1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2025 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 105 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 106 { 107 struct sk_buff *skb; 108 struct ieee80211_hdr *hdr; 109 110 skb_queue_walk(&tx->skbs, skb) { 111 hdr = (struct ieee80211_hdr *) skb->data; 112 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 113 } 114 } 115 116 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 117 int rate, int erp, int short_preamble) 118 { 119 int dur; 120 121 /* calculate duration (in microseconds, rounded up to next higher 122 * integer if it includes a fractional microsecond) to send frame of 123 * len bytes (does not include FCS) at the given rate. Duration will 124 * also include SIFS. 125 * 126 * rate is in 100 kbps, so divident is multiplied by 10 in the 127 * DIV_ROUND_UP() operations. 128 */ 129 130 if (band == NL80211_BAND_5GHZ || erp) { 131 /* 132 * OFDM: 133 * 134 * N_DBPS = DATARATE x 4 135 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 136 * (16 = SIGNAL time, 6 = tail bits) 137 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 138 * 139 * T_SYM = 4 usec 140 * 802.11a - 18.5.2: aSIFSTime = 16 usec 141 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 142 * signal ext = 6 usec 143 */ 144 dur = 16; /* SIFS + signal ext */ 145 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 146 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 147 148 /* rates should already consider the channel bandwidth, 149 * don't apply divisor again. 150 */ 151 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 152 4 * rate); /* T_SYM x N_SYM */ 153 } else { 154 /* 155 * 802.11b or 802.11g with 802.11b compatibility: 156 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 157 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 158 * 159 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 160 * aSIFSTime = 10 usec 161 * aPreambleLength = 144 usec or 72 usec with short preamble 162 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 163 */ 164 dur = 10; /* aSIFSTime = 10 usec */ 165 dur += short_preamble ? (72 + 24) : (144 + 48); 166 167 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 168 } 169 170 return dur; 171 } 172 173 /* Exported duration function for driver use */ 174 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 175 struct ieee80211_vif *vif, 176 enum nl80211_band band, 177 size_t frame_len, 178 struct ieee80211_rate *rate) 179 { 180 struct ieee80211_sub_if_data *sdata; 181 u16 dur; 182 int erp; 183 bool short_preamble = false; 184 185 erp = 0; 186 if (vif) { 187 sdata = vif_to_sdata(vif); 188 short_preamble = sdata->vif.bss_conf.use_short_preamble; 189 if (sdata->deflink.operating_11g_mode) 190 erp = rate->flags & IEEE80211_RATE_ERP_G; 191 } 192 193 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 194 short_preamble); 195 196 return cpu_to_le16(dur); 197 } 198 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 199 200 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 201 struct ieee80211_vif *vif, size_t frame_len, 202 const struct ieee80211_tx_info *frame_txctl) 203 { 204 struct ieee80211_local *local = hw_to_local(hw); 205 struct ieee80211_rate *rate; 206 struct ieee80211_sub_if_data *sdata; 207 bool short_preamble; 208 int erp, bitrate; 209 u16 dur; 210 struct ieee80211_supported_band *sband; 211 212 sband = local->hw.wiphy->bands[frame_txctl->band]; 213 214 short_preamble = false; 215 216 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 217 218 erp = 0; 219 if (vif) { 220 sdata = vif_to_sdata(vif); 221 short_preamble = sdata->vif.bss_conf.use_short_preamble; 222 if (sdata->deflink.operating_11g_mode) 223 erp = rate->flags & IEEE80211_RATE_ERP_G; 224 } 225 226 bitrate = rate->bitrate; 227 228 /* CTS duration */ 229 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 230 erp, short_preamble); 231 /* Data frame duration */ 232 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 233 erp, short_preamble); 234 /* ACK duration */ 235 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 236 erp, short_preamble); 237 238 return cpu_to_le16(dur); 239 } 240 EXPORT_SYMBOL(ieee80211_rts_duration); 241 242 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 243 struct ieee80211_vif *vif, 244 size_t frame_len, 245 const struct ieee80211_tx_info *frame_txctl) 246 { 247 struct ieee80211_local *local = hw_to_local(hw); 248 struct ieee80211_rate *rate; 249 struct ieee80211_sub_if_data *sdata; 250 bool short_preamble; 251 int erp, bitrate; 252 u16 dur; 253 struct ieee80211_supported_band *sband; 254 255 sband = local->hw.wiphy->bands[frame_txctl->band]; 256 257 short_preamble = false; 258 259 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 260 erp = 0; 261 if (vif) { 262 sdata = vif_to_sdata(vif); 263 short_preamble = sdata->vif.bss_conf.use_short_preamble; 264 if (sdata->deflink.operating_11g_mode) 265 erp = rate->flags & IEEE80211_RATE_ERP_G; 266 } 267 268 bitrate = rate->bitrate; 269 270 /* Data frame duration */ 271 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 272 erp, short_preamble); 273 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 274 /* ACK duration */ 275 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 276 erp, short_preamble); 277 } 278 279 return cpu_to_le16(dur); 280 } 281 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 282 283 static void wake_tx_push_queue(struct ieee80211_local *local, 284 struct ieee80211_sub_if_data *sdata, 285 struct ieee80211_txq *queue) 286 { 287 struct ieee80211_tx_control control = { 288 .sta = queue->sta, 289 }; 290 struct sk_buff *skb; 291 292 while (1) { 293 skb = ieee80211_tx_dequeue(&local->hw, queue); 294 if (!skb) 295 break; 296 297 drv_tx(local, &control, skb); 298 } 299 } 300 301 /* wake_tx_queue handler for driver not implementing a custom one*/ 302 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 303 struct ieee80211_txq *txq) 304 { 305 struct ieee80211_local *local = hw_to_local(hw); 306 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 307 struct ieee80211_txq *queue; 308 309 spin_lock(&local->handle_wake_tx_queue_lock); 310 311 /* Use ieee80211_next_txq() for airtime fairness accounting */ 312 ieee80211_txq_schedule_start(hw, txq->ac); 313 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 314 wake_tx_push_queue(local, sdata, queue); 315 ieee80211_return_txq(hw, queue, false); 316 } 317 ieee80211_txq_schedule_end(hw, txq->ac); 318 spin_unlock(&local->handle_wake_tx_queue_lock); 319 } 320 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 321 322 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 323 { 324 struct ieee80211_local *local = sdata->local; 325 struct ieee80211_vif *vif = &sdata->vif; 326 struct fq *fq = &local->fq; 327 struct ps_data *ps = NULL; 328 struct txq_info *txqi; 329 struct sta_info *sta; 330 int i; 331 332 local_bh_disable(); 333 spin_lock(&fq->lock); 334 335 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 336 goto out; 337 338 if (sdata->vif.type == NL80211_IFTYPE_AP) 339 ps = &sdata->bss->ps; 340 341 list_for_each_entry_rcu(sta, &local->sta_list, list) { 342 if (sdata != sta->sdata) 343 continue; 344 345 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 346 struct ieee80211_txq *txq = sta->sta.txq[i]; 347 348 if (!txq) 349 continue; 350 351 txqi = to_txq_info(txq); 352 353 if (ac != txq->ac) 354 continue; 355 356 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 357 &txqi->flags)) 358 continue; 359 360 spin_unlock(&fq->lock); 361 drv_wake_tx_queue(local, txqi); 362 spin_lock(&fq->lock); 363 } 364 } 365 366 if (!vif->txq) 367 goto out; 368 369 txqi = to_txq_info(vif->txq); 370 371 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 372 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 373 goto out; 374 375 spin_unlock(&fq->lock); 376 377 drv_wake_tx_queue(local, txqi); 378 local_bh_enable(); 379 return; 380 out: 381 spin_unlock(&fq->lock); 382 local_bh_enable(); 383 } 384 385 static void 386 __releases(&local->queue_stop_reason_lock) 387 __acquires(&local->queue_stop_reason_lock) 388 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 389 { 390 struct ieee80211_sub_if_data *sdata; 391 int n_acs = IEEE80211_NUM_ACS; 392 int i; 393 394 rcu_read_lock(); 395 396 if (local->hw.queues < IEEE80211_NUM_ACS) 397 n_acs = 1; 398 399 for (i = 0; i < local->hw.queues; i++) { 400 if (local->queue_stop_reasons[i]) 401 continue; 402 403 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 404 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 405 int ac; 406 407 for (ac = 0; ac < n_acs; ac++) { 408 int ac_queue = sdata->vif.hw_queue[ac]; 409 410 if (ac_queue == i || 411 sdata->vif.cab_queue == i) 412 __ieee80211_wake_txqs(sdata, ac); 413 } 414 } 415 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 416 } 417 418 rcu_read_unlock(); 419 } 420 421 void ieee80211_wake_txqs(struct tasklet_struct *t) 422 { 423 struct ieee80211_local *local = from_tasklet(local, t, 424 wake_txqs_tasklet); 425 unsigned long flags; 426 427 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 428 _ieee80211_wake_txqs(local, &flags); 429 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 430 } 431 432 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 433 enum queue_stop_reason reason, 434 bool refcounted, 435 unsigned long *flags) 436 { 437 struct ieee80211_local *local = hw_to_local(hw); 438 439 if (WARN_ON(queue >= hw->queues)) 440 return; 441 442 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 443 return; 444 445 if (!refcounted) { 446 local->q_stop_reasons[queue][reason] = 0; 447 } else { 448 local->q_stop_reasons[queue][reason]--; 449 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 450 local->q_stop_reasons[queue][reason] = 0; 451 } 452 453 if (local->q_stop_reasons[queue][reason] == 0) 454 __clear_bit(reason, &local->queue_stop_reasons[queue]); 455 456 trace_wake_queue(local, queue, reason, 457 local->q_stop_reasons[queue][reason]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 if (WARN_ON(queue >= hw->queues)) 506 return; 507 508 if (!refcounted) 509 local->q_stop_reasons[queue][reason] = 1; 510 else 511 local->q_stop_reasons[queue][reason]++; 512 513 trace_stop_queue(local, queue, reason, 514 local->q_stop_reasons[queue][reason]); 515 516 set_bit(reason, &local->queue_stop_reasons[queue]); 517 } 518 519 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 520 enum queue_stop_reason reason, 521 bool refcounted) 522 { 523 struct ieee80211_local *local = hw_to_local(hw); 524 unsigned long flags; 525 526 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 527 __ieee80211_stop_queue(hw, queue, reason, refcounted); 528 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 529 } 530 531 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 532 { 533 ieee80211_stop_queue_by_reason(hw, queue, 534 IEEE80211_QUEUE_STOP_REASON_DRIVER, 535 false); 536 } 537 EXPORT_SYMBOL(ieee80211_stop_queue); 538 539 void ieee80211_add_pending_skb(struct ieee80211_local *local, 540 struct sk_buff *skb) 541 { 542 struct ieee80211_hw *hw = &local->hw; 543 unsigned long flags; 544 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 545 int queue = info->hw_queue; 546 547 if (WARN_ON(!info->control.vif)) { 548 ieee80211_free_txskb(&local->hw, skb); 549 return; 550 } 551 552 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 553 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 554 false); 555 __skb_queue_tail(&local->pending[queue], skb); 556 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 557 false, &flags); 558 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 559 } 560 561 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 562 struct sk_buff_head *skbs) 563 { 564 struct ieee80211_hw *hw = &local->hw; 565 struct sk_buff *skb; 566 unsigned long flags; 567 int queue, i; 568 569 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 570 while ((skb = skb_dequeue(skbs))) { 571 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 572 573 if (WARN_ON(!info->control.vif)) { 574 ieee80211_free_txskb(&local->hw, skb); 575 continue; 576 } 577 578 queue = info->hw_queue; 579 580 __ieee80211_stop_queue(hw, queue, 581 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 582 false); 583 584 __skb_queue_tail(&local->pending[queue], skb); 585 } 586 587 for (i = 0; i < hw->queues; i++) 588 __ieee80211_wake_queue(hw, i, 589 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 595 unsigned long queues, 596 enum queue_stop_reason reason, 597 bool refcounted) 598 { 599 struct ieee80211_local *local = hw_to_local(hw); 600 unsigned long flags; 601 int i; 602 603 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 604 605 for_each_set_bit(i, &queues, hw->queues) 606 __ieee80211_stop_queue(hw, i, reason, refcounted); 607 608 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 609 } 610 611 void ieee80211_stop_queues(struct ieee80211_hw *hw) 612 { 613 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 614 IEEE80211_QUEUE_STOP_REASON_DRIVER, 615 false); 616 } 617 EXPORT_SYMBOL(ieee80211_stop_queues); 618 619 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 620 { 621 struct ieee80211_local *local = hw_to_local(hw); 622 unsigned long flags; 623 int ret; 624 625 if (WARN_ON(queue >= hw->queues)) 626 return true; 627 628 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 629 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 630 &local->queue_stop_reasons[queue]); 631 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 632 return ret; 633 } 634 EXPORT_SYMBOL(ieee80211_queue_stopped); 635 636 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 637 unsigned long queues, 638 enum queue_stop_reason reason, 639 bool refcounted) 640 { 641 struct ieee80211_local *local = hw_to_local(hw); 642 unsigned long flags; 643 int i; 644 645 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 646 647 for_each_set_bit(i, &queues, hw->queues) 648 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 649 650 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 651 } 652 653 void ieee80211_wake_queues(struct ieee80211_hw *hw) 654 { 655 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 656 IEEE80211_QUEUE_STOP_REASON_DRIVER, 657 false); 658 } 659 EXPORT_SYMBOL(ieee80211_wake_queues); 660 661 unsigned int 662 ieee80211_get_vif_queues(struct ieee80211_local *local, 663 struct ieee80211_sub_if_data *sdata) 664 { 665 unsigned int queues; 666 667 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 668 int ac; 669 670 queues = 0; 671 672 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 673 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 674 queues |= BIT(sdata->vif.hw_queue[ac]); 675 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 676 queues |= BIT(sdata->vif.cab_queue); 677 } else { 678 /* all queues */ 679 queues = BIT(local->hw.queues) - 1; 680 } 681 682 return queues; 683 } 684 685 void __ieee80211_flush_queues(struct ieee80211_local *local, 686 struct ieee80211_sub_if_data *sdata, 687 unsigned int queues, bool drop) 688 { 689 if (!local->ops->flush && !drop) 690 return; 691 692 /* 693 * If no queue was set, or if the HW doesn't support 694 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 695 */ 696 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 697 queues = ieee80211_get_vif_queues(local, sdata); 698 699 ieee80211_stop_queues_by_reason(&local->hw, queues, 700 IEEE80211_QUEUE_STOP_REASON_FLUSH, 701 false); 702 703 if (drop) { 704 struct sta_info *sta; 705 706 /* Purge the queues, so the frames on them won't be 707 * sent during __ieee80211_wake_queue() 708 */ 709 list_for_each_entry(sta, &local->sta_list, list) { 710 if (sdata != sta->sdata) 711 continue; 712 ieee80211_purge_sta_txqs(sta); 713 } 714 } 715 716 if (local->ops->flush) 717 drv_flush(local, sdata, queues, drop); 718 719 ieee80211_wake_queues_by_reason(&local->hw, queues, 720 IEEE80211_QUEUE_STOP_REASON_FLUSH, 721 false); 722 } 723 724 void ieee80211_flush_queues(struct ieee80211_local *local, 725 struct ieee80211_sub_if_data *sdata, bool drop) 726 { 727 __ieee80211_flush_queues(local, sdata, 0, drop); 728 } 729 730 static void __iterate_interfaces(struct ieee80211_local *local, 731 u32 iter_flags, 732 void (*iterator)(void *data, u8 *mac, 733 struct ieee80211_vif *vif), 734 void *data) 735 { 736 struct ieee80211_sub_if_data *sdata; 737 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 738 739 list_for_each_entry_rcu(sdata, &local->interfaces, list, 740 lockdep_is_held(&local->iflist_mtx) || 741 lockdep_is_held(&local->hw.wiphy->mtx)) { 742 switch (sdata->vif.type) { 743 case NL80211_IFTYPE_MONITOR: 744 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 745 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 746 continue; 747 break; 748 case NL80211_IFTYPE_AP_VLAN: 749 continue; 750 default: 751 break; 752 } 753 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 754 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 755 continue; 756 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 757 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 758 continue; 759 if (ieee80211_sdata_running(sdata) || !active_only) 760 iterator(data, sdata->vif.addr, 761 &sdata->vif); 762 } 763 764 sdata = rcu_dereference_check(local->monitor_sdata, 765 lockdep_is_held(&local->iflist_mtx) || 766 lockdep_is_held(&local->hw.wiphy->mtx)); 767 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 768 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 769 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 770 iterator(data, sdata->vif.addr, &sdata->vif); 771 } 772 773 void ieee80211_iterate_interfaces( 774 struct ieee80211_hw *hw, u32 iter_flags, 775 void (*iterator)(void *data, u8 *mac, 776 struct ieee80211_vif *vif), 777 void *data) 778 { 779 struct ieee80211_local *local = hw_to_local(hw); 780 781 mutex_lock(&local->iflist_mtx); 782 __iterate_interfaces(local, iter_flags, iterator, data); 783 mutex_unlock(&local->iflist_mtx); 784 } 785 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 786 787 void ieee80211_iterate_active_interfaces_atomic( 788 struct ieee80211_hw *hw, u32 iter_flags, 789 void (*iterator)(void *data, u8 *mac, 790 struct ieee80211_vif *vif), 791 void *data) 792 { 793 struct ieee80211_local *local = hw_to_local(hw); 794 795 rcu_read_lock(); 796 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 797 iterator, data); 798 rcu_read_unlock(); 799 } 800 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 801 802 struct ieee80211_vif * 803 __ieee80211_iterate_interfaces(struct ieee80211_hw *hw, 804 struct ieee80211_vif *prev, 805 u32 iter_flags) 806 { 807 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 808 struct ieee80211_sub_if_data *sdata = NULL, *monitor; 809 struct ieee80211_local *local = hw_to_local(hw); 810 811 lockdep_assert_wiphy(hw->wiphy); 812 813 if (prev) 814 sdata = vif_to_sdata(prev); 815 816 monitor = rcu_dereference_check(local->monitor_sdata, 817 lockdep_is_held(&hw->wiphy->mtx)); 818 if (monitor && monitor == sdata) 819 return NULL; 820 821 sdata = list_prepare_entry(sdata, &local->interfaces, list); 822 list_for_each_entry_continue(sdata, &local->interfaces, list) { 823 switch (sdata->vif.type) { 824 case NL80211_IFTYPE_MONITOR: 825 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 826 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 827 continue; 828 break; 829 case NL80211_IFTYPE_AP_VLAN: 830 continue; 831 default: 832 break; 833 } 834 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 835 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 836 continue; 837 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 838 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 839 continue; 840 if (ieee80211_sdata_running(sdata) || !active_only) 841 return &sdata->vif; 842 } 843 844 if (monitor && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 845 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 846 monitor->flags & IEEE80211_SDATA_IN_DRIVER)) 847 return &monitor->vif; 848 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(__ieee80211_iterate_interfaces); 852 853 static void __iterate_stations(struct ieee80211_local *local, 854 void (*iterator)(void *data, 855 struct ieee80211_sta *sta), 856 void *data) 857 { 858 struct sta_info *sta; 859 860 list_for_each_entry_rcu(sta, &local->sta_list, list, 861 lockdep_is_held(&local->hw.wiphy->mtx)) { 862 if (!sta->uploaded) 863 continue; 864 865 iterator(data, &sta->sta); 866 } 867 } 868 869 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 870 void (*iterator)(void *data, 871 struct ieee80211_sta *sta), 872 void *data) 873 { 874 struct ieee80211_local *local = hw_to_local(hw); 875 876 rcu_read_lock(); 877 __iterate_stations(local, iterator, data); 878 rcu_read_unlock(); 879 } 880 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 881 882 struct ieee80211_sta * 883 __ieee80211_iterate_stations(struct ieee80211_hw *hw, 884 struct ieee80211_sta *prev) 885 { 886 struct ieee80211_local *local = hw_to_local(hw); 887 struct sta_info *sta = NULL; 888 889 lockdep_assert_wiphy(local->hw.wiphy); 890 891 if (prev) 892 sta = container_of(prev, struct sta_info, sta); 893 894 sta = list_prepare_entry(sta, &local->sta_list, list); 895 list_for_each_entry_continue(sta, &local->sta_list, list) { 896 if (!sta->uploaded) 897 continue; 898 899 return &sta->sta; 900 } 901 902 return NULL; 903 } 904 EXPORT_SYMBOL_GPL(__ieee80211_iterate_stations); 905 906 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 907 { 908 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 909 910 if (!ieee80211_sdata_running(sdata) || 911 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 912 return NULL; 913 return &sdata->vif; 914 } 915 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 916 917 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 918 { 919 if (!vif) 920 return NULL; 921 922 return &vif_to_sdata(vif)->wdev; 923 } 924 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 925 926 /* 927 * Nothing should have been stuffed into the workqueue during 928 * the suspend->resume cycle. Since we can't check each caller 929 * of this function if we are already quiescing / suspended, 930 * check here and don't WARN since this can actually happen when 931 * the rx path (for example) is racing against __ieee80211_suspend 932 * and suspending / quiescing was set after the rx path checked 933 * them. 934 */ 935 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 936 { 937 if (local->quiescing || (local->suspended && !local->resuming)) { 938 pr_warn("queueing ieee80211 work while going to suspend\n"); 939 return false; 940 } 941 942 return true; 943 } 944 945 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 946 { 947 struct ieee80211_local *local = hw_to_local(hw); 948 949 if (!ieee80211_can_queue_work(local)) 950 return; 951 952 queue_work(local->workqueue, work); 953 } 954 EXPORT_SYMBOL(ieee80211_queue_work); 955 956 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 957 struct delayed_work *dwork, 958 unsigned long delay) 959 { 960 struct ieee80211_local *local = hw_to_local(hw); 961 962 if (!ieee80211_can_queue_work(local)) 963 return; 964 965 queue_delayed_work(local->workqueue, dwork, delay); 966 } 967 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 968 969 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 970 struct ieee80211_tx_queue_params 971 *qparam, int ac) 972 { 973 struct ieee80211_chanctx_conf *chanctx_conf; 974 const struct ieee80211_reg_rule *rrule; 975 const struct ieee80211_wmm_ac *wmm_ac; 976 u16 center_freq = 0; 977 978 if (sdata->vif.type != NL80211_IFTYPE_AP && 979 sdata->vif.type != NL80211_IFTYPE_STATION) 980 return; 981 982 rcu_read_lock(); 983 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 984 if (chanctx_conf) 985 center_freq = chanctx_conf->def.chan->center_freq; 986 987 if (!center_freq) { 988 rcu_read_unlock(); 989 return; 990 } 991 992 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 993 994 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 995 rcu_read_unlock(); 996 return; 997 } 998 999 if (sdata->vif.type == NL80211_IFTYPE_AP) 1000 wmm_ac = &rrule->wmm_rule.ap[ac]; 1001 else 1002 wmm_ac = &rrule->wmm_rule.client[ac]; 1003 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1004 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1005 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1006 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1007 rcu_read_unlock(); 1008 } 1009 1010 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 1011 bool bss_notify, bool enable_qos) 1012 { 1013 struct ieee80211_sub_if_data *sdata = link->sdata; 1014 struct ieee80211_local *local = sdata->local; 1015 struct ieee80211_tx_queue_params qparam; 1016 struct ieee80211_chanctx_conf *chanctx_conf; 1017 int ac; 1018 bool use_11b; 1019 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1020 int aCWmin, aCWmax; 1021 1022 if (!local->ops->conf_tx) 1023 return; 1024 1025 if (local->hw.queues < IEEE80211_NUM_ACS) 1026 return; 1027 1028 memset(&qparam, 0, sizeof(qparam)); 1029 1030 rcu_read_lock(); 1031 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 1032 use_11b = (chanctx_conf && 1033 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1034 !link->operating_11g_mode; 1035 rcu_read_unlock(); 1036 1037 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1038 1039 /* Set defaults according to 802.11-2007 Table 7-37 */ 1040 aCWmax = 1023; 1041 if (use_11b) 1042 aCWmin = 31; 1043 else 1044 aCWmin = 15; 1045 1046 /* Configure old 802.11b/g medium access rules. */ 1047 qparam.cw_max = aCWmax; 1048 qparam.cw_min = aCWmin; 1049 qparam.txop = 0; 1050 qparam.aifs = 2; 1051 1052 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1053 /* Update if QoS is enabled. */ 1054 if (enable_qos) { 1055 switch (ac) { 1056 case IEEE80211_AC_BK: 1057 qparam.cw_max = aCWmax; 1058 qparam.cw_min = aCWmin; 1059 qparam.txop = 0; 1060 if (is_ocb) 1061 qparam.aifs = 9; 1062 else 1063 qparam.aifs = 7; 1064 break; 1065 /* never happens but let's not leave undefined */ 1066 default: 1067 case IEEE80211_AC_BE: 1068 qparam.cw_max = aCWmax; 1069 qparam.cw_min = aCWmin; 1070 qparam.txop = 0; 1071 if (is_ocb) 1072 qparam.aifs = 6; 1073 else 1074 qparam.aifs = 3; 1075 break; 1076 case IEEE80211_AC_VI: 1077 qparam.cw_max = aCWmin; 1078 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1079 if (is_ocb) 1080 qparam.txop = 0; 1081 else if (use_11b) 1082 qparam.txop = 6016/32; 1083 else 1084 qparam.txop = 3008/32; 1085 1086 if (is_ocb) 1087 qparam.aifs = 3; 1088 else 1089 qparam.aifs = 2; 1090 break; 1091 case IEEE80211_AC_VO: 1092 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1093 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1094 if (is_ocb) 1095 qparam.txop = 0; 1096 else if (use_11b) 1097 qparam.txop = 3264/32; 1098 else 1099 qparam.txop = 1504/32; 1100 qparam.aifs = 2; 1101 break; 1102 } 1103 } 1104 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1105 1106 qparam.uapsd = false; 1107 1108 link->tx_conf[ac] = qparam; 1109 drv_conf_tx(local, link, ac, &qparam); 1110 } 1111 1112 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1113 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1114 sdata->vif.type != NL80211_IFTYPE_NAN) { 1115 link->conf->qos = enable_qos; 1116 if (bss_notify) 1117 ieee80211_link_info_change_notify(sdata, link, 1118 BSS_CHANGED_QOS); 1119 } 1120 } 1121 1122 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1123 u16 transaction, u16 auth_alg, u16 status, 1124 const u8 *extra, size_t extra_len, const u8 *da, 1125 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1126 u32 tx_flags) 1127 { 1128 struct ieee80211_local *local = sdata->local; 1129 struct sk_buff *skb; 1130 struct ieee80211_mgmt *mgmt; 1131 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1132 struct { 1133 u8 id; 1134 u8 len; 1135 u8 ext_id; 1136 struct ieee80211_multi_link_elem ml; 1137 struct ieee80211_mle_basic_common_info basic; 1138 } __packed mle = { 1139 .id = WLAN_EID_EXTENSION, 1140 .len = sizeof(mle) - 2, 1141 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1142 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1143 .basic.len = sizeof(mle.basic), 1144 }; 1145 int err; 1146 1147 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1148 1149 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1150 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1151 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1152 multi_link * sizeof(mle)); 1153 if (!skb) 1154 return; 1155 1156 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1157 1158 mgmt = skb_put_zero(skb, 24 + 6); 1159 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1160 IEEE80211_STYPE_AUTH); 1161 memcpy(mgmt->da, da, ETH_ALEN); 1162 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1163 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1164 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1165 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1166 mgmt->u.auth.status_code = cpu_to_le16(status); 1167 if (extra) 1168 skb_put_data(skb, extra, extra_len); 1169 if (multi_link) 1170 skb_put_data(skb, &mle, sizeof(mle)); 1171 1172 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1173 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1174 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1175 if (WARN_ON(err)) { 1176 kfree_skb(skb); 1177 return; 1178 } 1179 } 1180 1181 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1182 tx_flags; 1183 ieee80211_tx_skb(sdata, skb); 1184 } 1185 1186 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1187 const u8 *da, const u8 *bssid, 1188 u16 stype, u16 reason, 1189 bool send_frame, u8 *frame_buf) 1190 { 1191 struct ieee80211_local *local = sdata->local; 1192 struct sk_buff *skb; 1193 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1194 1195 /* build frame */ 1196 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1197 mgmt->duration = 0; /* initialize only */ 1198 mgmt->seq_ctrl = 0; /* initialize only */ 1199 memcpy(mgmt->da, da, ETH_ALEN); 1200 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1201 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1202 /* u.deauth.reason_code == u.disassoc.reason_code */ 1203 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1204 1205 if (send_frame) { 1206 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1207 IEEE80211_DEAUTH_FRAME_LEN); 1208 if (!skb) 1209 return; 1210 1211 skb_reserve(skb, local->hw.extra_tx_headroom); 1212 1213 /* copy in frame */ 1214 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1215 1216 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1217 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1218 IEEE80211_SKB_CB(skb)->flags |= 1219 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1220 1221 ieee80211_tx_skb(sdata, skb); 1222 } 1223 } 1224 1225 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1226 struct ieee80211_sta_s1g_cap *s1g_cap) 1227 { 1228 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1229 return -ENOBUFS; 1230 1231 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1232 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1233 1234 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1235 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1236 1237 return 0; 1238 } 1239 1240 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1241 struct ieee80211_sub_if_data *sdata, 1242 const u8 *ie, size_t ie_len, 1243 size_t *offset, 1244 enum nl80211_band band, 1245 u32 rate_mask, 1246 struct cfg80211_chan_def *chandef, 1247 u32 flags) 1248 { 1249 struct ieee80211_local *local = sdata->local; 1250 struct ieee80211_supported_band *sband; 1251 int i, err; 1252 size_t noffset; 1253 bool have_80mhz = false; 1254 1255 *offset = 0; 1256 1257 sband = local->hw.wiphy->bands[band]; 1258 if (WARN_ON_ONCE(!sband)) 1259 return 0; 1260 1261 /* For direct scan add S1G IE and consider its override bits */ 1262 if (band == NL80211_BAND_S1GHZ) 1263 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1264 1265 err = ieee80211_put_srates_elem(skb, sband, 0, 1266 ~rate_mask, WLAN_EID_SUPP_RATES); 1267 if (err) 1268 return err; 1269 1270 /* insert "request information" if in custom IEs */ 1271 if (ie && ie_len) { 1272 static const u8 before_extrates[] = { 1273 WLAN_EID_SSID, 1274 WLAN_EID_SUPP_RATES, 1275 WLAN_EID_REQUEST, 1276 }; 1277 noffset = ieee80211_ie_split(ie, ie_len, 1278 before_extrates, 1279 ARRAY_SIZE(before_extrates), 1280 *offset); 1281 if (skb_tailroom(skb) < noffset - *offset) 1282 return -ENOBUFS; 1283 skb_put_data(skb, ie + *offset, noffset - *offset); 1284 *offset = noffset; 1285 } 1286 1287 err = ieee80211_put_srates_elem(skb, sband, 0, 1288 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1289 if (err) 1290 return err; 1291 1292 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1293 if (skb_tailroom(skb) < 3) 1294 return -ENOBUFS; 1295 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1296 skb_put_u8(skb, 1); 1297 skb_put_u8(skb, 1298 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1299 } 1300 1301 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1302 return 0; 1303 1304 /* insert custom IEs that go before HT */ 1305 if (ie && ie_len) { 1306 static const u8 before_ht[] = { 1307 /* 1308 * no need to list the ones split off already 1309 * (or generated here) 1310 */ 1311 WLAN_EID_DS_PARAMS, 1312 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1313 }; 1314 noffset = ieee80211_ie_split(ie, ie_len, 1315 before_ht, ARRAY_SIZE(before_ht), 1316 *offset); 1317 if (skb_tailroom(skb) < noffset - *offset) 1318 return -ENOBUFS; 1319 skb_put_data(skb, ie + *offset, noffset - *offset); 1320 *offset = noffset; 1321 } 1322 1323 if (sband->ht_cap.ht_supported) { 1324 u8 *pos; 1325 1326 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1327 return -ENOBUFS; 1328 1329 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1330 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1331 sband->ht_cap.cap); 1332 } 1333 1334 /* insert custom IEs that go before VHT */ 1335 if (ie && ie_len) { 1336 static const u8 before_vht[] = { 1337 /* 1338 * no need to list the ones split off already 1339 * (or generated here) 1340 */ 1341 WLAN_EID_BSS_COEX_2040, 1342 WLAN_EID_EXT_CAPABILITY, 1343 WLAN_EID_SSID_LIST, 1344 WLAN_EID_CHANNEL_USAGE, 1345 WLAN_EID_INTERWORKING, 1346 WLAN_EID_MESH_ID, 1347 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1348 }; 1349 noffset = ieee80211_ie_split(ie, ie_len, 1350 before_vht, ARRAY_SIZE(before_vht), 1351 *offset); 1352 if (skb_tailroom(skb) < noffset - *offset) 1353 return -ENOBUFS; 1354 skb_put_data(skb, ie + *offset, noffset - *offset); 1355 *offset = noffset; 1356 } 1357 1358 /* Check if any channel in this sband supports at least 80 MHz */ 1359 for (i = 0; i < sband->n_channels; i++) { 1360 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1361 IEEE80211_CHAN_NO_80MHZ)) 1362 continue; 1363 1364 have_80mhz = true; 1365 break; 1366 } 1367 1368 if (sband->vht_cap.vht_supported && have_80mhz) { 1369 u8 *pos; 1370 1371 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1372 return -ENOBUFS; 1373 1374 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1375 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1376 sband->vht_cap.cap); 1377 } 1378 1379 /* insert custom IEs that go before HE */ 1380 if (ie && ie_len) { 1381 static const u8 before_he[] = { 1382 /* 1383 * no need to list the ones split off before VHT 1384 * or generated here 1385 */ 1386 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1387 WLAN_EID_AP_CSN, 1388 /* TODO: add 11ah/11aj/11ak elements */ 1389 }; 1390 noffset = ieee80211_ie_split(ie, ie_len, 1391 before_he, ARRAY_SIZE(before_he), 1392 *offset); 1393 if (skb_tailroom(skb) < noffset - *offset) 1394 return -ENOBUFS; 1395 skb_put_data(skb, ie + *offset, noffset - *offset); 1396 *offset = noffset; 1397 } 1398 1399 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1400 IEEE80211_CHAN_NO_HE)) { 1401 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1402 if (err) 1403 return err; 1404 } 1405 1406 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1407 IEEE80211_CHAN_NO_HE | 1408 IEEE80211_CHAN_NO_EHT)) { 1409 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1410 if (err) 1411 return err; 1412 } 1413 1414 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1415 if (err) 1416 return err; 1417 1418 /* 1419 * If adding more here, adjust code in main.c 1420 * that calculates local->scan_ies_len. 1421 */ 1422 1423 return 0; 1424 } 1425 1426 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1427 struct ieee80211_sub_if_data *sdata, 1428 struct ieee80211_scan_ies *ie_desc, 1429 const u8 *ie, size_t ie_len, 1430 u8 bands_used, u32 *rate_masks, 1431 struct cfg80211_chan_def *chandef, 1432 u32 flags) 1433 { 1434 size_t custom_ie_offset = 0; 1435 int i, err; 1436 1437 memset(ie_desc, 0, sizeof(*ie_desc)); 1438 1439 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1440 if (bands_used & BIT(i)) { 1441 ie_desc->ies[i] = skb_tail_pointer(skb); 1442 err = ieee80211_put_preq_ies_band(skb, sdata, 1443 ie, ie_len, 1444 &custom_ie_offset, 1445 i, rate_masks[i], 1446 chandef, flags); 1447 if (err) 1448 return err; 1449 ie_desc->len[i] = skb_tail_pointer(skb) - 1450 ie_desc->ies[i]; 1451 } 1452 } 1453 1454 /* add any remaining custom IEs */ 1455 if (ie && ie_len) { 1456 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1457 "not enough space for preq custom IEs\n")) 1458 return -ENOBUFS; 1459 ie_desc->common_ies = skb_tail_pointer(skb); 1460 skb_put_data(skb, ie + custom_ie_offset, 1461 ie_len - custom_ie_offset); 1462 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1463 ie_desc->common_ies; 1464 } 1465 1466 return 0; 1467 }; 1468 1469 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1470 size_t buffer_len, 1471 struct ieee80211_scan_ies *ie_desc, 1472 const u8 *ie, size_t ie_len, 1473 u8 bands_used, u32 *rate_masks, 1474 struct cfg80211_chan_def *chandef, 1475 u32 flags) 1476 { 1477 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1478 uintptr_t offs; 1479 int ret, i; 1480 u8 *start; 1481 1482 if (!skb) 1483 return -ENOMEM; 1484 1485 start = skb_tail_pointer(skb); 1486 memset(start, 0, skb_tailroom(skb)); 1487 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1488 bands_used, rate_masks, chandef, 1489 flags); 1490 if (ret < 0) { 1491 goto out; 1492 } 1493 1494 if (skb->len > buffer_len) { 1495 ret = -ENOBUFS; 1496 goto out; 1497 } 1498 1499 memcpy(buffer, start, skb->len); 1500 1501 /* adjust ie_desc for copy */ 1502 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1503 offs = ie_desc->ies[i] - start; 1504 ie_desc->ies[i] = buffer + offs; 1505 } 1506 offs = ie_desc->common_ies - start; 1507 ie_desc->common_ies = buffer + offs; 1508 1509 ret = skb->len; 1510 out: 1511 consume_skb(skb); 1512 return ret; 1513 } 1514 1515 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1516 const u8 *src, const u8 *dst, 1517 u32 ratemask, 1518 struct ieee80211_channel *chan, 1519 const u8 *ssid, size_t ssid_len, 1520 const u8 *ie, size_t ie_len, 1521 u32 flags) 1522 { 1523 struct ieee80211_local *local = sdata->local; 1524 struct cfg80211_chan_def chandef; 1525 struct sk_buff *skb; 1526 struct ieee80211_mgmt *mgmt; 1527 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1528 struct ieee80211_scan_ies dummy_ie_desc; 1529 1530 /* 1531 * Do not send DS Channel parameter for directed probe requests 1532 * in order to maximize the chance that we get a response. Some 1533 * badly-behaved APs don't respond when this parameter is included. 1534 */ 1535 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1536 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1537 chandef.chan = NULL; 1538 else 1539 chandef.chan = chan; 1540 1541 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1542 local->scan_ies_len + ie_len); 1543 if (!skb) 1544 return NULL; 1545 1546 rate_masks[chan->band] = ratemask; 1547 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1548 ie, ie_len, BIT(chan->band), 1549 rate_masks, &chandef, flags); 1550 1551 if (dst) { 1552 mgmt = (struct ieee80211_mgmt *) skb->data; 1553 memcpy(mgmt->da, dst, ETH_ALEN); 1554 memcpy(mgmt->bssid, dst, ETH_ALEN); 1555 } 1556 1557 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1558 1559 return skb; 1560 } 1561 1562 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1563 struct ieee802_11_elems *elems, 1564 enum nl80211_band band, u32 *basic_rates) 1565 { 1566 struct ieee80211_supported_band *sband; 1567 size_t num_rates; 1568 u32 supp_rates; 1569 int i, j; 1570 1571 sband = sdata->local->hw.wiphy->bands[band]; 1572 if (WARN_ON(!sband)) 1573 return 1; 1574 1575 num_rates = sband->n_bitrates; 1576 supp_rates = 0; 1577 for (i = 0; i < elems->supp_rates_len + 1578 elems->ext_supp_rates_len; i++) { 1579 u8 rate = 0; 1580 int own_rate; 1581 bool is_basic; 1582 if (i < elems->supp_rates_len) 1583 rate = elems->supp_rates[i]; 1584 else if (elems->ext_supp_rates) 1585 rate = elems->ext_supp_rates 1586 [i - elems->supp_rates_len]; 1587 own_rate = 5 * (rate & 0x7f); 1588 is_basic = !!(rate & 0x80); 1589 1590 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1591 continue; 1592 1593 for (j = 0; j < num_rates; j++) { 1594 int brate = sband->bitrates[j].bitrate; 1595 1596 if (brate == own_rate) { 1597 supp_rates |= BIT(j); 1598 if (basic_rates && is_basic) 1599 *basic_rates |= BIT(j); 1600 } 1601 } 1602 } 1603 return supp_rates; 1604 } 1605 1606 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1607 { 1608 local_bh_disable(); 1609 ieee80211_handle_queued_frames(local); 1610 local_bh_enable(); 1611 1612 ieee80211_led_radio(local, false); 1613 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1614 1615 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1616 1617 flush_workqueue(local->workqueue); 1618 wiphy_work_flush(local->hw.wiphy, NULL); 1619 drv_stop(local, suspend); 1620 } 1621 1622 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1623 bool aborted) 1624 { 1625 /* It's possible that we don't handle the scan completion in 1626 * time during suspend, so if it's still marked as completed 1627 * here, queue the work and flush it to clean things up. 1628 * Instead of calling the worker function directly here, we 1629 * really queue it to avoid potential races with other flows 1630 * scheduling the same work. 1631 */ 1632 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1633 /* If coming from reconfiguration failure, abort the scan so 1634 * we don't attempt to continue a partial HW scan - which is 1635 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1636 * completed scan, and a 5 GHz portion is still pending. 1637 */ 1638 if (aborted) 1639 set_bit(SCAN_ABORTED, &local->scanning); 1640 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1641 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1642 } 1643 } 1644 1645 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1646 { 1647 struct ieee80211_sub_if_data *sdata; 1648 struct ieee80211_chanctx *ctx; 1649 1650 lockdep_assert_wiphy(local->hw.wiphy); 1651 1652 /* 1653 * We get here if during resume the device can't be restarted properly. 1654 * We might also get here if this happens during HW reset, which is a 1655 * slightly different situation and we need to drop all connections in 1656 * the latter case. 1657 * 1658 * Ask cfg80211 to turn off all interfaces, this will result in more 1659 * warnings but at least we'll then get into a clean stopped state. 1660 */ 1661 1662 local->resuming = false; 1663 local->suspended = false; 1664 local->in_reconfig = false; 1665 local->reconfig_failure = true; 1666 1667 ieee80211_flush_completed_scan(local, true); 1668 1669 /* scheduled scan clearly can't be running any more, but tell 1670 * cfg80211 and clear local state 1671 */ 1672 ieee80211_sched_scan_end(local); 1673 1674 list_for_each_entry(sdata, &local->interfaces, list) 1675 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1676 1677 /* Mark channel contexts as not being in the driver any more to avoid 1678 * removing them from the driver during the shutdown process... 1679 */ 1680 list_for_each_entry(ctx, &local->chanctx_list, list) 1681 ctx->driver_present = false; 1682 } 1683 1684 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1685 struct ieee80211_sub_if_data *sdata, 1686 struct ieee80211_link_data *link) 1687 { 1688 struct ieee80211_chanctx_conf *conf; 1689 struct ieee80211_chanctx *ctx; 1690 1691 lockdep_assert_wiphy(local->hw.wiphy); 1692 1693 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1694 lockdep_is_held(&local->hw.wiphy->mtx)); 1695 if (conf) { 1696 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1697 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1698 } 1699 } 1700 1701 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1702 { 1703 struct ieee80211_local *local = sdata->local; 1704 struct sta_info *sta; 1705 1706 lockdep_assert_wiphy(local->hw.wiphy); 1707 1708 /* add STAs back */ 1709 list_for_each_entry(sta, &local->sta_list, list) { 1710 enum ieee80211_sta_state state; 1711 1712 if (!sta->uploaded || sta->sdata != sdata) 1713 continue; 1714 1715 for (state = IEEE80211_STA_NOTEXIST; 1716 state < sta->sta_state; state++) 1717 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1718 state + 1)); 1719 } 1720 } 1721 1722 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1723 { 1724 struct cfg80211_nan_func *func, **funcs; 1725 int res, id, i = 0; 1726 1727 res = drv_start_nan(sdata->local, sdata, 1728 &sdata->u.nan.conf); 1729 if (WARN_ON(res)) 1730 return res; 1731 1732 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1733 sizeof(*funcs), 1734 GFP_KERNEL); 1735 if (!funcs) 1736 return -ENOMEM; 1737 1738 /* Add all the functions: 1739 * This is a little bit ugly. We need to call a potentially sleeping 1740 * callback for each NAN function, so we can't hold the spinlock. 1741 */ 1742 spin_lock_bh(&sdata->u.nan.func_lock); 1743 1744 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1745 funcs[i++] = func; 1746 1747 spin_unlock_bh(&sdata->u.nan.func_lock); 1748 1749 for (i = 0; funcs[i]; i++) { 1750 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1751 if (WARN_ON(res)) 1752 ieee80211_nan_func_terminated(&sdata->vif, 1753 funcs[i]->instance_id, 1754 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1755 GFP_KERNEL); 1756 } 1757 1758 kfree(funcs); 1759 1760 return 0; 1761 } 1762 1763 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1764 struct ieee80211_sub_if_data *sdata, 1765 u64 changed) 1766 { 1767 int link_id; 1768 1769 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1770 struct ieee80211_link_data *link; 1771 1772 if (!(sdata->vif.active_links & BIT(link_id))) 1773 continue; 1774 1775 link = sdata_dereference(sdata->link[link_id], sdata); 1776 if (!link) 1777 continue; 1778 1779 if (rcu_access_pointer(link->u.ap.beacon)) 1780 drv_start_ap(local, sdata, link->conf); 1781 1782 if (!link->conf->enable_beacon) 1783 continue; 1784 1785 changed |= BSS_CHANGED_BEACON | 1786 BSS_CHANGED_BEACON_ENABLED; 1787 1788 ieee80211_link_info_change_notify(sdata, link, changed); 1789 } 1790 } 1791 1792 int ieee80211_reconfig(struct ieee80211_local *local) 1793 { 1794 struct ieee80211_hw *hw = &local->hw; 1795 struct ieee80211_sub_if_data *sdata; 1796 struct ieee80211_chanctx *ctx; 1797 struct sta_info *sta; 1798 int res, i; 1799 bool reconfig_due_to_wowlan = false; 1800 struct ieee80211_sub_if_data *sched_scan_sdata; 1801 struct cfg80211_sched_scan_request *sched_scan_req; 1802 bool sched_scan_stopped = false; 1803 bool suspended = local->suspended; 1804 bool in_reconfig = false; 1805 1806 lockdep_assert_wiphy(local->hw.wiphy); 1807 1808 /* nothing to do if HW shouldn't run */ 1809 if (!local->open_count) 1810 goto wake_up; 1811 1812 #ifdef CONFIG_PM 1813 if (suspended) 1814 local->resuming = true; 1815 1816 if (local->wowlan) { 1817 /* 1818 * In the wowlan case, both mac80211 and the device 1819 * are functional when the resume op is called, so 1820 * clear local->suspended so the device could operate 1821 * normally (e.g. pass rx frames). 1822 */ 1823 local->suspended = false; 1824 res = drv_resume(local); 1825 local->wowlan = false; 1826 if (res < 0) { 1827 local->resuming = false; 1828 return res; 1829 } 1830 if (res == 0) 1831 goto wake_up; 1832 WARN_ON(res > 1); 1833 /* 1834 * res is 1, which means the driver requested 1835 * to go through a regular reset on wakeup. 1836 * restore local->suspended in this case. 1837 */ 1838 reconfig_due_to_wowlan = true; 1839 local->suspended = true; 1840 } 1841 #endif 1842 1843 /* 1844 * In case of hw_restart during suspend (without wowlan), 1845 * cancel restart work, as we are reconfiguring the device 1846 * anyway. 1847 * Note that restart_work is scheduled on a frozen workqueue, 1848 * so we can't deadlock in this case. 1849 */ 1850 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1851 cancel_work_sync(&local->restart_work); 1852 1853 local->started = false; 1854 1855 /* 1856 * Upon resume hardware can sometimes be goofy due to 1857 * various platform / driver / bus issues, so restarting 1858 * the device may at times not work immediately. Propagate 1859 * the error. 1860 */ 1861 res = drv_start(local); 1862 if (res) { 1863 if (suspended) 1864 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1865 else 1866 WARN(1, "Hardware became unavailable during restart.\n"); 1867 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1868 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1869 false); 1870 ieee80211_handle_reconfig_failure(local); 1871 return res; 1872 } 1873 1874 /* setup fragmentation threshold */ 1875 drv_set_frag_threshold(local, -1, hw->wiphy->frag_threshold); 1876 1877 /* setup RTS threshold */ 1878 if (hw->wiphy->n_radio > 0) { 1879 for (i = 0; i < hw->wiphy->n_radio; i++) { 1880 u32 rts_threshold = 1881 hw->wiphy->radio_cfg[i].rts_threshold; 1882 1883 drv_set_rts_threshold(local, i, rts_threshold); 1884 } 1885 } else { 1886 drv_set_rts_threshold(local, -1, hw->wiphy->rts_threshold); 1887 } 1888 1889 /* reset coverage class */ 1890 drv_set_coverage_class(local, -1, hw->wiphy->coverage_class); 1891 1892 ieee80211_led_radio(local, true); 1893 ieee80211_mod_tpt_led_trig(local, 1894 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1895 1896 /* add interfaces */ 1897 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1898 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1899 /* in HW restart it exists already */ 1900 WARN_ON(local->resuming); 1901 res = drv_add_interface(local, sdata); 1902 if (WARN_ON(res)) { 1903 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1904 synchronize_net(); 1905 kfree(sdata); 1906 } 1907 } 1908 1909 list_for_each_entry(sdata, &local->interfaces, list) { 1910 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1911 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1912 continue; 1913 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1914 ieee80211_sdata_running(sdata)) { 1915 res = drv_add_interface(local, sdata); 1916 if (WARN_ON(res)) 1917 break; 1918 } 1919 } 1920 1921 /* If adding any of the interfaces failed above, roll back and 1922 * report failure. 1923 */ 1924 if (res) { 1925 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1926 list) { 1927 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1928 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1929 continue; 1930 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1931 ieee80211_sdata_running(sdata)) 1932 drv_remove_interface(local, sdata); 1933 } 1934 ieee80211_handle_reconfig_failure(local); 1935 return res; 1936 } 1937 1938 /* add channel contexts */ 1939 list_for_each_entry(ctx, &local->chanctx_list, list) 1940 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1941 WARN_ON(drv_add_chanctx(local, ctx)); 1942 1943 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1944 if (sdata && ieee80211_sdata_running(sdata)) 1945 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1946 1947 /* reconfigure hardware */ 1948 ieee80211_hw_config(local, -1, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1949 IEEE80211_CONF_CHANGE_MONITOR | 1950 IEEE80211_CONF_CHANGE_PS | 1951 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1952 IEEE80211_CONF_CHANGE_IDLE); 1953 1954 ieee80211_configure_filter(local); 1955 1956 /* Finally also reconfigure all the BSS information */ 1957 list_for_each_entry(sdata, &local->interfaces, list) { 1958 /* common change flags for all interface types - link only */ 1959 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1960 BSS_CHANGED_ERP_PREAMBLE | 1961 BSS_CHANGED_ERP_SLOT | 1962 BSS_CHANGED_HT | 1963 BSS_CHANGED_BASIC_RATES | 1964 BSS_CHANGED_BEACON_INT | 1965 BSS_CHANGED_BSSID | 1966 BSS_CHANGED_CQM | 1967 BSS_CHANGED_QOS | 1968 BSS_CHANGED_TXPOWER | 1969 BSS_CHANGED_MCAST_RATE; 1970 struct ieee80211_link_data *link = NULL; 1971 unsigned int link_id; 1972 u32 active_links = 0; 1973 1974 if (!ieee80211_sdata_running(sdata)) 1975 continue; 1976 1977 if (ieee80211_vif_is_mld(&sdata->vif)) { 1978 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1979 [0] = &sdata->vif.bss_conf, 1980 }; 1981 1982 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1983 /* start with a single active link */ 1984 active_links = sdata->vif.active_links; 1985 link_id = ffs(active_links) - 1; 1986 sdata->vif.active_links = BIT(link_id); 1987 } 1988 1989 drv_change_vif_links(local, sdata, 0, 1990 sdata->vif.active_links, 1991 old); 1992 } 1993 1994 sdata->restart_active_links = active_links; 1995 1996 for (link_id = 0; 1997 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1998 link_id++) { 1999 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 2000 continue; 2001 2002 link = sdata_dereference(sdata->link[link_id], sdata); 2003 if (!link) 2004 continue; 2005 2006 ieee80211_assign_chanctx(local, sdata, link); 2007 } 2008 2009 switch (sdata->vif.type) { 2010 case NL80211_IFTYPE_AP_VLAN: 2011 case NL80211_IFTYPE_MONITOR: 2012 break; 2013 case NL80211_IFTYPE_ADHOC: 2014 if (sdata->vif.cfg.ibss_joined) 2015 WARN_ON(drv_join_ibss(local, sdata)); 2016 fallthrough; 2017 default: 2018 ieee80211_reconfig_stations(sdata); 2019 fallthrough; 2020 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2021 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2022 drv_conf_tx(local, &sdata->deflink, i, 2023 &sdata->deflink.tx_conf[i]); 2024 break; 2025 } 2026 2027 if (sdata->vif.bss_conf.mu_mimo_owner) 2028 changed |= BSS_CHANGED_MU_GROUPS; 2029 2030 if (!ieee80211_vif_is_mld(&sdata->vif)) 2031 changed |= BSS_CHANGED_IDLE; 2032 2033 switch (sdata->vif.type) { 2034 case NL80211_IFTYPE_STATION: 2035 if (!ieee80211_vif_is_mld(&sdata->vif)) { 2036 changed |= BSS_CHANGED_ASSOC | 2037 BSS_CHANGED_ARP_FILTER | 2038 BSS_CHANGED_PS; 2039 2040 /* Re-send beacon info report to the driver */ 2041 if (sdata->deflink.u.mgd.have_beacon) 2042 changed |= BSS_CHANGED_BEACON_INFO; 2043 2044 if (sdata->vif.bss_conf.max_idle_period || 2045 sdata->vif.bss_conf.protected_keep_alive) 2046 changed |= BSS_CHANGED_KEEP_ALIVE; 2047 2048 ieee80211_bss_info_change_notify(sdata, 2049 changed); 2050 } else if (!WARN_ON(!link)) { 2051 ieee80211_link_info_change_notify(sdata, link, 2052 changed); 2053 changed = BSS_CHANGED_ASSOC | 2054 BSS_CHANGED_IDLE | 2055 BSS_CHANGED_PS | 2056 BSS_CHANGED_ARP_FILTER; 2057 ieee80211_vif_cfg_change_notify(sdata, changed); 2058 } 2059 break; 2060 case NL80211_IFTYPE_OCB: 2061 changed |= BSS_CHANGED_OCB; 2062 ieee80211_bss_info_change_notify(sdata, changed); 2063 break; 2064 case NL80211_IFTYPE_ADHOC: 2065 changed |= BSS_CHANGED_IBSS; 2066 fallthrough; 2067 case NL80211_IFTYPE_AP: 2068 changed |= BSS_CHANGED_P2P_PS; 2069 2070 if (ieee80211_vif_is_mld(&sdata->vif)) 2071 ieee80211_vif_cfg_change_notify(sdata, 2072 BSS_CHANGED_SSID); 2073 else 2074 changed |= BSS_CHANGED_SSID; 2075 2076 if (sdata->vif.bss_conf.ftm_responder == 1 && 2077 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2078 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2079 changed |= BSS_CHANGED_FTM_RESPONDER; 2080 2081 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2082 changed |= BSS_CHANGED_AP_PROBE_RESP; 2083 2084 if (ieee80211_vif_is_mld(&sdata->vif)) { 2085 ieee80211_reconfig_ap_links(local, 2086 sdata, 2087 changed); 2088 break; 2089 } 2090 2091 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2092 drv_start_ap(local, sdata, 2093 sdata->deflink.conf); 2094 } 2095 fallthrough; 2096 case NL80211_IFTYPE_MESH_POINT: 2097 if (sdata->vif.bss_conf.enable_beacon) { 2098 changed |= BSS_CHANGED_BEACON | 2099 BSS_CHANGED_BEACON_ENABLED; 2100 ieee80211_bss_info_change_notify(sdata, changed); 2101 } 2102 break; 2103 case NL80211_IFTYPE_NAN: 2104 res = ieee80211_reconfig_nan(sdata); 2105 if (res < 0) { 2106 ieee80211_handle_reconfig_failure(local); 2107 return res; 2108 } 2109 break; 2110 case NL80211_IFTYPE_AP_VLAN: 2111 case NL80211_IFTYPE_MONITOR: 2112 case NL80211_IFTYPE_P2P_DEVICE: 2113 /* nothing to do */ 2114 break; 2115 case NL80211_IFTYPE_UNSPECIFIED: 2116 case NUM_NL80211_IFTYPES: 2117 case NL80211_IFTYPE_P2P_CLIENT: 2118 case NL80211_IFTYPE_P2P_GO: 2119 case NL80211_IFTYPE_WDS: 2120 WARN_ON(1); 2121 break; 2122 } 2123 } 2124 2125 ieee80211_recalc_ps(local); 2126 2127 /* 2128 * The sta might be in psm against the ap (e.g. because 2129 * this was the state before a hw restart), so we 2130 * explicitly send a null packet in order to make sure 2131 * it'll sync against the ap (and get out of psm). 2132 */ 2133 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2134 list_for_each_entry(sdata, &local->interfaces, list) { 2135 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2136 continue; 2137 if (!sdata->u.mgd.associated) 2138 continue; 2139 2140 ieee80211_send_nullfunc(local, sdata, false); 2141 } 2142 } 2143 2144 /* APs are now beaconing, add back stations */ 2145 list_for_each_entry(sdata, &local->interfaces, list) { 2146 if (!ieee80211_sdata_running(sdata)) 2147 continue; 2148 2149 switch (sdata->vif.type) { 2150 case NL80211_IFTYPE_AP_VLAN: 2151 case NL80211_IFTYPE_AP: 2152 ieee80211_reconfig_stations(sdata); 2153 break; 2154 default: 2155 break; 2156 } 2157 } 2158 2159 /* add back keys */ 2160 list_for_each_entry(sdata, &local->interfaces, list) 2161 ieee80211_reenable_keys(sdata); 2162 2163 /* re-enable multi-link for client interfaces */ 2164 list_for_each_entry(sdata, &local->interfaces, list) { 2165 if (sdata->restart_active_links) 2166 ieee80211_set_active_links(&sdata->vif, 2167 sdata->restart_active_links); 2168 /* 2169 * If a link switch was scheduled before the restart, and ran 2170 * before reconfig, it will do nothing, so re-schedule. 2171 */ 2172 if (sdata->desired_active_links) 2173 wiphy_work_queue(sdata->local->hw.wiphy, 2174 &sdata->activate_links_work); 2175 } 2176 2177 /* Reconfigure sched scan if it was interrupted by FW restart */ 2178 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2179 lockdep_is_held(&local->hw.wiphy->mtx)); 2180 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2181 lockdep_is_held(&local->hw.wiphy->mtx)); 2182 if (sched_scan_sdata && sched_scan_req) 2183 /* 2184 * Sched scan stopped, but we don't want to report it. Instead, 2185 * we're trying to reschedule. However, if more than one scan 2186 * plan was set, we cannot reschedule since we don't know which 2187 * scan plan was currently running (and some scan plans may have 2188 * already finished). 2189 */ 2190 if (sched_scan_req->n_scan_plans > 1 || 2191 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2192 sched_scan_req)) { 2193 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2194 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2195 sched_scan_stopped = true; 2196 } 2197 2198 if (sched_scan_stopped) 2199 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2200 2201 wake_up: 2202 /* 2203 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2204 * sessions can be established after a resume. 2205 * 2206 * Also tear down aggregation sessions since reconfiguring 2207 * them in a hardware restart scenario is not easily done 2208 * right now, and the hardware will have lost information 2209 * about the sessions, but we and the AP still think they 2210 * are active. This is really a workaround though. 2211 */ 2212 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2213 list_for_each_entry(sta, &local->sta_list, list) { 2214 if (!local->resuming) 2215 ieee80211_sta_tear_down_BA_sessions( 2216 sta, AGG_STOP_LOCAL_REQUEST); 2217 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2218 } 2219 } 2220 2221 /* 2222 * If this is for hw restart things are still running. 2223 * We may want to change that later, however. 2224 */ 2225 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2226 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2227 2228 if (local->in_reconfig) { 2229 in_reconfig = local->in_reconfig; 2230 local->in_reconfig = false; 2231 barrier(); 2232 2233 ieee80211_reconfig_roc(local); 2234 2235 /* Requeue all works */ 2236 list_for_each_entry(sdata, &local->interfaces, list) { 2237 if (ieee80211_sdata_running(sdata)) 2238 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2239 } 2240 } 2241 2242 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2243 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2244 false); 2245 2246 if (in_reconfig) { 2247 list_for_each_entry(sdata, &local->interfaces, list) { 2248 if (!ieee80211_sdata_running(sdata)) 2249 continue; 2250 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2251 ieee80211_sta_restart(sdata); 2252 } 2253 } 2254 2255 /* Passing NULL means an interface is picked for configuration */ 2256 if (local->virt_monitors > 0 && 2257 local->virt_monitors == local->open_count) 2258 ieee80211_add_virtual_monitor(local, NULL); 2259 2260 if (!suspended) 2261 return 0; 2262 2263 #ifdef CONFIG_PM 2264 /* first set suspended false, then resuming */ 2265 local->suspended = false; 2266 mb(); 2267 local->resuming = false; 2268 2269 ieee80211_flush_completed_scan(local, false); 2270 2271 if (local->open_count && !reconfig_due_to_wowlan) 2272 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2273 2274 list_for_each_entry(sdata, &local->interfaces, list) { 2275 if (!ieee80211_sdata_running(sdata)) 2276 continue; 2277 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2278 ieee80211_sta_restart(sdata); 2279 } 2280 2281 mod_timer(&local->sta_cleanup, jiffies + 1); 2282 #else 2283 WARN_ON(1); 2284 #endif 2285 2286 return 0; 2287 } 2288 2289 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2290 { 2291 struct ieee80211_sub_if_data *sdata; 2292 struct ieee80211_local *local; 2293 struct ieee80211_key *key; 2294 2295 if (WARN_ON(!vif)) 2296 return; 2297 2298 sdata = vif_to_sdata(vif); 2299 local = sdata->local; 2300 2301 lockdep_assert_wiphy(local->hw.wiphy); 2302 2303 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2304 !local->resuming)) 2305 return; 2306 2307 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2308 !local->in_reconfig)) 2309 return; 2310 2311 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2312 return; 2313 2314 sdata->flags |= flag; 2315 2316 list_for_each_entry(key, &sdata->key_list, list) 2317 key->flags |= KEY_FLAG_TAINTED; 2318 } 2319 2320 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2321 { 2322 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2323 } 2324 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2325 2326 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2327 { 2328 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2329 } 2330 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2331 2332 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2333 struct ieee80211_link_data *link) 2334 { 2335 struct ieee80211_local *local = sdata->local; 2336 struct ieee80211_chanctx_conf *chanctx_conf; 2337 struct ieee80211_chanctx *chanctx; 2338 2339 lockdep_assert_wiphy(local->hw.wiphy); 2340 2341 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2342 lockdep_is_held(&local->hw.wiphy->mtx)); 2343 2344 /* 2345 * This function can be called from a work, thus it may be possible 2346 * that the chanctx_conf is removed (due to a disconnection, for 2347 * example). 2348 * So nothing should be done in such case. 2349 */ 2350 if (!chanctx_conf) 2351 return; 2352 2353 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2354 ieee80211_recalc_smps_chanctx(local, chanctx); 2355 } 2356 2357 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2358 int link_id) 2359 { 2360 struct ieee80211_local *local = sdata->local; 2361 struct ieee80211_chanctx_conf *chanctx_conf; 2362 struct ieee80211_chanctx *chanctx; 2363 int i; 2364 2365 lockdep_assert_wiphy(local->hw.wiphy); 2366 2367 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2368 struct ieee80211_bss_conf *bss_conf; 2369 2370 if (link_id >= 0 && link_id != i) 2371 continue; 2372 2373 rcu_read_lock(); 2374 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2375 if (!bss_conf) { 2376 rcu_read_unlock(); 2377 continue; 2378 } 2379 2380 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2381 lockdep_is_held(&local->hw.wiphy->mtx)); 2382 /* 2383 * Since we hold the wiphy mutex (checked above) 2384 * we can take the chanctx_conf pointer out of the 2385 * RCU critical section, it cannot go away without 2386 * the mutex. Just the way we reached it could - in 2387 * theory - go away, but we don't really care and 2388 * it really shouldn't happen anyway. 2389 */ 2390 rcu_read_unlock(); 2391 2392 if (!chanctx_conf) 2393 return; 2394 2395 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2396 conf); 2397 ieee80211_recalc_chanctx_min_def(local, chanctx); 2398 } 2399 } 2400 2401 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2402 { 2403 size_t pos = offset; 2404 2405 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2406 pos += 2 + ies[pos + 1]; 2407 2408 return pos; 2409 } 2410 2411 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2412 u16 cap) 2413 { 2414 __le16 tmp; 2415 2416 *pos++ = WLAN_EID_HT_CAPABILITY; 2417 *pos++ = sizeof(struct ieee80211_ht_cap); 2418 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2419 2420 /* capability flags */ 2421 tmp = cpu_to_le16(cap); 2422 memcpy(pos, &tmp, sizeof(u16)); 2423 pos += sizeof(u16); 2424 2425 /* AMPDU parameters */ 2426 *pos++ = ht_cap->ampdu_factor | 2427 (ht_cap->ampdu_density << 2428 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2429 2430 /* MCS set */ 2431 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2432 pos += sizeof(ht_cap->mcs); 2433 2434 /* extended capabilities */ 2435 pos += sizeof(__le16); 2436 2437 /* BF capabilities */ 2438 pos += sizeof(__le32); 2439 2440 /* antenna selection */ 2441 pos += sizeof(u8); 2442 2443 return pos; 2444 } 2445 2446 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2447 u32 cap) 2448 { 2449 __le32 tmp; 2450 2451 *pos++ = WLAN_EID_VHT_CAPABILITY; 2452 *pos++ = sizeof(struct ieee80211_vht_cap); 2453 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2454 2455 /* capability flags */ 2456 tmp = cpu_to_le32(cap); 2457 memcpy(pos, &tmp, sizeof(u32)); 2458 pos += sizeof(u32); 2459 2460 /* VHT MCS set */ 2461 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2462 pos += sizeof(vht_cap->vht_mcs); 2463 2464 return pos; 2465 } 2466 2467 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2468 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2469 { 2470 const struct ieee80211_sta_he_cap *he_cap; 2471 struct ieee80211_supported_band *sband; 2472 u8 n; 2473 2474 sband = ieee80211_get_sband(sdata); 2475 if (!sband) 2476 return 0; 2477 2478 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2479 if (!he_cap) 2480 return 0; 2481 2482 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2483 return 2 + 1 + 2484 sizeof(he_cap->he_cap_elem) + n + 2485 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2486 he_cap->he_cap_elem.phy_cap_info); 2487 } 2488 2489 static void 2490 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2491 const struct ieee80211_sta_he_cap *he_cap, 2492 struct ieee80211_he_cap_elem *elem) 2493 { 2494 u8 ru_limit, max_ru; 2495 2496 *elem = he_cap->he_cap_elem; 2497 2498 switch (conn->bw_limit) { 2499 case IEEE80211_CONN_BW_LIMIT_20: 2500 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2501 break; 2502 case IEEE80211_CONN_BW_LIMIT_40: 2503 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2504 break; 2505 case IEEE80211_CONN_BW_LIMIT_80: 2506 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2507 break; 2508 default: 2509 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2510 break; 2511 } 2512 2513 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2514 max_ru = min(max_ru, ru_limit); 2515 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2516 elem->phy_cap_info[8] |= max_ru; 2517 2518 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2519 elem->phy_cap_info[0] &= 2520 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2521 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2522 elem->phy_cap_info[9] &= 2523 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2524 } 2525 2526 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2527 elem->phy_cap_info[0] &= 2528 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2529 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2530 elem->phy_cap_info[5] &= 2531 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2532 elem->phy_cap_info[7] &= 2533 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2534 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2535 } 2536 } 2537 2538 int ieee80211_put_he_cap(struct sk_buff *skb, 2539 struct ieee80211_sub_if_data *sdata, 2540 const struct ieee80211_supported_band *sband, 2541 const struct ieee80211_conn_settings *conn) 2542 { 2543 const struct ieee80211_sta_he_cap *he_cap; 2544 struct ieee80211_he_cap_elem elem; 2545 u8 *len; 2546 u8 n; 2547 u8 ie_len; 2548 2549 if (!conn) 2550 conn = &ieee80211_conn_settings_unlimited; 2551 2552 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2553 if (!he_cap) 2554 return 0; 2555 2556 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2557 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2558 2559 n = ieee80211_he_mcs_nss_size(&elem); 2560 ie_len = 2 + 1 + 2561 sizeof(he_cap->he_cap_elem) + n + 2562 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2563 he_cap->he_cap_elem.phy_cap_info); 2564 2565 if (skb_tailroom(skb) < ie_len) 2566 return -ENOBUFS; 2567 2568 skb_put_u8(skb, WLAN_EID_EXTENSION); 2569 len = skb_put(skb, 1); /* We'll set the size later below */ 2570 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2571 2572 /* Fixed data */ 2573 skb_put_data(skb, &elem, sizeof(elem)); 2574 2575 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2576 2577 /* Check if PPE Threshold should be present */ 2578 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2579 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2580 goto end; 2581 2582 /* 2583 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2584 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2585 */ 2586 n = hweight8(he_cap->ppe_thres[0] & 2587 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2588 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2589 IEEE80211_PPE_THRES_NSS_POS)); 2590 2591 /* 2592 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2593 * total size. 2594 */ 2595 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2596 n = DIV_ROUND_UP(n, 8); 2597 2598 /* Copy PPE Thresholds */ 2599 skb_put_data(skb, &he_cap->ppe_thres, n); 2600 2601 end: 2602 *len = skb_tail_pointer(skb) - len - 1; 2603 return 0; 2604 } 2605 2606 int ieee80211_put_reg_conn(struct sk_buff *skb, 2607 enum ieee80211_channel_flags flags) 2608 { 2609 u8 reg_conn = IEEE80211_REG_CONN_LPI_VALID | 2610 IEEE80211_REG_CONN_LPI_VALUE | 2611 IEEE80211_REG_CONN_SP_VALID; 2612 2613 if (!(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)) 2614 reg_conn |= IEEE80211_REG_CONN_SP_VALUE; 2615 2616 skb_put_u8(skb, WLAN_EID_EXTENSION); 2617 skb_put_u8(skb, 1 + sizeof(reg_conn)); 2618 skb_put_u8(skb, WLAN_EID_EXT_NON_AP_STA_REG_CON); 2619 skb_put_u8(skb, reg_conn); 2620 return 0; 2621 } 2622 2623 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2624 struct ieee80211_sub_if_data *sdata, 2625 enum ieee80211_smps_mode smps_mode) 2626 { 2627 struct ieee80211_supported_band *sband; 2628 const struct ieee80211_sband_iftype_data *iftd; 2629 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2630 __le16 cap; 2631 2632 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2633 BIT(NL80211_BAND_6GHZ), 2634 IEEE80211_CHAN_NO_HE)) 2635 return 0; 2636 2637 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2638 2639 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2640 if (!iftd) 2641 return 0; 2642 2643 /* Check for device HE 6 GHz capability before adding element */ 2644 if (!iftd->he_6ghz_capa.capa) 2645 return 0; 2646 2647 cap = iftd->he_6ghz_capa.capa; 2648 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2649 2650 switch (smps_mode) { 2651 case IEEE80211_SMPS_AUTOMATIC: 2652 case IEEE80211_SMPS_NUM_MODES: 2653 WARN_ON(1); 2654 fallthrough; 2655 case IEEE80211_SMPS_OFF: 2656 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2657 IEEE80211_HE_6GHZ_CAP_SM_PS); 2658 break; 2659 case IEEE80211_SMPS_STATIC: 2660 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2661 IEEE80211_HE_6GHZ_CAP_SM_PS); 2662 break; 2663 case IEEE80211_SMPS_DYNAMIC: 2664 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2665 IEEE80211_HE_6GHZ_CAP_SM_PS); 2666 break; 2667 } 2668 2669 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2670 return -ENOBUFS; 2671 2672 skb_put_u8(skb, WLAN_EID_EXTENSION); 2673 skb_put_u8(skb, 1 + sizeof(cap)); 2674 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2675 skb_put_data(skb, &cap, sizeof(cap)); 2676 return 0; 2677 } 2678 2679 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2680 const struct cfg80211_chan_def *chandef, 2681 u16 prot_mode, bool rifs_mode) 2682 { 2683 struct ieee80211_ht_operation *ht_oper; 2684 /* Build HT Information */ 2685 *pos++ = WLAN_EID_HT_OPERATION; 2686 *pos++ = sizeof(struct ieee80211_ht_operation); 2687 ht_oper = (struct ieee80211_ht_operation *)pos; 2688 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2689 chandef->chan->center_freq); 2690 switch (chandef->width) { 2691 case NL80211_CHAN_WIDTH_160: 2692 case NL80211_CHAN_WIDTH_80P80: 2693 case NL80211_CHAN_WIDTH_80: 2694 case NL80211_CHAN_WIDTH_40: 2695 if (chandef->center_freq1 > chandef->chan->center_freq) 2696 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2697 else 2698 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2699 break; 2700 case NL80211_CHAN_WIDTH_320: 2701 /* HT information element should not be included on 6GHz */ 2702 WARN_ON(1); 2703 return pos; 2704 default: 2705 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2706 break; 2707 } 2708 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2709 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2710 chandef->width != NL80211_CHAN_WIDTH_20) 2711 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2712 2713 if (rifs_mode) 2714 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2715 2716 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2717 ht_oper->stbc_param = 0x0000; 2718 2719 /* It seems that Basic MCS set and Supported MCS set 2720 are identical for the first 10 bytes */ 2721 memset(&ht_oper->basic_set, 0, 16); 2722 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2723 2724 return pos + sizeof(struct ieee80211_ht_operation); 2725 } 2726 2727 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2728 const struct cfg80211_chan_def *chandef) 2729 { 2730 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2731 *pos++ = 3; /* IE length */ 2732 /* New channel width */ 2733 switch (chandef->width) { 2734 case NL80211_CHAN_WIDTH_80: 2735 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2736 break; 2737 case NL80211_CHAN_WIDTH_160: 2738 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2739 break; 2740 case NL80211_CHAN_WIDTH_80P80: 2741 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2742 break; 2743 case NL80211_CHAN_WIDTH_320: 2744 /* The behavior is not defined for 320 MHz channels */ 2745 WARN_ON(1); 2746 fallthrough; 2747 default: 2748 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2749 } 2750 2751 /* new center frequency segment 0 */ 2752 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2753 /* new center frequency segment 1 */ 2754 if (chandef->center_freq2) 2755 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2756 else 2757 *pos++ = 0; 2758 } 2759 2760 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2761 const struct cfg80211_chan_def *chandef) 2762 { 2763 struct ieee80211_vht_operation *vht_oper; 2764 2765 *pos++ = WLAN_EID_VHT_OPERATION; 2766 *pos++ = sizeof(struct ieee80211_vht_operation); 2767 vht_oper = (struct ieee80211_vht_operation *)pos; 2768 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2769 chandef->center_freq1); 2770 if (chandef->center_freq2) 2771 vht_oper->center_freq_seg1_idx = 2772 ieee80211_frequency_to_channel(chandef->center_freq2); 2773 else 2774 vht_oper->center_freq_seg1_idx = 0x00; 2775 2776 switch (chandef->width) { 2777 case NL80211_CHAN_WIDTH_160: 2778 /* 2779 * Convert 160 MHz channel width to new style as interop 2780 * workaround. 2781 */ 2782 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2783 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2784 if (chandef->chan->center_freq < chandef->center_freq1) 2785 vht_oper->center_freq_seg0_idx -= 8; 2786 else 2787 vht_oper->center_freq_seg0_idx += 8; 2788 break; 2789 case NL80211_CHAN_WIDTH_80P80: 2790 /* 2791 * Convert 80+80 MHz channel width to new style as interop 2792 * workaround. 2793 */ 2794 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2795 break; 2796 case NL80211_CHAN_WIDTH_80: 2797 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2798 break; 2799 case NL80211_CHAN_WIDTH_320: 2800 /* VHT information element should not be included on 6GHz */ 2801 WARN_ON(1); 2802 return pos; 2803 default: 2804 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2805 break; 2806 } 2807 2808 /* don't require special VHT peer rates */ 2809 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2810 2811 return pos + sizeof(struct ieee80211_vht_operation); 2812 } 2813 2814 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2815 { 2816 struct ieee80211_he_operation *he_oper; 2817 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2818 struct cfg80211_chan_def he_chandef; 2819 u32 he_oper_params; 2820 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2821 2822 if (chandef->chan->band == NL80211_BAND_6GHZ) 2823 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2824 2825 *pos++ = WLAN_EID_EXTENSION; 2826 *pos++ = ie_len; 2827 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2828 2829 he_oper_params = 0; 2830 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2831 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2832 he_oper_params |= u32_encode_bits(1, 2833 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2834 he_oper_params |= u32_encode_bits(1, 2835 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2836 if (chandef->chan->band == NL80211_BAND_6GHZ) 2837 he_oper_params |= u32_encode_bits(1, 2838 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2839 2840 he_oper = (struct ieee80211_he_operation *)pos; 2841 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2842 2843 /* don't require special HE peer rates */ 2844 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2845 pos += sizeof(struct ieee80211_he_operation); 2846 2847 if (chandef->chan->band != NL80211_BAND_6GHZ) 2848 goto out; 2849 2850 cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); 2851 he_chandef.center_freq1 = chandef->center_freq1; 2852 he_chandef.center_freq2 = chandef->center_freq2; 2853 he_chandef.width = chandef->width; 2854 2855 /* TODO add VHT operational */ 2856 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2857 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2858 he_6ghz_op->primary = 2859 ieee80211_frequency_to_channel(he_chandef.chan->center_freq); 2860 he_6ghz_op->ccfs0 = 2861 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2862 if (he_chandef.center_freq2) 2863 he_6ghz_op->ccfs1 = 2864 ieee80211_frequency_to_channel(he_chandef.center_freq2); 2865 else 2866 he_6ghz_op->ccfs1 = 0; 2867 2868 switch (he_chandef.width) { 2869 case NL80211_CHAN_WIDTH_320: 2870 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new 2871 * center_freq1 2872 */ 2873 ieee80211_chandef_downgrade(&he_chandef, NULL); 2874 he_6ghz_op->ccfs0 = 2875 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2876 fallthrough; 2877 case NL80211_CHAN_WIDTH_160: 2878 /* Convert 160 MHz channel width to new style as interop 2879 * workaround. 2880 */ 2881 he_6ghz_op->control = 2882 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2883 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2884 if (he_chandef.chan->center_freq < he_chandef.center_freq1) 2885 he_6ghz_op->ccfs0 -= 8; 2886 else 2887 he_6ghz_op->ccfs0 += 8; 2888 fallthrough; 2889 case NL80211_CHAN_WIDTH_80P80: 2890 he_6ghz_op->control = 2891 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2892 break; 2893 case NL80211_CHAN_WIDTH_80: 2894 he_6ghz_op->control = 2895 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2896 break; 2897 case NL80211_CHAN_WIDTH_40: 2898 he_6ghz_op->control = 2899 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2900 break; 2901 default: 2902 he_6ghz_op->control = 2903 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2904 break; 2905 } 2906 2907 pos += sizeof(struct ieee80211_he_6ghz_oper); 2908 2909 out: 2910 return pos; 2911 } 2912 2913 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2914 const struct ieee80211_sta_eht_cap *eht_cap) 2915 2916 { 2917 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2918 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2919 struct ieee80211_eht_operation *eht_oper; 2920 struct ieee80211_eht_operation_info *eht_oper_info; 2921 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2922 u8 eht_oper_info_len = 2923 offsetof(struct ieee80211_eht_operation_info, optional); 2924 u8 chan_width = 0; 2925 2926 *pos++ = WLAN_EID_EXTENSION; 2927 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2928 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2929 2930 eht_oper = (struct ieee80211_eht_operation *)pos; 2931 2932 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2933 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2934 pos += eht_oper_len; 2935 2936 eht_oper_info = 2937 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2938 2939 eht_oper_info->ccfs0 = 2940 ieee80211_frequency_to_channel(chandef->center_freq1); 2941 if (chandef->center_freq2) 2942 eht_oper_info->ccfs1 = 2943 ieee80211_frequency_to_channel(chandef->center_freq2); 2944 else 2945 eht_oper_info->ccfs1 = 0; 2946 2947 switch (chandef->width) { 2948 case NL80211_CHAN_WIDTH_320: 2949 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2950 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2951 if (chandef->chan->center_freq < chandef->center_freq1) 2952 eht_oper_info->ccfs0 -= 16; 2953 else 2954 eht_oper_info->ccfs0 += 16; 2955 break; 2956 case NL80211_CHAN_WIDTH_160: 2957 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2958 if (chandef->chan->center_freq < chandef->center_freq1) 2959 eht_oper_info->ccfs0 -= 8; 2960 else 2961 eht_oper_info->ccfs0 += 8; 2962 fallthrough; 2963 case NL80211_CHAN_WIDTH_80P80: 2964 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2965 break; 2966 case NL80211_CHAN_WIDTH_80: 2967 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2968 break; 2969 case NL80211_CHAN_WIDTH_40: 2970 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2971 break; 2972 default: 2973 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2974 break; 2975 } 2976 eht_oper_info->control = chan_width; 2977 pos += eht_oper_info_len; 2978 2979 /* TODO: eht_oper_info->optional */ 2980 2981 return pos; 2982 } 2983 2984 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2985 struct cfg80211_chan_def *chandef) 2986 { 2987 enum nl80211_channel_type channel_type; 2988 2989 if (!ht_oper) 2990 return false; 2991 2992 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2993 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2994 channel_type = NL80211_CHAN_HT20; 2995 break; 2996 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2997 channel_type = NL80211_CHAN_HT40PLUS; 2998 break; 2999 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3000 channel_type = NL80211_CHAN_HT40MINUS; 3001 break; 3002 default: 3003 return false; 3004 } 3005 3006 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3007 return true; 3008 } 3009 3010 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3011 const struct ieee80211_vht_operation *oper, 3012 const struct ieee80211_ht_operation *htop, 3013 struct cfg80211_chan_def *chandef) 3014 { 3015 struct cfg80211_chan_def new = *chandef; 3016 int cf0, cf1; 3017 int ccfs0, ccfs1, ccfs2; 3018 int ccf0, ccf1; 3019 u32 vht_cap; 3020 bool support_80_80 = false; 3021 bool support_160 = false; 3022 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3023 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3024 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3025 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3026 3027 if (!oper || !htop) 3028 return false; 3029 3030 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3031 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3032 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3033 support_80_80 = ((vht_cap & 3034 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3035 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3036 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3037 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3038 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3039 ccfs0 = oper->center_freq_seg0_idx; 3040 ccfs1 = oper->center_freq_seg1_idx; 3041 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3042 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3043 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3044 3045 ccf0 = ccfs0; 3046 3047 /* if not supported, parse as though we didn't understand it */ 3048 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3049 ext_nss_bw_supp = 0; 3050 3051 /* 3052 * Cf. IEEE 802.11 Table 9-250 3053 * 3054 * We really just consider that because it's inefficient to connect 3055 * at a higher bandwidth than we'll actually be able to use. 3056 */ 3057 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3058 default: 3059 case 0x00: 3060 ccf1 = 0; 3061 support_160 = false; 3062 support_80_80 = false; 3063 break; 3064 case 0x01: 3065 support_80_80 = false; 3066 fallthrough; 3067 case 0x02: 3068 case 0x03: 3069 ccf1 = ccfs2; 3070 break; 3071 case 0x10: 3072 ccf1 = ccfs1; 3073 break; 3074 case 0x11: 3075 case 0x12: 3076 if (!ccfs1) 3077 ccf1 = ccfs2; 3078 else 3079 ccf1 = ccfs1; 3080 break; 3081 case 0x13: 3082 case 0x20: 3083 case 0x23: 3084 ccf1 = ccfs1; 3085 break; 3086 } 3087 3088 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3089 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3090 3091 switch (oper->chan_width) { 3092 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3093 /* just use HT information directly */ 3094 break; 3095 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3096 new.width = NL80211_CHAN_WIDTH_80; 3097 new.center_freq1 = cf0; 3098 /* If needed, adjust based on the newer interop workaround. */ 3099 if (ccf1) { 3100 unsigned int diff; 3101 3102 diff = abs(ccf1 - ccf0); 3103 if ((diff == 8) && support_160) { 3104 new.width = NL80211_CHAN_WIDTH_160; 3105 new.center_freq1 = cf1; 3106 } else if ((diff > 8) && support_80_80) { 3107 new.width = NL80211_CHAN_WIDTH_80P80; 3108 new.center_freq2 = cf1; 3109 } 3110 } 3111 break; 3112 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3113 /* deprecated encoding */ 3114 new.width = NL80211_CHAN_WIDTH_160; 3115 new.center_freq1 = cf0; 3116 break; 3117 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3118 /* deprecated encoding */ 3119 new.width = NL80211_CHAN_WIDTH_80P80; 3120 new.center_freq1 = cf0; 3121 new.center_freq2 = cf1; 3122 break; 3123 default: 3124 return false; 3125 } 3126 3127 if (!cfg80211_chandef_valid(&new)) 3128 return false; 3129 3130 *chandef = new; 3131 return true; 3132 } 3133 3134 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3135 struct cfg80211_chan_def *chandef) 3136 { 3137 chandef->center_freq1 = 3138 ieee80211_channel_to_frequency(info->ccfs0, 3139 chandef->chan->band); 3140 3141 switch (u8_get_bits(info->control, 3142 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3143 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3144 chandef->width = NL80211_CHAN_WIDTH_20; 3145 break; 3146 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3147 chandef->width = NL80211_CHAN_WIDTH_40; 3148 break; 3149 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3150 chandef->width = NL80211_CHAN_WIDTH_80; 3151 break; 3152 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3153 chandef->width = NL80211_CHAN_WIDTH_160; 3154 chandef->center_freq1 = 3155 ieee80211_channel_to_frequency(info->ccfs1, 3156 chandef->chan->band); 3157 break; 3158 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3159 chandef->width = NL80211_CHAN_WIDTH_320; 3160 chandef->center_freq1 = 3161 ieee80211_channel_to_frequency(info->ccfs1, 3162 chandef->chan->band); 3163 break; 3164 } 3165 } 3166 3167 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3168 const struct ieee80211_he_operation *he_oper, 3169 const struct ieee80211_eht_operation *eht_oper, 3170 struct cfg80211_chan_def *chandef) 3171 { 3172 struct cfg80211_chan_def he_chandef = *chandef; 3173 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3174 u32 freq; 3175 3176 if (chandef->chan->band != NL80211_BAND_6GHZ) 3177 return true; 3178 3179 if (!he_oper) 3180 return false; 3181 3182 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3183 if (!he_6ghz_oper) 3184 return false; 3185 3186 /* 3187 * The EHT operation IE does not contain the primary channel so the 3188 * primary channel frequency should be taken from the 6 GHz operation 3189 * information. 3190 */ 3191 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3192 NL80211_BAND_6GHZ); 3193 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3194 3195 if (!he_chandef.chan) 3196 return false; 3197 3198 if (!eht_oper || 3199 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3200 switch (u8_get_bits(he_6ghz_oper->control, 3201 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3202 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3203 he_chandef.width = NL80211_CHAN_WIDTH_20; 3204 break; 3205 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3206 he_chandef.width = NL80211_CHAN_WIDTH_40; 3207 break; 3208 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3209 he_chandef.width = NL80211_CHAN_WIDTH_80; 3210 break; 3211 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3212 he_chandef.width = NL80211_CHAN_WIDTH_80; 3213 if (!he_6ghz_oper->ccfs1) 3214 break; 3215 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3216 he_chandef.width = NL80211_CHAN_WIDTH_160; 3217 else 3218 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3219 break; 3220 } 3221 3222 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3223 he_chandef.center_freq1 = 3224 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3225 NL80211_BAND_6GHZ); 3226 } else { 3227 he_chandef.center_freq1 = 3228 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3229 NL80211_BAND_6GHZ); 3230 he_chandef.center_freq2 = 3231 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3232 NL80211_BAND_6GHZ); 3233 } 3234 } else { 3235 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3236 &he_chandef); 3237 he_chandef.punctured = 3238 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3239 } 3240 3241 if (!cfg80211_chandef_valid(&he_chandef)) 3242 return false; 3243 3244 *chandef = he_chandef; 3245 3246 return true; 3247 } 3248 3249 bool ieee80211_chandef_s1g_oper(struct ieee80211_local *local, 3250 const struct ieee80211_s1g_oper_ie *oper, 3251 struct cfg80211_chan_def *chandef) 3252 { 3253 u32 oper_khz, pri_1mhz_khz, pri_2mhz_khz; 3254 3255 if (!oper) 3256 return false; 3257 3258 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3259 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3260 chandef->width = NL80211_CHAN_WIDTH_1; 3261 break; 3262 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3263 chandef->width = NL80211_CHAN_WIDTH_2; 3264 break; 3265 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3266 chandef->width = NL80211_CHAN_WIDTH_4; 3267 break; 3268 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3269 chandef->width = NL80211_CHAN_WIDTH_8; 3270 break; 3271 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3272 chandef->width = NL80211_CHAN_WIDTH_16; 3273 break; 3274 default: 3275 return false; 3276 } 3277 3278 chandef->s1g_primary_2mhz = false; 3279 3280 switch (u8_get_bits(oper->ch_width, S1G_OPER_CH_WIDTH_PRIMARY)) { 3281 case IEEE80211_S1G_PRI_CHANWIDTH_1MHZ: 3282 pri_1mhz_khz = ieee80211_channel_to_freq_khz( 3283 oper->primary_ch, NL80211_BAND_S1GHZ); 3284 break; 3285 case IEEE80211_S1G_PRI_CHANWIDTH_2MHZ: 3286 chandef->s1g_primary_2mhz = true; 3287 pri_2mhz_khz = ieee80211_channel_to_freq_khz( 3288 oper->primary_ch, NL80211_BAND_S1GHZ); 3289 3290 if (u8_get_bits(oper->ch_width, S1G_OPER_CH_PRIMARY_LOCATION) == 3291 S1G_2M_PRIMARY_LOCATION_LOWER) 3292 pri_1mhz_khz = pri_2mhz_khz - 500; 3293 else 3294 pri_1mhz_khz = pri_2mhz_khz + 500; 3295 break; 3296 default: 3297 return false; 3298 } 3299 3300 oper_khz = ieee80211_channel_to_freq_khz(oper->oper_ch, 3301 NL80211_BAND_S1GHZ); 3302 chandef->center_freq1 = KHZ_TO_MHZ(oper_khz); 3303 chandef->freq1_offset = oper_khz % 1000; 3304 chandef->chan = 3305 ieee80211_get_channel_khz(local->hw.wiphy, pri_1mhz_khz); 3306 3307 return chandef->chan; 3308 } 3309 3310 int ieee80211_put_srates_elem(struct sk_buff *skb, 3311 const struct ieee80211_supported_band *sband, 3312 u32 basic_rates, u32 masked_rates, 3313 u8 element_id) 3314 { 3315 u8 i, rates, skip; 3316 3317 rates = 0; 3318 for (i = 0; i < sband->n_bitrates; i++) { 3319 if (masked_rates & BIT(i)) 3320 continue; 3321 rates++; 3322 } 3323 3324 if (element_id == WLAN_EID_SUPP_RATES) { 3325 rates = min_t(u8, rates, 8); 3326 skip = 0; 3327 } else { 3328 skip = 8; 3329 if (rates <= skip) 3330 return 0; 3331 rates -= skip; 3332 } 3333 3334 if (skb_tailroom(skb) < rates + 2) 3335 return -ENOBUFS; 3336 3337 skb_put_u8(skb, element_id); 3338 skb_put_u8(skb, rates); 3339 3340 for (i = 0; i < sband->n_bitrates && rates; i++) { 3341 int rate; 3342 u8 basic; 3343 3344 if (masked_rates & BIT(i)) 3345 continue; 3346 3347 if (skip > 0) { 3348 skip--; 3349 continue; 3350 } 3351 3352 basic = basic_rates & BIT(i) ? 0x80 : 0; 3353 3354 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3355 skb_put_u8(skb, basic | (u8)rate); 3356 rates--; 3357 } 3358 3359 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3360 rates, element_id); 3361 3362 return 0; 3363 } 3364 3365 int ieee80211_ave_rssi(struct ieee80211_vif *vif, int link_id) 3366 { 3367 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3368 struct ieee80211_link_data *link_data; 3369 3370 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3371 return 0; 3372 3373 if (link_id < 0) 3374 link_data = &sdata->deflink; 3375 else 3376 link_data = wiphy_dereference(sdata->local->hw.wiphy, 3377 sdata->link[link_id]); 3378 3379 if (WARN_ON_ONCE(!link_data)) 3380 return -99; 3381 3382 return -ewma_beacon_signal_read(&link_data->u.mgd.ave_beacon_signal); 3383 } 3384 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3385 3386 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3387 { 3388 if (!mcs) 3389 return 1; 3390 3391 /* TODO: consider rx_highest */ 3392 3393 if (mcs->rx_mask[3]) 3394 return 4; 3395 if (mcs->rx_mask[2]) 3396 return 3; 3397 if (mcs->rx_mask[1]) 3398 return 2; 3399 return 1; 3400 } 3401 3402 /** 3403 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3404 * @local: mac80211 hw info struct 3405 * @status: RX status 3406 * @mpdu_len: total MPDU length (including FCS) 3407 * @mpdu_offset: offset into MPDU to calculate timestamp at 3408 * 3409 * This function calculates the RX timestamp at the given MPDU offset, taking 3410 * into account what the RX timestamp was. An offset of 0 will just normalize 3411 * the timestamp to TSF at beginning of MPDU reception. 3412 * 3413 * Returns: the calculated timestamp 3414 */ 3415 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3416 struct ieee80211_rx_status *status, 3417 unsigned int mpdu_len, 3418 unsigned int mpdu_offset) 3419 { 3420 u64 ts = status->mactime; 3421 bool mactime_plcp_start; 3422 struct rate_info ri; 3423 u16 rate; 3424 u8 n_ltf; 3425 3426 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3427 return 0; 3428 3429 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3430 RX_FLAG_MACTIME_PLCP_START; 3431 3432 memset(&ri, 0, sizeof(ri)); 3433 3434 ri.bw = status->bw; 3435 3436 /* Fill cfg80211 rate info */ 3437 switch (status->encoding) { 3438 case RX_ENC_EHT: 3439 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3440 ri.mcs = status->rate_idx; 3441 ri.nss = status->nss; 3442 ri.eht_ru_alloc = status->eht.ru; 3443 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3444 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3445 /* TODO/FIXME: is this right? handle other PPDUs */ 3446 if (mactime_plcp_start) { 3447 mpdu_offset += 2; 3448 ts += 36; 3449 } 3450 break; 3451 case RX_ENC_HE: 3452 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3453 ri.mcs = status->rate_idx; 3454 ri.nss = status->nss; 3455 ri.he_ru_alloc = status->he_ru; 3456 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3457 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3458 3459 /* 3460 * See P802.11ax_D6.0, section 27.3.4 for 3461 * VHT PPDU format. 3462 */ 3463 if (mactime_plcp_start) { 3464 mpdu_offset += 2; 3465 ts += 36; 3466 3467 /* 3468 * TODO: 3469 * For HE MU PPDU, add the HE-SIG-B. 3470 * For HE ER PPDU, add 8us for the HE-SIG-A. 3471 * For HE TB PPDU, add 4us for the HE-STF. 3472 * Add the HE-LTF durations - variable. 3473 */ 3474 } 3475 3476 break; 3477 case RX_ENC_HT: 3478 ri.mcs = status->rate_idx; 3479 ri.flags |= RATE_INFO_FLAGS_MCS; 3480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3481 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3482 3483 /* 3484 * See P802.11REVmd_D3.0, section 19.3.2 for 3485 * HT PPDU format. 3486 */ 3487 if (mactime_plcp_start) { 3488 mpdu_offset += 2; 3489 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3490 ts += 24; 3491 else 3492 ts += 32; 3493 3494 /* 3495 * Add Data HT-LTFs per streams 3496 * TODO: add Extension HT-LTFs, 4us per LTF 3497 */ 3498 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3499 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3500 ts += n_ltf * 4; 3501 } 3502 3503 break; 3504 case RX_ENC_VHT: 3505 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3506 ri.mcs = status->rate_idx; 3507 ri.nss = status->nss; 3508 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3509 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3510 3511 /* 3512 * See P802.11REVmd_D3.0, section 21.3.2 for 3513 * VHT PPDU format. 3514 */ 3515 if (mactime_plcp_start) { 3516 mpdu_offset += 2; 3517 ts += 36; 3518 3519 /* 3520 * Add VHT-LTFs per streams 3521 */ 3522 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3523 ri.nss + 1 : ri.nss; 3524 ts += 4 * n_ltf; 3525 } 3526 3527 break; 3528 default: 3529 WARN_ON(1); 3530 fallthrough; 3531 case RX_ENC_LEGACY: { 3532 struct ieee80211_supported_band *sband; 3533 3534 sband = local->hw.wiphy->bands[status->band]; 3535 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3536 3537 if (mactime_plcp_start) { 3538 if (status->band == NL80211_BAND_5GHZ) { 3539 ts += 20; 3540 mpdu_offset += 2; 3541 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3542 ts += 96; 3543 } else { 3544 ts += 192; 3545 } 3546 } 3547 break; 3548 } 3549 } 3550 3551 rate = cfg80211_calculate_bitrate(&ri); 3552 if (WARN_ONCE(!rate, 3553 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3554 (unsigned long long)status->flag, status->rate_idx, 3555 status->nss)) 3556 return 0; 3557 3558 /* rewind from end of MPDU */ 3559 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3560 ts -= mpdu_len * 8 * 10 / rate; 3561 3562 ts += mpdu_offset * 8 * 10 / rate; 3563 3564 return ts; 3565 } 3566 3567 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3568 * also provided, only the interfaces using that ctx will be canceled. 3569 */ 3570 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3571 struct ieee80211_chanctx *ctx) 3572 { 3573 struct ieee80211_sub_if_data *sdata; 3574 struct cfg80211_chan_def chandef; 3575 struct ieee80211_link_data *link; 3576 struct ieee80211_chanctx_conf *chanctx_conf; 3577 unsigned int link_id; 3578 3579 lockdep_assert_wiphy(local->hw.wiphy); 3580 3581 list_for_each_entry(sdata, &local->interfaces, list) { 3582 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3583 link_id++) { 3584 link = sdata_dereference(sdata->link[link_id], 3585 sdata); 3586 if (!link) 3587 continue; 3588 3589 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3590 sdata); 3591 if (ctx && &ctx->conf != chanctx_conf) 3592 continue; 3593 3594 wiphy_delayed_work_cancel(local->hw.wiphy, 3595 &link->dfs_cac_timer_work); 3596 3597 if (!sdata->wdev.links[link_id].cac_started) 3598 continue; 3599 3600 chandef = link->conf->chanreq.oper; 3601 ieee80211_link_release_channel(link); 3602 cfg80211_cac_event(sdata->dev, &chandef, 3603 NL80211_RADAR_CAC_ABORTED, 3604 GFP_KERNEL, link_id); 3605 } 3606 } 3607 } 3608 3609 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3610 struct wiphy_work *work) 3611 { 3612 struct ieee80211_local *local = 3613 container_of(work, struct ieee80211_local, radar_detected_work); 3614 struct cfg80211_chan_def chandef; 3615 struct ieee80211_chanctx *ctx; 3616 3617 lockdep_assert_wiphy(local->hw.wiphy); 3618 3619 list_for_each_entry(ctx, &local->chanctx_list, list) { 3620 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3621 continue; 3622 3623 if (!ctx->radar_detected) 3624 continue; 3625 3626 ctx->radar_detected = false; 3627 3628 chandef = ctx->conf.def; 3629 3630 ieee80211_dfs_cac_cancel(local, ctx); 3631 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3632 } 3633 } 3634 3635 static void 3636 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3637 struct ieee80211_chanctx_conf *chanctx_conf, 3638 void *data) 3639 { 3640 struct ieee80211_chanctx *ctx = 3641 container_of(chanctx_conf, struct ieee80211_chanctx, 3642 conf); 3643 3644 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3645 return; 3646 3647 if (data && data != chanctx_conf) 3648 return; 3649 3650 ctx->radar_detected = true; 3651 } 3652 3653 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3654 struct ieee80211_chanctx_conf *chanctx_conf) 3655 { 3656 struct ieee80211_local *local = hw_to_local(hw); 3657 3658 trace_api_radar_detected(local); 3659 3660 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3661 chanctx_conf); 3662 3663 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3664 } 3665 EXPORT_SYMBOL(ieee80211_radar_detected); 3666 3667 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3668 struct ieee80211_conn_settings *conn) 3669 { 3670 enum nl80211_chan_width new_primary_width; 3671 struct ieee80211_conn_settings _ignored = {}; 3672 3673 /* allow passing NULL if caller doesn't care */ 3674 if (!conn) 3675 conn = &_ignored; 3676 3677 again: 3678 /* no-HT indicates nothing to do */ 3679 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3680 3681 switch (c->width) { 3682 default: 3683 case NL80211_CHAN_WIDTH_20_NOHT: 3684 WARN_ON_ONCE(1); 3685 fallthrough; 3686 case NL80211_CHAN_WIDTH_20: 3687 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3688 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3689 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3690 c->punctured = 0; 3691 break; 3692 case NL80211_CHAN_WIDTH_40: 3693 c->width = NL80211_CHAN_WIDTH_20; 3694 c->center_freq1 = c->chan->center_freq; 3695 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3696 conn->mode = IEEE80211_CONN_MODE_HT; 3697 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3698 c->punctured = 0; 3699 break; 3700 case NL80211_CHAN_WIDTH_80: 3701 new_primary_width = NL80211_CHAN_WIDTH_40; 3702 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3703 conn->mode = IEEE80211_CONN_MODE_HT; 3704 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3705 break; 3706 case NL80211_CHAN_WIDTH_80P80: 3707 c->center_freq2 = 0; 3708 c->width = NL80211_CHAN_WIDTH_80; 3709 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3710 break; 3711 case NL80211_CHAN_WIDTH_160: 3712 new_primary_width = NL80211_CHAN_WIDTH_80; 3713 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3714 break; 3715 case NL80211_CHAN_WIDTH_320: 3716 new_primary_width = NL80211_CHAN_WIDTH_160; 3717 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3718 break; 3719 case NL80211_CHAN_WIDTH_1: 3720 case NL80211_CHAN_WIDTH_2: 3721 case NL80211_CHAN_WIDTH_4: 3722 case NL80211_CHAN_WIDTH_8: 3723 case NL80211_CHAN_WIDTH_16: 3724 WARN_ON_ONCE(1); 3725 /* keep c->width */ 3726 conn->mode = IEEE80211_CONN_MODE_S1G; 3727 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3728 break; 3729 case NL80211_CHAN_WIDTH_5: 3730 case NL80211_CHAN_WIDTH_10: 3731 WARN_ON_ONCE(1); 3732 /* keep c->width */ 3733 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3734 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3735 break; 3736 } 3737 3738 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3739 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3740 &c->punctured); 3741 c->width = new_primary_width; 3742 } 3743 3744 /* 3745 * With an 80 MHz channel, we might have the puncturing in the primary 3746 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3747 * In that case, downgrade again. 3748 */ 3749 if (!cfg80211_chandef_valid(c) && c->punctured) 3750 goto again; 3751 3752 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3753 } 3754 3755 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3756 struct cfg80211_csa_settings *csa_settings) 3757 { 3758 struct sk_buff *skb; 3759 struct ieee80211_mgmt *mgmt; 3760 struct ieee80211_local *local = sdata->local; 3761 int freq; 3762 int hdr_len = offsetofend(struct ieee80211_mgmt, 3763 u.action.u.chan_switch); 3764 u8 *pos; 3765 3766 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3767 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3768 return -EOPNOTSUPP; 3769 3770 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3771 5 + /* channel switch announcement element */ 3772 3 + /* secondary channel offset element */ 3773 5 + /* wide bandwidth channel switch announcement */ 3774 8); /* mesh channel switch parameters element */ 3775 if (!skb) 3776 return -ENOMEM; 3777 3778 skb_reserve(skb, local->tx_headroom); 3779 mgmt = skb_put_zero(skb, hdr_len); 3780 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3781 IEEE80211_STYPE_ACTION); 3782 3783 eth_broadcast_addr(mgmt->da); 3784 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3785 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3786 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3787 } else { 3788 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3789 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3790 } 3791 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3792 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3793 pos = skb_put(skb, 5); 3794 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3795 *pos++ = 3; /* IE length */ 3796 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3797 freq = csa_settings->chandef.chan->center_freq; 3798 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3799 *pos++ = csa_settings->count; /* count */ 3800 3801 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3802 enum nl80211_channel_type ch_type; 3803 3804 skb_put(skb, 3); 3805 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3806 *pos++ = 1; /* IE length */ 3807 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3808 if (ch_type == NL80211_CHAN_HT40PLUS) 3809 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3810 else 3811 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3812 } 3813 3814 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3815 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3816 3817 skb_put(skb, 8); 3818 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3819 *pos++ = 6; /* IE length */ 3820 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3821 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3822 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3823 *pos++ |= csa_settings->block_tx ? 3824 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3825 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3826 pos += 2; 3827 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3828 pos += 2; 3829 } 3830 3831 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3832 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3833 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3834 skb_put(skb, 5); 3835 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3836 } 3837 3838 ieee80211_tx_skb(sdata, skb); 3839 return 0; 3840 } 3841 3842 static bool 3843 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3844 { 3845 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3846 int skip; 3847 3848 if (end > 0) 3849 return false; 3850 3851 /* One shot NOA */ 3852 if (data->count[i] == 1) 3853 return false; 3854 3855 if (data->desc[i].interval == 0) 3856 return false; 3857 3858 /* End time is in the past, check for repetitions */ 3859 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3860 if (data->count[i] < 255) { 3861 if (data->count[i] <= skip) { 3862 data->count[i] = 0; 3863 return false; 3864 } 3865 3866 data->count[i] -= skip; 3867 } 3868 3869 data->desc[i].start += skip * data->desc[i].interval; 3870 3871 return true; 3872 } 3873 3874 static bool 3875 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3876 s32 *offset) 3877 { 3878 bool ret = false; 3879 int i; 3880 3881 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3882 s32 cur; 3883 3884 if (!data->count[i]) 3885 continue; 3886 3887 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3888 ret = true; 3889 3890 cur = data->desc[i].start - tsf; 3891 if (cur > *offset) 3892 continue; 3893 3894 cur = data->desc[i].start + data->desc[i].duration - tsf; 3895 if (cur > *offset) 3896 *offset = cur; 3897 } 3898 3899 return ret; 3900 } 3901 3902 static u32 3903 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3904 { 3905 s32 offset = 0; 3906 int tries = 0; 3907 /* 3908 * arbitrary limit, used to avoid infinite loops when combined NoA 3909 * descriptors cover the full time period. 3910 */ 3911 int max_tries = 5; 3912 3913 ieee80211_extend_absent_time(data, tsf, &offset); 3914 do { 3915 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3916 break; 3917 3918 tries++; 3919 } while (tries < max_tries); 3920 3921 return offset; 3922 } 3923 3924 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3925 { 3926 u32 next_offset = BIT(31) - 1; 3927 int i; 3928 3929 data->absent = 0; 3930 data->has_next_tsf = false; 3931 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3932 s32 start; 3933 3934 if (!data->count[i]) 3935 continue; 3936 3937 ieee80211_extend_noa_desc(data, tsf, i); 3938 start = data->desc[i].start - tsf; 3939 if (start <= 0) 3940 data->absent |= BIT(i); 3941 3942 if (next_offset > start) 3943 next_offset = start; 3944 3945 data->has_next_tsf = true; 3946 } 3947 3948 if (data->absent) 3949 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3950 3951 data->next_tsf = tsf + next_offset; 3952 } 3953 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3954 3955 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3956 struct ieee80211_noa_data *data, u32 tsf) 3957 { 3958 int ret = 0; 3959 int i; 3960 3961 memset(data, 0, sizeof(*data)); 3962 3963 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3964 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3965 3966 if (!desc->count || !desc->duration) 3967 continue; 3968 3969 data->count[i] = desc->count; 3970 data->desc[i].start = le32_to_cpu(desc->start_time); 3971 data->desc[i].duration = le32_to_cpu(desc->duration); 3972 data->desc[i].interval = le32_to_cpu(desc->interval); 3973 3974 if (data->count[i] > 1 && 3975 data->desc[i].interval < data->desc[i].duration) 3976 continue; 3977 3978 ieee80211_extend_noa_desc(data, tsf, i); 3979 ret++; 3980 } 3981 3982 if (ret) 3983 ieee80211_update_p2p_noa(data, tsf); 3984 3985 return ret; 3986 } 3987 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3988 3989 void ieee80211_recalc_dtim(struct ieee80211_sub_if_data *sdata, u64 tsf) 3990 { 3991 u64 dtim_count = 0; 3992 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3993 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3994 struct ps_data *ps; 3995 u8 bcns_from_dtim; 3996 3997 if (tsf == -1ULL || !beacon_int || !dtim_period) 3998 return; 3999 4000 if (sdata->vif.type == NL80211_IFTYPE_AP || 4001 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4002 if (!sdata->bss) 4003 return; 4004 4005 ps = &sdata->bss->ps; 4006 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4007 ps = &sdata->u.mesh.ps; 4008 } else { 4009 return; 4010 } 4011 4012 /* 4013 * actually finds last dtim_count, mac80211 will update in 4014 * __beacon_add_tim(). 4015 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4016 */ 4017 do_div(tsf, beacon_int); 4018 bcns_from_dtim = do_div(tsf, dtim_period); 4019 /* just had a DTIM */ 4020 if (!bcns_from_dtim) 4021 dtim_count = 0; 4022 else 4023 dtim_count = dtim_period - bcns_from_dtim; 4024 4025 ps->dtim_count = dtim_count; 4026 } 4027 4028 /* 4029 * Given a long beacon period, calculate the current index into 4030 * that period to determine the number of TSBTTs until the next TBTT. 4031 * It is completely valid to have a short beacon period that differs 4032 * from the dtim period (i.e a TBTT thats not a DTIM). 4033 */ 4034 void ieee80211_recalc_sb_count(struct ieee80211_sub_if_data *sdata, u64 tsf) 4035 { 4036 u32 sb_idx; 4037 struct ps_data *ps = &sdata->bss->ps; 4038 u8 lb_period = sdata->vif.bss_conf.s1g_long_beacon_period; 4039 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4040 4041 /* No mesh / IBSS support for short beaconing */ 4042 if (tsf == -1ULL || !lb_period || 4043 (sdata->vif.type != NL80211_IFTYPE_AP && 4044 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 4045 return; 4046 4047 /* find the current TSBTT index in our lb_period */ 4048 do_div(tsf, beacon_int); 4049 sb_idx = do_div(tsf, lb_period); 4050 4051 /* num TSBTTs until the next TBTT */ 4052 ps->sb_count = sb_idx ? lb_period - sb_idx : 0; 4053 } 4054 4055 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4056 struct ieee80211_chanctx *ctx) 4057 { 4058 struct ieee80211_link_data *link; 4059 u8 radar_detect = 0; 4060 4061 lockdep_assert_wiphy(local->hw.wiphy); 4062 4063 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4064 return 0; 4065 4066 for_each_sdata_link(local, link) { 4067 if (rcu_access_pointer(link->conf->chanctx_conf) == &ctx->conf) { 4068 /* 4069 * An in-place reservation context should not have any 4070 * assigned links until it replaces the other context. 4071 */ 4072 WARN_ON(ctx->replace_state == 4073 IEEE80211_CHANCTX_REPLACES_OTHER); 4074 4075 if (link->radar_required) 4076 radar_detect |= 4077 BIT(link->conf->chanreq.oper.width); 4078 } 4079 4080 if (link->reserved_chanctx == ctx && 4081 link->reserved_radar_required) 4082 radar_detect |= BIT(link->reserved.oper.width); 4083 } 4084 4085 return radar_detect; 4086 } 4087 4088 bool ieee80211_is_radio_idx_in_scan_req(struct wiphy *wiphy, 4089 struct cfg80211_scan_request *scan_req, 4090 int radio_idx) 4091 { 4092 struct ieee80211_channel *chan; 4093 int i, chan_radio_idx; 4094 4095 for (i = 0; i < scan_req->n_channels; i++) { 4096 chan = scan_req->channels[i]; 4097 chan_radio_idx = cfg80211_get_radio_idx_by_chan(wiphy, chan); 4098 4099 /* The radio index either matched successfully, or an error 4100 * occurred. For example, if radio-level information is 4101 * missing, the same error value is returned. This 4102 * typically implies a single-radio setup, in which case 4103 * the operation should not be allowed. 4104 */ 4105 if (chan_radio_idx == radio_idx) 4106 return true; 4107 } 4108 4109 return false; 4110 } 4111 4112 static u32 4113 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 4114 { 4115 struct ieee80211_bss_conf *link_conf; 4116 struct ieee80211_chanctx_conf *conf; 4117 unsigned int link_id; 4118 u32 mask = 0; 4119 4120 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 4121 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 4122 if (!conf || conf->radio_idx < 0) 4123 continue; 4124 4125 mask |= BIT(conf->radio_idx); 4126 } 4127 4128 return mask; 4129 } 4130 4131 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4132 { 4133 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4134 4135 return __ieee80211_get_radio_mask(sdata); 4136 } 4137 4138 static bool 4139 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4140 { 4141 if (radio_idx < 0) 4142 return true; 4143 4144 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4145 } 4146 4147 static int 4148 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4149 struct iface_combination_params *params, 4150 const struct cfg80211_chan_def *chandef, 4151 struct ieee80211_sub_if_data *sdata) 4152 { 4153 struct ieee80211_sub_if_data *sdata_iter; 4154 struct ieee80211_chanctx *ctx; 4155 int total = !!sdata; 4156 4157 list_for_each_entry(ctx, &local->chanctx_list, list) { 4158 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4159 continue; 4160 4161 if (params->radio_idx >= 0 && 4162 ctx->conf.radio_idx != params->radio_idx) 4163 continue; 4164 4165 params->radar_detect |= 4166 ieee80211_chanctx_radar_detect(local, ctx); 4167 4168 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4169 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4170 continue; 4171 4172 params->num_different_channels++; 4173 } 4174 4175 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4176 struct wireless_dev *wdev_iter; 4177 4178 wdev_iter = &sdata_iter->wdev; 4179 4180 if (sdata_iter == sdata || 4181 !ieee80211_sdata_running(sdata_iter) || 4182 cfg80211_iftype_allowed(local->hw.wiphy, 4183 wdev_iter->iftype, 0, 1)) 4184 continue; 4185 4186 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4187 continue; 4188 4189 params->iftype_num[wdev_iter->iftype]++; 4190 total++; 4191 } 4192 4193 return total; 4194 } 4195 4196 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4197 const struct cfg80211_chan_def *chandef, 4198 enum ieee80211_chanctx_mode chanmode, 4199 u8 radar_detect, int radio_idx) 4200 { 4201 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4202 struct ieee80211_local *local = sdata->local; 4203 enum nl80211_iftype iftype = sdata->wdev.iftype; 4204 struct iface_combination_params params = { 4205 .radar_detect = radar_detect, 4206 .radio_idx = radio_idx, 4207 }; 4208 int total; 4209 4210 lockdep_assert_wiphy(local->hw.wiphy); 4211 4212 if (WARN_ON(hweight32(radar_detect) > 1)) 4213 return -EINVAL; 4214 4215 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4216 !chandef->chan)) 4217 return -EINVAL; 4218 4219 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4220 return -EINVAL; 4221 4222 if (sdata->vif.type == NL80211_IFTYPE_AP || 4223 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4224 /* 4225 * always passing this is harmless, since it'll be the 4226 * same value that cfg80211 finds if it finds the same 4227 * interface ... and that's always allowed 4228 */ 4229 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4230 } 4231 4232 /* Always allow software iftypes */ 4233 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4234 if (radar_detect) 4235 return -EINVAL; 4236 return 0; 4237 } 4238 4239 if (chandef) 4240 params.num_different_channels = 1; 4241 4242 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4243 params.iftype_num[iftype] = 1; 4244 4245 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4246 shared ? chandef : NULL, 4247 sdata); 4248 if (total == 1 && !params.radar_detect) 4249 return 0; 4250 4251 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4252 } 4253 4254 static void 4255 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4256 void *data) 4257 { 4258 u32 *max_num_different_channels = data; 4259 4260 *max_num_different_channels = max(*max_num_different_channels, 4261 c->num_different_channels); 4262 } 4263 4264 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4265 { 4266 u32 max_num_different_channels = 1; 4267 int err; 4268 struct iface_combination_params params = { 4269 .radio_idx = radio_idx, 4270 }; 4271 4272 lockdep_assert_wiphy(local->hw.wiphy); 4273 4274 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4275 4276 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4277 ieee80211_iter_max_chans, 4278 &max_num_different_channels); 4279 if (err < 0) 4280 return err; 4281 4282 return max_num_different_channels; 4283 } 4284 4285 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4286 struct ieee80211_sta_s1g_cap *caps, 4287 struct sk_buff *skb) 4288 { 4289 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4290 struct ieee80211_s1g_cap s1g_capab; 4291 u8 *pos; 4292 int i; 4293 4294 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4295 return; 4296 4297 if (!caps->s1g) 4298 return; 4299 4300 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4301 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4302 4303 /* override the capability info */ 4304 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4305 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4306 4307 s1g_capab.capab_info[i] &= ~mask; 4308 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4309 } 4310 4311 /* then MCS and NSS set */ 4312 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4313 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4314 4315 s1g_capab.supp_mcs_nss[i] &= ~mask; 4316 s1g_capab.supp_mcs_nss[i] |= 4317 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4318 } 4319 4320 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4321 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4322 *pos++ = sizeof(s1g_capab); 4323 4324 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4325 } 4326 4327 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4328 struct sk_buff *skb) 4329 { 4330 u8 *pos = skb_put(skb, 3); 4331 4332 *pos++ = WLAN_EID_AID_REQUEST; 4333 *pos++ = 1; 4334 *pos++ = 0; 4335 } 4336 4337 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4338 { 4339 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4340 *buf++ = 7; /* len */ 4341 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4342 *buf++ = 0x50; 4343 *buf++ = 0xf2; 4344 *buf++ = 2; /* WME */ 4345 *buf++ = 0; /* WME info */ 4346 *buf++ = 1; /* WME ver */ 4347 *buf++ = qosinfo; /* U-APSD no in use */ 4348 4349 return buf; 4350 } 4351 4352 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4353 unsigned long *frame_cnt, 4354 unsigned long *byte_cnt) 4355 { 4356 struct txq_info *txqi = to_txq_info(txq); 4357 u32 frag_cnt = 0, frag_bytes = 0; 4358 struct sk_buff *skb; 4359 4360 skb_queue_walk(&txqi->frags, skb) { 4361 frag_cnt++; 4362 frag_bytes += skb->len; 4363 } 4364 4365 if (frame_cnt) 4366 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4367 4368 if (byte_cnt) 4369 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4370 } 4371 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4372 4373 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4374 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4375 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4376 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4377 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4378 }; 4379 4380 u16 ieee80211_encode_usf(int listen_interval) 4381 { 4382 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4383 u16 ui, usf = 0; 4384 4385 /* find greatest USF */ 4386 while (usf < IEEE80211_MAX_USF) { 4387 if (listen_interval % listen_int_usf[usf + 1]) 4388 break; 4389 usf += 1; 4390 } 4391 ui = listen_interval / listen_int_usf[usf]; 4392 4393 /* error if there is a remainder. Should've been checked by user */ 4394 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4395 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4396 FIELD_PREP(LISTEN_INT_UI, ui); 4397 4398 return (u16) listen_interval; 4399 } 4400 4401 /* this may return more than ieee80211_put_eht_cap() will need */ 4402 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4403 { 4404 const struct ieee80211_sta_he_cap *he_cap; 4405 const struct ieee80211_sta_eht_cap *eht_cap; 4406 struct ieee80211_supported_band *sband; 4407 bool is_ap; 4408 u8 n; 4409 4410 sband = ieee80211_get_sband(sdata); 4411 if (!sband) 4412 return 0; 4413 4414 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4415 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4416 if (!he_cap || !eht_cap) 4417 return 0; 4418 4419 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4420 4421 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4422 &eht_cap->eht_cap_elem, 4423 is_ap); 4424 return 2 + 1 + 4425 sizeof(eht_cap->eht_cap_elem) + n + 4426 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4427 eht_cap->eht_cap_elem.phy_cap_info); 4428 return 0; 4429 } 4430 4431 int ieee80211_put_eht_cap(struct sk_buff *skb, 4432 struct ieee80211_sub_if_data *sdata, 4433 const struct ieee80211_supported_band *sband, 4434 const struct ieee80211_conn_settings *conn) 4435 { 4436 const struct ieee80211_sta_he_cap *he_cap = 4437 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4438 const struct ieee80211_sta_eht_cap *eht_cap = 4439 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4440 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4441 struct ieee80211_eht_cap_elem_fixed fixed; 4442 struct ieee80211_he_cap_elem he; 4443 u8 mcs_nss_len, ppet_len; 4444 u8 orig_mcs_nss_len; 4445 u8 ie_len; 4446 4447 if (!conn) 4448 conn = &ieee80211_conn_settings_unlimited; 4449 4450 /* Make sure we have place for the IE */ 4451 if (!he_cap || !eht_cap) 4452 return 0; 4453 4454 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4455 &eht_cap->eht_cap_elem, 4456 for_ap); 4457 4458 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4459 4460 fixed = eht_cap->eht_cap_elem; 4461 4462 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4463 fixed.phy_cap_info[6] &= 4464 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4465 4466 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4467 fixed.phy_cap_info[1] &= 4468 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4469 fixed.phy_cap_info[2] &= 4470 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4471 fixed.phy_cap_info[6] &= 4472 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4473 } 4474 4475 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4476 fixed.phy_cap_info[0] &= 4477 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4478 fixed.phy_cap_info[1] &= 4479 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4480 fixed.phy_cap_info[2] &= 4481 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4482 fixed.phy_cap_info[6] &= 4483 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4484 } 4485 4486 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4487 fixed.phy_cap_info[0] &= 4488 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4489 4490 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4491 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4492 fixed.phy_cap_info); 4493 4494 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4495 if (skb_tailroom(skb) < ie_len) 4496 return -ENOBUFS; 4497 4498 skb_put_u8(skb, WLAN_EID_EXTENSION); 4499 skb_put_u8(skb, ie_len - 2); 4500 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4501 skb_put_data(skb, &fixed, sizeof(fixed)); 4502 4503 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4504 /* 4505 * If the (non-AP) STA became 20 MHz only, then convert from 4506 * <=80 to 20-MHz-only format, where MCSes are indicated in 4507 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4508 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4509 */ 4510 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4511 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4512 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4513 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4514 } else { 4515 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4516 } 4517 4518 if (ppet_len) 4519 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4520 4521 return 0; 4522 } 4523 4524 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4525 { 4526 static const char * const modes[] = { 4527 [IEEE80211_CONN_MODE_S1G] = "S1G", 4528 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4529 [IEEE80211_CONN_MODE_HT] = "HT", 4530 [IEEE80211_CONN_MODE_VHT] = "VHT", 4531 [IEEE80211_CONN_MODE_HE] = "HE", 4532 [IEEE80211_CONN_MODE_EHT] = "EHT", 4533 }; 4534 4535 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4536 return "<out of range>"; 4537 4538 return modes[mode] ?: "<missing string>"; 4539 } 4540 4541 enum ieee80211_conn_bw_limit 4542 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4543 { 4544 switch (chandef->width) { 4545 case NL80211_CHAN_WIDTH_20_NOHT: 4546 case NL80211_CHAN_WIDTH_20: 4547 return IEEE80211_CONN_BW_LIMIT_20; 4548 case NL80211_CHAN_WIDTH_40: 4549 return IEEE80211_CONN_BW_LIMIT_40; 4550 case NL80211_CHAN_WIDTH_80: 4551 return IEEE80211_CONN_BW_LIMIT_80; 4552 case NL80211_CHAN_WIDTH_80P80: 4553 case NL80211_CHAN_WIDTH_160: 4554 return IEEE80211_CONN_BW_LIMIT_160; 4555 case NL80211_CHAN_WIDTH_320: 4556 return IEEE80211_CONN_BW_LIMIT_320; 4557 default: 4558 WARN(1, "unhandled chandef width %d\n", chandef->width); 4559 return IEEE80211_CONN_BW_LIMIT_20; 4560 } 4561 } 4562 4563 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4564 { 4565 for (int i = 0; i < 2; i++) { 4566 tpe->max_local[i].valid = false; 4567 memset(tpe->max_local[i].power, 4568 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4569 sizeof(tpe->max_local[i].power)); 4570 4571 tpe->max_reg_client[i].valid = false; 4572 memset(tpe->max_reg_client[i].power, 4573 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4574 sizeof(tpe->max_reg_client[i].power)); 4575 4576 tpe->psd_local[i].valid = false; 4577 memset(tpe->psd_local[i].power, 4578 IEEE80211_TPE_PSD_NO_LIMIT, 4579 sizeof(tpe->psd_local[i].power)); 4580 4581 tpe->psd_reg_client[i].valid = false; 4582 memset(tpe->psd_reg_client[i].power, 4583 IEEE80211_TPE_PSD_NO_LIMIT, 4584 sizeof(tpe->psd_reg_client[i].power)); 4585 } 4586 } 4587 4588 bool ieee80211_vif_nan_started(struct ieee80211_vif *vif) 4589 { 4590 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4591 4592 return vif->type == NL80211_IFTYPE_NAN && sdata->u.nan.started; 4593 } 4594 EXPORT_SYMBOL_GPL(ieee80211_vif_nan_started); 4595