_local *local = hw_to_local(hw); 894 895 if (!ieee80211_can_queue_work(local)) 896 return; 897 898 queue_work(local->workqueue, work); 899 } 900 EXPORT_SYMBOL(ieee80211_queue_work); 901 902 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 903 struct delayed_work *dwork, 904 unsigned long delay) 905 { 906 struct ieee80211_local *local = hw_to_local(hw); 907 908 if (!ieee80211_can_queue_work(local)) 909 return; 910 911 queue_delayed_work(local->workqueue, dwork, delay); 912 } 913 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 914 915 static void 916 ieee80211_parse_extension_element(u32 *crc, 917 const struct element *elem, 918 struct ieee802_11_elems *elems, 919 struct ieee80211_elems_parse_params *params) 920 { 921 const void *data = elem->data + 1; 922 bool calc_crc = false; 923 u8 len; 924 925 if (!elem->datalen) 926 return; 927 928 len = elem->datalen - 1; 929 930 switch (elem->data[0]) { 931 case WLAN_EID_EXT_HE_MU_EDCA: 932 calc_crc = true; 933 if (len >= sizeof(*elems->mu_edca_param_set)) 934 elems->mu_edca_param_set = data; 935 break; 936 case WLAN_EID_EXT_HE_CAPABILITY: 937 if (ieee80211_he_capa_size_ok(data, len)) { 938 elems->he_cap = data; 939 elems->he_cap_len = len; 940 } 941 break; 942 case WLAN_EID_EXT_HE_OPERATION: 943 calc_crc = true; 944 if (len >= sizeof(*elems->he_operation) && 945 len >= ieee80211_he_oper_size(data) - 1) 946 elems->he_operation = data; 947 break; 948 case WLAN_EID_EXT_UORA: 949 if (len >= 1) 950 elems->uora_element = data; 951 break; 952 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 953 if (len == 3) 954 elems->max_channel_switch_time = data; 955 break; 956 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 957 if (len >= sizeof(*elems->mbssid_config_ie)) 958 elems->mbssid_config_ie = data; 959 break; 960 case WLAN_EID_EXT_HE_SPR: 961 if (len >= sizeof(*elems->he_spr) && 962 len >= ieee80211_he_spr_size(data)) 963 elems->he_spr = data; 964 break; 965 case WLAN_EID_EXT_HE_6GHZ_CAPA: 966 if (len >= sizeof(*elems->he_6ghz_capa)) 967 elems->he_6ghz_capa = data; 968 break; 969 case WLAN_EID_EXT_EHT_CAPABILITY: 970 if (ieee80211_eht_capa_size_ok(elems->he_cap, 971 data, len, 972 params->from_ap)) { 973 elems->eht_cap = data; 974 elems->eht_cap_len = len; 975 } 976 break; 977 case WLAN_EID_EXT_EHT_OPERATION: 978 if (ieee80211_eht_oper_size_ok(data, len)) 979 elems->eht_operation = data; 980 calc_crc = true; 981 break; 982 case WLAN_EID_EXT_EHT_MULTI_LINK: 983 calc_crc = true; 984 985 if (ieee80211_mle_size_ok(data, len)) { 986 const struct ieee80211_multi_link_elem *mle = 987 (void *)data; 988 989 switch (le16_get_bits(mle->control, 990 IEEE80211_ML_CONTROL_TYPE)) { 991 case IEEE80211_ML_CONTROL_TYPE_BASIC: 992 elems->ml_basic_elem = (void *)elem; 993 elems->ml_basic = data; 994 elems->ml_basic_len = len; 995 break; 996 case IEEE80211_ML_CONTROL_TYPE_RECONF: 997 elems->ml_reconf_elem = (void *)elem; 998 elems->ml_reconf = data; 999 elems->ml_reconf_len = len; 1000 break; 1001 default: 1002 break; 1003 } 1004 } 1005 break; 1006 } 1007 1008 if (crc && calc_crc) 1009 *crc = crc32_be(*crc, (void *)elem, elem->datalen + 2); 1010 } 1011 1012 static u32 1013 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1014 struct ieee802_11_elems *elems, 1015 const struct element *check_inherit) 1016 { 1017 const struct element *elem; 1018 bool calc_crc = params->filter != 0; 1019 DECLARE_BITMAP(seen_elems, 256); 1020 u32 crc = params->crc; 1021 const u8 *ie; 1022 1023 bitmap_zero(seen_elems, 256); 1024 1025 for_each_element(elem, params->start, params->len) { 1026 bool elem_parse_failed; 1027 u8 id = elem->id; 1028 u8 elen = elem->datalen; 1029 const u8 *pos = elem->data; 1030 1031 if (check_inherit && 1032 !cfg80211_is_element_inherited(elem, 1033 check_inherit)) 1034 continue; 1035 1036 switch (id) { 1037 case WLAN_EID_SSID: 1038 case WLAN_EID_SUPP_RATES: 1039 case WLAN_EID_FH_PARAMS: 1040 case WLAN_EID_DS_PARAMS: 1041 case WLAN_EID_CF_PARAMS: 1042 case WLAN_EID_TIM: 1043 case WLAN_EID_IBSS_PARAMS: 1044 case WLAN_EID_CHALLENGE: 1045 case WLAN_EID_RSN: 1046 case WLAN_EID_ERP_INFO: 1047 case WLAN_EID_EXT_SUPP_RATES: 1048 case WLAN_EID_HT_CAPABILITY: 1049 case WLAN_EID_HT_OPERATION: 1050 case WLAN_EID_VHT_CAPABILITY: 1051 case WLAN_EID_VHT_OPERATION: 1052 case WLAN_EID_MESH_ID: 1053 case WLAN_EID_MESH_CONFIG: 1054 case WLAN_EID_PEER_MGMT: 1055 case WLAN_EID_PREQ: 1056 case WLAN_EID_PREP: 1057 case WLAN_EID_PERR: 1058 case WLAN_EID_RANN: 1059 case WLAN_EID_CHANNEL_SWITCH: 1060 case WLAN_EID_EXT_CHANSWITCH_ANN: 1061 case WLAN_EID_COUNTRY: 1062 case WLAN_EID_PWR_CONSTRAINT: 1063 case WLAN_EID_TIMEOUT_INTERVAL: 1064 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1065 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1066 case WLAN_EID_CHAN_SWITCH_PARAM: 1067 case WLAN_EID_EXT_CAPABILITY: 1068 case WLAN_EID_CHAN_SWITCH_TIMING: 1069 case WLAN_EID_LINK_ID: 1070 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1071 case WLAN_EID_RSNX: 1072 case WLAN_EID_S1G_BCN_COMPAT: 1073 case WLAN_EID_S1G_CAPABILITIES: 1074 case WLAN_EID_S1G_OPERATION: 1075 case WLAN_EID_AID_RESPONSE: 1076 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1077 /* 1078 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1079 * that if the content gets bigger it might be needed more than once 1080 */ 1081 if (test_bit(id, seen_elems)) { 1082 elems->parse_error = true; 1083 continue; 1084 } 1085 break; 1086 } 1087 1088 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1089 crc = crc32_be(crc, pos - 2, elen + 2); 1090 1091 elem_parse_failed = false; 1092 1093 switch (id) { 1094 case WLAN_EID_LINK_ID: 1095 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1096 elem_parse_failed = true; 1097 break; 1098 } 1099 elems->lnk_id = (void *)(pos - 2); 1100 break; 1101 case WLAN_EID_CHAN_SWITCH_TIMING: 1102 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1103 elem_parse_failed = true; 1104 break; 1105 } 1106 elems->ch_sw_timing = (void *)pos; 1107 break; 1108 case WLAN_EID_EXT_CAPABILITY: 1109 elems->ext_capab = pos; 1110 elems->ext_capab_len = elen; 1111 break; 1112 case WLAN_EID_SSID: 1113 elems->ssid = pos; 1114 elems->ssid_len = elen; 1115 break; 1116 case WLAN_EID_SUPP_RATES: 1117 elems->supp_rates = pos; 1118 elems->supp_rates_len = elen; 1119 break; 1120 case WLAN_EID_DS_PARAMS: 1121 if (elen >= 1) 1122 elems->ds_params = pos; 1123 else 1124 elem_parse_failed = true; 1125 break; 1126 case WLAN_EID_TIM: 1127 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1128 elems->tim = (void *)pos; 1129 elems->tim_len = elen; 1130 } else 1131 elem_parse_failed = true; 1132 break; 1133 case WLAN_EID_VENDOR_SPECIFIC: 1134 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1135 pos[2] == 0xf2) { 1136 /* Microsoft OUI (00:50:F2) */ 1137 1138 if (calc_crc) 1139 crc = crc32_be(crc, pos - 2, elen + 2); 1140 1141 if (elen >= 5 && pos[3] == 2) { 1142 /* OUI Type 2 - WMM IE */ 1143 if (pos[4] == 0) { 1144 elems->wmm_info = pos; 1145 elems->wmm_info_len = elen; 1146 } else if (pos[4] == 1) { 1147 elems->wmm_param = pos; 1148 elems->wmm_param_len = elen; 1149 } 1150 } 1151 } 1152 break; 1153 case WLAN_EID_RSN: 1154 elems->rsn = pos; 1155 elems->rsn_len = elen; 1156 break; 1157 case WLAN_EID_ERP_INFO: 1158 if (elen >= 1) 1159 elems->erp_info = pos; 1160 else 1161 elem_parse_failed = true; 1162 break; 1163 case WLAN_EID_EXT_SUPP_RATES: 1164 elems->ext_supp_rates = pos; 1165 elems->ext_supp_rates_len = elen; 1166 break; 1167 case WLAN_EID_HT_CAPABILITY: 1168 if (elen >= sizeof(struct ieee80211_ht_cap)) 1169 elems->ht_cap_elem = (void *)pos; 1170 else 1171 elem_parse_failed = true; 1172 break; 1173 case WLAN_EID_HT_OPERATION: 1174 if (elen >= sizeof(struct ieee80211_ht_operation)) 1175 elems->ht_operation = (void *)pos; 1176 else 1177 elem_parse_failed = true; 1178 break; 1179 case WLAN_EID_VHT_CAPABILITY: 1180 if (elen >= sizeof(struct ieee80211_vht_cap)) 1181 elems->vht_cap_elem = (void *)pos; 1182 else 1183 elem_parse_failed = true; 1184 break; 1185 case WLAN_EID_VHT_OPERATION: 1186 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1187 elems->vht_operation = (void *)pos; 1188 if (calc_crc) 1189 crc = crc32_be(crc, pos - 2, elen + 2); 1190 break; 1191 } 1192 elem_parse_failed = true; 1193 break; 1194 case WLAN_EID_OPMODE_NOTIF: 1195 if (elen > 0) { 1196 elems->opmode_notif = pos; 1197 if (calc_crc) 1198 crc = crc32_be(crc, pos - 2, elen + 2); 1199 break; 1200 } 1201 elem_parse_failed = true; 1202 break; 1203 case WLAN_EID_MESH_ID: 1204 elems->mesh_id = pos; 1205 elems->mesh_id_len = elen; 1206 break; 1207 case WLAN_EID_MESH_CONFIG: 1208 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1209 elems->mesh_config = (void *)pos; 1210 else 1211 elem_parse_failed = true; 1212 break; 1213 case WLAN_EID_PEER_MGMT: 1214 elems->peering = pos; 1215 elems->peering_len = elen; 1216 break; 1217 case WLAN_EID_MESH_AWAKE_WINDOW: 1218 if (elen >= 2) 1219 elems->awake_window = (void *)pos; 1220 break; 1221 case WLAN_EID_PREQ: 1222 elems->preq = pos; 1223 elems->preq_len = elen; 1224 break; 1225 case WLAN_EID_PREP: 1226 elems->prep = pos; 1227 elems->prep_len = elen; 1228 break; 1229 case WLAN_EID_PERR: 1230 elems->perr = pos; 1231 elems->perr_len = elen; 1232 break; 1233 case WLAN_EID_RANN: 1234 if (elen >= sizeof(struct ieee80211_rann_ie)) 1235 elems->rann = (void *)pos; 1236 else 1237 elem_parse_failed = true; 1238 break; 1239 case WLAN_EID_CHANNEL_SWITCH: 1240 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1241 elem_parse_failed = true; 1242 break; 1243 } 1244 elems->ch_switch_ie = (void *)pos; 1245 break; 1246 case WLAN_EID_EXT_CHANSWITCH_ANN: 1247 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1248 elem_parse_failed = true; 1249 break; 1250 } 1251 elems->ext_chansw_ie = (void *)pos; 1252 break; 1253 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1254 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1255 elem_parse_failed = true; 1256 break; 1257 } 1258 elems->sec_chan_offs = (void *)pos; 1259 break; 1260 case WLAN_EID_CHAN_SWITCH_PARAM: 1261 if (elen < 1262 sizeof(*elems->mesh_chansw_params_ie)) { 1263 elem_parse_failed = true; 1264 break; 1265 } 1266 elems->mesh_chansw_params_ie = (void *)pos; 1267 break; 1268 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1269 if (!params->action || 1270 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1271 elem_parse_failed = true; 1272 break; 1273 } 1274 elems->wide_bw_chansw_ie = (void *)pos; 1275 break; 1276 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1277 if (params->action) { 1278 elem_parse_failed = true; 1279 break; 1280 } 1281 /* 1282 * This is a bit tricky, but as we only care about 1283 * the wide bandwidth channel switch element, so 1284 * just parse it out manually. 1285 */ 1286 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1287 pos, elen); 1288 if (ie) { 1289 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1290 elems->wide_bw_chansw_ie = 1291 (void *)(ie + 2); 1292 else 1293 elem_parse_failed = true; 1294 } 1295 break; 1296 case WLAN_EID_COUNTRY: 1297 elems->country_elem = pos; 1298 elems->country_elem_len = elen; 1299 break; 1300 case WLAN_EID_PWR_CONSTRAINT: 1301 if (elen != 1) { 1302 elem_parse_failed = true; 1303 break; 1304 } 1305 elems->pwr_constr_elem = pos; 1306 break; 1307 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1308 /* Lots of different options exist, but we only care 1309 * about the Dynamic Transmit Power Control element. 1310 * First check for the Cisco OUI, then for the DTPC 1311 * tag (0x00). 1312 */ 1313 if (elen < 4) { 1314 elem_parse_failed = true; 1315 break; 1316 } 1317 1318 if (pos[0] != 0x00 || pos[1] != 0x40 || 1319 pos[2] != 0x96 || pos[3] != 0x00) 1320 break; 1321 1322 if (elen != 6) { 1323 elem_parse_failed = true; 1324 break; 1325 } 1326 1327 if (calc_crc) 1328 crc = crc32_be(crc, pos - 2, elen + 2); 1329 1330 elems->cisco_dtpc_elem = pos; 1331 break; 1332 case WLAN_EID_ADDBA_EXT: 1333 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1334 elem_parse_failed = true; 1335 break; 1336 } 1337 elems->addba_ext_ie = (void *)pos; 1338 break; 1339 case WLAN_EID_TIMEOUT_INTERVAL: 1340 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1341 elems->timeout_int = (void *)pos; 1342 else 1343 elem_parse_failed = true; 1344 break; 1345 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1346 if (elen >= sizeof(*elems->max_idle_period_ie)) 1347 elems->max_idle_period_ie = (void *)pos; 1348 break; 1349 case WLAN_EID_RSNX: 1350 elems->rsnx = pos; 1351 elems->rsnx_len = elen; 1352 break; 1353 case WLAN_EID_TX_POWER_ENVELOPE: 1354 if (elen < 1 || 1355 elen > sizeof(struct ieee80211_tx_pwr_env)) 1356 break; 1357 1358 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1359 break; 1360 1361 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1362 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1363 elems->tx_pwr_env_num++; 1364 break; 1365 case WLAN_EID_EXTENSION: 1366 ieee80211_parse_extension_element(calc_crc ? 1367 &crc : NULL, 1368 elem, elems, params); 1369 break; 1370 case WLAN_EID_S1G_CAPABILITIES: 1371 if (elen >= sizeof(*elems->s1g_capab)) 1372 elems->s1g_capab = (void *)pos; 1373 else 1374 elem_parse_failed = true; 1375 break; 1376 case WLAN_EID_S1G_OPERATION: 1377 if (elen == sizeof(*elems->s1g_oper)) 1378 elems->s1g_oper = (void *)pos; 1379 else 1380 elem_parse_failed = true; 1381 break; 1382 case WLAN_EID_S1G_BCN_COMPAT: 1383 if (elen == sizeof(*elems->s1g_bcn_compat)) 1384 elems->s1g_bcn_compat = (void *)pos; 1385 else 1386 elem_parse_failed = true; 1387 break; 1388 case WLAN_EID_AID_RESPONSE: 1389 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1390 elems->aid_resp = (void *)pos; 1391 else 1392 elem_parse_failed = true; 1393 break; 1394 default: 1395 break; 1396 } 1397 1398 if (elem_parse_failed) 1399 elems->parse_error = true; 1400 else 1401 __set_bit(id, seen_elems); 1402 } 1403 1404 if (!for_each_element_completed(elem, params->start, params->len)) 1405 elems->parse_error = true; 1406 1407 return crc; 1408 } 1409 1410 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1411 struct ieee802_11_elems *elems, 1412 struct cfg80211_bss *bss, 1413 u8 *nontransmitted_profile) 1414 { 1415 const struct element *elem, *sub; 1416 size_t profile_len = 0; 1417 bool found = false; 1418 1419 if (!bss || !bss->transmitted_bss) 1420 return profile_len; 1421 1422 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1423 if (elem->datalen < 2) 1424 continue; 1425 if (elem->data[0] < 1 || elem->data[0] > 8) 1426 continue; 1427 1428 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1429 u8 new_bssid[ETH_ALEN]; 1430 const u8 *index; 1431 1432 if (sub->id != 0 || sub->datalen < 4) { 1433 /* not a valid BSS profile */ 1434 continue; 1435 } 1436 1437 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1438 sub->data[1] != 2) { 1439 /* The first element of the 1440 * Nontransmitted BSSID Profile is not 1441 * the Nontransmitted BSSID Capability 1442 * element. 1443 */ 1444 continue; 1445 } 1446 1447 memset(nontransmitted_profile, 0, len); 1448 profile_len = cfg80211_merge_profile(start, len, 1449 elem, 1450 sub, 1451 nontransmitted_profile, 1452 len); 1453 1454 /* found a Nontransmitted BSSID Profile */ 1455 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1456 nontransmitted_profile, 1457 profile_len); 1458 if (!index || index[1] < 1 || index[2] == 0) { 1459 /* Invalid MBSSID Index element */ 1460 continue; 1461 } 1462 1463 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1464 elem->data[0], 1465 index[2], 1466 new_bssid); 1467 if (ether_addr_equal(new_bssid, bss->bssid)) { 1468 found = true; 1469 elems->bssid_index_len = index[1]; 1470 elems->bssid_index = (void *)&index[2]; 1471 break; 1472 } 1473 } 1474 } 1475 1476 return found ? profile_len : 0; 1477 } 1478 1479 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1480 u8 link_id) 1481 { 1482 const struct ieee80211_multi_link_elem *ml = elems->ml_basic; 1483 ssize_t ml_len = elems->ml_basic_len; 1484 const struct element *sub; 1485 1486 if (!ml || !ml_len) 1487 return; 1488 1489 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1490 IEEE80211_ML_CONTROL_TYPE_BASIC) 1491 return; 1492 1493 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1494 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1495 ssize_t sta_prof_len; 1496 u16 control; 1497 1498 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1499 continue; 1500 1501 if (!ieee80211_mle_basic_sta_prof_size_ok(sub->data, 1502 sub->datalen)) 1503 return; 1504 1505 control = le16_to_cpu(prof->control); 1506 1507 if (link_id != u16_get_bits(control, 1508 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1509 continue; 1510 1511 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1512 return; 1513 1514 /* the sub element can be fragmented */ 1515 sta_prof_len = 1516 cfg80211_defragment_element(sub, 1517 (u8 *)ml, ml_len, 1518 elems->scratch_pos, 1519 elems->scratch + 1520 elems->scratch_len - 1521 elems->scratch_pos, 1522 IEEE80211_MLE_SUBELEM_FRAGMENT); 1523 1524 if (sta_prof_len < 0) 1525 return; 1526 1527 elems->prof = (void *)elems->scratch_pos; 1528 elems->sta_prof_len = sta_prof_len; 1529 elems->scratch_pos += sta_prof_len; 1530 1531 return; 1532 } 1533 } 1534 1535 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1536 struct ieee80211_elems_parse_params *params) 1537 { 1538 struct ieee80211_mle_per_sta_profile *prof; 1539 struct ieee80211_elems_parse_params sub = { 1540 .action = params->action, 1541 .from_ap = params->from_ap, 1542 .link_id = -1, 1543 }; 1544 ssize_t ml_len = elems->ml_basic_len; 1545 const struct element *non_inherit = NULL; 1546 const u8 *end; 1547 1548 if (params->link_id == -1) 1549 return; 1550 1551 ml_len = cfg80211_defragment_element(elems->ml_basic_elem, 1552 elems->ie_start, 1553 elems->total_len, 1554 elems->scratch_pos, 1555 elems->scratch + 1556 elems->scratch_len - 1557 elems->scratch_pos, 1558 WLAN_EID_FRAGMENT); 1559 1560 if (ml_len < 0) 1561 return; 1562 1563 elems->ml_basic = (const void *)elems->scratch_pos; 1564 elems->ml_basic_len = ml_len; 1565 1566 ieee80211_mle_get_sta_prof(elems, params->link_id); 1567 prof = elems->prof; 1568 1569 if (!prof) 1570 return; 1571 1572 /* check if we have the 4 bytes for the fixed part in assoc response */ 1573 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1574 elems->prof = NULL; 1575 elems->sta_prof_len = 0; 1576 return; 1577 } 1578 1579 /* 1580 * Skip the capability information and the status code that are expected 1581 * as part of the station profile in association response frames. Note 1582 * the -1 is because the 'sta_info_len' is accounted to as part of the 1583 * per-STA profile, but not part of the 'u8 variable[]' portion. 1584 */ 1585 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1586 end = (const u8 *)prof + elems->sta_prof_len; 1587 sub.len = end - sub.start; 1588 1589 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1590 sub.start, sub.len); 1591 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1592 } 1593 1594 struct ieee802_11_elems * 1595 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1596 { 1597 struct ieee802_11_elems *elems; 1598 const struct element *non_inherit = NULL; 1599 u8 *nontransmitted_profile; 1600 int nontransmitted_profile_len = 0; 1601 size_t scratch_len = 3 * params->len; 1602 1603 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1604 if (!elems) 1605 return NULL; 1606 elems->ie_start = params->start; 1607 elems->total_len = params->len; 1608 elems->scratch_len = scratch_len; 1609 elems->scratch_pos = elems->scratch; 1610 1611 nontransmitted_profile = elems->scratch_pos; 1612 nontransmitted_profile_len = 1613 ieee802_11_find_bssid_profile(params->start, params->len, 1614 elems, params->bss, 1615 nontransmitted_profile); 1616 elems->scratch_pos += nontransmitted_profile_len; 1617 elems->scratch_len -= nontransmitted_profile_len; 1618 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1619 nontransmitted_profile, 1620 nontransmitted_profile_len); 1621 1622 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1623 1624 /* Override with nontransmitted profile, if found */ 1625 if (nontransmitted_profile_len) { 1626 struct ieee80211_elems_parse_params sub = { 1627 .start = nontransmitted_profile, 1628 .len = nontransmitted_profile_len, 1629 .action = params->action, 1630 .link_id = params->link_id, 1631 }; 1632 1633 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1634 } 1635 1636 ieee80211_mle_parse_link(elems, params); 1637 1638 if (elems->tim && !elems->parse_error) { 1639 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1640 1641 elems->dtim_period = tim_ie->dtim_period; 1642 elems->dtim_count = tim_ie->dtim_count; 1643 } 1644 1645 /* Override DTIM period and count if needed */ 1646 if (elems->bssid_index && 1647 elems->bssid_index_len >= 1648 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1649 elems->dtim_period = elems->bssid_index->dtim_period; 1650 1651 if (elems->bssid_index && 1652 elems->bssid_index_len >= 1653 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1654 elems->dtim_count = elems->bssid_index->dtim_count; 1655 1656 return elems; 1657 } 1658 EXPORT_SYMBOL_IF_KUNIT(ieee802_11_parse_elems_full); 1659 1660 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1661 struct ieee80211_tx_queue_params 1662 *qparam, int ac) 1663 { 1664 struct ieee80211_chanctx_conf *chanctx_conf; 1665 const struct ieee80211_reg_rule *rrule; 1666 const struct ieee80211_wmm_ac *wmm_ac; 1667 u16 center_freq = 0; 1668 1669 if (sdata->vif.type != NL80211_IFTYPE_AP && 1670 sdata->vif.type != NL80211_IFTYPE_STATION) 1671 return; 1672 1673 rcu_read_lock(); 1674 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1675 if (chanctx_conf) 1676 center_freq = chanctx_conf->def.chan->center_freq; 1677 1678 if (!center_freq) { 1679 rcu_read_unlock(); 1680 return; 1681 } 1682 1683 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1684 1685 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1686 rcu_read_unlock(); 1687 return; 1688 } 1689 1690 if (sdata->vif.type == NL80211_IFTYPE_AP) 1691 wmm_ac = &rrule->wmm_rule.ap[ac]; 1692 else 1693 wmm_ac = &rrule->wmm_rule.client[ac]; 1694 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1695 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1696 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1697 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1698 rcu_read_unlock(); 1699 } 1700 1701 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1702 bool bss_notify, bool enable_qos) 1703 { 1704 struct ieee80211_sub_if_data *sdata = link->sdata; 1705 struct ieee80211_local *local = sdata->local; 1706 struct ieee80211_tx_queue_params qparam; 1707 struct ieee80211_chanctx_conf *chanctx_conf; 1708 int ac; 1709 bool use_11b; 1710 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1711 int aCWmin, aCWmax; 1712 1713 if (!local->ops->conf_tx) 1714 return; 1715 1716 if (local->hw.queues < IEEE80211_NUM_ACS) 1717 return; 1718 1719 memset(&qparam, 0, sizeof(qparam)); 1720 1721 rcu_read_lock(); 1722 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1723 use_11b = (chanctx_conf && 1724 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1725 !link->operating_11g_mode; 1726 rcu_read_unlock(); 1727 1728 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1729 1730 /* Set defaults according to 802.11-2007 Table 7-37 */ 1731 aCWmax = 1023; 1732 if (use_11b) 1733 aCWmin = 31; 1734 else 1735 aCWmin = 15; 1736 1737 /* Confiure old 802.11b/g medium access rules. */ 1738 qparam.cw_max = aCWmax; 1739 qparam.cw_min = aCWmin; 1740 qparam.txop = 0; 1741 qparam.aifs = 2; 1742 1743 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1744 /* Update if QoS is enabled. */ 1745 if (enable_qos) { 1746 switch (ac) { 1747 case IEEE80211_AC_BK: 1748 qparam.cw_max = aCWmax; 1749 qparam.cw_min = aCWmin; 1750 qparam.txop = 0; 1751 if (is_ocb) 1752 qparam.aifs = 9; 1753 else 1754 qparam.aifs = 7; 1755 break; 1756 /* never happens but let's not leave undefined */ 1757 default: 1758 case IEEE80211_AC_BE: 1759 qparam.cw_max = aCWmax; 1760 qparam.cw_min = aCWmin; 1761 qparam.txop = 0; 1762 if (is_ocb) 1763 qparam.aifs = 6; 1764 else 1765 qparam.aifs = 3; 1766 break; 1767 case IEEE80211_AC_VI: 1768 qparam.cw_max = aCWmin; 1769 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1770 if (is_ocb) 1771 qparam.txop = 0; 1772 else if (use_11b) 1773 qparam.txop = 6016/32; 1774 else 1775 qparam.txop = 3008/32; 1776 1777 if (is_ocb) 1778 qparam.aifs = 3; 1779 else 1780 qparam.aifs = 2; 1781 break; 1782 case IEEE80211_AC_VO: 1783 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1784 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1785 if (is_ocb) 1786 qparam.txop = 0; 1787 else if (use_11b) 1788 qparam.txop = 3264/32; 1789 else 1790 qparam.txop = 1504/32; 1791 qparam.aifs = 2; 1792 break; 1793 } 1794 } 1795 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1796 1797 qparam.uapsd = false; 1798 1799 link->tx_conf[ac] = qparam; 1800 drv_conf_tx(local, link, ac, &qparam); 1801 } 1802 1803 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1804 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1805 sdata->vif.type != NL80211_IFTYPE_NAN) { 1806 link->conf->qos = enable_qos; 1807 if (bss_notify) 1808 ieee80211_link_info_change_notify(sdata, link, 1809 BSS_CHANGED_QOS); 1810 } 1811 } 1812 1813 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1814 u16 transaction, u16 auth_alg, u16 status, 1815 const u8 *extra, size_t extra_len, const u8 *da, 1816 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1817 u32 tx_flags) 1818 { 1819 struct ieee80211_local *local = sdata->local; 1820 struct sk_buff *skb; 1821 struct ieee80211_mgmt *mgmt; 1822 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1823 struct { 1824 u8 id; 1825 u8 len; 1826 u8 ext_id; 1827 struct ieee80211_multi_link_elem ml; 1828 struct ieee80211_mle_basic_common_info basic; 1829 } __packed mle = { 1830 .id = WLAN_EID_EXTENSION, 1831 .len = sizeof(mle) - 2, 1832 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1833 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1834 .basic.len = sizeof(mle.basic), 1835 }; 1836 int err; 1837 1838 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1839 1840 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1841 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1842 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1843 multi_link * sizeof(mle)); 1844 if (!skb) 1845 return; 1846 1847 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1848 1849 mgmt = skb_put_zero(skb, 24 + 6); 1850 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1851 IEEE80211_STYPE_AUTH); 1852 memcpy(mgmt->da, da, ETH_ALEN); 1853 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1854 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1855 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1856 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1857 mgmt->u.auth.status_code = cpu_to_le16(status); 1858 if (extra) 1859 skb_put_data(skb, extra, extra_len); 1860 if (multi_link) 1861 skb_put_data(skb, &mle, sizeof(mle)); 1862 1863 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1864 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1865 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1866 if (WARN_ON(err)) { 1867 kfree_skb(skb); 1868 return; 1869 } 1870 } 1871 1872 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1873 tx_flags; 1874 ieee80211_tx_skb(sdata, skb); 1875 } 1876 1877 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1878 const u8 *da, const u8 *bssid, 1879 u16 stype, u16 reason, 1880 bool send_frame, u8 *frame_buf) 1881 { 1882 struct ieee80211_local *local = sdata->local; 1883 struct sk_buff *skb; 1884 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1885 1886 /* build frame */ 1887 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1888 mgmt->duration = 0; /* initialize only */ 1889 mgmt->seq_ctrl = 0; /* initialize only */ 1890 memcpy(mgmt->da, da, ETH_ALEN); 1891 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1892 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1893 /* u.deauth.reason_code == u.disassoc.reason_code */ 1894 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1895 1896 if (send_frame) { 1897 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1898 IEEE80211_DEAUTH_FRAME_LEN); 1899 if (!skb) 1900 return; 1901 1902 skb_reserve(skb, local->hw.extra_tx_headroom); 1903 1904 /* copy in frame */ 1905 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1906 1907 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1908 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1909 IEEE80211_SKB_CB(skb)->flags |= 1910 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1911 1912 ieee80211_tx_skb(sdata, skb); 1913 } 1914 } 1915 1916 u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1917 { 1918 if ((end - pos) < 5) 1919 return pos; 1920 1921 *pos++ = WLAN_EID_EXTENSION; 1922 *pos++ = 1 + sizeof(cap); 1923 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1924 memcpy(pos, &cap, sizeof(cap)); 1925 1926 return pos + 2; 1927 } 1928 1929 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1930 u8 *buffer, size_t buffer_len, 1931 const u8 *ie, size_t ie_len, 1932 enum nl80211_band band, 1933 u32 rate_mask, 1934 struct cfg80211_chan_def *chandef, 1935 size_t *offset, u32 flags) 1936 { 1937 struct ieee80211_local *local = sdata->local; 1938 struct ieee80211_supported_band *sband; 1939 const struct ieee80211_sta_he_cap *he_cap; 1940 const struct ieee80211_sta_eht_cap *eht_cap; 1941 u8 *pos = buffer, *end = buffer + buffer_len; 1942 size_t noffset; 1943 int supp_rates_len, i; 1944 u8 rates[32]; 1945 int num_rates; 1946 int ext_rates_len; 1947 int shift; 1948 u32 rate_flags; 1949 bool have_80mhz = false; 1950 1951 *offset = 0; 1952 1953 sband = local->hw.wiphy->bands[band]; 1954 if (WARN_ON_ONCE(!sband)) 1955 return 0; 1956 1957 rate_flags = ieee80211_chandef_rate_flags(chandef); 1958 shift = ieee80211_chandef_get_shift(chandef); 1959 1960 /* For direct scan add S1G IE and consider its override bits */ 1961 if (band == NL80211_BAND_S1GHZ) { 1962 if (end - pos < 2 + sizeof(struct ieee80211_s1g_cap)) 1963 goto out_err; 1964 pos = ieee80211_ie_build_s1g_cap(pos, &sband->s1g_cap); 1965 goto done; 1966 } 1967 1968 num_rates = 0; 1969 for (i = 0; i < sband->n_bitrates; i++) { 1970 if ((BIT(i) & rate_mask) == 0) 1971 continue; /* skip rate */ 1972 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1973 continue; 1974 1975 rates[num_rates++] = 1976 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1977 (1 << shift) * 5); 1978 } 1979 1980 supp_rates_len = min_t(int, num_rates, 8); 1981 1982 if (end - pos < 2 + supp_rates_len) 1983 goto out_err; 1984 *pos++ = WLAN_EID_SUPP_RATES; 1985 *pos++ = supp_rates_len; 1986 memcpy(pos, rates, supp_rates_len); 1987 pos += supp_rates_len; 1988 1989 /* insert "request information" if in custom IEs */ 1990 if (ie && ie_len) { 1991 static const u8 before_extrates[] = { 1992 WLAN_EID_SSID, 1993 WLAN_EID_SUPP_RATES, 1994 WLAN_EID_REQUEST, 1995 }; 1996 noffset = ieee80211_ie_split(ie, ie_len, 1997 before_extrates, 1998 ARRAY_SIZE(before_extrates), 1999 *offset); 2000 if (end - pos < noffset - *offset) 2001 goto out_err; 2002 memcpy(pos, ie + *offset, noffset - *offset); 2003 pos += noffset - *offset; 2004 *offset = noffset; 2005 } 2006 2007 ext_rates_len = num_rates - supp_rates_len; 2008 if (ext_rates_len > 0) { 2009 if (end - pos < 2 + ext_rates_len) 2010 goto out_err; 2011 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2012 *pos++ = ext_rates_len; 2013 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2014 pos += ext_rates_len; 2015 } 2016 2017 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2018 if (end - pos < 3) 2019 goto out_err; 2020 *pos++ = WLAN_EID_DS_PARAMS; 2021 *pos++ = 1; 2022 *pos++ = ieee80211_frequency_to_channel( 2023 chandef->chan->center_freq); 2024 } 2025 2026 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2027 goto done; 2028 2029 /* insert custom IEs that go before HT */ 2030 if (ie && ie_len) { 2031 static const u8 before_ht[] = { 2032 /* 2033 * no need to list the ones split off already 2034 * (or generated here) 2035 */ 2036 WLAN_EID_DS_PARAMS, 2037 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2038 }; 2039 noffset = ieee80211_ie_split(ie, ie_len, 2040 before_ht, ARRAY_SIZE(before_ht), 2041 *offset); 2042 if (end - pos < noffset - *offset) 2043 goto out_err; 2044 memcpy(pos, ie + *offset, noffset - *offset); 2045 pos += noffset - *offset; 2046 *offset = noffset; 2047 } 2048 2049 if (sband->ht_cap.ht_supported) { 2050 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2051 goto out_err; 2052 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2053 sband->ht_cap.cap); 2054 } 2055 2056 /* insert custom IEs that go before VHT */ 2057 if (ie && ie_len) { 2058 static const u8 before_vht[] = { 2059 /* 2060 * no need to list the ones split off already 2061 * (or generated here) 2062 */ 2063 WLAN_EID_BSS_COEX_2040, 2064 WLAN_EID_EXT_CAPABILITY, 2065 WLAN_EID_SSID_LIST, 2066 WLAN_EID_CHANNEL_USAGE, 2067 WLAN_EID_INTERWORKING, 2068 WLAN_EID_MESH_ID, 2069 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2070 }; 2071 noffset = ieee80211_ie_split(ie, ie_len, 2072 before_vht, ARRAY_SIZE(before_vht), 2073 *offset); 2074 if (end - pos < noffset - *offset) 2075 goto out_err; 2076 memcpy(pos, ie + *offset, noffset - *offset); 2077 pos += noffset - *offset; 2078 *offset = noffset; 2079 } 2080 2081 /* Check if any channel in this sband supports at least 80 MHz */ 2082 for (i = 0; i < sband->n_channels; i++) { 2083 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2084 IEEE80211_CHAN_NO_80MHZ)) 2085 continue; 2086 2087 have_80mhz = true; 2088 break; 2089 } 2090 2091 if (sband->vht_cap.vht_supported && have_80mhz) { 2092 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2093 goto out_err; 2094 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2095 sband->vht_cap.cap); 2096 } 2097 2098 /* insert custom IEs that go before HE */ 2099 if (ie && ie_len) { 2100 static const u8 before_he[] = { 2101 /* 2102 * no need to list the ones split off before VHT 2103 * or generated here 2104 */ 2105 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2106 WLAN_EID_AP_CSN, 2107 /* TODO: add 11ah/11aj/11ak elements */ 2108 }; 2109 noffset = ieee80211_ie_split(ie, ie_len, 2110 before_he, ARRAY_SIZE(before_he), 2111 *offset); 2112 if (end - pos < noffset - *offset) 2113 goto out_err; 2114 memcpy(pos, ie + *offset, noffset - *offset); 2115 pos += noffset - *offset; 2116 *offset = noffset; 2117 } 2118 2119 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2120 if (he_cap && 2121 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2122 IEEE80211_CHAN_NO_HE)) { 2123 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2124 if (!pos) 2125 goto out_err; 2126 } 2127 2128 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 2129 2130 if (eht_cap && 2131 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2132 IEEE80211_CHAN_NO_HE | 2133 IEEE80211_CHAN_NO_EHT)) { 2134 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2135 sdata->vif.type == NL80211_IFTYPE_AP); 2136 if (!pos) 2137 goto out_err; 2138 } 2139 2140 if (cfg80211_any_usable_channels(local->hw.wiphy, 2141 BIT(NL80211_BAND_6GHZ), 2142 IEEE80211_CHAN_NO_HE)) { 2143 struct ieee80211_supported_band *sband6; 2144 2145 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2146 he_cap = ieee80211_get_he_iftype_cap_vif(sband6, &sdata->vif); 2147 2148 if (he_cap) { 2149 enum nl80211_iftype iftype = 2150 ieee80211_vif_type_p2p(&sdata->vif); 2151 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2152 2153 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2154 } 2155 } 2156 2157 /* 2158 * If adding more here, adjust code in main.c 2159 * that calculates local->scan_ies_len. 2160 */ 2161 2162 return pos - buffer; 2163 out_err: 2164 WARN_ONCE(1, "not enough space for preq IEs\n"); 2165 done: 2166 return pos - buffer; 2167 } 2168 2169 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2170 size_t buffer_len, 2171 struct ieee80211_scan_ies *ie_desc, 2172 const u8 *ie, size_t ie_len, 2173 u8 bands_used, u32 *rate_masks, 2174 struct cfg80211_chan_def *chandef, 2175 u32 flags) 2176 { 2177 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2178 int i; 2179 2180 memset(ie_desc, 0, sizeof(*ie_desc)); 2181 2182 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2183 if (bands_used & BIT(i)) { 2184 pos += ieee80211_build_preq_ies_band(sdata, 2185 buffer + pos, 2186 buffer_len - pos, 2187 ie, ie_len, i, 2188 rate_masks[i], 2189 chandef, 2190 &custom_ie_offset, 2191 flags); 2192 ie_desc->ies[i] = buffer + old_pos; 2193 ie_desc->len[i] = pos - old_pos; 2194 old_pos = pos; 2195 } 2196 } 2197 2198 /* add any remaining custom IEs */ 2199 if (ie && ie_len) { 2200 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2201 "not enough space for preq custom IEs\n")) 2202 return pos; 2203 memcpy(buffer + pos, ie + custom_ie_offset, 2204 ie_len - custom_ie_offset); 2205 ie_desc->common_ies = buffer + pos; 2206 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2207 pos += ie_len - custom_ie_offset; 2208 } 2209 2210 return pos; 2211 }; 2212 2213 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2214 const u8 *src, const u8 *dst, 2215 u32 ratemask, 2216 struct ieee80211_channel *chan, 2217 const u8 *ssid, size_t ssid_len, 2218 const u8 *ie, size_t ie_len, 2219 u32 flags) 2220 { 2221 struct ieee80211_local *local = sdata->local; 2222 struct cfg80211_chan_def chandef; 2223 struct sk_buff *skb; 2224 struct ieee80211_mgmt *mgmt; 2225 int ies_len; 2226 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2227 struct ieee80211_scan_ies dummy_ie_desc; 2228 2229 /* 2230 * Do not send DS Channel parameter for directed probe requests 2231 * in order to maximize the chance that we get a response. Some 2232 * badly-behaved APs don't respond when this parameter is included. 2233 */ 2234 chandef.width = sdata->vif.bss_conf.chandef.width; 2235 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2236 chandef.chan = NULL; 2237 else 2238 chandef.chan = chan; 2239 2240 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2241 local->scan_ies_len + ie_len); 2242 if (!skb) 2243 return NULL; 2244 2245 rate_masks[chan->band] = ratemask; 2246 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2247 skb_tailroom(skb), &dummy_ie_desc, 2248 ie, ie_len, BIT(chan->band), 2249 rate_masks, &chandef, flags); 2250 skb_put(skb, ies_len); 2251 2252 if (dst) { 2253 mgmt = (struct ieee80211_mgmt *) skb->data; 2254 memcpy(mgmt->da, dst, ETH_ALEN); 2255 memcpy(mgmt->bssid, dst, ETH_ALEN); 2256 } 2257 2258 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2259 2260 return skb; 2261 } 2262 2263 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2264 struct ieee802_11_elems *elems, 2265 enum nl80211_band band, u32 *basic_rates) 2266 { 2267 struct ieee80211_supported_band *sband; 2268 size_t num_rates; 2269 u32 supp_rates, rate_flags; 2270 int i, j, shift; 2271 2272 sband = sdata->local->hw.wiphy->bands[band]; 2273 if (WARN_ON(!sband)) 2274 return 1; 2275 2276 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2277 shift = ieee80211_vif_get_shift(&sdata->vif); 2278 2279 num_rates = sband->n_bitrates; 2280 supp_rates = 0; 2281 for (i = 0; i < elems->supp_rates_len + 2282 elems->ext_supp_rates_len; i++) { 2283 u8 rate = 0; 2284 int own_rate; 2285 bool is_basic; 2286 if (i < elems->supp_rates_len) 2287 rate = elems->supp_rates[i]; 2288 else if (elems->ext_supp_rates) 2289 rate = elems->ext_supp_rates 2290 [i - elems->supp_rates_len]; 2291 own_rate = 5 * (rate & 0x7f); 2292 is_basic = !!(rate & 0x80); 2293 2294 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2295 continue; 2296 2297 for (j = 0; j < num_rates; j++) { 2298 int brate; 2299 if ((rate_flags & sband->bitrates[j].flags) 2300 != rate_flags) 2301 continue; 2302 2303 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2304 1 << shift); 2305 2306 if (brate == own_rate) { 2307 supp_rates |= BIT(j); 2308 if (basic_rates && is_basic) 2309 *basic_rates |= BIT(j); 2310 } 2311 } 2312 } 2313 return supp_rates; 2314 } 2315 2316 void ieee80211_stop_device(struct ieee80211_local *local) 2317 { 2318 ieee80211_led_radio(local, false); 2319 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2320 2321 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 2322 2323 flush_workqueue(local->workqueue); 2324 wiphy_work_flush(local->hw.wiphy, NULL); 2325 drv_stop(local); 2326 } 2327 2328 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2329 bool aborted) 2330 { 2331 /* It's possible that we don't handle the scan completion in 2332 * time during suspend, so if it's still marked as completed 2333 * here, queue the work and flush it to clean things up. 2334 * Instead of calling the worker function directly here, we 2335 * really queue it to avoid potential races with other flows 2336 * scheduling the same work. 2337 */ 2338 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2339 /* If coming from reconfiguration failure, abort the scan so 2340 * we don't attempt to continue a partial HW scan - which is 2341 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2342 * completed scan, and a 5 GHz portion is still pending. 2343 */ 2344 if (aborted) 2345 set_bit(SCAN_ABORTED, &local->scanning); 2346 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 2347 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 2348 } 2349 } 2350 2351 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2352 { 2353 struct ieee80211_sub_if_data *sdata; 2354 struct ieee80211_chanctx *ctx; 2355 2356 lockdep_assert_wiphy(local->hw.wiphy); 2357 2358 /* 2359 * We get here if during resume the device can't be restarted properly. 2360 * We might also get here if this happens during HW reset, which is a 2361 * slightly different situation and we need to drop all connections in 2362 * the latter case. 2363 * 2364 * Ask cfg80211 to turn off all interfaces, this will result in more 2365 * warnings but at least we'll then get into a clean stopped state. 2366 */ 2367 2368 local->resuming = false; 2369 local->suspended = false; 2370 local->in_reconfig = false; 2371 local->reconfig_failure = true; 2372 2373 ieee80211_flush_completed_scan(local, true); 2374 2375 /* scheduled scan clearly can't be running any more, but tell 2376 * cfg80211 and clear local state 2377 */ 2378 ieee80211_sched_scan_end(local); 2379 2380 list_for_each_entry(sdata, &local->interfaces, list) 2381 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2382 2383 /* Mark channel contexts as not being in the driver any more to avoid 2384 * removing them from the driver during the shutdown process... 2385 */ 2386 list_for_each_entry(ctx, &local->chanctx_list, list) 2387 ctx->driver_present = false; 2388 } 2389 2390 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2391 struct ieee80211_sub_if_data *sdata, 2392 struct ieee80211_link_data *link) 2393 { 2394 struct ieee80211_chanctx_conf *conf; 2395 struct ieee80211_chanctx *ctx; 2396 2397 lockdep_assert_wiphy(local->hw.wiphy); 2398 2399 if (!local->use_chanctx) 2400 return; 2401 2402 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2403 lockdep_is_held(&local->hw.wiphy->mtx)); 2404 if (conf) { 2405 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2406 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2407 } 2408 } 2409 2410 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2411 { 2412 struct ieee80211_local *local = sdata->local; 2413 struct sta_info *sta; 2414 2415 lockdep_assert_wiphy(local->hw.wiphy); 2416 2417 /* add STAs back */ 2418 list_for_each_entry(sta, &local->sta_list, list) { 2419 enum ieee80211_sta_state state; 2420 2421 if (!sta->uploaded || sta->sdata != sdata) 2422 continue; 2423 2424 for (state = IEEE80211_STA_NOTEXIST; 2425 state < sta->sta_state; state++) 2426 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2427 state + 1)); 2428 } 2429 } 2430 2431 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2432 { 2433 struct cfg80211_nan_func *func, **funcs; 2434 int res, id, i = 0; 2435 2436 res = drv_start_nan(sdata->local, sdata, 2437 &sdata->u.nan.conf); 2438 if (WARN_ON(res)) 2439 return res; 2440 2441 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2442 sizeof(*funcs), 2443 GFP_KERNEL); 2444 if (!funcs) 2445 return -ENOMEM; 2446 2447 /* Add all the functions: 2448 * This is a little bit ugly. We need to call a potentially sleeping 2449 * callback for each NAN function, so we can't hold the spinlock. 2450 */ 2451 spin_lock_bh(&sdata->u.nan.func_lock); 2452 2453 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2454 funcs[i++] = func; 2455 2456 spin_unlock_bh(&sdata->u.nan.func_lock); 2457 2458 for (i = 0; funcs[i]; i++) { 2459 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2460 if (WARN_ON(res)) 2461 ieee80211_nan_func_terminated(&sdata->vif, 2462 funcs[i]->instance_id, 2463 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2464 GFP_KERNEL); 2465 } 2466 2467 kfree(funcs); 2468 2469 return 0; 2470 } 2471 2472 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 2473 struct ieee80211_sub_if_data *sdata, 2474 u64 changed) 2475 { 2476 int link_id; 2477 2478 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 2479 struct ieee80211_link_data *link; 2480 2481 if (!(sdata->vif.active_links & BIT(link_id))) 2482 continue; 2483 2484 link = sdata_dereference(sdata->link[link_id], sdata); 2485 if (!link) 2486 continue; 2487 2488 if (rcu_access_pointer(link->u.ap.beacon)) 2489 drv_start_ap(local, sdata, link->conf); 2490 2491 if (!link->conf->enable_beacon) 2492 continue; 2493 2494 changed |= BSS_CHANGED_BEACON | 2495 BSS_CHANGED_BEACON_ENABLED; 2496 2497 ieee80211_link_info_change_notify(sdata, link, changed); 2498 } 2499 } 2500 2501 int ieee80211_reconfig(struct ieee80211_local *local) 2502 { 2503 struct ieee80211_hw *hw = &local->hw; 2504 struct ieee80211_sub_if_data *sdata; 2505 struct ieee80211_chanctx *ctx; 2506 struct sta_info *sta; 2507 int res, i; 2508 bool reconfig_due_to_wowlan = false; 2509 struct ieee80211_sub_if_data *sched_scan_sdata; 2510 struct cfg80211_sched_scan_request *sched_scan_req; 2511 bool sched_scan_stopped = false; 2512 bool suspended = local->suspended; 2513 bool in_reconfig = false; 2514 2515 lockdep_assert_wiphy(local->hw.wiphy); 2516 2517 /* nothing to do if HW shouldn't run */ 2518 if (!local->open_count) 2519 goto wake_up; 2520 2521 #ifdef CONFIG_PM 2522 if (suspended) 2523 local->resuming = true; 2524 2525 if (local->wowlan) { 2526 /* 2527 * In the wowlan case, both mac80211 and the device 2528 * are functional when the resume op is called, so 2529 * clear local->suspended so the device could operate 2530 * normally (e.g. pass rx frames). 2531 */ 2532 local->suspended = false; 2533 res = drv_resume(local); 2534 local->wowlan = false; 2535 if (res < 0) { 2536 local->resuming = false; 2537 return res; 2538 } 2539 if (res == 0) 2540 goto wake_up; 2541 WARN_ON(res > 1); 2542 /* 2543 * res is 1, which means the driver requested 2544 * to go through a regular reset on wakeup. 2545 * restore local->suspended in this case. 2546 */ 2547 reconfig_due_to_wowlan = true; 2548 local->suspended = true; 2549 } 2550 #endif 2551 2552 /* 2553 * In case of hw_restart during suspend (without wowlan), 2554 * cancel restart work, as we are reconfiguring the device 2555 * anyway. 2556 * Note that restart_work is scheduled on a frozen workqueue, 2557 * so we can't deadlock in this case. 2558 */ 2559 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2560 cancel_work_sync(&local->restart_work); 2561 2562 local->started = false; 2563 2564 /* 2565 * Upon resume hardware can sometimes be goofy due to 2566 * various platform / driver / bus issues, so restarting 2567 * the device may at times not work immediately. Propagate 2568 * the error. 2569 */ 2570 res = drv_start(local); 2571 if (res) { 2572 if (suspended) 2573 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2574 else 2575 WARN(1, "Hardware became unavailable during restart.\n"); 2576 ieee80211_handle_reconfig_failure(local); 2577 return res; 2578 } 2579 2580 /* setup fragmentation threshold */ 2581 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2582 2583 /* setup RTS threshold */ 2584 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2585 2586 /* reset coverage class */ 2587 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2588 2589 ieee80211_led_radio(local, true); 2590 ieee80211_mod_tpt_led_trig(local, 2591 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2592 2593 /* add interfaces */ 2594 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2595 if (sdata) { 2596 /* in HW restart it exists already */ 2597 WARN_ON(local->resuming); 2598 res = drv_add_interface(local, sdata); 2599 if (WARN_ON(res)) { 2600 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2601 synchronize_net(); 2602 kfree(sdata); 2603 } 2604 } 2605 2606 list_for_each_entry(sdata, &local->interfaces, list) { 2607 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2608 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2609 ieee80211_sdata_running(sdata)) { 2610 res = drv_add_interface(local, sdata); 2611 if (WARN_ON(res)) 2612 break; 2613 } 2614 } 2615 2616 /* If adding any of the interfaces failed above, roll back and 2617 * report failure. 2618 */ 2619 if (res) { 2620 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2621 list) 2622 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2623 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2624 ieee80211_sdata_running(sdata)) 2625 drv_remove_interface(local, sdata); 2626 ieee80211_handle_reconfig_failure(local); 2627 return res; 2628 } 2629 2630 /* add channel contexts */ 2631 if (local->use_chanctx) { 2632 list_for_each_entry(ctx, &local->chanctx_list, list) 2633 if (ctx->replace_state != 2634 IEEE80211_CHANCTX_REPLACES_OTHER) 2635 WARN_ON(drv_add_chanctx(local, ctx)); 2636 2637 sdata = wiphy_dereference(local->hw.wiphy, 2638 local->monitor_sdata); 2639 if (sdata && ieee80211_sdata_running(sdata)) 2640 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2641 } 2642 2643 /* reconfigure hardware */ 2644 ieee80211_hw_config(local, ~0); 2645 2646 ieee80211_configure_filter(local); 2647 2648 /* Finally also reconfigure all the BSS information */ 2649 list_for_each_entry(sdata, &local->interfaces, list) { 2650 /* common change flags for all interface types - link only */ 2651 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 2652 BSS_CHANGED_ERP_PREAMBLE | 2653 BSS_CHANGED_ERP_SLOT | 2654 BSS_CHANGED_HT | 2655 BSS_CHANGED_BASIC_RATES | 2656 BSS_CHANGED_BEACON_INT | 2657 BSS_CHANGED_BSSID | 2658 BSS_CHANGED_CQM | 2659 BSS_CHANGED_QOS | 2660 BSS_CHANGED_TXPOWER | 2661 BSS_CHANGED_MCAST_RATE; 2662 struct ieee80211_link_data *link = NULL; 2663 unsigned int link_id; 2664 u32 active_links = 0; 2665 2666 if (!ieee80211_sdata_running(sdata)) 2667 continue; 2668 2669 if (ieee80211_vif_is_mld(&sdata->vif)) { 2670 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 2671 [0] = &sdata->vif.bss_conf, 2672 }; 2673 2674 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2675 /* start with a single active link */ 2676 active_links = sdata->vif.active_links; 2677 link_id = ffs(active_links) - 1; 2678 sdata->vif.active_links = BIT(link_id); 2679 } 2680 2681 drv_change_vif_links(local, sdata, 0, 2682 sdata->vif.active_links, 2683 old); 2684 } 2685 2686 for (link_id = 0; 2687 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2688 link_id++) { 2689 if (ieee80211_vif_is_mld(&sdata->vif) && 2690 !(sdata->vif.active_links & BIT(link_id))) 2691 continue; 2692 2693 link = sdata_dereference(sdata->link[link_id], sdata); 2694 if (!link) 2695 continue; 2696 2697 ieee80211_assign_chanctx(local, sdata, link); 2698 } 2699 2700 switch (sdata->vif.type) { 2701 case NL80211_IFTYPE_AP_VLAN: 2702 case NL80211_IFTYPE_MONITOR: 2703 break; 2704 case NL80211_IFTYPE_ADHOC: 2705 if (sdata->vif.cfg.ibss_joined) 2706 WARN_ON(drv_join_ibss(local, sdata)); 2707 fallthrough; 2708 default: 2709 ieee80211_reconfig_stations(sdata); 2710 fallthrough; 2711 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2712 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2713 drv_conf_tx(local, &sdata->deflink, i, 2714 &sdata->deflink.tx_conf[i]); 2715 break; 2716 } 2717 2718 if (sdata->vif.bss_conf.mu_mimo_owner) 2719 changed |= BSS_CHANGED_MU_GROUPS; 2720 2721 if (!ieee80211_vif_is_mld(&sdata->vif)) 2722 changed |= BSS_CHANGED_IDLE; 2723 2724 switch (sdata->vif.type) { 2725 case NL80211_IFTYPE_STATION: 2726 if (!ieee80211_vif_is_mld(&sdata->vif)) { 2727 changed |= BSS_CHANGED_ASSOC | 2728 BSS_CHANGED_ARP_FILTER | 2729 BSS_CHANGED_PS; 2730 2731 /* Re-send beacon info report to the driver */ 2732 if (sdata->deflink.u.mgd.have_beacon) 2733 changed |= BSS_CHANGED_BEACON_INFO; 2734 2735 if (sdata->vif.bss_conf.max_idle_period || 2736 sdata->vif.bss_conf.protected_keep_alive) 2737 changed |= BSS_CHANGED_KEEP_ALIVE; 2738 2739 if (sdata->vif.bss_conf.eht_puncturing) 2740 changed |= BSS_CHANGED_EHT_PUNCTURING; 2741 2742 ieee80211_bss_info_change_notify(sdata, 2743 changed); 2744 } else if (!WARN_ON(!link)) { 2745 ieee80211_link_info_change_notify(sdata, link, 2746 changed); 2747 changed = BSS_CHANGED_ASSOC | 2748 BSS_CHANGED_IDLE | 2749 BSS_CHANGED_PS | 2750 BSS_CHANGED_ARP_FILTER; 2751 ieee80211_vif_cfg_change_notify(sdata, changed); 2752 } 2753 break; 2754 case NL80211_IFTYPE_OCB: 2755 changed |= BSS_CHANGED_OCB; 2756 ieee80211_bss_info_change_notify(sdata, changed); 2757 break; 2758 case NL80211_IFTYPE_ADHOC: 2759 changed |= BSS_CHANGED_IBSS; 2760 fallthrough; 2761 case NL80211_IFTYPE_AP: 2762 changed |= BSS_CHANGED_P2P_PS; 2763 2764 if (ieee80211_vif_is_mld(&sdata->vif)) 2765 ieee80211_vif_cfg_change_notify(sdata, 2766 BSS_CHANGED_SSID); 2767 else 2768 changed |= BSS_CHANGED_SSID; 2769 2770 if (sdata->vif.bss_conf.ftm_responder == 1 && 2771 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2772 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2773 changed |= BSS_CHANGED_FTM_RESPONDER; 2774 2775 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2776 changed |= BSS_CHANGED_AP_PROBE_RESP; 2777 2778 if (ieee80211_vif_is_mld(&sdata->vif)) { 2779 ieee80211_reconfig_ap_links(local, 2780 sdata, 2781 changed); 2782 break; 2783 } 2784 2785 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2786 drv_start_ap(local, sdata, 2787 sdata->deflink.conf); 2788 } 2789 fallthrough; 2790 case NL80211_IFTYPE_MESH_POINT: 2791 if (sdata->vif.bss_conf.enable_beacon) { 2792 changed |= BSS_CHANGED_BEACON | 2793 BSS_CHANGED_BEACON_ENABLED; 2794 ieee80211_bss_info_change_notify(sdata, changed); 2795 } 2796 break; 2797 case NL80211_IFTYPE_NAN: 2798 res = ieee80211_reconfig_nan(sdata); 2799 if (res < 0) { 2800 ieee80211_handle_reconfig_failure(local); 2801 return res; 2802 } 2803 break; 2804 case NL80211_IFTYPE_AP_VLAN: 2805 case NL80211_IFTYPE_MONITOR: 2806 case NL80211_IFTYPE_P2P_DEVICE: 2807 /* nothing to do */ 2808 break; 2809 case NL80211_IFTYPE_UNSPECIFIED: 2810 case NUM_NL80211_IFTYPES: 2811 case NL80211_IFTYPE_P2P_CLIENT: 2812 case NL80211_IFTYPE_P2P_GO: 2813 case NL80211_IFTYPE_WDS: 2814 WARN_ON(1); 2815 break; 2816 } 2817 2818 if (active_links) 2819 ieee80211_set_active_links(&sdata->vif, active_links); 2820 } 2821 2822 ieee80211_recalc_ps(local); 2823 2824 /* 2825 * The sta might be in psm against the ap (e.g. because 2826 * this was the state before a hw restart), so we 2827 * explicitly send a null packet in order to make sure 2828 * it'll sync against the ap (and get out of psm). 2829 */ 2830 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2831 list_for_each_entry(sdata, &local->interfaces, list) { 2832 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2833 continue; 2834 if (!sdata->u.mgd.associated) 2835 continue; 2836 2837 ieee80211_send_nullfunc(local, sdata, false); 2838 } 2839 } 2840 2841 /* APs are now beaconing, add back stations */ 2842 list_for_each_entry(sdata, &local->interfaces, list) { 2843 if (!ieee80211_sdata_running(sdata)) 2844 continue; 2845 2846 switch (sdata->vif.type) { 2847 case NL80211_IFTYPE_AP_VLAN: 2848 case NL80211_IFTYPE_AP: 2849 ieee80211_reconfig_stations(sdata); 2850 break; 2851 default: 2852 break; 2853 } 2854 } 2855 2856 /* add back keys */ 2857 list_for_each_entry(sdata, &local->interfaces, list) 2858 ieee80211_reenable_keys(sdata); 2859 2860 /* Reconfigure sched scan if it was interrupted by FW restart */ 2861 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2862 lockdep_is_held(&local->hw.wiphy->mtx)); 2863 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2864 lockdep_is_held(&local->hw.wiphy->mtx)); 2865 if (sched_scan_sdata && sched_scan_req) 2866 /* 2867 * Sched scan stopped, but we don't want to report it. Instead, 2868 * we're trying to reschedule. However, if more than one scan 2869 * plan was set, we cannot reschedule since we don't know which 2870 * scan plan was currently running (and some scan plans may have 2871 * already finished). 2872 */ 2873 if (sched_scan_req->n_scan_plans > 1 || 2874 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2875 sched_scan_req)) { 2876 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2877 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2878 sched_scan_stopped = true; 2879 } 2880 2881 if (sched_scan_stopped) 2882 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2883 2884 wake_up: 2885 2886 if (local->monitors == local->open_count && local->monitors > 0) 2887 ieee80211_add_virtual_monitor(local); 2888 2889 /* 2890 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2891 * sessions can be established after a resume. 2892 * 2893 * Also tear down aggregation sessions since reconfiguring 2894 * them in a hardware restart scenario is not easily done 2895 * right now, and the hardware will have lost information 2896 * about the sessions, but we and the AP still think they 2897 * are active. This is really a workaround though. 2898 */ 2899 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2900 list_for_each_entry(sta, &local->sta_list, list) { 2901 if (!local->resuming) 2902 ieee80211_sta_tear_down_BA_sessions( 2903 sta, AGG_STOP_LOCAL_REQUEST); 2904 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2905 } 2906 } 2907 2908 /* 2909 * If this is for hw restart things are still running. 2910 * We may want to change that later, however. 2911 */ 2912 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2913 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2914 2915 if (local->in_reconfig) { 2916 in_reconfig = local->in_reconfig; 2917 local->in_reconfig = false; 2918 barrier(); 2919 2920 /* Restart deferred ROCs */ 2921 ieee80211_start_next_roc(local); 2922 2923 /* Requeue all works */ 2924 list_for_each_entry(sdata, &local->interfaces, list) 2925 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2926 } 2927 2928 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2929 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2930 false); 2931 2932 if (in_reconfig) { 2933 list_for_each_entry(sdata, &local->interfaces, list) { 2934 if (!ieee80211_sdata_running(sdata)) 2935 continue; 2936 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2937 ieee80211_sta_restart(sdata); 2938 } 2939 } 2940 2941 if (!suspended) 2942 return 0; 2943 2944 #ifdef CONFIG_PM 2945 /* first set suspended false, then resuming */ 2946 local->suspended = false; 2947 mb(); 2948 local->resuming = false; 2949 2950 ieee80211_flush_completed_scan(local, false); 2951 2952 if (local->open_count && !reconfig_due_to_wowlan) 2953 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2954 2955 list_for_each_entry(sdata, &local->interfaces, list) { 2956 if (!ieee80211_sdata_running(sdata)) 2957 continue; 2958 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2959 ieee80211_sta_restart(sdata); 2960 } 2961 2962 mod_timer(&local->sta_cleanup, jiffies + 1); 2963 #else 2964 WARN_ON(1); 2965 #endif 2966 2967 return 0; 2968 } 2969 2970 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2971 { 2972 struct ieee80211_sub_if_data *sdata; 2973 struct ieee80211_local *local; 2974 struct ieee80211_key *key; 2975 2976 if (WARN_ON(!vif)) 2977 return; 2978 2979 sdata = vif_to_sdata(vif); 2980 local = sdata->local; 2981 2982 lockdep_assert_wiphy(local->hw.wiphy); 2983 2984 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2985 !local->resuming)) 2986 return; 2987 2988 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2989 !local->in_reconfig)) 2990 return; 2991 2992 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2993 return; 2994 2995 sdata->flags |= flag; 2996 2997 list_for_each_entry(key, &sdata->key_list, list) 2998 key->flags |= KEY_FLAG_TAINTED; 2999 } 3000 3001 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 3002 { 3003 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 3004 } 3005 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 3006 3007 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 3008 { 3009 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 3010 } 3011 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 3012 3013 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 3014 struct ieee80211_link_data *link) 3015 { 3016 struct ieee80211_local *local = sdata->local; 3017 struct ieee80211_chanctx_conf *chanctx_conf; 3018 struct ieee80211_chanctx *chanctx; 3019 3020 lockdep_assert_wiphy(local->hw.wiphy); 3021 3022 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 3023 lockdep_is_held(&local->hw.wiphy->mtx)); 3024 3025 /* 3026 * This function can be called from a work, thus it may be possible 3027 * that the chanctx_conf is removed (due to a disconnection, for 3028 * example). 3029 * So nothing should be done in such case. 3030 */ 3031 if (!chanctx_conf) 3032 return; 3033 3034 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 3035 ieee80211_recalc_smps_chanctx(local, chanctx); 3036 } 3037 3038 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 3039 int link_id) 3040 { 3041 struct ieee80211_local *local = sdata->local; 3042 struct ieee80211_chanctx_conf *chanctx_conf; 3043 struct ieee80211_chanctx *chanctx; 3044 int i; 3045 3046 lockdep_assert_wiphy(local->hw.wiphy); 3047 3048 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 3049 struct ieee80211_bss_conf *bss_conf; 3050 3051 if (link_id >= 0 && link_id != i) 3052 continue; 3053 3054 rcu_read_lock(); 3055 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 3056 if (!bss_conf) { 3057 rcu_read_unlock(); 3058 continue; 3059 } 3060 3061 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3062 lockdep_is_held(&local->hw.wiphy->mtx)); 3063 /* 3064 * Since we hold the wiphy mutex (checked above) 3065 * we can take the chanctx_conf pointer out of the 3066 * RCU critical section, it cannot go away without 3067 * the mutex. Just the way we reached it could - in 3068 * theory - go away, but we don't really care and 3069 * it really shouldn't happen anyway. 3070 */ 3071 rcu_read_unlock(); 3072 3073 if (!chanctx_conf) 3074 return; 3075 3076 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3077 conf); 3078 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 3079 } 3080 } 3081 3082 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3083 { 3084 size_t pos = offset; 3085 3086 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3087 pos += 2 + ies[pos + 1]; 3088 3089 return pos; 3090 } 3091 3092 u8 *ieee80211_ie_build_s1g_cap(u8 *pos, struct ieee80211_sta_s1g_cap *s1g_cap) 3093 { 3094 *pos++ = WLAN_EID_S1G_CAPABILITIES; 3095 *pos++ = sizeof(struct ieee80211_s1g_cap); 3096 memset(pos, 0, sizeof(struct ieee80211_s1g_cap)); 3097 3098 memcpy(pos, &s1g_cap->cap, sizeof(s1g_cap->cap)); 3099 pos += sizeof(s1g_cap->cap); 3100 3101 memcpy(pos, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 3102 pos += sizeof(s1g_cap->nss_mcs); 3103 3104 return pos; 3105 } 3106 3107 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3108 u16 cap) 3109 { 3110 __le16 tmp; 3111 3112 *pos++ = WLAN_EID_HT_CAPABILITY; 3113 *pos++ = sizeof(struct ieee80211_ht_cap); 3114 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3115 3116 /* capability flags */ 3117 tmp = cpu_to_le16(cap); 3118 memcpy(pos, &tmp, sizeof(u16)); 3119 pos += sizeof(u16); 3120 3121 /* AMPDU parameters */ 3122 *pos++ = ht_cap->ampdu_factor | 3123 (ht_cap->ampdu_density << 3124 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3125 3126 /* MCS set */ 3127 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3128 pos += sizeof(ht_cap->mcs); 3129 3130 /* extended capabilities */ 3131 pos += sizeof(__le16); 3132 3133 /* BF capabilities */ 3134 pos += sizeof(__le32); 3135 3136 /* antenna selection */ 3137 pos += sizeof(u8); 3138 3139 return pos; 3140 } 3141 3142 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3143 u32 cap) 3144 { 3145 __le32 tmp; 3146 3147 *pos++ = WLAN_EID_VHT_CAPABILITY; 3148 *pos++ = sizeof(struct ieee80211_vht_cap); 3149 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3150 3151 /* capability flags */ 3152 tmp = cpu_to_le32(cap); 3153 memcpy(pos, &tmp, sizeof(u32)); 3154 pos += sizeof(u32); 3155 3156 /* VHT MCS set */ 3157 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3158 pos += sizeof(vht_cap->vht_mcs); 3159 3160 return pos; 3161 } 3162 3163 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3164 { 3165 const struct ieee80211_sta_he_cap *he_cap; 3166 struct ieee80211_supported_band *sband; 3167 u8 n; 3168 3169 sband = ieee80211_get_sband(sdata); 3170 if (!sband) 3171 return 0; 3172 3173 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3174 if (!he_cap) 3175 return 0; 3176 3177 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3178 return 2 + 1 + 3179 sizeof(he_cap->he_cap_elem) + n + 3180 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3181 he_cap->he_cap_elem.phy_cap_info); 3182 } 3183 3184 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3185 const struct ieee80211_sta_he_cap *he_cap, 3186 u8 *end) 3187 { 3188 struct ieee80211_he_cap_elem elem; 3189 u8 n; 3190 u8 ie_len; 3191 u8 *orig_pos = pos; 3192 3193 /* Make sure we have place for the IE */ 3194 /* 3195 * TODO: the 1 added is because this temporarily is under the EXTENSION 3196 * IE. Get rid of it when it moves. 3197 */ 3198 if (!he_cap) 3199 return orig_pos; 3200 3201 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3202 elem = he_cap->he_cap_elem; 3203 3204 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3205 elem.phy_cap_info[0] &= 3206 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3207 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3208 3209 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3210 elem.phy_cap_info[0] &= 3211 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3212 3213 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3214 elem.phy_cap_info[0] &= 3215 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3216 3217 n = ieee80211_he_mcs_nss_size(&elem); 3218 ie_len = 2 + 1 + 3219 sizeof(he_cap->he_cap_elem) + n + 3220 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3221 he_cap->he_cap_elem.phy_cap_info); 3222 3223 if ((end - pos) < ie_len) 3224 return orig_pos; 3225 3226 *pos++ = WLAN_EID_EXTENSION; 3227 pos++; /* We'll set the size later below */ 3228 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3229 3230 /* Fixed data */ 3231 memcpy(pos, &elem, sizeof(elem)); 3232 pos += sizeof(elem); 3233 3234 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3235 pos += n; 3236 3237 /* Check if PPE Threshold should be present */ 3238 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3239 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3240 goto end; 3241 3242 /* 3243 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3244 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3245 */ 3246 n = hweight8(he_cap->ppe_thres[0] & 3247 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3248 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3249 IEEE80211_PPE_THRES_NSS_POS)); 3250 3251 /* 3252 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3253 * total size. 3254 */ 3255 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3256 n = DIV_ROUND_UP(n, 8); 3257 3258 /* Copy PPE Thresholds */ 3259 memcpy(pos, &he_cap->ppe_thres, n); 3260 pos += n; 3261 3262 end: 3263 orig_pos[1] = (pos - orig_pos) - 2; 3264 return pos; 3265 } 3266 3267 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3268 enum ieee80211_smps_mode smps_mode, 3269 struct sk_buff *skb) 3270 { 3271 struct ieee80211_supported_band *sband; 3272 const struct ieee80211_sband_iftype_data *iftd; 3273 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3274 u8 *pos; 3275 u16 cap; 3276 3277 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3278 BIT(NL80211_BAND_6GHZ), 3279 IEEE80211_CHAN_NO_HE)) 3280 return; 3281 3282 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3283 3284 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3285 if (!iftd) 3286 return; 3287 3288 /* Check for device HE 6 GHz capability before adding element */ 3289 if (!iftd->he_6ghz_capa.capa) 3290 return; 3291 3292 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3293 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3294 3295 switch (smps_mode) { 3296 case IEEE80211_SMPS_AUTOMATIC: 3297 case IEEE80211_SMPS_NUM_MODES: 3298 WARN_ON(1); 3299 fallthrough; 3300 case IEEE80211_SMPS_OFF: 3301 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3302 IEEE80211_HE_6GHZ_CAP_SM_PS); 3303 break; 3304 case IEEE80211_SMPS_STATIC: 3305 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3306 IEEE80211_HE_6GHZ_CAP_SM_PS); 3307 break; 3308 case IEEE80211_SMPS_DYNAMIC: 3309 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3310 IEEE80211_HE_6GHZ_CAP_SM_PS); 3311 break; 3312 } 3313 3314 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3315 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3316 pos + 2 + 1 + sizeof(cap)); 3317 } 3318 3319 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3320 const struct cfg80211_chan_def *chandef, 3321 u16 prot_mode, bool rifs_mode) 3322 { 3323 struct ieee80211_ht_operation *ht_oper; 3324 /* Build HT Information */ 3325 *pos++ = WLAN_EID_HT_OPERATION; 3326 *pos++ = sizeof(struct ieee80211_ht_operation); 3327 ht_oper = (struct ieee80211_ht_operation *)pos; 3328 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3329 chandef->chan->center_freq); 3330 switch (chandef->width) { 3331 case NL80211_CHAN_WIDTH_160: 3332 case NL80211_CHAN_WIDTH_80P80: 3333 case NL80211_CHAN_WIDTH_80: 3334 case NL80211_CHAN_WIDTH_40: 3335 if (chandef->center_freq1 > chandef->chan->center_freq) 3336 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3337 else 3338 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3339 break; 3340 case NL80211_CHAN_WIDTH_320: 3341 /* HT information element should not be included on 6GHz */ 3342 WARN_ON(1); 3343 return pos; 3344 default: 3345 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3346 break; 3347 } 3348 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3349 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3350 chandef->width != NL80211_CHAN_WIDTH_20) 3351 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3352 3353 if (rifs_mode) 3354 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3355 3356 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3357 ht_oper->stbc_param = 0x0000; 3358 3359 /* It seems that Basic MCS set and Supported MCS set 3360 are identical for the first 10 bytes */ 3361 memset(&ht_oper->basic_set, 0, 16); 3362 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3363 3364 return pos + sizeof(struct ieee80211_ht_operation); 3365 } 3366 3367 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3368 const struct cfg80211_chan_def *chandef) 3369 { 3370 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3371 *pos++ = 3; /* IE length */ 3372 /* New channel width */ 3373 switch (chandef->width) { 3374 case NL80211_CHAN_WIDTH_80: 3375 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3376 break; 3377 case NL80211_CHAN_WIDTH_160: 3378 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3379 break; 3380 case NL80211_CHAN_WIDTH_80P80: 3381 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3382 break; 3383 case NL80211_CHAN_WIDTH_320: 3384 /* The behavior is not defined for 320 MHz channels */ 3385 WARN_ON(1); 3386 fallthrough; 3387 default: 3388 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3389 } 3390 3391 /* new center frequency segment 0 */ 3392 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3393 /* new center frequency segment 1 */ 3394 if (chandef->center_freq2) 3395 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3396 else 3397 *pos++ = 0; 3398 } 3399 3400 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3401 const struct cfg80211_chan_def *chandef) 3402 { 3403 struct ieee80211_vht_operation *vht_oper; 3404 3405 *pos++ = WLAN_EID_VHT_OPERATION; 3406 *pos++ = sizeof(struct ieee80211_vht_operation); 3407 vht_oper = (struct ieee80211_vht_operation *)pos; 3408 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3409 chandef->center_freq1); 3410 if (chandef->center_freq2) 3411 vht_oper->center_freq_seg1_idx = 3412 ieee80211_frequency_to_channel(chandef->center_freq2); 3413 else 3414 vht_oper->center_freq_seg1_idx = 0x00; 3415 3416 switch (chandef->width) { 3417 case NL80211_CHAN_WIDTH_160: 3418 /* 3419 * Convert 160 MHz channel width to new style as interop 3420 * workaround. 3421 */ 3422 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3423 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3424 if (chandef->chan->center_freq < chandef->center_freq1) 3425 vht_oper->center_freq_seg0_idx -= 8; 3426 else 3427 vht_oper->center_freq_seg0_idx += 8; 3428 break; 3429 case NL80211_CHAN_WIDTH_80P80: 3430 /* 3431 * Convert 80+80 MHz channel width to new style as interop 3432 * workaround. 3433 */ 3434 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3435 break; 3436 case NL80211_CHAN_WIDTH_80: 3437 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3438 break; 3439 case NL80211_CHAN_WIDTH_320: 3440 /* VHT information element should not be included on 6GHz */ 3441 WARN_ON(1); 3442 return pos; 3443 default: 3444 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3445 break; 3446 } 3447 3448 /* don't require special VHT peer rates */ 3449 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3450 3451 return pos + sizeof(struct ieee80211_vht_operation); 3452 } 3453 3454 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3455 { 3456 struct ieee80211_he_operation *he_oper; 3457 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3458 u32 he_oper_params; 3459 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3460 3461 if (chandef->chan->band == NL80211_BAND_6GHZ) 3462 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3463 3464 *pos++ = WLAN_EID_EXTENSION; 3465 *pos++ = ie_len; 3466 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3467 3468 he_oper_params = 0; 3469 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3470 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3471 he_oper_params |= u32_encode_bits(1, 3472 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3473 he_oper_params |= u32_encode_bits(1, 3474 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3475 if (chandef->chan->band == NL80211_BAND_6GHZ) 3476 he_oper_params |= u32_encode_bits(1, 3477 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3478 3479 he_oper = (struct ieee80211_he_operation *)pos; 3480 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3481 3482 /* don't require special HE peer rates */ 3483 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3484 pos += sizeof(struct ieee80211_he_operation); 3485 3486 if (chandef->chan->band != NL80211_BAND_6GHZ) 3487 goto out; 3488 3489 /* TODO add VHT operational */ 3490 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3491 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3492 he_6ghz_op->primary = 3493 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3494 he_6ghz_op->ccfs0 = 3495 ieee80211_frequency_to_channel(chandef->center_freq1); 3496 if (chandef->center_freq2) 3497 he_6ghz_op->ccfs1 = 3498 ieee80211_frequency_to_channel(chandef->center_freq2); 3499 else 3500 he_6ghz_op->ccfs1 = 0; 3501 3502 switch (chandef->width) { 3503 case NL80211_CHAN_WIDTH_320: 3504 /* 3505 * TODO: mesh operation is not defined over 6GHz 320 MHz 3506 * channels. 3507 */ 3508 WARN_ON(1); 3509 break; 3510 case NL80211_CHAN_WIDTH_160: 3511 /* Convert 160 MHz channel width to new style as interop 3512 * workaround. 3513 */ 3514 he_6ghz_op->control = 3515 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3516 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3517 if (chandef->chan->center_freq < chandef->center_freq1) 3518 he_6ghz_op->ccfs0 -= 8; 3519 else 3520 he_6ghz_op->ccfs0 += 8; 3521 fallthrough; 3522 case NL80211_CHAN_WIDTH_80P80: 3523 he_6ghz_op->control = 3524 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3525 break; 3526 case NL80211_CHAN_WIDTH_80: 3527 he_6ghz_op->control = 3528 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3529 break; 3530 case NL80211_CHAN_WIDTH_40: 3531 he_6ghz_op->control = 3532 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3533 break; 3534 default: 3535 he_6ghz_op->control = 3536 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3537 break; 3538 } 3539 3540 pos += sizeof(struct ieee80211_he_6ghz_oper); 3541 3542 out: 3543 return pos; 3544 } 3545 3546 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 3547 const struct ieee80211_sta_eht_cap *eht_cap) 3548 3549 { 3550 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 3551 &eht_cap->eht_mcs_nss_supp.only_20mhz; 3552 struct ieee80211_eht_operation *eht_oper; 3553 struct ieee80211_eht_operation_info *eht_oper_info; 3554 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 3555 u8 eht_oper_info_len = 3556 offsetof(struct ieee80211_eht_operation_info, optional); 3557 u8 chan_width = 0; 3558 3559 *pos++ = WLAN_EID_EXTENSION; 3560 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 3561 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 3562 3563 eht_oper = (struct ieee80211_eht_operation *)pos; 3564 3565 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 3566 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 3567 pos += eht_oper_len; 3568 3569 eht_oper_info = 3570 (struct ieee80211_eht_operation_info *)eht_oper->optional; 3571 3572 eht_oper_info->ccfs0 = 3573 ieee80211_frequency_to_channel(chandef->center_freq1); 3574 if (chandef->center_freq2) 3575 eht_oper_info->ccfs1 = 3576 ieee80211_frequency_to_channel(chandef->center_freq2); 3577 else 3578 eht_oper_info->ccfs1 = 0; 3579 3580 switch (chandef->width) { 3581 case NL80211_CHAN_WIDTH_320: 3582 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 3583 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3584 if (chandef->chan->center_freq < chandef->center_freq1) 3585 eht_oper_info->ccfs0 -= 16; 3586 else 3587 eht_oper_info->ccfs0 += 16; 3588 break; 3589 case NL80211_CHAN_WIDTH_160: 3590 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 3591 if (chandef->chan->center_freq < chandef->center_freq1) 3592 eht_oper_info->ccfs0 -= 8; 3593 else 3594 eht_oper_info->ccfs0 += 8; 3595 fallthrough; 3596 case NL80211_CHAN_WIDTH_80P80: 3597 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 3598 break; 3599 case NL80211_CHAN_WIDTH_80: 3600 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 3601 break; 3602 case NL80211_CHAN_WIDTH_40: 3603 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 3604 break; 3605 default: 3606 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 3607 break; 3608 } 3609 eht_oper_info->control = chan_width; 3610 pos += eht_oper_info_len; 3611 3612 /* TODO: eht_oper_info->optional */ 3613 3614 return pos; 3615 } 3616 3617 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3618 struct cfg80211_chan_def *chandef) 3619 { 3620 enum nl80211_channel_type channel_type; 3621 3622 if (!ht_oper) 3623 return false; 3624 3625 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3626 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3627 channel_type = NL80211_CHAN_HT20; 3628 break; 3629 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3630 channel_type = NL80211_CHAN_HT40PLUS; 3631 break; 3632 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3633 channel_type = NL80211_CHAN_HT40MINUS; 3634 break; 3635 default: 3636 return false; 3637 } 3638 3639 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3640 return true; 3641 } 3642 3643 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3644 const struct ieee80211_vht_operation *oper, 3645 const struct ieee80211_ht_operation *htop, 3646 struct cfg80211_chan_def *chandef) 3647 { 3648 struct cfg80211_chan_def new = *chandef; 3649 int cf0, cf1; 3650 int ccfs0, ccfs1, ccfs2; 3651 int ccf0, ccf1; 3652 u32 vht_cap; 3653 bool support_80_80 = false; 3654 bool support_160 = false; 3655 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3656 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3657 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3658 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3659 3660 if (!oper || !htop) 3661 return false; 3662 3663 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3664 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3665 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3666 support_80_80 = ((vht_cap & 3667 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3668 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3669 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3670 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3671 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3672 ccfs0 = oper->center_freq_seg0_idx; 3673 ccfs1 = oper->center_freq_seg1_idx; 3674 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3675 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3676 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3677 3678 ccf0 = ccfs0; 3679 3680 /* if not supported, parse as though we didn't understand it */ 3681 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3682 ext_nss_bw_supp = 0; 3683 3684 /* 3685 * Cf. IEEE 802.11 Table 9-250 3686 * 3687 * We really just consider that because it's inefficient to connect 3688 * at a higher bandwidth than we'll actually be able to use. 3689 */ 3690 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3691 default: 3692 case 0x00: 3693 ccf1 = 0; 3694 support_160 = false; 3695 support_80_80 = false; 3696 break; 3697 case 0x01: 3698 support_80_80 = false; 3699 fallthrough; 3700 case 0x02: 3701 case 0x03: 3702 ccf1 = ccfs2; 3703 break; 3704 case 0x10: 3705 ccf1 = ccfs1; 3706 break; 3707 case 0x11: 3708 case 0x12: 3709 if (!ccfs1) 3710 ccf1 = ccfs2; 3711 else 3712 ccf1 = ccfs1; 3713 break; 3714 case 0x13: 3715 case 0x20: 3716 case 0x23: 3717 ccf1 = ccfs1; 3718 break; 3719 } 3720 3721 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3722 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3723 3724 switch (oper->chan_width) { 3725 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3726 /* just use HT information directly */ 3727 break; 3728 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3729 new.width = NL80211_CHAN_WIDTH_80; 3730 new.center_freq1 = cf0; 3731 /* If needed, adjust based on the newer interop workaround. */ 3732 if (ccf1) { 3733 unsigned int diff; 3734 3735 diff = abs(ccf1 - ccf0); 3736 if ((diff == 8) && support_160) { 3737 new.width = NL80211_CHAN_WIDTH_160; 3738 new.center_freq1 = cf1; 3739 } else if ((diff > 8) && support_80_80) { 3740 new.width = NL80211_CHAN_WIDTH_80P80; 3741 new.center_freq2 = cf1; 3742 } 3743 } 3744 break; 3745 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3746 /* deprecated encoding */ 3747 new.width = NL80211_CHAN_WIDTH_160; 3748 new.center_freq1 = cf0; 3749 break; 3750 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3751 /* deprecated encoding */ 3752 new.width = NL80211_CHAN_WIDTH_80P80; 3753 new.center_freq1 = cf0; 3754 new.center_freq2 = cf1; 3755 break; 3756 default: 3757 return false; 3758 } 3759 3760 if (!cfg80211_chandef_valid(&new)) 3761 return false; 3762 3763 *chandef = new; 3764 return true; 3765 } 3766 3767 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3768 bool support_160, bool support_320, 3769 struct cfg80211_chan_def *chandef) 3770 { 3771 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3772 3773 chandef->center_freq1 = 3774 ieee80211_channel_to_frequency(info->ccfs0, 3775 chandef->chan->band); 3776 3777 switch (u8_get_bits(info->control, 3778 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3779 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3780 chandef->width = NL80211_CHAN_WIDTH_20; 3781 break; 3782 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3783 chandef->width = NL80211_CHAN_WIDTH_40; 3784 break; 3785 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3786 chandef->width = NL80211_CHAN_WIDTH_80; 3787 break; 3788 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3789 if (support_160) { 3790 chandef->width = NL80211_CHAN_WIDTH_160; 3791 chandef->center_freq1 = 3792 ieee80211_channel_to_frequency(info->ccfs1, 3793 chandef->chan->band); 3794 } else { 3795 chandef->width = NL80211_CHAN_WIDTH_80; 3796 } 3797 break; 3798 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3799 if (support_320) { 3800 chandef->width = NL80211_CHAN_WIDTH_320; 3801 chandef->center_freq1 = 3802 ieee80211_channel_to_frequency(info->ccfs1, 3803 chandef->chan->band); 3804 } else if (support_160) { 3805 chandef->width = NL80211_CHAN_WIDTH_160; 3806 } else { 3807 chandef->width = NL80211_CHAN_WIDTH_80; 3808 3809 if (chandef->center_freq1 > chandef->chan->center_freq) 3810 chandef->center_freq1 -= 40; 3811 else 3812 chandef->center_freq1 += 40; 3813 } 3814 break; 3815 } 3816 } 3817 3818 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3819 const struct ieee80211_he_operation *he_oper, 3820 const struct ieee80211_eht_operation *eht_oper, 3821 struct cfg80211_chan_def *chandef) 3822 { 3823 struct ieee80211_local *local = sdata->local; 3824 struct ieee80211_supported_band *sband; 3825 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3826 const struct ieee80211_sta_he_cap *he_cap; 3827 const struct ieee80211_sta_eht_cap *eht_cap; 3828 struct cfg80211_chan_def he_chandef = *chandef; 3829 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3830 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3831 bool support_80_80, support_160, support_320; 3832 u8 he_phy_cap, eht_phy_cap; 3833 u32 freq; 3834 3835 if (chandef->chan->band != NL80211_BAND_6GHZ) 3836 return true; 3837 3838 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3839 3840 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3841 if (!he_cap) { 3842 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3843 return false; 3844 } 3845 3846 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3847 support_160 = 3848 he_phy_cap & 3849 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3850 support_80_80 = 3851 he_phy_cap & 3852 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3853 3854 if (!he_oper) { 3855 sdata_info(sdata, 3856 "HE is not advertised on (on %d MHz), expect issues\n", 3857 chandef->chan->center_freq); 3858 return false; 3859 } 3860 3861 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3862 if (!eht_cap) 3863 eht_oper = NULL; 3864 3865 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3866 3867 if (!he_6ghz_oper) { 3868 sdata_info(sdata, 3869 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3870 chandef->chan->center_freq); 3871 return false; 3872 } 3873 3874 /* 3875 * The EHT operation IE does not contain the primary channel so the 3876 * primary channel frequency should be taken from the 6 GHz operation 3877 * information. 3878 */ 3879 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3880 NL80211_BAND_6GHZ); 3881 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3882 3883 switch (u8_get_bits(he_6ghz_oper->control, 3884 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3885 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3886 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3887 break; 3888 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3889 bss_conf->power_type = IEEE80211_REG_SP_AP; 3890 break; 3891 default: 3892 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3893 break; 3894 } 3895 3896 if (!eht_oper || 3897 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3898 switch (u8_get_bits(he_6ghz_oper->control, 3899 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3900 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3901 he_chandef.width = NL80211_CHAN_WIDTH_20; 3902 break; 3903 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3904 he_chandef.width = NL80211_CHAN_WIDTH_40; 3905 break; 3906 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3907 he_chandef.width = NL80211_CHAN_WIDTH_80; 3908 break; 3909 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3910 he_chandef.width = NL80211_CHAN_WIDTH_80; 3911 if (!he_6ghz_oper->ccfs1) 3912 break; 3913 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3914 if (support_160) 3915 he_chandef.width = NL80211_CHAN_WIDTH_160; 3916 } else { 3917 if (support_80_80) 3918 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3919 } 3920 break; 3921 } 3922 3923 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3924 he_chandef.center_freq1 = 3925 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3926 NL80211_BAND_6GHZ); 3927 } else { 3928 he_chandef.center_freq1 = 3929 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3930 NL80211_BAND_6GHZ); 3931 if (support_80_80 || support_160) 3932 he_chandef.center_freq2 = 3933 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3934 NL80211_BAND_6GHZ); 3935 } 3936 } else { 3937 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3938 support_320 = 3939 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3940 3941 ieee80211_chandef_eht_oper(eht_oper, support_160, 3942 support_320, &he_chandef); 3943 } 3944 3945 if (!cfg80211_chandef_valid(&he_chandef)) { 3946 sdata_info(sdata, 3947 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3948 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3949 he_chandef.width, 3950 he_chandef.center_freq1, 3951 he_chandef.center_freq2); 3952 return false; 3953 } 3954 3955 *chandef = he_chandef; 3956 3957 return true; 3958 } 3959 3960 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3961 struct cfg80211_chan_def *chandef) 3962 { 3963 u32 oper_freq; 3964 3965 if (!oper) 3966 return false; 3967 3968 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3969 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3970 chandef->width = NL80211_CHAN_WIDTH_1; 3971 break; 3972 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3973 chandef->width = NL80211_CHAN_WIDTH_2; 3974 break; 3975 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3976 chandef->width = NL80211_CHAN_WIDTH_4; 3977 break; 3978 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3979 chandef->width = NL80211_CHAN_WIDTH_8; 3980 break; 3981 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3982 chandef->width = NL80211_CHAN_WIDTH_16; 3983 break; 3984 default: 3985 return false; 3986 } 3987 3988 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3989 NL80211_BAND_S1GHZ); 3990 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3991 chandef->freq1_offset = oper_freq % 1000; 3992 3993 return true; 3994 } 3995 3996 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 3997 const struct ieee80211_supported_band *sband, 3998 const u8 *srates, int srates_len, u32 *rates) 3999 { 4000 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 4001 int shift = ieee80211_chanwidth_get_shift(width); 4002 struct ieee80211_rate *br; 4003 int brate, rate, i, j, count = 0; 4004 4005 *rates = 0; 4006 4007 for (i = 0; i < srates_len; i++) { 4008 rate = srates[i] & 0x7f; 4009 4010 for (j = 0; j < sband->n_bitrates; j++) { 4011 br = &sband->bitrates[j]; 4012 if ((rate_flags & br->flags) != rate_flags) 4013 continue; 4014 4015 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 4016 if (brate == rate) { 4017 *rates |= BIT(j); 4018 count++; 4019 break; 4020 } 4021 } 4022 } 4023 return count; 4024 } 4025 4026 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 4027 struct sk_buff *skb, bool need_basic, 4028 enum nl80211_band band) 4029 { 4030 struct ieee80211_local *local = sdata->local; 4031 struct ieee80211_supported_band *sband; 4032 int rate, shift; 4033 u8 i, rates, *pos; 4034 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4035 u32 rate_flags; 4036 4037 shift = ieee80211_vif_get_shift(&sdata->vif); 4038 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4039 sband = local->hw.wiphy->bands[band]; 4040 rates = 0; 4041 for (i = 0; i < sband->n_bitrates; i++) { 4042 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4043 continue; 4044 rates++; 4045 } 4046 if (rates > 8) 4047 rates = 8; 4048 4049 if (skb_tailroom(skb) < rates + 2) 4050 return -ENOMEM; 4051 4052 pos = skb_put(skb, rates + 2); 4053 *pos++ = WLAN_EID_SUPP_RATES; 4054 *pos++ = rates; 4055 for (i = 0; i < rates; i++) { 4056 u8 basic = 0; 4057 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4058 continue; 4059 4060 if (need_basic && basic_rates & BIT(i)) 4061 basic = 0x80; 4062 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4063 5 * (1 << shift)); 4064 *pos++ = basic | (u8) rate; 4065 } 4066 4067 return 0; 4068 } 4069 4070 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 4071 struct sk_buff *skb, bool need_basic, 4072 enum nl80211_band band) 4073 { 4074 struct ieee80211_local *local = sdata->local; 4075 struct ieee80211_supported_band *sband; 4076 int rate, shift; 4077 u8 i, exrates, *pos; 4078 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 4079 u32 rate_flags; 4080 4081 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 4082 shift = ieee80211_vif_get_shift(&sdata->vif); 4083 4084 sband = local->hw.wiphy->bands[band]; 4085 exrates = 0; 4086 for (i = 0; i < sband->n_bitrates; i++) { 4087 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 4088 continue; 4089 exrates++; 4090 } 4091 4092 if (exrates > 8) 4093 exrates -= 8; 4094 else 4095 exrates = 0; 4096 4097 if (skb_tailroom(skb) < exrates + 2) 4098 return -ENOMEM; 4099 4100 if (exrates) { 4101 pos = skb_put(skb, exrates + 2); 4102 *pos++ = WLAN_EID_EXT_SUPP_RATES; 4103 *pos++ = exrates; 4104 for (i = 8; i < sband->n_bitrates; i++) { 4105 u8 basic = 0; 4106 if ((rate_flags & sband->bitrates[i].flags) 4107 != rate_flags) 4108 continue; 4109 if (need_basic && basic_rates & BIT(i)) 4110 basic = 0x80; 4111 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 4112 5 * (1 << shift)); 4113 *pos++ = basic | (u8) rate; 4114 } 4115 } 4116 return 0; 4117 } 4118 4119 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 4120 { 4121 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4122 4123 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 4124 return 0; 4125 4126 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 4127 } 4128 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 4129 4130 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 4131 { 4132 if (!mcs) 4133 return 1; 4134 4135 /* TODO: consider rx_highest */ 4136 4137 if (mcs->rx_mask[3]) 4138 return 4; 4139 if (mcs->rx_mask[2]) 4140 return 3; 4141 if (mcs->rx_mask[1]) 4142 return 2; 4143 return 1; 4144 } 4145 4146 /** 4147 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4148 * @local: mac80211 hw info struct 4149 * @status: RX status 4150 * @mpdu_len: total MPDU length (including FCS) 4151 * @mpdu_offset: offset into MPDU to calculate timestamp at 4152 * 4153 * This function calculates the RX timestamp at the given MPDU offset, taking 4154 * into account what the RX timestamp was. An offset of 0 will just normalize 4155 * the timestamp to TSF at beginning of MPDU reception. 4156 */ 4157 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4158 struct ieee80211_rx_status *status, 4159 unsigned int mpdu_len, 4160 unsigned int mpdu_offset) 4161 { 4162 u64 ts = status->mactime; 4163 struct rate_info ri; 4164 u16 rate; 4165 u8 n_ltf; 4166 4167 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4168 return 0; 4169 4170 memset(&ri, 0, sizeof(ri)); 4171 4172 ri.bw = status->bw; 4173 4174 /* Fill cfg80211 rate info */ 4175 switch (status->encoding) { 4176 case RX_ENC_EHT: 4177 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 4178 ri.mcs = status->rate_idx; 4179 ri.nss = status->nss; 4180 ri.eht_ru_alloc = status->eht.ru; 4181 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4182 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4183 /* TODO/FIXME: is this right? handle other PPDUs */ 4184 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4185 mpdu_offset += 2; 4186 ts += 36; 4187 } 4188 break; 4189 case RX_ENC_HE: 4190 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4191 ri.mcs = status->rate_idx; 4192 ri.nss = status->nss; 4193 ri.he_ru_alloc = status->he_ru; 4194 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4195 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4196 4197 /* 4198 * See P802.11ax_D6.0, section 27.3.4 for 4199 * VHT PPDU format. 4200 */ 4201 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4202 mpdu_offset += 2; 4203 ts += 36; 4204 4205 /* 4206 * TODO: 4207 * For HE MU PPDU, add the HE-SIG-B. 4208 * For HE ER PPDU, add 8us for the HE-SIG-A. 4209 * For HE TB PPDU, add 4us for the HE-STF. 4210 * Add the HE-LTF durations - variable. 4211 */ 4212 } 4213 4214 break; 4215 case RX_ENC_HT: 4216 ri.mcs = status->rate_idx; 4217 ri.flags |= RATE_INFO_FLAGS_MCS; 4218 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4219 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4220 4221 /* 4222 * See P802.11REVmd_D3.0, section 19.3.2 for 4223 * HT PPDU format. 4224 */ 4225 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4226 mpdu_offset += 2; 4227 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4228 ts += 24; 4229 else 4230 ts += 32; 4231 4232 /* 4233 * Add Data HT-LTFs per streams 4234 * TODO: add Extension HT-LTFs, 4us per LTF 4235 */ 4236 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4237 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4238 ts += n_ltf * 4; 4239 } 4240 4241 break; 4242 case RX_ENC_VHT: 4243 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4244 ri.mcs = status->rate_idx; 4245 ri.nss = status->nss; 4246 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4247 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4248 4249 /* 4250 * See P802.11REVmd_D3.0, section 21.3.2 for 4251 * VHT PPDU format. 4252 */ 4253 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4254 mpdu_offset += 2; 4255 ts += 36; 4256 4257 /* 4258 * Add VHT-LTFs per streams 4259 */ 4260 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4261 ri.nss + 1 : ri.nss; 4262 ts += 4 * n_ltf; 4263 } 4264 4265 break; 4266 default: 4267 WARN_ON(1); 4268 fallthrough; 4269 case RX_ENC_LEGACY: { 4270 struct ieee80211_supported_band *sband; 4271 int shift = 0; 4272 int bitrate; 4273 4274 switch (status->bw) { 4275 case RATE_INFO_BW_10: 4276 shift = 1; 4277 break; 4278 case RATE_INFO_BW_5: 4279 shift = 2; 4280 break; 4281 } 4282 4283 sband = local->hw.wiphy->bands[status->band]; 4284 bitrate = sband->bitrates[status->rate_idx].bitrate; 4285 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4286 4287 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4288 if (status->band == NL80211_BAND_5GHZ) { 4289 ts += 20 << shift; 4290 mpdu_offset += 2; 4291 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4292 ts += 96; 4293 } else { 4294 ts += 192; 4295 } 4296 } 4297 break; 4298 } 4299 } 4300 4301 rate = cfg80211_calculate_bitrate(&ri); 4302 if (WARN_ONCE(!rate, 4303 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4304 (unsigned long long)status->flag, status->rate_idx, 4305 status->nss)) 4306 return 0; 4307 4308 /* rewind from end of MPDU */ 4309 if (status->flag & RX_FLAG_MACTIME_END) 4310 ts -= mpdu_len * 8 * 10 / rate; 4311 4312 ts += mpdu_offset * 8 * 10 / rate; 4313 4314 return ts; 4315 } 4316 4317 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4318 { 4319 struct ieee80211_sub_if_data *sdata; 4320 struct cfg80211_chan_def chandef; 4321 4322 lockdep_assert_wiphy(local->hw.wiphy); 4323 4324 list_for_each_entry(sdata, &local->interfaces, list) { 4325 /* it might be waiting for the local->mtx, but then 4326 * by the time it gets it, sdata->wdev.cac_started 4327 * will no longer be true 4328 */ 4329 wiphy_delayed_work_cancel(local->hw.wiphy, 4330 &sdata->deflink.dfs_cac_timer_work); 4331 4332 if (sdata->wdev.cac_started) { 4333 chandef = sdata->vif.bss_conf.chandef; 4334 ieee80211_link_release_channel(&sdata->deflink); 4335 cfg80211_cac_event(sdata->dev, 4336 &chandef, 4337 NL80211_RADAR_CAC_ABORTED, 4338 GFP_KERNEL); 4339 } 4340 } 4341 } 4342 4343 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 4344 struct wiphy_work *work) 4345 { 4346 struct ieee80211_local *local = 4347 container_of(work, struct ieee80211_local, radar_detected_work); 4348 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4349 struct ieee80211_chanctx *ctx; 4350 int num_chanctx = 0; 4351 4352 lockdep_assert_wiphy(local->hw.wiphy); 4353 4354 list_for_each_entry(ctx, &local->chanctx_list, list) { 4355 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4356 continue; 4357 4358 num_chanctx++; 4359 chandef = ctx->conf.def; 4360 } 4361 4362 ieee80211_dfs_cac_cancel(local); 4363 4364 if (num_chanctx > 1) 4365 /* XXX: multi-channel is not supported yet */ 4366 WARN_ON(1); 4367 else 4368 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4369 } 4370 4371 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4372 { 4373 struct ieee80211_local *local = hw_to_local(hw); 4374 4375 trace_api_radar_detected(local); 4376 4377 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 4378 } 4379 EXPORT_SYMBOL(ieee80211_radar_detected); 4380 4381 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4382 { 4383 ieee80211_conn_flags_t ret; 4384 int tmp; 4385 4386 switch (c->width) { 4387 case NL80211_CHAN_WIDTH_20: 4388 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4389 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4390 break; 4391 case NL80211_CHAN_WIDTH_40: 4392 c->width = NL80211_CHAN_WIDTH_20; 4393 c->center_freq1 = c->chan->center_freq; 4394 ret = IEEE80211_CONN_DISABLE_40MHZ | 4395 IEEE80211_CONN_DISABLE_VHT; 4396 break; 4397 case NL80211_CHAN_WIDTH_80: 4398 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4399 /* n_P40 */ 4400 tmp /= 2; 4401 /* freq_P40 */ 4402 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4403 c->width = NL80211_CHAN_WIDTH_40; 4404 ret = IEEE80211_CONN_DISABLE_VHT; 4405 break; 4406 case NL80211_CHAN_WIDTH_80P80: 4407 c->center_freq2 = 0; 4408 c->width = NL80211_CHAN_WIDTH_80; 4409 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4410 IEEE80211_CONN_DISABLE_160MHZ; 4411 break; 4412 case NL80211_CHAN_WIDTH_160: 4413 /* n_P20 */ 4414 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4415 /* n_P80 */ 4416 tmp /= 4; 4417 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4418 c->width = NL80211_CHAN_WIDTH_80; 4419 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4420 IEEE80211_CONN_DISABLE_160MHZ; 4421 break; 4422 case NL80211_CHAN_WIDTH_320: 4423 /* n_P20 */ 4424 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4425 /* n_P160 */ 4426 tmp /= 8; 4427 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4428 c->width = NL80211_CHAN_WIDTH_160; 4429 ret = IEEE80211_CONN_DISABLE_320MHZ; 4430 break; 4431 default: 4432 case NL80211_CHAN_WIDTH_20_NOHT: 4433 WARN_ON_ONCE(1); 4434 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4435 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4436 break; 4437 case NL80211_CHAN_WIDTH_1: 4438 case NL80211_CHAN_WIDTH_2: 4439 case NL80211_CHAN_WIDTH_4: 4440 case NL80211_CHAN_WIDTH_8: 4441 case NL80211_CHAN_WIDTH_16: 4442 case NL80211_CHAN_WIDTH_5: 4443 case NL80211_CHAN_WIDTH_10: 4444 WARN_ON_ONCE(1); 4445 /* keep c->width */ 4446 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4447 break; 4448 } 4449 4450 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4451 4452 return ret; 4453 } 4454 4455 /* 4456 * Returns true if smps_mode_new is strictly more restrictive than 4457 * smps_mode_old. 4458 */ 4459 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4460 enum ieee80211_smps_mode smps_mode_new) 4461 { 4462 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4463 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4464 return false; 4465 4466 switch (smps_mode_old) { 4467 case IEEE80211_SMPS_STATIC: 4468 return false; 4469 case IEEE80211_SMPS_DYNAMIC: 4470 return smps_mode_new == IEEE80211_SMPS_STATIC; 4471 case IEEE80211_SMPS_OFF: 4472 return smps_mode_new != IEEE80211_SMPS_OFF; 4473 default: 4474 WARN_ON(1); 4475 } 4476 4477 return false; 4478 } 4479 4480 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4481 struct cfg80211_csa_settings *csa_settings) 4482 { 4483 struct sk_buff *skb; 4484 struct ieee80211_mgmt *mgmt; 4485 struct ieee80211_local *local = sdata->local; 4486 int freq; 4487 int hdr_len = offsetofend(struct ieee80211_mgmt, 4488 u.action.u.chan_switch); 4489 u8 *pos; 4490 4491 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4492 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4493 return -EOPNOTSUPP; 4494 4495 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4496 5 + /* channel switch announcement element */ 4497 3 + /* secondary channel offset element */ 4498 5 + /* wide bandwidth channel switch announcement */ 4499 8); /* mesh channel switch parameters element */ 4500 if (!skb) 4501 return -ENOMEM; 4502 4503 skb_reserve(skb, local->tx_headroom); 4504 mgmt = skb_put_zero(skb, hdr_len); 4505 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4506 IEEE80211_STYPE_ACTION); 4507 4508 eth_broadcast_addr(mgmt->da); 4509 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4510 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4511 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4512 } else { 4513 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4514 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4515 } 4516 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4517 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4518 pos = skb_put(skb, 5); 4519 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4520 *pos++ = 3; /* IE length */ 4521 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4522 freq = csa_settings->chandef.chan->center_freq; 4523 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4524 *pos++ = csa_settings->count; /* count */ 4525 4526 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4527 enum nl80211_channel_type ch_type; 4528 4529 skb_put(skb, 3); 4530 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4531 *pos++ = 1; /* IE length */ 4532 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4533 if (ch_type == NL80211_CHAN_HT40PLUS) 4534 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4535 else 4536 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4537 } 4538 4539 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4540 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4541 4542 skb_put(skb, 8); 4543 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4544 *pos++ = 6; /* IE length */ 4545 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4546 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4547 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4548 *pos++ |= csa_settings->block_tx ? 4549 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4550 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4551 pos += 2; 4552 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4553 pos += 2; 4554 } 4555 4556 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4557 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4558 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4559 skb_put(skb, 5); 4560 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4561 } 4562 4563 ieee80211_tx_skb(sdata, skb); 4564 return 0; 4565 } 4566 4567 static bool 4568 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4569 { 4570 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4571 int skip; 4572 4573 if (end > 0) 4574 return false; 4575 4576 /* One shot NOA */ 4577 if (data->count[i] == 1) 4578 return false; 4579 4580 if (data->desc[i].interval == 0) 4581 return false; 4582 4583 /* End time is in the past, check for repetitions */ 4584 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4585 if (data->count[i] < 255) { 4586 if (data->count[i] <= skip) { 4587 data->count[i] = 0; 4588 return false; 4589 } 4590 4591 data->count[i] -= skip; 4592 } 4593 4594 data->desc[i].start += skip * data->desc[i].interval; 4595 4596 return true; 4597 } 4598 4599 static bool 4600 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4601 s32 *offset) 4602 { 4603 bool ret = false; 4604 int i; 4605 4606 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4607 s32 cur; 4608 4609 if (!data->count[i]) 4610 continue; 4611 4612 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4613 ret = true; 4614 4615 cur = data->desc[i].start - tsf; 4616 if (cur > *offset) 4617 continue; 4618 4619 cur = data->desc[i].start + data->desc[i].duration - tsf; 4620 if (cur > *offset) 4621 *offset = cur; 4622 } 4623 4624 return ret; 4625 } 4626 4627 static u32 4628 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4629 { 4630 s32 offset = 0; 4631 int tries = 0; 4632 /* 4633 * arbitrary limit, used to avoid infinite loops when combined NoA 4634 * descriptors cover the full time period. 4635 */ 4636 int max_tries = 5; 4637 4638 ieee80211_extend_absent_time(data, tsf, &offset); 4639 do { 4640 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4641 break; 4642 4643 tries++; 4644 } while (tries < max_tries); 4645 4646 return offset; 4647 } 4648 4649 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4650 { 4651 u32 next_offset = BIT(31) - 1; 4652 int i; 4653 4654 data->absent = 0; 4655 data->has_next_tsf = false; 4656 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4657 s32 start; 4658 4659 if (!data->count[i]) 4660 continue; 4661 4662 ieee80211_extend_noa_desc(data, tsf, i); 4663 start = data->desc[i].start - tsf; 4664 if (start <= 0) 4665 data->absent |= BIT(i); 4666 4667 if (next_offset > start) 4668 next_offset = start; 4669 4670 data->has_next_tsf = true; 4671 } 4672 4673 if (data->absent) 4674 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4675 4676 data->next_tsf = tsf + next_offset; 4677 } 4678 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4679 4680 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4681 struct ieee80211_noa_data *data, u32 tsf) 4682 { 4683 int ret = 0; 4684 int i; 4685 4686 memset(data, 0, sizeof(*data)); 4687 4688 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4689 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4690 4691 if (!desc->count || !desc->duration) 4692 continue; 4693 4694 data->count[i] = desc->count; 4695 data->desc[i].start = le32_to_cpu(desc->start_time); 4696 data->desc[i].duration = le32_to_cpu(desc->duration); 4697 data->desc[i].interval = le32_to_cpu(desc->interval); 4698 4699 if (data->count[i] > 1 && 4700 data->desc[i].interval < data->desc[i].duration) 4701 continue; 4702 4703 ieee80211_extend_noa_desc(data, tsf, i); 4704 ret++; 4705 } 4706 4707 if (ret) 4708 ieee80211_update_p2p_noa(data, tsf); 4709 4710 return ret; 4711 } 4712 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4713 4714 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4715 struct ieee80211_sub_if_data *sdata) 4716 { 4717 u64 tsf = drv_get_tsf(local, sdata); 4718 u64 dtim_count = 0; 4719 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4720 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4721 struct ps_data *ps; 4722 u8 bcns_from_dtim; 4723 4724 if (tsf == -1ULL || !beacon_int || !dtim_period) 4725 return; 4726 4727 if (sdata->vif.type == NL80211_IFTYPE_AP || 4728 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4729 if (!sdata->bss) 4730 return; 4731 4732 ps = &sdata->bss->ps; 4733 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4734 ps = &sdata->u.mesh.ps; 4735 } else { 4736 return; 4737 } 4738 4739 /* 4740 * actually finds last dtim_count, mac80211 will update in 4741 * __beacon_add_tim(). 4742 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4743 */ 4744 do_div(tsf, beacon_int); 4745 bcns_from_dtim = do_div(tsf, dtim_period); 4746 /* just had a DTIM */ 4747 if (!bcns_from_dtim) 4748 dtim_count = 0; 4749 else 4750 dtim_count = dtim_period - bcns_from_dtim; 4751 4752 ps->dtim_count = dtim_count; 4753 } 4754 4755 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4756 struct ieee80211_chanctx *ctx) 4757 { 4758 struct ieee80211_link_data *link; 4759 u8 radar_detect = 0; 4760 4761 lockdep_assert_wiphy(local->hw.wiphy); 4762 4763 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4764 return 0; 4765 4766 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4767 if (link->reserved_radar_required) 4768 radar_detect |= BIT(link->reserved_chandef.width); 4769 4770 /* 4771 * An in-place reservation context should not have any assigned vifs 4772 * until it replaces the other context. 4773 */ 4774 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4775 !list_empty(&ctx->assigned_links)); 4776 4777 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4778 if (!link->radar_required) 4779 continue; 4780 4781 radar_detect |= 4782 BIT(link->conf->chandef.width); 4783 } 4784 4785 return radar_detect; 4786 } 4787 4788 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4789 const struct cfg80211_chan_def *chandef, 4790 enum ieee80211_chanctx_mode chanmode, 4791 u8 radar_detect) 4792 { 4793 struct ieee80211_local *local = sdata->local; 4794 struct ieee80211_sub_if_data *sdata_iter; 4795 enum nl80211_iftype iftype = sdata->wdev.iftype; 4796 struct ieee80211_chanctx *ctx; 4797 int total = 1; 4798 struct iface_combination_params params = { 4799 .radar_detect = radar_detect, 4800 }; 4801 4802 lockdep_assert_wiphy(local->hw.wiphy); 4803 4804 if (WARN_ON(hweight32(radar_detect) > 1)) 4805 return -EINVAL; 4806 4807 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4808 !chandef->chan)) 4809 return -EINVAL; 4810 4811 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4812 return -EINVAL; 4813 4814 if (sdata->vif.type == NL80211_IFTYPE_AP || 4815 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4816 /* 4817 * always passing this is harmless, since it'll be the 4818 * same value that cfg80211 finds if it finds the same 4819 * interface ... and that's always allowed 4820 */ 4821 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4822 } 4823 4824 /* Always allow software iftypes */ 4825 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4826 if (radar_detect) 4827 return -EINVAL; 4828 return 0; 4829 } 4830 4831 if (chandef) 4832 params.num_different_channels = 1; 4833 4834 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4835 params.iftype_num[iftype] = 1; 4836 4837 list_for_each_entry(ctx, &local->chanctx_list, list) { 4838 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4839 continue; 4840 params.radar_detect |= 4841 ieee80211_chanctx_radar_detect(local, ctx); 4842 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4843 params.num_different_channels++; 4844 continue; 4845 } 4846 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4847 cfg80211_chandef_compatible(chandef, 4848 &ctx->conf.def)) 4849 continue; 4850 params.num_different_channels++; 4851 } 4852 4853 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4854 struct wireless_dev *wdev_iter; 4855 4856 wdev_iter = &sdata_iter->wdev; 4857 4858 if (sdata_iter == sdata || 4859 !ieee80211_sdata_running(sdata_iter) || 4860 cfg80211_iftype_allowed(local->hw.wiphy, 4861 wdev_iter->iftype, 0, 1)) 4862 continue; 4863 4864 params.iftype_num[wdev_iter->iftype]++; 4865 total++; 4866 } 4867 4868 if (total == 1 && !params.radar_detect) 4869 return 0; 4870 4871 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4872 } 4873 4874 static void 4875 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4876 void *data) 4877 { 4878 u32 *max_num_different_channels = data; 4879 4880 *max_num_different_channels = max(*max_num_different_channels, 4881 c->num_different_channels); 4882 } 4883 4884 int ieee80211_max_num_channels(struct ieee80211_local *local) 4885 { 4886 struct ieee80211_sub_if_data *sdata; 4887 struct ieee80211_chanctx *ctx; 4888 u32 max_num_different_channels = 1; 4889 int err; 4890 struct iface_combination_params params = {0}; 4891 4892 lockdep_assert_wiphy(local->hw.wiphy); 4893 4894 list_for_each_entry(ctx, &local->chanctx_list, list) { 4895 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4896 continue; 4897 4898 params.num_different_channels++; 4899 4900 params.radar_detect |= 4901 ieee80211_chanctx_radar_detect(local, ctx); 4902 } 4903 4904 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4905 params.iftype_num[sdata->wdev.iftype]++; 4906 4907 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4908 ieee80211_iter_max_chans, 4909 &max_num_different_channels); 4910 if (err < 0) 4911 return err; 4912 4913 return max_num_different_channels; 4914 } 4915 4916 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4917 struct ieee80211_sta_s1g_cap *caps, 4918 struct sk_buff *skb) 4919 { 4920 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4921 struct ieee80211_s1g_cap s1g_capab; 4922 u8 *pos; 4923 int i; 4924 4925 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4926 return; 4927 4928 if (!caps->s1g) 4929 return; 4930 4931 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4932 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4933 4934 /* override the capability info */ 4935 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4936 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4937 4938 s1g_capab.capab_info[i] &= ~mask; 4939 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4940 } 4941 4942 /* then MCS and NSS set */ 4943 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4944 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4945 4946 s1g_capab.supp_mcs_nss[i] &= ~mask; 4947 s1g_capab.supp_mcs_nss[i] |= 4948 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4949 } 4950 4951 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4952 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4953 *pos++ = sizeof(s1g_capab); 4954 4955 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4956 } 4957 4958 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4959 struct sk_buff *skb) 4960 { 4961 u8 *pos = skb_put(skb, 3); 4962 4963 *pos++ = WLAN_EID_AID_REQUEST; 4964 *pos++ = 1; 4965 *pos++ = 0; 4966 } 4967 4968 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4969 { 4970 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4971 *buf++ = 7; /* len */ 4972 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4973 *buf++ = 0x50; 4974 *buf++ = 0xf2; 4975 *buf++ = 2; /* WME */ 4976 *buf++ = 0; /* WME info */ 4977 *buf++ = 1; /* WME ver */ 4978 *buf++ = qosinfo; /* U-APSD no in use */ 4979 4980 return buf; 4981 } 4982 4983 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4984 unsigned long *frame_cnt, 4985 unsigned long *byte_cnt) 4986 { 4987 struct txq_info *txqi = to_txq_info(txq); 4988 u32 frag_cnt = 0, frag_bytes = 0; 4989 struct sk_buff *skb; 4990 4991 skb_queue_walk(&txqi->frags, skb) { 4992 frag_cnt++; 4993 frag_bytes += skb->len; 4994 } 4995 4996 if (frame_cnt) 4997 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4998 4999 if (byte_cnt) 5000 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 5001 } 5002 EXPORT_SYMBOL(ieee80211_txq_get_depth); 5003 5004 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 5005 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 5006 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 5007 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 5008 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 5009 }; 5010 5011 u16 ieee80211_encode_usf(int listen_interval) 5012 { 5013 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 5014 u16 ui, usf = 0; 5015 5016 /* find greatest USF */ 5017 while (usf < IEEE80211_MAX_USF) { 5018 if (listen_interval % listen_int_usf[usf + 1]) 5019 break; 5020 usf += 1; 5021 } 5022 ui = listen_interval / listen_int_usf[usf]; 5023 5024 /* error if there is a remainder. Should've been checked by user */ 5025 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 5026 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 5027 FIELD_PREP(LISTEN_INT_UI, ui); 5028 5029 return (u16) listen_interval; 5030 } 5031 5032 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 5033 { 5034 const struct ieee80211_sta_he_cap *he_cap; 5035 const struct ieee80211_sta_eht_cap *eht_cap; 5036 struct ieee80211_supported_band *sband; 5037 bool is_ap; 5038 u8 n; 5039 5040 sband = ieee80211_get_sband(sdata); 5041 if (!sband) 5042 return 0; 5043 5044 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 5045 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 5046 if (!he_cap || !eht_cap) 5047 return 0; 5048 5049 is_ap = iftype == NL80211_IFTYPE_AP || 5050 iftype == NL80211_IFTYPE_P2P_GO; 5051 5052 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5053 &eht_cap->eht_cap_elem, 5054 is_ap); 5055 return 2 + 1 + 5056 sizeof(eht_cap->eht_cap_elem) + n + 5057 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5058 eht_cap->eht_cap_elem.phy_cap_info); 5059 return 0; 5060 } 5061 5062 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 5063 const struct ieee80211_sta_he_cap *he_cap, 5064 const struct ieee80211_sta_eht_cap *eht_cap, 5065 u8 *end, 5066 bool for_ap) 5067 { 5068 u8 mcs_nss_len, ppet_len; 5069 u8 ie_len; 5070 u8 *orig_pos = pos; 5071 5072 /* Make sure we have place for the IE */ 5073 if (!he_cap || !eht_cap) 5074 return orig_pos; 5075 5076 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 5077 &eht_cap->eht_cap_elem, 5078 for_ap); 5079 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 5080 eht_cap->eht_cap_elem.phy_cap_info); 5081 5082 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 5083 if ((end - pos) < ie_len) 5084 return orig_pos; 5085 5086 *pos++ = WLAN_EID_EXTENSION; 5087 *pos++ = ie_len - 2; 5088 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 5089 5090 /* Fixed data */ 5091 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 5092 pos += sizeof(eht_cap->eht_cap_elem); 5093 5094 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 5095 pos += mcs_nss_len; 5096 5097 if (ppet_len) { 5098 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 5099 pos += ppet_len; 5100 } 5101 5102 return pos; 5103 } 5104 5105 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos, u8 frag_id) 5106 { 5107 unsigned int elem_len; 5108 5109 if (!len_pos) 5110 return; 5111 5112 elem_len = skb->data + skb->len - len_pos - 1; 5113 5114 while (elem_len > 255) { 5115 /* this one is 255 */ 5116 *len_pos = 255; 5117 /* remaining data gets smaller */ 5118 elem_len -= 255; 5119 /* make space for the fragment ID/len in SKB */ 5120 skb_put(skb, 2); 5121 /* shift back the remaining data to place fragment ID/len */ 5122 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 5123 /* place the fragment ID */ 5124 len_pos += 255 + 1; 5125 *len_pos = frag_id; 5126 /* and point to fragment length to update later */ 5127 len_pos++; 5128 } 5129 5130 *len_pos = elem_len; 5131 } 5132 EXPORT_SYMBOL_IF_KUNIT(ieee80211_fragment_element); 5133