xref: /linux/net/mac80211/util.c (revision f22f9aaf6c3d92ebd5ad9e67acc03afebaaeb289)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2022 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->deflink.operating_11g_mode)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->deflink.operating_11g_mode)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->deflink.operating_11g_mode)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void wake_tx_push_queue(struct ieee80211_local *local,
292 			       struct ieee80211_sub_if_data *sdata,
293 			       struct ieee80211_txq *queue)
294 {
295 	struct ieee80211_tx_control control = {
296 		.sta = queue->sta,
297 	};
298 	struct sk_buff *skb;
299 
300 	while (1) {
301 		skb = ieee80211_tx_dequeue(&local->hw, queue);
302 		if (!skb)
303 			break;
304 
305 		drv_tx(local, &control, skb);
306 	}
307 }
308 
309 /* wake_tx_queue handler for driver not implementing a custom one*/
310 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw,
311 				    struct ieee80211_txq *txq)
312 {
313 	struct ieee80211_local *local = hw_to_local(hw);
314 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
315 	struct ieee80211_txq *queue;
316 
317 	/* Use ieee80211_next_txq() for airtime fairness accounting */
318 	ieee80211_txq_schedule_start(hw, txq->ac);
319 	while ((queue = ieee80211_next_txq(hw, txq->ac))) {
320 		wake_tx_push_queue(local, sdata, queue);
321 		ieee80211_return_txq(hw, queue, false);
322 	}
323 	ieee80211_txq_schedule_end(hw, txq->ac);
324 }
325 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue);
326 
327 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
328 {
329 	struct ieee80211_local *local = sdata->local;
330 	struct ieee80211_vif *vif = &sdata->vif;
331 	struct fq *fq = &local->fq;
332 	struct ps_data *ps = NULL;
333 	struct txq_info *txqi;
334 	struct sta_info *sta;
335 	int i;
336 
337 	local_bh_disable();
338 	spin_lock(&fq->lock);
339 
340 	if (!test_bit(SDATA_STATE_RUNNING, &sdata->state))
341 		goto out;
342 
343 	if (sdata->vif.type == NL80211_IFTYPE_AP)
344 		ps = &sdata->bss->ps;
345 
346 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
347 		if (sdata != sta->sdata)
348 			continue;
349 
350 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
351 			struct ieee80211_txq *txq = sta->sta.txq[i];
352 
353 			if (!txq)
354 				continue;
355 
356 			txqi = to_txq_info(txq);
357 
358 			if (ac != txq->ac)
359 				continue;
360 
361 			if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY,
362 						&txqi->flags))
363 				continue;
364 
365 			spin_unlock(&fq->lock);
366 			drv_wake_tx_queue(local, txqi);
367 			spin_lock(&fq->lock);
368 		}
369 	}
370 
371 	if (!vif->txq)
372 		goto out;
373 
374 	txqi = to_txq_info(vif->txq);
375 
376 	if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) ||
377 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
378 		goto out;
379 
380 	spin_unlock(&fq->lock);
381 
382 	drv_wake_tx_queue(local, txqi);
383 	local_bh_enable();
384 	return;
385 out:
386 	spin_unlock(&fq->lock);
387 	local_bh_enable();
388 }
389 
390 static void
391 __releases(&local->queue_stop_reason_lock)
392 __acquires(&local->queue_stop_reason_lock)
393 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
394 {
395 	struct ieee80211_sub_if_data *sdata;
396 	int n_acs = IEEE80211_NUM_ACS;
397 	int i;
398 
399 	rcu_read_lock();
400 
401 	if (local->hw.queues < IEEE80211_NUM_ACS)
402 		n_acs = 1;
403 
404 	for (i = 0; i < local->hw.queues; i++) {
405 		if (local->queue_stop_reasons[i])
406 			continue;
407 
408 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
409 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
410 			int ac;
411 
412 			for (ac = 0; ac < n_acs; ac++) {
413 				int ac_queue = sdata->vif.hw_queue[ac];
414 
415 				if (ac_queue == i ||
416 				    sdata->vif.cab_queue == i)
417 					__ieee80211_wake_txqs(sdata, ac);
418 			}
419 		}
420 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
421 	}
422 
423 	rcu_read_unlock();
424 }
425 
426 void ieee80211_wake_txqs(struct tasklet_struct *t)
427 {
428 	struct ieee80211_local *local = from_tasklet(local, t,
429 						     wake_txqs_tasklet);
430 	unsigned long flags;
431 
432 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
433 	_ieee80211_wake_txqs(local, &flags);
434 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
435 }
436 
437 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
438 				   enum queue_stop_reason reason,
439 				   bool refcounted,
440 				   unsigned long *flags)
441 {
442 	struct ieee80211_local *local = hw_to_local(hw);
443 
444 	trace_wake_queue(local, queue, reason);
445 
446 	if (WARN_ON(queue >= hw->queues))
447 		return;
448 
449 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
450 		return;
451 
452 	if (!refcounted) {
453 		local->q_stop_reasons[queue][reason] = 0;
454 	} else {
455 		local->q_stop_reasons[queue][reason]--;
456 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
457 			local->q_stop_reasons[queue][reason] = 0;
458 	}
459 
460 	if (local->q_stop_reasons[queue][reason] == 0)
461 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
462 
463 	if (local->queue_stop_reasons[queue] != 0)
464 		/* someone still has this queue stopped */
465 		return;
466 
467 	if (!skb_queue_empty(&local->pending[queue]))
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
478 		tasklet_schedule(&local->wake_txqs_tasklet);
479 	else
480 		_ieee80211_wake_txqs(local, flags);
481 }
482 
483 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
484 				    enum queue_stop_reason reason,
485 				    bool refcounted)
486 {
487 	struct ieee80211_local *local = hw_to_local(hw);
488 	unsigned long flags;
489 
490 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
491 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
492 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
493 }
494 
495 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
496 {
497 	ieee80211_wake_queue_by_reason(hw, queue,
498 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
499 				       false);
500 }
501 EXPORT_SYMBOL(ieee80211_wake_queue);
502 
503 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
504 				   enum queue_stop_reason reason,
505 				   bool refcounted)
506 {
507 	struct ieee80211_local *local = hw_to_local(hw);
508 
509 	trace_stop_queue(local, queue, reason);
510 
511 	if (WARN_ON(queue >= hw->queues))
512 		return;
513 
514 	if (!refcounted)
515 		local->q_stop_reasons[queue][reason] = 1;
516 	else
517 		local->q_stop_reasons[queue][reason]++;
518 
519 	set_bit(reason, &local->queue_stop_reasons[queue]);
520 }
521 
522 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
523 				    enum queue_stop_reason reason,
524 				    bool refcounted)
525 {
526 	struct ieee80211_local *local = hw_to_local(hw);
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
530 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
531 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
532 }
533 
534 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
535 {
536 	ieee80211_stop_queue_by_reason(hw, queue,
537 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
538 				       false);
539 }
540 EXPORT_SYMBOL(ieee80211_stop_queue);
541 
542 void ieee80211_add_pending_skb(struct ieee80211_local *local,
543 			       struct sk_buff *skb)
544 {
545 	struct ieee80211_hw *hw = &local->hw;
546 	unsigned long flags;
547 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
548 	int queue = info->hw_queue;
549 
550 	if (WARN_ON(!info->control.vif)) {
551 		ieee80211_free_txskb(&local->hw, skb);
552 		return;
553 	}
554 
555 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
556 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
557 			       false);
558 	__skb_queue_tail(&local->pending[queue], skb);
559 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
560 			       false, &flags);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
565 				struct sk_buff_head *skbs)
566 {
567 	struct ieee80211_hw *hw = &local->hw;
568 	struct sk_buff *skb;
569 	unsigned long flags;
570 	int queue, i;
571 
572 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
573 	while ((skb = skb_dequeue(skbs))) {
574 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
575 
576 		if (WARN_ON(!info->control.vif)) {
577 			ieee80211_free_txskb(&local->hw, skb);
578 			continue;
579 		}
580 
581 		queue = info->hw_queue;
582 
583 		__ieee80211_stop_queue(hw, queue,
584 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
585 				false);
586 
587 		__skb_queue_tail(&local->pending[queue], skb);
588 	}
589 
590 	for (i = 0; i < hw->queues; i++)
591 		__ieee80211_wake_queue(hw, i,
592 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
593 			false, &flags);
594 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
595 }
596 
597 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
598 				     unsigned long queues,
599 				     enum queue_stop_reason reason,
600 				     bool refcounted)
601 {
602 	struct ieee80211_local *local = hw_to_local(hw);
603 	unsigned long flags;
604 	int i;
605 
606 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
607 
608 	for_each_set_bit(i, &queues, hw->queues)
609 		__ieee80211_stop_queue(hw, i, reason, refcounted);
610 
611 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
612 }
613 
614 void ieee80211_stop_queues(struct ieee80211_hw *hw)
615 {
616 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
617 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
618 					false);
619 }
620 EXPORT_SYMBOL(ieee80211_stop_queues);
621 
622 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
623 {
624 	struct ieee80211_local *local = hw_to_local(hw);
625 	unsigned long flags;
626 	int ret;
627 
628 	if (WARN_ON(queue >= hw->queues))
629 		return true;
630 
631 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
632 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
633 		       &local->queue_stop_reasons[queue]);
634 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
635 	return ret;
636 }
637 EXPORT_SYMBOL(ieee80211_queue_stopped);
638 
639 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
640 				     unsigned long queues,
641 				     enum queue_stop_reason reason,
642 				     bool refcounted)
643 {
644 	struct ieee80211_local *local = hw_to_local(hw);
645 	unsigned long flags;
646 	int i;
647 
648 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
649 
650 	for_each_set_bit(i, &queues, hw->queues)
651 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
652 
653 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
654 }
655 
656 void ieee80211_wake_queues(struct ieee80211_hw *hw)
657 {
658 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
659 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
660 					false);
661 }
662 EXPORT_SYMBOL(ieee80211_wake_queues);
663 
664 static unsigned int
665 ieee80211_get_vif_queues(struct ieee80211_local *local,
666 			 struct ieee80211_sub_if_data *sdata)
667 {
668 	unsigned int queues;
669 
670 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
671 		int ac;
672 
673 		queues = 0;
674 
675 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
676 			queues |= BIT(sdata->vif.hw_queue[ac]);
677 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
678 			queues |= BIT(sdata->vif.cab_queue);
679 	} else {
680 		/* all queues */
681 		queues = BIT(local->hw.queues) - 1;
682 	}
683 
684 	return queues;
685 }
686 
687 void __ieee80211_flush_queues(struct ieee80211_local *local,
688 			      struct ieee80211_sub_if_data *sdata,
689 			      unsigned int queues, bool drop)
690 {
691 	if (!local->ops->flush)
692 		return;
693 
694 	/*
695 	 * If no queue was set, or if the HW doesn't support
696 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
697 	 */
698 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
699 		queues = ieee80211_get_vif_queues(local, sdata);
700 
701 	ieee80211_stop_queues_by_reason(&local->hw, queues,
702 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
703 					false);
704 
705 	drv_flush(local, sdata, queues, drop);
706 
707 	ieee80211_wake_queues_by_reason(&local->hw, queues,
708 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
709 					false);
710 }
711 
712 void ieee80211_flush_queues(struct ieee80211_local *local,
713 			    struct ieee80211_sub_if_data *sdata, bool drop)
714 {
715 	__ieee80211_flush_queues(local, sdata, 0, drop);
716 }
717 
718 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
719 			       struct ieee80211_sub_if_data *sdata,
720 			       enum queue_stop_reason reason)
721 {
722 	ieee80211_stop_queues_by_reason(&local->hw,
723 					ieee80211_get_vif_queues(local, sdata),
724 					reason, true);
725 }
726 
727 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
728 			       struct ieee80211_sub_if_data *sdata,
729 			       enum queue_stop_reason reason)
730 {
731 	ieee80211_wake_queues_by_reason(&local->hw,
732 					ieee80211_get_vif_queues(local, sdata),
733 					reason, true);
734 }
735 
736 static void __iterate_interfaces(struct ieee80211_local *local,
737 				 u32 iter_flags,
738 				 void (*iterator)(void *data, u8 *mac,
739 						  struct ieee80211_vif *vif),
740 				 void *data)
741 {
742 	struct ieee80211_sub_if_data *sdata;
743 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
744 
745 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
746 		switch (sdata->vif.type) {
747 		case NL80211_IFTYPE_MONITOR:
748 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
749 				continue;
750 			break;
751 		case NL80211_IFTYPE_AP_VLAN:
752 			continue;
753 		default:
754 			break;
755 		}
756 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
757 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
758 			continue;
759 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
760 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
761 			continue;
762 		if (ieee80211_sdata_running(sdata) || !active_only)
763 			iterator(data, sdata->vif.addr,
764 				 &sdata->vif);
765 	}
766 
767 	sdata = rcu_dereference_check(local->monitor_sdata,
768 				      lockdep_is_held(&local->iflist_mtx) ||
769 				      lockdep_is_held(&local->hw.wiphy->mtx));
770 	if (sdata &&
771 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
772 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
773 		iterator(data, sdata->vif.addr, &sdata->vif);
774 }
775 
776 void ieee80211_iterate_interfaces(
777 	struct ieee80211_hw *hw, u32 iter_flags,
778 	void (*iterator)(void *data, u8 *mac,
779 			 struct ieee80211_vif *vif),
780 	void *data)
781 {
782 	struct ieee80211_local *local = hw_to_local(hw);
783 
784 	mutex_lock(&local->iflist_mtx);
785 	__iterate_interfaces(local, iter_flags, iterator, data);
786 	mutex_unlock(&local->iflist_mtx);
787 }
788 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
789 
790 void ieee80211_iterate_active_interfaces_atomic(
791 	struct ieee80211_hw *hw, u32 iter_flags,
792 	void (*iterator)(void *data, u8 *mac,
793 			 struct ieee80211_vif *vif),
794 	void *data)
795 {
796 	struct ieee80211_local *local = hw_to_local(hw);
797 
798 	rcu_read_lock();
799 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
800 			     iterator, data);
801 	rcu_read_unlock();
802 }
803 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
804 
805 void ieee80211_iterate_active_interfaces_mtx(
806 	struct ieee80211_hw *hw, u32 iter_flags,
807 	void (*iterator)(void *data, u8 *mac,
808 			 struct ieee80211_vif *vif),
809 	void *data)
810 {
811 	struct ieee80211_local *local = hw_to_local(hw);
812 
813 	lockdep_assert_wiphy(hw->wiphy);
814 
815 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
816 			     iterator, data);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
819 
820 static void __iterate_stations(struct ieee80211_local *local,
821 			       void (*iterator)(void *data,
822 						struct ieee80211_sta *sta),
823 			       void *data)
824 {
825 	struct sta_info *sta;
826 
827 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
828 		if (!sta->uploaded)
829 			continue;
830 
831 		iterator(data, &sta->sta);
832 	}
833 }
834 
835 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
836 			void (*iterator)(void *data,
837 					 struct ieee80211_sta *sta),
838 			void *data)
839 {
840 	struct ieee80211_local *local = hw_to_local(hw);
841 
842 	rcu_read_lock();
843 	__iterate_stations(local, iterator, data);
844 	rcu_read_unlock();
845 }
846 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
847 
848 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
849 {
850 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
851 
852 	if (!ieee80211_sdata_running(sdata) ||
853 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
854 		return NULL;
855 	return &sdata->vif;
856 }
857 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
858 
859 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
860 {
861 	if (!vif)
862 		return NULL;
863 
864 	return &vif_to_sdata(vif)->wdev;
865 }
866 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
867 
868 /*
869  * Nothing should have been stuffed into the workqueue during
870  * the suspend->resume cycle. Since we can't check each caller
871  * of this function if we are already quiescing / suspended,
872  * check here and don't WARN since this can actually happen when
873  * the rx path (for example) is racing against __ieee80211_suspend
874  * and suspending / quiescing was set after the rx path checked
875  * them.
876  */
877 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
878 {
879 	if (local->quiescing || (local->suspended && !local->resuming)) {
880 		pr_warn("queueing ieee80211 work while going to suspend\n");
881 		return false;
882 	}
883 
884 	return true;
885 }
886 
887 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
888 {
889 	struct ieee80211_local *local = hw_to_local(hw);
890 
891 	if (!ieee80211_can_queue_work(local))
892 		return;
893 
894 	queue_work(local->workqueue, work);
895 }
896 EXPORT_SYMBOL(ieee80211_queue_work);
897 
898 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
899 				  struct delayed_work *dwork,
900 				  unsigned long delay)
901 {
902 	struct ieee80211_local *local = hw_to_local(hw);
903 
904 	if (!ieee80211_can_queue_work(local))
905 		return;
906 
907 	queue_delayed_work(local->workqueue, dwork, delay);
908 }
909 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
910 
911 static void
912 ieee80211_parse_extension_element(u32 *crc,
913 				  const struct element *elem,
914 				  struct ieee802_11_elems *elems,
915 				  struct ieee80211_elems_parse_params *params)
916 {
917 	const void *data = elem->data + 1;
918 	u8 len;
919 
920 	if (!elem->datalen)
921 		return;
922 
923 	len = elem->datalen - 1;
924 
925 	switch (elem->data[0]) {
926 	case WLAN_EID_EXT_HE_MU_EDCA:
927 		if (len >= sizeof(*elems->mu_edca_param_set)) {
928 			elems->mu_edca_param_set = data;
929 			if (crc)
930 				*crc = crc32_be(*crc, (void *)elem,
931 						elem->datalen + 2);
932 		}
933 		break;
934 	case WLAN_EID_EXT_HE_CAPABILITY:
935 		if (ieee80211_he_capa_size_ok(data, len)) {
936 			elems->he_cap = data;
937 			elems->he_cap_len = len;
938 		}
939 		break;
940 	case WLAN_EID_EXT_HE_OPERATION:
941 		if (len >= sizeof(*elems->he_operation) &&
942 		    len >= ieee80211_he_oper_size(data) - 1) {
943 			if (crc)
944 				*crc = crc32_be(*crc, (void *)elem,
945 						elem->datalen + 2);
946 			elems->he_operation = data;
947 		}
948 		break;
949 	case WLAN_EID_EXT_UORA:
950 		if (len >= 1)
951 			elems->uora_element = data;
952 		break;
953 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
954 		if (len == 3)
955 			elems->max_channel_switch_time = data;
956 		break;
957 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
958 		if (len >= sizeof(*elems->mbssid_config_ie))
959 			elems->mbssid_config_ie = data;
960 		break;
961 	case WLAN_EID_EXT_HE_SPR:
962 		if (len >= sizeof(*elems->he_spr) &&
963 		    len >= ieee80211_he_spr_size(data))
964 			elems->he_spr = data;
965 		break;
966 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
967 		if (len >= sizeof(*elems->he_6ghz_capa))
968 			elems->he_6ghz_capa = data;
969 		break;
970 	case WLAN_EID_EXT_EHT_CAPABILITY:
971 		if (ieee80211_eht_capa_size_ok(elems->he_cap,
972 					       data, len,
973 					       params->from_ap)) {
974 			elems->eht_cap = data;
975 			elems->eht_cap_len = len;
976 		}
977 		break;
978 	case WLAN_EID_EXT_EHT_OPERATION:
979 		if (ieee80211_eht_oper_size_ok(data, len))
980 			elems->eht_operation = data;
981 		break;
982 	case WLAN_EID_EXT_EHT_MULTI_LINK:
983 		if (ieee80211_mle_size_ok(data, len)) {
984 			elems->multi_link = (void *)data;
985 			elems->multi_link_len = len;
986 		}
987 		break;
988 	}
989 }
990 
991 static u32
992 _ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params,
993 			     struct ieee802_11_elems *elems,
994 			     const struct element *check_inherit)
995 {
996 	const struct element *elem;
997 	bool calc_crc = params->filter != 0;
998 	DECLARE_BITMAP(seen_elems, 256);
999 	u32 crc = params->crc;
1000 	const u8 *ie;
1001 
1002 	bitmap_zero(seen_elems, 256);
1003 
1004 	for_each_element(elem, params->start, params->len) {
1005 		bool elem_parse_failed;
1006 		u8 id = elem->id;
1007 		u8 elen = elem->datalen;
1008 		const u8 *pos = elem->data;
1009 
1010 		if (check_inherit &&
1011 		    !cfg80211_is_element_inherited(elem,
1012 						   check_inherit))
1013 			continue;
1014 
1015 		switch (id) {
1016 		case WLAN_EID_SSID:
1017 		case WLAN_EID_SUPP_RATES:
1018 		case WLAN_EID_FH_PARAMS:
1019 		case WLAN_EID_DS_PARAMS:
1020 		case WLAN_EID_CF_PARAMS:
1021 		case WLAN_EID_TIM:
1022 		case WLAN_EID_IBSS_PARAMS:
1023 		case WLAN_EID_CHALLENGE:
1024 		case WLAN_EID_RSN:
1025 		case WLAN_EID_ERP_INFO:
1026 		case WLAN_EID_EXT_SUPP_RATES:
1027 		case WLAN_EID_HT_CAPABILITY:
1028 		case WLAN_EID_HT_OPERATION:
1029 		case WLAN_EID_VHT_CAPABILITY:
1030 		case WLAN_EID_VHT_OPERATION:
1031 		case WLAN_EID_MESH_ID:
1032 		case WLAN_EID_MESH_CONFIG:
1033 		case WLAN_EID_PEER_MGMT:
1034 		case WLAN_EID_PREQ:
1035 		case WLAN_EID_PREP:
1036 		case WLAN_EID_PERR:
1037 		case WLAN_EID_RANN:
1038 		case WLAN_EID_CHANNEL_SWITCH:
1039 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1040 		case WLAN_EID_COUNTRY:
1041 		case WLAN_EID_PWR_CONSTRAINT:
1042 		case WLAN_EID_TIMEOUT_INTERVAL:
1043 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1044 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1045 		case WLAN_EID_CHAN_SWITCH_PARAM:
1046 		case WLAN_EID_EXT_CAPABILITY:
1047 		case WLAN_EID_CHAN_SWITCH_TIMING:
1048 		case WLAN_EID_LINK_ID:
1049 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1050 		case WLAN_EID_RSNX:
1051 		case WLAN_EID_S1G_BCN_COMPAT:
1052 		case WLAN_EID_S1G_CAPABILITIES:
1053 		case WLAN_EID_S1G_OPERATION:
1054 		case WLAN_EID_AID_RESPONSE:
1055 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1056 		/*
1057 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1058 		 * that if the content gets bigger it might be needed more than once
1059 		 */
1060 			if (test_bit(id, seen_elems)) {
1061 				elems->parse_error = true;
1062 				continue;
1063 			}
1064 			break;
1065 		}
1066 
1067 		if (calc_crc && id < 64 && (params->filter & (1ULL << id)))
1068 			crc = crc32_be(crc, pos - 2, elen + 2);
1069 
1070 		elem_parse_failed = false;
1071 
1072 		switch (id) {
1073 		case WLAN_EID_LINK_ID:
1074 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1075 				elem_parse_failed = true;
1076 				break;
1077 			}
1078 			elems->lnk_id = (void *)(pos - 2);
1079 			break;
1080 		case WLAN_EID_CHAN_SWITCH_TIMING:
1081 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1082 				elem_parse_failed = true;
1083 				break;
1084 			}
1085 			elems->ch_sw_timing = (void *)pos;
1086 			break;
1087 		case WLAN_EID_EXT_CAPABILITY:
1088 			elems->ext_capab = pos;
1089 			elems->ext_capab_len = elen;
1090 			break;
1091 		case WLAN_EID_SSID:
1092 			elems->ssid = pos;
1093 			elems->ssid_len = elen;
1094 			break;
1095 		case WLAN_EID_SUPP_RATES:
1096 			elems->supp_rates = pos;
1097 			elems->supp_rates_len = elen;
1098 			break;
1099 		case WLAN_EID_DS_PARAMS:
1100 			if (elen >= 1)
1101 				elems->ds_params = pos;
1102 			else
1103 				elem_parse_failed = true;
1104 			break;
1105 		case WLAN_EID_TIM:
1106 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1107 				elems->tim = (void *)pos;
1108 				elems->tim_len = elen;
1109 			} else
1110 				elem_parse_failed = true;
1111 			break;
1112 		case WLAN_EID_VENDOR_SPECIFIC:
1113 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1114 			    pos[2] == 0xf2) {
1115 				/* Microsoft OUI (00:50:F2) */
1116 
1117 				if (calc_crc)
1118 					crc = crc32_be(crc, pos - 2, elen + 2);
1119 
1120 				if (elen >= 5 && pos[3] == 2) {
1121 					/* OUI Type 2 - WMM IE */
1122 					if (pos[4] == 0) {
1123 						elems->wmm_info = pos;
1124 						elems->wmm_info_len = elen;
1125 					} else if (pos[4] == 1) {
1126 						elems->wmm_param = pos;
1127 						elems->wmm_param_len = elen;
1128 					}
1129 				}
1130 			}
1131 			break;
1132 		case WLAN_EID_RSN:
1133 			elems->rsn = pos;
1134 			elems->rsn_len = elen;
1135 			break;
1136 		case WLAN_EID_ERP_INFO:
1137 			if (elen >= 1)
1138 				elems->erp_info = pos;
1139 			else
1140 				elem_parse_failed = true;
1141 			break;
1142 		case WLAN_EID_EXT_SUPP_RATES:
1143 			elems->ext_supp_rates = pos;
1144 			elems->ext_supp_rates_len = elen;
1145 			break;
1146 		case WLAN_EID_HT_CAPABILITY:
1147 			if (elen >= sizeof(struct ieee80211_ht_cap))
1148 				elems->ht_cap_elem = (void *)pos;
1149 			else
1150 				elem_parse_failed = true;
1151 			break;
1152 		case WLAN_EID_HT_OPERATION:
1153 			if (elen >= sizeof(struct ieee80211_ht_operation))
1154 				elems->ht_operation = (void *)pos;
1155 			else
1156 				elem_parse_failed = true;
1157 			break;
1158 		case WLAN_EID_VHT_CAPABILITY:
1159 			if (elen >= sizeof(struct ieee80211_vht_cap))
1160 				elems->vht_cap_elem = (void *)pos;
1161 			else
1162 				elem_parse_failed = true;
1163 			break;
1164 		case WLAN_EID_VHT_OPERATION:
1165 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1166 				elems->vht_operation = (void *)pos;
1167 				if (calc_crc)
1168 					crc = crc32_be(crc, pos - 2, elen + 2);
1169 				break;
1170 			}
1171 			elem_parse_failed = true;
1172 			break;
1173 		case WLAN_EID_OPMODE_NOTIF:
1174 			if (elen > 0) {
1175 				elems->opmode_notif = pos;
1176 				if (calc_crc)
1177 					crc = crc32_be(crc, pos - 2, elen + 2);
1178 				break;
1179 			}
1180 			elem_parse_failed = true;
1181 			break;
1182 		case WLAN_EID_MESH_ID:
1183 			elems->mesh_id = pos;
1184 			elems->mesh_id_len = elen;
1185 			break;
1186 		case WLAN_EID_MESH_CONFIG:
1187 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1188 				elems->mesh_config = (void *)pos;
1189 			else
1190 				elem_parse_failed = true;
1191 			break;
1192 		case WLAN_EID_PEER_MGMT:
1193 			elems->peering = pos;
1194 			elems->peering_len = elen;
1195 			break;
1196 		case WLAN_EID_MESH_AWAKE_WINDOW:
1197 			if (elen >= 2)
1198 				elems->awake_window = (void *)pos;
1199 			break;
1200 		case WLAN_EID_PREQ:
1201 			elems->preq = pos;
1202 			elems->preq_len = elen;
1203 			break;
1204 		case WLAN_EID_PREP:
1205 			elems->prep = pos;
1206 			elems->prep_len = elen;
1207 			break;
1208 		case WLAN_EID_PERR:
1209 			elems->perr = pos;
1210 			elems->perr_len = elen;
1211 			break;
1212 		case WLAN_EID_RANN:
1213 			if (elen >= sizeof(struct ieee80211_rann_ie))
1214 				elems->rann = (void *)pos;
1215 			else
1216 				elem_parse_failed = true;
1217 			break;
1218 		case WLAN_EID_CHANNEL_SWITCH:
1219 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1220 				elem_parse_failed = true;
1221 				break;
1222 			}
1223 			elems->ch_switch_ie = (void *)pos;
1224 			break;
1225 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1226 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1227 				elem_parse_failed = true;
1228 				break;
1229 			}
1230 			elems->ext_chansw_ie = (void *)pos;
1231 			break;
1232 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1233 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1234 				elem_parse_failed = true;
1235 				break;
1236 			}
1237 			elems->sec_chan_offs = (void *)pos;
1238 			break;
1239 		case WLAN_EID_CHAN_SWITCH_PARAM:
1240 			if (elen <
1241 			    sizeof(*elems->mesh_chansw_params_ie)) {
1242 				elem_parse_failed = true;
1243 				break;
1244 			}
1245 			elems->mesh_chansw_params_ie = (void *)pos;
1246 			break;
1247 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1248 			if (!params->action ||
1249 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1250 				elem_parse_failed = true;
1251 				break;
1252 			}
1253 			elems->wide_bw_chansw_ie = (void *)pos;
1254 			break;
1255 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1256 			if (params->action) {
1257 				elem_parse_failed = true;
1258 				break;
1259 			}
1260 			/*
1261 			 * This is a bit tricky, but as we only care about
1262 			 * the wide bandwidth channel switch element, so
1263 			 * just parse it out manually.
1264 			 */
1265 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1266 					      pos, elen);
1267 			if (ie) {
1268 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1269 					elems->wide_bw_chansw_ie =
1270 						(void *)(ie + 2);
1271 				else
1272 					elem_parse_failed = true;
1273 			}
1274 			break;
1275 		case WLAN_EID_COUNTRY:
1276 			elems->country_elem = pos;
1277 			elems->country_elem_len = elen;
1278 			break;
1279 		case WLAN_EID_PWR_CONSTRAINT:
1280 			if (elen != 1) {
1281 				elem_parse_failed = true;
1282 				break;
1283 			}
1284 			elems->pwr_constr_elem = pos;
1285 			break;
1286 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1287 			/* Lots of different options exist, but we only care
1288 			 * about the Dynamic Transmit Power Control element.
1289 			 * First check for the Cisco OUI, then for the DTPC
1290 			 * tag (0x00).
1291 			 */
1292 			if (elen < 4) {
1293 				elem_parse_failed = true;
1294 				break;
1295 			}
1296 
1297 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1298 			    pos[2] != 0x96 || pos[3] != 0x00)
1299 				break;
1300 
1301 			if (elen != 6) {
1302 				elem_parse_failed = true;
1303 				break;
1304 			}
1305 
1306 			if (calc_crc)
1307 				crc = crc32_be(crc, pos - 2, elen + 2);
1308 
1309 			elems->cisco_dtpc_elem = pos;
1310 			break;
1311 		case WLAN_EID_ADDBA_EXT:
1312 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1313 				elem_parse_failed = true;
1314 				break;
1315 			}
1316 			elems->addba_ext_ie = (void *)pos;
1317 			break;
1318 		case WLAN_EID_TIMEOUT_INTERVAL:
1319 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1320 				elems->timeout_int = (void *)pos;
1321 			else
1322 				elem_parse_failed = true;
1323 			break;
1324 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1325 			if (elen >= sizeof(*elems->max_idle_period_ie))
1326 				elems->max_idle_period_ie = (void *)pos;
1327 			break;
1328 		case WLAN_EID_RSNX:
1329 			elems->rsnx = pos;
1330 			elems->rsnx_len = elen;
1331 			break;
1332 		case WLAN_EID_TX_POWER_ENVELOPE:
1333 			if (elen < 1 ||
1334 			    elen > sizeof(struct ieee80211_tx_pwr_env))
1335 				break;
1336 
1337 			if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env))
1338 				break;
1339 
1340 			elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos;
1341 			elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen;
1342 			elems->tx_pwr_env_num++;
1343 			break;
1344 		case WLAN_EID_EXTENSION:
1345 			ieee80211_parse_extension_element(calc_crc ?
1346 								&crc : NULL,
1347 							  elem, elems, params);
1348 			break;
1349 		case WLAN_EID_S1G_CAPABILITIES:
1350 			if (elen >= sizeof(*elems->s1g_capab))
1351 				elems->s1g_capab = (void *)pos;
1352 			else
1353 				elem_parse_failed = true;
1354 			break;
1355 		case WLAN_EID_S1G_OPERATION:
1356 			if (elen == sizeof(*elems->s1g_oper))
1357 				elems->s1g_oper = (void *)pos;
1358 			else
1359 				elem_parse_failed = true;
1360 			break;
1361 		case WLAN_EID_S1G_BCN_COMPAT:
1362 			if (elen == sizeof(*elems->s1g_bcn_compat))
1363 				elems->s1g_bcn_compat = (void *)pos;
1364 			else
1365 				elem_parse_failed = true;
1366 			break;
1367 		case WLAN_EID_AID_RESPONSE:
1368 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1369 				elems->aid_resp = (void *)pos;
1370 			else
1371 				elem_parse_failed = true;
1372 			break;
1373 		default:
1374 			break;
1375 		}
1376 
1377 		if (elem_parse_failed)
1378 			elems->parse_error = true;
1379 		else
1380 			__set_bit(id, seen_elems);
1381 	}
1382 
1383 	if (!for_each_element_completed(elem, params->start, params->len))
1384 		elems->parse_error = true;
1385 
1386 	return crc;
1387 }
1388 
1389 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1390 					    struct ieee802_11_elems *elems,
1391 					    struct cfg80211_bss *bss,
1392 					    u8 *nontransmitted_profile)
1393 {
1394 	const struct element *elem, *sub;
1395 	size_t profile_len = 0;
1396 	bool found = false;
1397 
1398 	if (!bss || !bss->transmitted_bss)
1399 		return profile_len;
1400 
1401 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1402 		if (elem->datalen < 2)
1403 			continue;
1404 		if (elem->data[0] < 1 || elem->data[0] > 8)
1405 			continue;
1406 
1407 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1408 			u8 new_bssid[ETH_ALEN];
1409 			const u8 *index;
1410 
1411 			if (sub->id != 0 || sub->datalen < 4) {
1412 				/* not a valid BSS profile */
1413 				continue;
1414 			}
1415 
1416 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1417 			    sub->data[1] != 2) {
1418 				/* The first element of the
1419 				 * Nontransmitted BSSID Profile is not
1420 				 * the Nontransmitted BSSID Capability
1421 				 * element.
1422 				 */
1423 				continue;
1424 			}
1425 
1426 			memset(nontransmitted_profile, 0, len);
1427 			profile_len = cfg80211_merge_profile(start, len,
1428 							     elem,
1429 							     sub,
1430 							     nontransmitted_profile,
1431 							     len);
1432 
1433 			/* found a Nontransmitted BSSID Profile */
1434 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1435 						 nontransmitted_profile,
1436 						 profile_len);
1437 			if (!index || index[1] < 1 || index[2] == 0) {
1438 				/* Invalid MBSSID Index element */
1439 				continue;
1440 			}
1441 
1442 			cfg80211_gen_new_bssid(bss->transmitted_bss->bssid,
1443 					       elem->data[0],
1444 					       index[2],
1445 					       new_bssid);
1446 			if (ether_addr_equal(new_bssid, bss->bssid)) {
1447 				found = true;
1448 				elems->bssid_index_len = index[1];
1449 				elems->bssid_index = (void *)&index[2];
1450 				break;
1451 			}
1452 		}
1453 	}
1454 
1455 	return found ? profile_len : 0;
1456 }
1457 
1458 static void ieee80211_defragment_element(struct ieee802_11_elems *elems,
1459 					 void **elem_ptr, size_t *len,
1460 					 size_t total_len, u8 frag_id)
1461 {
1462 	u8 *data = *elem_ptr, *pos, *start;
1463 	const struct element *elem;
1464 
1465 	/*
1466 	 * Since 'data' points to the data of the element, not the element
1467 	 * itself, allow 254 in case it was an extended element where the
1468 	 * extended ID isn't part of the data we see here and thus not part of
1469 	 * 'len' either.
1470 	 */
1471 	if (!data || (*len != 254 && *len != 255))
1472 		return;
1473 
1474 	start = elems->scratch_pos;
1475 
1476 	if (WARN_ON(*len > (elems->scratch + elems->scratch_len -
1477 			    elems->scratch_pos)))
1478 		return;
1479 
1480 	memcpy(elems->scratch_pos, data, *len);
1481 	elems->scratch_pos += *len;
1482 
1483 	pos = data + *len;
1484 	total_len -= *len;
1485 	for_each_element(elem, pos, total_len) {
1486 		if (elem->id != frag_id)
1487 			break;
1488 
1489 		if (WARN_ON(elem->datalen >
1490 			    (elems->scratch + elems->scratch_len -
1491 			     elems->scratch_pos)))
1492 			return;
1493 
1494 		memcpy(elems->scratch_pos, elem->data, elem->datalen);
1495 		elems->scratch_pos += elem->datalen;
1496 
1497 		*len += elem->datalen;
1498 	}
1499 
1500 	*elem_ptr = start;
1501 }
1502 
1503 static void ieee80211_mle_get_sta_prof(struct ieee802_11_elems *elems,
1504 				       u8 link_id)
1505 {
1506 	const struct ieee80211_multi_link_elem *ml = elems->multi_link;
1507 	size_t ml_len = elems->multi_link_len;
1508 	const struct element *sub;
1509 
1510 	if (!ml || !ml_len)
1511 		return;
1512 
1513 	if (le16_get_bits(ml->control, IEEE80211_ML_CONTROL_TYPE) !=
1514 	    IEEE80211_ML_CONTROL_TYPE_BASIC)
1515 		return;
1516 
1517 	for_each_mle_subelement(sub, (u8 *)ml, ml_len) {
1518 		struct ieee80211_mle_per_sta_profile *prof = (void *)sub->data;
1519 		u16 control;
1520 
1521 		if (sub->id != IEEE80211_MLE_SUBELEM_PER_STA_PROFILE)
1522 			continue;
1523 
1524 		if (!ieee80211_mle_sta_prof_size_ok(sub->data, sub->datalen))
1525 			return;
1526 
1527 		control = le16_to_cpu(prof->control);
1528 
1529 		if (link_id != u16_get_bits(control,
1530 					    IEEE80211_MLE_STA_CONTROL_LINK_ID))
1531 			continue;
1532 
1533 		if (!(control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE))
1534 			return;
1535 
1536 		elems->prof = prof;
1537 		elems->sta_prof_len = sub->datalen;
1538 
1539 		/* the sub element can be fragmented */
1540 		ieee80211_defragment_element(elems, (void **)&elems->prof,
1541 					     &elems->sta_prof_len,
1542 					     ml_len - (sub->data - (u8 *)ml),
1543 					     IEEE80211_MLE_SUBELEM_FRAGMENT);
1544 		return;
1545 	}
1546 }
1547 
1548 static void ieee80211_mle_parse_link(struct ieee802_11_elems *elems,
1549 				     struct ieee80211_elems_parse_params *params)
1550 {
1551 	struct ieee80211_mle_per_sta_profile *prof;
1552 	struct ieee80211_elems_parse_params sub = {
1553 		.action = params->action,
1554 		.from_ap = params->from_ap,
1555 		.link_id = -1,
1556 	};
1557 	const struct element *non_inherit = NULL;
1558 	const u8 *end;
1559 
1560 	if (params->link_id == -1)
1561 		return;
1562 
1563 	ieee80211_defragment_element(elems, (void **)&elems->multi_link,
1564 				     &elems->multi_link_len,
1565 				     elems->total_len - ((u8 *)elems->multi_link -
1566 							 elems->ie_start),
1567 				     WLAN_EID_FRAGMENT);
1568 
1569 	ieee80211_mle_get_sta_prof(elems, params->link_id);
1570 	prof = elems->prof;
1571 
1572 	if (!prof)
1573 		return;
1574 
1575 	/* check if we have the 4 bytes for the fixed part in assoc response */
1576 	if (elems->sta_prof_len < sizeof(*prof) + prof->sta_info_len - 1 + 4) {
1577 		elems->prof = NULL;
1578 		elems->sta_prof_len = 0;
1579 		return;
1580 	}
1581 
1582 	/*
1583 	 * Skip the capability information and the status code that are expected
1584 	 * as part of the station profile in association response frames. Note
1585 	 * the -1 is because the 'sta_info_len' is accounted to as part of the
1586 	 * per-STA profile, but not part of the 'u8 variable[]' portion.
1587 	 */
1588 	sub.start = prof->variable + prof->sta_info_len - 1 + 4;
1589 	end = (const u8 *)prof + elems->sta_prof_len;
1590 	sub.len = end - sub.start;
1591 
1592 	non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1593 					     sub.start, sub.len);
1594 	_ieee802_11_parse_elems_full(&sub, elems, non_inherit);
1595 }
1596 
1597 struct ieee802_11_elems *
1598 ieee802_11_parse_elems_full(struct ieee80211_elems_parse_params *params)
1599 {
1600 	struct ieee802_11_elems *elems;
1601 	const struct element *non_inherit = NULL;
1602 	u8 *nontransmitted_profile;
1603 	int nontransmitted_profile_len = 0;
1604 	size_t scratch_len = params->scratch_len ?: 3 * params->len;
1605 
1606 	elems = kzalloc(sizeof(*elems) + scratch_len, GFP_ATOMIC);
1607 	if (!elems)
1608 		return NULL;
1609 	elems->ie_start = params->start;
1610 	elems->total_len = params->len;
1611 	elems->scratch_len = scratch_len;
1612 	elems->scratch_pos = elems->scratch;
1613 
1614 	nontransmitted_profile = elems->scratch_pos;
1615 	nontransmitted_profile_len =
1616 		ieee802_11_find_bssid_profile(params->start, params->len,
1617 					      elems, params->bss,
1618 					      nontransmitted_profile);
1619 	elems->scratch_pos += nontransmitted_profile_len;
1620 	elems->scratch_len -= nontransmitted_profile_len;
1621 	non_inherit = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1622 					     nontransmitted_profile,
1623 					     nontransmitted_profile_len);
1624 
1625 	elems->crc = _ieee802_11_parse_elems_full(params, elems, non_inherit);
1626 
1627 	/* Override with nontransmitted profile, if found */
1628 	if (nontransmitted_profile_len) {
1629 		struct ieee80211_elems_parse_params sub = {
1630 			.start = nontransmitted_profile,
1631 			.len = nontransmitted_profile_len,
1632 			.action = params->action,
1633 			.link_id = params->link_id,
1634 		};
1635 
1636 		_ieee802_11_parse_elems_full(&sub, elems, NULL);
1637 	}
1638 
1639 	ieee80211_mle_parse_link(elems, params);
1640 
1641 	if (elems->tim && !elems->parse_error) {
1642 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1643 
1644 		elems->dtim_period = tim_ie->dtim_period;
1645 		elems->dtim_count = tim_ie->dtim_count;
1646 	}
1647 
1648 	/* Override DTIM period and count if needed */
1649 	if (elems->bssid_index &&
1650 	    elems->bssid_index_len >=
1651 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1652 		elems->dtim_period = elems->bssid_index->dtim_period;
1653 
1654 	if (elems->bssid_index &&
1655 	    elems->bssid_index_len >=
1656 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1657 		elems->dtim_count = elems->bssid_index->dtim_count;
1658 
1659 	return elems;
1660 }
1661 
1662 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1663 					   struct ieee80211_tx_queue_params
1664 					   *qparam, int ac)
1665 {
1666 	struct ieee80211_chanctx_conf *chanctx_conf;
1667 	const struct ieee80211_reg_rule *rrule;
1668 	const struct ieee80211_wmm_ac *wmm_ac;
1669 	u16 center_freq = 0;
1670 
1671 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1672 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1673 		return;
1674 
1675 	rcu_read_lock();
1676 	chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
1677 	if (chanctx_conf)
1678 		center_freq = chanctx_conf->def.chan->center_freq;
1679 
1680 	if (!center_freq) {
1681 		rcu_read_unlock();
1682 		return;
1683 	}
1684 
1685 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1686 
1687 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1688 		rcu_read_unlock();
1689 		return;
1690 	}
1691 
1692 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1693 		wmm_ac = &rrule->wmm_rule.ap[ac];
1694 	else
1695 		wmm_ac = &rrule->wmm_rule.client[ac];
1696 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1697 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1698 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1699 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1700 	rcu_read_unlock();
1701 }
1702 
1703 void ieee80211_set_wmm_default(struct ieee80211_link_data *link,
1704 			       bool bss_notify, bool enable_qos)
1705 {
1706 	struct ieee80211_sub_if_data *sdata = link->sdata;
1707 	struct ieee80211_local *local = sdata->local;
1708 	struct ieee80211_tx_queue_params qparam;
1709 	struct ieee80211_chanctx_conf *chanctx_conf;
1710 	int ac;
1711 	bool use_11b;
1712 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1713 	int aCWmin, aCWmax;
1714 
1715 	if (!local->ops->conf_tx)
1716 		return;
1717 
1718 	if (local->hw.queues < IEEE80211_NUM_ACS)
1719 		return;
1720 
1721 	memset(&qparam, 0, sizeof(qparam));
1722 
1723 	rcu_read_lock();
1724 	chanctx_conf = rcu_dereference(link->conf->chanctx_conf);
1725 	use_11b = (chanctx_conf &&
1726 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1727 		 !link->operating_11g_mode;
1728 	rcu_read_unlock();
1729 
1730 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1731 
1732 	/* Set defaults according to 802.11-2007 Table 7-37 */
1733 	aCWmax = 1023;
1734 	if (use_11b)
1735 		aCWmin = 31;
1736 	else
1737 		aCWmin = 15;
1738 
1739 	/* Confiure old 802.11b/g medium access rules. */
1740 	qparam.cw_max = aCWmax;
1741 	qparam.cw_min = aCWmin;
1742 	qparam.txop = 0;
1743 	qparam.aifs = 2;
1744 
1745 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1746 		/* Update if QoS is enabled. */
1747 		if (enable_qos) {
1748 			switch (ac) {
1749 			case IEEE80211_AC_BK:
1750 				qparam.cw_max = aCWmax;
1751 				qparam.cw_min = aCWmin;
1752 				qparam.txop = 0;
1753 				if (is_ocb)
1754 					qparam.aifs = 9;
1755 				else
1756 					qparam.aifs = 7;
1757 				break;
1758 			/* never happens but let's not leave undefined */
1759 			default:
1760 			case IEEE80211_AC_BE:
1761 				qparam.cw_max = aCWmax;
1762 				qparam.cw_min = aCWmin;
1763 				qparam.txop = 0;
1764 				if (is_ocb)
1765 					qparam.aifs = 6;
1766 				else
1767 					qparam.aifs = 3;
1768 				break;
1769 			case IEEE80211_AC_VI:
1770 				qparam.cw_max = aCWmin;
1771 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1772 				if (is_ocb)
1773 					qparam.txop = 0;
1774 				else if (use_11b)
1775 					qparam.txop = 6016/32;
1776 				else
1777 					qparam.txop = 3008/32;
1778 
1779 				if (is_ocb)
1780 					qparam.aifs = 3;
1781 				else
1782 					qparam.aifs = 2;
1783 				break;
1784 			case IEEE80211_AC_VO:
1785 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1786 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1787 				if (is_ocb)
1788 					qparam.txop = 0;
1789 				else if (use_11b)
1790 					qparam.txop = 3264/32;
1791 				else
1792 					qparam.txop = 1504/32;
1793 				qparam.aifs = 2;
1794 				break;
1795 			}
1796 		}
1797 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1798 
1799 		qparam.uapsd = false;
1800 
1801 		link->tx_conf[ac] = qparam;
1802 		drv_conf_tx(local, link, ac, &qparam);
1803 	}
1804 
1805 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1806 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1807 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1808 		link->conf->qos = enable_qos;
1809 		if (bss_notify)
1810 			ieee80211_link_info_change_notify(sdata, link,
1811 							  BSS_CHANGED_QOS);
1812 	}
1813 }
1814 
1815 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1816 			 u16 transaction, u16 auth_alg, u16 status,
1817 			 const u8 *extra, size_t extra_len, const u8 *da,
1818 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1819 			 u32 tx_flags)
1820 {
1821 	struct ieee80211_local *local = sdata->local;
1822 	struct sk_buff *skb;
1823 	struct ieee80211_mgmt *mgmt;
1824 	bool multi_link = sdata->vif.valid_links;
1825 	struct {
1826 		u8 id;
1827 		u8 len;
1828 		u8 ext_id;
1829 		struct ieee80211_multi_link_elem ml;
1830 		struct ieee80211_mle_basic_common_info basic;
1831 	} __packed mle = {
1832 		.id = WLAN_EID_EXTENSION,
1833 		.len = sizeof(mle) - 2,
1834 		.ext_id = WLAN_EID_EXT_EHT_MULTI_LINK,
1835 		.ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC),
1836 		.basic.len = sizeof(mle.basic),
1837 	};
1838 	int err;
1839 
1840 	memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN);
1841 
1842 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1843 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1844 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN +
1845 			    multi_link * sizeof(mle));
1846 	if (!skb)
1847 		return;
1848 
1849 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1850 
1851 	mgmt = skb_put_zero(skb, 24 + 6);
1852 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1853 					  IEEE80211_STYPE_AUTH);
1854 	memcpy(mgmt->da, da, ETH_ALEN);
1855 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1856 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1857 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1858 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1859 	mgmt->u.auth.status_code = cpu_to_le16(status);
1860 	if (extra)
1861 		skb_put_data(skb, extra, extra_len);
1862 	if (multi_link)
1863 		skb_put_data(skb, &mle, sizeof(mle));
1864 
1865 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1866 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1867 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1868 		if (WARN_ON(err)) {
1869 			kfree_skb(skb);
1870 			return;
1871 		}
1872 	}
1873 
1874 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1875 					tx_flags;
1876 	ieee80211_tx_skb(sdata, skb);
1877 }
1878 
1879 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1880 				    const u8 *da, const u8 *bssid,
1881 				    u16 stype, u16 reason,
1882 				    bool send_frame, u8 *frame_buf)
1883 {
1884 	struct ieee80211_local *local = sdata->local;
1885 	struct sk_buff *skb;
1886 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1887 
1888 	/* build frame */
1889 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1890 	mgmt->duration = 0; /* initialize only */
1891 	mgmt->seq_ctrl = 0; /* initialize only */
1892 	memcpy(mgmt->da, da, ETH_ALEN);
1893 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1894 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1895 	/* u.deauth.reason_code == u.disassoc.reason_code */
1896 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1897 
1898 	if (send_frame) {
1899 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1900 				    IEEE80211_DEAUTH_FRAME_LEN);
1901 		if (!skb)
1902 			return;
1903 
1904 		skb_reserve(skb, local->hw.extra_tx_headroom);
1905 
1906 		/* copy in frame */
1907 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1908 
1909 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1910 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1911 			IEEE80211_SKB_CB(skb)->flags |=
1912 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1913 
1914 		ieee80211_tx_skb(sdata, skb);
1915 	}
1916 }
1917 
1918 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1919 {
1920 	if ((end - pos) < 5)
1921 		return pos;
1922 
1923 	*pos++ = WLAN_EID_EXTENSION;
1924 	*pos++ = 1 + sizeof(cap);
1925 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1926 	memcpy(pos, &cap, sizeof(cap));
1927 
1928 	return pos + 2;
1929 }
1930 
1931 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1932 					 u8 *buffer, size_t buffer_len,
1933 					 const u8 *ie, size_t ie_len,
1934 					 enum nl80211_band band,
1935 					 u32 rate_mask,
1936 					 struct cfg80211_chan_def *chandef,
1937 					 size_t *offset, u32 flags)
1938 {
1939 	struct ieee80211_local *local = sdata->local;
1940 	struct ieee80211_supported_band *sband;
1941 	const struct ieee80211_sta_he_cap *he_cap;
1942 	const struct ieee80211_sta_eht_cap *eht_cap;
1943 	u8 *pos = buffer, *end = buffer + buffer_len;
1944 	size_t noffset;
1945 	int supp_rates_len, i;
1946 	u8 rates[32];
1947 	int num_rates;
1948 	int ext_rates_len;
1949 	int shift;
1950 	u32 rate_flags;
1951 	bool have_80mhz = false;
1952 
1953 	*offset = 0;
1954 
1955 	sband = local->hw.wiphy->bands[band];
1956 	if (WARN_ON_ONCE(!sband))
1957 		return 0;
1958 
1959 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1960 	shift = ieee80211_chandef_get_shift(chandef);
1961 
1962 	num_rates = 0;
1963 	for (i = 0; i < sband->n_bitrates; i++) {
1964 		if ((BIT(i) & rate_mask) == 0)
1965 			continue; /* skip rate */
1966 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1967 			continue;
1968 
1969 		rates[num_rates++] =
1970 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1971 					  (1 << shift) * 5);
1972 	}
1973 
1974 	supp_rates_len = min_t(int, num_rates, 8);
1975 
1976 	if (end - pos < 2 + supp_rates_len)
1977 		goto out_err;
1978 	*pos++ = WLAN_EID_SUPP_RATES;
1979 	*pos++ = supp_rates_len;
1980 	memcpy(pos, rates, supp_rates_len);
1981 	pos += supp_rates_len;
1982 
1983 	/* insert "request information" if in custom IEs */
1984 	if (ie && ie_len) {
1985 		static const u8 before_extrates[] = {
1986 			WLAN_EID_SSID,
1987 			WLAN_EID_SUPP_RATES,
1988 			WLAN_EID_REQUEST,
1989 		};
1990 		noffset = ieee80211_ie_split(ie, ie_len,
1991 					     before_extrates,
1992 					     ARRAY_SIZE(before_extrates),
1993 					     *offset);
1994 		if (end - pos < noffset - *offset)
1995 			goto out_err;
1996 		memcpy(pos, ie + *offset, noffset - *offset);
1997 		pos += noffset - *offset;
1998 		*offset = noffset;
1999 	}
2000 
2001 	ext_rates_len = num_rates - supp_rates_len;
2002 	if (ext_rates_len > 0) {
2003 		if (end - pos < 2 + ext_rates_len)
2004 			goto out_err;
2005 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
2006 		*pos++ = ext_rates_len;
2007 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
2008 		pos += ext_rates_len;
2009 	}
2010 
2011 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
2012 		if (end - pos < 3)
2013 			goto out_err;
2014 		*pos++ = WLAN_EID_DS_PARAMS;
2015 		*pos++ = 1;
2016 		*pos++ = ieee80211_frequency_to_channel(
2017 				chandef->chan->center_freq);
2018 	}
2019 
2020 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
2021 		goto done;
2022 
2023 	/* insert custom IEs that go before HT */
2024 	if (ie && ie_len) {
2025 		static const u8 before_ht[] = {
2026 			/*
2027 			 * no need to list the ones split off already
2028 			 * (or generated here)
2029 			 */
2030 			WLAN_EID_DS_PARAMS,
2031 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
2032 		};
2033 		noffset = ieee80211_ie_split(ie, ie_len,
2034 					     before_ht, ARRAY_SIZE(before_ht),
2035 					     *offset);
2036 		if (end - pos < noffset - *offset)
2037 			goto out_err;
2038 		memcpy(pos, ie + *offset, noffset - *offset);
2039 		pos += noffset - *offset;
2040 		*offset = noffset;
2041 	}
2042 
2043 	if (sband->ht_cap.ht_supported) {
2044 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
2045 			goto out_err;
2046 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
2047 						sband->ht_cap.cap);
2048 	}
2049 
2050 	/* insert custom IEs that go before VHT */
2051 	if (ie && ie_len) {
2052 		static const u8 before_vht[] = {
2053 			/*
2054 			 * no need to list the ones split off already
2055 			 * (or generated here)
2056 			 */
2057 			WLAN_EID_BSS_COEX_2040,
2058 			WLAN_EID_EXT_CAPABILITY,
2059 			WLAN_EID_SSID_LIST,
2060 			WLAN_EID_CHANNEL_USAGE,
2061 			WLAN_EID_INTERWORKING,
2062 			WLAN_EID_MESH_ID,
2063 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
2064 		};
2065 		noffset = ieee80211_ie_split(ie, ie_len,
2066 					     before_vht, ARRAY_SIZE(before_vht),
2067 					     *offset);
2068 		if (end - pos < noffset - *offset)
2069 			goto out_err;
2070 		memcpy(pos, ie + *offset, noffset - *offset);
2071 		pos += noffset - *offset;
2072 		*offset = noffset;
2073 	}
2074 
2075 	/* Check if any channel in this sband supports at least 80 MHz */
2076 	for (i = 0; i < sband->n_channels; i++) {
2077 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
2078 						IEEE80211_CHAN_NO_80MHZ))
2079 			continue;
2080 
2081 		have_80mhz = true;
2082 		break;
2083 	}
2084 
2085 	if (sband->vht_cap.vht_supported && have_80mhz) {
2086 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
2087 			goto out_err;
2088 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
2089 						 sband->vht_cap.cap);
2090 	}
2091 
2092 	/* insert custom IEs that go before HE */
2093 	if (ie && ie_len) {
2094 		static const u8 before_he[] = {
2095 			/*
2096 			 * no need to list the ones split off before VHT
2097 			 * or generated here
2098 			 */
2099 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
2100 			WLAN_EID_AP_CSN,
2101 			/* TODO: add 11ah/11aj/11ak elements */
2102 		};
2103 		noffset = ieee80211_ie_split(ie, ie_len,
2104 					     before_he, ARRAY_SIZE(before_he),
2105 					     *offset);
2106 		if (end - pos < noffset - *offset)
2107 			goto out_err;
2108 		memcpy(pos, ie + *offset, noffset - *offset);
2109 		pos += noffset - *offset;
2110 		*offset = noffset;
2111 	}
2112 
2113 	he_cap = ieee80211_get_he_iftype_cap(sband,
2114 					     ieee80211_vif_type_p2p(&sdata->vif));
2115 	if (he_cap &&
2116 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
2117 					 IEEE80211_CHAN_NO_HE)) {
2118 		pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end);
2119 		if (!pos)
2120 			goto out_err;
2121 	}
2122 
2123 	eht_cap = ieee80211_get_eht_iftype_cap(sband,
2124 					       ieee80211_vif_type_p2p(&sdata->vif));
2125 
2126 	if (eht_cap &&
2127 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
2128 					 IEEE80211_CHAN_NO_HE |
2129 					 IEEE80211_CHAN_NO_EHT)) {
2130 		pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end,
2131 						 sdata->vif.type == NL80211_IFTYPE_AP);
2132 		if (!pos)
2133 			goto out_err;
2134 	}
2135 
2136 	if (cfg80211_any_usable_channels(local->hw.wiphy,
2137 					 BIT(NL80211_BAND_6GHZ),
2138 					 IEEE80211_CHAN_NO_HE)) {
2139 		struct ieee80211_supported_band *sband6;
2140 
2141 		sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2142 		he_cap = ieee80211_get_he_iftype_cap(sband6,
2143 				ieee80211_vif_type_p2p(&sdata->vif));
2144 
2145 		if (he_cap) {
2146 			enum nl80211_iftype iftype =
2147 				ieee80211_vif_type_p2p(&sdata->vif);
2148 			__le16 cap = ieee80211_get_he_6ghz_capa(sband6, iftype);
2149 
2150 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
2151 		}
2152 	}
2153 
2154 	/*
2155 	 * If adding more here, adjust code in main.c
2156 	 * that calculates local->scan_ies_len.
2157 	 */
2158 
2159 	return pos - buffer;
2160  out_err:
2161 	WARN_ONCE(1, "not enough space for preq IEs\n");
2162  done:
2163 	return pos - buffer;
2164 }
2165 
2166 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
2167 			     size_t buffer_len,
2168 			     struct ieee80211_scan_ies *ie_desc,
2169 			     const u8 *ie, size_t ie_len,
2170 			     u8 bands_used, u32 *rate_masks,
2171 			     struct cfg80211_chan_def *chandef,
2172 			     u32 flags)
2173 {
2174 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
2175 	int i;
2176 
2177 	memset(ie_desc, 0, sizeof(*ie_desc));
2178 
2179 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
2180 		if (bands_used & BIT(i)) {
2181 			pos += ieee80211_build_preq_ies_band(sdata,
2182 							     buffer + pos,
2183 							     buffer_len - pos,
2184 							     ie, ie_len, i,
2185 							     rate_masks[i],
2186 							     chandef,
2187 							     &custom_ie_offset,
2188 							     flags);
2189 			ie_desc->ies[i] = buffer + old_pos;
2190 			ie_desc->len[i] = pos - old_pos;
2191 			old_pos = pos;
2192 		}
2193 	}
2194 
2195 	/* add any remaining custom IEs */
2196 	if (ie && ie_len) {
2197 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
2198 			      "not enough space for preq custom IEs\n"))
2199 			return pos;
2200 		memcpy(buffer + pos, ie + custom_ie_offset,
2201 		       ie_len - custom_ie_offset);
2202 		ie_desc->common_ies = buffer + pos;
2203 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2204 		pos += ie_len - custom_ie_offset;
2205 	}
2206 
2207 	return pos;
2208 };
2209 
2210 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2211 					  const u8 *src, const u8 *dst,
2212 					  u32 ratemask,
2213 					  struct ieee80211_channel *chan,
2214 					  const u8 *ssid, size_t ssid_len,
2215 					  const u8 *ie, size_t ie_len,
2216 					  u32 flags)
2217 {
2218 	struct ieee80211_local *local = sdata->local;
2219 	struct cfg80211_chan_def chandef;
2220 	struct sk_buff *skb;
2221 	struct ieee80211_mgmt *mgmt;
2222 	int ies_len;
2223 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2224 	struct ieee80211_scan_ies dummy_ie_desc;
2225 
2226 	/*
2227 	 * Do not send DS Channel parameter for directed probe requests
2228 	 * in order to maximize the chance that we get a response.  Some
2229 	 * badly-behaved APs don't respond when this parameter is included.
2230 	 */
2231 	chandef.width = sdata->vif.bss_conf.chandef.width;
2232 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2233 		chandef.chan = NULL;
2234 	else
2235 		chandef.chan = chan;
2236 
2237 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2238 				     local->scan_ies_len + ie_len);
2239 	if (!skb)
2240 		return NULL;
2241 
2242 	rate_masks[chan->band] = ratemask;
2243 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2244 					   skb_tailroom(skb), &dummy_ie_desc,
2245 					   ie, ie_len, BIT(chan->band),
2246 					   rate_masks, &chandef, flags);
2247 	skb_put(skb, ies_len);
2248 
2249 	if (dst) {
2250 		mgmt = (struct ieee80211_mgmt *) skb->data;
2251 		memcpy(mgmt->da, dst, ETH_ALEN);
2252 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2253 	}
2254 
2255 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2256 
2257 	return skb;
2258 }
2259 
2260 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2261 			    struct ieee802_11_elems *elems,
2262 			    enum nl80211_band band, u32 *basic_rates)
2263 {
2264 	struct ieee80211_supported_band *sband;
2265 	size_t num_rates;
2266 	u32 supp_rates, rate_flags;
2267 	int i, j, shift;
2268 
2269 	sband = sdata->local->hw.wiphy->bands[band];
2270 	if (WARN_ON(!sband))
2271 		return 1;
2272 
2273 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2274 	shift = ieee80211_vif_get_shift(&sdata->vif);
2275 
2276 	num_rates = sband->n_bitrates;
2277 	supp_rates = 0;
2278 	for (i = 0; i < elems->supp_rates_len +
2279 		     elems->ext_supp_rates_len; i++) {
2280 		u8 rate = 0;
2281 		int own_rate;
2282 		bool is_basic;
2283 		if (i < elems->supp_rates_len)
2284 			rate = elems->supp_rates[i];
2285 		else if (elems->ext_supp_rates)
2286 			rate = elems->ext_supp_rates
2287 				[i - elems->supp_rates_len];
2288 		own_rate = 5 * (rate & 0x7f);
2289 		is_basic = !!(rate & 0x80);
2290 
2291 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2292 			continue;
2293 
2294 		for (j = 0; j < num_rates; j++) {
2295 			int brate;
2296 			if ((rate_flags & sband->bitrates[j].flags)
2297 			    != rate_flags)
2298 				continue;
2299 
2300 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2301 					     1 << shift);
2302 
2303 			if (brate == own_rate) {
2304 				supp_rates |= BIT(j);
2305 				if (basic_rates && is_basic)
2306 					*basic_rates |= BIT(j);
2307 			}
2308 		}
2309 	}
2310 	return supp_rates;
2311 }
2312 
2313 void ieee80211_stop_device(struct ieee80211_local *local)
2314 {
2315 	ieee80211_led_radio(local, false);
2316 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2317 
2318 	cancel_work_sync(&local->reconfig_filter);
2319 
2320 	flush_workqueue(local->workqueue);
2321 	drv_stop(local);
2322 }
2323 
2324 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2325 					   bool aborted)
2326 {
2327 	/* It's possible that we don't handle the scan completion in
2328 	 * time during suspend, so if it's still marked as completed
2329 	 * here, queue the work and flush it to clean things up.
2330 	 * Instead of calling the worker function directly here, we
2331 	 * really queue it to avoid potential races with other flows
2332 	 * scheduling the same work.
2333 	 */
2334 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2335 		/* If coming from reconfiguration failure, abort the scan so
2336 		 * we don't attempt to continue a partial HW scan - which is
2337 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2338 		 * completed scan, and a 5 GHz portion is still pending.
2339 		 */
2340 		if (aborted)
2341 			set_bit(SCAN_ABORTED, &local->scanning);
2342 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2343 		flush_delayed_work(&local->scan_work);
2344 	}
2345 }
2346 
2347 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2348 {
2349 	struct ieee80211_sub_if_data *sdata;
2350 	struct ieee80211_chanctx *ctx;
2351 
2352 	/*
2353 	 * We get here if during resume the device can't be restarted properly.
2354 	 * We might also get here if this happens during HW reset, which is a
2355 	 * slightly different situation and we need to drop all connections in
2356 	 * the latter case.
2357 	 *
2358 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2359 	 * warnings but at least we'll then get into a clean stopped state.
2360 	 */
2361 
2362 	local->resuming = false;
2363 	local->suspended = false;
2364 	local->in_reconfig = false;
2365 
2366 	ieee80211_flush_completed_scan(local, true);
2367 
2368 	/* scheduled scan clearly can't be running any more, but tell
2369 	 * cfg80211 and clear local state
2370 	 */
2371 	ieee80211_sched_scan_end(local);
2372 
2373 	list_for_each_entry(sdata, &local->interfaces, list)
2374 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2375 
2376 	/* Mark channel contexts as not being in the driver any more to avoid
2377 	 * removing them from the driver during the shutdown process...
2378 	 */
2379 	mutex_lock(&local->chanctx_mtx);
2380 	list_for_each_entry(ctx, &local->chanctx_list, list)
2381 		ctx->driver_present = false;
2382 	mutex_unlock(&local->chanctx_mtx);
2383 }
2384 
2385 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2386 				     struct ieee80211_sub_if_data *sdata,
2387 				     struct ieee80211_link_data *link)
2388 {
2389 	struct ieee80211_chanctx_conf *conf;
2390 	struct ieee80211_chanctx *ctx;
2391 
2392 	if (!local->use_chanctx)
2393 		return;
2394 
2395 	mutex_lock(&local->chanctx_mtx);
2396 	conf = rcu_dereference_protected(link->conf->chanctx_conf,
2397 					 lockdep_is_held(&local->chanctx_mtx));
2398 	if (conf) {
2399 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2400 		drv_assign_vif_chanctx(local, sdata, link->conf, ctx);
2401 	}
2402 	mutex_unlock(&local->chanctx_mtx);
2403 }
2404 
2405 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2406 {
2407 	struct ieee80211_local *local = sdata->local;
2408 	struct sta_info *sta;
2409 
2410 	/* add STAs back */
2411 	mutex_lock(&local->sta_mtx);
2412 	list_for_each_entry(sta, &local->sta_list, list) {
2413 		enum ieee80211_sta_state state;
2414 
2415 		if (!sta->uploaded || sta->sdata != sdata)
2416 			continue;
2417 
2418 		for (state = IEEE80211_STA_NOTEXIST;
2419 		     state < sta->sta_state; state++)
2420 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2421 					      state + 1));
2422 	}
2423 	mutex_unlock(&local->sta_mtx);
2424 }
2425 
2426 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2427 {
2428 	struct cfg80211_nan_func *func, **funcs;
2429 	int res, id, i = 0;
2430 
2431 	res = drv_start_nan(sdata->local, sdata,
2432 			    &sdata->u.nan.conf);
2433 	if (WARN_ON(res))
2434 		return res;
2435 
2436 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2437 			sizeof(*funcs),
2438 			GFP_KERNEL);
2439 	if (!funcs)
2440 		return -ENOMEM;
2441 
2442 	/* Add all the functions:
2443 	 * This is a little bit ugly. We need to call a potentially sleeping
2444 	 * callback for each NAN function, so we can't hold the spinlock.
2445 	 */
2446 	spin_lock_bh(&sdata->u.nan.func_lock);
2447 
2448 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2449 		funcs[i++] = func;
2450 
2451 	spin_unlock_bh(&sdata->u.nan.func_lock);
2452 
2453 	for (i = 0; funcs[i]; i++) {
2454 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2455 		if (WARN_ON(res))
2456 			ieee80211_nan_func_terminated(&sdata->vif,
2457 						      funcs[i]->instance_id,
2458 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2459 						      GFP_KERNEL);
2460 	}
2461 
2462 	kfree(funcs);
2463 
2464 	return 0;
2465 }
2466 
2467 int ieee80211_reconfig(struct ieee80211_local *local)
2468 {
2469 	struct ieee80211_hw *hw = &local->hw;
2470 	struct ieee80211_sub_if_data *sdata;
2471 	struct ieee80211_chanctx *ctx;
2472 	struct sta_info *sta;
2473 	int res, i;
2474 	bool reconfig_due_to_wowlan = false;
2475 	struct ieee80211_sub_if_data *sched_scan_sdata;
2476 	struct cfg80211_sched_scan_request *sched_scan_req;
2477 	bool sched_scan_stopped = false;
2478 	bool suspended = local->suspended;
2479 	bool in_reconfig = false;
2480 
2481 	/* nothing to do if HW shouldn't run */
2482 	if (!local->open_count)
2483 		goto wake_up;
2484 
2485 #ifdef CONFIG_PM
2486 	if (suspended)
2487 		local->resuming = true;
2488 
2489 	if (local->wowlan) {
2490 		/*
2491 		 * In the wowlan case, both mac80211 and the device
2492 		 * are functional when the resume op is called, so
2493 		 * clear local->suspended so the device could operate
2494 		 * normally (e.g. pass rx frames).
2495 		 */
2496 		local->suspended = false;
2497 		res = drv_resume(local);
2498 		local->wowlan = false;
2499 		if (res < 0) {
2500 			local->resuming = false;
2501 			return res;
2502 		}
2503 		if (res == 0)
2504 			goto wake_up;
2505 		WARN_ON(res > 1);
2506 		/*
2507 		 * res is 1, which means the driver requested
2508 		 * to go through a regular reset on wakeup.
2509 		 * restore local->suspended in this case.
2510 		 */
2511 		reconfig_due_to_wowlan = true;
2512 		local->suspended = true;
2513 	}
2514 #endif
2515 
2516 	/*
2517 	 * In case of hw_restart during suspend (without wowlan),
2518 	 * cancel restart work, as we are reconfiguring the device
2519 	 * anyway.
2520 	 * Note that restart_work is scheduled on a frozen workqueue,
2521 	 * so we can't deadlock in this case.
2522 	 */
2523 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2524 		cancel_work_sync(&local->restart_work);
2525 
2526 	local->started = false;
2527 
2528 	/*
2529 	 * Upon resume hardware can sometimes be goofy due to
2530 	 * various platform / driver / bus issues, so restarting
2531 	 * the device may at times not work immediately. Propagate
2532 	 * the error.
2533 	 */
2534 	res = drv_start(local);
2535 	if (res) {
2536 		if (suspended)
2537 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2538 		else
2539 			WARN(1, "Hardware became unavailable during restart.\n");
2540 		ieee80211_handle_reconfig_failure(local);
2541 		return res;
2542 	}
2543 
2544 	/* setup fragmentation threshold */
2545 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2546 
2547 	/* setup RTS threshold */
2548 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2549 
2550 	/* reset coverage class */
2551 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2552 
2553 	ieee80211_led_radio(local, true);
2554 	ieee80211_mod_tpt_led_trig(local,
2555 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2556 
2557 	/* add interfaces */
2558 	sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata);
2559 	if (sdata) {
2560 		/* in HW restart it exists already */
2561 		WARN_ON(local->resuming);
2562 		res = drv_add_interface(local, sdata);
2563 		if (WARN_ON(res)) {
2564 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2565 			synchronize_net();
2566 			kfree(sdata);
2567 		}
2568 	}
2569 
2570 	list_for_each_entry(sdata, &local->interfaces, list) {
2571 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2572 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2573 		    ieee80211_sdata_running(sdata)) {
2574 			res = drv_add_interface(local, sdata);
2575 			if (WARN_ON(res))
2576 				break;
2577 		}
2578 	}
2579 
2580 	/* If adding any of the interfaces failed above, roll back and
2581 	 * report failure.
2582 	 */
2583 	if (res) {
2584 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2585 						     list)
2586 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2587 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2588 			    ieee80211_sdata_running(sdata))
2589 				drv_remove_interface(local, sdata);
2590 		ieee80211_handle_reconfig_failure(local);
2591 		return res;
2592 	}
2593 
2594 	/* add channel contexts */
2595 	if (local->use_chanctx) {
2596 		mutex_lock(&local->chanctx_mtx);
2597 		list_for_each_entry(ctx, &local->chanctx_list, list)
2598 			if (ctx->replace_state !=
2599 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2600 				WARN_ON(drv_add_chanctx(local, ctx));
2601 		mutex_unlock(&local->chanctx_mtx);
2602 
2603 		sdata = wiphy_dereference(local->hw.wiphy,
2604 					  local->monitor_sdata);
2605 		if (sdata && ieee80211_sdata_running(sdata))
2606 			ieee80211_assign_chanctx(local, sdata, &sdata->deflink);
2607 	}
2608 
2609 	/* reconfigure hardware */
2610 	ieee80211_hw_config(local, ~0);
2611 
2612 	ieee80211_configure_filter(local);
2613 
2614 	/* Finally also reconfigure all the BSS information */
2615 	list_for_each_entry(sdata, &local->interfaces, list) {
2616 		unsigned int link_id;
2617 		u32 changed;
2618 
2619 		if (!ieee80211_sdata_running(sdata))
2620 			continue;
2621 
2622 		sdata_lock(sdata);
2623 		for (link_id = 0;
2624 		     link_id < ARRAY_SIZE(sdata->vif.link_conf);
2625 		     link_id++) {
2626 			struct ieee80211_link_data *link;
2627 
2628 			link = sdata_dereference(sdata->link[link_id], sdata);
2629 			if (link)
2630 				ieee80211_assign_chanctx(local, sdata, link);
2631 		}
2632 
2633 		switch (sdata->vif.type) {
2634 		case NL80211_IFTYPE_AP_VLAN:
2635 		case NL80211_IFTYPE_MONITOR:
2636 			break;
2637 		case NL80211_IFTYPE_ADHOC:
2638 			if (sdata->vif.cfg.ibss_joined)
2639 				WARN_ON(drv_join_ibss(local, sdata));
2640 			fallthrough;
2641 		default:
2642 			ieee80211_reconfig_stations(sdata);
2643 			fallthrough;
2644 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2645 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2646 				drv_conf_tx(local, &sdata->deflink, i,
2647 					    &sdata->deflink.tx_conf[i]);
2648 			break;
2649 		}
2650 		sdata_unlock(sdata);
2651 
2652 		/* common change flags for all interface types */
2653 		changed = BSS_CHANGED_ERP_CTS_PROT |
2654 			  BSS_CHANGED_ERP_PREAMBLE |
2655 			  BSS_CHANGED_ERP_SLOT |
2656 			  BSS_CHANGED_HT |
2657 			  BSS_CHANGED_BASIC_RATES |
2658 			  BSS_CHANGED_BEACON_INT |
2659 			  BSS_CHANGED_BSSID |
2660 			  BSS_CHANGED_CQM |
2661 			  BSS_CHANGED_QOS |
2662 			  BSS_CHANGED_IDLE |
2663 			  BSS_CHANGED_TXPOWER |
2664 			  BSS_CHANGED_MCAST_RATE;
2665 
2666 		if (sdata->vif.bss_conf.mu_mimo_owner)
2667 			changed |= BSS_CHANGED_MU_GROUPS;
2668 
2669 		switch (sdata->vif.type) {
2670 		case NL80211_IFTYPE_STATION:
2671 			changed |= BSS_CHANGED_ASSOC |
2672 				   BSS_CHANGED_ARP_FILTER |
2673 				   BSS_CHANGED_PS;
2674 
2675 			/* Re-send beacon info report to the driver */
2676 			if (sdata->deflink.u.mgd.have_beacon)
2677 				changed |= BSS_CHANGED_BEACON_INFO;
2678 
2679 			if (sdata->vif.bss_conf.max_idle_period ||
2680 			    sdata->vif.bss_conf.protected_keep_alive)
2681 				changed |= BSS_CHANGED_KEEP_ALIVE;
2682 
2683 			sdata_lock(sdata);
2684 			ieee80211_bss_info_change_notify(sdata, changed);
2685 			sdata_unlock(sdata);
2686 			break;
2687 		case NL80211_IFTYPE_OCB:
2688 			changed |= BSS_CHANGED_OCB;
2689 			ieee80211_bss_info_change_notify(sdata, changed);
2690 			break;
2691 		case NL80211_IFTYPE_ADHOC:
2692 			changed |= BSS_CHANGED_IBSS;
2693 			fallthrough;
2694 		case NL80211_IFTYPE_AP:
2695 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2696 
2697 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2698 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2699 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2700 				changed |= BSS_CHANGED_FTM_RESPONDER;
2701 
2702 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2703 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2704 
2705 				if (rcu_access_pointer(sdata->deflink.u.ap.beacon))
2706 					drv_start_ap(local, sdata,
2707 						     sdata->deflink.conf);
2708 			}
2709 			fallthrough;
2710 		case NL80211_IFTYPE_MESH_POINT:
2711 			if (sdata->vif.bss_conf.enable_beacon) {
2712 				changed |= BSS_CHANGED_BEACON |
2713 					   BSS_CHANGED_BEACON_ENABLED;
2714 				ieee80211_bss_info_change_notify(sdata, changed);
2715 			}
2716 			break;
2717 		case NL80211_IFTYPE_NAN:
2718 			res = ieee80211_reconfig_nan(sdata);
2719 			if (res < 0) {
2720 				ieee80211_handle_reconfig_failure(local);
2721 				return res;
2722 			}
2723 			break;
2724 		case NL80211_IFTYPE_AP_VLAN:
2725 		case NL80211_IFTYPE_MONITOR:
2726 		case NL80211_IFTYPE_P2P_DEVICE:
2727 			/* nothing to do */
2728 			break;
2729 		case NL80211_IFTYPE_UNSPECIFIED:
2730 		case NUM_NL80211_IFTYPES:
2731 		case NL80211_IFTYPE_P2P_CLIENT:
2732 		case NL80211_IFTYPE_P2P_GO:
2733 		case NL80211_IFTYPE_WDS:
2734 			WARN_ON(1);
2735 			break;
2736 		}
2737 	}
2738 
2739 	ieee80211_recalc_ps(local);
2740 
2741 	/*
2742 	 * The sta might be in psm against the ap (e.g. because
2743 	 * this was the state before a hw restart), so we
2744 	 * explicitly send a null packet in order to make sure
2745 	 * it'll sync against the ap (and get out of psm).
2746 	 */
2747 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2748 		list_for_each_entry(sdata, &local->interfaces, list) {
2749 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2750 				continue;
2751 			if (!sdata->u.mgd.associated)
2752 				continue;
2753 
2754 			ieee80211_send_nullfunc(local, sdata, false);
2755 		}
2756 	}
2757 
2758 	/* APs are now beaconing, add back stations */
2759 	list_for_each_entry(sdata, &local->interfaces, list) {
2760 		if (!ieee80211_sdata_running(sdata))
2761 			continue;
2762 
2763 		sdata_lock(sdata);
2764 		switch (sdata->vif.type) {
2765 		case NL80211_IFTYPE_AP_VLAN:
2766 		case NL80211_IFTYPE_AP:
2767 			ieee80211_reconfig_stations(sdata);
2768 			break;
2769 		default:
2770 			break;
2771 		}
2772 		sdata_unlock(sdata);
2773 	}
2774 
2775 	/* add back keys */
2776 	list_for_each_entry(sdata, &local->interfaces, list)
2777 		ieee80211_reenable_keys(sdata);
2778 
2779 	/* Reconfigure sched scan if it was interrupted by FW restart */
2780 	mutex_lock(&local->mtx);
2781 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2782 						lockdep_is_held(&local->mtx));
2783 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2784 						lockdep_is_held(&local->mtx));
2785 	if (sched_scan_sdata && sched_scan_req)
2786 		/*
2787 		 * Sched scan stopped, but we don't want to report it. Instead,
2788 		 * we're trying to reschedule. However, if more than one scan
2789 		 * plan was set, we cannot reschedule since we don't know which
2790 		 * scan plan was currently running (and some scan plans may have
2791 		 * already finished).
2792 		 */
2793 		if (sched_scan_req->n_scan_plans > 1 ||
2794 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2795 							 sched_scan_req)) {
2796 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2797 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2798 			sched_scan_stopped = true;
2799 		}
2800 	mutex_unlock(&local->mtx);
2801 
2802 	if (sched_scan_stopped)
2803 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2804 
2805  wake_up:
2806 
2807 	if (local->monitors == local->open_count && local->monitors > 0)
2808 		ieee80211_add_virtual_monitor(local);
2809 
2810 	/*
2811 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2812 	 * sessions can be established after a resume.
2813 	 *
2814 	 * Also tear down aggregation sessions since reconfiguring
2815 	 * them in a hardware restart scenario is not easily done
2816 	 * right now, and the hardware will have lost information
2817 	 * about the sessions, but we and the AP still think they
2818 	 * are active. This is really a workaround though.
2819 	 */
2820 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2821 		mutex_lock(&local->sta_mtx);
2822 
2823 		list_for_each_entry(sta, &local->sta_list, list) {
2824 			if (!local->resuming)
2825 				ieee80211_sta_tear_down_BA_sessions(
2826 						sta, AGG_STOP_LOCAL_REQUEST);
2827 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2828 		}
2829 
2830 		mutex_unlock(&local->sta_mtx);
2831 	}
2832 
2833 	/*
2834 	 * If this is for hw restart things are still running.
2835 	 * We may want to change that later, however.
2836 	 */
2837 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2838 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2839 
2840 	if (local->in_reconfig) {
2841 		in_reconfig = local->in_reconfig;
2842 		local->in_reconfig = false;
2843 		barrier();
2844 
2845 		/* Restart deferred ROCs */
2846 		mutex_lock(&local->mtx);
2847 		ieee80211_start_next_roc(local);
2848 		mutex_unlock(&local->mtx);
2849 
2850 		/* Requeue all works */
2851 		list_for_each_entry(sdata, &local->interfaces, list)
2852 			ieee80211_queue_work(&local->hw, &sdata->work);
2853 	}
2854 
2855 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2856 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2857 					false);
2858 
2859 	if (in_reconfig) {
2860 		list_for_each_entry(sdata, &local->interfaces, list) {
2861 			if (!ieee80211_sdata_running(sdata))
2862 				continue;
2863 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2864 				ieee80211_sta_restart(sdata);
2865 		}
2866 	}
2867 
2868 	if (!suspended)
2869 		return 0;
2870 
2871 #ifdef CONFIG_PM
2872 	/* first set suspended false, then resuming */
2873 	local->suspended = false;
2874 	mb();
2875 	local->resuming = false;
2876 
2877 	ieee80211_flush_completed_scan(local, false);
2878 
2879 	if (local->open_count && !reconfig_due_to_wowlan)
2880 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2881 
2882 	list_for_each_entry(sdata, &local->interfaces, list) {
2883 		if (!ieee80211_sdata_running(sdata))
2884 			continue;
2885 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2886 			ieee80211_sta_restart(sdata);
2887 	}
2888 
2889 	mod_timer(&local->sta_cleanup, jiffies + 1);
2890 #else
2891 	WARN_ON(1);
2892 #endif
2893 
2894 	return 0;
2895 }
2896 
2897 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag)
2898 {
2899 	struct ieee80211_sub_if_data *sdata;
2900 	struct ieee80211_local *local;
2901 	struct ieee80211_key *key;
2902 
2903 	if (WARN_ON(!vif))
2904 		return;
2905 
2906 	sdata = vif_to_sdata(vif);
2907 	local = sdata->local;
2908 
2909 	if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME &&
2910 		    !local->resuming))
2911 		return;
2912 
2913 	if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART &&
2914 		    !local->in_reconfig))
2915 		return;
2916 
2917 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2918 		return;
2919 
2920 	sdata->flags |= flag;
2921 
2922 	mutex_lock(&local->key_mtx);
2923 	list_for_each_entry(key, &sdata->key_list, list)
2924 		key->flags |= KEY_FLAG_TAINTED;
2925 	mutex_unlock(&local->key_mtx);
2926 }
2927 
2928 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif)
2929 {
2930 	ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART);
2931 }
2932 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect);
2933 
2934 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2935 {
2936 	ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME);
2937 }
2938 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2939 
2940 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata,
2941 			   struct ieee80211_link_data *link)
2942 {
2943 	struct ieee80211_local *local = sdata->local;
2944 	struct ieee80211_chanctx_conf *chanctx_conf;
2945 	struct ieee80211_chanctx *chanctx;
2946 
2947 	mutex_lock(&local->chanctx_mtx);
2948 
2949 	chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf,
2950 						 lockdep_is_held(&local->chanctx_mtx));
2951 
2952 	/*
2953 	 * This function can be called from a work, thus it may be possible
2954 	 * that the chanctx_conf is removed (due to a disconnection, for
2955 	 * example).
2956 	 * So nothing should be done in such case.
2957 	 */
2958 	if (!chanctx_conf)
2959 		goto unlock;
2960 
2961 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2962 	ieee80211_recalc_smps_chanctx(local, chanctx);
2963  unlock:
2964 	mutex_unlock(&local->chanctx_mtx);
2965 }
2966 
2967 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata,
2968 				  int link_id)
2969 {
2970 	struct ieee80211_local *local = sdata->local;
2971 	struct ieee80211_chanctx_conf *chanctx_conf;
2972 	struct ieee80211_chanctx *chanctx;
2973 	int i;
2974 
2975 	mutex_lock(&local->chanctx_mtx);
2976 
2977 	for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) {
2978 		struct ieee80211_bss_conf *bss_conf;
2979 
2980 		if (link_id >= 0 && link_id != i)
2981 			continue;
2982 
2983 		rcu_read_lock();
2984 		bss_conf = rcu_dereference(sdata->vif.link_conf[i]);
2985 		if (!bss_conf) {
2986 			rcu_read_unlock();
2987 			continue;
2988 		}
2989 
2990 		chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf,
2991 							 lockdep_is_held(&local->chanctx_mtx));
2992 		/*
2993 		 * Since we hold the chanctx_mtx (checked above)
2994 		 * we can take the chanctx_conf pointer out of the
2995 		 * RCU critical section, it cannot go away without
2996 		 * the mutex. Just the way we reached it could - in
2997 		 * theory - go away, but we don't really care and
2998 		 * it really shouldn't happen anyway.
2999 		 */
3000 		rcu_read_unlock();
3001 
3002 		if (!chanctx_conf)
3003 			goto unlock;
3004 
3005 		chanctx = container_of(chanctx_conf, struct ieee80211_chanctx,
3006 				       conf);
3007 		ieee80211_recalc_chanctx_min_def(local, chanctx);
3008 	}
3009  unlock:
3010 	mutex_unlock(&local->chanctx_mtx);
3011 }
3012 
3013 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
3014 {
3015 	size_t pos = offset;
3016 
3017 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
3018 		pos += 2 + ies[pos + 1];
3019 
3020 	return pos;
3021 }
3022 
3023 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3024 			      u16 cap)
3025 {
3026 	__le16 tmp;
3027 
3028 	*pos++ = WLAN_EID_HT_CAPABILITY;
3029 	*pos++ = sizeof(struct ieee80211_ht_cap);
3030 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
3031 
3032 	/* capability flags */
3033 	tmp = cpu_to_le16(cap);
3034 	memcpy(pos, &tmp, sizeof(u16));
3035 	pos += sizeof(u16);
3036 
3037 	/* AMPDU parameters */
3038 	*pos++ = ht_cap->ampdu_factor |
3039 		 (ht_cap->ampdu_density <<
3040 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
3041 
3042 	/* MCS set */
3043 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
3044 	pos += sizeof(ht_cap->mcs);
3045 
3046 	/* extended capabilities */
3047 	pos += sizeof(__le16);
3048 
3049 	/* BF capabilities */
3050 	pos += sizeof(__le32);
3051 
3052 	/* antenna selection */
3053 	pos += sizeof(u8);
3054 
3055 	return pos;
3056 }
3057 
3058 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3059 			       u32 cap)
3060 {
3061 	__le32 tmp;
3062 
3063 	*pos++ = WLAN_EID_VHT_CAPABILITY;
3064 	*pos++ = sizeof(struct ieee80211_vht_cap);
3065 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
3066 
3067 	/* capability flags */
3068 	tmp = cpu_to_le32(cap);
3069 	memcpy(pos, &tmp, sizeof(u32));
3070 	pos += sizeof(u32);
3071 
3072 	/* VHT MCS set */
3073 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
3074 	pos += sizeof(vht_cap->vht_mcs);
3075 
3076 	return pos;
3077 }
3078 
3079 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
3080 {
3081 	const struct ieee80211_sta_he_cap *he_cap;
3082 	struct ieee80211_supported_band *sband;
3083 	u8 n;
3084 
3085 	sband = ieee80211_get_sband(sdata);
3086 	if (!sband)
3087 		return 0;
3088 
3089 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3090 	if (!he_cap)
3091 		return 0;
3092 
3093 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
3094 	return 2 + 1 +
3095 	       sizeof(he_cap->he_cap_elem) + n +
3096 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
3097 				     he_cap->he_cap_elem.phy_cap_info);
3098 }
3099 
3100 u8 *ieee80211_ie_build_he_cap(ieee80211_conn_flags_t disable_flags, u8 *pos,
3101 			      const struct ieee80211_sta_he_cap *he_cap,
3102 			      u8 *end)
3103 {
3104 	struct ieee80211_he_cap_elem elem;
3105 	u8 n;
3106 	u8 ie_len;
3107 	u8 *orig_pos = pos;
3108 
3109 	/* Make sure we have place for the IE */
3110 	/*
3111 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
3112 	 * IE. Get rid of it when it moves.
3113 	 */
3114 	if (!he_cap)
3115 		return orig_pos;
3116 
3117 	/* modify on stack first to calculate 'n' and 'ie_len' correctly */
3118 	elem = he_cap->he_cap_elem;
3119 
3120 	if (disable_flags & IEEE80211_CONN_DISABLE_40MHZ)
3121 		elem.phy_cap_info[0] &=
3122 			~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
3123 			  IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G);
3124 
3125 	if (disable_flags & IEEE80211_CONN_DISABLE_160MHZ)
3126 		elem.phy_cap_info[0] &=
3127 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3128 
3129 	if (disable_flags & IEEE80211_CONN_DISABLE_80P80MHZ)
3130 		elem.phy_cap_info[0] &=
3131 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3132 
3133 	n = ieee80211_he_mcs_nss_size(&elem);
3134 	ie_len = 2 + 1 +
3135 		 sizeof(he_cap->he_cap_elem) + n +
3136 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
3137 				       he_cap->he_cap_elem.phy_cap_info);
3138 
3139 	if ((end - pos) < ie_len)
3140 		return orig_pos;
3141 
3142 	*pos++ = WLAN_EID_EXTENSION;
3143 	pos++; /* We'll set the size later below */
3144 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
3145 
3146 	/* Fixed data */
3147 	memcpy(pos, &elem, sizeof(elem));
3148 	pos += sizeof(elem);
3149 
3150 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
3151 	pos += n;
3152 
3153 	/* Check if PPE Threshold should be present */
3154 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
3155 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
3156 		goto end;
3157 
3158 	/*
3159 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
3160 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
3161 	 */
3162 	n = hweight8(he_cap->ppe_thres[0] &
3163 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
3164 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
3165 		   IEEE80211_PPE_THRES_NSS_POS));
3166 
3167 	/*
3168 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
3169 	 * total size.
3170 	 */
3171 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
3172 	n = DIV_ROUND_UP(n, 8);
3173 
3174 	/* Copy PPE Thresholds */
3175 	memcpy(pos, &he_cap->ppe_thres, n);
3176 	pos += n;
3177 
3178 end:
3179 	orig_pos[1] = (pos - orig_pos) - 2;
3180 	return pos;
3181 }
3182 
3183 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
3184 				    enum ieee80211_smps_mode smps_mode,
3185 				    struct sk_buff *skb)
3186 {
3187 	struct ieee80211_supported_band *sband;
3188 	const struct ieee80211_sband_iftype_data *iftd;
3189 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3190 	u8 *pos;
3191 	u16 cap;
3192 
3193 	if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
3194 					  BIT(NL80211_BAND_6GHZ),
3195 					  IEEE80211_CHAN_NO_HE))
3196 		return;
3197 
3198 	sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3199 
3200 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
3201 	if (!iftd)
3202 		return;
3203 
3204 	/* Check for device HE 6 GHz capability before adding element */
3205 	if (!iftd->he_6ghz_capa.capa)
3206 		return;
3207 
3208 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
3209 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
3210 
3211 	switch (smps_mode) {
3212 	case IEEE80211_SMPS_AUTOMATIC:
3213 	case IEEE80211_SMPS_NUM_MODES:
3214 		WARN_ON(1);
3215 		fallthrough;
3216 	case IEEE80211_SMPS_OFF:
3217 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
3218 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3219 		break;
3220 	case IEEE80211_SMPS_STATIC:
3221 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
3222 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3223 		break;
3224 	case IEEE80211_SMPS_DYNAMIC:
3225 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
3226 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3227 		break;
3228 	}
3229 
3230 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
3231 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
3232 				    pos + 2 + 1 + sizeof(cap));
3233 }
3234 
3235 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3236 			       const struct cfg80211_chan_def *chandef,
3237 			       u16 prot_mode, bool rifs_mode)
3238 {
3239 	struct ieee80211_ht_operation *ht_oper;
3240 	/* Build HT Information */
3241 	*pos++ = WLAN_EID_HT_OPERATION;
3242 	*pos++ = sizeof(struct ieee80211_ht_operation);
3243 	ht_oper = (struct ieee80211_ht_operation *)pos;
3244 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
3245 					chandef->chan->center_freq);
3246 	switch (chandef->width) {
3247 	case NL80211_CHAN_WIDTH_160:
3248 	case NL80211_CHAN_WIDTH_80P80:
3249 	case NL80211_CHAN_WIDTH_80:
3250 	case NL80211_CHAN_WIDTH_40:
3251 		if (chandef->center_freq1 > chandef->chan->center_freq)
3252 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3253 		else
3254 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3255 		break;
3256 	case NL80211_CHAN_WIDTH_320:
3257 		/* HT information element should not be included on 6GHz */
3258 		WARN_ON(1);
3259 		return pos;
3260 	default:
3261 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3262 		break;
3263 	}
3264 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3265 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3266 	    chandef->width != NL80211_CHAN_WIDTH_20)
3267 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3268 
3269 	if (rifs_mode)
3270 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3271 
3272 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3273 	ht_oper->stbc_param = 0x0000;
3274 
3275 	/* It seems that Basic MCS set and Supported MCS set
3276 	   are identical for the first 10 bytes */
3277 	memset(&ht_oper->basic_set, 0, 16);
3278 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3279 
3280 	return pos + sizeof(struct ieee80211_ht_operation);
3281 }
3282 
3283 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3284 				   const struct cfg80211_chan_def *chandef)
3285 {
3286 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3287 	*pos++ = 3;					/* IE length */
3288 	/* New channel width */
3289 	switch (chandef->width) {
3290 	case NL80211_CHAN_WIDTH_80:
3291 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3292 		break;
3293 	case NL80211_CHAN_WIDTH_160:
3294 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3295 		break;
3296 	case NL80211_CHAN_WIDTH_80P80:
3297 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3298 		break;
3299 	case NL80211_CHAN_WIDTH_320:
3300 		/* The behavior is not defined for 320 MHz channels */
3301 		WARN_ON(1);
3302 		fallthrough;
3303 	default:
3304 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3305 	}
3306 
3307 	/* new center frequency segment 0 */
3308 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3309 	/* new center frequency segment 1 */
3310 	if (chandef->center_freq2)
3311 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3312 	else
3313 		*pos++ = 0;
3314 }
3315 
3316 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3317 				const struct cfg80211_chan_def *chandef)
3318 {
3319 	struct ieee80211_vht_operation *vht_oper;
3320 
3321 	*pos++ = WLAN_EID_VHT_OPERATION;
3322 	*pos++ = sizeof(struct ieee80211_vht_operation);
3323 	vht_oper = (struct ieee80211_vht_operation *)pos;
3324 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3325 							chandef->center_freq1);
3326 	if (chandef->center_freq2)
3327 		vht_oper->center_freq_seg1_idx =
3328 			ieee80211_frequency_to_channel(chandef->center_freq2);
3329 	else
3330 		vht_oper->center_freq_seg1_idx = 0x00;
3331 
3332 	switch (chandef->width) {
3333 	case NL80211_CHAN_WIDTH_160:
3334 		/*
3335 		 * Convert 160 MHz channel width to new style as interop
3336 		 * workaround.
3337 		 */
3338 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3339 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3340 		if (chandef->chan->center_freq < chandef->center_freq1)
3341 			vht_oper->center_freq_seg0_idx -= 8;
3342 		else
3343 			vht_oper->center_freq_seg0_idx += 8;
3344 		break;
3345 	case NL80211_CHAN_WIDTH_80P80:
3346 		/*
3347 		 * Convert 80+80 MHz channel width to new style as interop
3348 		 * workaround.
3349 		 */
3350 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3351 		break;
3352 	case NL80211_CHAN_WIDTH_80:
3353 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3354 		break;
3355 	case NL80211_CHAN_WIDTH_320:
3356 		/* VHT information element should not be included on 6GHz */
3357 		WARN_ON(1);
3358 		return pos;
3359 	default:
3360 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3361 		break;
3362 	}
3363 
3364 	/* don't require special VHT peer rates */
3365 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3366 
3367 	return pos + sizeof(struct ieee80211_vht_operation);
3368 }
3369 
3370 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3371 {
3372 	struct ieee80211_he_operation *he_oper;
3373 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3374 	u32 he_oper_params;
3375 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3376 
3377 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3378 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3379 
3380 	*pos++ = WLAN_EID_EXTENSION;
3381 	*pos++ = ie_len;
3382 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3383 
3384 	he_oper_params = 0;
3385 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3386 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3387 	he_oper_params |= u32_encode_bits(1,
3388 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3389 	he_oper_params |= u32_encode_bits(1,
3390 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3391 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3392 		he_oper_params |= u32_encode_bits(1,
3393 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3394 
3395 	he_oper = (struct ieee80211_he_operation *)pos;
3396 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3397 
3398 	/* don't require special HE peer rates */
3399 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3400 	pos += sizeof(struct ieee80211_he_operation);
3401 
3402 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3403 		goto out;
3404 
3405 	/* TODO add VHT operational */
3406 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3407 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3408 	he_6ghz_op->primary =
3409 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3410 	he_6ghz_op->ccfs0 =
3411 		ieee80211_frequency_to_channel(chandef->center_freq1);
3412 	if (chandef->center_freq2)
3413 		he_6ghz_op->ccfs1 =
3414 			ieee80211_frequency_to_channel(chandef->center_freq2);
3415 	else
3416 		he_6ghz_op->ccfs1 = 0;
3417 
3418 	switch (chandef->width) {
3419 	case NL80211_CHAN_WIDTH_320:
3420 		/*
3421 		 * TODO: mesh operation is not defined over 6GHz 320 MHz
3422 		 * channels.
3423 		 */
3424 		WARN_ON(1);
3425 		break;
3426 	case NL80211_CHAN_WIDTH_160:
3427 		/* Convert 160 MHz channel width to new style as interop
3428 		 * workaround.
3429 		 */
3430 		he_6ghz_op->control =
3431 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3432 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3433 		if (chandef->chan->center_freq < chandef->center_freq1)
3434 			he_6ghz_op->ccfs0 -= 8;
3435 		else
3436 			he_6ghz_op->ccfs0 += 8;
3437 		fallthrough;
3438 	case NL80211_CHAN_WIDTH_80P80:
3439 		he_6ghz_op->control =
3440 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3441 		break;
3442 	case NL80211_CHAN_WIDTH_80:
3443 		he_6ghz_op->control =
3444 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3445 		break;
3446 	case NL80211_CHAN_WIDTH_40:
3447 		he_6ghz_op->control =
3448 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3449 		break;
3450 	default:
3451 		he_6ghz_op->control =
3452 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3453 		break;
3454 	}
3455 
3456 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3457 
3458 out:
3459 	return pos;
3460 }
3461 
3462 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3463 			       struct cfg80211_chan_def *chandef)
3464 {
3465 	enum nl80211_channel_type channel_type;
3466 
3467 	if (!ht_oper)
3468 		return false;
3469 
3470 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3471 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3472 		channel_type = NL80211_CHAN_HT20;
3473 		break;
3474 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3475 		channel_type = NL80211_CHAN_HT40PLUS;
3476 		break;
3477 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3478 		channel_type = NL80211_CHAN_HT40MINUS;
3479 		break;
3480 	default:
3481 		return false;
3482 	}
3483 
3484 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3485 	return true;
3486 }
3487 
3488 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3489 				const struct ieee80211_vht_operation *oper,
3490 				const struct ieee80211_ht_operation *htop,
3491 				struct cfg80211_chan_def *chandef)
3492 {
3493 	struct cfg80211_chan_def new = *chandef;
3494 	int cf0, cf1;
3495 	int ccfs0, ccfs1, ccfs2;
3496 	int ccf0, ccf1;
3497 	u32 vht_cap;
3498 	bool support_80_80 = false;
3499 	bool support_160 = false;
3500 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3501 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3502 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3503 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3504 
3505 	if (!oper || !htop)
3506 		return false;
3507 
3508 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3509 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3510 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3511 	support_80_80 = ((vht_cap &
3512 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3513 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3514 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3515 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3516 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3517 	ccfs0 = oper->center_freq_seg0_idx;
3518 	ccfs1 = oper->center_freq_seg1_idx;
3519 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3520 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3521 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3522 
3523 	ccf0 = ccfs0;
3524 
3525 	/* if not supported, parse as though we didn't understand it */
3526 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3527 		ext_nss_bw_supp = 0;
3528 
3529 	/*
3530 	 * Cf. IEEE 802.11 Table 9-250
3531 	 *
3532 	 * We really just consider that because it's inefficient to connect
3533 	 * at a higher bandwidth than we'll actually be able to use.
3534 	 */
3535 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3536 	default:
3537 	case 0x00:
3538 		ccf1 = 0;
3539 		support_160 = false;
3540 		support_80_80 = false;
3541 		break;
3542 	case 0x01:
3543 		support_80_80 = false;
3544 		fallthrough;
3545 	case 0x02:
3546 	case 0x03:
3547 		ccf1 = ccfs2;
3548 		break;
3549 	case 0x10:
3550 		ccf1 = ccfs1;
3551 		break;
3552 	case 0x11:
3553 	case 0x12:
3554 		if (!ccfs1)
3555 			ccf1 = ccfs2;
3556 		else
3557 			ccf1 = ccfs1;
3558 		break;
3559 	case 0x13:
3560 	case 0x20:
3561 	case 0x23:
3562 		ccf1 = ccfs1;
3563 		break;
3564 	}
3565 
3566 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3567 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3568 
3569 	switch (oper->chan_width) {
3570 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3571 		/* just use HT information directly */
3572 		break;
3573 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3574 		new.width = NL80211_CHAN_WIDTH_80;
3575 		new.center_freq1 = cf0;
3576 		/* If needed, adjust based on the newer interop workaround. */
3577 		if (ccf1) {
3578 			unsigned int diff;
3579 
3580 			diff = abs(ccf1 - ccf0);
3581 			if ((diff == 8) && support_160) {
3582 				new.width = NL80211_CHAN_WIDTH_160;
3583 				new.center_freq1 = cf1;
3584 			} else if ((diff > 8) && support_80_80) {
3585 				new.width = NL80211_CHAN_WIDTH_80P80;
3586 				new.center_freq2 = cf1;
3587 			}
3588 		}
3589 		break;
3590 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3591 		/* deprecated encoding */
3592 		new.width = NL80211_CHAN_WIDTH_160;
3593 		new.center_freq1 = cf0;
3594 		break;
3595 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3596 		/* deprecated encoding */
3597 		new.width = NL80211_CHAN_WIDTH_80P80;
3598 		new.center_freq1 = cf0;
3599 		new.center_freq2 = cf1;
3600 		break;
3601 	default:
3602 		return false;
3603 	}
3604 
3605 	if (!cfg80211_chandef_valid(&new))
3606 		return false;
3607 
3608 	*chandef = new;
3609 	return true;
3610 }
3611 
3612 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation *eht_oper,
3613 				bool support_160, bool support_320,
3614 				struct cfg80211_chan_def *chandef)
3615 {
3616 	struct ieee80211_eht_operation_info *info = (void *)eht_oper->optional;
3617 
3618 	chandef->center_freq1 =
3619 		ieee80211_channel_to_frequency(info->ccfs0,
3620 					       chandef->chan->band);
3621 
3622 	switch (u8_get_bits(info->control,
3623 			    IEEE80211_EHT_OPER_CHAN_WIDTH)) {
3624 	case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ:
3625 		chandef->width = NL80211_CHAN_WIDTH_20;
3626 		break;
3627 	case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ:
3628 		chandef->width = NL80211_CHAN_WIDTH_40;
3629 		break;
3630 	case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ:
3631 		chandef->width = NL80211_CHAN_WIDTH_80;
3632 		break;
3633 	case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ:
3634 		if (support_160) {
3635 			chandef->width = NL80211_CHAN_WIDTH_160;
3636 			chandef->center_freq1 =
3637 				ieee80211_channel_to_frequency(info->ccfs1,
3638 							       chandef->chan->band);
3639 		} else {
3640 			chandef->width = NL80211_CHAN_WIDTH_80;
3641 		}
3642 		break;
3643 	case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ:
3644 		if (support_320) {
3645 			chandef->width = NL80211_CHAN_WIDTH_320;
3646 			chandef->center_freq1 =
3647 				ieee80211_channel_to_frequency(info->ccfs1,
3648 							       chandef->chan->band);
3649 		} else if (support_160) {
3650 			chandef->width = NL80211_CHAN_WIDTH_160;
3651 		} else {
3652 			chandef->width = NL80211_CHAN_WIDTH_80;
3653 
3654 			if (chandef->center_freq1 > chandef->chan->center_freq)
3655 				chandef->center_freq1 -= 40;
3656 			else
3657 				chandef->center_freq1 += 40;
3658 		}
3659 		break;
3660 	}
3661 }
3662 
3663 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3664 				    const struct ieee80211_he_operation *he_oper,
3665 				    const struct ieee80211_eht_operation *eht_oper,
3666 				    struct cfg80211_chan_def *chandef)
3667 {
3668 	struct ieee80211_local *local = sdata->local;
3669 	struct ieee80211_supported_band *sband;
3670 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3671 	const struct ieee80211_sta_he_cap *he_cap;
3672 	const struct ieee80211_sta_eht_cap *eht_cap;
3673 	struct cfg80211_chan_def he_chandef = *chandef;
3674 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3675 	struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf;
3676 	bool support_80_80, support_160, support_320;
3677 	u8 he_phy_cap, eht_phy_cap;
3678 	u32 freq;
3679 
3680 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3681 		return true;
3682 
3683 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3684 
3685 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3686 	if (!he_cap) {
3687 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3688 		return false;
3689 	}
3690 
3691 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3692 	support_160 =
3693 		he_phy_cap &
3694 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3695 	support_80_80 =
3696 		he_phy_cap &
3697 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3698 
3699 	if (!he_oper) {
3700 		sdata_info(sdata,
3701 			   "HE is not advertised on (on %d MHz), expect issues\n",
3702 			   chandef->chan->center_freq);
3703 		return false;
3704 	}
3705 
3706 	eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype);
3707 	if (!eht_cap) {
3708 		sdata_info(sdata, "Missing iftype sband data/EHT cap");
3709 		eht_oper = NULL;
3710 	}
3711 
3712 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3713 
3714 	if (!he_6ghz_oper) {
3715 		sdata_info(sdata,
3716 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3717 			   chandef->chan->center_freq);
3718 		return false;
3719 	}
3720 
3721 	/*
3722 	 * The EHT operation IE does not contain the primary channel so the
3723 	 * primary channel frequency should be taken from the 6 GHz operation
3724 	 * information.
3725 	 */
3726 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3727 					      NL80211_BAND_6GHZ);
3728 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3729 
3730 	switch (u8_get_bits(he_6ghz_oper->control,
3731 			    IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) {
3732 	case IEEE80211_6GHZ_CTRL_REG_LPI_AP:
3733 		bss_conf->power_type = IEEE80211_REG_LPI_AP;
3734 		break;
3735 	case IEEE80211_6GHZ_CTRL_REG_SP_AP:
3736 		bss_conf->power_type = IEEE80211_REG_SP_AP;
3737 		break;
3738 	default:
3739 		bss_conf->power_type = IEEE80211_REG_UNSET_AP;
3740 		break;
3741 	}
3742 
3743 	if (!eht_oper ||
3744 	    !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) {
3745 		switch (u8_get_bits(he_6ghz_oper->control,
3746 				    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3747 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3748 			he_chandef.width = NL80211_CHAN_WIDTH_20;
3749 			break;
3750 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3751 			he_chandef.width = NL80211_CHAN_WIDTH_40;
3752 			break;
3753 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3754 			he_chandef.width = NL80211_CHAN_WIDTH_80;
3755 			break;
3756 		case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3757 			he_chandef.width = NL80211_CHAN_WIDTH_80;
3758 			if (!he_6ghz_oper->ccfs1)
3759 				break;
3760 			if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3761 				if (support_160)
3762 					he_chandef.width = NL80211_CHAN_WIDTH_160;
3763 			} else {
3764 				if (support_80_80)
3765 					he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3766 			}
3767 			break;
3768 		}
3769 
3770 		if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3771 			he_chandef.center_freq1 =
3772 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3773 							       NL80211_BAND_6GHZ);
3774 		} else {
3775 			he_chandef.center_freq1 =
3776 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3777 							       NL80211_BAND_6GHZ);
3778 			if (support_80_80 || support_160)
3779 				he_chandef.center_freq2 =
3780 					ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3781 								       NL80211_BAND_6GHZ);
3782 		}
3783 	} else {
3784 		eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0];
3785 		support_320 =
3786 			eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
3787 
3788 		ieee80211_chandef_eht_oper(eht_oper, support_160,
3789 					   support_320, &he_chandef);
3790 	}
3791 
3792 	if (!cfg80211_chandef_valid(&he_chandef)) {
3793 		sdata_info(sdata,
3794 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3795 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3796 			   he_chandef.width,
3797 			   he_chandef.center_freq1,
3798 			   he_chandef.center_freq2);
3799 		return false;
3800 	}
3801 
3802 	*chandef = he_chandef;
3803 
3804 	return true;
3805 }
3806 
3807 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3808 				struct cfg80211_chan_def *chandef)
3809 {
3810 	u32 oper_freq;
3811 
3812 	if (!oper)
3813 		return false;
3814 
3815 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3816 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3817 		chandef->width = NL80211_CHAN_WIDTH_1;
3818 		break;
3819 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3820 		chandef->width = NL80211_CHAN_WIDTH_2;
3821 		break;
3822 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3823 		chandef->width = NL80211_CHAN_WIDTH_4;
3824 		break;
3825 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3826 		chandef->width = NL80211_CHAN_WIDTH_8;
3827 		break;
3828 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3829 		chandef->width = NL80211_CHAN_WIDTH_16;
3830 		break;
3831 	default:
3832 		return false;
3833 	}
3834 
3835 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3836 						  NL80211_BAND_S1GHZ);
3837 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3838 	chandef->freq1_offset = oper_freq % 1000;
3839 
3840 	return true;
3841 }
3842 
3843 int ieee80211_parse_bitrates(enum nl80211_chan_width width,
3844 			     const struct ieee80211_supported_band *sband,
3845 			     const u8 *srates, int srates_len, u32 *rates)
3846 {
3847 	u32 rate_flags = ieee80211_chanwidth_rate_flags(width);
3848 	int shift = ieee80211_chanwidth_get_shift(width);
3849 	struct ieee80211_rate *br;
3850 	int brate, rate, i, j, count = 0;
3851 
3852 	*rates = 0;
3853 
3854 	for (i = 0; i < srates_len; i++) {
3855 		rate = srates[i] & 0x7f;
3856 
3857 		for (j = 0; j < sband->n_bitrates; j++) {
3858 			br = &sband->bitrates[j];
3859 			if ((rate_flags & br->flags) != rate_flags)
3860 				continue;
3861 
3862 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3863 			if (brate == rate) {
3864 				*rates |= BIT(j);
3865 				count++;
3866 				break;
3867 			}
3868 		}
3869 	}
3870 	return count;
3871 }
3872 
3873 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3874 			    struct sk_buff *skb, bool need_basic,
3875 			    enum nl80211_band band)
3876 {
3877 	struct ieee80211_local *local = sdata->local;
3878 	struct ieee80211_supported_band *sband;
3879 	int rate, shift;
3880 	u8 i, rates, *pos;
3881 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3882 	u32 rate_flags;
3883 
3884 	shift = ieee80211_vif_get_shift(&sdata->vif);
3885 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3886 	sband = local->hw.wiphy->bands[band];
3887 	rates = 0;
3888 	for (i = 0; i < sband->n_bitrates; i++) {
3889 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3890 			continue;
3891 		rates++;
3892 	}
3893 	if (rates > 8)
3894 		rates = 8;
3895 
3896 	if (skb_tailroom(skb) < rates + 2)
3897 		return -ENOMEM;
3898 
3899 	pos = skb_put(skb, rates + 2);
3900 	*pos++ = WLAN_EID_SUPP_RATES;
3901 	*pos++ = rates;
3902 	for (i = 0; i < rates; i++) {
3903 		u8 basic = 0;
3904 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3905 			continue;
3906 
3907 		if (need_basic && basic_rates & BIT(i))
3908 			basic = 0x80;
3909 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3910 				    5 * (1 << shift));
3911 		*pos++ = basic | (u8) rate;
3912 	}
3913 
3914 	return 0;
3915 }
3916 
3917 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3918 				struct sk_buff *skb, bool need_basic,
3919 				enum nl80211_band band)
3920 {
3921 	struct ieee80211_local *local = sdata->local;
3922 	struct ieee80211_supported_band *sband;
3923 	int rate, shift;
3924 	u8 i, exrates, *pos;
3925 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3926 	u32 rate_flags;
3927 
3928 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3929 	shift = ieee80211_vif_get_shift(&sdata->vif);
3930 
3931 	sband = local->hw.wiphy->bands[band];
3932 	exrates = 0;
3933 	for (i = 0; i < sband->n_bitrates; i++) {
3934 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3935 			continue;
3936 		exrates++;
3937 	}
3938 
3939 	if (exrates > 8)
3940 		exrates -= 8;
3941 	else
3942 		exrates = 0;
3943 
3944 	if (skb_tailroom(skb) < exrates + 2)
3945 		return -ENOMEM;
3946 
3947 	if (exrates) {
3948 		pos = skb_put(skb, exrates + 2);
3949 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3950 		*pos++ = exrates;
3951 		for (i = 8; i < sband->n_bitrates; i++) {
3952 			u8 basic = 0;
3953 			if ((rate_flags & sband->bitrates[i].flags)
3954 			    != rate_flags)
3955 				continue;
3956 			if (need_basic && basic_rates & BIT(i))
3957 				basic = 0x80;
3958 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3959 					    5 * (1 << shift));
3960 			*pos++ = basic | (u8) rate;
3961 		}
3962 	}
3963 	return 0;
3964 }
3965 
3966 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3967 {
3968 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3969 
3970 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION))
3971 		return 0;
3972 
3973 	return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal);
3974 }
3975 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3976 
3977 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3978 {
3979 	if (!mcs)
3980 		return 1;
3981 
3982 	/* TODO: consider rx_highest */
3983 
3984 	if (mcs->rx_mask[3])
3985 		return 4;
3986 	if (mcs->rx_mask[2])
3987 		return 3;
3988 	if (mcs->rx_mask[1])
3989 		return 2;
3990 	return 1;
3991 }
3992 
3993 /**
3994  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3995  * @local: mac80211 hw info struct
3996  * @status: RX status
3997  * @mpdu_len: total MPDU length (including FCS)
3998  * @mpdu_offset: offset into MPDU to calculate timestamp at
3999  *
4000  * This function calculates the RX timestamp at the given MPDU offset, taking
4001  * into account what the RX timestamp was. An offset of 0 will just normalize
4002  * the timestamp to TSF at beginning of MPDU reception.
4003  */
4004 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
4005 				     struct ieee80211_rx_status *status,
4006 				     unsigned int mpdu_len,
4007 				     unsigned int mpdu_offset)
4008 {
4009 	u64 ts = status->mactime;
4010 	struct rate_info ri;
4011 	u16 rate;
4012 	u8 n_ltf;
4013 
4014 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
4015 		return 0;
4016 
4017 	memset(&ri, 0, sizeof(ri));
4018 
4019 	ri.bw = status->bw;
4020 
4021 	/* Fill cfg80211 rate info */
4022 	switch (status->encoding) {
4023 	case RX_ENC_EHT:
4024 		ri.flags |= RATE_INFO_FLAGS_EHT_MCS;
4025 		ri.mcs = status->rate_idx;
4026 		ri.nss = status->nss;
4027 		ri.eht_ru_alloc = status->eht.ru;
4028 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
4029 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
4030 		/* TODO/FIXME: is this right? handle other PPDUs */
4031 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
4032 			mpdu_offset += 2;
4033 			ts += 36;
4034 		}
4035 		break;
4036 	case RX_ENC_HE:
4037 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
4038 		ri.mcs = status->rate_idx;
4039 		ri.nss = status->nss;
4040 		ri.he_ru_alloc = status->he_ru;
4041 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
4042 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
4043 
4044 		/*
4045 		 * See P802.11ax_D6.0, section 27.3.4 for
4046 		 * VHT PPDU format.
4047 		 */
4048 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
4049 			mpdu_offset += 2;
4050 			ts += 36;
4051 
4052 			/*
4053 			 * TODO:
4054 			 * For HE MU PPDU, add the HE-SIG-B.
4055 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
4056 			 * For HE TB PPDU, add 4us for the HE-STF.
4057 			 * Add the HE-LTF durations - variable.
4058 			 */
4059 		}
4060 
4061 		break;
4062 	case RX_ENC_HT:
4063 		ri.mcs = status->rate_idx;
4064 		ri.flags |= RATE_INFO_FLAGS_MCS;
4065 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
4066 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
4067 
4068 		/*
4069 		 * See P802.11REVmd_D3.0, section 19.3.2 for
4070 		 * HT PPDU format.
4071 		 */
4072 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
4073 			mpdu_offset += 2;
4074 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
4075 				ts += 24;
4076 			else
4077 				ts += 32;
4078 
4079 			/*
4080 			 * Add Data HT-LTFs per streams
4081 			 * TODO: add Extension HT-LTFs, 4us per LTF
4082 			 */
4083 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
4084 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
4085 			ts += n_ltf * 4;
4086 		}
4087 
4088 		break;
4089 	case RX_ENC_VHT:
4090 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
4091 		ri.mcs = status->rate_idx;
4092 		ri.nss = status->nss;
4093 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
4094 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
4095 
4096 		/*
4097 		 * See P802.11REVmd_D3.0, section 21.3.2 for
4098 		 * VHT PPDU format.
4099 		 */
4100 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
4101 			mpdu_offset += 2;
4102 			ts += 36;
4103 
4104 			/*
4105 			 * Add VHT-LTFs per streams
4106 			 */
4107 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
4108 				ri.nss + 1 : ri.nss;
4109 			ts += 4 * n_ltf;
4110 		}
4111 
4112 		break;
4113 	default:
4114 		WARN_ON(1);
4115 		fallthrough;
4116 	case RX_ENC_LEGACY: {
4117 		struct ieee80211_supported_band *sband;
4118 		int shift = 0;
4119 		int bitrate;
4120 
4121 		switch (status->bw) {
4122 		case RATE_INFO_BW_10:
4123 			shift = 1;
4124 			break;
4125 		case RATE_INFO_BW_5:
4126 			shift = 2;
4127 			break;
4128 		}
4129 
4130 		sband = local->hw.wiphy->bands[status->band];
4131 		bitrate = sband->bitrates[status->rate_idx].bitrate;
4132 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
4133 
4134 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
4135 			if (status->band == NL80211_BAND_5GHZ) {
4136 				ts += 20 << shift;
4137 				mpdu_offset += 2;
4138 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
4139 				ts += 96;
4140 			} else {
4141 				ts += 192;
4142 			}
4143 		}
4144 		break;
4145 		}
4146 	}
4147 
4148 	rate = cfg80211_calculate_bitrate(&ri);
4149 	if (WARN_ONCE(!rate,
4150 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
4151 		      (unsigned long long)status->flag, status->rate_idx,
4152 		      status->nss))
4153 		return 0;
4154 
4155 	/* rewind from end of MPDU */
4156 	if (status->flag & RX_FLAG_MACTIME_END)
4157 		ts -= mpdu_len * 8 * 10 / rate;
4158 
4159 	ts += mpdu_offset * 8 * 10 / rate;
4160 
4161 	return ts;
4162 }
4163 
4164 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
4165 {
4166 	struct ieee80211_sub_if_data *sdata;
4167 	struct cfg80211_chan_def chandef;
4168 
4169 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
4170 	lockdep_assert_wiphy(local->hw.wiphy);
4171 
4172 	mutex_lock(&local->mtx);
4173 	list_for_each_entry(sdata, &local->interfaces, list) {
4174 		/* it might be waiting for the local->mtx, but then
4175 		 * by the time it gets it, sdata->wdev.cac_started
4176 		 * will no longer be true
4177 		 */
4178 		cancel_delayed_work(&sdata->deflink.dfs_cac_timer_work);
4179 
4180 		if (sdata->wdev.cac_started) {
4181 			chandef = sdata->vif.bss_conf.chandef;
4182 			ieee80211_link_release_channel(&sdata->deflink);
4183 			cfg80211_cac_event(sdata->dev,
4184 					   &chandef,
4185 					   NL80211_RADAR_CAC_ABORTED,
4186 					   GFP_KERNEL);
4187 		}
4188 	}
4189 	mutex_unlock(&local->mtx);
4190 }
4191 
4192 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
4193 {
4194 	struct ieee80211_local *local =
4195 		container_of(work, struct ieee80211_local, radar_detected_work);
4196 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
4197 	struct ieee80211_chanctx *ctx;
4198 	int num_chanctx = 0;
4199 
4200 	mutex_lock(&local->chanctx_mtx);
4201 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4202 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
4203 			continue;
4204 
4205 		num_chanctx++;
4206 		chandef = ctx->conf.def;
4207 	}
4208 	mutex_unlock(&local->chanctx_mtx);
4209 
4210 	wiphy_lock(local->hw.wiphy);
4211 	ieee80211_dfs_cac_cancel(local);
4212 	wiphy_unlock(local->hw.wiphy);
4213 
4214 	if (num_chanctx > 1)
4215 		/* XXX: multi-channel is not supported yet */
4216 		WARN_ON(1);
4217 	else
4218 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
4219 }
4220 
4221 void ieee80211_radar_detected(struct ieee80211_hw *hw)
4222 {
4223 	struct ieee80211_local *local = hw_to_local(hw);
4224 
4225 	trace_api_radar_detected(local);
4226 
4227 	schedule_work(&local->radar_detected_work);
4228 }
4229 EXPORT_SYMBOL(ieee80211_radar_detected);
4230 
4231 ieee80211_conn_flags_t ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
4232 {
4233 	ieee80211_conn_flags_t ret;
4234 	int tmp;
4235 
4236 	switch (c->width) {
4237 	case NL80211_CHAN_WIDTH_20:
4238 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
4239 		ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT;
4240 		break;
4241 	case NL80211_CHAN_WIDTH_40:
4242 		c->width = NL80211_CHAN_WIDTH_20;
4243 		c->center_freq1 = c->chan->center_freq;
4244 		ret = IEEE80211_CONN_DISABLE_40MHZ |
4245 		      IEEE80211_CONN_DISABLE_VHT;
4246 		break;
4247 	case NL80211_CHAN_WIDTH_80:
4248 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
4249 		/* n_P40 */
4250 		tmp /= 2;
4251 		/* freq_P40 */
4252 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
4253 		c->width = NL80211_CHAN_WIDTH_40;
4254 		ret = IEEE80211_CONN_DISABLE_VHT;
4255 		break;
4256 	case NL80211_CHAN_WIDTH_80P80:
4257 		c->center_freq2 = 0;
4258 		c->width = NL80211_CHAN_WIDTH_80;
4259 		ret = IEEE80211_CONN_DISABLE_80P80MHZ |
4260 		      IEEE80211_CONN_DISABLE_160MHZ;
4261 		break;
4262 	case NL80211_CHAN_WIDTH_160:
4263 		/* n_P20 */
4264 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
4265 		/* n_P80 */
4266 		tmp /= 4;
4267 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
4268 		c->width = NL80211_CHAN_WIDTH_80;
4269 		ret = IEEE80211_CONN_DISABLE_80P80MHZ |
4270 		      IEEE80211_CONN_DISABLE_160MHZ;
4271 		break;
4272 	case NL80211_CHAN_WIDTH_320:
4273 		/* n_P20 */
4274 		tmp = (150 + c->chan->center_freq - c->center_freq1) / 20;
4275 		/* n_P160 */
4276 		tmp /= 8;
4277 		c->center_freq1 = c->center_freq1 - 80 + 160 * tmp;
4278 		c->width = NL80211_CHAN_WIDTH_160;
4279 		ret = IEEE80211_CONN_DISABLE_320MHZ;
4280 		break;
4281 	default:
4282 	case NL80211_CHAN_WIDTH_20_NOHT:
4283 		WARN_ON_ONCE(1);
4284 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
4285 		ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT;
4286 		break;
4287 	case NL80211_CHAN_WIDTH_1:
4288 	case NL80211_CHAN_WIDTH_2:
4289 	case NL80211_CHAN_WIDTH_4:
4290 	case NL80211_CHAN_WIDTH_8:
4291 	case NL80211_CHAN_WIDTH_16:
4292 	case NL80211_CHAN_WIDTH_5:
4293 	case NL80211_CHAN_WIDTH_10:
4294 		WARN_ON_ONCE(1);
4295 		/* keep c->width */
4296 		ret = IEEE80211_CONN_DISABLE_HT | IEEE80211_CONN_DISABLE_VHT;
4297 		break;
4298 	}
4299 
4300 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
4301 
4302 	return ret;
4303 }
4304 
4305 /*
4306  * Returns true if smps_mode_new is strictly more restrictive than
4307  * smps_mode_old.
4308  */
4309 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
4310 				   enum ieee80211_smps_mode smps_mode_new)
4311 {
4312 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
4313 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
4314 		return false;
4315 
4316 	switch (smps_mode_old) {
4317 	case IEEE80211_SMPS_STATIC:
4318 		return false;
4319 	case IEEE80211_SMPS_DYNAMIC:
4320 		return smps_mode_new == IEEE80211_SMPS_STATIC;
4321 	case IEEE80211_SMPS_OFF:
4322 		return smps_mode_new != IEEE80211_SMPS_OFF;
4323 	default:
4324 		WARN_ON(1);
4325 	}
4326 
4327 	return false;
4328 }
4329 
4330 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
4331 			      struct cfg80211_csa_settings *csa_settings)
4332 {
4333 	struct sk_buff *skb;
4334 	struct ieee80211_mgmt *mgmt;
4335 	struct ieee80211_local *local = sdata->local;
4336 	int freq;
4337 	int hdr_len = offsetofend(struct ieee80211_mgmt,
4338 				  u.action.u.chan_switch);
4339 	u8 *pos;
4340 
4341 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
4342 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
4343 		return -EOPNOTSUPP;
4344 
4345 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
4346 			    5 + /* channel switch announcement element */
4347 			    3 + /* secondary channel offset element */
4348 			    5 + /* wide bandwidth channel switch announcement */
4349 			    8); /* mesh channel switch parameters element */
4350 	if (!skb)
4351 		return -ENOMEM;
4352 
4353 	skb_reserve(skb, local->tx_headroom);
4354 	mgmt = skb_put_zero(skb, hdr_len);
4355 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
4356 					  IEEE80211_STYPE_ACTION);
4357 
4358 	eth_broadcast_addr(mgmt->da);
4359 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
4360 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4361 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
4362 	} else {
4363 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
4364 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
4365 	}
4366 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
4367 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
4368 	pos = skb_put(skb, 5);
4369 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
4370 	*pos++ = 3;						/* IE length */
4371 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
4372 	freq = csa_settings->chandef.chan->center_freq;
4373 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
4374 	*pos++ = csa_settings->count;				/* count */
4375 
4376 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4377 		enum nl80211_channel_type ch_type;
4378 
4379 		skb_put(skb, 3);
4380 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4381 		*pos++ = 1;					/* IE length */
4382 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4383 		if (ch_type == NL80211_CHAN_HT40PLUS)
4384 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4385 		else
4386 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4387 	}
4388 
4389 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4390 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4391 
4392 		skb_put(skb, 8);
4393 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4394 		*pos++ = 6;					/* IE length */
4395 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4396 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4397 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4398 		*pos++ |= csa_settings->block_tx ?
4399 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4400 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4401 		pos += 2;
4402 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4403 		pos += 2;
4404 	}
4405 
4406 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4407 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4408 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4409 		skb_put(skb, 5);
4410 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4411 	}
4412 
4413 	ieee80211_tx_skb(sdata, skb);
4414 	return 0;
4415 }
4416 
4417 static bool
4418 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4419 {
4420 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4421 	int skip;
4422 
4423 	if (end > 0)
4424 		return false;
4425 
4426 	/* One shot NOA  */
4427 	if (data->count[i] == 1)
4428 		return false;
4429 
4430 	if (data->desc[i].interval == 0)
4431 		return false;
4432 
4433 	/* End time is in the past, check for repetitions */
4434 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4435 	if (data->count[i] < 255) {
4436 		if (data->count[i] <= skip) {
4437 			data->count[i] = 0;
4438 			return false;
4439 		}
4440 
4441 		data->count[i] -= skip;
4442 	}
4443 
4444 	data->desc[i].start += skip * data->desc[i].interval;
4445 
4446 	return true;
4447 }
4448 
4449 static bool
4450 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4451 			     s32 *offset)
4452 {
4453 	bool ret = false;
4454 	int i;
4455 
4456 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4457 		s32 cur;
4458 
4459 		if (!data->count[i])
4460 			continue;
4461 
4462 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4463 			ret = true;
4464 
4465 		cur = data->desc[i].start - tsf;
4466 		if (cur > *offset)
4467 			continue;
4468 
4469 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4470 		if (cur > *offset)
4471 			*offset = cur;
4472 	}
4473 
4474 	return ret;
4475 }
4476 
4477 static u32
4478 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4479 {
4480 	s32 offset = 0;
4481 	int tries = 0;
4482 	/*
4483 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4484 	 * descriptors cover the full time period.
4485 	 */
4486 	int max_tries = 5;
4487 
4488 	ieee80211_extend_absent_time(data, tsf, &offset);
4489 	do {
4490 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4491 			break;
4492 
4493 		tries++;
4494 	} while (tries < max_tries);
4495 
4496 	return offset;
4497 }
4498 
4499 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4500 {
4501 	u32 next_offset = BIT(31) - 1;
4502 	int i;
4503 
4504 	data->absent = 0;
4505 	data->has_next_tsf = false;
4506 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4507 		s32 start;
4508 
4509 		if (!data->count[i])
4510 			continue;
4511 
4512 		ieee80211_extend_noa_desc(data, tsf, i);
4513 		start = data->desc[i].start - tsf;
4514 		if (start <= 0)
4515 			data->absent |= BIT(i);
4516 
4517 		if (next_offset > start)
4518 			next_offset = start;
4519 
4520 		data->has_next_tsf = true;
4521 	}
4522 
4523 	if (data->absent)
4524 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4525 
4526 	data->next_tsf = tsf + next_offset;
4527 }
4528 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4529 
4530 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4531 			    struct ieee80211_noa_data *data, u32 tsf)
4532 {
4533 	int ret = 0;
4534 	int i;
4535 
4536 	memset(data, 0, sizeof(*data));
4537 
4538 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4539 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4540 
4541 		if (!desc->count || !desc->duration)
4542 			continue;
4543 
4544 		data->count[i] = desc->count;
4545 		data->desc[i].start = le32_to_cpu(desc->start_time);
4546 		data->desc[i].duration = le32_to_cpu(desc->duration);
4547 		data->desc[i].interval = le32_to_cpu(desc->interval);
4548 
4549 		if (data->count[i] > 1 &&
4550 		    data->desc[i].interval < data->desc[i].duration)
4551 			continue;
4552 
4553 		ieee80211_extend_noa_desc(data, tsf, i);
4554 		ret++;
4555 	}
4556 
4557 	if (ret)
4558 		ieee80211_update_p2p_noa(data, tsf);
4559 
4560 	return ret;
4561 }
4562 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4563 
4564 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4565 			   struct ieee80211_sub_if_data *sdata)
4566 {
4567 	u64 tsf = drv_get_tsf(local, sdata);
4568 	u64 dtim_count = 0;
4569 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4570 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4571 	struct ps_data *ps;
4572 	u8 bcns_from_dtim;
4573 
4574 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4575 		return;
4576 
4577 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4578 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4579 		if (!sdata->bss)
4580 			return;
4581 
4582 		ps = &sdata->bss->ps;
4583 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4584 		ps = &sdata->u.mesh.ps;
4585 	} else {
4586 		return;
4587 	}
4588 
4589 	/*
4590 	 * actually finds last dtim_count, mac80211 will update in
4591 	 * __beacon_add_tim().
4592 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4593 	 */
4594 	do_div(tsf, beacon_int);
4595 	bcns_from_dtim = do_div(tsf, dtim_period);
4596 	/* just had a DTIM */
4597 	if (!bcns_from_dtim)
4598 		dtim_count = 0;
4599 	else
4600 		dtim_count = dtim_period - bcns_from_dtim;
4601 
4602 	ps->dtim_count = dtim_count;
4603 }
4604 
4605 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4606 					 struct ieee80211_chanctx *ctx)
4607 {
4608 	struct ieee80211_link_data *link;
4609 	u8 radar_detect = 0;
4610 
4611 	lockdep_assert_held(&local->chanctx_mtx);
4612 
4613 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4614 		return 0;
4615 
4616 	list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list)
4617 		if (link->reserved_radar_required)
4618 			radar_detect |= BIT(link->reserved_chandef.width);
4619 
4620 	/*
4621 	 * An in-place reservation context should not have any assigned vifs
4622 	 * until it replaces the other context.
4623 	 */
4624 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4625 		!list_empty(&ctx->assigned_links));
4626 
4627 	list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) {
4628 		if (!link->radar_required)
4629 			continue;
4630 
4631 		radar_detect |=
4632 			BIT(link->conf->chandef.width);
4633 	}
4634 
4635 	return radar_detect;
4636 }
4637 
4638 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4639 				 const struct cfg80211_chan_def *chandef,
4640 				 enum ieee80211_chanctx_mode chanmode,
4641 				 u8 radar_detect)
4642 {
4643 	struct ieee80211_local *local = sdata->local;
4644 	struct ieee80211_sub_if_data *sdata_iter;
4645 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4646 	struct ieee80211_chanctx *ctx;
4647 	int total = 1;
4648 	struct iface_combination_params params = {
4649 		.radar_detect = radar_detect,
4650 	};
4651 
4652 	lockdep_assert_held(&local->chanctx_mtx);
4653 
4654 	if (WARN_ON(hweight32(radar_detect) > 1))
4655 		return -EINVAL;
4656 
4657 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4658 		    !chandef->chan))
4659 		return -EINVAL;
4660 
4661 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4662 		return -EINVAL;
4663 
4664 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4665 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4666 		/*
4667 		 * always passing this is harmless, since it'll be the
4668 		 * same value that cfg80211 finds if it finds the same
4669 		 * interface ... and that's always allowed
4670 		 */
4671 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4672 	}
4673 
4674 	/* Always allow software iftypes */
4675 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4676 		if (radar_detect)
4677 			return -EINVAL;
4678 		return 0;
4679 	}
4680 
4681 	if (chandef)
4682 		params.num_different_channels = 1;
4683 
4684 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4685 		params.iftype_num[iftype] = 1;
4686 
4687 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4688 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4689 			continue;
4690 		params.radar_detect |=
4691 			ieee80211_chanctx_radar_detect(local, ctx);
4692 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4693 			params.num_different_channels++;
4694 			continue;
4695 		}
4696 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4697 		    cfg80211_chandef_compatible(chandef,
4698 						&ctx->conf.def))
4699 			continue;
4700 		params.num_different_channels++;
4701 	}
4702 
4703 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4704 		struct wireless_dev *wdev_iter;
4705 
4706 		wdev_iter = &sdata_iter->wdev;
4707 
4708 		if (sdata_iter == sdata ||
4709 		    !ieee80211_sdata_running(sdata_iter) ||
4710 		    cfg80211_iftype_allowed(local->hw.wiphy,
4711 					    wdev_iter->iftype, 0, 1))
4712 			continue;
4713 
4714 		params.iftype_num[wdev_iter->iftype]++;
4715 		total++;
4716 	}
4717 
4718 	if (total == 1 && !params.radar_detect)
4719 		return 0;
4720 
4721 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4722 }
4723 
4724 static void
4725 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4726 			 void *data)
4727 {
4728 	u32 *max_num_different_channels = data;
4729 
4730 	*max_num_different_channels = max(*max_num_different_channels,
4731 					  c->num_different_channels);
4732 }
4733 
4734 int ieee80211_max_num_channels(struct ieee80211_local *local)
4735 {
4736 	struct ieee80211_sub_if_data *sdata;
4737 	struct ieee80211_chanctx *ctx;
4738 	u32 max_num_different_channels = 1;
4739 	int err;
4740 	struct iface_combination_params params = {0};
4741 
4742 	lockdep_assert_held(&local->chanctx_mtx);
4743 
4744 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4745 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4746 			continue;
4747 
4748 		params.num_different_channels++;
4749 
4750 		params.radar_detect |=
4751 			ieee80211_chanctx_radar_detect(local, ctx);
4752 	}
4753 
4754 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4755 		params.iftype_num[sdata->wdev.iftype]++;
4756 
4757 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4758 					 ieee80211_iter_max_chans,
4759 					 &max_num_different_channels);
4760 	if (err < 0)
4761 		return err;
4762 
4763 	return max_num_different_channels;
4764 }
4765 
4766 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4767 				struct ieee80211_sta_s1g_cap *caps,
4768 				struct sk_buff *skb)
4769 {
4770 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4771 	struct ieee80211_s1g_cap s1g_capab;
4772 	u8 *pos;
4773 	int i;
4774 
4775 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4776 		return;
4777 
4778 	if (!caps->s1g)
4779 		return;
4780 
4781 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4782 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4783 
4784 	/* override the capability info */
4785 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4786 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4787 
4788 		s1g_capab.capab_info[i] &= ~mask;
4789 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4790 	}
4791 
4792 	/* then MCS and NSS set */
4793 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4794 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4795 
4796 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4797 		s1g_capab.supp_mcs_nss[i] |=
4798 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4799 	}
4800 
4801 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4802 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4803 	*pos++ = sizeof(s1g_capab);
4804 
4805 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4806 }
4807 
4808 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4809 				  struct sk_buff *skb)
4810 {
4811 	u8 *pos = skb_put(skb, 3);
4812 
4813 	*pos++ = WLAN_EID_AID_REQUEST;
4814 	*pos++ = 1;
4815 	*pos++ = 0;
4816 }
4817 
4818 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4819 {
4820 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4821 	*buf++ = 7; /* len */
4822 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4823 	*buf++ = 0x50;
4824 	*buf++ = 0xf2;
4825 	*buf++ = 2; /* WME */
4826 	*buf++ = 0; /* WME info */
4827 	*buf++ = 1; /* WME ver */
4828 	*buf++ = qosinfo; /* U-APSD no in use */
4829 
4830 	return buf;
4831 }
4832 
4833 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4834 			     unsigned long *frame_cnt,
4835 			     unsigned long *byte_cnt)
4836 {
4837 	struct txq_info *txqi = to_txq_info(txq);
4838 	u32 frag_cnt = 0, frag_bytes = 0;
4839 	struct sk_buff *skb;
4840 
4841 	skb_queue_walk(&txqi->frags, skb) {
4842 		frag_cnt++;
4843 		frag_bytes += skb->len;
4844 	}
4845 
4846 	if (frame_cnt)
4847 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4848 
4849 	if (byte_cnt)
4850 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4851 }
4852 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4853 
4854 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4855 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4856 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4857 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4858 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4859 };
4860 
4861 u16 ieee80211_encode_usf(int listen_interval)
4862 {
4863 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4864 	u16 ui, usf = 0;
4865 
4866 	/* find greatest USF */
4867 	while (usf < IEEE80211_MAX_USF) {
4868 		if (listen_interval % listen_int_usf[usf + 1])
4869 			break;
4870 		usf += 1;
4871 	}
4872 	ui = listen_interval / listen_int_usf[usf];
4873 
4874 	/* error if there is a remainder. Should've been checked by user */
4875 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4876 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4877 			  FIELD_PREP(LISTEN_INT_UI, ui);
4878 
4879 	return (u16) listen_interval;
4880 }
4881 
4882 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
4883 {
4884 	const struct ieee80211_sta_he_cap *he_cap;
4885 	const struct ieee80211_sta_eht_cap *eht_cap;
4886 	struct ieee80211_supported_band *sband;
4887 	bool is_ap;
4888 	u8 n;
4889 
4890 	sband = ieee80211_get_sband(sdata);
4891 	if (!sband)
4892 		return 0;
4893 
4894 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
4895 	eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype);
4896 	if (!he_cap || !eht_cap)
4897 		return 0;
4898 
4899 	is_ap = iftype == NL80211_IFTYPE_AP ||
4900 		iftype == NL80211_IFTYPE_P2P_GO;
4901 
4902 	n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
4903 				       &eht_cap->eht_cap_elem,
4904 				       is_ap);
4905 	return 2 + 1 +
4906 	       sizeof(he_cap->he_cap_elem) + n +
4907 	       ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
4908 				      eht_cap->eht_cap_elem.phy_cap_info);
4909 	return 0;
4910 }
4911 
4912 u8 *ieee80211_ie_build_eht_cap(u8 *pos,
4913 			       const struct ieee80211_sta_he_cap *he_cap,
4914 			       const struct ieee80211_sta_eht_cap *eht_cap,
4915 			       u8 *end,
4916 			       bool for_ap)
4917 {
4918 	u8 mcs_nss_len, ppet_len;
4919 	u8 ie_len;
4920 	u8 *orig_pos = pos;
4921 
4922 	/* Make sure we have place for the IE */
4923 	if (!he_cap || !eht_cap)
4924 		return orig_pos;
4925 
4926 	mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem,
4927 						 &eht_cap->eht_cap_elem,
4928 						 for_ap);
4929 	ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0],
4930 					  eht_cap->eht_cap_elem.phy_cap_info);
4931 
4932 	ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len;
4933 	if ((end - pos) < ie_len)
4934 		return orig_pos;
4935 
4936 	*pos++ = WLAN_EID_EXTENSION;
4937 	*pos++ = ie_len - 2;
4938 	*pos++ = WLAN_EID_EXT_EHT_CAPABILITY;
4939 
4940 	/* Fixed data */
4941 	memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem));
4942 	pos += sizeof(eht_cap->eht_cap_elem);
4943 
4944 	memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len);
4945 	pos += mcs_nss_len;
4946 
4947 	if (ppet_len) {
4948 		memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len);
4949 		pos += ppet_len;
4950 	}
4951 
4952 	return pos;
4953 }
4954 
4955 void ieee80211_fragment_element(struct sk_buff *skb, u8 *len_pos)
4956 {
4957 	unsigned int elem_len;
4958 
4959 	if (!len_pos)
4960 		return;
4961 
4962 	elem_len = skb->data + skb->len - len_pos - 1;
4963 
4964 	while (elem_len > 255) {
4965 		/* this one is 255 */
4966 		*len_pos = 255;
4967 		/* remaining data gets smaller */
4968 		elem_len -= 255;
4969 		/* make space for the fragment ID/len in SKB */
4970 		skb_put(skb, 2);
4971 		/* shift back the remaining data to place fragment ID/len */
4972 		memmove(len_pos + 255 + 3, len_pos + 255 + 1, elem_len);
4973 		/* place the fragment ID */
4974 		len_pos += 255 + 1;
4975 		*len_pos = WLAN_EID_FRAGMENT;
4976 		/* and point to fragment length to update later */
4977 		len_pos++;
4978 	}
4979 
4980 	*len_pos = elem_len;
4981 }
4982