1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->deflink.operating_11g_mode) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->deflink.operating_11g_mode) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->deflink.operating_11g_mode) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void wake_tx_push_queue(struct ieee80211_local *local, 292 struct ieee80211_sub_if_data *sdata, 293 struct ieee80211_txq *queue) 294 { 295 struct ieee80211_tx_control control = { 296 .sta = queue->sta, 297 }; 298 struct sk_buff *skb; 299 300 while (1) { 301 skb = ieee80211_tx_dequeue(&local->hw, queue); 302 if (!skb) 303 break; 304 305 drv_tx(local, &control, skb); 306 } 307 } 308 309 /* wake_tx_queue handler for driver not implementing a custom one*/ 310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 311 struct ieee80211_txq *txq) 312 { 313 struct ieee80211_local *local = hw_to_local(hw); 314 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 315 struct ieee80211_txq *queue; 316 317 /* Use ieee80211_next_txq() for airtime fairness accounting */ 318 ieee80211_txq_schedule_start(hw, txq->ac); 319 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 320 wake_tx_push_queue(local, sdata, queue); 321 ieee80211_return_txq(hw, queue, false); 322 } 323 ieee80211_txq_schedule_end(hw, txq->ac); 324 } 325 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 326 327 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 328 { 329 struct ieee80211_local *local = sdata->local; 330 struct ieee80211_vif *vif = &sdata->vif; 331 struct fq *fq = &local->fq; 332 struct ps_data *ps = NULL; 333 struct txq_info *txqi; 334 struct sta_info *sta; 335 int i; 336 337 local_bh_disable(); 338 spin_lock(&fq->lock); 339 340 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 341 goto out; 342 343 if (sdata->vif.type == NL80211_IFTYPE_AP) 344 ps = &sdata->bss->ps; 345 346 list_for_each_entry_rcu(sta, &local->sta_list, list) { 347 if (sdata != sta->sdata) 348 continue; 349 350 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 351 struct ieee80211_txq *txq = sta->sta.txq[i]; 352 353 if (!txq) 354 continue; 355 356 txqi = to_txq_info(txq); 357 358 if (ac != txq->ac) 359 continue; 360 361 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 362 &txqi->flags)) 363 continue; 364 365 spin_unlock(&fq->lock); 366 drv_wake_tx_queue(local, txqi); 367 spin_lock(&fq->lock); 368 } 369 } 370 371 if (!vif->txq) 372 goto out; 373 374 txqi = to_txq_info(vif->txq); 375 376 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 377 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 378 goto out; 379 380 spin_unlock(&fq->lock); 381 382 drv_wake_tx_queue(local, txqi); 383 local_bh_enable(); 384 return; 385 out: 386 spin_unlock(&fq->lock); 387 local_bh_enable(); 388 } 389 390 static void 391 __releases(&local->queue_stop_reason_lock) 392 __acquires(&local->queue_stop_reason_lock) 393 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 394 { 395 struct ieee80211_sub_if_data *sdata; 396 int n_acs = IEEE80211_NUM_ACS; 397 int i; 398 399 rcu_read_lock(); 400 401 if (local->hw.queues < IEEE80211_NUM_ACS) 402 n_acs = 1; 403 404 for (i = 0; i < local->hw.queues; i++) { 405 if (local->queue_stop_reasons[i]) 406 continue; 407 408 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 409 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 410 int ac; 411 412 for (ac = 0; ac < n_acs; ac++) { 413 int ac_queue = sdata->vif.hw_queue[ac]; 414 415 if (ac_queue == i || 416 sdata->vif.cab_queue == i) 417 __ieee80211_wake_txqs(sdata, ac); 418 } 419 } 420 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 421 } 422 423 rcu_read_unlock(); 424 } 425 426 void ieee80211_wake_txqs(struct tasklet_struct *t) 427 { 428 struct ieee80211_local *local = from_tasklet(local, t, 429 wake_txqs_tasklet); 430 unsigned long flags; 431 432 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 433 _ieee80211_wake_txqs(local, &flags); 434 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 435 } 436 437 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 438 enum queue_stop_reason reason, 439 bool refcounted, 440 unsigned long *flags) 441 { 442 struct ieee80211_local *local = hw_to_local(hw); 443 444 trace_wake_queue(local, queue, reason); 445 446 if (WARN_ON(queue >= hw->queues)) 447 return; 448 449 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 450 return; 451 452 if (!refcounted) { 453 local->q_stop_reasons[queue][reason] = 0; 454 } else { 455 local->q_stop_reasons[queue][reason]--; 456 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 457 local->q_stop_reasons[queue][reason] = 0; 458 } 459 460 if (local->q_stop_reasons[queue][reason] == 0) 461 __clear_bit(reason, &local->queue_stop_reasons[queue]); 462 463 if (local->queue_stop_reasons[queue] != 0) 464 /* someone still has this queue stopped */ 465 return; 466 467 if (!skb_queue_empty(&local->pending[queue])) 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 478 tasklet_schedule(&local->wake_txqs_tasklet); 479 else 480 _ieee80211_wake_txqs(local, flags); 481 } 482 483 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 484 enum queue_stop_reason reason, 485 bool refcounted) 486 { 487 struct ieee80211_local *local = hw_to_local(hw); 488 unsigned long flags; 489 490 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 491 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 492 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 493 } 494 495 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 496 { 497 ieee80211_wake_queue_by_reason(hw, queue, 498 IEEE80211_QUEUE_STOP_REASON_DRIVER, 499 false); 500 } 501 EXPORT_SYMBOL(ieee80211_wake_queue); 502 503 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 504 enum queue_stop_reason reason, 505 bool refcounted) 506 { 507 struct ieee80211_local *local = hw_to_local(hw); 508 509 trace_stop_queue(local, queue, reason); 510 511 if (WARN_ON(queue >= hw->queues)) 512 return; 513 514 if (!refcounted) 515 local->q_stop_reasons[queue][reason] = 1; 516 else 517 local->q_stop_reasons[queue][reason]++; 518 519 set_bit(reason, &local->queue_stop_reasons[queue]); 520 } 521 522 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 523 enum queue_stop_reason reason, 524 bool refcounted) 525 { 526 struct ieee80211_local *local = hw_to_local(hw); 527 unsigned long flags; 528 529 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 530 __ieee80211_stop_queue(hw, queue, reason, refcounted); 531 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 532 } 533 534 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 535 { 536 ieee80211_stop_queue_by_reason(hw, queue, 537 IEEE80211_QUEUE_STOP_REASON_DRIVER, 538 false); 539 } 540 EXPORT_SYMBOL(ieee80211_stop_queue); 541 542 void ieee80211_add_pending_skb(struct ieee80211_local *local, 543 struct sk_buff *skb) 544 { 545 struct ieee80211_hw *hw = &local->hw; 546 unsigned long flags; 547 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 548 int queue = info->hw_queue; 549 550 if (WARN_ON(!info->control.vif)) { 551 ieee80211_free_txskb(&local->hw, skb); 552 return; 553 } 554 555 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 556 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 557 false); 558 __skb_queue_tail(&local->pending[queue], skb); 559 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 560 false, &flags); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 565 struct sk_buff_head *skbs) 566 { 567 struct ieee80211_hw *hw = &local->hw; 568 struct sk_buff *skb; 569 unsigned long flags; 570 int queue, i; 571 572 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 573 while ((skb = skb_dequeue(skbs))) { 574 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 575 576 if (WARN_ON(!info->control.vif)) { 577 ieee80211_free_txskb(&local->hw, skb); 578 continue; 579 } 580 581 queue = info->hw_queue; 582 583 __ieee80211_stop_queue(hw, queue, 584 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 585 false); 586 587 __skb_queue_tail(&local->pending[queue], skb); 588 } 589 590 for (i = 0; i < hw->queues; i++) 591 __ieee80211_wake_queue(hw, i, 592 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 593 false, &flags); 594 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 595 } 596 597 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 598 unsigned long queues, 599 enum queue_stop_reason reason, 600 bool refcounted) 601 { 602 struct ieee80211_local *local = hw_to_local(hw); 603 unsigned long flags; 604 int i; 605 606 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 607 608 for_each_set_bit(i, &queues, hw->queues) 609 __ieee80211_stop_queue(hw, i, reason, refcounted); 610 611 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 612 } 613 614 void ieee80211_stop_queues(struct ieee80211_hw *hw) 615 { 616 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 617 IEEE80211_QUEUE_STOP_REASON_DRIVER, 618 false); 619 } 620 EXPORT_SYMBOL(ieee80211_stop_queues); 621 622 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 623 { 624 struct ieee80211_local *local = hw_to_local(hw); 625 unsigned long flags; 626 int ret; 627 628 if (WARN_ON(queue >= hw->queues)) 629 return true; 630 631 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 632 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 633 &local->queue_stop_reasons[queue]); 634 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 635 return ret; 636 } 637 EXPORT_SYMBOL(ieee80211_queue_stopped); 638 639 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 640 unsigned long queues, 641 enum queue_stop_reason reason, 642 bool refcounted) 643 { 644 struct ieee80211_local *local = hw_to_local(hw); 645 unsigned long flags; 646 int i; 647 648 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 649 650 for_each_set_bit(i, &queues, hw->queues) 651 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 652 653 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 654 } 655 656 void ieee80211_wake_queues(struct ieee80211_hw *hw) 657 { 658 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 659 IEEE80211_QUEUE_STOP_REASON_DRIVER, 660 false); 661 } 662 EXPORT_SYMBOL(ieee80211_wake_queues); 663 664 static unsigned int 665 ieee80211_get_vif_queues(struct ieee80211_local *local, 666 struct ieee80211_sub_if_data *sdata) 667 { 668 unsigned int queues; 669 670 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 671 int ac; 672 673 queues = 0; 674 675 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 676 queues |= BIT(sdata->vif.hw_queue[ac]); 677 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 678 queues |= BIT(sdata->vif.cab_queue); 679 } else { 680 /* all queues */ 681 queues = BIT(local->hw.queues) - 1; 682 } 683 684 return queues; 685 } 686 687 void __ieee80211_flush_queues(struct ieee80211_local *local, 688 struct ieee80211_sub_if_data *sdata, 689 unsigned int queues, bool drop) 690 { 691 if (!local->ops->flush) 692 return; 693 694 /* 695 * If no queue was set, or if the HW doesn't support 696 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 697 */ 698 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 699 queues = ieee80211_get_vif_queues(local, sdata); 700 701 ieee80211_stop_queues_by_reason(&local->hw, queues, 702 IEEE80211_QUEUE_STOP_REASON_FLUSH, 703 false); 704 705 drv_flush(local, sdata, queues, drop); 706 707 ieee80211_wake_queues_by_reason(&local->hw, queues, 708 IEEE80211_QUEUE_STOP_REASON_FLUSH, 709 false); 710 } 711 712 void ieee80211_flush_queues(struct ieee80211_local *local, 713 struct ieee80211_sub_if_data *sdata, bool drop) 714 { 715 __ieee80211_flush_queues(local, sdata, 0, drop); 716 } 717 718 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 719 struct ieee80211_sub_if_data *sdata, 720 enum queue_stop_reason reason) 721 { 722 ieee80211_stop_queues_by_reason(&local->hw, 723 ieee80211_get_vif_queues(local, sdata), 724 reason, true); 725 } 726 727 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 728 struct ieee80211_sub_if_data *sdata, 729 enum queue_stop_reason reason) 730 { 731 ieee80211_wake_queues_by_reason(&local->hw, 732 ieee80211_get_vif_queues(local, sdata), 733 reason, true); 734 } 735 736 static void __iterate_interfaces(struct ieee80211_local *local, 737 u32 iter_flags, 738 void (*iterator)(void *data, u8 *mac, 739 struct ieee80211_vif *vif), 740 void *data) 741 { 742 struct ieee80211_sub_if_data *sdata; 743 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 744 745 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 746 switch (sdata->vif.type) { 747 case NL80211_IFTYPE_MONITOR: 748 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 749 continue; 750 break; 751 case NL80211_IFTYPE_AP_VLAN: 752 continue; 753 default: 754 break; 755 } 756 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 757 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 758 continue; 759 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 760 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 761 continue; 762 if (ieee80211_sdata_running(sdata) || !active_only) 763 iterator(data, sdata->vif.addr, 764 &sdata->vif); 765 } 766 767 sdata = rcu_dereference_check(local->monitor_sdata, 768 lockdep_is_held(&local->iflist_mtx) || 769 lockdep_is_held(&local->hw.wiphy->mtx)); 770 if (sdata && 771 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 772 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 773 iterator(data, sdata->vif.addr, &sdata->vif); 774 } 775 776 void ieee80211_iterate_interfaces( 777 struct ieee80211_hw *hw, u32 iter_flags, 778 void (*iterator)(void *data, u8 *mac, 779 struct ieee80211_vif *vif), 780 void *data) 781 { 782 struct ieee80211_local *local = hw_to_local(hw); 783 784 mutex_lock(&local->iflist_mtx); 785 __iterate_interfaces(local, iter_flags, iterator, data); 786 mutex_unlock(&local->iflist_mtx); 787 } 788 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 789 790 void ieee80211_iterate_active_interfaces_atomic( 791 struct ieee80211_hw *hw, u32 iter_flags, 792 void (*iterator)(void *data, u8 *mac, 793 struct ieee80211_vif *vif), 794 void *data) 795 { 796 struct ieee80211_local *local = hw_to_local(hw); 797 798 rcu_read_lock(); 799 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 800 iterator, data); 801 rcu_read_unlock(); 802 } 803 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 804 805 void ieee80211_iterate_active_interfaces_mtx( 806 struct ieee80211_hw *hw, u32 iter_flags, 807 void (*iterator)(void *data, u8 *mac, 808 struct ieee80211_vif *vif), 809 void *data) 810 { 811 struct ieee80211_local *local = hw_to_local(hw); 812 813 lockdep_assert_wiphy(hw->wiphy); 814 815 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 816 iterator, data); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 819 820 static void __iterate_stations(struct ieee80211_local *local, 821 void (*iterator)(void *data, 822 struct ieee80211_sta *sta), 823 void *data) 824 { 825 struct sta_info *sta; 826 827 list_for_each_entry_rcu(sta, &local->sta_list, list) { 828 if (!sta->uploaded) 829 continue; 830 831 iterator(data, &sta->sta); 832 } 833 } 834 835 void ieee80211_iterate_stations(struct ieee80211_hw *hw, 836 void (*iterator)(void *data, 837 struct ieee80211_sta *sta), 838 void *data) 839 { 840 struct ieee80211_local *local = hw_to_local(hw); 841 842 mutex_lock(&local->sta_mtx); 843 __iterate_stations(local, iterator, data); 844 mutex_unlock(&local->sta_mtx); 845 } 846 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations); 847 848 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 849 void (*iterator)(void *data, 850 struct ieee80211_sta *sta), 851 void *data) 852 { 853 struct ieee80211_local *local = hw_to_local(hw); 854 855 rcu_read_lock(); 856 __iterate_stations(local, iterator, data); 857 rcu_read_unlock(); 858 } 859 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 860 861 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 862 { 863 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 864 865 if (!ieee80211_sdata_running(sdata) || 866 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 867 return NULL; 868 return &sdata->vif; 869 } 870 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 871 872 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 873 { 874 if (!vif) 875 return NULL; 876 877 return &vif_to_sdata(vif)->wdev; 878 } 879 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 880 881 /* 882 * Nothing should have been stuffed into the workqueue during 883 * the suspend->resume cycle. Since we can't check each caller 884 * of this function if we are already quiescing / suspended, 885 * check here and don't WARN since this can actually happen when 886 * the rx path (for example) is racing against __ieee80211_suspend 887 * and suspending / quiescing was set after the rx path checked 888 * them. 889 */ 890 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 891 { 892 if (local->quiescing || (local->suspended && !local->resuming)) { 893 pr_warn("queueing ieee80211 work while going to suspend\n"); 894 return false; 895 } 896 897 return true; 898 } 899 900 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 901 { 902 struct ieee80211_local *local = hw_to_local(hw); 903 904 if (!ieee80211_can_queue_work(local)) 905 return; 906 907 queue_work(local->workqueue, work); 908 } 909 EXPORT_SYMBOL(ieee80211_queue_work); 910 911 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 912 struct delayed_work *dwork, 913 unsigned long delay) 914 { 915 struct ieee80211_local *local = hw_to_local(hw); 916 917 if (!ieee80211_can_queue_work(local)) 918 return; 919 920 queue_delayed_work(local->workqueue, dwork, delay); 921 } 922 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 923 924 static void 925 ieee80211_parse_extension_element(u32 *crc, 926 const struct element *elem, 927 struct ieee802_11_elems *elems, 928 struct ieee80211_elems_parse_params *params) 929 { 930 const void *data = elem->data + 1; 931 u8 len; 932 933 if (!elem->datalen) 934 return; 935 936 len = elem->datalen - 1; 937 938 switch (elem->data[0]) { 939 case WLAN_EID_EXT_HE_MU_EDCA: 940 if (len >= sizeof(*elems->mu_edca_param_set)) { 941 elems->mu_edca_param_set = data; 942 if (crc) 943 *crc = crc32_be(*crc, (void *)elem, 944 elem->datalen + 2); 945 } 946 break; 947 case WLAN_EID_EXT_HE_CAPABILITY: 948 if (ieee80211_he_capa_size_ok(data, len)) { 949 elems->he_cap = data; 950 elems->he_cap_len = len; 951 } 952 break; 953 case WLAN_EID_EXT_HE_OPERATION: 954 if (len >= sizeof(*elems->he_operation) && 955 len >= ieee80211_he_oper_size(data) - 1) { 956 if (crc) 957 *crc = crc32_be(*crc, (void *)elem, 958 elem->datalen + 2); 959 elems->he_operation = data; 960 } 961 break; 962 case WLAN_EID_EXT_UORA: 963 if (len >= 1) 964 elems->uora_element = data; 965 break; 966 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 967 if (len == 3) 968 elems->max_channel_switch_time = data; 969 break; 970 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 971 if (len >= sizeof(*elems->mbssid_config_ie)) 972 elems->mbssid_config_ie = data; 973 break; 974 case WLAN_EID_EXT_HE_SPR: 975 if (len >= sizeof(*elems->he_spr) && 976 len >= ieee80211_he_spr_size(data)) 977 elems->he_spr = data; 978 break; 979 case WLAN_EID_EXT_HE_6GHZ_CAPA: 980 if (len >= sizeof(*elems->he_6ghz_capa)) 981 elems->he_6ghz_capa = data; 982 break; 983 case WLAN_EID_EXT_EHT_CAPABILITY: 984 if (ieee80211_eht_capa_size_ok(elems->he_cap, 985 data, len, 986 params->from_ap)) { 987 elems->eht_cap = data; 988 elems->eht_cap_len = len; 989 } 990 break; 991 case WLAN_EID_EXT_EHT_OPERATION: 992 if (ieee80211_eht_oper_size_ok(data, len)) 993 elems->eht_operation = data; 994 break; 995 case WLAN_EID_EXT_EHT_MULTI_LINK: 996 if (ieee80211_mle_size_ok(data, len)) { 997 elems->multi_link = (void *)data; 998 elems->multi_link_len = len; 999 } 1000 break; 1001 } 1002 } 1003 1004 static u32 1005 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params, 1006 struct ieee802_11_elems *elems, 1007 const struct element *check_inherit) 1008 { 1009 const struct element *elem; 1010 bool calc_crc = params->filter != 0; 1011 DECLARE_BITMAP(seen_elems, 256); 1012 u32 crc = params->crc; 1013 const u8 *ie; 1014 1015 bitmap_zero(seen_elems, 256); 1016 1017 for_each_element(elem, params->start, params->len) { 1018 bool elem_parse_failed; 1019 u8 id = elem->id; 1020 u8 elen = elem->datalen; 1021 const u8 *pos = elem->data; 1022 1023 if (check_inherit && 1024 !cfg80211_is_element_inherited(elem, 1025 check_inherit)) 1026 continue; 1027 1028 switch (id) { 1029 case WLAN_EID_SSID: 1030 case WLAN_EID_SUPP_RATES: 1031 case WLAN_EID_FH_PARAMS: 1032 case WLAN_EID_DS_PARAMS: 1033 case WLAN_EID_CF_PARAMS: 1034 case WLAN_EID_TIM: 1035 case WLAN_EID_IBSS_PARAMS: 1036 case WLAN_EID_CHALLENGE: 1037 case WLAN_EID_RSN: 1038 case WLAN_EID_ERP_INFO: 1039 case WLAN_EID_EXT_SUPP_RATES: 1040 case WLAN_EID_HT_CAPABILITY: 1041 case WLAN_EID_HT_OPERATION: 1042 case WLAN_EID_VHT_CAPABILITY: 1043 case WLAN_EID_VHT_OPERATION: 1044 case WLAN_EID_MESH_ID: 1045 case WLAN_EID_MESH_CONFIG: 1046 case WLAN_EID_PEER_MGMT: 1047 case WLAN_EID_PREQ: 1048 case WLAN_EID_PREP: 1049 case WLAN_EID_PERR: 1050 case WLAN_EID_RANN: 1051 case WLAN_EID_CHANNEL_SWITCH: 1052 case WLAN_EID_EXT_CHANSWITCH_ANN: 1053 case WLAN_EID_COUNTRY: 1054 case WLAN_EID_PWR_CONSTRAINT: 1055 case WLAN_EID_TIMEOUT_INTERVAL: 1056 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1057 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1058 case WLAN_EID_CHAN_SWITCH_PARAM: 1059 case WLAN_EID_EXT_CAPABILITY: 1060 case WLAN_EID_CHAN_SWITCH_TIMING: 1061 case WLAN_EID_LINK_ID: 1062 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1063 case WLAN_EID_RSNX: 1064 case WLAN_EID_S1G_BCN_COMPAT: 1065 case WLAN_EID_S1G_CAPABILITIES: 1066 case WLAN_EID_S1G_OPERATION: 1067 case WLAN_EID_AID_RESPONSE: 1068 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1069 /* 1070 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1071 * that if the content gets bigger it might be needed more than once 1072 */ 1073 if (test_bit(id, seen_elems)) { 1074 elems->parse_error = true; 1075 continue; 1076 } 1077 break; 1078 } 1079 1080 if (calc_crc && id < 64 && (params->filter & (1ULL << id))) 1081 crc = crc32_be(crc, pos - 2, elen + 2); 1082 1083 elem_parse_failed = false; 1084 1085 switch (id) { 1086 case WLAN_EID_LINK_ID: 1087 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1088 elem_parse_failed = true; 1089 break; 1090 } 1091 elems->lnk_id = (void *)(pos - 2); 1092 break; 1093 case WLAN_EID_CHAN_SWITCH_TIMING: 1094 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1095 elem_parse_failed = true; 1096 break; 1097 } 1098 elems->ch_sw_timing = (void *)pos; 1099 break; 1100 case WLAN_EID_EXT_CAPABILITY: 1101 elems->ext_capab = pos; 1102 elems->ext_capab_len = elen; 1103 break; 1104 case WLAN_EID_SSID: 1105 elems->ssid = pos; 1106 elems->ssid_len = elen; 1107 break; 1108 case WLAN_EID_SUPP_RATES: 1109 elems->supp_rates = pos; 1110 elems->supp_rates_len = elen; 1111 break; 1112 case WLAN_EID_DS_PARAMS: 1113 if (elen >= 1) 1114 elems->ds_params = pos; 1115 else 1116 elem_parse_failed = true; 1117 break; 1118 case WLAN_EID_TIM: 1119 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1120 elems->tim = (void *)pos; 1121 elems->tim_len = elen; 1122 } else 1123 elem_parse_failed = true; 1124 break; 1125 case WLAN_EID_VENDOR_SPECIFIC: 1126 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1127 pos[2] == 0xf2) { 1128 /* Microsoft OUI (00:50:F2) */ 1129 1130 if (calc_crc) 1131 crc = crc32_be(crc, pos - 2, elen + 2); 1132 1133 if (elen >= 5 && pos[3] == 2) { 1134 /* OUI Type 2 - WMM IE */ 1135 if (pos[4] == 0) { 1136 elems->wmm_info = pos; 1137 elems->wmm_info_len = elen; 1138 } else if (pos[4] == 1) { 1139 elems->wmm_param = pos; 1140 elems->wmm_param_len = elen; 1141 } 1142 } 1143 } 1144 break; 1145 case WLAN_EID_RSN: 1146 elems->rsn = pos; 1147 elems->rsn_len = elen; 1148 break; 1149 case WLAN_EID_ERP_INFO: 1150 if (elen >= 1) 1151 elems->erp_info = pos; 1152 else 1153 elem_parse_failed = true; 1154 break; 1155 case WLAN_EID_EXT_SUPP_RATES: 1156 elems->ext_supp_rates = pos; 1157 elems->ext_supp_rates_len = elen; 1158 break; 1159 case WLAN_EID_HT_CAPABILITY: 1160 if (elen >= sizeof(struct ieee80211_ht_cap)) 1161 elems->ht_cap_elem = (void *)pos; 1162 else 1163 elem_parse_failed = true; 1164 break; 1165 case WLAN_EID_HT_OPERATION: 1166 if (elen >= sizeof(struct ieee80211_ht_operation)) 1167 elems->ht_operation = (void *)pos; 1168 else 1169 elem_parse_failed = true; 1170 break; 1171 case WLAN_EID_VHT_CAPABILITY: 1172 if (elen >= sizeof(struct ieee80211_vht_cap)) 1173 elems->vht_cap_elem = (void *)pos; 1174 else 1175 elem_parse_failed = true; 1176 break; 1177 case WLAN_EID_VHT_OPERATION: 1178 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1179 elems->vht_operation = (void *)pos; 1180 if (calc_crc) 1181 crc = crc32_be(crc, pos - 2, elen + 2); 1182 break; 1183 } 1184 elem_parse_failed = true; 1185 break; 1186 case WLAN_EID_OPMODE_NOTIF: 1187 if (elen > 0) { 1188 elems->opmode_notif = pos; 1189 if (calc_crc) 1190 crc = crc32_be(crc, pos - 2, elen + 2); 1191 break; 1192 } 1193 elem_parse_failed = true; 1194 break; 1195 case WLAN_EID_MESH_ID: 1196 elems->mesh_id = pos; 1197 elems->mesh_id_len = elen; 1198 break; 1199 case WLAN_EID_MESH_CONFIG: 1200 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1201 elems->mesh_config = (void *)pos; 1202 else 1203 elem_parse_failed = true; 1204 break; 1205 case WLAN_EID_PEER_MGMT: 1206 elems->peering = pos; 1207 elems->peering_len = elen; 1208 break; 1209 case WLAN_EID_MESH_AWAKE_WINDOW: 1210 if (elen >= 2) 1211 elems->awake_window = (void *)pos; 1212 break; 1213 case WLAN_EID_PREQ: 1214 elems->preq = pos; 1215 elems->preq_len = elen; 1216 break; 1217 case WLAN_EID_PREP: 1218 elems->prep = pos; 1219 elems->prep_len = elen; 1220 break; 1221 case WLAN_EID_PERR: 1222 elems->perr = pos; 1223 elems->perr_len = elen; 1224 break; 1225 case WLAN_EID_RANN: 1226 if (elen >= sizeof(struct ieee80211_rann_ie)) 1227 elems->rann = (void *)pos; 1228 else 1229 elem_parse_failed = true; 1230 break; 1231 case WLAN_EID_CHANNEL_SWITCH: 1232 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1233 elem_parse_failed = true; 1234 break; 1235 } 1236 elems->ch_switch_ie = (void *)pos; 1237 break; 1238 case WLAN_EID_EXT_CHANSWITCH_ANN: 1239 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1240 elem_parse_failed = true; 1241 break; 1242 } 1243 elems->ext_chansw_ie = (void *)pos; 1244 break; 1245 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1246 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1247 elem_parse_failed = true; 1248 break; 1249 } 1250 elems->sec_chan_offs = (void *)pos; 1251 break; 1252 case WLAN_EID_CHAN_SWITCH_PARAM: 1253 if (elen < 1254 sizeof(*elems->mesh_chansw_params_ie)) { 1255 elem_parse_failed = true; 1256 break; 1257 } 1258 elems->mesh_chansw_params_ie = (void *)pos; 1259 break; 1260 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1261 if (!params->action || 1262 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1263 elem_parse_failed = true; 1264 break; 1265 } 1266 elems->wide_bw_chansw_ie = (void *)pos; 1267 break; 1268 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1269 if (params->action) { 1270 elem_parse_failed = true; 1271 break; 1272 } 1273 /* 1274 * This is a bit tricky, but as we only care about 1275 * the wide bandwidth channel switch element, so 1276 * just parse it out manually. 1277 */ 1278 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1279 pos, elen); 1280 if (ie) { 1281 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1282 elems->wide_bw_chansw_ie = 1283 (void *)(ie + 2); 1284 else 1285 elem_parse_failed = true; 1286 } 1287 break; 1288 case WLAN_EID_COUNTRY: 1289 elems->country_elem = pos; 1290 elems->country_elem_len = elen; 1291 break; 1292 case WLAN_EID_PWR_CONSTRAINT: 1293 if (elen != 1) { 1294 elem_parse_failed = true; 1295 break; 1296 } 1297 elems->pwr_constr_elem = pos; 1298 break; 1299 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1300 /* Lots of different options exist, but we only care 1301 * about the Dynamic Transmit Power Control element. 1302 * First check for the Cisco OUI, then for the DTPC 1303 * tag (0x00). 1304 */ 1305 if (elen < 4) { 1306 elem_parse_failed = true; 1307 break; 1308 } 1309 1310 if (pos[0] != 0x00 || pos[1] != 0x40 || 1311 pos[2] != 0x96 || pos[3] != 0x00) 1312 break; 1313 1314 if (elen != 6) { 1315 elem_parse_failed = true; 1316 break; 1317 } 1318 1319 if (calc_crc) 1320 crc = crc32_be(crc, pos - 2, elen + 2); 1321 1322 elems->cisco_dtpc_elem = pos; 1323 break; 1324 case WLAN_EID_ADDBA_EXT: 1325 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1326 elem_parse_failed = true; 1327 break; 1328 } 1329 elems->addba_ext_ie = (void *)pos; 1330 break; 1331 case WLAN_EID_TIMEOUT_INTERVAL: 1332 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1333 elems->timeout_int = (void *)pos; 1334 else 1335 elem_parse_failed = true; 1336 break; 1337 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1338 if (elen >= sizeof(*elems->max_idle_period_ie)) 1339 elems->max_idle_period_ie = (void *)pos; 1340 break; 1341 case WLAN_EID_RSNX: 1342 elems->rsnx = pos; 1343 elems->rsnx_len = elen; 1344 break; 1345 case WLAN_EID_TX_POWER_ENVELOPE: 1346 if (elen < 1 || 1347 elen > sizeof(struct ieee80211_tx_pwr_env)) 1348 break; 1349 1350 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1351 break; 1352 1353 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1354 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1355 elems->tx_pwr_env_num++; 1356 break; 1357 case WLAN_EID_EXTENSION: 1358 ieee80211_parse_extension_element(calc_crc ? 1359 &crc : NULL, 1360 elem, elems, params); 1361 break; 1362 case WLAN_EID_S1G_CAPABILITIES: 1363 if (elen >= sizeof(*elems->s1g_capab)) 1364 elems->s1g_capab = (void *)pos; 1365 else 1366 elem_parse_failed = true; 1367 break; 1368 case WLAN_EID_S1G_OPERATION: 1369 if (elen == sizeof(*elems->s1g_oper)) 1370 elems->s1g_oper = (void *)pos; 1371 else 1372 elem_parse_failed = true; 1373 break; 1374 case WLAN_EID_S1G_BCN_COMPAT: 1375 if (elen == sizeof(*elems->s1g_bcn_compat)) 1376 elems->s1g_bcn_compat = (void *)pos; 1377 else 1378 elem_parse_failed = true; 1379 break; 1380 case WLAN_EID_AID_RESPONSE: 1381 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1382 elems->aid_resp = (void *)pos; 1383 else 1384 elem_parse_failed = true; 1385 break; 1386 default: 1387 break; 1388 } 1389 1390 if (elem_parse_failed) 1391 elems->parse_error = true; 1392 else 1393 __set_bit(id, seen_elems); 1394 } 1395 1396 if (!for_each_element_completed(elem, params->start, params->len)) 1397 elems->parse_error = true; 1398 1399 return crc; 1400 } 1401 1402 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1403 struct ieee802_11_elems *elems, 1404 struct cfg80211_bss *bss, 1405 u8 *nontransmitted_profile) 1406 { 1407 const struct element *elem, *sub; 1408 size_t profile_len = 0; 1409 bool found = false; 1410 1411 if (!bss || !bss->transmitted_bss) 1412 return profile_len; 1413 1414 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1415 if (elem->datalen < 2) 1416 continue; 1417 if (elem->data[0] < 1 || elem->data[0] > 8) 1418 continue; 1419 1420 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1421 u8 new_bssid[ETH_ALEN]; 1422 const u8 *index; 1423 1424 if (sub->id != 0 || sub->datalen < 4) { 1425 /* not a valid BSS profile */ 1426 continue; 1427 } 1428 1429 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1430 sub->data[1] != 2) { 1431 /* The first element of the 1432 * Nontransmitted BSSID Profile is not 1433 * the Nontransmitted BSSID Capability 1434 * element. 1435 */ 1436 continue; 1437 } 1438 1439 memset(nontransmitted_profile, 0, len); 1440 profile_len = cfg80211_merge_profile(start, len, 1441 elem, 1442 sub, 1443 nontransmitted_profile, 1444 len); 1445 1446 /* found a Nontransmitted BSSID Profile */ 1447 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1448 nontransmitted_profile, 1449 profile_len); 1450 if (!index || index[1] < 1 || index[2] == 0) { 1451 /* Invalid MBSSID Index element */ 1452 continue; 1453 } 1454 1455 cfg80211_gen_new_bssid(bss->transmitted_bss->bssid, 1456 elem->data[0], 1457 index[2], 1458 new_bssid); 1459 if (ether_addr_equal(new_bssid, bss->bssid)) { 1460 found = true; 1461 elems->bssid_index_len = index[1]; 1462 elems->bssid_index = (void *)&index[2]; 1463 break; 1464 } 1465 } 1466 } 1467 1468 return found ? profile_len : 0; 1469 } 1470 1471 static void ieee80211_defragment_element(struct ieee802_11_elems *elems, 1472 void **elem_ptr, size_t *len, 1473 size_t total_len, u8 frag_id) 1474 { 1475 u8 *data = *elem_ptr, *pos, *start; 1476 const struct element *elem; 1477 1478 /* 1479 * Since 'data' points to the data of the element, not the element 1480 * itself, allow 254 in case it was an extended element where the 1481 * extended ID isn't part of the data we see here and thus not part of 1482 * 'len' either. 1483 */ 1484 if (!data || (*len != 254 && *len != 255)) 1485 return; 1486 1487 start = elems->scratch_pos; 1488 1489 if (WARN_ON(*len > (elems->scratch + elems->scratch_len - 1490 elems->scratch_pos))) 1491 return; 1492 1493 memcpy(elems->scratch_pos, data, *len); 1494 elems->scratch_pos += *len; 1495 1496 pos = data + *len; 1497 total_len -= *len; 1498 for_each_element(elem, pos, total_len) { 1499 if (elem->id != frag_id) 1500 break; 1501 1502 if (WARN_ON(elem->datalen > 1503 (elems->scratch + elems->scratch_len - 1504 elems->scratch_pos))) 1505 return; 1506 1507 memcpy(elems->scratch_pos, elem->data, elem->datalen); 1508 elems->scratch_pos += elem->datalen; 1509 1510 *len += elem->datalen; 1511 } 1512 1513 *elem_ptr = start; 1514 } 1515 1516 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems, 1517 u8 link_id) 1518 { 1519 const struct ieee80211_multi_link_elem *ml = elems->multi_link; 1520 size_t ml_len = elems->multi_link_len; 1521 const struct element *sub; 1522 1523 if (!ml || !ml_len) 1524 return; 1525 1526 if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) != 1527 IEEE80211_ML_CONTROL_TYPE_BASIC) 1528 return; 1529 1530 for_each_mle_subelement(sub, (u8 *)ml, ml_len) { 1531 struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data; 1532 u16 control; 1533 1534 if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE) 1535 continue; 1536 1537 if (!ieee80211_mle_sta_prof_size_ok(sub->data, sub->datalen)) 1538 return; 1539 1540 control = le16_to_cpu(prof->control); 1541 1542 if (link_id != u16_get_bits(control, 1543 IEEE80211_MLE_STA_CONTROL_LINK_ID)) 1544 continue; 1545 1546 if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE)) 1547 return; 1548 1549 elems->prof = prof; 1550 elems->sta_prof_len = sub->datalen; 1551 1552 /* the sub element can be fragmented */ 1553 ieee80211_defragment_element(elems, (void **)&elems->prof, 1554 &elems->sta_prof_len, 1555 ml_len - (sub->data - (u8 *)ml), 1556 IEEE80211_MLE_SUBELEM_FRAGMENT); 1557 return; 1558 } 1559 } 1560 1561 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems, 1562 struct ieee80211_elems_parse_params *params) 1563 { 1564 struct ieee80211_mle_per_sta_profile *prof; 1565 struct ieee80211_elems_parse_params sub = { 1566 .action = params->action, 1567 .from_ap = params->from_ap, 1568 .link_id = -1, 1569 }; 1570 const struct element *non_inherit = NULL; 1571 const u8 *end; 1572 1573 if (params->link_id == -1) 1574 return; 1575 1576 ieee80211_defragment_element(elems, (void **)&elems->multi_link, 1577 &elems->multi_link_len, 1578 elems->total_len - ((u8 *)elems->multi_link - 1579 elems->ie_start), 1580 WLAN_EID_FRAGMENT); 1581 1582 ieee80211_mle_get_sta_prof(elems, params->link_id); 1583 prof = elems->prof; 1584 1585 if (!prof) 1586 return; 1587 1588 /* check if we have the 4 bytes for the fixed part in assoc response */ 1589 if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) { 1590 elems->prof = NULL; 1591 elems->sta_prof_len = 0; 1592 return; 1593 } 1594 1595 /* 1596 * Skip the capability information and the status code that are expected 1597 * as part of the station profile in association response frames. Note 1598 * the -1 is because the 'sta_info_len' is accounted to as part of the 1599 * per-STA profile, but not part of the 'u8 variable[]' portion. 1600 */ 1601 sub.start = prof->variable + prof->sta_info_len - 1 + 4; 1602 end = (const u8 *)prof + elems->sta_prof_len; 1603 sub.len = end - sub.start; 1604 1605 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1606 sub.start, sub.len); 1607 _ieee802_11_parse_elems_full(&sub, elems, non_inherit); 1608 } 1609 1610 struct ieee802_11_elems * 1611 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params) 1612 { 1613 struct ieee802_11_elems *elems; 1614 const struct element *non_inherit = NULL; 1615 u8 *nontransmitted_profile; 1616 int nontransmitted_profile_len = 0; 1617 size_t scratch_len = params->scratch_len ?: 3 * params->len; 1618 1619 elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC); 1620 if (!elems) 1621 return NULL; 1622 elems->ie_start = params->start; 1623 elems->total_len = params->len; 1624 elems->scratch_len = scratch_len; 1625 elems->scratch_pos = elems->scratch; 1626 1627 nontransmitted_profile = elems->scratch_pos; 1628 nontransmitted_profile_len = 1629 ieee802_11_find_bssid_profile(params->start, params->len, 1630 elems, params->bss, 1631 nontransmitted_profile); 1632 elems->scratch_pos += nontransmitted_profile_len; 1633 elems->scratch_len -= nontransmitted_profile_len; 1634 non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1635 nontransmitted_profile, 1636 nontransmitted_profile_len); 1637 1638 elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit); 1639 1640 /* Override with nontransmitted profile, if found */ 1641 if (nontransmitted_profile_len) { 1642 struct ieee80211_elems_parse_params sub = { 1643 .start = nontransmitted_profile, 1644 .len = nontransmitted_profile_len, 1645 .action = params->action, 1646 .link_id = params->link_id, 1647 }; 1648 1649 _ieee802_11_parse_elems_full(&sub, elems, NULL); 1650 } 1651 1652 ieee80211_mle_parse_link(elems, params); 1653 1654 if (elems->tim && !elems->parse_error) { 1655 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1656 1657 elems->dtim_period = tim_ie->dtim_period; 1658 elems->dtim_count = tim_ie->dtim_count; 1659 } 1660 1661 /* Override DTIM period and count if needed */ 1662 if (elems->bssid_index && 1663 elems->bssid_index_len >= 1664 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1665 elems->dtim_period = elems->bssid_index->dtim_period; 1666 1667 if (elems->bssid_index && 1668 elems->bssid_index_len >= 1669 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1670 elems->dtim_count = elems->bssid_index->dtim_count; 1671 1672 return elems; 1673 } 1674 1675 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1676 struct ieee80211_tx_queue_params 1677 *qparam, int ac) 1678 { 1679 struct ieee80211_chanctx_conf *chanctx_conf; 1680 const struct ieee80211_reg_rule *rrule; 1681 const struct ieee80211_wmm_ac *wmm_ac; 1682 u16 center_freq = 0; 1683 1684 if (sdata->vif.type != NL80211_IFTYPE_AP && 1685 sdata->vif.type != NL80211_IFTYPE_STATION) 1686 return; 1687 1688 rcu_read_lock(); 1689 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 1690 if (chanctx_conf) 1691 center_freq = chanctx_conf->def.chan->center_freq; 1692 1693 if (!center_freq) { 1694 rcu_read_unlock(); 1695 return; 1696 } 1697 1698 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1699 1700 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1701 rcu_read_unlock(); 1702 return; 1703 } 1704 1705 if (sdata->vif.type == NL80211_IFTYPE_AP) 1706 wmm_ac = &rrule->wmm_rule.ap[ac]; 1707 else 1708 wmm_ac = &rrule->wmm_rule.client[ac]; 1709 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1710 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1711 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1712 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1713 rcu_read_unlock(); 1714 } 1715 1716 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1717 bool bss_notify, bool enable_qos) 1718 { 1719 struct ieee80211_sub_if_data *sdata = link->sdata; 1720 struct ieee80211_local *local = sdata->local; 1721 struct ieee80211_tx_queue_params qparam; 1722 struct ieee80211_chanctx_conf *chanctx_conf; 1723 int ac; 1724 bool use_11b; 1725 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1726 int aCWmin, aCWmax; 1727 1728 if (!local->ops->conf_tx) 1729 return; 1730 1731 if (local->hw.queues < IEEE80211_NUM_ACS) 1732 return; 1733 1734 memset(&qparam, 0, sizeof(qparam)); 1735 1736 rcu_read_lock(); 1737 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1738 use_11b = (chanctx_conf && 1739 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1740 !link->operating_11g_mode; 1741 rcu_read_unlock(); 1742 1743 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1744 1745 /* Set defaults according to 802.11-2007 Table 7-37 */ 1746 aCWmax = 1023; 1747 if (use_11b) 1748 aCWmin = 31; 1749 else 1750 aCWmin = 15; 1751 1752 /* Confiure old 802.11b/g medium access rules. */ 1753 qparam.cw_max = aCWmax; 1754 qparam.cw_min = aCWmin; 1755 qparam.txop = 0; 1756 qparam.aifs = 2; 1757 1758 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1759 /* Update if QoS is enabled. */ 1760 if (enable_qos) { 1761 switch (ac) { 1762 case IEEE80211_AC_BK: 1763 qparam.cw_max = aCWmax; 1764 qparam.cw_min = aCWmin; 1765 qparam.txop = 0; 1766 if (is_ocb) 1767 qparam.aifs = 9; 1768 else 1769 qparam.aifs = 7; 1770 break; 1771 /* never happens but let's not leave undefined */ 1772 default: 1773 case IEEE80211_AC_BE: 1774 qparam.cw_max = aCWmax; 1775 qparam.cw_min = aCWmin; 1776 qparam.txop = 0; 1777 if (is_ocb) 1778 qparam.aifs = 6; 1779 else 1780 qparam.aifs = 3; 1781 break; 1782 case IEEE80211_AC_VI: 1783 qparam.cw_max = aCWmin; 1784 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1785 if (is_ocb) 1786 qparam.txop = 0; 1787 else if (use_11b) 1788 qparam.txop = 6016/32; 1789 else 1790 qparam.txop = 3008/32; 1791 1792 if (is_ocb) 1793 qparam.aifs = 3; 1794 else 1795 qparam.aifs = 2; 1796 break; 1797 case IEEE80211_AC_VO: 1798 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1799 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1800 if (is_ocb) 1801 qparam.txop = 0; 1802 else if (use_11b) 1803 qparam.txop = 3264/32; 1804 else 1805 qparam.txop = 1504/32; 1806 qparam.aifs = 2; 1807 break; 1808 } 1809 } 1810 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1811 1812 qparam.uapsd = false; 1813 1814 link->tx_conf[ac] = qparam; 1815 drv_conf_tx(local, link, ac, &qparam); 1816 } 1817 1818 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1819 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1820 sdata->vif.type != NL80211_IFTYPE_NAN) { 1821 link->conf->qos = enable_qos; 1822 if (bss_notify) 1823 ieee80211_link_info_change_notify(sdata, link, 1824 BSS_CHANGED_QOS); 1825 } 1826 } 1827 1828 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1829 u16 transaction, u16 auth_alg, u16 status, 1830 const u8 *extra, size_t extra_len, const u8 *da, 1831 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1832 u32 tx_flags) 1833 { 1834 struct ieee80211_local *local = sdata->local; 1835 struct sk_buff *skb; 1836 struct ieee80211_mgmt *mgmt; 1837 bool multi_link = sdata->vif.valid_links; 1838 struct { 1839 u8 id; 1840 u8 len; 1841 u8 ext_id; 1842 struct ieee80211_multi_link_elem ml; 1843 struct ieee80211_mle_basic_common_info basic; 1844 } __packed mle = { 1845 .id = WLAN_EID_EXTENSION, 1846 .len = sizeof(mle) - 2, 1847 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1848 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1849 .basic.len = sizeof(mle.basic), 1850 }; 1851 int err; 1852 1853 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1854 1855 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1856 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1857 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1858 multi_link * sizeof(mle)); 1859 if (!skb) 1860 return; 1861 1862 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1863 1864 mgmt = skb_put_zero(skb, 24 + 6); 1865 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1866 IEEE80211_STYPE_AUTH); 1867 memcpy(mgmt->da, da, ETH_ALEN); 1868 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1869 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1870 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1871 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1872 mgmt->u.auth.status_code = cpu_to_le16(status); 1873 if (extra) 1874 skb_put_data(skb, extra, extra_len); 1875 if (multi_link) 1876 skb_put_data(skb, &mle, sizeof(mle)); 1877 1878 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1879 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1880 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1881 if (WARN_ON(err)) { 1882 kfree_skb(skb); 1883 return; 1884 } 1885 } 1886 1887 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1888 tx_flags; 1889 ieee80211_tx_skb(sdata, skb); 1890 } 1891 1892 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1893 const u8 *da, const u8 *bssid, 1894 u16 stype, u16 reason, 1895 bool send_frame, u8 *frame_buf) 1896 { 1897 struct ieee80211_local *local = sdata->local; 1898 struct sk_buff *skb; 1899 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1900 1901 /* build frame */ 1902 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1903 mgmt->duration = 0; /* initialize only */ 1904 mgmt->seq_ctrl = 0; /* initialize only */ 1905 memcpy(mgmt->da, da, ETH_ALEN); 1906 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1907 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1908 /* u.deauth.reason_code == u.disassoc.reason_code */ 1909 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1910 1911 if (send_frame) { 1912 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1913 IEEE80211_DEAUTH_FRAME_LEN); 1914 if (!skb) 1915 return; 1916 1917 skb_reserve(skb, local->hw.extra_tx_headroom); 1918 1919 /* copy in frame */ 1920 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1921 1922 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1923 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1924 IEEE80211_SKB_CB(skb)->flags |= 1925 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1926 1927 ieee80211_tx_skb(sdata, skb); 1928 } 1929 } 1930 1931 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1932 { 1933 if ((end - pos) < 5) 1934 return pos; 1935 1936 *pos++ = WLAN_EID_EXTENSION; 1937 *pos++ = 1 + sizeof(cap); 1938 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1939 memcpy(pos, &cap, sizeof(cap)); 1940 1941 return pos + 2; 1942 } 1943 1944 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1945 u8 *buffer, size_t buffer_len, 1946 const u8 *ie, size_t ie_len, 1947 enum nl80211_band band, 1948 u32 rate_mask, 1949 struct cfg80211_chan_def *chandef, 1950 size_t *offset, u32 flags) 1951 { 1952 struct ieee80211_local *local = sdata->local; 1953 struct ieee80211_supported_band *sband; 1954 const struct ieee80211_sta_he_cap *he_cap; 1955 const struct ieee80211_sta_eht_cap *eht_cap; 1956 u8 *pos = buffer, *end = buffer + buffer_len; 1957 size_t noffset; 1958 int supp_rates_len, i; 1959 u8 rates[32]; 1960 int num_rates; 1961 int ext_rates_len; 1962 int shift; 1963 u32 rate_flags; 1964 bool have_80mhz = false; 1965 1966 *offset = 0; 1967 1968 sband = local->hw.wiphy->bands[band]; 1969 if (WARN_ON_ONCE(!sband)) 1970 return 0; 1971 1972 rate_flags = ieee80211_chandef_rate_flags(chandef); 1973 shift = ieee80211_chandef_get_shift(chandef); 1974 1975 num_rates = 0; 1976 for (i = 0; i < sband->n_bitrates; i++) { 1977 if ((BIT(i) & rate_mask) == 0) 1978 continue; /* skip rate */ 1979 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1980 continue; 1981 1982 rates[num_rates++] = 1983 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1984 (1 << shift) * 5); 1985 } 1986 1987 supp_rates_len = min_t(int, num_rates, 8); 1988 1989 if (end - pos < 2 + supp_rates_len) 1990 goto out_err; 1991 *pos++ = WLAN_EID_SUPP_RATES; 1992 *pos++ = supp_rates_len; 1993 memcpy(pos, rates, supp_rates_len); 1994 pos += supp_rates_len; 1995 1996 /* insert "request information" if in custom IEs */ 1997 if (ie && ie_len) { 1998 static const u8 before_extrates[] = { 1999 WLAN_EID_SSID, 2000 WLAN_EID_SUPP_RATES, 2001 WLAN_EID_REQUEST, 2002 }; 2003 noffset = ieee80211_ie_split(ie, ie_len, 2004 before_extrates, 2005 ARRAY_SIZE(before_extrates), 2006 *offset); 2007 if (end - pos < noffset - *offset) 2008 goto out_err; 2009 memcpy(pos, ie + *offset, noffset - *offset); 2010 pos += noffset - *offset; 2011 *offset = noffset; 2012 } 2013 2014 ext_rates_len = num_rates - supp_rates_len; 2015 if (ext_rates_len > 0) { 2016 if (end - pos < 2 + ext_rates_len) 2017 goto out_err; 2018 *pos++ = WLAN_EID_EXT_SUPP_RATES; 2019 *pos++ = ext_rates_len; 2020 memcpy(pos, rates + supp_rates_len, ext_rates_len); 2021 pos += ext_rates_len; 2022 } 2023 2024 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 2025 if (end - pos < 3) 2026 goto out_err; 2027 *pos++ = WLAN_EID_DS_PARAMS; 2028 *pos++ = 1; 2029 *pos++ = ieee80211_frequency_to_channel( 2030 chandef->chan->center_freq); 2031 } 2032 2033 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 2034 goto done; 2035 2036 /* insert custom IEs that go before HT */ 2037 if (ie && ie_len) { 2038 static const u8 before_ht[] = { 2039 /* 2040 * no need to list the ones split off already 2041 * (or generated here) 2042 */ 2043 WLAN_EID_DS_PARAMS, 2044 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 2045 }; 2046 noffset = ieee80211_ie_split(ie, ie_len, 2047 before_ht, ARRAY_SIZE(before_ht), 2048 *offset); 2049 if (end - pos < noffset - *offset) 2050 goto out_err; 2051 memcpy(pos, ie + *offset, noffset - *offset); 2052 pos += noffset - *offset; 2053 *offset = noffset; 2054 } 2055 2056 if (sband->ht_cap.ht_supported) { 2057 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 2058 goto out_err; 2059 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 2060 sband->ht_cap.cap); 2061 } 2062 2063 /* insert custom IEs that go before VHT */ 2064 if (ie && ie_len) { 2065 static const u8 before_vht[] = { 2066 /* 2067 * no need to list the ones split off already 2068 * (or generated here) 2069 */ 2070 WLAN_EID_BSS_COEX_2040, 2071 WLAN_EID_EXT_CAPABILITY, 2072 WLAN_EID_SSID_LIST, 2073 WLAN_EID_CHANNEL_USAGE, 2074 WLAN_EID_INTERWORKING, 2075 WLAN_EID_MESH_ID, 2076 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 2077 }; 2078 noffset = ieee80211_ie_split(ie, ie_len, 2079 before_vht, ARRAY_SIZE(before_vht), 2080 *offset); 2081 if (end - pos < noffset - *offset) 2082 goto out_err; 2083 memcpy(pos, ie + *offset, noffset - *offset); 2084 pos += noffset - *offset; 2085 *offset = noffset; 2086 } 2087 2088 /* Check if any channel in this sband supports at least 80 MHz */ 2089 for (i = 0; i < sband->n_channels; i++) { 2090 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 2091 IEEE80211_CHAN_NO_80MHZ)) 2092 continue; 2093 2094 have_80mhz = true; 2095 break; 2096 } 2097 2098 if (sband->vht_cap.vht_supported && have_80mhz) { 2099 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 2100 goto out_err; 2101 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 2102 sband->vht_cap.cap); 2103 } 2104 2105 /* insert custom IEs that go before HE */ 2106 if (ie && ie_len) { 2107 static const u8 before_he[] = { 2108 /* 2109 * no need to list the ones split off before VHT 2110 * or generated here 2111 */ 2112 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 2113 WLAN_EID_AP_CSN, 2114 /* TODO: add 11ah/11aj/11ak elements */ 2115 }; 2116 noffset = ieee80211_ie_split(ie, ie_len, 2117 before_he, ARRAY_SIZE(before_he), 2118 *offset); 2119 if (end - pos < noffset - *offset) 2120 goto out_err; 2121 memcpy(pos, ie + *offset, noffset - *offset); 2122 pos += noffset - *offset; 2123 *offset = noffset; 2124 } 2125 2126 he_cap = ieee80211_get_he_iftype_cap(sband, 2127 ieee80211_vif_type_p2p(&sdata->vif)); 2128 if (he_cap && 2129 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2130 IEEE80211_CHAN_NO_HE)) { 2131 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 2132 if (!pos) 2133 goto out_err; 2134 } 2135 2136 eht_cap = ieee80211_get_eht_iftype_cap(sband, 2137 ieee80211_vif_type_p2p(&sdata->vif)); 2138 2139 if (eht_cap && 2140 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2141 IEEE80211_CHAN_NO_HE | 2142 IEEE80211_CHAN_NO_EHT)) { 2143 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end, 2144 sdata->vif.type == NL80211_IFTYPE_AP); 2145 if (!pos) 2146 goto out_err; 2147 } 2148 2149 if (cfg80211_any_usable_channels(local->hw.wiphy, 2150 BIT(NL80211_BAND_6GHZ), 2151 IEEE80211_CHAN_NO_HE)) { 2152 struct ieee80211_supported_band *sband6; 2153 2154 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2155 he_cap = ieee80211_get_he_iftype_cap(sband6, 2156 ieee80211_vif_type_p2p(&sdata->vif)); 2157 2158 if (he_cap) { 2159 enum nl80211_iftype iftype = 2160 ieee80211_vif_type_p2p(&sdata->vif); 2161 __le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype); 2162 2163 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2164 } 2165 } 2166 2167 /* 2168 * If adding more here, adjust code in main.c 2169 * that calculates local->scan_ies_len. 2170 */ 2171 2172 return pos - buffer; 2173 out_err: 2174 WARN_ONCE(1, "not enough space for preq IEs\n"); 2175 done: 2176 return pos - buffer; 2177 } 2178 2179 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2180 size_t buffer_len, 2181 struct ieee80211_scan_ies *ie_desc, 2182 const u8 *ie, size_t ie_len, 2183 u8 bands_used, u32 *rate_masks, 2184 struct cfg80211_chan_def *chandef, 2185 u32 flags) 2186 { 2187 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2188 int i; 2189 2190 memset(ie_desc, 0, sizeof(*ie_desc)); 2191 2192 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2193 if (bands_used & BIT(i)) { 2194 pos += ieee80211_build_preq_ies_band(sdata, 2195 buffer + pos, 2196 buffer_len - pos, 2197 ie, ie_len, i, 2198 rate_masks[i], 2199 chandef, 2200 &custom_ie_offset, 2201 flags); 2202 ie_desc->ies[i] = buffer + old_pos; 2203 ie_desc->len[i] = pos - old_pos; 2204 old_pos = pos; 2205 } 2206 } 2207 2208 /* add any remaining custom IEs */ 2209 if (ie && ie_len) { 2210 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2211 "not enough space for preq custom IEs\n")) 2212 return pos; 2213 memcpy(buffer + pos, ie + custom_ie_offset, 2214 ie_len - custom_ie_offset); 2215 ie_desc->common_ies = buffer + pos; 2216 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2217 pos += ie_len - custom_ie_offset; 2218 } 2219 2220 return pos; 2221 }; 2222 2223 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2224 const u8 *src, const u8 *dst, 2225 u32 ratemask, 2226 struct ieee80211_channel *chan, 2227 const u8 *ssid, size_t ssid_len, 2228 const u8 *ie, size_t ie_len, 2229 u32 flags) 2230 { 2231 struct ieee80211_local *local = sdata->local; 2232 struct cfg80211_chan_def chandef; 2233 struct sk_buff *skb; 2234 struct ieee80211_mgmt *mgmt; 2235 int ies_len; 2236 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2237 struct ieee80211_scan_ies dummy_ie_desc; 2238 2239 /* 2240 * Do not send DS Channel parameter for directed probe requests 2241 * in order to maximize the chance that we get a response. Some 2242 * badly-behaved APs don't respond when this parameter is included. 2243 */ 2244 chandef.width = sdata->vif.bss_conf.chandef.width; 2245 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2246 chandef.chan = NULL; 2247 else 2248 chandef.chan = chan; 2249 2250 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2251 local->scan_ies_len + ie_len); 2252 if (!skb) 2253 return NULL; 2254 2255 rate_masks[chan->band] = ratemask; 2256 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2257 skb_tailroom(skb), &dummy_ie_desc, 2258 ie, ie_len, BIT(chan->band), 2259 rate_masks, &chandef, flags); 2260 skb_put(skb, ies_len); 2261 2262 if (dst) { 2263 mgmt = (struct ieee80211_mgmt *) skb->data; 2264 memcpy(mgmt->da, dst, ETH_ALEN); 2265 memcpy(mgmt->bssid, dst, ETH_ALEN); 2266 } 2267 2268 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2269 2270 return skb; 2271 } 2272 2273 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2274 struct ieee802_11_elems *elems, 2275 enum nl80211_band band, u32 *basic_rates) 2276 { 2277 struct ieee80211_supported_band *sband; 2278 size_t num_rates; 2279 u32 supp_rates, rate_flags; 2280 int i, j, shift; 2281 2282 sband = sdata->local->hw.wiphy->bands[band]; 2283 if (WARN_ON(!sband)) 2284 return 1; 2285 2286 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2287 shift = ieee80211_vif_get_shift(&sdata->vif); 2288 2289 num_rates = sband->n_bitrates; 2290 supp_rates = 0; 2291 for (i = 0; i < elems->supp_rates_len + 2292 elems->ext_supp_rates_len; i++) { 2293 u8 rate = 0; 2294 int own_rate; 2295 bool is_basic; 2296 if (i < elems->supp_rates_len) 2297 rate = elems->supp_rates[i]; 2298 else if (elems->ext_supp_rates) 2299 rate = elems->ext_supp_rates 2300 [i - elems->supp_rates_len]; 2301 own_rate = 5 * (rate & 0x7f); 2302 is_basic = !!(rate & 0x80); 2303 2304 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2305 continue; 2306 2307 for (j = 0; j < num_rates; j++) { 2308 int brate; 2309 if ((rate_flags & sband->bitrates[j].flags) 2310 != rate_flags) 2311 continue; 2312 2313 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2314 1 << shift); 2315 2316 if (brate == own_rate) { 2317 supp_rates |= BIT(j); 2318 if (basic_rates && is_basic) 2319 *basic_rates |= BIT(j); 2320 } 2321 } 2322 } 2323 return supp_rates; 2324 } 2325 2326 void ieee80211_stop_device(struct ieee80211_local *local) 2327 { 2328 ieee80211_led_radio(local, false); 2329 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2330 2331 cancel_work_sync(&local->reconfig_filter); 2332 2333 flush_workqueue(local->workqueue); 2334 drv_stop(local); 2335 } 2336 2337 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2338 bool aborted) 2339 { 2340 /* It's possible that we don't handle the scan completion in 2341 * time during suspend, so if it's still marked as completed 2342 * here, queue the work and flush it to clean things up. 2343 * Instead of calling the worker function directly here, we 2344 * really queue it to avoid potential races with other flows 2345 * scheduling the same work. 2346 */ 2347 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2348 /* If coming from reconfiguration failure, abort the scan so 2349 * we don't attempt to continue a partial HW scan - which is 2350 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2351 * completed scan, and a 5 GHz portion is still pending. 2352 */ 2353 if (aborted) 2354 set_bit(SCAN_ABORTED, &local->scanning); 2355 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2356 flush_delayed_work(&local->scan_work); 2357 } 2358 } 2359 2360 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2361 { 2362 struct ieee80211_sub_if_data *sdata; 2363 struct ieee80211_chanctx *ctx; 2364 2365 /* 2366 * We get here if during resume the device can't be restarted properly. 2367 * We might also get here if this happens during HW reset, which is a 2368 * slightly different situation and we need to drop all connections in 2369 * the latter case. 2370 * 2371 * Ask cfg80211 to turn off all interfaces, this will result in more 2372 * warnings but at least we'll then get into a clean stopped state. 2373 */ 2374 2375 local->resuming = false; 2376 local->suspended = false; 2377 local->in_reconfig = false; 2378 2379 ieee80211_flush_completed_scan(local, true); 2380 2381 /* scheduled scan clearly can't be running any more, but tell 2382 * cfg80211 and clear local state 2383 */ 2384 ieee80211_sched_scan_end(local); 2385 2386 list_for_each_entry(sdata, &local->interfaces, list) 2387 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2388 2389 /* Mark channel contexts as not being in the driver any more to avoid 2390 * removing them from the driver during the shutdown process... 2391 */ 2392 mutex_lock(&local->chanctx_mtx); 2393 list_for_each_entry(ctx, &local->chanctx_list, list) 2394 ctx->driver_present = false; 2395 mutex_unlock(&local->chanctx_mtx); 2396 } 2397 2398 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2399 struct ieee80211_sub_if_data *sdata, 2400 struct ieee80211_link_data *link) 2401 { 2402 struct ieee80211_chanctx_conf *conf; 2403 struct ieee80211_chanctx *ctx; 2404 2405 if (!local->use_chanctx) 2406 return; 2407 2408 mutex_lock(&local->chanctx_mtx); 2409 conf = rcu_dereference_protected(link->conf->chanctx_conf, 2410 lockdep_is_held(&local->chanctx_mtx)); 2411 if (conf) { 2412 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2413 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 2414 } 2415 mutex_unlock(&local->chanctx_mtx); 2416 } 2417 2418 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2419 { 2420 struct ieee80211_local *local = sdata->local; 2421 struct sta_info *sta; 2422 2423 /* add STAs back */ 2424 mutex_lock(&local->sta_mtx); 2425 list_for_each_entry(sta, &local->sta_list, list) { 2426 enum ieee80211_sta_state state; 2427 2428 if (!sta->uploaded || sta->sdata != sdata) 2429 continue; 2430 2431 for (state = IEEE80211_STA_NOTEXIST; 2432 state < sta->sta_state; state++) 2433 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2434 state + 1)); 2435 } 2436 mutex_unlock(&local->sta_mtx); 2437 } 2438 2439 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2440 { 2441 struct cfg80211_nan_func *func, **funcs; 2442 int res, id, i = 0; 2443 2444 res = drv_start_nan(sdata->local, sdata, 2445 &sdata->u.nan.conf); 2446 if (WARN_ON(res)) 2447 return res; 2448 2449 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2450 sizeof(*funcs), 2451 GFP_KERNEL); 2452 if (!funcs) 2453 return -ENOMEM; 2454 2455 /* Add all the functions: 2456 * This is a little bit ugly. We need to call a potentially sleeping 2457 * callback for each NAN function, so we can't hold the spinlock. 2458 */ 2459 spin_lock_bh(&sdata->u.nan.func_lock); 2460 2461 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2462 funcs[i++] = func; 2463 2464 spin_unlock_bh(&sdata->u.nan.func_lock); 2465 2466 for (i = 0; funcs[i]; i++) { 2467 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2468 if (WARN_ON(res)) 2469 ieee80211_nan_func_terminated(&sdata->vif, 2470 funcs[i]->instance_id, 2471 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2472 GFP_KERNEL); 2473 } 2474 2475 kfree(funcs); 2476 2477 return 0; 2478 } 2479 2480 int ieee80211_reconfig(struct ieee80211_local *local) 2481 { 2482 struct ieee80211_hw *hw = &local->hw; 2483 struct ieee80211_sub_if_data *sdata; 2484 struct ieee80211_chanctx *ctx; 2485 struct sta_info *sta; 2486 int res, i; 2487 bool reconfig_due_to_wowlan = false; 2488 struct ieee80211_sub_if_data *sched_scan_sdata; 2489 struct cfg80211_sched_scan_request *sched_scan_req; 2490 bool sched_scan_stopped = false; 2491 bool suspended = local->suspended; 2492 bool in_reconfig = false; 2493 2494 /* nothing to do if HW shouldn't run */ 2495 if (!local->open_count) 2496 goto wake_up; 2497 2498 #ifdef CONFIG_PM 2499 if (suspended) 2500 local->resuming = true; 2501 2502 if (local->wowlan) { 2503 /* 2504 * In the wowlan case, both mac80211 and the device 2505 * are functional when the resume op is called, so 2506 * clear local->suspended so the device could operate 2507 * normally (e.g. pass rx frames). 2508 */ 2509 local->suspended = false; 2510 res = drv_resume(local); 2511 local->wowlan = false; 2512 if (res < 0) { 2513 local->resuming = false; 2514 return res; 2515 } 2516 if (res == 0) 2517 goto wake_up; 2518 WARN_ON(res > 1); 2519 /* 2520 * res is 1, which means the driver requested 2521 * to go through a regular reset on wakeup. 2522 * restore local->suspended in this case. 2523 */ 2524 reconfig_due_to_wowlan = true; 2525 local->suspended = true; 2526 } 2527 #endif 2528 2529 /* 2530 * In case of hw_restart during suspend (without wowlan), 2531 * cancel restart work, as we are reconfiguring the device 2532 * anyway. 2533 * Note that restart_work is scheduled on a frozen workqueue, 2534 * so we can't deadlock in this case. 2535 */ 2536 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2537 cancel_work_sync(&local->restart_work); 2538 2539 local->started = false; 2540 2541 /* 2542 * Upon resume hardware can sometimes be goofy due to 2543 * various platform / driver / bus issues, so restarting 2544 * the device may at times not work immediately. Propagate 2545 * the error. 2546 */ 2547 res = drv_start(local); 2548 if (res) { 2549 if (suspended) 2550 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2551 else 2552 WARN(1, "Hardware became unavailable during restart.\n"); 2553 ieee80211_handle_reconfig_failure(local); 2554 return res; 2555 } 2556 2557 /* setup fragmentation threshold */ 2558 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2559 2560 /* setup RTS threshold */ 2561 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2562 2563 /* reset coverage class */ 2564 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2565 2566 ieee80211_led_radio(local, true); 2567 ieee80211_mod_tpt_led_trig(local, 2568 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2569 2570 /* add interfaces */ 2571 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2572 if (sdata) { 2573 /* in HW restart it exists already */ 2574 WARN_ON(local->resuming); 2575 res = drv_add_interface(local, sdata); 2576 if (WARN_ON(res)) { 2577 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2578 synchronize_net(); 2579 kfree(sdata); 2580 } 2581 } 2582 2583 list_for_each_entry(sdata, &local->interfaces, list) { 2584 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2585 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2586 ieee80211_sdata_running(sdata)) { 2587 res = drv_add_interface(local, sdata); 2588 if (WARN_ON(res)) 2589 break; 2590 } 2591 } 2592 2593 /* If adding any of the interfaces failed above, roll back and 2594 * report failure. 2595 */ 2596 if (res) { 2597 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2598 list) 2599 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2600 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2601 ieee80211_sdata_running(sdata)) 2602 drv_remove_interface(local, sdata); 2603 ieee80211_handle_reconfig_failure(local); 2604 return res; 2605 } 2606 2607 /* add channel contexts */ 2608 if (local->use_chanctx) { 2609 mutex_lock(&local->chanctx_mtx); 2610 list_for_each_entry(ctx, &local->chanctx_list, list) 2611 if (ctx->replace_state != 2612 IEEE80211_CHANCTX_REPLACES_OTHER) 2613 WARN_ON(drv_add_chanctx(local, ctx)); 2614 mutex_unlock(&local->chanctx_mtx); 2615 2616 sdata = wiphy_dereference(local->hw.wiphy, 2617 local->monitor_sdata); 2618 if (sdata && ieee80211_sdata_running(sdata)) 2619 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 2620 } 2621 2622 /* reconfigure hardware */ 2623 ieee80211_hw_config(local, ~0); 2624 2625 ieee80211_configure_filter(local); 2626 2627 /* Finally also reconfigure all the BSS information */ 2628 list_for_each_entry(sdata, &local->interfaces, list) { 2629 unsigned int link_id; 2630 u32 changed; 2631 2632 if (!ieee80211_sdata_running(sdata)) 2633 continue; 2634 2635 sdata_lock(sdata); 2636 for (link_id = 0; 2637 link_id < ARRAY_SIZE(sdata->vif.link_conf); 2638 link_id++) { 2639 struct ieee80211_link_data *link; 2640 2641 link = sdata_dereference(sdata->link[link_id], sdata); 2642 if (link) 2643 ieee80211_assign_chanctx(local, sdata, link); 2644 } 2645 2646 switch (sdata->vif.type) { 2647 case NL80211_IFTYPE_AP_VLAN: 2648 case NL80211_IFTYPE_MONITOR: 2649 break; 2650 case NL80211_IFTYPE_ADHOC: 2651 if (sdata->vif.cfg.ibss_joined) 2652 WARN_ON(drv_join_ibss(local, sdata)); 2653 fallthrough; 2654 default: 2655 ieee80211_reconfig_stations(sdata); 2656 fallthrough; 2657 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2658 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2659 drv_conf_tx(local, &sdata->deflink, i, 2660 &sdata->deflink.tx_conf[i]); 2661 break; 2662 } 2663 sdata_unlock(sdata); 2664 2665 /* common change flags for all interface types */ 2666 changed = BSS_CHANGED_ERP_CTS_PROT | 2667 BSS_CHANGED_ERP_PREAMBLE | 2668 BSS_CHANGED_ERP_SLOT | 2669 BSS_CHANGED_HT | 2670 BSS_CHANGED_BASIC_RATES | 2671 BSS_CHANGED_BEACON_INT | 2672 BSS_CHANGED_BSSID | 2673 BSS_CHANGED_CQM | 2674 BSS_CHANGED_QOS | 2675 BSS_CHANGED_IDLE | 2676 BSS_CHANGED_TXPOWER | 2677 BSS_CHANGED_MCAST_RATE; 2678 2679 if (sdata->vif.bss_conf.mu_mimo_owner) 2680 changed |= BSS_CHANGED_MU_GROUPS; 2681 2682 switch (sdata->vif.type) { 2683 case NL80211_IFTYPE_STATION: 2684 changed |= BSS_CHANGED_ASSOC | 2685 BSS_CHANGED_ARP_FILTER | 2686 BSS_CHANGED_PS; 2687 2688 /* Re-send beacon info report to the driver */ 2689 if (sdata->deflink.u.mgd.have_beacon) 2690 changed |= BSS_CHANGED_BEACON_INFO; 2691 2692 if (sdata->vif.bss_conf.max_idle_period || 2693 sdata->vif.bss_conf.protected_keep_alive) 2694 changed |= BSS_CHANGED_KEEP_ALIVE; 2695 2696 sdata_lock(sdata); 2697 ieee80211_bss_info_change_notify(sdata, changed); 2698 sdata_unlock(sdata); 2699 break; 2700 case NL80211_IFTYPE_OCB: 2701 changed |= BSS_CHANGED_OCB; 2702 ieee80211_bss_info_change_notify(sdata, changed); 2703 break; 2704 case NL80211_IFTYPE_ADHOC: 2705 changed |= BSS_CHANGED_IBSS; 2706 fallthrough; 2707 case NL80211_IFTYPE_AP: 2708 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2709 2710 if (sdata->vif.bss_conf.ftm_responder == 1 && 2711 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2712 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2713 changed |= BSS_CHANGED_FTM_RESPONDER; 2714 2715 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2716 changed |= BSS_CHANGED_AP_PROBE_RESP; 2717 2718 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2719 drv_start_ap(local, sdata, 2720 sdata->deflink.conf); 2721 } 2722 fallthrough; 2723 case NL80211_IFTYPE_MESH_POINT: 2724 if (sdata->vif.bss_conf.enable_beacon) { 2725 changed |= BSS_CHANGED_BEACON | 2726 BSS_CHANGED_BEACON_ENABLED; 2727 ieee80211_bss_info_change_notify(sdata, changed); 2728 } 2729 break; 2730 case NL80211_IFTYPE_NAN: 2731 res = ieee80211_reconfig_nan(sdata); 2732 if (res < 0) { 2733 ieee80211_handle_reconfig_failure(local); 2734 return res; 2735 } 2736 break; 2737 case NL80211_IFTYPE_AP_VLAN: 2738 case NL80211_IFTYPE_MONITOR: 2739 case NL80211_IFTYPE_P2P_DEVICE: 2740 /* nothing to do */ 2741 break; 2742 case NL80211_IFTYPE_UNSPECIFIED: 2743 case NUM_NL80211_IFTYPES: 2744 case NL80211_IFTYPE_P2P_CLIENT: 2745 case NL80211_IFTYPE_P2P_GO: 2746 case NL80211_IFTYPE_WDS: 2747 WARN_ON(1); 2748 break; 2749 } 2750 } 2751 2752 ieee80211_recalc_ps(local); 2753 2754 /* 2755 * The sta might be in psm against the ap (e.g. because 2756 * this was the state before a hw restart), so we 2757 * explicitly send a null packet in order to make sure 2758 * it'll sync against the ap (and get out of psm). 2759 */ 2760 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2761 list_for_each_entry(sdata, &local->interfaces, list) { 2762 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2763 continue; 2764 if (!sdata->u.mgd.associated) 2765 continue; 2766 2767 ieee80211_send_nullfunc(local, sdata, false); 2768 } 2769 } 2770 2771 /* APs are now beaconing, add back stations */ 2772 list_for_each_entry(sdata, &local->interfaces, list) { 2773 if (!ieee80211_sdata_running(sdata)) 2774 continue; 2775 2776 sdata_lock(sdata); 2777 switch (sdata->vif.type) { 2778 case NL80211_IFTYPE_AP_VLAN: 2779 case NL80211_IFTYPE_AP: 2780 ieee80211_reconfig_stations(sdata); 2781 break; 2782 default: 2783 break; 2784 } 2785 sdata_unlock(sdata); 2786 } 2787 2788 /* add back keys */ 2789 list_for_each_entry(sdata, &local->interfaces, list) 2790 ieee80211_reenable_keys(sdata); 2791 2792 /* Reconfigure sched scan if it was interrupted by FW restart */ 2793 mutex_lock(&local->mtx); 2794 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2795 lockdep_is_held(&local->mtx)); 2796 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2797 lockdep_is_held(&local->mtx)); 2798 if (sched_scan_sdata && sched_scan_req) 2799 /* 2800 * Sched scan stopped, but we don't want to report it. Instead, 2801 * we're trying to reschedule. However, if more than one scan 2802 * plan was set, we cannot reschedule since we don't know which 2803 * scan plan was currently running (and some scan plans may have 2804 * already finished). 2805 */ 2806 if (sched_scan_req->n_scan_plans > 1 || 2807 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2808 sched_scan_req)) { 2809 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2810 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2811 sched_scan_stopped = true; 2812 } 2813 mutex_unlock(&local->mtx); 2814 2815 if (sched_scan_stopped) 2816 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2817 2818 wake_up: 2819 2820 if (local->monitors == local->open_count && local->monitors > 0) 2821 ieee80211_add_virtual_monitor(local); 2822 2823 /* 2824 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2825 * sessions can be established after a resume. 2826 * 2827 * Also tear down aggregation sessions since reconfiguring 2828 * them in a hardware restart scenario is not easily done 2829 * right now, and the hardware will have lost information 2830 * about the sessions, but we and the AP still think they 2831 * are active. This is really a workaround though. 2832 */ 2833 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2834 mutex_lock(&local->sta_mtx); 2835 2836 list_for_each_entry(sta, &local->sta_list, list) { 2837 if (!local->resuming) 2838 ieee80211_sta_tear_down_BA_sessions( 2839 sta, AGG_STOP_LOCAL_REQUEST); 2840 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2841 } 2842 2843 mutex_unlock(&local->sta_mtx); 2844 } 2845 2846 /* 2847 * If this is for hw restart things are still running. 2848 * We may want to change that later, however. 2849 */ 2850 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2851 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2852 2853 if (local->in_reconfig) { 2854 in_reconfig = local->in_reconfig; 2855 local->in_reconfig = false; 2856 barrier(); 2857 2858 /* Restart deferred ROCs */ 2859 mutex_lock(&local->mtx); 2860 ieee80211_start_next_roc(local); 2861 mutex_unlock(&local->mtx); 2862 2863 /* Requeue all works */ 2864 list_for_each_entry(sdata, &local->interfaces, list) 2865 ieee80211_queue_work(&local->hw, &sdata->work); 2866 } 2867 2868 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2869 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2870 false); 2871 2872 if (in_reconfig) { 2873 list_for_each_entry(sdata, &local->interfaces, list) { 2874 if (!ieee80211_sdata_running(sdata)) 2875 continue; 2876 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2877 ieee80211_sta_restart(sdata); 2878 } 2879 } 2880 2881 if (!suspended) 2882 return 0; 2883 2884 #ifdef CONFIG_PM 2885 /* first set suspended false, then resuming */ 2886 local->suspended = false; 2887 mb(); 2888 local->resuming = false; 2889 2890 ieee80211_flush_completed_scan(local, false); 2891 2892 if (local->open_count && !reconfig_due_to_wowlan) 2893 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2894 2895 list_for_each_entry(sdata, &local->interfaces, list) { 2896 if (!ieee80211_sdata_running(sdata)) 2897 continue; 2898 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2899 ieee80211_sta_restart(sdata); 2900 } 2901 2902 mod_timer(&local->sta_cleanup, jiffies + 1); 2903 #else 2904 WARN_ON(1); 2905 #endif 2906 2907 return 0; 2908 } 2909 2910 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2911 { 2912 struct ieee80211_sub_if_data *sdata; 2913 struct ieee80211_local *local; 2914 struct ieee80211_key *key; 2915 2916 if (WARN_ON(!vif)) 2917 return; 2918 2919 sdata = vif_to_sdata(vif); 2920 local = sdata->local; 2921 2922 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2923 !local->resuming)) 2924 return; 2925 2926 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2927 !local->in_reconfig)) 2928 return; 2929 2930 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2931 return; 2932 2933 sdata->flags |= flag; 2934 2935 mutex_lock(&local->key_mtx); 2936 list_for_each_entry(key, &sdata->key_list, list) 2937 key->flags |= KEY_FLAG_TAINTED; 2938 mutex_unlock(&local->key_mtx); 2939 } 2940 2941 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2942 { 2943 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2944 } 2945 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2946 2947 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2948 { 2949 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2950 } 2951 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2952 2953 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2954 struct ieee80211_link_data *link) 2955 { 2956 struct ieee80211_local *local = sdata->local; 2957 struct ieee80211_chanctx_conf *chanctx_conf; 2958 struct ieee80211_chanctx *chanctx; 2959 2960 mutex_lock(&local->chanctx_mtx); 2961 2962 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2963 lockdep_is_held(&local->chanctx_mtx)); 2964 2965 /* 2966 * This function can be called from a work, thus it may be possible 2967 * that the chanctx_conf is removed (due to a disconnection, for 2968 * example). 2969 * So nothing should be done in such case. 2970 */ 2971 if (!chanctx_conf) 2972 goto unlock; 2973 2974 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2975 ieee80211_recalc_smps_chanctx(local, chanctx); 2976 unlock: 2977 mutex_unlock(&local->chanctx_mtx); 2978 } 2979 2980 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2981 int link_id) 2982 { 2983 struct ieee80211_local *local = sdata->local; 2984 struct ieee80211_chanctx_conf *chanctx_conf; 2985 struct ieee80211_chanctx *chanctx; 2986 int i; 2987 2988 mutex_lock(&local->chanctx_mtx); 2989 2990 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2991 struct ieee80211_bss_conf *bss_conf; 2992 2993 if (link_id >= 0 && link_id != i) 2994 continue; 2995 2996 rcu_read_lock(); 2997 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2998 if (!bss_conf) { 2999 rcu_read_unlock(); 3000 continue; 3001 } 3002 3003 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 3004 lockdep_is_held(&local->chanctx_mtx)); 3005 /* 3006 * Since we hold the chanctx_mtx (checked above) 3007 * we can take the chanctx_conf pointer out of the 3008 * RCU critical section, it cannot go away without 3009 * the mutex. Just the way we reached it could - in 3010 * theory - go away, but we don't really care and 3011 * it really shouldn't happen anyway. 3012 */ 3013 rcu_read_unlock(); 3014 3015 if (!chanctx_conf) 3016 goto unlock; 3017 3018 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 3019 conf); 3020 ieee80211_recalc_chanctx_min_def(local, chanctx); 3021 } 3022 unlock: 3023 mutex_unlock(&local->chanctx_mtx); 3024 } 3025 3026 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 3027 { 3028 size_t pos = offset; 3029 3030 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 3031 pos += 2 + ies[pos + 1]; 3032 3033 return pos; 3034 } 3035 3036 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3037 u16 cap) 3038 { 3039 __le16 tmp; 3040 3041 *pos++ = WLAN_EID_HT_CAPABILITY; 3042 *pos++ = sizeof(struct ieee80211_ht_cap); 3043 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 3044 3045 /* capability flags */ 3046 tmp = cpu_to_le16(cap); 3047 memcpy(pos, &tmp, sizeof(u16)); 3048 pos += sizeof(u16); 3049 3050 /* AMPDU parameters */ 3051 *pos++ = ht_cap->ampdu_factor | 3052 (ht_cap->ampdu_density << 3053 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 3054 3055 /* MCS set */ 3056 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 3057 pos += sizeof(ht_cap->mcs); 3058 3059 /* extended capabilities */ 3060 pos += sizeof(__le16); 3061 3062 /* BF capabilities */ 3063 pos += sizeof(__le32); 3064 3065 /* antenna selection */ 3066 pos += sizeof(u8); 3067 3068 return pos; 3069 } 3070 3071 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3072 u32 cap) 3073 { 3074 __le32 tmp; 3075 3076 *pos++ = WLAN_EID_VHT_CAPABILITY; 3077 *pos++ = sizeof(struct ieee80211_vht_cap); 3078 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 3079 3080 /* capability flags */ 3081 tmp = cpu_to_le32(cap); 3082 memcpy(pos, &tmp, sizeof(u32)); 3083 pos += sizeof(u32); 3084 3085 /* VHT MCS set */ 3086 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 3087 pos += sizeof(vht_cap->vht_mcs); 3088 3089 return pos; 3090 } 3091 3092 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 3093 { 3094 const struct ieee80211_sta_he_cap *he_cap; 3095 struct ieee80211_supported_band *sband; 3096 u8 n; 3097 3098 sband = ieee80211_get_sband(sdata); 3099 if (!sband) 3100 return 0; 3101 3102 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3103 if (!he_cap) 3104 return 0; 3105 3106 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 3107 return 2 + 1 + 3108 sizeof(he_cap->he_cap_elem) + n + 3109 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3110 he_cap->he_cap_elem.phy_cap_info); 3111 } 3112 3113 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos, 3114 const struct ieee80211_sta_he_cap *he_cap, 3115 u8 *end) 3116 { 3117 struct ieee80211_he_cap_elem elem; 3118 u8 n; 3119 u8 ie_len; 3120 u8 *orig_pos = pos; 3121 3122 /* Make sure we have place for the IE */ 3123 /* 3124 * TODO: the 1 added is because this temporarily is under the EXTENSION 3125 * IE. Get rid of it when it moves. 3126 */ 3127 if (!he_cap) 3128 return orig_pos; 3129 3130 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 3131 elem = he_cap->he_cap_elem; 3132 3133 if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ) 3134 elem.phy_cap_info[0] &= 3135 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 3136 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 3137 3138 if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ) 3139 elem.phy_cap_info[0] &= 3140 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3141 3142 if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ) 3143 elem.phy_cap_info[0] &= 3144 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3145 3146 n = ieee80211_he_mcs_nss_size(&elem); 3147 ie_len = 2 + 1 + 3148 sizeof(he_cap->he_cap_elem) + n + 3149 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3150 he_cap->he_cap_elem.phy_cap_info); 3151 3152 if ((end - pos) < ie_len) 3153 return orig_pos; 3154 3155 *pos++ = WLAN_EID_EXTENSION; 3156 pos++; /* We'll set the size later below */ 3157 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3158 3159 /* Fixed data */ 3160 memcpy(pos, &elem, sizeof(elem)); 3161 pos += sizeof(elem); 3162 3163 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3164 pos += n; 3165 3166 /* Check if PPE Threshold should be present */ 3167 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3168 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3169 goto end; 3170 3171 /* 3172 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3173 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3174 */ 3175 n = hweight8(he_cap->ppe_thres[0] & 3176 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3177 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3178 IEEE80211_PPE_THRES_NSS_POS)); 3179 3180 /* 3181 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3182 * total size. 3183 */ 3184 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3185 n = DIV_ROUND_UP(n, 8); 3186 3187 /* Copy PPE Thresholds */ 3188 memcpy(pos, &he_cap->ppe_thres, n); 3189 pos += n; 3190 3191 end: 3192 orig_pos[1] = (pos - orig_pos) - 2; 3193 return pos; 3194 } 3195 3196 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3197 enum ieee80211_smps_mode smps_mode, 3198 struct sk_buff *skb) 3199 { 3200 struct ieee80211_supported_band *sband; 3201 const struct ieee80211_sband_iftype_data *iftd; 3202 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3203 u8 *pos; 3204 u16 cap; 3205 3206 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3207 BIT(NL80211_BAND_6GHZ), 3208 IEEE80211_CHAN_NO_HE)) 3209 return; 3210 3211 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3212 3213 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3214 if (!iftd) 3215 return; 3216 3217 /* Check for device HE 6 GHz capability before adding element */ 3218 if (!iftd->he_6ghz_capa.capa) 3219 return; 3220 3221 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3222 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3223 3224 switch (smps_mode) { 3225 case IEEE80211_SMPS_AUTOMATIC: 3226 case IEEE80211_SMPS_NUM_MODES: 3227 WARN_ON(1); 3228 fallthrough; 3229 case IEEE80211_SMPS_OFF: 3230 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3231 IEEE80211_HE_6GHZ_CAP_SM_PS); 3232 break; 3233 case IEEE80211_SMPS_STATIC: 3234 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3235 IEEE80211_HE_6GHZ_CAP_SM_PS); 3236 break; 3237 case IEEE80211_SMPS_DYNAMIC: 3238 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3239 IEEE80211_HE_6GHZ_CAP_SM_PS); 3240 break; 3241 } 3242 3243 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3244 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3245 pos + 2 + 1 + sizeof(cap)); 3246 } 3247 3248 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3249 const struct cfg80211_chan_def *chandef, 3250 u16 prot_mode, bool rifs_mode) 3251 { 3252 struct ieee80211_ht_operation *ht_oper; 3253 /* Build HT Information */ 3254 *pos++ = WLAN_EID_HT_OPERATION; 3255 *pos++ = sizeof(struct ieee80211_ht_operation); 3256 ht_oper = (struct ieee80211_ht_operation *)pos; 3257 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3258 chandef->chan->center_freq); 3259 switch (chandef->width) { 3260 case NL80211_CHAN_WIDTH_160: 3261 case NL80211_CHAN_WIDTH_80P80: 3262 case NL80211_CHAN_WIDTH_80: 3263 case NL80211_CHAN_WIDTH_40: 3264 if (chandef->center_freq1 > chandef->chan->center_freq) 3265 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3266 else 3267 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3268 break; 3269 case NL80211_CHAN_WIDTH_320: 3270 /* HT information element should not be included on 6GHz */ 3271 WARN_ON(1); 3272 return pos; 3273 default: 3274 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3275 break; 3276 } 3277 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3278 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3279 chandef->width != NL80211_CHAN_WIDTH_20) 3280 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3281 3282 if (rifs_mode) 3283 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3284 3285 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3286 ht_oper->stbc_param = 0x0000; 3287 3288 /* It seems that Basic MCS set and Supported MCS set 3289 are identical for the first 10 bytes */ 3290 memset(&ht_oper->basic_set, 0, 16); 3291 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3292 3293 return pos + sizeof(struct ieee80211_ht_operation); 3294 } 3295 3296 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3297 const struct cfg80211_chan_def *chandef) 3298 { 3299 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3300 *pos++ = 3; /* IE length */ 3301 /* New channel width */ 3302 switch (chandef->width) { 3303 case NL80211_CHAN_WIDTH_80: 3304 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3305 break; 3306 case NL80211_CHAN_WIDTH_160: 3307 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3308 break; 3309 case NL80211_CHAN_WIDTH_80P80: 3310 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3311 break; 3312 case NL80211_CHAN_WIDTH_320: 3313 /* The behavior is not defined for 320 MHz channels */ 3314 WARN_ON(1); 3315 fallthrough; 3316 default: 3317 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3318 } 3319 3320 /* new center frequency segment 0 */ 3321 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3322 /* new center frequency segment 1 */ 3323 if (chandef->center_freq2) 3324 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3325 else 3326 *pos++ = 0; 3327 } 3328 3329 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3330 const struct cfg80211_chan_def *chandef) 3331 { 3332 struct ieee80211_vht_operation *vht_oper; 3333 3334 *pos++ = WLAN_EID_VHT_OPERATION; 3335 *pos++ = sizeof(struct ieee80211_vht_operation); 3336 vht_oper = (struct ieee80211_vht_operation *)pos; 3337 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3338 chandef->center_freq1); 3339 if (chandef->center_freq2) 3340 vht_oper->center_freq_seg1_idx = 3341 ieee80211_frequency_to_channel(chandef->center_freq2); 3342 else 3343 vht_oper->center_freq_seg1_idx = 0x00; 3344 3345 switch (chandef->width) { 3346 case NL80211_CHAN_WIDTH_160: 3347 /* 3348 * Convert 160 MHz channel width to new style as interop 3349 * workaround. 3350 */ 3351 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3352 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3353 if (chandef->chan->center_freq < chandef->center_freq1) 3354 vht_oper->center_freq_seg0_idx -= 8; 3355 else 3356 vht_oper->center_freq_seg0_idx += 8; 3357 break; 3358 case NL80211_CHAN_WIDTH_80P80: 3359 /* 3360 * Convert 80+80 MHz channel width to new style as interop 3361 * workaround. 3362 */ 3363 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3364 break; 3365 case NL80211_CHAN_WIDTH_80: 3366 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3367 break; 3368 case NL80211_CHAN_WIDTH_320: 3369 /* VHT information element should not be included on 6GHz */ 3370 WARN_ON(1); 3371 return pos; 3372 default: 3373 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3374 break; 3375 } 3376 3377 /* don't require special VHT peer rates */ 3378 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3379 3380 return pos + sizeof(struct ieee80211_vht_operation); 3381 } 3382 3383 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3384 { 3385 struct ieee80211_he_operation *he_oper; 3386 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3387 u32 he_oper_params; 3388 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3389 3390 if (chandef->chan->band == NL80211_BAND_6GHZ) 3391 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3392 3393 *pos++ = WLAN_EID_EXTENSION; 3394 *pos++ = ie_len; 3395 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3396 3397 he_oper_params = 0; 3398 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3399 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3400 he_oper_params |= u32_encode_bits(1, 3401 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3402 he_oper_params |= u32_encode_bits(1, 3403 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3404 if (chandef->chan->band == NL80211_BAND_6GHZ) 3405 he_oper_params |= u32_encode_bits(1, 3406 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3407 3408 he_oper = (struct ieee80211_he_operation *)pos; 3409 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3410 3411 /* don't require special HE peer rates */ 3412 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3413 pos += sizeof(struct ieee80211_he_operation); 3414 3415 if (chandef->chan->band != NL80211_BAND_6GHZ) 3416 goto out; 3417 3418 /* TODO add VHT operational */ 3419 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3420 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3421 he_6ghz_op->primary = 3422 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3423 he_6ghz_op->ccfs0 = 3424 ieee80211_frequency_to_channel(chandef->center_freq1); 3425 if (chandef->center_freq2) 3426 he_6ghz_op->ccfs1 = 3427 ieee80211_frequency_to_channel(chandef->center_freq2); 3428 else 3429 he_6ghz_op->ccfs1 = 0; 3430 3431 switch (chandef->width) { 3432 case NL80211_CHAN_WIDTH_320: 3433 /* 3434 * TODO: mesh operation is not defined over 6GHz 320 MHz 3435 * channels. 3436 */ 3437 WARN_ON(1); 3438 break; 3439 case NL80211_CHAN_WIDTH_160: 3440 /* Convert 160 MHz channel width to new style as interop 3441 * workaround. 3442 */ 3443 he_6ghz_op->control = 3444 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3445 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3446 if (chandef->chan->center_freq < chandef->center_freq1) 3447 he_6ghz_op->ccfs0 -= 8; 3448 else 3449 he_6ghz_op->ccfs0 += 8; 3450 fallthrough; 3451 case NL80211_CHAN_WIDTH_80P80: 3452 he_6ghz_op->control = 3453 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3454 break; 3455 case NL80211_CHAN_WIDTH_80: 3456 he_6ghz_op->control = 3457 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3458 break; 3459 case NL80211_CHAN_WIDTH_40: 3460 he_6ghz_op->control = 3461 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3462 break; 3463 default: 3464 he_6ghz_op->control = 3465 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3466 break; 3467 } 3468 3469 pos += sizeof(struct ieee80211_he_6ghz_oper); 3470 3471 out: 3472 return pos; 3473 } 3474 3475 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3476 struct cfg80211_chan_def *chandef) 3477 { 3478 enum nl80211_channel_type channel_type; 3479 3480 if (!ht_oper) 3481 return false; 3482 3483 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3484 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3485 channel_type = NL80211_CHAN_HT20; 3486 break; 3487 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3488 channel_type = NL80211_CHAN_HT40PLUS; 3489 break; 3490 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3491 channel_type = NL80211_CHAN_HT40MINUS; 3492 break; 3493 default: 3494 return false; 3495 } 3496 3497 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3498 return true; 3499 } 3500 3501 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3502 const struct ieee80211_vht_operation *oper, 3503 const struct ieee80211_ht_operation *htop, 3504 struct cfg80211_chan_def *chandef) 3505 { 3506 struct cfg80211_chan_def new = *chandef; 3507 int cf0, cf1; 3508 int ccfs0, ccfs1, ccfs2; 3509 int ccf0, ccf1; 3510 u32 vht_cap; 3511 bool support_80_80 = false; 3512 bool support_160 = false; 3513 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3514 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3515 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3516 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3517 3518 if (!oper || !htop) 3519 return false; 3520 3521 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3522 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3523 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3524 support_80_80 = ((vht_cap & 3525 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3526 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3527 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3528 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3529 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3530 ccfs0 = oper->center_freq_seg0_idx; 3531 ccfs1 = oper->center_freq_seg1_idx; 3532 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3533 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3534 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3535 3536 ccf0 = ccfs0; 3537 3538 /* if not supported, parse as though we didn't understand it */ 3539 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3540 ext_nss_bw_supp = 0; 3541 3542 /* 3543 * Cf. IEEE 802.11 Table 9-250 3544 * 3545 * We really just consider that because it's inefficient to connect 3546 * at a higher bandwidth than we'll actually be able to use. 3547 */ 3548 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3549 default: 3550 case 0x00: 3551 ccf1 = 0; 3552 support_160 = false; 3553 support_80_80 = false; 3554 break; 3555 case 0x01: 3556 support_80_80 = false; 3557 fallthrough; 3558 case 0x02: 3559 case 0x03: 3560 ccf1 = ccfs2; 3561 break; 3562 case 0x10: 3563 ccf1 = ccfs1; 3564 break; 3565 case 0x11: 3566 case 0x12: 3567 if (!ccfs1) 3568 ccf1 = ccfs2; 3569 else 3570 ccf1 = ccfs1; 3571 break; 3572 case 0x13: 3573 case 0x20: 3574 case 0x23: 3575 ccf1 = ccfs1; 3576 break; 3577 } 3578 3579 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3580 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3581 3582 switch (oper->chan_width) { 3583 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3584 /* just use HT information directly */ 3585 break; 3586 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3587 new.width = NL80211_CHAN_WIDTH_80; 3588 new.center_freq1 = cf0; 3589 /* If needed, adjust based on the newer interop workaround. */ 3590 if (ccf1) { 3591 unsigned int diff; 3592 3593 diff = abs(ccf1 - ccf0); 3594 if ((diff == 8) && support_160) { 3595 new.width = NL80211_CHAN_WIDTH_160; 3596 new.center_freq1 = cf1; 3597 } else if ((diff > 8) && support_80_80) { 3598 new.width = NL80211_CHAN_WIDTH_80P80; 3599 new.center_freq2 = cf1; 3600 } 3601 } 3602 break; 3603 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3604 /* deprecated encoding */ 3605 new.width = NL80211_CHAN_WIDTH_160; 3606 new.center_freq1 = cf0; 3607 break; 3608 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3609 /* deprecated encoding */ 3610 new.width = NL80211_CHAN_WIDTH_80P80; 3611 new.center_freq1 = cf0; 3612 new.center_freq2 = cf1; 3613 break; 3614 default: 3615 return false; 3616 } 3617 3618 if (!cfg80211_chandef_valid(&new)) 3619 return false; 3620 3621 *chandef = new; 3622 return true; 3623 } 3624 3625 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper, 3626 bool support_160, bool support_320, 3627 struct cfg80211_chan_def *chandef) 3628 { 3629 struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional; 3630 3631 chandef->center_freq1 = 3632 ieee80211_channel_to_frequency(info->ccfs0, 3633 chandef->chan->band); 3634 3635 switch (u8_get_bits(info->control, 3636 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3637 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3638 chandef->width = NL80211_CHAN_WIDTH_20; 3639 break; 3640 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3641 chandef->width = NL80211_CHAN_WIDTH_40; 3642 break; 3643 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3644 chandef->width = NL80211_CHAN_WIDTH_80; 3645 break; 3646 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3647 if (support_160) { 3648 chandef->width = NL80211_CHAN_WIDTH_160; 3649 chandef->center_freq1 = 3650 ieee80211_channel_to_frequency(info->ccfs1, 3651 chandef->chan->band); 3652 } else { 3653 chandef->width = NL80211_CHAN_WIDTH_80; 3654 } 3655 break; 3656 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3657 if (support_320) { 3658 chandef->width = NL80211_CHAN_WIDTH_320; 3659 chandef->center_freq1 = 3660 ieee80211_channel_to_frequency(info->ccfs1, 3661 chandef->chan->band); 3662 } else if (support_160) { 3663 chandef->width = NL80211_CHAN_WIDTH_160; 3664 } else { 3665 chandef->width = NL80211_CHAN_WIDTH_80; 3666 3667 if (chandef->center_freq1 > chandef->chan->center_freq) 3668 chandef->center_freq1 -= 40; 3669 else 3670 chandef->center_freq1 += 40; 3671 } 3672 break; 3673 } 3674 } 3675 3676 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3677 const struct ieee80211_he_operation *he_oper, 3678 const struct ieee80211_eht_operation *eht_oper, 3679 struct cfg80211_chan_def *chandef) 3680 { 3681 struct ieee80211_local *local = sdata->local; 3682 struct ieee80211_supported_band *sband; 3683 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3684 const struct ieee80211_sta_he_cap *he_cap; 3685 const struct ieee80211_sta_eht_cap *eht_cap; 3686 struct cfg80211_chan_def he_chandef = *chandef; 3687 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3688 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3689 bool support_80_80, support_160, support_320; 3690 u8 he_phy_cap, eht_phy_cap; 3691 u32 freq; 3692 3693 if (chandef->chan->band != NL80211_BAND_6GHZ) 3694 return true; 3695 3696 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3697 3698 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3699 if (!he_cap) { 3700 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3701 return false; 3702 } 3703 3704 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3705 support_160 = 3706 he_phy_cap & 3707 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3708 support_80_80 = 3709 he_phy_cap & 3710 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3711 3712 if (!he_oper) { 3713 sdata_info(sdata, 3714 "HE is not advertised on (on %d MHz), expect issues\n", 3715 chandef->chan->center_freq); 3716 return false; 3717 } 3718 3719 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3720 if (!eht_cap) { 3721 sdata_info(sdata, "Missing iftype sband data/EHT cap"); 3722 eht_oper = NULL; 3723 } 3724 3725 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3726 3727 if (!he_6ghz_oper) { 3728 sdata_info(sdata, 3729 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3730 chandef->chan->center_freq); 3731 return false; 3732 } 3733 3734 /* 3735 * The EHT operation IE does not contain the primary channel so the 3736 * primary channel frequency should be taken from the 6 GHz operation 3737 * information. 3738 */ 3739 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3740 NL80211_BAND_6GHZ); 3741 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3742 3743 switch (u8_get_bits(he_6ghz_oper->control, 3744 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3745 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3746 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3747 break; 3748 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3749 bss_conf->power_type = IEEE80211_REG_SP_AP; 3750 break; 3751 default: 3752 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3753 break; 3754 } 3755 3756 if (!eht_oper || 3757 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3758 switch (u8_get_bits(he_6ghz_oper->control, 3759 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3760 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3761 he_chandef.width = NL80211_CHAN_WIDTH_20; 3762 break; 3763 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3764 he_chandef.width = NL80211_CHAN_WIDTH_40; 3765 break; 3766 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3767 he_chandef.width = NL80211_CHAN_WIDTH_80; 3768 break; 3769 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3770 he_chandef.width = NL80211_CHAN_WIDTH_80; 3771 if (!he_6ghz_oper->ccfs1) 3772 break; 3773 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3774 if (support_160) 3775 he_chandef.width = NL80211_CHAN_WIDTH_160; 3776 } else { 3777 if (support_80_80) 3778 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3779 } 3780 break; 3781 } 3782 3783 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3784 he_chandef.center_freq1 = 3785 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3786 NL80211_BAND_6GHZ); 3787 } else { 3788 he_chandef.center_freq1 = 3789 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3790 NL80211_BAND_6GHZ); 3791 if (support_80_80 || support_160) 3792 he_chandef.center_freq2 = 3793 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3794 NL80211_BAND_6GHZ); 3795 } 3796 } else { 3797 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3798 support_320 = 3799 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3800 3801 ieee80211_chandef_eht_oper(eht_oper, support_160, 3802 support_320, &he_chandef); 3803 } 3804 3805 if (!cfg80211_chandef_valid(&he_chandef)) { 3806 sdata_info(sdata, 3807 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3808 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3809 he_chandef.width, 3810 he_chandef.center_freq1, 3811 he_chandef.center_freq2); 3812 return false; 3813 } 3814 3815 *chandef = he_chandef; 3816 3817 return true; 3818 } 3819 3820 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3821 struct cfg80211_chan_def *chandef) 3822 { 3823 u32 oper_freq; 3824 3825 if (!oper) 3826 return false; 3827 3828 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3829 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3830 chandef->width = NL80211_CHAN_WIDTH_1; 3831 break; 3832 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3833 chandef->width = NL80211_CHAN_WIDTH_2; 3834 break; 3835 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3836 chandef->width = NL80211_CHAN_WIDTH_4; 3837 break; 3838 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3839 chandef->width = NL80211_CHAN_WIDTH_8; 3840 break; 3841 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3842 chandef->width = NL80211_CHAN_WIDTH_16; 3843 break; 3844 default: 3845 return false; 3846 } 3847 3848 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3849 NL80211_BAND_S1GHZ); 3850 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3851 chandef->freq1_offset = oper_freq % 1000; 3852 3853 return true; 3854 } 3855 3856 int ieee80211_parse_bitrates(enum nl80211_chan_width width, 3857 const struct ieee80211_supported_band *sband, 3858 const u8 *srates, int srates_len, u32 *rates) 3859 { 3860 u32 rate_flags = ieee80211_chanwidth_rate_flags(width); 3861 int shift = ieee80211_chanwidth_get_shift(width); 3862 struct ieee80211_rate *br; 3863 int brate, rate, i, j, count = 0; 3864 3865 *rates = 0; 3866 3867 for (i = 0; i < srates_len; i++) { 3868 rate = srates[i] & 0x7f; 3869 3870 for (j = 0; j < sband->n_bitrates; j++) { 3871 br = &sband->bitrates[j]; 3872 if ((rate_flags & br->flags) != rate_flags) 3873 continue; 3874 3875 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3876 if (brate == rate) { 3877 *rates |= BIT(j); 3878 count++; 3879 break; 3880 } 3881 } 3882 } 3883 return count; 3884 } 3885 3886 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3887 struct sk_buff *skb, bool need_basic, 3888 enum nl80211_band band) 3889 { 3890 struct ieee80211_local *local = sdata->local; 3891 struct ieee80211_supported_band *sband; 3892 int rate, shift; 3893 u8 i, rates, *pos; 3894 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3895 u32 rate_flags; 3896 3897 shift = ieee80211_vif_get_shift(&sdata->vif); 3898 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3899 sband = local->hw.wiphy->bands[band]; 3900 rates = 0; 3901 for (i = 0; i < sband->n_bitrates; i++) { 3902 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3903 continue; 3904 rates++; 3905 } 3906 if (rates > 8) 3907 rates = 8; 3908 3909 if (skb_tailroom(skb) < rates + 2) 3910 return -ENOMEM; 3911 3912 pos = skb_put(skb, rates + 2); 3913 *pos++ = WLAN_EID_SUPP_RATES; 3914 *pos++ = rates; 3915 for (i = 0; i < rates; i++) { 3916 u8 basic = 0; 3917 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3918 continue; 3919 3920 if (need_basic && basic_rates & BIT(i)) 3921 basic = 0x80; 3922 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3923 5 * (1 << shift)); 3924 *pos++ = basic | (u8) rate; 3925 } 3926 3927 return 0; 3928 } 3929 3930 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3931 struct sk_buff *skb, bool need_basic, 3932 enum nl80211_band band) 3933 { 3934 struct ieee80211_local *local = sdata->local; 3935 struct ieee80211_supported_band *sband; 3936 int rate, shift; 3937 u8 i, exrates, *pos; 3938 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3939 u32 rate_flags; 3940 3941 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3942 shift = ieee80211_vif_get_shift(&sdata->vif); 3943 3944 sband = local->hw.wiphy->bands[band]; 3945 exrates = 0; 3946 for (i = 0; i < sband->n_bitrates; i++) { 3947 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3948 continue; 3949 exrates++; 3950 } 3951 3952 if (exrates > 8) 3953 exrates -= 8; 3954 else 3955 exrates = 0; 3956 3957 if (skb_tailroom(skb) < exrates + 2) 3958 return -ENOMEM; 3959 3960 if (exrates) { 3961 pos = skb_put(skb, exrates + 2); 3962 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3963 *pos++ = exrates; 3964 for (i = 8; i < sband->n_bitrates; i++) { 3965 u8 basic = 0; 3966 if ((rate_flags & sband->bitrates[i].flags) 3967 != rate_flags) 3968 continue; 3969 if (need_basic && basic_rates & BIT(i)) 3970 basic = 0x80; 3971 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3972 5 * (1 << shift)); 3973 *pos++ = basic | (u8) rate; 3974 } 3975 } 3976 return 0; 3977 } 3978 3979 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3980 { 3981 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3982 3983 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3984 return 0; 3985 3986 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3987 } 3988 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3989 3990 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3991 { 3992 if (!mcs) 3993 return 1; 3994 3995 /* TODO: consider rx_highest */ 3996 3997 if (mcs->rx_mask[3]) 3998 return 4; 3999 if (mcs->rx_mask[2]) 4000 return 3; 4001 if (mcs->rx_mask[1]) 4002 return 2; 4003 return 1; 4004 } 4005 4006 /** 4007 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 4008 * @local: mac80211 hw info struct 4009 * @status: RX status 4010 * @mpdu_len: total MPDU length (including FCS) 4011 * @mpdu_offset: offset into MPDU to calculate timestamp at 4012 * 4013 * This function calculates the RX timestamp at the given MPDU offset, taking 4014 * into account what the RX timestamp was. An offset of 0 will just normalize 4015 * the timestamp to TSF at beginning of MPDU reception. 4016 */ 4017 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 4018 struct ieee80211_rx_status *status, 4019 unsigned int mpdu_len, 4020 unsigned int mpdu_offset) 4021 { 4022 u64 ts = status->mactime; 4023 struct rate_info ri; 4024 u16 rate; 4025 u8 n_ltf; 4026 4027 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 4028 return 0; 4029 4030 memset(&ri, 0, sizeof(ri)); 4031 4032 ri.bw = status->bw; 4033 4034 /* Fill cfg80211 rate info */ 4035 switch (status->encoding) { 4036 case RX_ENC_HE: 4037 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 4038 ri.mcs = status->rate_idx; 4039 ri.nss = status->nss; 4040 ri.he_ru_alloc = status->he_ru; 4041 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4042 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4043 4044 /* 4045 * See P802.11ax_D6.0, section 27.3.4 for 4046 * VHT PPDU format. 4047 */ 4048 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4049 mpdu_offset += 2; 4050 ts += 36; 4051 4052 /* 4053 * TODO: 4054 * For HE MU PPDU, add the HE-SIG-B. 4055 * For HE ER PPDU, add 8us for the HE-SIG-A. 4056 * For HE TB PPDU, add 4us for the HE-STF. 4057 * Add the HE-LTF durations - variable. 4058 */ 4059 } 4060 4061 break; 4062 case RX_ENC_HT: 4063 ri.mcs = status->rate_idx; 4064 ri.flags |= RATE_INFO_FLAGS_MCS; 4065 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4066 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4067 4068 /* 4069 * See P802.11REVmd_D3.0, section 19.3.2 for 4070 * HT PPDU format. 4071 */ 4072 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4073 mpdu_offset += 2; 4074 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 4075 ts += 24; 4076 else 4077 ts += 32; 4078 4079 /* 4080 * Add Data HT-LTFs per streams 4081 * TODO: add Extension HT-LTFs, 4us per LTF 4082 */ 4083 n_ltf = ((ri.mcs >> 3) & 3) + 1; 4084 n_ltf = n_ltf == 3 ? 4 : n_ltf; 4085 ts += n_ltf * 4; 4086 } 4087 4088 break; 4089 case RX_ENC_VHT: 4090 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 4091 ri.mcs = status->rate_idx; 4092 ri.nss = status->nss; 4093 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 4094 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 4095 4096 /* 4097 * See P802.11REVmd_D3.0, section 21.3.2 for 4098 * VHT PPDU format. 4099 */ 4100 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4101 mpdu_offset += 2; 4102 ts += 36; 4103 4104 /* 4105 * Add VHT-LTFs per streams 4106 */ 4107 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 4108 ri.nss + 1 : ri.nss; 4109 ts += 4 * n_ltf; 4110 } 4111 4112 break; 4113 default: 4114 WARN_ON(1); 4115 fallthrough; 4116 case RX_ENC_LEGACY: { 4117 struct ieee80211_supported_band *sband; 4118 int shift = 0; 4119 int bitrate; 4120 4121 switch (status->bw) { 4122 case RATE_INFO_BW_10: 4123 shift = 1; 4124 break; 4125 case RATE_INFO_BW_5: 4126 shift = 2; 4127 break; 4128 } 4129 4130 sband = local->hw.wiphy->bands[status->band]; 4131 bitrate = sband->bitrates[status->rate_idx].bitrate; 4132 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 4133 4134 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 4135 if (status->band == NL80211_BAND_5GHZ) { 4136 ts += 20 << shift; 4137 mpdu_offset += 2; 4138 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 4139 ts += 96; 4140 } else { 4141 ts += 192; 4142 } 4143 } 4144 break; 4145 } 4146 } 4147 4148 rate = cfg80211_calculate_bitrate(&ri); 4149 if (WARN_ONCE(!rate, 4150 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 4151 (unsigned long long)status->flag, status->rate_idx, 4152 status->nss)) 4153 return 0; 4154 4155 /* rewind from end of MPDU */ 4156 if (status->flag & RX_FLAG_MACTIME_END) 4157 ts -= mpdu_len * 8 * 10 / rate; 4158 4159 ts += mpdu_offset * 8 * 10 / rate; 4160 4161 return ts; 4162 } 4163 4164 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4165 { 4166 struct ieee80211_sub_if_data *sdata; 4167 struct cfg80211_chan_def chandef; 4168 4169 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4170 lockdep_assert_wiphy(local->hw.wiphy); 4171 4172 mutex_lock(&local->mtx); 4173 list_for_each_entry(sdata, &local->interfaces, list) { 4174 /* it might be waiting for the local->mtx, but then 4175 * by the time it gets it, sdata->wdev.cac_started 4176 * will no longer be true 4177 */ 4178 cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work); 4179 4180 if (sdata->wdev.cac_started) { 4181 chandef = sdata->vif.bss_conf.chandef; 4182 ieee80211_link_release_channel(&sdata->deflink); 4183 cfg80211_cac_event(sdata->dev, 4184 &chandef, 4185 NL80211_RADAR_CAC_ABORTED, 4186 GFP_KERNEL); 4187 } 4188 } 4189 mutex_unlock(&local->mtx); 4190 } 4191 4192 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 4193 { 4194 struct ieee80211_local *local = 4195 container_of(work, struct ieee80211_local, radar_detected_work); 4196 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4197 struct ieee80211_chanctx *ctx; 4198 int num_chanctx = 0; 4199 4200 mutex_lock(&local->chanctx_mtx); 4201 list_for_each_entry(ctx, &local->chanctx_list, list) { 4202 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4203 continue; 4204 4205 num_chanctx++; 4206 chandef = ctx->conf.def; 4207 } 4208 mutex_unlock(&local->chanctx_mtx); 4209 4210 wiphy_lock(local->hw.wiphy); 4211 ieee80211_dfs_cac_cancel(local); 4212 wiphy_unlock(local->hw.wiphy); 4213 4214 if (num_chanctx > 1) 4215 /* XXX: multi-channel is not supported yet */ 4216 WARN_ON(1); 4217 else 4218 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4219 } 4220 4221 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4222 { 4223 struct ieee80211_local *local = hw_to_local(hw); 4224 4225 trace_api_radar_detected(local); 4226 4227 schedule_work(&local->radar_detected_work); 4228 } 4229 EXPORT_SYMBOL(ieee80211_radar_detected); 4230 4231 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4232 { 4233 ieee80211_conn_flags_t ret; 4234 int tmp; 4235 4236 switch (c->width) { 4237 case NL80211_CHAN_WIDTH_20: 4238 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4239 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4240 break; 4241 case NL80211_CHAN_WIDTH_40: 4242 c->width = NL80211_CHAN_WIDTH_20; 4243 c->center_freq1 = c->chan->center_freq; 4244 ret = IEEE80211_CONN_DISABLE_40MHZ | 4245 IEEE80211_CONN_DISABLE_VHT; 4246 break; 4247 case NL80211_CHAN_WIDTH_80: 4248 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4249 /* n_P40 */ 4250 tmp /= 2; 4251 /* freq_P40 */ 4252 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4253 c->width = NL80211_CHAN_WIDTH_40; 4254 ret = IEEE80211_CONN_DISABLE_VHT; 4255 break; 4256 case NL80211_CHAN_WIDTH_80P80: 4257 c->center_freq2 = 0; 4258 c->width = NL80211_CHAN_WIDTH_80; 4259 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4260 IEEE80211_CONN_DISABLE_160MHZ; 4261 break; 4262 case NL80211_CHAN_WIDTH_160: 4263 /* n_P20 */ 4264 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4265 /* n_P80 */ 4266 tmp /= 4; 4267 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4268 c->width = NL80211_CHAN_WIDTH_80; 4269 ret = IEEE80211_CONN_DISABLE_80P80MHZ | 4270 IEEE80211_CONN_DISABLE_160MHZ; 4271 break; 4272 case NL80211_CHAN_WIDTH_320: 4273 /* n_P20 */ 4274 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4275 /* n_P160 */ 4276 tmp /= 8; 4277 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4278 c->width = NL80211_CHAN_WIDTH_160; 4279 ret = IEEE80211_CONN_DISABLE_320MHZ; 4280 break; 4281 default: 4282 case NL80211_CHAN_WIDTH_20_NOHT: 4283 WARN_ON_ONCE(1); 4284 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4285 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4286 break; 4287 case NL80211_CHAN_WIDTH_1: 4288 case NL80211_CHAN_WIDTH_2: 4289 case NL80211_CHAN_WIDTH_4: 4290 case NL80211_CHAN_WIDTH_8: 4291 case NL80211_CHAN_WIDTH_16: 4292 case NL80211_CHAN_WIDTH_5: 4293 case NL80211_CHAN_WIDTH_10: 4294 WARN_ON_ONCE(1); 4295 /* keep c->width */ 4296 ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT; 4297 break; 4298 } 4299 4300 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4301 4302 return ret; 4303 } 4304 4305 /* 4306 * Returns true if smps_mode_new is strictly more restrictive than 4307 * smps_mode_old. 4308 */ 4309 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4310 enum ieee80211_smps_mode smps_mode_new) 4311 { 4312 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4313 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4314 return false; 4315 4316 switch (smps_mode_old) { 4317 case IEEE80211_SMPS_STATIC: 4318 return false; 4319 case IEEE80211_SMPS_DYNAMIC: 4320 return smps_mode_new == IEEE80211_SMPS_STATIC; 4321 case IEEE80211_SMPS_OFF: 4322 return smps_mode_new != IEEE80211_SMPS_OFF; 4323 default: 4324 WARN_ON(1); 4325 } 4326 4327 return false; 4328 } 4329 4330 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4331 struct cfg80211_csa_settings *csa_settings) 4332 { 4333 struct sk_buff *skb; 4334 struct ieee80211_mgmt *mgmt; 4335 struct ieee80211_local *local = sdata->local; 4336 int freq; 4337 int hdr_len = offsetofend(struct ieee80211_mgmt, 4338 u.action.u.chan_switch); 4339 u8 *pos; 4340 4341 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4342 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4343 return -EOPNOTSUPP; 4344 4345 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4346 5 + /* channel switch announcement element */ 4347 3 + /* secondary channel offset element */ 4348 5 + /* wide bandwidth channel switch announcement */ 4349 8); /* mesh channel switch parameters element */ 4350 if (!skb) 4351 return -ENOMEM; 4352 4353 skb_reserve(skb, local->tx_headroom); 4354 mgmt = skb_put_zero(skb, hdr_len); 4355 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4356 IEEE80211_STYPE_ACTION); 4357 4358 eth_broadcast_addr(mgmt->da); 4359 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4360 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4361 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4362 } else { 4363 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4364 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4365 } 4366 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4367 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4368 pos = skb_put(skb, 5); 4369 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4370 *pos++ = 3; /* IE length */ 4371 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4372 freq = csa_settings->chandef.chan->center_freq; 4373 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4374 *pos++ = csa_settings->count; /* count */ 4375 4376 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4377 enum nl80211_channel_type ch_type; 4378 4379 skb_put(skb, 3); 4380 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4381 *pos++ = 1; /* IE length */ 4382 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4383 if (ch_type == NL80211_CHAN_HT40PLUS) 4384 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4385 else 4386 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4387 } 4388 4389 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4390 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4391 4392 skb_put(skb, 8); 4393 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4394 *pos++ = 6; /* IE length */ 4395 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4396 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4397 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4398 *pos++ |= csa_settings->block_tx ? 4399 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4400 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4401 pos += 2; 4402 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4403 pos += 2; 4404 } 4405 4406 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4407 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4408 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4409 skb_put(skb, 5); 4410 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4411 } 4412 4413 ieee80211_tx_skb(sdata, skb); 4414 return 0; 4415 } 4416 4417 static bool 4418 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4419 { 4420 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4421 int skip; 4422 4423 if (end > 0) 4424 return false; 4425 4426 /* One shot NOA */ 4427 if (data->count[i] == 1) 4428 return false; 4429 4430 if (data->desc[i].interval == 0) 4431 return false; 4432 4433 /* End time is in the past, check for repetitions */ 4434 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4435 if (data->count[i] < 255) { 4436 if (data->count[i] <= skip) { 4437 data->count[i] = 0; 4438 return false; 4439 } 4440 4441 data->count[i] -= skip; 4442 } 4443 4444 data->desc[i].start += skip * data->desc[i].interval; 4445 4446 return true; 4447 } 4448 4449 static bool 4450 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4451 s32 *offset) 4452 { 4453 bool ret = false; 4454 int i; 4455 4456 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4457 s32 cur; 4458 4459 if (!data->count[i]) 4460 continue; 4461 4462 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4463 ret = true; 4464 4465 cur = data->desc[i].start - tsf; 4466 if (cur > *offset) 4467 continue; 4468 4469 cur = data->desc[i].start + data->desc[i].duration - tsf; 4470 if (cur > *offset) 4471 *offset = cur; 4472 } 4473 4474 return ret; 4475 } 4476 4477 static u32 4478 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4479 { 4480 s32 offset = 0; 4481 int tries = 0; 4482 /* 4483 * arbitrary limit, used to avoid infinite loops when combined NoA 4484 * descriptors cover the full time period. 4485 */ 4486 int max_tries = 5; 4487 4488 ieee80211_extend_absent_time(data, tsf, &offset); 4489 do { 4490 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4491 break; 4492 4493 tries++; 4494 } while (tries < max_tries); 4495 4496 return offset; 4497 } 4498 4499 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4500 { 4501 u32 next_offset = BIT(31) - 1; 4502 int i; 4503 4504 data->absent = 0; 4505 data->has_next_tsf = false; 4506 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4507 s32 start; 4508 4509 if (!data->count[i]) 4510 continue; 4511 4512 ieee80211_extend_noa_desc(data, tsf, i); 4513 start = data->desc[i].start - tsf; 4514 if (start <= 0) 4515 data->absent |= BIT(i); 4516 4517 if (next_offset > start) 4518 next_offset = start; 4519 4520 data->has_next_tsf = true; 4521 } 4522 4523 if (data->absent) 4524 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4525 4526 data->next_tsf = tsf + next_offset; 4527 } 4528 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4529 4530 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4531 struct ieee80211_noa_data *data, u32 tsf) 4532 { 4533 int ret = 0; 4534 int i; 4535 4536 memset(data, 0, sizeof(*data)); 4537 4538 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4539 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4540 4541 if (!desc->count || !desc->duration) 4542 continue; 4543 4544 data->count[i] = desc->count; 4545 data->desc[i].start = le32_to_cpu(desc->start_time); 4546 data->desc[i].duration = le32_to_cpu(desc->duration); 4547 data->desc[i].interval = le32_to_cpu(desc->interval); 4548 4549 if (data->count[i] > 1 && 4550 data->desc[i].interval < data->desc[i].duration) 4551 continue; 4552 4553 ieee80211_extend_noa_desc(data, tsf, i); 4554 ret++; 4555 } 4556 4557 if (ret) 4558 ieee80211_update_p2p_noa(data, tsf); 4559 4560 return ret; 4561 } 4562 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4563 4564 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4565 struct ieee80211_sub_if_data *sdata) 4566 { 4567 u64 tsf = drv_get_tsf(local, sdata); 4568 u64 dtim_count = 0; 4569 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4570 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4571 struct ps_data *ps; 4572 u8 bcns_from_dtim; 4573 4574 if (tsf == -1ULL || !beacon_int || !dtim_period) 4575 return; 4576 4577 if (sdata->vif.type == NL80211_IFTYPE_AP || 4578 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4579 if (!sdata->bss) 4580 return; 4581 4582 ps = &sdata->bss->ps; 4583 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4584 ps = &sdata->u.mesh.ps; 4585 } else { 4586 return; 4587 } 4588 4589 /* 4590 * actually finds last dtim_count, mac80211 will update in 4591 * __beacon_add_tim(). 4592 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4593 */ 4594 do_div(tsf, beacon_int); 4595 bcns_from_dtim = do_div(tsf, dtim_period); 4596 /* just had a DTIM */ 4597 if (!bcns_from_dtim) 4598 dtim_count = 0; 4599 else 4600 dtim_count = dtim_period - bcns_from_dtim; 4601 4602 ps->dtim_count = dtim_count; 4603 } 4604 4605 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4606 struct ieee80211_chanctx *ctx) 4607 { 4608 struct ieee80211_link_data *link; 4609 u8 radar_detect = 0; 4610 4611 lockdep_assert_held(&local->chanctx_mtx); 4612 4613 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4614 return 0; 4615 4616 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 4617 if (link->reserved_radar_required) 4618 radar_detect |= BIT(link->reserved_chandef.width); 4619 4620 /* 4621 * An in-place reservation context should not have any assigned vifs 4622 * until it replaces the other context. 4623 */ 4624 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4625 !list_empty(&ctx->assigned_links)); 4626 4627 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4628 if (!link->radar_required) 4629 continue; 4630 4631 radar_detect |= 4632 BIT(link->conf->chandef.width); 4633 } 4634 4635 return radar_detect; 4636 } 4637 4638 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4639 const struct cfg80211_chan_def *chandef, 4640 enum ieee80211_chanctx_mode chanmode, 4641 u8 radar_detect) 4642 { 4643 struct ieee80211_local *local = sdata->local; 4644 struct ieee80211_sub_if_data *sdata_iter; 4645 enum nl80211_iftype iftype = sdata->wdev.iftype; 4646 struct ieee80211_chanctx *ctx; 4647 int total = 1; 4648 struct iface_combination_params params = { 4649 .radar_detect = radar_detect, 4650 }; 4651 4652 lockdep_assert_held(&local->chanctx_mtx); 4653 4654 if (WARN_ON(hweight32(radar_detect) > 1)) 4655 return -EINVAL; 4656 4657 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4658 !chandef->chan)) 4659 return -EINVAL; 4660 4661 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4662 return -EINVAL; 4663 4664 if (sdata->vif.type == NL80211_IFTYPE_AP || 4665 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4666 /* 4667 * always passing this is harmless, since it'll be the 4668 * same value that cfg80211 finds if it finds the same 4669 * interface ... and that's always allowed 4670 */ 4671 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4672 } 4673 4674 /* Always allow software iftypes */ 4675 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4676 if (radar_detect) 4677 return -EINVAL; 4678 return 0; 4679 } 4680 4681 if (chandef) 4682 params.num_different_channels = 1; 4683 4684 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4685 params.iftype_num[iftype] = 1; 4686 4687 list_for_each_entry(ctx, &local->chanctx_list, list) { 4688 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4689 continue; 4690 params.radar_detect |= 4691 ieee80211_chanctx_radar_detect(local, ctx); 4692 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4693 params.num_different_channels++; 4694 continue; 4695 } 4696 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4697 cfg80211_chandef_compatible(chandef, 4698 &ctx->conf.def)) 4699 continue; 4700 params.num_different_channels++; 4701 } 4702 4703 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4704 struct wireless_dev *wdev_iter; 4705 4706 wdev_iter = &sdata_iter->wdev; 4707 4708 if (sdata_iter == sdata || 4709 !ieee80211_sdata_running(sdata_iter) || 4710 cfg80211_iftype_allowed(local->hw.wiphy, 4711 wdev_iter->iftype, 0, 1)) 4712 continue; 4713 4714 params.iftype_num[wdev_iter->iftype]++; 4715 total++; 4716 } 4717 4718 if (total == 1 && !params.radar_detect) 4719 return 0; 4720 4721 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4722 } 4723 4724 static void 4725 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4726 void *data) 4727 { 4728 u32 *max_num_different_channels = data; 4729 4730 *max_num_different_channels = max(*max_num_different_channels, 4731 c->num_different_channels); 4732 } 4733 4734 int ieee80211_max_num_channels(struct ieee80211_local *local) 4735 { 4736 struct ieee80211_sub_if_data *sdata; 4737 struct ieee80211_chanctx *ctx; 4738 u32 max_num_different_channels = 1; 4739 int err; 4740 struct iface_combination_params params = {0}; 4741 4742 lockdep_assert_held(&local->chanctx_mtx); 4743 4744 list_for_each_entry(ctx, &local->chanctx_list, list) { 4745 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4746 continue; 4747 4748 params.num_different_channels++; 4749 4750 params.radar_detect |= 4751 ieee80211_chanctx_radar_detect(local, ctx); 4752 } 4753 4754 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4755 params.iftype_num[sdata->wdev.iftype]++; 4756 4757 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4758 ieee80211_iter_max_chans, 4759 &max_num_different_channels); 4760 if (err < 0) 4761 return err; 4762 4763 return max_num_different_channels; 4764 } 4765 4766 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4767 struct ieee80211_sta_s1g_cap *caps, 4768 struct sk_buff *skb) 4769 { 4770 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4771 struct ieee80211_s1g_cap s1g_capab; 4772 u8 *pos; 4773 int i; 4774 4775 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4776 return; 4777 4778 if (!caps->s1g) 4779 return; 4780 4781 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4782 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4783 4784 /* override the capability info */ 4785 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4786 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4787 4788 s1g_capab.capab_info[i] &= ~mask; 4789 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4790 } 4791 4792 /* then MCS and NSS set */ 4793 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4794 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4795 4796 s1g_capab.supp_mcs_nss[i] &= ~mask; 4797 s1g_capab.supp_mcs_nss[i] |= 4798 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4799 } 4800 4801 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4802 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4803 *pos++ = sizeof(s1g_capab); 4804 4805 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4806 } 4807 4808 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4809 struct sk_buff *skb) 4810 { 4811 u8 *pos = skb_put(skb, 3); 4812 4813 *pos++ = WLAN_EID_AID_REQUEST; 4814 *pos++ = 1; 4815 *pos++ = 0; 4816 } 4817 4818 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4819 { 4820 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4821 *buf++ = 7; /* len */ 4822 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4823 *buf++ = 0x50; 4824 *buf++ = 0xf2; 4825 *buf++ = 2; /* WME */ 4826 *buf++ = 0; /* WME info */ 4827 *buf++ = 1; /* WME ver */ 4828 *buf++ = qosinfo; /* U-APSD no in use */ 4829 4830 return buf; 4831 } 4832 4833 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4834 unsigned long *frame_cnt, 4835 unsigned long *byte_cnt) 4836 { 4837 struct txq_info *txqi = to_txq_info(txq); 4838 u32 frag_cnt = 0, frag_bytes = 0; 4839 struct sk_buff *skb; 4840 4841 skb_queue_walk(&txqi->frags, skb) { 4842 frag_cnt++; 4843 frag_bytes += skb->len; 4844 } 4845 4846 if (frame_cnt) 4847 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4848 4849 if (byte_cnt) 4850 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4851 } 4852 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4853 4854 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4855 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4856 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4857 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4858 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4859 }; 4860 4861 u16 ieee80211_encode_usf(int listen_interval) 4862 { 4863 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4864 u16 ui, usf = 0; 4865 4866 /* find greatest USF */ 4867 while (usf < IEEE80211_MAX_USF) { 4868 if (listen_interval % listen_int_usf[usf + 1]) 4869 break; 4870 usf += 1; 4871 } 4872 ui = listen_interval / listen_int_usf[usf]; 4873 4874 /* error if there is a remainder. Should've been checked by user */ 4875 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4876 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4877 FIELD_PREP(LISTEN_INT_UI, ui); 4878 4879 return (u16) listen_interval; 4880 } 4881 4882 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 4883 { 4884 const struct ieee80211_sta_he_cap *he_cap; 4885 const struct ieee80211_sta_eht_cap *eht_cap; 4886 struct ieee80211_supported_band *sband; 4887 bool is_ap; 4888 u8 n; 4889 4890 sband = ieee80211_get_sband(sdata); 4891 if (!sband) 4892 return 0; 4893 4894 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 4895 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 4896 if (!he_cap || !eht_cap) 4897 return 0; 4898 4899 is_ap = iftype == NL80211_IFTYPE_AP || 4900 iftype == NL80211_IFTYPE_P2P_GO; 4901 4902 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4903 &eht_cap->eht_cap_elem, 4904 is_ap); 4905 return 2 + 1 + 4906 sizeof(he_cap->he_cap_elem) + n + 4907 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4908 eht_cap->eht_cap_elem.phy_cap_info); 4909 return 0; 4910 } 4911 4912 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 4913 const struct ieee80211_sta_he_cap *he_cap, 4914 const struct ieee80211_sta_eht_cap *eht_cap, 4915 u8 *end, 4916 bool for_ap) 4917 { 4918 u8 mcs_nss_len, ppet_len; 4919 u8 ie_len; 4920 u8 *orig_pos = pos; 4921 4922 /* Make sure we have place for the IE */ 4923 if (!he_cap || !eht_cap) 4924 return orig_pos; 4925 4926 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4927 &eht_cap->eht_cap_elem, 4928 for_ap); 4929 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4930 eht_cap->eht_cap_elem.phy_cap_info); 4931 4932 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4933 if ((end - pos) < ie_len) 4934 return orig_pos; 4935 4936 *pos++ = WLAN_EID_EXTENSION; 4937 *pos++ = ie_len - 2; 4938 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 4939 4940 /* Fixed data */ 4941 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 4942 pos += sizeof(eht_cap->eht_cap_elem); 4943 4944 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4945 pos += mcs_nss_len; 4946 4947 if (ppet_len) { 4948 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 4949 pos += ppet_len; 4950 } 4951 4952 return pos; 4953 } 4954 4955 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos) 4956 { 4957 unsigned int elem_len; 4958 4959 if (!len_pos) 4960 return; 4961 4962 elem_len = skb->data + skb->len - len_pos - 1; 4963 4964 while (elem_len > 255) { 4965 /* this one is 255 */ 4966 *len_pos = 255; 4967 /* remaining data gets smaller */ 4968 elem_len -= 255; 4969 /* make space for the fragment ID/len in SKB */ 4970 skb_put(skb, 2); 4971 /* shift back the remaining data to place fragment ID/len */ 4972 memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len); 4973 /* place the fragment ID */ 4974 len_pos += 255 + 1; 4975 *len_pos = WLAN_EID_FRAGMENT; 4976 /* and point to fragment length to update later */ 4977 len_pos++; 4978 } 4979 4980 *len_pos = elem_len; 4981 } 4982