xref: /linux/net/mac80211/util.c (revision cf02820041668b14cbfa0fbd2bab45ac79bd6174)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 	BUG_ON(!wiphy);
43 
44 	local = wiphy_priv(wiphy);
45 	return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48 
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 			enum nl80211_iftype type)
51 {
52 	__le16 fc = hdr->frame_control;
53 
54 	 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 	if (len < 16)
56 		return NULL;
57 
58 	if (ieee80211_is_data(fc)) {
59 		if (len < 24) /* drop incorrect hdr len (data) */
60 			return NULL;
61 
62 		if (ieee80211_has_a4(fc))
63 			return NULL;
64 		if (ieee80211_has_tods(fc))
65 			return hdr->addr1;
66 		if (ieee80211_has_fromds(fc))
67 			return hdr->addr2;
68 
69 		return hdr->addr3;
70 	}
71 
72 	if (ieee80211_is_mgmt(fc)) {
73 		if (len < 24) /* drop incorrect hdr len (mgmt) */
74 			return NULL;
75 		return hdr->addr3;
76 	}
77 
78 	if (ieee80211_is_ctl(fc)) {
79 		if(ieee80211_is_pspoll(fc))
80 			return hdr->addr1;
81 
82 		if (ieee80211_is_back_req(fc)) {
83 			switch (type) {
84 			case NL80211_IFTYPE_STATION:
85 				return hdr->addr2;
86 			case NL80211_IFTYPE_AP:
87 			case NL80211_IFTYPE_AP_VLAN:
88 				return hdr->addr1;
89 			default:
90 				break; /* fall through to the return */
91 			}
92 		}
93 	}
94 
95 	return NULL;
96 }
97 
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 	struct sk_buff *skb;
101 	struct ieee80211_hdr *hdr;
102 
103 	skb_queue_walk(&tx->skbs, skb) {
104 		hdr = (struct ieee80211_hdr *) skb->data;
105 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 	}
107 }
108 
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 			     int rate, int erp, int short_preamble)
111 {
112 	int dur;
113 
114 	/* calculate duration (in microseconds, rounded up to next higher
115 	 * integer if it includes a fractional microsecond) to send frame of
116 	 * len bytes (does not include FCS) at the given rate. Duration will
117 	 * also include SIFS.
118 	 *
119 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 	 * DIV_ROUND_UP() operations.
121 	 */
122 
123 	if (band == IEEE80211_BAND_5GHZ || erp) {
124 		/*
125 		 * OFDM:
126 		 *
127 		 * N_DBPS = DATARATE x 4
128 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 		 *	(16 = SIGNAL time, 6 = tail bits)
130 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 		 *
132 		 * T_SYM = 4 usec
133 		 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 		 *	signal ext = 6 usec
136 		 */
137 		dur = 16; /* SIFS + signal ext */
138 		dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 		dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 					4 * rate); /* T_SYM x N_SYM */
142 	} else {
143 		/*
144 		 * 802.11b or 802.11g with 802.11b compatibility:
145 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 		 *
148 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 		 * aSIFSTime = 10 usec
150 		 * aPreambleLength = 144 usec or 72 usec with short preamble
151 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 		 */
153 		dur = 10; /* aSIFSTime = 10 usec */
154 		dur += short_preamble ? (72 + 24) : (144 + 48);
155 
156 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 	}
158 
159 	return dur;
160 }
161 
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 					struct ieee80211_vif *vif,
165 					enum ieee80211_band band,
166 					size_t frame_len,
167 					struct ieee80211_rate *rate)
168 {
169 	struct ieee80211_sub_if_data *sdata;
170 	u16 dur;
171 	int erp;
172 	bool short_preamble = false;
173 
174 	erp = 0;
175 	if (vif) {
176 		sdata = vif_to_sdata(vif);
177 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 			erp = rate->flags & IEEE80211_RATE_ERP_G;
180 	}
181 
182 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 				       short_preamble);
184 
185 	return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188 
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 			      struct ieee80211_vif *vif, size_t frame_len,
191 			      const struct ieee80211_tx_info *frame_txctl)
192 {
193 	struct ieee80211_local *local = hw_to_local(hw);
194 	struct ieee80211_rate *rate;
195 	struct ieee80211_sub_if_data *sdata;
196 	bool short_preamble;
197 	int erp;
198 	u16 dur;
199 	struct ieee80211_supported_band *sband;
200 
201 	sband = local->hw.wiphy->bands[frame_txctl->band];
202 
203 	short_preamble = false;
204 
205 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206 
207 	erp = 0;
208 	if (vif) {
209 		sdata = vif_to_sdata(vif);
210 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 			erp = rate->flags & IEEE80211_RATE_ERP_G;
213 	}
214 
215 	/* CTS duration */
216 	dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 				       erp, short_preamble);
218 	/* Data frame duration */
219 	dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 					erp, short_preamble);
221 	/* ACK duration */
222 	dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 					erp, short_preamble);
224 
225 	return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228 
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 				    struct ieee80211_vif *vif,
231 				    size_t frame_len,
232 				    const struct ieee80211_tx_info *frame_txctl)
233 {
234 	struct ieee80211_local *local = hw_to_local(hw);
235 	struct ieee80211_rate *rate;
236 	struct ieee80211_sub_if_data *sdata;
237 	bool short_preamble;
238 	int erp;
239 	u16 dur;
240 	struct ieee80211_supported_band *sband;
241 
242 	sband = local->hw.wiphy->bands[frame_txctl->band];
243 
244 	short_preamble = false;
245 
246 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 	erp = 0;
248 	if (vif) {
249 		sdata = vif_to_sdata(vif);
250 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 			erp = rate->flags & IEEE80211_RATE_ERP_G;
253 	}
254 
255 	/* Data frame duration */
256 	dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 				       erp, short_preamble);
258 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 		/* ACK duration */
260 		dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 						erp, short_preamble);
262 	}
263 
264 	return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267 
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 	struct ieee80211_sub_if_data *sdata;
271 	int n_acs = IEEE80211_NUM_ACS;
272 
273 	if (local->hw.queues < IEEE80211_NUM_ACS)
274 		n_acs = 1;
275 
276 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 		int ac;
278 
279 		if (!sdata->dev)
280 			continue;
281 
282 		if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 			continue;
284 
285 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 			continue;
288 
289 		for (ac = 0; ac < n_acs; ac++) {
290 			int ac_queue = sdata->vif.hw_queue[ac];
291 
292 			if (ac_queue == queue ||
293 			    (sdata->vif.cab_queue == queue &&
294 			     local->queue_stop_reasons[ac_queue] == 0 &&
295 			     skb_queue_empty(&local->pending[ac_queue])))
296 				netif_wake_subqueue(sdata->dev, ac);
297 		}
298 	}
299 }
300 
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 				   enum queue_stop_reason reason)
303 {
304 	struct ieee80211_local *local = hw_to_local(hw);
305 
306 	trace_wake_queue(local, queue, reason);
307 
308 	if (WARN_ON(queue >= hw->queues))
309 		return;
310 
311 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 		return;
313 
314 	__clear_bit(reason, &local->queue_stop_reasons[queue]);
315 
316 	if (local->queue_stop_reasons[queue] != 0)
317 		/* someone still has this queue stopped */
318 		return;
319 
320 	if (skb_queue_empty(&local->pending[queue])) {
321 		rcu_read_lock();
322 		ieee80211_propagate_queue_wake(local, queue);
323 		rcu_read_unlock();
324 	} else
325 		tasklet_schedule(&local->tx_pending_tasklet);
326 }
327 
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 				    enum queue_stop_reason reason)
330 {
331 	struct ieee80211_local *local = hw_to_local(hw);
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 	__ieee80211_wake_queue(hw, queue, reason);
336 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338 
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 	ieee80211_wake_queue_by_reason(hw, queue,
342 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345 
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 				   enum queue_stop_reason reason)
348 {
349 	struct ieee80211_local *local = hw_to_local(hw);
350 	struct ieee80211_sub_if_data *sdata;
351 	int n_acs = IEEE80211_NUM_ACS;
352 
353 	trace_stop_queue(local, queue, reason);
354 
355 	if (WARN_ON(queue >= hw->queues))
356 		return;
357 
358 	if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 		return;
360 
361 	__set_bit(reason, &local->queue_stop_reasons[queue]);
362 
363 	if (local->hw.queues < IEEE80211_NUM_ACS)
364 		n_acs = 1;
365 
366 	rcu_read_lock();
367 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 		int ac;
369 
370 		if (!sdata->dev)
371 			continue;
372 
373 		for (ac = 0; ac < n_acs; ac++) {
374 			if (sdata->vif.hw_queue[ac] == queue ||
375 			    sdata->vif.cab_queue == queue)
376 				netif_stop_subqueue(sdata->dev, ac);
377 		}
378 	}
379 	rcu_read_unlock();
380 }
381 
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 				    enum queue_stop_reason reason)
384 {
385 	struct ieee80211_local *local = hw_to_local(hw);
386 	unsigned long flags;
387 
388 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 	__ieee80211_stop_queue(hw, queue, reason);
390 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392 
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 	ieee80211_stop_queue_by_reason(hw, queue,
396 				       IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399 
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 			       struct sk_buff *skb)
402 {
403 	struct ieee80211_hw *hw = &local->hw;
404 	unsigned long flags;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 	int queue = info->hw_queue;
407 
408 	if (WARN_ON(!info->control.vif)) {
409 		ieee80211_free_txskb(&local->hw, skb);
410 		return;
411 	}
412 
413 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 	__skb_queue_tail(&local->pending[queue], skb);
416 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419 
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 				   struct sk_buff_head *skbs,
422 				   void (*fn)(void *data), void *data)
423 {
424 	struct ieee80211_hw *hw = &local->hw;
425 	struct sk_buff *skb;
426 	unsigned long flags;
427 	int queue, i;
428 
429 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 	while ((skb = skb_dequeue(skbs))) {
431 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432 
433 		if (WARN_ON(!info->control.vif)) {
434 			ieee80211_free_txskb(&local->hw, skb);
435 			continue;
436 		}
437 
438 		queue = info->hw_queue;
439 
440 		__ieee80211_stop_queue(hw, queue,
441 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442 
443 		__skb_queue_tail(&local->pending[queue], skb);
444 	}
445 
446 	if (fn)
447 		fn(data);
448 
449 	for (i = 0; i < hw->queues; i++)
450 		__ieee80211_wake_queue(hw, i,
451 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454 
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 				    enum queue_stop_reason reason)
457 {
458 	struct ieee80211_local *local = hw_to_local(hw);
459 	unsigned long flags;
460 	int i;
461 
462 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463 
464 	for (i = 0; i < hw->queues; i++)
465 		__ieee80211_stop_queue(hw, i, reason);
466 
467 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469 
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 	ieee80211_stop_queues_by_reason(hw,
473 					IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476 
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 	struct ieee80211_local *local = hw_to_local(hw);
480 	unsigned long flags;
481 	int ret;
482 
483 	if (WARN_ON(queue >= hw->queues))
484 		return true;
485 
486 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 	ret = !!local->queue_stop_reasons[queue];
488 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 	return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492 
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 				     enum queue_stop_reason reason)
495 {
496 	struct ieee80211_local *local = hw_to_local(hw);
497 	unsigned long flags;
498 	int i;
499 
500 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501 
502 	for (i = 0; i < hw->queues; i++)
503 		__ieee80211_wake_queue(hw, i, reason);
504 
505 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507 
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 	ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513 
514 void ieee80211_iterate_active_interfaces(
515 	struct ieee80211_hw *hw,
516 	void (*iterator)(void *data, u8 *mac,
517 			 struct ieee80211_vif *vif),
518 	void *data)
519 {
520 	struct ieee80211_local *local = hw_to_local(hw);
521 	struct ieee80211_sub_if_data *sdata;
522 
523 	mutex_lock(&local->iflist_mtx);
524 
525 	list_for_each_entry(sdata, &local->interfaces, list) {
526 		switch (sdata->vif.type) {
527 		case NL80211_IFTYPE_MONITOR:
528 		case NL80211_IFTYPE_AP_VLAN:
529 			continue;
530 		default:
531 			break;
532 		}
533 		if (ieee80211_sdata_running(sdata))
534 			iterator(data, sdata->vif.addr,
535 				 &sdata->vif);
536 	}
537 
538 	sdata = rcu_dereference_protected(local->monitor_sdata,
539 					  lockdep_is_held(&local->iflist_mtx));
540 	if (sdata)
541 		iterator(data, sdata->vif.addr, &sdata->vif);
542 
543 	mutex_unlock(&local->iflist_mtx);
544 }
545 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
546 
547 void ieee80211_iterate_active_interfaces_atomic(
548 	struct ieee80211_hw *hw,
549 	void (*iterator)(void *data, u8 *mac,
550 			 struct ieee80211_vif *vif),
551 	void *data)
552 {
553 	struct ieee80211_local *local = hw_to_local(hw);
554 	struct ieee80211_sub_if_data *sdata;
555 
556 	rcu_read_lock();
557 
558 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
559 		switch (sdata->vif.type) {
560 		case NL80211_IFTYPE_MONITOR:
561 		case NL80211_IFTYPE_AP_VLAN:
562 			continue;
563 		default:
564 			break;
565 		}
566 		if (ieee80211_sdata_running(sdata))
567 			iterator(data, sdata->vif.addr,
568 				 &sdata->vif);
569 	}
570 
571 	sdata = rcu_dereference(local->monitor_sdata);
572 	if (sdata)
573 		iterator(data, sdata->vif.addr, &sdata->vif);
574 
575 	rcu_read_unlock();
576 }
577 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
578 
579 /*
580  * Nothing should have been stuffed into the workqueue during
581  * the suspend->resume cycle. If this WARN is seen then there
582  * is a bug with either the driver suspend or something in
583  * mac80211 stuffing into the workqueue which we haven't yet
584  * cleared during mac80211's suspend cycle.
585  */
586 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
587 {
588 	if (WARN(local->suspended && !local->resuming,
589 		 "queueing ieee80211 work while going to suspend\n"))
590 		return false;
591 
592 	return true;
593 }
594 
595 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
596 {
597 	struct ieee80211_local *local = hw_to_local(hw);
598 
599 	if (!ieee80211_can_queue_work(local))
600 		return;
601 
602 	queue_work(local->workqueue, work);
603 }
604 EXPORT_SYMBOL(ieee80211_queue_work);
605 
606 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
607 				  struct delayed_work *dwork,
608 				  unsigned long delay)
609 {
610 	struct ieee80211_local *local = hw_to_local(hw);
611 
612 	if (!ieee80211_can_queue_work(local))
613 		return;
614 
615 	queue_delayed_work(local->workqueue, dwork, delay);
616 }
617 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
618 
619 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
620 			       struct ieee802_11_elems *elems,
621 			       u64 filter, u32 crc)
622 {
623 	size_t left = len;
624 	u8 *pos = start;
625 	bool calc_crc = filter != 0;
626 	DECLARE_BITMAP(seen_elems, 256);
627 
628 	bitmap_zero(seen_elems, 256);
629 	memset(elems, 0, sizeof(*elems));
630 	elems->ie_start = start;
631 	elems->total_len = len;
632 
633 	while (left >= 2) {
634 		u8 id, elen;
635 		bool elem_parse_failed;
636 
637 		id = *pos++;
638 		elen = *pos++;
639 		left -= 2;
640 
641 		if (elen > left) {
642 			elems->parse_error = true;
643 			break;
644 		}
645 
646 		switch (id) {
647 		case WLAN_EID_SSID:
648 		case WLAN_EID_SUPP_RATES:
649 		case WLAN_EID_FH_PARAMS:
650 		case WLAN_EID_DS_PARAMS:
651 		case WLAN_EID_CF_PARAMS:
652 		case WLAN_EID_TIM:
653 		case WLAN_EID_IBSS_PARAMS:
654 		case WLAN_EID_CHALLENGE:
655 		case WLAN_EID_RSN:
656 		case WLAN_EID_ERP_INFO:
657 		case WLAN_EID_EXT_SUPP_RATES:
658 		case WLAN_EID_HT_CAPABILITY:
659 		case WLAN_EID_HT_OPERATION:
660 		case WLAN_EID_VHT_CAPABILITY:
661 		case WLAN_EID_VHT_OPERATION:
662 		case WLAN_EID_MESH_ID:
663 		case WLAN_EID_MESH_CONFIG:
664 		case WLAN_EID_PEER_MGMT:
665 		case WLAN_EID_PREQ:
666 		case WLAN_EID_PREP:
667 		case WLAN_EID_PERR:
668 		case WLAN_EID_RANN:
669 		case WLAN_EID_CHANNEL_SWITCH:
670 		case WLAN_EID_EXT_CHANSWITCH_ANN:
671 		case WLAN_EID_COUNTRY:
672 		case WLAN_EID_PWR_CONSTRAINT:
673 		case WLAN_EID_TIMEOUT_INTERVAL:
674 			if (test_bit(id, seen_elems)) {
675 				elems->parse_error = true;
676 				left -= elen;
677 				pos += elen;
678 				continue;
679 			}
680 			break;
681 		}
682 
683 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
684 			crc = crc32_be(crc, pos - 2, elen + 2);
685 
686 		elem_parse_failed = false;
687 
688 		switch (id) {
689 		case WLAN_EID_SSID:
690 			elems->ssid = pos;
691 			elems->ssid_len = elen;
692 			break;
693 		case WLAN_EID_SUPP_RATES:
694 			elems->supp_rates = pos;
695 			elems->supp_rates_len = elen;
696 			break;
697 		case WLAN_EID_FH_PARAMS:
698 			elems->fh_params = pos;
699 			elems->fh_params_len = elen;
700 			break;
701 		case WLAN_EID_DS_PARAMS:
702 			elems->ds_params = pos;
703 			elems->ds_params_len = elen;
704 			break;
705 		case WLAN_EID_CF_PARAMS:
706 			elems->cf_params = pos;
707 			elems->cf_params_len = elen;
708 			break;
709 		case WLAN_EID_TIM:
710 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
711 				elems->tim = (void *)pos;
712 				elems->tim_len = elen;
713 			} else
714 				elem_parse_failed = true;
715 			break;
716 		case WLAN_EID_IBSS_PARAMS:
717 			elems->ibss_params = pos;
718 			elems->ibss_params_len = elen;
719 			break;
720 		case WLAN_EID_CHALLENGE:
721 			elems->challenge = pos;
722 			elems->challenge_len = elen;
723 			break;
724 		case WLAN_EID_VENDOR_SPECIFIC:
725 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
726 			    pos[2] == 0xf2) {
727 				/* Microsoft OUI (00:50:F2) */
728 
729 				if (calc_crc)
730 					crc = crc32_be(crc, pos - 2, elen + 2);
731 
732 				if (pos[3] == 1) {
733 					/* OUI Type 1 - WPA IE */
734 					elems->wpa = pos;
735 					elems->wpa_len = elen;
736 				} else if (elen >= 5 && pos[3] == 2) {
737 					/* OUI Type 2 - WMM IE */
738 					if (pos[4] == 0) {
739 						elems->wmm_info = pos;
740 						elems->wmm_info_len = elen;
741 					} else if (pos[4] == 1) {
742 						elems->wmm_param = pos;
743 						elems->wmm_param_len = elen;
744 					}
745 				}
746 			}
747 			break;
748 		case WLAN_EID_RSN:
749 			elems->rsn = pos;
750 			elems->rsn_len = elen;
751 			break;
752 		case WLAN_EID_ERP_INFO:
753 			elems->erp_info = pos;
754 			elems->erp_info_len = elen;
755 			break;
756 		case WLAN_EID_EXT_SUPP_RATES:
757 			elems->ext_supp_rates = pos;
758 			elems->ext_supp_rates_len = elen;
759 			break;
760 		case WLAN_EID_HT_CAPABILITY:
761 			if (elen >= sizeof(struct ieee80211_ht_cap))
762 				elems->ht_cap_elem = (void *)pos;
763 			else
764 				elem_parse_failed = true;
765 			break;
766 		case WLAN_EID_HT_OPERATION:
767 			if (elen >= sizeof(struct ieee80211_ht_operation))
768 				elems->ht_operation = (void *)pos;
769 			else
770 				elem_parse_failed = true;
771 			break;
772 		case WLAN_EID_MESH_ID:
773 			elems->mesh_id = pos;
774 			elems->mesh_id_len = elen;
775 			break;
776 		case WLAN_EID_MESH_CONFIG:
777 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
778 				elems->mesh_config = (void *)pos;
779 			else
780 				elem_parse_failed = true;
781 			break;
782 		case WLAN_EID_PEER_MGMT:
783 			elems->peering = pos;
784 			elems->peering_len = elen;
785 			break;
786 		case WLAN_EID_PREQ:
787 			elems->preq = pos;
788 			elems->preq_len = elen;
789 			break;
790 		case WLAN_EID_PREP:
791 			elems->prep = pos;
792 			elems->prep_len = elen;
793 			break;
794 		case WLAN_EID_PERR:
795 			elems->perr = pos;
796 			elems->perr_len = elen;
797 			break;
798 		case WLAN_EID_RANN:
799 			if (elen >= sizeof(struct ieee80211_rann_ie))
800 				elems->rann = (void *)pos;
801 			else
802 				elem_parse_failed = true;
803 			break;
804 		case WLAN_EID_CHANNEL_SWITCH:
805 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
806 				elem_parse_failed = true;
807 				break;
808 			}
809 			elems->ch_switch_ie = (void *)pos;
810 			break;
811 		case WLAN_EID_QUIET:
812 			if (!elems->quiet_elem) {
813 				elems->quiet_elem = pos;
814 				elems->quiet_elem_len = elen;
815 			}
816 			elems->num_of_quiet_elem++;
817 			break;
818 		case WLAN_EID_COUNTRY:
819 			elems->country_elem = pos;
820 			elems->country_elem_len = elen;
821 			break;
822 		case WLAN_EID_PWR_CONSTRAINT:
823 			if (elen != 1) {
824 				elem_parse_failed = true;
825 				break;
826 			}
827 			elems->pwr_constr_elem = pos;
828 			break;
829 		case WLAN_EID_TIMEOUT_INTERVAL:
830 			elems->timeout_int = pos;
831 			elems->timeout_int_len = elen;
832 			break;
833 		default:
834 			break;
835 		}
836 
837 		if (elem_parse_failed)
838 			elems->parse_error = true;
839 		else
840 			set_bit(id, seen_elems);
841 
842 		left -= elen;
843 		pos += elen;
844 	}
845 
846 	if (left != 0)
847 		elems->parse_error = true;
848 
849 	return crc;
850 }
851 
852 void ieee802_11_parse_elems(u8 *start, size_t len,
853 			    struct ieee802_11_elems *elems)
854 {
855 	ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
856 }
857 
858 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
859 			       bool bss_notify)
860 {
861 	struct ieee80211_local *local = sdata->local;
862 	struct ieee80211_tx_queue_params qparam;
863 	int ac;
864 	bool use_11b, enable_qos;
865 	int aCWmin, aCWmax;
866 
867 	if (!local->ops->conf_tx)
868 		return;
869 
870 	if (local->hw.queues < IEEE80211_NUM_ACS)
871 		return;
872 
873 	memset(&qparam, 0, sizeof(qparam));
874 
875 	use_11b = (local->oper_channel->band == IEEE80211_BAND_2GHZ) &&
876 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
877 
878 	/*
879 	 * By default disable QoS in STA mode for old access points, which do
880 	 * not support 802.11e. New APs will provide proper queue parameters,
881 	 * that we will configure later.
882 	 */
883 	enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
884 
885 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
886 		/* Set defaults according to 802.11-2007 Table 7-37 */
887 		aCWmax = 1023;
888 		if (use_11b)
889 			aCWmin = 31;
890 		else
891 			aCWmin = 15;
892 
893 		if (enable_qos) {
894 			switch (ac) {
895 			case IEEE80211_AC_BK:
896 				qparam.cw_max = aCWmax;
897 				qparam.cw_min = aCWmin;
898 				qparam.txop = 0;
899 				qparam.aifs = 7;
900 				break;
901 			/* never happens but let's not leave undefined */
902 			default:
903 			case IEEE80211_AC_BE:
904 				qparam.cw_max = aCWmax;
905 				qparam.cw_min = aCWmin;
906 				qparam.txop = 0;
907 				qparam.aifs = 3;
908 				break;
909 			case IEEE80211_AC_VI:
910 				qparam.cw_max = aCWmin;
911 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
912 				if (use_11b)
913 					qparam.txop = 6016/32;
914 				else
915 					qparam.txop = 3008/32;
916 				qparam.aifs = 2;
917 				break;
918 			case IEEE80211_AC_VO:
919 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
920 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
921 				if (use_11b)
922 					qparam.txop = 3264/32;
923 				else
924 					qparam.txop = 1504/32;
925 				qparam.aifs = 2;
926 				break;
927 			}
928 		} else {
929 			/* Confiure old 802.11b/g medium access rules. */
930 			qparam.cw_max = aCWmax;
931 			qparam.cw_min = aCWmin;
932 			qparam.txop = 0;
933 			qparam.aifs = 2;
934 		}
935 
936 		qparam.uapsd = false;
937 
938 		sdata->tx_conf[ac] = qparam;
939 		drv_conf_tx(local, sdata, ac, &qparam);
940 	}
941 
942 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
943 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
944 		sdata->vif.bss_conf.qos = enable_qos;
945 		if (bss_notify)
946 			ieee80211_bss_info_change_notify(sdata,
947 							 BSS_CHANGED_QOS);
948 	}
949 }
950 
951 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
952 				  const size_t supp_rates_len,
953 				  const u8 *supp_rates)
954 {
955 	struct ieee80211_local *local = sdata->local;
956 	int i, have_higher_than_11mbit = 0;
957 
958 	/* cf. IEEE 802.11 9.2.12 */
959 	for (i = 0; i < supp_rates_len; i++)
960 		if ((supp_rates[i] & 0x7f) * 5 > 110)
961 			have_higher_than_11mbit = 1;
962 
963 	if (local->oper_channel->band == IEEE80211_BAND_2GHZ &&
964 	    have_higher_than_11mbit)
965 		sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
966 	else
967 		sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
968 
969 	ieee80211_set_wmm_default(sdata, true);
970 }
971 
972 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
973 			      enum ieee80211_band band)
974 {
975 	struct ieee80211_supported_band *sband;
976 	struct ieee80211_rate *bitrates;
977 	u32 mandatory_rates;
978 	enum ieee80211_rate_flags mandatory_flag;
979 	int i;
980 
981 	sband = local->hw.wiphy->bands[band];
982 	if (WARN_ON(!sband))
983 		return 1;
984 
985 	if (band == IEEE80211_BAND_2GHZ)
986 		mandatory_flag = IEEE80211_RATE_MANDATORY_B;
987 	else
988 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
989 
990 	bitrates = sband->bitrates;
991 	mandatory_rates = 0;
992 	for (i = 0; i < sband->n_bitrates; i++)
993 		if (bitrates[i].flags & mandatory_flag)
994 			mandatory_rates |= BIT(i);
995 	return mandatory_rates;
996 }
997 
998 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
999 			 u16 transaction, u16 auth_alg,
1000 			 u8 *extra, size_t extra_len, const u8 *da,
1001 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
1002 {
1003 	struct ieee80211_local *local = sdata->local;
1004 	struct sk_buff *skb;
1005 	struct ieee80211_mgmt *mgmt;
1006 	int err;
1007 
1008 	skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1009 			    sizeof(*mgmt) + 6 + extra_len);
1010 	if (!skb)
1011 		return;
1012 
1013 	skb_reserve(skb, local->hw.extra_tx_headroom);
1014 
1015 	mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1016 	memset(mgmt, 0, 24 + 6);
1017 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1018 					  IEEE80211_STYPE_AUTH);
1019 	memcpy(mgmt->da, da, ETH_ALEN);
1020 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1021 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1022 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1023 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1024 	mgmt->u.auth.status_code = cpu_to_le16(0);
1025 	if (extra)
1026 		memcpy(skb_put(skb, extra_len), extra, extra_len);
1027 
1028 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1029 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1030 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1031 		WARN_ON(err);
1032 	}
1033 
1034 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1035 	ieee80211_tx_skb(sdata, skb);
1036 }
1037 
1038 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1039 				    const u8 *bssid, u16 stype, u16 reason,
1040 				    bool send_frame, u8 *frame_buf)
1041 {
1042 	struct ieee80211_local *local = sdata->local;
1043 	struct sk_buff *skb;
1044 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1045 
1046 	/* build frame */
1047 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1048 	mgmt->duration = 0; /* initialize only */
1049 	mgmt->seq_ctrl = 0; /* initialize only */
1050 	memcpy(mgmt->da, bssid, ETH_ALEN);
1051 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1052 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1053 	/* u.deauth.reason_code == u.disassoc.reason_code */
1054 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1055 
1056 	if (send_frame) {
1057 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1058 				    IEEE80211_DEAUTH_FRAME_LEN);
1059 		if (!skb)
1060 			return;
1061 
1062 		skb_reserve(skb, local->hw.extra_tx_headroom);
1063 
1064 		/* copy in frame */
1065 		memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1066 		       mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1067 
1068 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1069 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1070 			IEEE80211_SKB_CB(skb)->flags |=
1071 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1072 
1073 		ieee80211_tx_skb(sdata, skb);
1074 	}
1075 }
1076 
1077 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1078 			     const u8 *ie, size_t ie_len,
1079 			     enum ieee80211_band band, u32 rate_mask,
1080 			     u8 channel)
1081 {
1082 	struct ieee80211_supported_band *sband;
1083 	u8 *pos;
1084 	size_t offset = 0, noffset;
1085 	int supp_rates_len, i;
1086 	u8 rates[32];
1087 	int num_rates;
1088 	int ext_rates_len;
1089 
1090 	sband = local->hw.wiphy->bands[band];
1091 	if (WARN_ON_ONCE(!sband))
1092 		return 0;
1093 
1094 	pos = buffer;
1095 
1096 	num_rates = 0;
1097 	for (i = 0; i < sband->n_bitrates; i++) {
1098 		if ((BIT(i) & rate_mask) == 0)
1099 			continue; /* skip rate */
1100 		rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1101 	}
1102 
1103 	supp_rates_len = min_t(int, num_rates, 8);
1104 
1105 	*pos++ = WLAN_EID_SUPP_RATES;
1106 	*pos++ = supp_rates_len;
1107 	memcpy(pos, rates, supp_rates_len);
1108 	pos += supp_rates_len;
1109 
1110 	/* insert "request information" if in custom IEs */
1111 	if (ie && ie_len) {
1112 		static const u8 before_extrates[] = {
1113 			WLAN_EID_SSID,
1114 			WLAN_EID_SUPP_RATES,
1115 			WLAN_EID_REQUEST,
1116 		};
1117 		noffset = ieee80211_ie_split(ie, ie_len,
1118 					     before_extrates,
1119 					     ARRAY_SIZE(before_extrates),
1120 					     offset);
1121 		memcpy(pos, ie + offset, noffset - offset);
1122 		pos += noffset - offset;
1123 		offset = noffset;
1124 	}
1125 
1126 	ext_rates_len = num_rates - supp_rates_len;
1127 	if (ext_rates_len > 0) {
1128 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1129 		*pos++ = ext_rates_len;
1130 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1131 		pos += ext_rates_len;
1132 	}
1133 
1134 	if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1135 		*pos++ = WLAN_EID_DS_PARAMS;
1136 		*pos++ = 1;
1137 		*pos++ = channel;
1138 	}
1139 
1140 	/* insert custom IEs that go before HT */
1141 	if (ie && ie_len) {
1142 		static const u8 before_ht[] = {
1143 			WLAN_EID_SSID,
1144 			WLAN_EID_SUPP_RATES,
1145 			WLAN_EID_REQUEST,
1146 			WLAN_EID_EXT_SUPP_RATES,
1147 			WLAN_EID_DS_PARAMS,
1148 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1149 		};
1150 		noffset = ieee80211_ie_split(ie, ie_len,
1151 					     before_ht, ARRAY_SIZE(before_ht),
1152 					     offset);
1153 		memcpy(pos, ie + offset, noffset - offset);
1154 		pos += noffset - offset;
1155 		offset = noffset;
1156 	}
1157 
1158 	if (sband->ht_cap.ht_supported)
1159 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1160 						sband->ht_cap.cap);
1161 
1162 	/*
1163 	 * If adding more here, adjust code in main.c
1164 	 * that calculates local->scan_ies_len.
1165 	 */
1166 
1167 	/* add any remaining custom IEs */
1168 	if (ie && ie_len) {
1169 		noffset = ie_len;
1170 		memcpy(pos, ie + offset, noffset - offset);
1171 		pos += noffset - offset;
1172 	}
1173 
1174 	if (sband->vht_cap.vht_supported)
1175 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1176 						 sband->vht_cap.cap);
1177 
1178 	return pos - buffer;
1179 }
1180 
1181 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1182 					  u8 *dst, u32 ratemask,
1183 					  struct ieee80211_channel *chan,
1184 					  const u8 *ssid, size_t ssid_len,
1185 					  const u8 *ie, size_t ie_len,
1186 					  bool directed)
1187 {
1188 	struct ieee80211_local *local = sdata->local;
1189 	struct sk_buff *skb;
1190 	struct ieee80211_mgmt *mgmt;
1191 	size_t buf_len;
1192 	u8 *buf;
1193 	u8 chan_no;
1194 
1195 	/* FIXME: come up with a proper value */
1196 	buf = kmalloc(200 + ie_len, GFP_KERNEL);
1197 	if (!buf)
1198 		return NULL;
1199 
1200 	/*
1201 	 * Do not send DS Channel parameter for directed probe requests
1202 	 * in order to maximize the chance that we get a response.  Some
1203 	 * badly-behaved APs don't respond when this parameter is included.
1204 	 */
1205 	if (directed)
1206 		chan_no = 0;
1207 	else
1208 		chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1209 
1210 	buf_len = ieee80211_build_preq_ies(local, buf, ie, ie_len, chan->band,
1211 					   ratemask, chan_no);
1212 
1213 	skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1214 				     ssid, ssid_len,
1215 				     buf, buf_len);
1216 	if (!skb)
1217 		goto out;
1218 
1219 	if (dst) {
1220 		mgmt = (struct ieee80211_mgmt *) skb->data;
1221 		memcpy(mgmt->da, dst, ETH_ALEN);
1222 		memcpy(mgmt->bssid, dst, ETH_ALEN);
1223 	}
1224 
1225 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1226 
1227  out:
1228 	kfree(buf);
1229 
1230 	return skb;
1231 }
1232 
1233 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1234 			      const u8 *ssid, size_t ssid_len,
1235 			      const u8 *ie, size_t ie_len,
1236 			      u32 ratemask, bool directed, bool no_cck,
1237 			      struct ieee80211_channel *channel)
1238 {
1239 	struct sk_buff *skb;
1240 
1241 	skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1242 					ssid, ssid_len,
1243 					ie, ie_len, directed);
1244 	if (skb) {
1245 		if (no_cck)
1246 			IEEE80211_SKB_CB(skb)->flags |=
1247 				IEEE80211_TX_CTL_NO_CCK_RATE;
1248 		ieee80211_tx_skb(sdata, skb);
1249 	}
1250 }
1251 
1252 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1253 			    struct ieee802_11_elems *elems,
1254 			    enum ieee80211_band band, u32 *basic_rates)
1255 {
1256 	struct ieee80211_supported_band *sband;
1257 	struct ieee80211_rate *bitrates;
1258 	size_t num_rates;
1259 	u32 supp_rates;
1260 	int i, j;
1261 	sband = local->hw.wiphy->bands[band];
1262 
1263 	if (WARN_ON(!sband))
1264 		return 1;
1265 
1266 	bitrates = sband->bitrates;
1267 	num_rates = sband->n_bitrates;
1268 	supp_rates = 0;
1269 	for (i = 0; i < elems->supp_rates_len +
1270 		     elems->ext_supp_rates_len; i++) {
1271 		u8 rate = 0;
1272 		int own_rate;
1273 		bool is_basic;
1274 		if (i < elems->supp_rates_len)
1275 			rate = elems->supp_rates[i];
1276 		else if (elems->ext_supp_rates)
1277 			rate = elems->ext_supp_rates
1278 				[i - elems->supp_rates_len];
1279 		own_rate = 5 * (rate & 0x7f);
1280 		is_basic = !!(rate & 0x80);
1281 
1282 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1283 			continue;
1284 
1285 		for (j = 0; j < num_rates; j++) {
1286 			if (bitrates[j].bitrate == own_rate) {
1287 				supp_rates |= BIT(j);
1288 				if (basic_rates && is_basic)
1289 					*basic_rates |= BIT(j);
1290 			}
1291 		}
1292 	}
1293 	return supp_rates;
1294 }
1295 
1296 void ieee80211_stop_device(struct ieee80211_local *local)
1297 {
1298 	ieee80211_led_radio(local, false);
1299 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1300 
1301 	cancel_work_sync(&local->reconfig_filter);
1302 
1303 	flush_workqueue(local->workqueue);
1304 	drv_stop(local);
1305 }
1306 
1307 int ieee80211_reconfig(struct ieee80211_local *local)
1308 {
1309 	struct ieee80211_hw *hw = &local->hw;
1310 	struct ieee80211_sub_if_data *sdata;
1311 	struct sta_info *sta;
1312 	int res, i;
1313 
1314 #ifdef CONFIG_PM
1315 	if (local->suspended)
1316 		local->resuming = true;
1317 
1318 	if (local->wowlan) {
1319 		local->wowlan = false;
1320 		res = drv_resume(local);
1321 		if (res < 0) {
1322 			local->resuming = false;
1323 			return res;
1324 		}
1325 		if (res == 0)
1326 			goto wake_up;
1327 		WARN_ON(res > 1);
1328 		/*
1329 		 * res is 1, which means the driver requested
1330 		 * to go through a regular reset on wakeup.
1331 		 */
1332 	}
1333 #endif
1334 	/* everything else happens only if HW was up & running */
1335 	if (!local->open_count)
1336 		goto wake_up;
1337 
1338 	/*
1339 	 * Upon resume hardware can sometimes be goofy due to
1340 	 * various platform / driver / bus issues, so restarting
1341 	 * the device may at times not work immediately. Propagate
1342 	 * the error.
1343 	 */
1344 	res = drv_start(local);
1345 	if (res) {
1346 		WARN(local->suspended, "Hardware became unavailable "
1347 		     "upon resume. This could be a software issue "
1348 		     "prior to suspend or a hardware issue.\n");
1349 		return res;
1350 	}
1351 
1352 	/* setup fragmentation threshold */
1353 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1354 
1355 	/* setup RTS threshold */
1356 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1357 
1358 	/* reset coverage class */
1359 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
1360 
1361 	ieee80211_led_radio(local, true);
1362 	ieee80211_mod_tpt_led_trig(local,
1363 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1364 
1365 	/* add interfaces */
1366 	sdata = rtnl_dereference(local->monitor_sdata);
1367 	if (sdata) {
1368 		res = drv_add_interface(local, sdata);
1369 		if (WARN_ON(res)) {
1370 			rcu_assign_pointer(local->monitor_sdata, NULL);
1371 			synchronize_net();
1372 			kfree(sdata);
1373 		}
1374 	}
1375 
1376 	list_for_each_entry(sdata, &local->interfaces, list) {
1377 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1378 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1379 		    ieee80211_sdata_running(sdata))
1380 			res = drv_add_interface(local, sdata);
1381 	}
1382 
1383 	/* add STAs back */
1384 	mutex_lock(&local->sta_mtx);
1385 	list_for_each_entry(sta, &local->sta_list, list) {
1386 		enum ieee80211_sta_state state;
1387 
1388 		if (!sta->uploaded)
1389 			continue;
1390 
1391 		/* AP-mode stations will be added later */
1392 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1393 			continue;
1394 
1395 		for (state = IEEE80211_STA_NOTEXIST;
1396 		     state < sta->sta_state; state++)
1397 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1398 					      state + 1));
1399 	}
1400 	mutex_unlock(&local->sta_mtx);
1401 
1402 	/* reconfigure tx conf */
1403 	if (hw->queues >= IEEE80211_NUM_ACS) {
1404 		list_for_each_entry(sdata, &local->interfaces, list) {
1405 			if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1406 			    sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1407 			    !ieee80211_sdata_running(sdata))
1408 				continue;
1409 
1410 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
1411 				drv_conf_tx(local, sdata, i,
1412 					    &sdata->tx_conf[i]);
1413 		}
1414 	}
1415 
1416 	/* reconfigure hardware */
1417 	ieee80211_hw_config(local, ~0);
1418 
1419 	ieee80211_configure_filter(local);
1420 
1421 	/* Finally also reconfigure all the BSS information */
1422 	list_for_each_entry(sdata, &local->interfaces, list) {
1423 		u32 changed;
1424 
1425 		if (!ieee80211_sdata_running(sdata))
1426 			continue;
1427 
1428 		/* common change flags for all interface types */
1429 		changed = BSS_CHANGED_ERP_CTS_PROT |
1430 			  BSS_CHANGED_ERP_PREAMBLE |
1431 			  BSS_CHANGED_ERP_SLOT |
1432 			  BSS_CHANGED_HT |
1433 			  BSS_CHANGED_BASIC_RATES |
1434 			  BSS_CHANGED_BEACON_INT |
1435 			  BSS_CHANGED_BSSID |
1436 			  BSS_CHANGED_CQM |
1437 			  BSS_CHANGED_QOS |
1438 			  BSS_CHANGED_IDLE;
1439 
1440 		switch (sdata->vif.type) {
1441 		case NL80211_IFTYPE_STATION:
1442 			changed |= BSS_CHANGED_ASSOC |
1443 				   BSS_CHANGED_ARP_FILTER |
1444 				   BSS_CHANGED_PS;
1445 			mutex_lock(&sdata->u.mgd.mtx);
1446 			ieee80211_bss_info_change_notify(sdata, changed);
1447 			mutex_unlock(&sdata->u.mgd.mtx);
1448 			break;
1449 		case NL80211_IFTYPE_ADHOC:
1450 			changed |= BSS_CHANGED_IBSS;
1451 			/* fall through */
1452 		case NL80211_IFTYPE_AP:
1453 			changed |= BSS_CHANGED_SSID;
1454 
1455 			if (sdata->vif.type == NL80211_IFTYPE_AP)
1456 				changed |= BSS_CHANGED_AP_PROBE_RESP;
1457 
1458 			/* fall through */
1459 		case NL80211_IFTYPE_MESH_POINT:
1460 			changed |= BSS_CHANGED_BEACON |
1461 				   BSS_CHANGED_BEACON_ENABLED;
1462 			ieee80211_bss_info_change_notify(sdata, changed);
1463 			break;
1464 		case NL80211_IFTYPE_WDS:
1465 			break;
1466 		case NL80211_IFTYPE_AP_VLAN:
1467 		case NL80211_IFTYPE_MONITOR:
1468 			/* ignore virtual */
1469 			break;
1470 		case NL80211_IFTYPE_P2P_DEVICE:
1471 			changed = BSS_CHANGED_IDLE;
1472 			break;
1473 		case NL80211_IFTYPE_UNSPECIFIED:
1474 		case NUM_NL80211_IFTYPES:
1475 		case NL80211_IFTYPE_P2P_CLIENT:
1476 		case NL80211_IFTYPE_P2P_GO:
1477 			WARN_ON(1);
1478 			break;
1479 		}
1480 	}
1481 
1482 	ieee80211_recalc_ps(local, -1);
1483 
1484 	/*
1485 	 * The sta might be in psm against the ap (e.g. because
1486 	 * this was the state before a hw restart), so we
1487 	 * explicitly send a null packet in order to make sure
1488 	 * it'll sync against the ap (and get out of psm).
1489 	 */
1490 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1491 		list_for_each_entry(sdata, &local->interfaces, list) {
1492 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
1493 				continue;
1494 			if (!sdata->u.mgd.associated)
1495 				continue;
1496 
1497 			ieee80211_send_nullfunc(local, sdata, 0);
1498 		}
1499 	}
1500 
1501 	/* APs are now beaconing, add back stations */
1502 	mutex_lock(&local->sta_mtx);
1503 	list_for_each_entry(sta, &local->sta_list, list) {
1504 		enum ieee80211_sta_state state;
1505 
1506 		if (!sta->uploaded)
1507 			continue;
1508 
1509 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1510 			continue;
1511 
1512 		for (state = IEEE80211_STA_NOTEXIST;
1513 		     state < sta->sta_state; state++)
1514 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1515 					      state + 1));
1516 	}
1517 	mutex_unlock(&local->sta_mtx);
1518 
1519 	/* add back keys */
1520 	list_for_each_entry(sdata, &local->interfaces, list)
1521 		if (ieee80211_sdata_running(sdata))
1522 			ieee80211_enable_keys(sdata);
1523 
1524  wake_up:
1525 	local->in_reconfig = false;
1526 	barrier();
1527 
1528 	/*
1529 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1530 	 * sessions can be established after a resume.
1531 	 *
1532 	 * Also tear down aggregation sessions since reconfiguring
1533 	 * them in a hardware restart scenario is not easily done
1534 	 * right now, and the hardware will have lost information
1535 	 * about the sessions, but we and the AP still think they
1536 	 * are active. This is really a workaround though.
1537 	 */
1538 	if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1539 		mutex_lock(&local->sta_mtx);
1540 
1541 		list_for_each_entry(sta, &local->sta_list, list) {
1542 			ieee80211_sta_tear_down_BA_sessions(sta, true);
1543 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1544 		}
1545 
1546 		mutex_unlock(&local->sta_mtx);
1547 	}
1548 
1549 	ieee80211_wake_queues_by_reason(hw,
1550 			IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1551 
1552 	/*
1553 	 * If this is for hw restart things are still running.
1554 	 * We may want to change that later, however.
1555 	 */
1556 	if (!local->suspended)
1557 		return 0;
1558 
1559 #ifdef CONFIG_PM
1560 	/* first set suspended false, then resuming */
1561 	local->suspended = false;
1562 	mb();
1563 	local->resuming = false;
1564 
1565 	list_for_each_entry(sdata, &local->interfaces, list) {
1566 		switch(sdata->vif.type) {
1567 		case NL80211_IFTYPE_STATION:
1568 			ieee80211_sta_restart(sdata);
1569 			break;
1570 		case NL80211_IFTYPE_ADHOC:
1571 			ieee80211_ibss_restart(sdata);
1572 			break;
1573 		case NL80211_IFTYPE_MESH_POINT:
1574 			ieee80211_mesh_restart(sdata);
1575 			break;
1576 		default:
1577 			break;
1578 		}
1579 	}
1580 
1581 	mod_timer(&local->sta_cleanup, jiffies + 1);
1582 
1583 	mutex_lock(&local->sta_mtx);
1584 	list_for_each_entry(sta, &local->sta_list, list)
1585 		mesh_plink_restart(sta);
1586 	mutex_unlock(&local->sta_mtx);
1587 #else
1588 	WARN_ON(1);
1589 #endif
1590 	return 0;
1591 }
1592 
1593 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1594 {
1595 	struct ieee80211_sub_if_data *sdata;
1596 	struct ieee80211_local *local;
1597 	struct ieee80211_key *key;
1598 
1599 	if (WARN_ON(!vif))
1600 		return;
1601 
1602 	sdata = vif_to_sdata(vif);
1603 	local = sdata->local;
1604 
1605 	if (WARN_ON(!local->resuming))
1606 		return;
1607 
1608 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1609 		return;
1610 
1611 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1612 
1613 	mutex_lock(&local->key_mtx);
1614 	list_for_each_entry(key, &sdata->key_list, list)
1615 		key->flags |= KEY_FLAG_TAINTED;
1616 	mutex_unlock(&local->key_mtx);
1617 }
1618 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1619 
1620 static int check_mgd_smps(struct ieee80211_if_managed *ifmgd,
1621 			  enum ieee80211_smps_mode *smps_mode)
1622 {
1623 	if (ifmgd->associated) {
1624 		*smps_mode = ifmgd->ap_smps;
1625 
1626 		if (*smps_mode == IEEE80211_SMPS_AUTOMATIC) {
1627 			if (ifmgd->powersave)
1628 				*smps_mode = IEEE80211_SMPS_DYNAMIC;
1629 			else
1630 				*smps_mode = IEEE80211_SMPS_OFF;
1631 		}
1632 
1633 		return 1;
1634 	}
1635 
1636 	return 0;
1637 }
1638 
1639 void ieee80211_recalc_smps(struct ieee80211_local *local)
1640 {
1641 	struct ieee80211_sub_if_data *sdata;
1642 	enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_OFF;
1643 	int count = 0;
1644 
1645 	mutex_lock(&local->iflist_mtx);
1646 
1647 	/*
1648 	 * This function could be improved to handle multiple
1649 	 * interfaces better, but right now it makes any
1650 	 * non-station interfaces force SM PS to be turned
1651 	 * off. If there are multiple station interfaces it
1652 	 * could also use the best possible mode, e.g. if
1653 	 * one is in static and the other in dynamic then
1654 	 * dynamic is ok.
1655 	 */
1656 
1657 	list_for_each_entry(sdata, &local->interfaces, list) {
1658 		if (!ieee80211_sdata_running(sdata))
1659 			continue;
1660 		if (sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE)
1661 			continue;
1662 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
1663 			goto set;
1664 
1665 		count += check_mgd_smps(&sdata->u.mgd, &smps_mode);
1666 
1667 		if (count > 1) {
1668 			smps_mode = IEEE80211_SMPS_OFF;
1669 			break;
1670 		}
1671 	}
1672 
1673 	if (smps_mode == local->smps_mode)
1674 		goto unlock;
1675 
1676  set:
1677 	local->smps_mode = smps_mode;
1678 	/* changed flag is auto-detected for this */
1679 	ieee80211_hw_config(local, 0);
1680  unlock:
1681 	mutex_unlock(&local->iflist_mtx);
1682 }
1683 
1684 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1685 {
1686 	int i;
1687 
1688 	for (i = 0; i < n_ids; i++)
1689 		if (ids[i] == id)
1690 			return true;
1691 	return false;
1692 }
1693 
1694 /**
1695  * ieee80211_ie_split - split an IE buffer according to ordering
1696  *
1697  * @ies: the IE buffer
1698  * @ielen: the length of the IE buffer
1699  * @ids: an array with element IDs that are allowed before
1700  *	the split
1701  * @n_ids: the size of the element ID array
1702  * @offset: offset where to start splitting in the buffer
1703  *
1704  * This function splits an IE buffer by updating the @offset
1705  * variable to point to the location where the buffer should be
1706  * split.
1707  *
1708  * It assumes that the given IE buffer is well-formed, this
1709  * has to be guaranteed by the caller!
1710  *
1711  * It also assumes that the IEs in the buffer are ordered
1712  * correctly, if not the result of using this function will not
1713  * be ordered correctly either, i.e. it does no reordering.
1714  *
1715  * The function returns the offset where the next part of the
1716  * buffer starts, which may be @ielen if the entire (remainder)
1717  * of the buffer should be used.
1718  */
1719 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1720 			  const u8 *ids, int n_ids, size_t offset)
1721 {
1722 	size_t pos = offset;
1723 
1724 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1725 		pos += 2 + ies[pos + 1];
1726 
1727 	return pos;
1728 }
1729 
1730 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1731 {
1732 	size_t pos = offset;
1733 
1734 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1735 		pos += 2 + ies[pos + 1];
1736 
1737 	return pos;
1738 }
1739 
1740 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1741 					    int rssi_min_thold,
1742 					    int rssi_max_thold)
1743 {
1744 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1745 
1746 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1747 		return;
1748 
1749 	/*
1750 	 * Scale up threshold values before storing it, as the RSSI averaging
1751 	 * algorithm uses a scaled up value as well. Change this scaling
1752 	 * factor if the RSSI averaging algorithm changes.
1753 	 */
1754 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1755 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1756 }
1757 
1758 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1759 				    int rssi_min_thold,
1760 				    int rssi_max_thold)
1761 {
1762 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1763 
1764 	WARN_ON(rssi_min_thold == rssi_max_thold ||
1765 		rssi_min_thold > rssi_max_thold);
1766 
1767 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1768 				       rssi_max_thold);
1769 }
1770 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1771 
1772 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1773 {
1774 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1775 
1776 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
1777 }
1778 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1779 
1780 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1781 			      u16 cap)
1782 {
1783 	__le16 tmp;
1784 
1785 	*pos++ = WLAN_EID_HT_CAPABILITY;
1786 	*pos++ = sizeof(struct ieee80211_ht_cap);
1787 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1788 
1789 	/* capability flags */
1790 	tmp = cpu_to_le16(cap);
1791 	memcpy(pos, &tmp, sizeof(u16));
1792 	pos += sizeof(u16);
1793 
1794 	/* AMPDU parameters */
1795 	*pos++ = ht_cap->ampdu_factor |
1796 		 (ht_cap->ampdu_density <<
1797 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1798 
1799 	/* MCS set */
1800 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1801 	pos += sizeof(ht_cap->mcs);
1802 
1803 	/* extended capabilities */
1804 	pos += sizeof(__le16);
1805 
1806 	/* BF capabilities */
1807 	pos += sizeof(__le32);
1808 
1809 	/* antenna selection */
1810 	pos += sizeof(u8);
1811 
1812 	return pos;
1813 }
1814 
1815 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1816 							   u32 cap)
1817 {
1818 	__le32 tmp;
1819 
1820 	*pos++ = WLAN_EID_VHT_CAPABILITY;
1821 	*pos++ = sizeof(struct ieee80211_vht_capabilities);
1822 	memset(pos, 0, sizeof(struct ieee80211_vht_capabilities));
1823 
1824 	/* capability flags */
1825 	tmp = cpu_to_le32(cap);
1826 	memcpy(pos, &tmp, sizeof(u32));
1827 	pos += sizeof(u32);
1828 
1829 	/* VHT MCS set */
1830 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1831 	pos += sizeof(vht_cap->vht_mcs);
1832 
1833 	return pos;
1834 }
1835 
1836 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1837 			       struct ieee80211_channel *channel,
1838 			       enum nl80211_channel_type channel_type,
1839 			       u16 prot_mode)
1840 {
1841 	struct ieee80211_ht_operation *ht_oper;
1842 	/* Build HT Information */
1843 	*pos++ = WLAN_EID_HT_OPERATION;
1844 	*pos++ = sizeof(struct ieee80211_ht_operation);
1845 	ht_oper = (struct ieee80211_ht_operation *)pos;
1846 	ht_oper->primary_chan =
1847 			ieee80211_frequency_to_channel(channel->center_freq);
1848 	switch (channel_type) {
1849 	case NL80211_CHAN_HT40MINUS:
1850 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1851 		break;
1852 	case NL80211_CHAN_HT40PLUS:
1853 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1854 		break;
1855 	case NL80211_CHAN_HT20:
1856 	default:
1857 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1858 		break;
1859 	}
1860 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1861 	    channel_type != NL80211_CHAN_NO_HT &&
1862 	    channel_type != NL80211_CHAN_HT20)
1863 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1864 
1865 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
1866 	ht_oper->stbc_param = 0x0000;
1867 
1868 	/* It seems that Basic MCS set and Supported MCS set
1869 	   are identical for the first 10 bytes */
1870 	memset(&ht_oper->basic_set, 0, 16);
1871 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1872 
1873 	return pos + sizeof(struct ieee80211_ht_operation);
1874 }
1875 
1876 enum nl80211_channel_type
1877 ieee80211_ht_oper_to_channel_type(struct ieee80211_ht_operation *ht_oper)
1878 {
1879 	enum nl80211_channel_type channel_type;
1880 
1881 	if (!ht_oper)
1882 		return NL80211_CHAN_NO_HT;
1883 
1884 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1885 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1886 		channel_type = NL80211_CHAN_HT20;
1887 		break;
1888 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1889 		channel_type = NL80211_CHAN_HT40PLUS;
1890 		break;
1891 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1892 		channel_type = NL80211_CHAN_HT40MINUS;
1893 		break;
1894 	default:
1895 		channel_type = NL80211_CHAN_NO_HT;
1896 	}
1897 
1898 	return channel_type;
1899 }
1900 
1901 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1902 			    struct sk_buff *skb, bool need_basic,
1903 			    enum ieee80211_band band)
1904 {
1905 	struct ieee80211_local *local = sdata->local;
1906 	struct ieee80211_supported_band *sband;
1907 	int rate;
1908 	u8 i, rates, *pos;
1909 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1910 
1911 	sband = local->hw.wiphy->bands[band];
1912 	rates = sband->n_bitrates;
1913 	if (rates > 8)
1914 		rates = 8;
1915 
1916 	if (skb_tailroom(skb) < rates + 2)
1917 		return -ENOMEM;
1918 
1919 	pos = skb_put(skb, rates + 2);
1920 	*pos++ = WLAN_EID_SUPP_RATES;
1921 	*pos++ = rates;
1922 	for (i = 0; i < rates; i++) {
1923 		u8 basic = 0;
1924 		if (need_basic && basic_rates & BIT(i))
1925 			basic = 0x80;
1926 		rate = sband->bitrates[i].bitrate;
1927 		*pos++ = basic | (u8) (rate / 5);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
1933 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
1934 				struct sk_buff *skb, bool need_basic,
1935 				enum ieee80211_band band)
1936 {
1937 	struct ieee80211_local *local = sdata->local;
1938 	struct ieee80211_supported_band *sband;
1939 	int rate;
1940 	u8 i, exrates, *pos;
1941 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1942 
1943 	sband = local->hw.wiphy->bands[band];
1944 	exrates = sband->n_bitrates;
1945 	if (exrates > 8)
1946 		exrates -= 8;
1947 	else
1948 		exrates = 0;
1949 
1950 	if (skb_tailroom(skb) < exrates + 2)
1951 		return -ENOMEM;
1952 
1953 	if (exrates) {
1954 		pos = skb_put(skb, exrates + 2);
1955 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1956 		*pos++ = exrates;
1957 		for (i = 8; i < sband->n_bitrates; i++) {
1958 			u8 basic = 0;
1959 			if (need_basic && basic_rates & BIT(i))
1960 				basic = 0x80;
1961 			rate = sband->bitrates[i].bitrate;
1962 			*pos++ = basic | (u8) (rate / 5);
1963 		}
1964 	}
1965 	return 0;
1966 }
1967 
1968 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
1969 {
1970 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1971 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
1972 
1973 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
1974 		/* non-managed type inferfaces */
1975 		return 0;
1976 	}
1977 	return ifmgd->ave_beacon_signal;
1978 }
1979 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
1980