1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 49 { 50 struct sk_buff *skb; 51 struct ieee80211_hdr *hdr; 52 53 skb_queue_walk(&tx->skbs, skb) { 54 hdr = (struct ieee80211_hdr *) skb->data; 55 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 56 } 57 } 58 59 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 60 int rate, int erp, int short_preamble, 61 int shift) 62 { 63 int dur; 64 65 /* calculate duration (in microseconds, rounded up to next higher 66 * integer if it includes a fractional microsecond) to send frame of 67 * len bytes (does not include FCS) at the given rate. Duration will 68 * also include SIFS. 69 * 70 * rate is in 100 kbps, so divident is multiplied by 10 in the 71 * DIV_ROUND_UP() operations. 72 * 73 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 74 * is assumed to be 0 otherwise. 75 */ 76 77 if (band == NL80211_BAND_5GHZ || erp) { 78 /* 79 * OFDM: 80 * 81 * N_DBPS = DATARATE x 4 82 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 83 * (16 = SIGNAL time, 6 = tail bits) 84 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 85 * 86 * T_SYM = 4 usec 87 * 802.11a - 18.5.2: aSIFSTime = 16 usec 88 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 89 * signal ext = 6 usec 90 */ 91 dur = 16; /* SIFS + signal ext */ 92 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 93 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 94 95 /* IEEE 802.11-2012 18.3.2.4: all values above are: 96 * * times 4 for 5 MHz 97 * * times 2 for 10 MHz 98 */ 99 dur *= 1 << shift; 100 101 /* rates should already consider the channel bandwidth, 102 * don't apply divisor again. 103 */ 104 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 105 4 * rate); /* T_SYM x N_SYM */ 106 } else { 107 /* 108 * 802.11b or 802.11g with 802.11b compatibility: 109 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 110 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 111 * 112 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 113 * aSIFSTime = 10 usec 114 * aPreambleLength = 144 usec or 72 usec with short preamble 115 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 116 */ 117 dur = 10; /* aSIFSTime = 10 usec */ 118 dur += short_preamble ? (72 + 24) : (144 + 48); 119 120 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 121 } 122 123 return dur; 124 } 125 126 /* Exported duration function for driver use */ 127 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 128 struct ieee80211_vif *vif, 129 enum nl80211_band band, 130 size_t frame_len, 131 struct ieee80211_rate *rate) 132 { 133 struct ieee80211_sub_if_data *sdata; 134 u16 dur; 135 int erp, shift = 0; 136 bool short_preamble = false; 137 138 erp = 0; 139 if (vif) { 140 sdata = vif_to_sdata(vif); 141 short_preamble = sdata->vif.bss_conf.use_short_preamble; 142 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 143 erp = rate->flags & IEEE80211_RATE_ERP_G; 144 shift = ieee80211_vif_get_shift(vif); 145 } 146 147 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 148 short_preamble, shift); 149 150 return cpu_to_le16(dur); 151 } 152 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 153 154 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 155 struct ieee80211_vif *vif, size_t frame_len, 156 const struct ieee80211_tx_info *frame_txctl) 157 { 158 struct ieee80211_local *local = hw_to_local(hw); 159 struct ieee80211_rate *rate; 160 struct ieee80211_sub_if_data *sdata; 161 bool short_preamble; 162 int erp, shift = 0, bitrate; 163 u16 dur; 164 struct ieee80211_supported_band *sband; 165 166 sband = local->hw.wiphy->bands[frame_txctl->band]; 167 168 short_preamble = false; 169 170 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 171 172 erp = 0; 173 if (vif) { 174 sdata = vif_to_sdata(vif); 175 short_preamble = sdata->vif.bss_conf.use_short_preamble; 176 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 177 erp = rate->flags & IEEE80211_RATE_ERP_G; 178 shift = ieee80211_vif_get_shift(vif); 179 } 180 181 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 182 183 /* CTS duration */ 184 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 185 erp, short_preamble, shift); 186 /* Data frame duration */ 187 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 188 erp, short_preamble, shift); 189 /* ACK duration */ 190 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 191 erp, short_preamble, shift); 192 193 return cpu_to_le16(dur); 194 } 195 EXPORT_SYMBOL(ieee80211_rts_duration); 196 197 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 198 struct ieee80211_vif *vif, 199 size_t frame_len, 200 const struct ieee80211_tx_info *frame_txctl) 201 { 202 struct ieee80211_local *local = hw_to_local(hw); 203 struct ieee80211_rate *rate; 204 struct ieee80211_sub_if_data *sdata; 205 bool short_preamble; 206 int erp, shift = 0, bitrate; 207 u16 dur; 208 struct ieee80211_supported_band *sband; 209 210 sband = local->hw.wiphy->bands[frame_txctl->band]; 211 212 short_preamble = false; 213 214 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 215 erp = 0; 216 if (vif) { 217 sdata = vif_to_sdata(vif); 218 short_preamble = sdata->vif.bss_conf.use_short_preamble; 219 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 220 erp = rate->flags & IEEE80211_RATE_ERP_G; 221 shift = ieee80211_vif_get_shift(vif); 222 } 223 224 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 225 226 /* Data frame duration */ 227 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 228 erp, short_preamble, shift); 229 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 230 /* ACK duration */ 231 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 232 erp, short_preamble, shift); 233 } 234 235 return cpu_to_le16(dur); 236 } 237 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 238 239 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 240 { 241 struct ieee80211_local *local = sdata->local; 242 struct ieee80211_vif *vif = &sdata->vif; 243 struct fq *fq = &local->fq; 244 struct ps_data *ps = NULL; 245 struct txq_info *txqi; 246 struct sta_info *sta; 247 int i; 248 249 local_bh_disable(); 250 spin_lock(&fq->lock); 251 252 if (sdata->vif.type == NL80211_IFTYPE_AP) 253 ps = &sdata->bss->ps; 254 255 sdata->vif.txqs_stopped[ac] = false; 256 257 list_for_each_entry_rcu(sta, &local->sta_list, list) { 258 if (sdata != sta->sdata) 259 continue; 260 261 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 262 struct ieee80211_txq *txq = sta->sta.txq[i]; 263 264 if (!txq) 265 continue; 266 267 txqi = to_txq_info(txq); 268 269 if (ac != txq->ac) 270 continue; 271 272 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 273 &txqi->flags)) 274 continue; 275 276 spin_unlock(&fq->lock); 277 drv_wake_tx_queue(local, txqi); 278 spin_lock(&fq->lock); 279 } 280 } 281 282 if (!vif->txq) 283 goto out; 284 285 txqi = to_txq_info(vif->txq); 286 287 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 288 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 289 goto out; 290 291 spin_unlock(&fq->lock); 292 293 drv_wake_tx_queue(local, txqi); 294 local_bh_enable(); 295 return; 296 out: 297 spin_unlock(&fq->lock); 298 local_bh_enable(); 299 } 300 301 static void 302 __releases(&local->queue_stop_reason_lock) 303 __acquires(&local->queue_stop_reason_lock) 304 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 305 { 306 struct ieee80211_sub_if_data *sdata; 307 int n_acs = IEEE80211_NUM_ACS; 308 int i; 309 310 rcu_read_lock(); 311 312 if (local->hw.queues < IEEE80211_NUM_ACS) 313 n_acs = 1; 314 315 for (i = 0; i < local->hw.queues; i++) { 316 if (local->queue_stop_reasons[i]) 317 continue; 318 319 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 320 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 321 int ac; 322 323 for (ac = 0; ac < n_acs; ac++) { 324 int ac_queue = sdata->vif.hw_queue[ac]; 325 326 if (ac_queue == i || 327 sdata->vif.cab_queue == i) 328 __ieee80211_wake_txqs(sdata, ac); 329 } 330 } 331 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 332 } 333 334 rcu_read_unlock(); 335 } 336 337 void ieee80211_wake_txqs(unsigned long data) 338 { 339 struct ieee80211_local *local = (struct ieee80211_local *)data; 340 unsigned long flags; 341 342 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 343 _ieee80211_wake_txqs(local, &flags); 344 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 345 } 346 347 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 348 { 349 struct ieee80211_sub_if_data *sdata; 350 int n_acs = IEEE80211_NUM_ACS; 351 352 if (local->ops->wake_tx_queue) 353 return; 354 355 if (local->hw.queues < IEEE80211_NUM_ACS) 356 n_acs = 1; 357 358 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 359 int ac; 360 361 if (!sdata->dev) 362 continue; 363 364 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 365 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 366 continue; 367 368 for (ac = 0; ac < n_acs; ac++) { 369 int ac_queue = sdata->vif.hw_queue[ac]; 370 371 if (ac_queue == queue || 372 (sdata->vif.cab_queue == queue && 373 local->queue_stop_reasons[ac_queue] == 0 && 374 skb_queue_empty(&local->pending[ac_queue]))) 375 netif_wake_subqueue(sdata->dev, ac); 376 } 377 } 378 } 379 380 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 381 enum queue_stop_reason reason, 382 bool refcounted, 383 unsigned long *flags) 384 { 385 struct ieee80211_local *local = hw_to_local(hw); 386 387 trace_wake_queue(local, queue, reason); 388 389 if (WARN_ON(queue >= hw->queues)) 390 return; 391 392 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 393 return; 394 395 if (!refcounted) { 396 local->q_stop_reasons[queue][reason] = 0; 397 } else { 398 local->q_stop_reasons[queue][reason]--; 399 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 400 local->q_stop_reasons[queue][reason] = 0; 401 } 402 403 if (local->q_stop_reasons[queue][reason] == 0) 404 __clear_bit(reason, &local->queue_stop_reasons[queue]); 405 406 if (local->queue_stop_reasons[queue] != 0) 407 /* someone still has this queue stopped */ 408 return; 409 410 if (skb_queue_empty(&local->pending[queue])) { 411 rcu_read_lock(); 412 ieee80211_propagate_queue_wake(local, queue); 413 rcu_read_unlock(); 414 } else 415 tasklet_schedule(&local->tx_pending_tasklet); 416 417 /* 418 * Calling _ieee80211_wake_txqs here can be a problem because it may 419 * release queue_stop_reason_lock which has been taken by 420 * __ieee80211_wake_queue's caller. It is certainly not very nice to 421 * release someone's lock, but it is fine because all the callers of 422 * __ieee80211_wake_queue call it right before releasing the lock. 423 */ 424 if (local->ops->wake_tx_queue) { 425 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 426 tasklet_schedule(&local->wake_txqs_tasklet); 427 else 428 _ieee80211_wake_txqs(local, flags); 429 } 430 } 431 432 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 433 enum queue_stop_reason reason, 434 bool refcounted) 435 { 436 struct ieee80211_local *local = hw_to_local(hw); 437 unsigned long flags; 438 439 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 440 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 441 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 442 } 443 444 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 445 { 446 ieee80211_wake_queue_by_reason(hw, queue, 447 IEEE80211_QUEUE_STOP_REASON_DRIVER, 448 false); 449 } 450 EXPORT_SYMBOL(ieee80211_wake_queue); 451 452 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 453 enum queue_stop_reason reason, 454 bool refcounted) 455 { 456 struct ieee80211_local *local = hw_to_local(hw); 457 struct ieee80211_sub_if_data *sdata; 458 int n_acs = IEEE80211_NUM_ACS; 459 460 trace_stop_queue(local, queue, reason); 461 462 if (WARN_ON(queue >= hw->queues)) 463 return; 464 465 if (!refcounted) 466 local->q_stop_reasons[queue][reason] = 1; 467 else 468 local->q_stop_reasons[queue][reason]++; 469 470 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 471 return; 472 473 if (local->hw.queues < IEEE80211_NUM_ACS) 474 n_acs = 1; 475 476 rcu_read_lock(); 477 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 478 int ac; 479 480 if (!sdata->dev) 481 continue; 482 483 for (ac = 0; ac < n_acs; ac++) { 484 if (sdata->vif.hw_queue[ac] == queue || 485 sdata->vif.cab_queue == queue) { 486 if (!local->ops->wake_tx_queue) { 487 netif_stop_subqueue(sdata->dev, ac); 488 continue; 489 } 490 spin_lock(&local->fq.lock); 491 sdata->vif.txqs_stopped[ac] = true; 492 spin_unlock(&local->fq.lock); 493 } 494 } 495 } 496 rcu_read_unlock(); 497 } 498 499 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 unsigned long flags; 505 506 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 507 __ieee80211_stop_queue(hw, queue, reason, refcounted); 508 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 509 } 510 511 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 512 { 513 ieee80211_stop_queue_by_reason(hw, queue, 514 IEEE80211_QUEUE_STOP_REASON_DRIVER, 515 false); 516 } 517 EXPORT_SYMBOL(ieee80211_stop_queue); 518 519 void ieee80211_add_pending_skb(struct ieee80211_local *local, 520 struct sk_buff *skb) 521 { 522 struct ieee80211_hw *hw = &local->hw; 523 unsigned long flags; 524 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 525 int queue = info->hw_queue; 526 527 if (WARN_ON(!info->control.vif)) { 528 ieee80211_free_txskb(&local->hw, skb); 529 return; 530 } 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 534 false); 535 __skb_queue_tail(&local->pending[queue], skb); 536 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 537 false, &flags); 538 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 539 } 540 541 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 542 struct sk_buff_head *skbs) 543 { 544 struct ieee80211_hw *hw = &local->hw; 545 struct sk_buff *skb; 546 unsigned long flags; 547 int queue, i; 548 549 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 550 while ((skb = skb_dequeue(skbs))) { 551 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 continue; 556 } 557 558 queue = info->hw_queue; 559 560 __ieee80211_stop_queue(hw, queue, 561 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 562 false); 563 564 __skb_queue_tail(&local->pending[queue], skb); 565 } 566 567 for (i = 0; i < hw->queues; i++) 568 __ieee80211_wake_queue(hw, i, 569 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 570 false, &flags); 571 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 572 } 573 574 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 575 unsigned long queues, 576 enum queue_stop_reason reason, 577 bool refcounted) 578 { 579 struct ieee80211_local *local = hw_to_local(hw); 580 unsigned long flags; 581 int i; 582 583 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 584 585 for_each_set_bit(i, &queues, hw->queues) 586 __ieee80211_stop_queue(hw, i, reason, refcounted); 587 588 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 589 } 590 591 void ieee80211_stop_queues(struct ieee80211_hw *hw) 592 { 593 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 594 IEEE80211_QUEUE_STOP_REASON_DRIVER, 595 false); 596 } 597 EXPORT_SYMBOL(ieee80211_stop_queues); 598 599 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 600 { 601 struct ieee80211_local *local = hw_to_local(hw); 602 unsigned long flags; 603 int ret; 604 605 if (WARN_ON(queue >= hw->queues)) 606 return true; 607 608 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 609 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 610 &local->queue_stop_reasons[queue]); 611 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 612 return ret; 613 } 614 EXPORT_SYMBOL(ieee80211_queue_stopped); 615 616 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 617 unsigned long queues, 618 enum queue_stop_reason reason, 619 bool refcounted) 620 { 621 struct ieee80211_local *local = hw_to_local(hw); 622 unsigned long flags; 623 int i; 624 625 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 626 627 for_each_set_bit(i, &queues, hw->queues) 628 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 629 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 } 632 633 void ieee80211_wake_queues(struct ieee80211_hw *hw) 634 { 635 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 636 IEEE80211_QUEUE_STOP_REASON_DRIVER, 637 false); 638 } 639 EXPORT_SYMBOL(ieee80211_wake_queues); 640 641 static unsigned int 642 ieee80211_get_vif_queues(struct ieee80211_local *local, 643 struct ieee80211_sub_if_data *sdata) 644 { 645 unsigned int queues; 646 647 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 648 int ac; 649 650 queues = 0; 651 652 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 653 queues |= BIT(sdata->vif.hw_queue[ac]); 654 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 655 queues |= BIT(sdata->vif.cab_queue); 656 } else { 657 /* all queues */ 658 queues = BIT(local->hw.queues) - 1; 659 } 660 661 return queues; 662 } 663 664 void __ieee80211_flush_queues(struct ieee80211_local *local, 665 struct ieee80211_sub_if_data *sdata, 666 unsigned int queues, bool drop) 667 { 668 if (!local->ops->flush) 669 return; 670 671 /* 672 * If no queue was set, or if the HW doesn't support 673 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 674 */ 675 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 676 queues = ieee80211_get_vif_queues(local, sdata); 677 678 ieee80211_stop_queues_by_reason(&local->hw, queues, 679 IEEE80211_QUEUE_STOP_REASON_FLUSH, 680 false); 681 682 drv_flush(local, sdata, queues, drop); 683 684 ieee80211_wake_queues_by_reason(&local->hw, queues, 685 IEEE80211_QUEUE_STOP_REASON_FLUSH, 686 false); 687 } 688 689 void ieee80211_flush_queues(struct ieee80211_local *local, 690 struct ieee80211_sub_if_data *sdata, bool drop) 691 { 692 __ieee80211_flush_queues(local, sdata, 0, drop); 693 } 694 695 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata, 697 enum queue_stop_reason reason) 698 { 699 ieee80211_stop_queues_by_reason(&local->hw, 700 ieee80211_get_vif_queues(local, sdata), 701 reason, true); 702 } 703 704 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 705 struct ieee80211_sub_if_data *sdata, 706 enum queue_stop_reason reason) 707 { 708 ieee80211_wake_queues_by_reason(&local->hw, 709 ieee80211_get_vif_queues(local, sdata), 710 reason, true); 711 } 712 713 static void __iterate_interfaces(struct ieee80211_local *local, 714 u32 iter_flags, 715 void (*iterator)(void *data, u8 *mac, 716 struct ieee80211_vif *vif), 717 void *data) 718 { 719 struct ieee80211_sub_if_data *sdata; 720 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 721 722 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 723 switch (sdata->vif.type) { 724 case NL80211_IFTYPE_MONITOR: 725 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 726 continue; 727 break; 728 case NL80211_IFTYPE_AP_VLAN: 729 continue; 730 default: 731 break; 732 } 733 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 734 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 735 continue; 736 if (ieee80211_sdata_running(sdata) || !active_only) 737 iterator(data, sdata->vif.addr, 738 &sdata->vif); 739 } 740 741 sdata = rcu_dereference_check(local->monitor_sdata, 742 lockdep_is_held(&local->iflist_mtx) || 743 lockdep_rtnl_is_held()); 744 if (sdata && 745 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 746 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 747 iterator(data, sdata->vif.addr, &sdata->vif); 748 } 749 750 void ieee80211_iterate_interfaces( 751 struct ieee80211_hw *hw, u32 iter_flags, 752 void (*iterator)(void *data, u8 *mac, 753 struct ieee80211_vif *vif), 754 void *data) 755 { 756 struct ieee80211_local *local = hw_to_local(hw); 757 758 mutex_lock(&local->iflist_mtx); 759 __iterate_interfaces(local, iter_flags, iterator, data); 760 mutex_unlock(&local->iflist_mtx); 761 } 762 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 763 764 void ieee80211_iterate_active_interfaces_atomic( 765 struct ieee80211_hw *hw, u32 iter_flags, 766 void (*iterator)(void *data, u8 *mac, 767 struct ieee80211_vif *vif), 768 void *data) 769 { 770 struct ieee80211_local *local = hw_to_local(hw); 771 772 rcu_read_lock(); 773 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 774 iterator, data); 775 rcu_read_unlock(); 776 } 777 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 778 779 void ieee80211_iterate_active_interfaces_rtnl( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 ASSERT_RTNL(); 788 789 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 790 iterator, data); 791 } 792 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 793 794 static void __iterate_stations(struct ieee80211_local *local, 795 void (*iterator)(void *data, 796 struct ieee80211_sta *sta), 797 void *data) 798 { 799 struct sta_info *sta; 800 801 list_for_each_entry_rcu(sta, &local->sta_list, list) { 802 if (!sta->uploaded) 803 continue; 804 805 iterator(data, &sta->sta); 806 } 807 } 808 809 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 810 void (*iterator)(void *data, 811 struct ieee80211_sta *sta), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 rcu_read_lock(); 817 __iterate_stations(local, iterator, data); 818 rcu_read_unlock(); 819 } 820 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 821 822 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 823 { 824 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 825 826 if (!ieee80211_sdata_running(sdata) || 827 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 828 return NULL; 829 return &sdata->vif; 830 } 831 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 832 833 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 834 { 835 struct ieee80211_sub_if_data *sdata; 836 837 if (!vif) 838 return NULL; 839 840 sdata = vif_to_sdata(vif); 841 842 if (!ieee80211_sdata_running(sdata) || 843 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 844 return NULL; 845 846 return &sdata->wdev; 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 849 850 /* 851 * Nothing should have been stuffed into the workqueue during 852 * the suspend->resume cycle. Since we can't check each caller 853 * of this function if we are already quiescing / suspended, 854 * check here and don't WARN since this can actually happen when 855 * the rx path (for example) is racing against __ieee80211_suspend 856 * and suspending / quiescing was set after the rx path checked 857 * them. 858 */ 859 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 860 { 861 if (local->quiescing || (local->suspended && !local->resuming)) { 862 pr_warn("queueing ieee80211 work while going to suspend\n"); 863 return false; 864 } 865 866 return true; 867 } 868 869 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 870 { 871 struct ieee80211_local *local = hw_to_local(hw); 872 873 if (!ieee80211_can_queue_work(local)) 874 return; 875 876 queue_work(local->workqueue, work); 877 } 878 EXPORT_SYMBOL(ieee80211_queue_work); 879 880 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 881 struct delayed_work *dwork, 882 unsigned long delay) 883 { 884 struct ieee80211_local *local = hw_to_local(hw); 885 886 if (!ieee80211_can_queue_work(local)) 887 return; 888 889 queue_delayed_work(local->workqueue, dwork, delay); 890 } 891 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 892 893 static void ieee80211_parse_extension_element(u32 *crc, 894 const struct element *elem, 895 struct ieee802_11_elems *elems) 896 { 897 const void *data = elem->data + 1; 898 u8 len = elem->datalen - 1; 899 900 switch (elem->data[0]) { 901 case WLAN_EID_EXT_HE_MU_EDCA: 902 if (len == sizeof(*elems->mu_edca_param_set)) { 903 elems->mu_edca_param_set = data; 904 if (crc) 905 *crc = crc32_be(*crc, (void *)elem, 906 elem->datalen + 2); 907 } 908 break; 909 case WLAN_EID_EXT_HE_CAPABILITY: 910 elems->he_cap = data; 911 elems->he_cap_len = len; 912 break; 913 case WLAN_EID_EXT_HE_OPERATION: 914 if (len >= sizeof(*elems->he_operation) && 915 len == ieee80211_he_oper_size(data) - 1) { 916 if (crc) 917 *crc = crc32_be(*crc, (void *)elem, 918 elem->datalen + 2); 919 elems->he_operation = data; 920 } 921 break; 922 case WLAN_EID_EXT_UORA: 923 if (len == 1) 924 elems->uora_element = data; 925 break; 926 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 927 if (len == 3) 928 elems->max_channel_switch_time = data; 929 break; 930 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 931 if (len == sizeof(*elems->mbssid_config_ie)) 932 elems->mbssid_config_ie = data; 933 break; 934 case WLAN_EID_EXT_HE_SPR: 935 if (len >= sizeof(*elems->he_spr) && 936 len >= ieee80211_he_spr_size(data)) 937 elems->he_spr = data; 938 break; 939 case WLAN_EID_EXT_HE_6GHZ_CAPA: 940 if (len == sizeof(*elems->he_6ghz_capa)) 941 elems->he_6ghz_capa = data; 942 break; 943 } 944 } 945 946 static u32 947 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 948 struct ieee802_11_elems *elems, 949 u64 filter, u32 crc, 950 const struct element *check_inherit) 951 { 952 const struct element *elem; 953 bool calc_crc = filter != 0; 954 DECLARE_BITMAP(seen_elems, 256); 955 const u8 *ie; 956 957 bitmap_zero(seen_elems, 256); 958 959 for_each_element(elem, start, len) { 960 bool elem_parse_failed; 961 u8 id = elem->id; 962 u8 elen = elem->datalen; 963 const u8 *pos = elem->data; 964 965 if (check_inherit && 966 !cfg80211_is_element_inherited(elem, 967 check_inherit)) 968 continue; 969 970 switch (id) { 971 case WLAN_EID_SSID: 972 case WLAN_EID_SUPP_RATES: 973 case WLAN_EID_FH_PARAMS: 974 case WLAN_EID_DS_PARAMS: 975 case WLAN_EID_CF_PARAMS: 976 case WLAN_EID_TIM: 977 case WLAN_EID_IBSS_PARAMS: 978 case WLAN_EID_CHALLENGE: 979 case WLAN_EID_RSN: 980 case WLAN_EID_ERP_INFO: 981 case WLAN_EID_EXT_SUPP_RATES: 982 case WLAN_EID_HT_CAPABILITY: 983 case WLAN_EID_HT_OPERATION: 984 case WLAN_EID_VHT_CAPABILITY: 985 case WLAN_EID_VHT_OPERATION: 986 case WLAN_EID_MESH_ID: 987 case WLAN_EID_MESH_CONFIG: 988 case WLAN_EID_PEER_MGMT: 989 case WLAN_EID_PREQ: 990 case WLAN_EID_PREP: 991 case WLAN_EID_PERR: 992 case WLAN_EID_RANN: 993 case WLAN_EID_CHANNEL_SWITCH: 994 case WLAN_EID_EXT_CHANSWITCH_ANN: 995 case WLAN_EID_COUNTRY: 996 case WLAN_EID_PWR_CONSTRAINT: 997 case WLAN_EID_TIMEOUT_INTERVAL: 998 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 999 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1000 case WLAN_EID_CHAN_SWITCH_PARAM: 1001 case WLAN_EID_EXT_CAPABILITY: 1002 case WLAN_EID_CHAN_SWITCH_TIMING: 1003 case WLAN_EID_LINK_ID: 1004 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1005 case WLAN_EID_RSNX: 1006 /* 1007 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1008 * that if the content gets bigger it might be needed more than once 1009 */ 1010 if (test_bit(id, seen_elems)) { 1011 elems->parse_error = true; 1012 continue; 1013 } 1014 break; 1015 } 1016 1017 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1018 crc = crc32_be(crc, pos - 2, elen + 2); 1019 1020 elem_parse_failed = false; 1021 1022 switch (id) { 1023 case WLAN_EID_LINK_ID: 1024 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 1025 elem_parse_failed = true; 1026 break; 1027 } 1028 elems->lnk_id = (void *)(pos - 2); 1029 break; 1030 case WLAN_EID_CHAN_SWITCH_TIMING: 1031 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 1032 elem_parse_failed = true; 1033 break; 1034 } 1035 elems->ch_sw_timing = (void *)pos; 1036 break; 1037 case WLAN_EID_EXT_CAPABILITY: 1038 elems->ext_capab = pos; 1039 elems->ext_capab_len = elen; 1040 break; 1041 case WLAN_EID_SSID: 1042 elems->ssid = pos; 1043 elems->ssid_len = elen; 1044 break; 1045 case WLAN_EID_SUPP_RATES: 1046 elems->supp_rates = pos; 1047 elems->supp_rates_len = elen; 1048 break; 1049 case WLAN_EID_DS_PARAMS: 1050 if (elen >= 1) 1051 elems->ds_params = pos; 1052 else 1053 elem_parse_failed = true; 1054 break; 1055 case WLAN_EID_TIM: 1056 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1057 elems->tim = (void *)pos; 1058 elems->tim_len = elen; 1059 } else 1060 elem_parse_failed = true; 1061 break; 1062 case WLAN_EID_CHALLENGE: 1063 elems->challenge = pos; 1064 elems->challenge_len = elen; 1065 break; 1066 case WLAN_EID_VENDOR_SPECIFIC: 1067 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1068 pos[2] == 0xf2) { 1069 /* Microsoft OUI (00:50:F2) */ 1070 1071 if (calc_crc) 1072 crc = crc32_be(crc, pos - 2, elen + 2); 1073 1074 if (elen >= 5 && pos[3] == 2) { 1075 /* OUI Type 2 - WMM IE */ 1076 if (pos[4] == 0) { 1077 elems->wmm_info = pos; 1078 elems->wmm_info_len = elen; 1079 } else if (pos[4] == 1) { 1080 elems->wmm_param = pos; 1081 elems->wmm_param_len = elen; 1082 } 1083 } 1084 } 1085 break; 1086 case WLAN_EID_RSN: 1087 elems->rsn = pos; 1088 elems->rsn_len = elen; 1089 break; 1090 case WLAN_EID_ERP_INFO: 1091 if (elen >= 1) 1092 elems->erp_info = pos; 1093 else 1094 elem_parse_failed = true; 1095 break; 1096 case WLAN_EID_EXT_SUPP_RATES: 1097 elems->ext_supp_rates = pos; 1098 elems->ext_supp_rates_len = elen; 1099 break; 1100 case WLAN_EID_HT_CAPABILITY: 1101 if (elen >= sizeof(struct ieee80211_ht_cap)) 1102 elems->ht_cap_elem = (void *)pos; 1103 else 1104 elem_parse_failed = true; 1105 break; 1106 case WLAN_EID_HT_OPERATION: 1107 if (elen >= sizeof(struct ieee80211_ht_operation)) 1108 elems->ht_operation = (void *)pos; 1109 else 1110 elem_parse_failed = true; 1111 break; 1112 case WLAN_EID_VHT_CAPABILITY: 1113 if (elen >= sizeof(struct ieee80211_vht_cap)) 1114 elems->vht_cap_elem = (void *)pos; 1115 else 1116 elem_parse_failed = true; 1117 break; 1118 case WLAN_EID_VHT_OPERATION: 1119 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1120 elems->vht_operation = (void *)pos; 1121 if (calc_crc) 1122 crc = crc32_be(crc, pos - 2, elen + 2); 1123 break; 1124 } 1125 elem_parse_failed = true; 1126 break; 1127 case WLAN_EID_OPMODE_NOTIF: 1128 if (elen > 0) { 1129 elems->opmode_notif = pos; 1130 if (calc_crc) 1131 crc = crc32_be(crc, pos - 2, elen + 2); 1132 break; 1133 } 1134 elem_parse_failed = true; 1135 break; 1136 case WLAN_EID_MESH_ID: 1137 elems->mesh_id = pos; 1138 elems->mesh_id_len = elen; 1139 break; 1140 case WLAN_EID_MESH_CONFIG: 1141 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1142 elems->mesh_config = (void *)pos; 1143 else 1144 elem_parse_failed = true; 1145 break; 1146 case WLAN_EID_PEER_MGMT: 1147 elems->peering = pos; 1148 elems->peering_len = elen; 1149 break; 1150 case WLAN_EID_MESH_AWAKE_WINDOW: 1151 if (elen >= 2) 1152 elems->awake_window = (void *)pos; 1153 break; 1154 case WLAN_EID_PREQ: 1155 elems->preq = pos; 1156 elems->preq_len = elen; 1157 break; 1158 case WLAN_EID_PREP: 1159 elems->prep = pos; 1160 elems->prep_len = elen; 1161 break; 1162 case WLAN_EID_PERR: 1163 elems->perr = pos; 1164 elems->perr_len = elen; 1165 break; 1166 case WLAN_EID_RANN: 1167 if (elen >= sizeof(struct ieee80211_rann_ie)) 1168 elems->rann = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_CHANNEL_SWITCH: 1173 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1174 elem_parse_failed = true; 1175 break; 1176 } 1177 elems->ch_switch_ie = (void *)pos; 1178 break; 1179 case WLAN_EID_EXT_CHANSWITCH_ANN: 1180 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1181 elem_parse_failed = true; 1182 break; 1183 } 1184 elems->ext_chansw_ie = (void *)pos; 1185 break; 1186 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1187 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1188 elem_parse_failed = true; 1189 break; 1190 } 1191 elems->sec_chan_offs = (void *)pos; 1192 break; 1193 case WLAN_EID_CHAN_SWITCH_PARAM: 1194 if (elen != 1195 sizeof(*elems->mesh_chansw_params_ie)) { 1196 elem_parse_failed = true; 1197 break; 1198 } 1199 elems->mesh_chansw_params_ie = (void *)pos; 1200 break; 1201 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1202 if (!action || 1203 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1204 elem_parse_failed = true; 1205 break; 1206 } 1207 elems->wide_bw_chansw_ie = (void *)pos; 1208 break; 1209 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1210 if (action) { 1211 elem_parse_failed = true; 1212 break; 1213 } 1214 /* 1215 * This is a bit tricky, but as we only care about 1216 * the wide bandwidth channel switch element, so 1217 * just parse it out manually. 1218 */ 1219 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1220 pos, elen); 1221 if (ie) { 1222 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1223 elems->wide_bw_chansw_ie = 1224 (void *)(ie + 2); 1225 else 1226 elem_parse_failed = true; 1227 } 1228 break; 1229 case WLAN_EID_COUNTRY: 1230 elems->country_elem = pos; 1231 elems->country_elem_len = elen; 1232 break; 1233 case WLAN_EID_PWR_CONSTRAINT: 1234 if (elen != 1) { 1235 elem_parse_failed = true; 1236 break; 1237 } 1238 elems->pwr_constr_elem = pos; 1239 break; 1240 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1241 /* Lots of different options exist, but we only care 1242 * about the Dynamic Transmit Power Control element. 1243 * First check for the Cisco OUI, then for the DTPC 1244 * tag (0x00). 1245 */ 1246 if (elen < 4) { 1247 elem_parse_failed = true; 1248 break; 1249 } 1250 1251 if (pos[0] != 0x00 || pos[1] != 0x40 || 1252 pos[2] != 0x96 || pos[3] != 0x00) 1253 break; 1254 1255 if (elen != 6) { 1256 elem_parse_failed = true; 1257 break; 1258 } 1259 1260 if (calc_crc) 1261 crc = crc32_be(crc, pos - 2, elen + 2); 1262 1263 elems->cisco_dtpc_elem = pos; 1264 break; 1265 case WLAN_EID_ADDBA_EXT: 1266 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1267 elem_parse_failed = true; 1268 break; 1269 } 1270 elems->addba_ext_ie = (void *)pos; 1271 break; 1272 case WLAN_EID_TIMEOUT_INTERVAL: 1273 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1274 elems->timeout_int = (void *)pos; 1275 else 1276 elem_parse_failed = true; 1277 break; 1278 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1279 if (elen >= sizeof(*elems->max_idle_period_ie)) 1280 elems->max_idle_period_ie = (void *)pos; 1281 break; 1282 case WLAN_EID_RSNX: 1283 elems->rsnx = pos; 1284 elems->rsnx_len = elen; 1285 break; 1286 case WLAN_EID_EXTENSION: 1287 ieee80211_parse_extension_element(calc_crc ? 1288 &crc : NULL, 1289 elem, elems); 1290 break; 1291 default: 1292 break; 1293 } 1294 1295 if (elem_parse_failed) 1296 elems->parse_error = true; 1297 else 1298 __set_bit(id, seen_elems); 1299 } 1300 1301 if (!for_each_element_completed(elem, start, len)) 1302 elems->parse_error = true; 1303 1304 return crc; 1305 } 1306 1307 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1308 struct ieee802_11_elems *elems, 1309 u8 *transmitter_bssid, 1310 u8 *bss_bssid, 1311 u8 *nontransmitted_profile) 1312 { 1313 const struct element *elem, *sub; 1314 size_t profile_len = 0; 1315 bool found = false; 1316 1317 if (!bss_bssid || !transmitter_bssid) 1318 return profile_len; 1319 1320 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1321 if (elem->datalen < 2) 1322 continue; 1323 1324 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1325 u8 new_bssid[ETH_ALEN]; 1326 const u8 *index; 1327 1328 if (sub->id != 0 || sub->datalen < 4) { 1329 /* not a valid BSS profile */ 1330 continue; 1331 } 1332 1333 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1334 sub->data[1] != 2) { 1335 /* The first element of the 1336 * Nontransmitted BSSID Profile is not 1337 * the Nontransmitted BSSID Capability 1338 * element. 1339 */ 1340 continue; 1341 } 1342 1343 memset(nontransmitted_profile, 0, len); 1344 profile_len = cfg80211_merge_profile(start, len, 1345 elem, 1346 sub, 1347 nontransmitted_profile, 1348 len); 1349 1350 /* found a Nontransmitted BSSID Profile */ 1351 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1352 nontransmitted_profile, 1353 profile_len); 1354 if (!index || index[1] < 1 || index[2] == 0) { 1355 /* Invalid MBSSID Index element */ 1356 continue; 1357 } 1358 1359 cfg80211_gen_new_bssid(transmitter_bssid, 1360 elem->data[0], 1361 index[2], 1362 new_bssid); 1363 if (ether_addr_equal(new_bssid, bss_bssid)) { 1364 found = true; 1365 elems->bssid_index_len = index[1]; 1366 elems->bssid_index = (void *)&index[2]; 1367 break; 1368 } 1369 } 1370 } 1371 1372 return found ? profile_len : 0; 1373 } 1374 1375 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1376 struct ieee802_11_elems *elems, 1377 u64 filter, u32 crc, u8 *transmitter_bssid, 1378 u8 *bss_bssid) 1379 { 1380 const struct element *non_inherit = NULL; 1381 u8 *nontransmitted_profile; 1382 int nontransmitted_profile_len = 0; 1383 1384 memset(elems, 0, sizeof(*elems)); 1385 elems->ie_start = start; 1386 elems->total_len = len; 1387 1388 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1389 if (nontransmitted_profile) { 1390 nontransmitted_profile_len = 1391 ieee802_11_find_bssid_profile(start, len, elems, 1392 transmitter_bssid, 1393 bss_bssid, 1394 nontransmitted_profile); 1395 non_inherit = 1396 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1397 nontransmitted_profile, 1398 nontransmitted_profile_len); 1399 } 1400 1401 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1402 crc, non_inherit); 1403 1404 /* Override with nontransmitted profile, if found */ 1405 if (nontransmitted_profile_len) 1406 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1407 nontransmitted_profile_len, 1408 action, elems, 0, 0, NULL); 1409 1410 if (elems->tim && !elems->parse_error) { 1411 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1412 1413 elems->dtim_period = tim_ie->dtim_period; 1414 elems->dtim_count = tim_ie->dtim_count; 1415 } 1416 1417 /* Override DTIM period and count if needed */ 1418 if (elems->bssid_index && 1419 elems->bssid_index_len >= 1420 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1421 elems->dtim_period = elems->bssid_index->dtim_period; 1422 1423 if (elems->bssid_index && 1424 elems->bssid_index_len >= 1425 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1426 elems->dtim_count = elems->bssid_index->dtim_count; 1427 1428 kfree(nontransmitted_profile); 1429 1430 return crc; 1431 } 1432 1433 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1434 struct ieee80211_tx_queue_params 1435 *qparam, int ac) 1436 { 1437 struct ieee80211_chanctx_conf *chanctx_conf; 1438 const struct ieee80211_reg_rule *rrule; 1439 const struct ieee80211_wmm_ac *wmm_ac; 1440 u16 center_freq = 0; 1441 1442 if (sdata->vif.type != NL80211_IFTYPE_AP && 1443 sdata->vif.type != NL80211_IFTYPE_STATION) 1444 return; 1445 1446 rcu_read_lock(); 1447 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1448 if (chanctx_conf) 1449 center_freq = chanctx_conf->def.chan->center_freq; 1450 1451 if (!center_freq) { 1452 rcu_read_unlock(); 1453 return; 1454 } 1455 1456 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1457 1458 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1459 rcu_read_unlock(); 1460 return; 1461 } 1462 1463 if (sdata->vif.type == NL80211_IFTYPE_AP) 1464 wmm_ac = &rrule->wmm_rule.ap[ac]; 1465 else 1466 wmm_ac = &rrule->wmm_rule.client[ac]; 1467 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1468 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1469 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1470 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1471 rcu_read_unlock(); 1472 } 1473 1474 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1475 bool bss_notify, bool enable_qos) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct ieee80211_tx_queue_params qparam; 1479 struct ieee80211_chanctx_conf *chanctx_conf; 1480 int ac; 1481 bool use_11b; 1482 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1483 int aCWmin, aCWmax; 1484 1485 if (!local->ops->conf_tx) 1486 return; 1487 1488 if (local->hw.queues < IEEE80211_NUM_ACS) 1489 return; 1490 1491 memset(&qparam, 0, sizeof(qparam)); 1492 1493 rcu_read_lock(); 1494 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1495 use_11b = (chanctx_conf && 1496 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1497 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1498 rcu_read_unlock(); 1499 1500 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1501 1502 /* Set defaults according to 802.11-2007 Table 7-37 */ 1503 aCWmax = 1023; 1504 if (use_11b) 1505 aCWmin = 31; 1506 else 1507 aCWmin = 15; 1508 1509 /* Confiure old 802.11b/g medium access rules. */ 1510 qparam.cw_max = aCWmax; 1511 qparam.cw_min = aCWmin; 1512 qparam.txop = 0; 1513 qparam.aifs = 2; 1514 1515 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1516 /* Update if QoS is enabled. */ 1517 if (enable_qos) { 1518 switch (ac) { 1519 case IEEE80211_AC_BK: 1520 qparam.cw_max = aCWmax; 1521 qparam.cw_min = aCWmin; 1522 qparam.txop = 0; 1523 if (is_ocb) 1524 qparam.aifs = 9; 1525 else 1526 qparam.aifs = 7; 1527 break; 1528 /* never happens but let's not leave undefined */ 1529 default: 1530 case IEEE80211_AC_BE: 1531 qparam.cw_max = aCWmax; 1532 qparam.cw_min = aCWmin; 1533 qparam.txop = 0; 1534 if (is_ocb) 1535 qparam.aifs = 6; 1536 else 1537 qparam.aifs = 3; 1538 break; 1539 case IEEE80211_AC_VI: 1540 qparam.cw_max = aCWmin; 1541 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1542 if (is_ocb) 1543 qparam.txop = 0; 1544 else if (use_11b) 1545 qparam.txop = 6016/32; 1546 else 1547 qparam.txop = 3008/32; 1548 1549 if (is_ocb) 1550 qparam.aifs = 3; 1551 else 1552 qparam.aifs = 2; 1553 break; 1554 case IEEE80211_AC_VO: 1555 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1556 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1557 if (is_ocb) 1558 qparam.txop = 0; 1559 else if (use_11b) 1560 qparam.txop = 3264/32; 1561 else 1562 qparam.txop = 1504/32; 1563 qparam.aifs = 2; 1564 break; 1565 } 1566 } 1567 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1568 1569 qparam.uapsd = false; 1570 1571 sdata->tx_conf[ac] = qparam; 1572 drv_conf_tx(local, sdata, ac, &qparam); 1573 } 1574 1575 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1576 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1577 sdata->vif.type != NL80211_IFTYPE_NAN) { 1578 sdata->vif.bss_conf.qos = enable_qos; 1579 if (bss_notify) 1580 ieee80211_bss_info_change_notify(sdata, 1581 BSS_CHANGED_QOS); 1582 } 1583 } 1584 1585 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1586 u16 transaction, u16 auth_alg, u16 status, 1587 const u8 *extra, size_t extra_len, const u8 *da, 1588 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1589 u32 tx_flags) 1590 { 1591 struct ieee80211_local *local = sdata->local; 1592 struct sk_buff *skb; 1593 struct ieee80211_mgmt *mgmt; 1594 int err; 1595 1596 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1597 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1598 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1599 if (!skb) 1600 return; 1601 1602 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1603 1604 mgmt = skb_put_zero(skb, 24 + 6); 1605 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1606 IEEE80211_STYPE_AUTH); 1607 memcpy(mgmt->da, da, ETH_ALEN); 1608 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1609 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1610 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1611 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1612 mgmt->u.auth.status_code = cpu_to_le16(status); 1613 if (extra) 1614 skb_put_data(skb, extra, extra_len); 1615 1616 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1617 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1618 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1619 WARN_ON(err); 1620 } 1621 1622 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1623 tx_flags; 1624 ieee80211_tx_skb(sdata, skb); 1625 } 1626 1627 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1628 const u8 *da, const u8 *bssid, 1629 u16 stype, u16 reason, 1630 bool send_frame, u8 *frame_buf) 1631 { 1632 struct ieee80211_local *local = sdata->local; 1633 struct sk_buff *skb; 1634 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1635 1636 /* build frame */ 1637 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1638 mgmt->duration = 0; /* initialize only */ 1639 mgmt->seq_ctrl = 0; /* initialize only */ 1640 memcpy(mgmt->da, da, ETH_ALEN); 1641 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1642 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1643 /* u.deauth.reason_code == u.disassoc.reason_code */ 1644 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1645 1646 if (send_frame) { 1647 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1648 IEEE80211_DEAUTH_FRAME_LEN); 1649 if (!skb) 1650 return; 1651 1652 skb_reserve(skb, local->hw.extra_tx_headroom); 1653 1654 /* copy in frame */ 1655 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1656 1657 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1658 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1659 IEEE80211_SKB_CB(skb)->flags |= 1660 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1661 1662 ieee80211_tx_skb(sdata, skb); 1663 } 1664 } 1665 1666 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1667 { 1668 if ((end - pos) < 5) 1669 return pos; 1670 1671 *pos++ = WLAN_EID_EXTENSION; 1672 *pos++ = 1 + sizeof(cap); 1673 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1674 memcpy(pos, &cap, sizeof(cap)); 1675 1676 return pos + 2; 1677 } 1678 1679 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1680 u8 *buffer, size_t buffer_len, 1681 const u8 *ie, size_t ie_len, 1682 enum nl80211_band band, 1683 u32 rate_mask, 1684 struct cfg80211_chan_def *chandef, 1685 size_t *offset, u32 flags) 1686 { 1687 struct ieee80211_local *local = sdata->local; 1688 struct ieee80211_supported_band *sband; 1689 const struct ieee80211_sta_he_cap *he_cap; 1690 u8 *pos = buffer, *end = buffer + buffer_len; 1691 size_t noffset; 1692 int supp_rates_len, i; 1693 u8 rates[32]; 1694 int num_rates; 1695 int ext_rates_len; 1696 int shift; 1697 u32 rate_flags; 1698 bool have_80mhz = false; 1699 1700 *offset = 0; 1701 1702 sband = local->hw.wiphy->bands[band]; 1703 if (WARN_ON_ONCE(!sband)) 1704 return 0; 1705 1706 rate_flags = ieee80211_chandef_rate_flags(chandef); 1707 shift = ieee80211_chandef_get_shift(chandef); 1708 1709 num_rates = 0; 1710 for (i = 0; i < sband->n_bitrates; i++) { 1711 if ((BIT(i) & rate_mask) == 0) 1712 continue; /* skip rate */ 1713 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1714 continue; 1715 1716 rates[num_rates++] = 1717 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1718 (1 << shift) * 5); 1719 } 1720 1721 supp_rates_len = min_t(int, num_rates, 8); 1722 1723 if (end - pos < 2 + supp_rates_len) 1724 goto out_err; 1725 *pos++ = WLAN_EID_SUPP_RATES; 1726 *pos++ = supp_rates_len; 1727 memcpy(pos, rates, supp_rates_len); 1728 pos += supp_rates_len; 1729 1730 /* insert "request information" if in custom IEs */ 1731 if (ie && ie_len) { 1732 static const u8 before_extrates[] = { 1733 WLAN_EID_SSID, 1734 WLAN_EID_SUPP_RATES, 1735 WLAN_EID_REQUEST, 1736 }; 1737 noffset = ieee80211_ie_split(ie, ie_len, 1738 before_extrates, 1739 ARRAY_SIZE(before_extrates), 1740 *offset); 1741 if (end - pos < noffset - *offset) 1742 goto out_err; 1743 memcpy(pos, ie + *offset, noffset - *offset); 1744 pos += noffset - *offset; 1745 *offset = noffset; 1746 } 1747 1748 ext_rates_len = num_rates - supp_rates_len; 1749 if (ext_rates_len > 0) { 1750 if (end - pos < 2 + ext_rates_len) 1751 goto out_err; 1752 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1753 *pos++ = ext_rates_len; 1754 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1755 pos += ext_rates_len; 1756 } 1757 1758 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1759 if (end - pos < 3) 1760 goto out_err; 1761 *pos++ = WLAN_EID_DS_PARAMS; 1762 *pos++ = 1; 1763 *pos++ = ieee80211_frequency_to_channel( 1764 chandef->chan->center_freq); 1765 } 1766 1767 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1768 goto done; 1769 1770 /* insert custom IEs that go before HT */ 1771 if (ie && ie_len) { 1772 static const u8 before_ht[] = { 1773 /* 1774 * no need to list the ones split off already 1775 * (or generated here) 1776 */ 1777 WLAN_EID_DS_PARAMS, 1778 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1779 }; 1780 noffset = ieee80211_ie_split(ie, ie_len, 1781 before_ht, ARRAY_SIZE(before_ht), 1782 *offset); 1783 if (end - pos < noffset - *offset) 1784 goto out_err; 1785 memcpy(pos, ie + *offset, noffset - *offset); 1786 pos += noffset - *offset; 1787 *offset = noffset; 1788 } 1789 1790 if (sband->ht_cap.ht_supported) { 1791 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1792 goto out_err; 1793 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1794 sband->ht_cap.cap); 1795 } 1796 1797 /* insert custom IEs that go before VHT */ 1798 if (ie && ie_len) { 1799 static const u8 before_vht[] = { 1800 /* 1801 * no need to list the ones split off already 1802 * (or generated here) 1803 */ 1804 WLAN_EID_BSS_COEX_2040, 1805 WLAN_EID_EXT_CAPABILITY, 1806 WLAN_EID_SSID_LIST, 1807 WLAN_EID_CHANNEL_USAGE, 1808 WLAN_EID_INTERWORKING, 1809 WLAN_EID_MESH_ID, 1810 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1811 }; 1812 noffset = ieee80211_ie_split(ie, ie_len, 1813 before_vht, ARRAY_SIZE(before_vht), 1814 *offset); 1815 if (end - pos < noffset - *offset) 1816 goto out_err; 1817 memcpy(pos, ie + *offset, noffset - *offset); 1818 pos += noffset - *offset; 1819 *offset = noffset; 1820 } 1821 1822 /* Check if any channel in this sband supports at least 80 MHz */ 1823 for (i = 0; i < sband->n_channels; i++) { 1824 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1825 IEEE80211_CHAN_NO_80MHZ)) 1826 continue; 1827 1828 have_80mhz = true; 1829 break; 1830 } 1831 1832 if (sband->vht_cap.vht_supported && have_80mhz) { 1833 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1834 goto out_err; 1835 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1836 sband->vht_cap.cap); 1837 } 1838 1839 /* insert custom IEs that go before HE */ 1840 if (ie && ie_len) { 1841 static const u8 before_he[] = { 1842 /* 1843 * no need to list the ones split off before VHT 1844 * or generated here 1845 */ 1846 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1847 WLAN_EID_AP_CSN, 1848 /* TODO: add 11ah/11aj/11ak elements */ 1849 }; 1850 noffset = ieee80211_ie_split(ie, ie_len, 1851 before_he, ARRAY_SIZE(before_he), 1852 *offset); 1853 if (end - pos < noffset - *offset) 1854 goto out_err; 1855 memcpy(pos, ie + *offset, noffset - *offset); 1856 pos += noffset - *offset; 1857 *offset = noffset; 1858 } 1859 1860 he_cap = ieee80211_get_he_sta_cap(sband); 1861 if (he_cap) { 1862 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1863 if (!pos) 1864 goto out_err; 1865 1866 if (sband->band == NL80211_BAND_6GHZ) { 1867 enum nl80211_iftype iftype = 1868 ieee80211_vif_type_p2p(&sdata->vif); 1869 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1870 1871 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1872 } 1873 } 1874 1875 /* 1876 * If adding more here, adjust code in main.c 1877 * that calculates local->scan_ies_len. 1878 */ 1879 1880 return pos - buffer; 1881 out_err: 1882 WARN_ONCE(1, "not enough space for preq IEs\n"); 1883 done: 1884 return pos - buffer; 1885 } 1886 1887 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1888 size_t buffer_len, 1889 struct ieee80211_scan_ies *ie_desc, 1890 const u8 *ie, size_t ie_len, 1891 u8 bands_used, u32 *rate_masks, 1892 struct cfg80211_chan_def *chandef, 1893 u32 flags) 1894 { 1895 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1896 int i; 1897 1898 memset(ie_desc, 0, sizeof(*ie_desc)); 1899 1900 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1901 if (bands_used & BIT(i)) { 1902 pos += ieee80211_build_preq_ies_band(sdata, 1903 buffer + pos, 1904 buffer_len - pos, 1905 ie, ie_len, i, 1906 rate_masks[i], 1907 chandef, 1908 &custom_ie_offset, 1909 flags); 1910 ie_desc->ies[i] = buffer + old_pos; 1911 ie_desc->len[i] = pos - old_pos; 1912 old_pos = pos; 1913 } 1914 } 1915 1916 /* add any remaining custom IEs */ 1917 if (ie && ie_len) { 1918 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1919 "not enough space for preq custom IEs\n")) 1920 return pos; 1921 memcpy(buffer + pos, ie + custom_ie_offset, 1922 ie_len - custom_ie_offset); 1923 ie_desc->common_ies = buffer + pos; 1924 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1925 pos += ie_len - custom_ie_offset; 1926 } 1927 1928 return pos; 1929 }; 1930 1931 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1932 const u8 *src, const u8 *dst, 1933 u32 ratemask, 1934 struct ieee80211_channel *chan, 1935 const u8 *ssid, size_t ssid_len, 1936 const u8 *ie, size_t ie_len, 1937 u32 flags) 1938 { 1939 struct ieee80211_local *local = sdata->local; 1940 struct cfg80211_chan_def chandef; 1941 struct sk_buff *skb; 1942 struct ieee80211_mgmt *mgmt; 1943 int ies_len; 1944 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1945 struct ieee80211_scan_ies dummy_ie_desc; 1946 1947 /* 1948 * Do not send DS Channel parameter for directed probe requests 1949 * in order to maximize the chance that we get a response. Some 1950 * badly-behaved APs don't respond when this parameter is included. 1951 */ 1952 chandef.width = sdata->vif.bss_conf.chandef.width; 1953 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1954 chandef.chan = NULL; 1955 else 1956 chandef.chan = chan; 1957 1958 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1959 100 + ie_len); 1960 if (!skb) 1961 return NULL; 1962 1963 rate_masks[chan->band] = ratemask; 1964 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 1965 skb_tailroom(skb), &dummy_ie_desc, 1966 ie, ie_len, BIT(chan->band), 1967 rate_masks, &chandef, flags); 1968 skb_put(skb, ies_len); 1969 1970 if (dst) { 1971 mgmt = (struct ieee80211_mgmt *) skb->data; 1972 memcpy(mgmt->da, dst, ETH_ALEN); 1973 memcpy(mgmt->bssid, dst, ETH_ALEN); 1974 } 1975 1976 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1977 1978 return skb; 1979 } 1980 1981 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1982 struct ieee802_11_elems *elems, 1983 enum nl80211_band band, u32 *basic_rates) 1984 { 1985 struct ieee80211_supported_band *sband; 1986 size_t num_rates; 1987 u32 supp_rates, rate_flags; 1988 int i, j, shift; 1989 1990 sband = sdata->local->hw.wiphy->bands[band]; 1991 if (WARN_ON(!sband)) 1992 return 1; 1993 1994 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1995 shift = ieee80211_vif_get_shift(&sdata->vif); 1996 1997 num_rates = sband->n_bitrates; 1998 supp_rates = 0; 1999 for (i = 0; i < elems->supp_rates_len + 2000 elems->ext_supp_rates_len; i++) { 2001 u8 rate = 0; 2002 int own_rate; 2003 bool is_basic; 2004 if (i < elems->supp_rates_len) 2005 rate = elems->supp_rates[i]; 2006 else if (elems->ext_supp_rates) 2007 rate = elems->ext_supp_rates 2008 [i - elems->supp_rates_len]; 2009 own_rate = 5 * (rate & 0x7f); 2010 is_basic = !!(rate & 0x80); 2011 2012 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2013 continue; 2014 2015 for (j = 0; j < num_rates; j++) { 2016 int brate; 2017 if ((rate_flags & sband->bitrates[j].flags) 2018 != rate_flags) 2019 continue; 2020 2021 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2022 1 << shift); 2023 2024 if (brate == own_rate) { 2025 supp_rates |= BIT(j); 2026 if (basic_rates && is_basic) 2027 *basic_rates |= BIT(j); 2028 } 2029 } 2030 } 2031 return supp_rates; 2032 } 2033 2034 void ieee80211_stop_device(struct ieee80211_local *local) 2035 { 2036 ieee80211_led_radio(local, false); 2037 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2038 2039 cancel_work_sync(&local->reconfig_filter); 2040 2041 flush_workqueue(local->workqueue); 2042 drv_stop(local); 2043 } 2044 2045 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2046 bool aborted) 2047 { 2048 /* It's possible that we don't handle the scan completion in 2049 * time during suspend, so if it's still marked as completed 2050 * here, queue the work and flush it to clean things up. 2051 * Instead of calling the worker function directly here, we 2052 * really queue it to avoid potential races with other flows 2053 * scheduling the same work. 2054 */ 2055 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2056 /* If coming from reconfiguration failure, abort the scan so 2057 * we don't attempt to continue a partial HW scan - which is 2058 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2059 * completed scan, and a 5 GHz portion is still pending. 2060 */ 2061 if (aborted) 2062 set_bit(SCAN_ABORTED, &local->scanning); 2063 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2064 flush_delayed_work(&local->scan_work); 2065 } 2066 } 2067 2068 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2069 { 2070 struct ieee80211_sub_if_data *sdata; 2071 struct ieee80211_chanctx *ctx; 2072 2073 /* 2074 * We get here if during resume the device can't be restarted properly. 2075 * We might also get here if this happens during HW reset, which is a 2076 * slightly different situation and we need to drop all connections in 2077 * the latter case. 2078 * 2079 * Ask cfg80211 to turn off all interfaces, this will result in more 2080 * warnings but at least we'll then get into a clean stopped state. 2081 */ 2082 2083 local->resuming = false; 2084 local->suspended = false; 2085 local->in_reconfig = false; 2086 2087 ieee80211_flush_completed_scan(local, true); 2088 2089 /* scheduled scan clearly can't be running any more, but tell 2090 * cfg80211 and clear local state 2091 */ 2092 ieee80211_sched_scan_end(local); 2093 2094 list_for_each_entry(sdata, &local->interfaces, list) 2095 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2096 2097 /* Mark channel contexts as not being in the driver any more to avoid 2098 * removing them from the driver during the shutdown process... 2099 */ 2100 mutex_lock(&local->chanctx_mtx); 2101 list_for_each_entry(ctx, &local->chanctx_list, list) 2102 ctx->driver_present = false; 2103 mutex_unlock(&local->chanctx_mtx); 2104 2105 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2106 } 2107 2108 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2109 struct ieee80211_sub_if_data *sdata) 2110 { 2111 struct ieee80211_chanctx_conf *conf; 2112 struct ieee80211_chanctx *ctx; 2113 2114 if (!local->use_chanctx) 2115 return; 2116 2117 mutex_lock(&local->chanctx_mtx); 2118 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2119 lockdep_is_held(&local->chanctx_mtx)); 2120 if (conf) { 2121 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2122 drv_assign_vif_chanctx(local, sdata, ctx); 2123 } 2124 mutex_unlock(&local->chanctx_mtx); 2125 } 2126 2127 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2128 { 2129 struct ieee80211_local *local = sdata->local; 2130 struct sta_info *sta; 2131 2132 /* add STAs back */ 2133 mutex_lock(&local->sta_mtx); 2134 list_for_each_entry(sta, &local->sta_list, list) { 2135 enum ieee80211_sta_state state; 2136 2137 if (!sta->uploaded || sta->sdata != sdata) 2138 continue; 2139 2140 for (state = IEEE80211_STA_NOTEXIST; 2141 state < sta->sta_state; state++) 2142 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2143 state + 1)); 2144 } 2145 mutex_unlock(&local->sta_mtx); 2146 } 2147 2148 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2149 { 2150 struct cfg80211_nan_func *func, **funcs; 2151 int res, id, i = 0; 2152 2153 res = drv_start_nan(sdata->local, sdata, 2154 &sdata->u.nan.conf); 2155 if (WARN_ON(res)) 2156 return res; 2157 2158 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2159 sizeof(*funcs), 2160 GFP_KERNEL); 2161 if (!funcs) 2162 return -ENOMEM; 2163 2164 /* Add all the functions: 2165 * This is a little bit ugly. We need to call a potentially sleeping 2166 * callback for each NAN function, so we can't hold the spinlock. 2167 */ 2168 spin_lock_bh(&sdata->u.nan.func_lock); 2169 2170 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2171 funcs[i++] = func; 2172 2173 spin_unlock_bh(&sdata->u.nan.func_lock); 2174 2175 for (i = 0; funcs[i]; i++) { 2176 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2177 if (WARN_ON(res)) 2178 ieee80211_nan_func_terminated(&sdata->vif, 2179 funcs[i]->instance_id, 2180 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2181 GFP_KERNEL); 2182 } 2183 2184 kfree(funcs); 2185 2186 return 0; 2187 } 2188 2189 int ieee80211_reconfig(struct ieee80211_local *local) 2190 { 2191 struct ieee80211_hw *hw = &local->hw; 2192 struct ieee80211_sub_if_data *sdata; 2193 struct ieee80211_chanctx *ctx; 2194 struct sta_info *sta; 2195 int res, i; 2196 bool reconfig_due_to_wowlan = false; 2197 struct ieee80211_sub_if_data *sched_scan_sdata; 2198 struct cfg80211_sched_scan_request *sched_scan_req; 2199 bool sched_scan_stopped = false; 2200 bool suspended = local->suspended; 2201 2202 /* nothing to do if HW shouldn't run */ 2203 if (!local->open_count) 2204 goto wake_up; 2205 2206 #ifdef CONFIG_PM 2207 if (suspended) 2208 local->resuming = true; 2209 2210 if (local->wowlan) { 2211 /* 2212 * In the wowlan case, both mac80211 and the device 2213 * are functional when the resume op is called, so 2214 * clear local->suspended so the device could operate 2215 * normally (e.g. pass rx frames). 2216 */ 2217 local->suspended = false; 2218 res = drv_resume(local); 2219 local->wowlan = false; 2220 if (res < 0) { 2221 local->resuming = false; 2222 return res; 2223 } 2224 if (res == 0) 2225 goto wake_up; 2226 WARN_ON(res > 1); 2227 /* 2228 * res is 1, which means the driver requested 2229 * to go through a regular reset on wakeup. 2230 * restore local->suspended in this case. 2231 */ 2232 reconfig_due_to_wowlan = true; 2233 local->suspended = true; 2234 } 2235 #endif 2236 2237 /* 2238 * In case of hw_restart during suspend (without wowlan), 2239 * cancel restart work, as we are reconfiguring the device 2240 * anyway. 2241 * Note that restart_work is scheduled on a frozen workqueue, 2242 * so we can't deadlock in this case. 2243 */ 2244 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2245 cancel_work_sync(&local->restart_work); 2246 2247 local->started = false; 2248 2249 /* 2250 * Upon resume hardware can sometimes be goofy due to 2251 * various platform / driver / bus issues, so restarting 2252 * the device may at times not work immediately. Propagate 2253 * the error. 2254 */ 2255 res = drv_start(local); 2256 if (res) { 2257 if (suspended) 2258 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2259 else 2260 WARN(1, "Hardware became unavailable during restart.\n"); 2261 ieee80211_handle_reconfig_failure(local); 2262 return res; 2263 } 2264 2265 /* setup fragmentation threshold */ 2266 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2267 2268 /* setup RTS threshold */ 2269 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2270 2271 /* reset coverage class */ 2272 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2273 2274 ieee80211_led_radio(local, true); 2275 ieee80211_mod_tpt_led_trig(local, 2276 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2277 2278 /* add interfaces */ 2279 sdata = rtnl_dereference(local->monitor_sdata); 2280 if (sdata) { 2281 /* in HW restart it exists already */ 2282 WARN_ON(local->resuming); 2283 res = drv_add_interface(local, sdata); 2284 if (WARN_ON(res)) { 2285 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2286 synchronize_net(); 2287 kfree(sdata); 2288 } 2289 } 2290 2291 list_for_each_entry(sdata, &local->interfaces, list) { 2292 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2293 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2294 ieee80211_sdata_running(sdata)) { 2295 res = drv_add_interface(local, sdata); 2296 if (WARN_ON(res)) 2297 break; 2298 } 2299 } 2300 2301 /* If adding any of the interfaces failed above, roll back and 2302 * report failure. 2303 */ 2304 if (res) { 2305 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2306 list) 2307 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2308 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2309 ieee80211_sdata_running(sdata)) 2310 drv_remove_interface(local, sdata); 2311 ieee80211_handle_reconfig_failure(local); 2312 return res; 2313 } 2314 2315 /* add channel contexts */ 2316 if (local->use_chanctx) { 2317 mutex_lock(&local->chanctx_mtx); 2318 list_for_each_entry(ctx, &local->chanctx_list, list) 2319 if (ctx->replace_state != 2320 IEEE80211_CHANCTX_REPLACES_OTHER) 2321 WARN_ON(drv_add_chanctx(local, ctx)); 2322 mutex_unlock(&local->chanctx_mtx); 2323 2324 sdata = rtnl_dereference(local->monitor_sdata); 2325 if (sdata && ieee80211_sdata_running(sdata)) 2326 ieee80211_assign_chanctx(local, sdata); 2327 } 2328 2329 /* reconfigure hardware */ 2330 ieee80211_hw_config(local, ~0); 2331 2332 ieee80211_configure_filter(local); 2333 2334 /* Finally also reconfigure all the BSS information */ 2335 list_for_each_entry(sdata, &local->interfaces, list) { 2336 u32 changed; 2337 2338 if (!ieee80211_sdata_running(sdata)) 2339 continue; 2340 2341 ieee80211_assign_chanctx(local, sdata); 2342 2343 switch (sdata->vif.type) { 2344 case NL80211_IFTYPE_AP_VLAN: 2345 case NL80211_IFTYPE_MONITOR: 2346 break; 2347 case NL80211_IFTYPE_ADHOC: 2348 if (sdata->vif.bss_conf.ibss_joined) 2349 WARN_ON(drv_join_ibss(local, sdata)); 2350 /* fall through */ 2351 default: 2352 ieee80211_reconfig_stations(sdata); 2353 /* fall through */ 2354 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2355 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2356 drv_conf_tx(local, sdata, i, 2357 &sdata->tx_conf[i]); 2358 break; 2359 } 2360 2361 /* common change flags for all interface types */ 2362 changed = BSS_CHANGED_ERP_CTS_PROT | 2363 BSS_CHANGED_ERP_PREAMBLE | 2364 BSS_CHANGED_ERP_SLOT | 2365 BSS_CHANGED_HT | 2366 BSS_CHANGED_BASIC_RATES | 2367 BSS_CHANGED_BEACON_INT | 2368 BSS_CHANGED_BSSID | 2369 BSS_CHANGED_CQM | 2370 BSS_CHANGED_QOS | 2371 BSS_CHANGED_IDLE | 2372 BSS_CHANGED_TXPOWER | 2373 BSS_CHANGED_MCAST_RATE; 2374 2375 if (sdata->vif.mu_mimo_owner) 2376 changed |= BSS_CHANGED_MU_GROUPS; 2377 2378 switch (sdata->vif.type) { 2379 case NL80211_IFTYPE_STATION: 2380 changed |= BSS_CHANGED_ASSOC | 2381 BSS_CHANGED_ARP_FILTER | 2382 BSS_CHANGED_PS; 2383 2384 /* Re-send beacon info report to the driver */ 2385 if (sdata->u.mgd.have_beacon) 2386 changed |= BSS_CHANGED_BEACON_INFO; 2387 2388 if (sdata->vif.bss_conf.max_idle_period || 2389 sdata->vif.bss_conf.protected_keep_alive) 2390 changed |= BSS_CHANGED_KEEP_ALIVE; 2391 2392 sdata_lock(sdata); 2393 ieee80211_bss_info_change_notify(sdata, changed); 2394 sdata_unlock(sdata); 2395 break; 2396 case NL80211_IFTYPE_OCB: 2397 changed |= BSS_CHANGED_OCB; 2398 ieee80211_bss_info_change_notify(sdata, changed); 2399 break; 2400 case NL80211_IFTYPE_ADHOC: 2401 changed |= BSS_CHANGED_IBSS; 2402 /* fall through */ 2403 case NL80211_IFTYPE_AP: 2404 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2405 2406 if (sdata->vif.bss_conf.ftm_responder == 1 && 2407 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2408 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2409 changed |= BSS_CHANGED_FTM_RESPONDER; 2410 2411 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2412 changed |= BSS_CHANGED_AP_PROBE_RESP; 2413 2414 if (rcu_access_pointer(sdata->u.ap.beacon)) 2415 drv_start_ap(local, sdata); 2416 } 2417 2418 /* fall through */ 2419 case NL80211_IFTYPE_MESH_POINT: 2420 if (sdata->vif.bss_conf.enable_beacon) { 2421 changed |= BSS_CHANGED_BEACON | 2422 BSS_CHANGED_BEACON_ENABLED; 2423 ieee80211_bss_info_change_notify(sdata, changed); 2424 } 2425 break; 2426 case NL80211_IFTYPE_NAN: 2427 res = ieee80211_reconfig_nan(sdata); 2428 if (res < 0) { 2429 ieee80211_handle_reconfig_failure(local); 2430 return res; 2431 } 2432 break; 2433 case NL80211_IFTYPE_WDS: 2434 case NL80211_IFTYPE_AP_VLAN: 2435 case NL80211_IFTYPE_MONITOR: 2436 case NL80211_IFTYPE_P2P_DEVICE: 2437 /* nothing to do */ 2438 break; 2439 case NL80211_IFTYPE_UNSPECIFIED: 2440 case NUM_NL80211_IFTYPES: 2441 case NL80211_IFTYPE_P2P_CLIENT: 2442 case NL80211_IFTYPE_P2P_GO: 2443 WARN_ON(1); 2444 break; 2445 } 2446 } 2447 2448 ieee80211_recalc_ps(local); 2449 2450 /* 2451 * The sta might be in psm against the ap (e.g. because 2452 * this was the state before a hw restart), so we 2453 * explicitly send a null packet in order to make sure 2454 * it'll sync against the ap (and get out of psm). 2455 */ 2456 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2457 list_for_each_entry(sdata, &local->interfaces, list) { 2458 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2459 continue; 2460 if (!sdata->u.mgd.associated) 2461 continue; 2462 2463 ieee80211_send_nullfunc(local, sdata, false); 2464 } 2465 } 2466 2467 /* APs are now beaconing, add back stations */ 2468 mutex_lock(&local->sta_mtx); 2469 list_for_each_entry(sta, &local->sta_list, list) { 2470 enum ieee80211_sta_state state; 2471 2472 if (!sta->uploaded) 2473 continue; 2474 2475 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2476 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2477 continue; 2478 2479 for (state = IEEE80211_STA_NOTEXIST; 2480 state < sta->sta_state; state++) 2481 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2482 state + 1)); 2483 } 2484 mutex_unlock(&local->sta_mtx); 2485 2486 /* add back keys */ 2487 list_for_each_entry(sdata, &local->interfaces, list) 2488 ieee80211_reenable_keys(sdata); 2489 2490 /* Reconfigure sched scan if it was interrupted by FW restart */ 2491 mutex_lock(&local->mtx); 2492 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2493 lockdep_is_held(&local->mtx)); 2494 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2495 lockdep_is_held(&local->mtx)); 2496 if (sched_scan_sdata && sched_scan_req) 2497 /* 2498 * Sched scan stopped, but we don't want to report it. Instead, 2499 * we're trying to reschedule. However, if more than one scan 2500 * plan was set, we cannot reschedule since we don't know which 2501 * scan plan was currently running (and some scan plans may have 2502 * already finished). 2503 */ 2504 if (sched_scan_req->n_scan_plans > 1 || 2505 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2506 sched_scan_req)) { 2507 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2508 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2509 sched_scan_stopped = true; 2510 } 2511 mutex_unlock(&local->mtx); 2512 2513 if (sched_scan_stopped) 2514 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2515 2516 wake_up: 2517 2518 if (local->monitors == local->open_count && local->monitors > 0) 2519 ieee80211_add_virtual_monitor(local); 2520 2521 /* 2522 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2523 * sessions can be established after a resume. 2524 * 2525 * Also tear down aggregation sessions since reconfiguring 2526 * them in a hardware restart scenario is not easily done 2527 * right now, and the hardware will have lost information 2528 * about the sessions, but we and the AP still think they 2529 * are active. This is really a workaround though. 2530 */ 2531 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2532 mutex_lock(&local->sta_mtx); 2533 2534 list_for_each_entry(sta, &local->sta_list, list) { 2535 if (!local->resuming) 2536 ieee80211_sta_tear_down_BA_sessions( 2537 sta, AGG_STOP_LOCAL_REQUEST); 2538 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2539 } 2540 2541 mutex_unlock(&local->sta_mtx); 2542 } 2543 2544 if (local->in_reconfig) { 2545 local->in_reconfig = false; 2546 barrier(); 2547 2548 /* Restart deferred ROCs */ 2549 mutex_lock(&local->mtx); 2550 ieee80211_start_next_roc(local); 2551 mutex_unlock(&local->mtx); 2552 2553 /* Requeue all works */ 2554 list_for_each_entry(sdata, &local->interfaces, list) 2555 ieee80211_queue_work(&local->hw, &sdata->work); 2556 } 2557 2558 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2559 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2560 false); 2561 2562 /* 2563 * If this is for hw restart things are still running. 2564 * We may want to change that later, however. 2565 */ 2566 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2567 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2568 2569 if (!suspended) 2570 return 0; 2571 2572 #ifdef CONFIG_PM 2573 /* first set suspended false, then resuming */ 2574 local->suspended = false; 2575 mb(); 2576 local->resuming = false; 2577 2578 ieee80211_flush_completed_scan(local, false); 2579 2580 if (local->open_count && !reconfig_due_to_wowlan) 2581 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2582 2583 list_for_each_entry(sdata, &local->interfaces, list) { 2584 if (!ieee80211_sdata_running(sdata)) 2585 continue; 2586 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2587 ieee80211_sta_restart(sdata); 2588 } 2589 2590 mod_timer(&local->sta_cleanup, jiffies + 1); 2591 #else 2592 WARN_ON(1); 2593 #endif 2594 2595 return 0; 2596 } 2597 2598 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2599 { 2600 struct ieee80211_sub_if_data *sdata; 2601 struct ieee80211_local *local; 2602 struct ieee80211_key *key; 2603 2604 if (WARN_ON(!vif)) 2605 return; 2606 2607 sdata = vif_to_sdata(vif); 2608 local = sdata->local; 2609 2610 if (WARN_ON(!local->resuming)) 2611 return; 2612 2613 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2614 return; 2615 2616 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2617 2618 mutex_lock(&local->key_mtx); 2619 list_for_each_entry(key, &sdata->key_list, list) 2620 key->flags |= KEY_FLAG_TAINTED; 2621 mutex_unlock(&local->key_mtx); 2622 } 2623 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2624 2625 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2626 { 2627 struct ieee80211_local *local = sdata->local; 2628 struct ieee80211_chanctx_conf *chanctx_conf; 2629 struct ieee80211_chanctx *chanctx; 2630 2631 mutex_lock(&local->chanctx_mtx); 2632 2633 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2634 lockdep_is_held(&local->chanctx_mtx)); 2635 2636 /* 2637 * This function can be called from a work, thus it may be possible 2638 * that the chanctx_conf is removed (due to a disconnection, for 2639 * example). 2640 * So nothing should be done in such case. 2641 */ 2642 if (!chanctx_conf) 2643 goto unlock; 2644 2645 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2646 ieee80211_recalc_smps_chanctx(local, chanctx); 2647 unlock: 2648 mutex_unlock(&local->chanctx_mtx); 2649 } 2650 2651 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2652 { 2653 struct ieee80211_local *local = sdata->local; 2654 struct ieee80211_chanctx_conf *chanctx_conf; 2655 struct ieee80211_chanctx *chanctx; 2656 2657 mutex_lock(&local->chanctx_mtx); 2658 2659 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2660 lockdep_is_held(&local->chanctx_mtx)); 2661 2662 if (WARN_ON_ONCE(!chanctx_conf)) 2663 goto unlock; 2664 2665 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2666 ieee80211_recalc_chanctx_min_def(local, chanctx); 2667 unlock: 2668 mutex_unlock(&local->chanctx_mtx); 2669 } 2670 2671 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2672 { 2673 size_t pos = offset; 2674 2675 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2676 pos += 2 + ies[pos + 1]; 2677 2678 return pos; 2679 } 2680 2681 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2682 int rssi_min_thold, 2683 int rssi_max_thold) 2684 { 2685 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2686 2687 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2688 return; 2689 2690 /* 2691 * Scale up threshold values before storing it, as the RSSI averaging 2692 * algorithm uses a scaled up value as well. Change this scaling 2693 * factor if the RSSI averaging algorithm changes. 2694 */ 2695 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2696 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2697 } 2698 2699 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2700 int rssi_min_thold, 2701 int rssi_max_thold) 2702 { 2703 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2704 2705 WARN_ON(rssi_min_thold == rssi_max_thold || 2706 rssi_min_thold > rssi_max_thold); 2707 2708 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2709 rssi_max_thold); 2710 } 2711 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2712 2713 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2714 { 2715 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2716 2717 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2718 } 2719 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2720 2721 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2722 u16 cap) 2723 { 2724 __le16 tmp; 2725 2726 *pos++ = WLAN_EID_HT_CAPABILITY; 2727 *pos++ = sizeof(struct ieee80211_ht_cap); 2728 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2729 2730 /* capability flags */ 2731 tmp = cpu_to_le16(cap); 2732 memcpy(pos, &tmp, sizeof(u16)); 2733 pos += sizeof(u16); 2734 2735 /* AMPDU parameters */ 2736 *pos++ = ht_cap->ampdu_factor | 2737 (ht_cap->ampdu_density << 2738 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2739 2740 /* MCS set */ 2741 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2742 pos += sizeof(ht_cap->mcs); 2743 2744 /* extended capabilities */ 2745 pos += sizeof(__le16); 2746 2747 /* BF capabilities */ 2748 pos += sizeof(__le32); 2749 2750 /* antenna selection */ 2751 pos += sizeof(u8); 2752 2753 return pos; 2754 } 2755 2756 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2757 u32 cap) 2758 { 2759 __le32 tmp; 2760 2761 *pos++ = WLAN_EID_VHT_CAPABILITY; 2762 *pos++ = sizeof(struct ieee80211_vht_cap); 2763 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2764 2765 /* capability flags */ 2766 tmp = cpu_to_le32(cap); 2767 memcpy(pos, &tmp, sizeof(u32)); 2768 pos += sizeof(u32); 2769 2770 /* VHT MCS set */ 2771 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2772 pos += sizeof(vht_cap->vht_mcs); 2773 2774 return pos; 2775 } 2776 2777 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2778 { 2779 const struct ieee80211_sta_he_cap *he_cap; 2780 struct ieee80211_supported_band *sband; 2781 u8 n; 2782 2783 sband = ieee80211_get_sband(sdata); 2784 if (!sband) 2785 return 0; 2786 2787 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2788 if (!he_cap) 2789 return 0; 2790 2791 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2792 return 2 + 1 + 2793 sizeof(he_cap->he_cap_elem) + n + 2794 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2795 he_cap->he_cap_elem.phy_cap_info); 2796 } 2797 2798 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2799 const struct ieee80211_sta_he_cap *he_cap, 2800 u8 *end) 2801 { 2802 u8 n; 2803 u8 ie_len; 2804 u8 *orig_pos = pos; 2805 2806 /* Make sure we have place for the IE */ 2807 /* 2808 * TODO: the 1 added is because this temporarily is under the EXTENSION 2809 * IE. Get rid of it when it moves. 2810 */ 2811 if (!he_cap) 2812 return orig_pos; 2813 2814 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2815 ie_len = 2 + 1 + 2816 sizeof(he_cap->he_cap_elem) + n + 2817 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2818 he_cap->he_cap_elem.phy_cap_info); 2819 2820 if ((end - pos) < ie_len) 2821 return orig_pos; 2822 2823 *pos++ = WLAN_EID_EXTENSION; 2824 pos++; /* We'll set the size later below */ 2825 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2826 2827 /* Fixed data */ 2828 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2829 pos += sizeof(he_cap->he_cap_elem); 2830 2831 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2832 pos += n; 2833 2834 /* Check if PPE Threshold should be present */ 2835 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2836 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2837 goto end; 2838 2839 /* 2840 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2841 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2842 */ 2843 n = hweight8(he_cap->ppe_thres[0] & 2844 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2845 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2846 IEEE80211_PPE_THRES_NSS_POS)); 2847 2848 /* 2849 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2850 * total size. 2851 */ 2852 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2853 n = DIV_ROUND_UP(n, 8); 2854 2855 /* Copy PPE Thresholds */ 2856 memcpy(pos, &he_cap->ppe_thres, n); 2857 pos += n; 2858 2859 end: 2860 orig_pos[1] = (pos - orig_pos) - 2; 2861 return pos; 2862 } 2863 2864 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2865 struct sk_buff *skb) 2866 { 2867 struct ieee80211_supported_band *sband; 2868 const struct ieee80211_sband_iftype_data *iftd; 2869 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2870 u8 *pos; 2871 u16 cap; 2872 2873 sband = ieee80211_get_sband(sdata); 2874 if (!sband) 2875 return; 2876 2877 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2878 if (WARN_ON(!iftd)) 2879 return; 2880 2881 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2882 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2883 2884 switch (sdata->smps_mode) { 2885 case IEEE80211_SMPS_AUTOMATIC: 2886 case IEEE80211_SMPS_NUM_MODES: 2887 WARN_ON(1); 2888 /* fall through */ 2889 case IEEE80211_SMPS_OFF: 2890 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2891 IEEE80211_HE_6GHZ_CAP_SM_PS); 2892 break; 2893 case IEEE80211_SMPS_STATIC: 2894 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2895 IEEE80211_HE_6GHZ_CAP_SM_PS); 2896 break; 2897 case IEEE80211_SMPS_DYNAMIC: 2898 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2899 IEEE80211_HE_6GHZ_CAP_SM_PS); 2900 break; 2901 } 2902 2903 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2904 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2905 pos + 2 + 1 + sizeof(cap)); 2906 } 2907 2908 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2909 const struct cfg80211_chan_def *chandef, 2910 u16 prot_mode, bool rifs_mode) 2911 { 2912 struct ieee80211_ht_operation *ht_oper; 2913 /* Build HT Information */ 2914 *pos++ = WLAN_EID_HT_OPERATION; 2915 *pos++ = sizeof(struct ieee80211_ht_operation); 2916 ht_oper = (struct ieee80211_ht_operation *)pos; 2917 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2918 chandef->chan->center_freq); 2919 switch (chandef->width) { 2920 case NL80211_CHAN_WIDTH_160: 2921 case NL80211_CHAN_WIDTH_80P80: 2922 case NL80211_CHAN_WIDTH_80: 2923 case NL80211_CHAN_WIDTH_40: 2924 if (chandef->center_freq1 > chandef->chan->center_freq) 2925 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2926 else 2927 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2928 break; 2929 default: 2930 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2931 break; 2932 } 2933 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2934 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2935 chandef->width != NL80211_CHAN_WIDTH_20) 2936 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2937 2938 if (rifs_mode) 2939 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2940 2941 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2942 ht_oper->stbc_param = 0x0000; 2943 2944 /* It seems that Basic MCS set and Supported MCS set 2945 are identical for the first 10 bytes */ 2946 memset(&ht_oper->basic_set, 0, 16); 2947 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2948 2949 return pos + sizeof(struct ieee80211_ht_operation); 2950 } 2951 2952 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2953 const struct cfg80211_chan_def *chandef) 2954 { 2955 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2956 *pos++ = 3; /* IE length */ 2957 /* New channel width */ 2958 switch (chandef->width) { 2959 case NL80211_CHAN_WIDTH_80: 2960 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2961 break; 2962 case NL80211_CHAN_WIDTH_160: 2963 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2964 break; 2965 case NL80211_CHAN_WIDTH_80P80: 2966 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2967 break; 2968 default: 2969 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2970 } 2971 2972 /* new center frequency segment 0 */ 2973 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2974 /* new center frequency segment 1 */ 2975 if (chandef->center_freq2) 2976 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2977 else 2978 *pos++ = 0; 2979 } 2980 2981 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2982 const struct cfg80211_chan_def *chandef) 2983 { 2984 struct ieee80211_vht_operation *vht_oper; 2985 2986 *pos++ = WLAN_EID_VHT_OPERATION; 2987 *pos++ = sizeof(struct ieee80211_vht_operation); 2988 vht_oper = (struct ieee80211_vht_operation *)pos; 2989 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2990 chandef->center_freq1); 2991 if (chandef->center_freq2) 2992 vht_oper->center_freq_seg1_idx = 2993 ieee80211_frequency_to_channel(chandef->center_freq2); 2994 else 2995 vht_oper->center_freq_seg1_idx = 0x00; 2996 2997 switch (chandef->width) { 2998 case NL80211_CHAN_WIDTH_160: 2999 /* 3000 * Convert 160 MHz channel width to new style as interop 3001 * workaround. 3002 */ 3003 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3004 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3005 if (chandef->chan->center_freq < chandef->center_freq1) 3006 vht_oper->center_freq_seg0_idx -= 8; 3007 else 3008 vht_oper->center_freq_seg0_idx += 8; 3009 break; 3010 case NL80211_CHAN_WIDTH_80P80: 3011 /* 3012 * Convert 80+80 MHz channel width to new style as interop 3013 * workaround. 3014 */ 3015 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3016 break; 3017 case NL80211_CHAN_WIDTH_80: 3018 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3019 break; 3020 default: 3021 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3022 break; 3023 } 3024 3025 /* don't require special VHT peer rates */ 3026 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3027 3028 return pos + sizeof(struct ieee80211_vht_operation); 3029 } 3030 3031 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3032 { 3033 struct ieee80211_he_operation *he_oper; 3034 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3035 u32 he_oper_params; 3036 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3037 3038 if (chandef->chan->band == NL80211_BAND_6GHZ) 3039 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3040 3041 *pos++ = WLAN_EID_EXTENSION; 3042 *pos++ = ie_len; 3043 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3044 3045 he_oper_params = 0; 3046 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3047 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3048 he_oper_params |= u32_encode_bits(1, 3049 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3050 he_oper_params |= u32_encode_bits(1, 3051 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3052 if (chandef->chan->band == NL80211_BAND_6GHZ) 3053 he_oper_params |= u32_encode_bits(1, 3054 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3055 3056 he_oper = (struct ieee80211_he_operation *)pos; 3057 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3058 3059 /* don't require special HE peer rates */ 3060 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3061 pos += sizeof(struct ieee80211_he_operation); 3062 3063 if (chandef->chan->band != NL80211_BAND_6GHZ) 3064 goto out; 3065 3066 /* TODO add VHT operational */ 3067 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3068 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3069 he_6ghz_op->primary = 3070 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3071 he_6ghz_op->ccfs0 = 3072 ieee80211_frequency_to_channel(chandef->center_freq1); 3073 if (chandef->center_freq2) 3074 he_6ghz_op->ccfs1 = 3075 ieee80211_frequency_to_channel(chandef->center_freq2); 3076 else 3077 he_6ghz_op->ccfs1 = 0; 3078 3079 switch (chandef->width) { 3080 case NL80211_CHAN_WIDTH_160: 3081 /* Convert 160 MHz channel width to new style as interop 3082 * workaround. 3083 */ 3084 he_6ghz_op->control = 3085 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3086 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3087 if (chandef->chan->center_freq < chandef->center_freq1) 3088 he_6ghz_op->ccfs0 -= 8; 3089 else 3090 he_6ghz_op->ccfs0 += 8; 3091 fallthrough; 3092 case NL80211_CHAN_WIDTH_80P80: 3093 he_6ghz_op->control = 3094 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3095 break; 3096 case NL80211_CHAN_WIDTH_80: 3097 he_6ghz_op->control = 3098 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3099 break; 3100 case NL80211_CHAN_WIDTH_40: 3101 he_6ghz_op->control = 3102 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3103 break; 3104 default: 3105 he_6ghz_op->control = 3106 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3107 break; 3108 } 3109 3110 pos += sizeof(struct ieee80211_he_6ghz_oper); 3111 3112 out: 3113 return pos; 3114 } 3115 3116 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3117 struct cfg80211_chan_def *chandef) 3118 { 3119 enum nl80211_channel_type channel_type; 3120 3121 if (!ht_oper) 3122 return false; 3123 3124 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3125 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3126 channel_type = NL80211_CHAN_HT20; 3127 break; 3128 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3129 channel_type = NL80211_CHAN_HT40PLUS; 3130 break; 3131 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3132 channel_type = NL80211_CHAN_HT40MINUS; 3133 break; 3134 default: 3135 channel_type = NL80211_CHAN_NO_HT; 3136 return false; 3137 } 3138 3139 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3140 return true; 3141 } 3142 3143 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3144 const struct ieee80211_vht_operation *oper, 3145 const struct ieee80211_ht_operation *htop, 3146 struct cfg80211_chan_def *chandef) 3147 { 3148 struct cfg80211_chan_def new = *chandef; 3149 int cf0, cf1; 3150 int ccfs0, ccfs1, ccfs2; 3151 int ccf0, ccf1; 3152 u32 vht_cap; 3153 bool support_80_80 = false; 3154 bool support_160 = false; 3155 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3156 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3157 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3158 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3159 3160 if (!oper || !htop) 3161 return false; 3162 3163 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3164 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3165 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3166 support_80_80 = ((vht_cap & 3167 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3168 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3169 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3170 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3171 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3172 ccfs0 = oper->center_freq_seg0_idx; 3173 ccfs1 = oper->center_freq_seg1_idx; 3174 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3175 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3176 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3177 3178 ccf0 = ccfs0; 3179 3180 /* if not supported, parse as though we didn't understand it */ 3181 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3182 ext_nss_bw_supp = 0; 3183 3184 /* 3185 * Cf. IEEE 802.11 Table 9-250 3186 * 3187 * We really just consider that because it's inefficient to connect 3188 * at a higher bandwidth than we'll actually be able to use. 3189 */ 3190 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3191 default: 3192 case 0x00: 3193 ccf1 = 0; 3194 support_160 = false; 3195 support_80_80 = false; 3196 break; 3197 case 0x01: 3198 support_80_80 = false; 3199 /* fall through */ 3200 case 0x02: 3201 case 0x03: 3202 ccf1 = ccfs2; 3203 break; 3204 case 0x10: 3205 ccf1 = ccfs1; 3206 break; 3207 case 0x11: 3208 case 0x12: 3209 if (!ccfs1) 3210 ccf1 = ccfs2; 3211 else 3212 ccf1 = ccfs1; 3213 break; 3214 case 0x13: 3215 case 0x20: 3216 case 0x23: 3217 ccf1 = ccfs1; 3218 break; 3219 } 3220 3221 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3222 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3223 3224 switch (oper->chan_width) { 3225 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3226 /* just use HT information directly */ 3227 break; 3228 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3229 new.width = NL80211_CHAN_WIDTH_80; 3230 new.center_freq1 = cf0; 3231 /* If needed, adjust based on the newer interop workaround. */ 3232 if (ccf1) { 3233 unsigned int diff; 3234 3235 diff = abs(ccf1 - ccf0); 3236 if ((diff == 8) && support_160) { 3237 new.width = NL80211_CHAN_WIDTH_160; 3238 new.center_freq1 = cf1; 3239 } else if ((diff > 8) && support_80_80) { 3240 new.width = NL80211_CHAN_WIDTH_80P80; 3241 new.center_freq2 = cf1; 3242 } 3243 } 3244 break; 3245 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3246 /* deprecated encoding */ 3247 new.width = NL80211_CHAN_WIDTH_160; 3248 new.center_freq1 = cf0; 3249 break; 3250 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3251 /* deprecated encoding */ 3252 new.width = NL80211_CHAN_WIDTH_80P80; 3253 new.center_freq1 = cf0; 3254 new.center_freq2 = cf1; 3255 break; 3256 default: 3257 return false; 3258 } 3259 3260 if (!cfg80211_chandef_valid(&new)) 3261 return false; 3262 3263 *chandef = new; 3264 return true; 3265 } 3266 3267 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3268 const struct ieee80211_he_operation *he_oper, 3269 struct cfg80211_chan_def *chandef) 3270 { 3271 struct ieee80211_local *local = sdata->local; 3272 struct ieee80211_supported_band *sband; 3273 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3274 const struct ieee80211_sta_he_cap *he_cap; 3275 struct cfg80211_chan_def he_chandef = *chandef; 3276 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3277 bool support_80_80, support_160; 3278 u8 he_phy_cap; 3279 u32 freq; 3280 3281 if (chandef->chan->band != NL80211_BAND_6GHZ) 3282 return true; 3283 3284 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3285 3286 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3287 if (!he_cap) { 3288 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3289 return false; 3290 } 3291 3292 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3293 support_160 = 3294 he_phy_cap & 3295 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3296 support_80_80 = 3297 he_phy_cap & 3298 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3299 3300 if (!he_oper) { 3301 sdata_info(sdata, 3302 "HE is not advertised on (on %d MHz), expect issues\n", 3303 chandef->chan->center_freq); 3304 return false; 3305 } 3306 3307 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3308 3309 if (!he_6ghz_oper) { 3310 sdata_info(sdata, 3311 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3312 chandef->chan->center_freq); 3313 return false; 3314 } 3315 3316 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3317 NL80211_BAND_6GHZ); 3318 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3319 3320 switch (u8_get_bits(he_6ghz_oper->control, 3321 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3322 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3323 he_chandef.width = NL80211_CHAN_WIDTH_20; 3324 break; 3325 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3326 he_chandef.width = NL80211_CHAN_WIDTH_40; 3327 break; 3328 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3329 he_chandef.width = NL80211_CHAN_WIDTH_80; 3330 break; 3331 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3332 he_chandef.width = NL80211_CHAN_WIDTH_80; 3333 if (!he_6ghz_oper->ccfs1) 3334 break; 3335 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3336 if (support_160) 3337 he_chandef.width = NL80211_CHAN_WIDTH_160; 3338 } else { 3339 if (support_80_80) 3340 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3341 } 3342 break; 3343 } 3344 3345 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3346 he_chandef.center_freq1 = 3347 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3348 NL80211_BAND_6GHZ); 3349 } else { 3350 he_chandef.center_freq1 = 3351 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3352 NL80211_BAND_6GHZ); 3353 he_chandef.center_freq2 = 3354 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3355 NL80211_BAND_6GHZ); 3356 } 3357 3358 if (!cfg80211_chandef_valid(&he_chandef)) { 3359 sdata_info(sdata, 3360 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3361 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3362 he_chandef.width, 3363 he_chandef.center_freq1, 3364 he_chandef.center_freq2); 3365 return false; 3366 } 3367 3368 *chandef = he_chandef; 3369 3370 return true; 3371 } 3372 3373 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3374 const struct ieee80211_supported_band *sband, 3375 const u8 *srates, int srates_len, u32 *rates) 3376 { 3377 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3378 int shift = ieee80211_chandef_get_shift(chandef); 3379 struct ieee80211_rate *br; 3380 int brate, rate, i, j, count = 0; 3381 3382 *rates = 0; 3383 3384 for (i = 0; i < srates_len; i++) { 3385 rate = srates[i] & 0x7f; 3386 3387 for (j = 0; j < sband->n_bitrates; j++) { 3388 br = &sband->bitrates[j]; 3389 if ((rate_flags & br->flags) != rate_flags) 3390 continue; 3391 3392 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3393 if (brate == rate) { 3394 *rates |= BIT(j); 3395 count++; 3396 break; 3397 } 3398 } 3399 } 3400 return count; 3401 } 3402 3403 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3404 struct sk_buff *skb, bool need_basic, 3405 enum nl80211_band band) 3406 { 3407 struct ieee80211_local *local = sdata->local; 3408 struct ieee80211_supported_band *sband; 3409 int rate, shift; 3410 u8 i, rates, *pos; 3411 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3412 u32 rate_flags; 3413 3414 shift = ieee80211_vif_get_shift(&sdata->vif); 3415 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3416 sband = local->hw.wiphy->bands[band]; 3417 rates = 0; 3418 for (i = 0; i < sband->n_bitrates; i++) { 3419 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3420 continue; 3421 rates++; 3422 } 3423 if (rates > 8) 3424 rates = 8; 3425 3426 if (skb_tailroom(skb) < rates + 2) 3427 return -ENOMEM; 3428 3429 pos = skb_put(skb, rates + 2); 3430 *pos++ = WLAN_EID_SUPP_RATES; 3431 *pos++ = rates; 3432 for (i = 0; i < rates; i++) { 3433 u8 basic = 0; 3434 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3435 continue; 3436 3437 if (need_basic && basic_rates & BIT(i)) 3438 basic = 0x80; 3439 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3440 5 * (1 << shift)); 3441 *pos++ = basic | (u8) rate; 3442 } 3443 3444 return 0; 3445 } 3446 3447 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3448 struct sk_buff *skb, bool need_basic, 3449 enum nl80211_band band) 3450 { 3451 struct ieee80211_local *local = sdata->local; 3452 struct ieee80211_supported_band *sband; 3453 int rate, shift; 3454 u8 i, exrates, *pos; 3455 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3456 u32 rate_flags; 3457 3458 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3459 shift = ieee80211_vif_get_shift(&sdata->vif); 3460 3461 sband = local->hw.wiphy->bands[band]; 3462 exrates = 0; 3463 for (i = 0; i < sband->n_bitrates; i++) { 3464 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3465 continue; 3466 exrates++; 3467 } 3468 3469 if (exrates > 8) 3470 exrates -= 8; 3471 else 3472 exrates = 0; 3473 3474 if (skb_tailroom(skb) < exrates + 2) 3475 return -ENOMEM; 3476 3477 if (exrates) { 3478 pos = skb_put(skb, exrates + 2); 3479 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3480 *pos++ = exrates; 3481 for (i = 8; i < sband->n_bitrates; i++) { 3482 u8 basic = 0; 3483 if ((rate_flags & sband->bitrates[i].flags) 3484 != rate_flags) 3485 continue; 3486 if (need_basic && basic_rates & BIT(i)) 3487 basic = 0x80; 3488 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3489 5 * (1 << shift)); 3490 *pos++ = basic | (u8) rate; 3491 } 3492 } 3493 return 0; 3494 } 3495 3496 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3497 { 3498 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3499 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3500 3501 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3502 /* non-managed type inferfaces */ 3503 return 0; 3504 } 3505 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3506 } 3507 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3508 3509 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3510 { 3511 if (!mcs) 3512 return 1; 3513 3514 /* TODO: consider rx_highest */ 3515 3516 if (mcs->rx_mask[3]) 3517 return 4; 3518 if (mcs->rx_mask[2]) 3519 return 3; 3520 if (mcs->rx_mask[1]) 3521 return 2; 3522 return 1; 3523 } 3524 3525 /** 3526 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3527 * @local: mac80211 hw info struct 3528 * @status: RX status 3529 * @mpdu_len: total MPDU length (including FCS) 3530 * @mpdu_offset: offset into MPDU to calculate timestamp at 3531 * 3532 * This function calculates the RX timestamp at the given MPDU offset, taking 3533 * into account what the RX timestamp was. An offset of 0 will just normalize 3534 * the timestamp to TSF at beginning of MPDU reception. 3535 */ 3536 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3537 struct ieee80211_rx_status *status, 3538 unsigned int mpdu_len, 3539 unsigned int mpdu_offset) 3540 { 3541 u64 ts = status->mactime; 3542 struct rate_info ri; 3543 u16 rate; 3544 3545 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3546 return 0; 3547 3548 memset(&ri, 0, sizeof(ri)); 3549 3550 ri.bw = status->bw; 3551 3552 /* Fill cfg80211 rate info */ 3553 switch (status->encoding) { 3554 case RX_ENC_HT: 3555 ri.mcs = status->rate_idx; 3556 ri.flags |= RATE_INFO_FLAGS_MCS; 3557 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3558 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3559 break; 3560 case RX_ENC_VHT: 3561 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3562 ri.mcs = status->rate_idx; 3563 ri.nss = status->nss; 3564 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3565 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3566 break; 3567 default: 3568 WARN_ON(1); 3569 /* fall through */ 3570 case RX_ENC_LEGACY: { 3571 struct ieee80211_supported_band *sband; 3572 int shift = 0; 3573 int bitrate; 3574 3575 switch (status->bw) { 3576 case RATE_INFO_BW_10: 3577 shift = 1; 3578 break; 3579 case RATE_INFO_BW_5: 3580 shift = 2; 3581 break; 3582 } 3583 3584 sband = local->hw.wiphy->bands[status->band]; 3585 bitrate = sband->bitrates[status->rate_idx].bitrate; 3586 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3587 3588 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3589 /* TODO: handle HT/VHT preambles */ 3590 if (status->band == NL80211_BAND_5GHZ) { 3591 ts += 20 << shift; 3592 mpdu_offset += 2; 3593 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3594 ts += 96; 3595 } else { 3596 ts += 192; 3597 } 3598 } 3599 break; 3600 } 3601 } 3602 3603 rate = cfg80211_calculate_bitrate(&ri); 3604 if (WARN_ONCE(!rate, 3605 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3606 (unsigned long long)status->flag, status->rate_idx, 3607 status->nss)) 3608 return 0; 3609 3610 /* rewind from end of MPDU */ 3611 if (status->flag & RX_FLAG_MACTIME_END) 3612 ts -= mpdu_len * 8 * 10 / rate; 3613 3614 ts += mpdu_offset * 8 * 10 / rate; 3615 3616 return ts; 3617 } 3618 3619 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3620 { 3621 struct ieee80211_sub_if_data *sdata; 3622 struct cfg80211_chan_def chandef; 3623 3624 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3625 ASSERT_RTNL(); 3626 3627 mutex_lock(&local->mtx); 3628 list_for_each_entry(sdata, &local->interfaces, list) { 3629 /* it might be waiting for the local->mtx, but then 3630 * by the time it gets it, sdata->wdev.cac_started 3631 * will no longer be true 3632 */ 3633 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3634 3635 if (sdata->wdev.cac_started) { 3636 chandef = sdata->vif.bss_conf.chandef; 3637 ieee80211_vif_release_channel(sdata); 3638 cfg80211_cac_event(sdata->dev, 3639 &chandef, 3640 NL80211_RADAR_CAC_ABORTED, 3641 GFP_KERNEL); 3642 } 3643 } 3644 mutex_unlock(&local->mtx); 3645 } 3646 3647 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3648 { 3649 struct ieee80211_local *local = 3650 container_of(work, struct ieee80211_local, radar_detected_work); 3651 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3652 struct ieee80211_chanctx *ctx; 3653 int num_chanctx = 0; 3654 3655 mutex_lock(&local->chanctx_mtx); 3656 list_for_each_entry(ctx, &local->chanctx_list, list) { 3657 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3658 continue; 3659 3660 num_chanctx++; 3661 chandef = ctx->conf.def; 3662 } 3663 mutex_unlock(&local->chanctx_mtx); 3664 3665 rtnl_lock(); 3666 ieee80211_dfs_cac_cancel(local); 3667 rtnl_unlock(); 3668 3669 if (num_chanctx > 1) 3670 /* XXX: multi-channel is not supported yet */ 3671 WARN_ON(1); 3672 else 3673 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3674 } 3675 3676 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3677 { 3678 struct ieee80211_local *local = hw_to_local(hw); 3679 3680 trace_api_radar_detected(local); 3681 3682 schedule_work(&local->radar_detected_work); 3683 } 3684 EXPORT_SYMBOL(ieee80211_radar_detected); 3685 3686 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3687 { 3688 u32 ret; 3689 int tmp; 3690 3691 switch (c->width) { 3692 case NL80211_CHAN_WIDTH_20: 3693 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3694 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3695 break; 3696 case NL80211_CHAN_WIDTH_40: 3697 c->width = NL80211_CHAN_WIDTH_20; 3698 c->center_freq1 = c->chan->center_freq; 3699 ret = IEEE80211_STA_DISABLE_40MHZ | 3700 IEEE80211_STA_DISABLE_VHT; 3701 break; 3702 case NL80211_CHAN_WIDTH_80: 3703 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3704 /* n_P40 */ 3705 tmp /= 2; 3706 /* freq_P40 */ 3707 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3708 c->width = NL80211_CHAN_WIDTH_40; 3709 ret = IEEE80211_STA_DISABLE_VHT; 3710 break; 3711 case NL80211_CHAN_WIDTH_80P80: 3712 c->center_freq2 = 0; 3713 c->width = NL80211_CHAN_WIDTH_80; 3714 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3715 IEEE80211_STA_DISABLE_160MHZ; 3716 break; 3717 case NL80211_CHAN_WIDTH_160: 3718 /* n_P20 */ 3719 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3720 /* n_P80 */ 3721 tmp /= 4; 3722 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3723 c->width = NL80211_CHAN_WIDTH_80; 3724 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3725 IEEE80211_STA_DISABLE_160MHZ; 3726 break; 3727 default: 3728 case NL80211_CHAN_WIDTH_20_NOHT: 3729 WARN_ON_ONCE(1); 3730 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3731 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3732 break; 3733 case NL80211_CHAN_WIDTH_5: 3734 case NL80211_CHAN_WIDTH_10: 3735 WARN_ON_ONCE(1); 3736 /* keep c->width */ 3737 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3738 break; 3739 } 3740 3741 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3742 3743 return ret; 3744 } 3745 3746 /* 3747 * Returns true if smps_mode_new is strictly more restrictive than 3748 * smps_mode_old. 3749 */ 3750 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3751 enum ieee80211_smps_mode smps_mode_new) 3752 { 3753 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3754 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3755 return false; 3756 3757 switch (smps_mode_old) { 3758 case IEEE80211_SMPS_STATIC: 3759 return false; 3760 case IEEE80211_SMPS_DYNAMIC: 3761 return smps_mode_new == IEEE80211_SMPS_STATIC; 3762 case IEEE80211_SMPS_OFF: 3763 return smps_mode_new != IEEE80211_SMPS_OFF; 3764 default: 3765 WARN_ON(1); 3766 } 3767 3768 return false; 3769 } 3770 3771 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3772 struct cfg80211_csa_settings *csa_settings) 3773 { 3774 struct sk_buff *skb; 3775 struct ieee80211_mgmt *mgmt; 3776 struct ieee80211_local *local = sdata->local; 3777 int freq; 3778 int hdr_len = offsetofend(struct ieee80211_mgmt, 3779 u.action.u.chan_switch); 3780 u8 *pos; 3781 3782 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3783 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3784 return -EOPNOTSUPP; 3785 3786 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3787 5 + /* channel switch announcement element */ 3788 3 + /* secondary channel offset element */ 3789 5 + /* wide bandwidth channel switch announcement */ 3790 8); /* mesh channel switch parameters element */ 3791 if (!skb) 3792 return -ENOMEM; 3793 3794 skb_reserve(skb, local->tx_headroom); 3795 mgmt = skb_put_zero(skb, hdr_len); 3796 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3797 IEEE80211_STYPE_ACTION); 3798 3799 eth_broadcast_addr(mgmt->da); 3800 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3801 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3802 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3803 } else { 3804 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3805 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3806 } 3807 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3808 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3809 pos = skb_put(skb, 5); 3810 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3811 *pos++ = 3; /* IE length */ 3812 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3813 freq = csa_settings->chandef.chan->center_freq; 3814 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3815 *pos++ = csa_settings->count; /* count */ 3816 3817 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3818 enum nl80211_channel_type ch_type; 3819 3820 skb_put(skb, 3); 3821 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3822 *pos++ = 1; /* IE length */ 3823 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3824 if (ch_type == NL80211_CHAN_HT40PLUS) 3825 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3826 else 3827 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3828 } 3829 3830 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3831 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3832 3833 skb_put(skb, 8); 3834 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3835 *pos++ = 6; /* IE length */ 3836 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3837 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3838 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3839 *pos++ |= csa_settings->block_tx ? 3840 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3841 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3842 pos += 2; 3843 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3844 pos += 2; 3845 } 3846 3847 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3848 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3849 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3850 skb_put(skb, 5); 3851 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3852 } 3853 3854 ieee80211_tx_skb(sdata, skb); 3855 return 0; 3856 } 3857 3858 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3859 { 3860 return !(cs == NULL || cs->cipher == 0 || 3861 cs->hdr_len < cs->pn_len + cs->pn_off || 3862 cs->hdr_len <= cs->key_idx_off || 3863 cs->key_idx_shift > 7 || 3864 cs->key_idx_mask == 0); 3865 } 3866 3867 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3868 { 3869 int i; 3870 3871 /* Ensure we have enough iftype bitmap space for all iftype values */ 3872 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 3873 3874 for (i = 0; i < n; i++) 3875 if (!ieee80211_cs_valid(&cs[i])) 3876 return false; 3877 3878 return true; 3879 } 3880 3881 const struct ieee80211_cipher_scheme * 3882 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 3883 enum nl80211_iftype iftype) 3884 { 3885 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 3886 int n = local->hw.n_cipher_schemes; 3887 int i; 3888 const struct ieee80211_cipher_scheme *cs = NULL; 3889 3890 for (i = 0; i < n; i++) { 3891 if (l[i].cipher == cipher) { 3892 cs = &l[i]; 3893 break; 3894 } 3895 } 3896 3897 if (!cs || !(cs->iftype & BIT(iftype))) 3898 return NULL; 3899 3900 return cs; 3901 } 3902 3903 int ieee80211_cs_headroom(struct ieee80211_local *local, 3904 struct cfg80211_crypto_settings *crypto, 3905 enum nl80211_iftype iftype) 3906 { 3907 const struct ieee80211_cipher_scheme *cs; 3908 int headroom = IEEE80211_ENCRYPT_HEADROOM; 3909 int i; 3910 3911 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 3912 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 3913 iftype); 3914 3915 if (cs && headroom < cs->hdr_len) 3916 headroom = cs->hdr_len; 3917 } 3918 3919 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 3920 if (cs && headroom < cs->hdr_len) 3921 headroom = cs->hdr_len; 3922 3923 return headroom; 3924 } 3925 3926 static bool 3927 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3928 { 3929 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3930 int skip; 3931 3932 if (end > 0) 3933 return false; 3934 3935 /* One shot NOA */ 3936 if (data->count[i] == 1) 3937 return false; 3938 3939 if (data->desc[i].interval == 0) 3940 return false; 3941 3942 /* End time is in the past, check for repetitions */ 3943 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3944 if (data->count[i] < 255) { 3945 if (data->count[i] <= skip) { 3946 data->count[i] = 0; 3947 return false; 3948 } 3949 3950 data->count[i] -= skip; 3951 } 3952 3953 data->desc[i].start += skip * data->desc[i].interval; 3954 3955 return true; 3956 } 3957 3958 static bool 3959 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3960 s32 *offset) 3961 { 3962 bool ret = false; 3963 int i; 3964 3965 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3966 s32 cur; 3967 3968 if (!data->count[i]) 3969 continue; 3970 3971 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3972 ret = true; 3973 3974 cur = data->desc[i].start - tsf; 3975 if (cur > *offset) 3976 continue; 3977 3978 cur = data->desc[i].start + data->desc[i].duration - tsf; 3979 if (cur > *offset) 3980 *offset = cur; 3981 } 3982 3983 return ret; 3984 } 3985 3986 static u32 3987 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3988 { 3989 s32 offset = 0; 3990 int tries = 0; 3991 /* 3992 * arbitrary limit, used to avoid infinite loops when combined NoA 3993 * descriptors cover the full time period. 3994 */ 3995 int max_tries = 5; 3996 3997 ieee80211_extend_absent_time(data, tsf, &offset); 3998 do { 3999 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4000 break; 4001 4002 tries++; 4003 } while (tries < max_tries); 4004 4005 return offset; 4006 } 4007 4008 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4009 { 4010 u32 next_offset = BIT(31) - 1; 4011 int i; 4012 4013 data->absent = 0; 4014 data->has_next_tsf = false; 4015 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4016 s32 start; 4017 4018 if (!data->count[i]) 4019 continue; 4020 4021 ieee80211_extend_noa_desc(data, tsf, i); 4022 start = data->desc[i].start - tsf; 4023 if (start <= 0) 4024 data->absent |= BIT(i); 4025 4026 if (next_offset > start) 4027 next_offset = start; 4028 4029 data->has_next_tsf = true; 4030 } 4031 4032 if (data->absent) 4033 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4034 4035 data->next_tsf = tsf + next_offset; 4036 } 4037 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4038 4039 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4040 struct ieee80211_noa_data *data, u32 tsf) 4041 { 4042 int ret = 0; 4043 int i; 4044 4045 memset(data, 0, sizeof(*data)); 4046 4047 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4048 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4049 4050 if (!desc->count || !desc->duration) 4051 continue; 4052 4053 data->count[i] = desc->count; 4054 data->desc[i].start = le32_to_cpu(desc->start_time); 4055 data->desc[i].duration = le32_to_cpu(desc->duration); 4056 data->desc[i].interval = le32_to_cpu(desc->interval); 4057 4058 if (data->count[i] > 1 && 4059 data->desc[i].interval < data->desc[i].duration) 4060 continue; 4061 4062 ieee80211_extend_noa_desc(data, tsf, i); 4063 ret++; 4064 } 4065 4066 if (ret) 4067 ieee80211_update_p2p_noa(data, tsf); 4068 4069 return ret; 4070 } 4071 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4072 4073 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4074 struct ieee80211_sub_if_data *sdata) 4075 { 4076 u64 tsf = drv_get_tsf(local, sdata); 4077 u64 dtim_count = 0; 4078 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4079 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4080 struct ps_data *ps; 4081 u8 bcns_from_dtim; 4082 4083 if (tsf == -1ULL || !beacon_int || !dtim_period) 4084 return; 4085 4086 if (sdata->vif.type == NL80211_IFTYPE_AP || 4087 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4088 if (!sdata->bss) 4089 return; 4090 4091 ps = &sdata->bss->ps; 4092 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4093 ps = &sdata->u.mesh.ps; 4094 } else { 4095 return; 4096 } 4097 4098 /* 4099 * actually finds last dtim_count, mac80211 will update in 4100 * __beacon_add_tim(). 4101 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4102 */ 4103 do_div(tsf, beacon_int); 4104 bcns_from_dtim = do_div(tsf, dtim_period); 4105 /* just had a DTIM */ 4106 if (!bcns_from_dtim) 4107 dtim_count = 0; 4108 else 4109 dtim_count = dtim_period - bcns_from_dtim; 4110 4111 ps->dtim_count = dtim_count; 4112 } 4113 4114 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4115 struct ieee80211_chanctx *ctx) 4116 { 4117 struct ieee80211_sub_if_data *sdata; 4118 u8 radar_detect = 0; 4119 4120 lockdep_assert_held(&local->chanctx_mtx); 4121 4122 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4123 return 0; 4124 4125 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4126 if (sdata->reserved_radar_required) 4127 radar_detect |= BIT(sdata->reserved_chandef.width); 4128 4129 /* 4130 * An in-place reservation context should not have any assigned vifs 4131 * until it replaces the other context. 4132 */ 4133 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4134 !list_empty(&ctx->assigned_vifs)); 4135 4136 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4137 if (sdata->radar_required) 4138 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4139 4140 return radar_detect; 4141 } 4142 4143 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4144 const struct cfg80211_chan_def *chandef, 4145 enum ieee80211_chanctx_mode chanmode, 4146 u8 radar_detect) 4147 { 4148 struct ieee80211_local *local = sdata->local; 4149 struct ieee80211_sub_if_data *sdata_iter; 4150 enum nl80211_iftype iftype = sdata->wdev.iftype; 4151 struct ieee80211_chanctx *ctx; 4152 int total = 1; 4153 struct iface_combination_params params = { 4154 .radar_detect = radar_detect, 4155 }; 4156 4157 lockdep_assert_held(&local->chanctx_mtx); 4158 4159 if (WARN_ON(hweight32(radar_detect) > 1)) 4160 return -EINVAL; 4161 4162 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4163 !chandef->chan)) 4164 return -EINVAL; 4165 4166 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4167 return -EINVAL; 4168 4169 if (sdata->vif.type == NL80211_IFTYPE_AP || 4170 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4171 /* 4172 * always passing this is harmless, since it'll be the 4173 * same value that cfg80211 finds if it finds the same 4174 * interface ... and that's always allowed 4175 */ 4176 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4177 } 4178 4179 /* Always allow software iftypes */ 4180 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4181 if (radar_detect) 4182 return -EINVAL; 4183 return 0; 4184 } 4185 4186 if (chandef) 4187 params.num_different_channels = 1; 4188 4189 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4190 params.iftype_num[iftype] = 1; 4191 4192 list_for_each_entry(ctx, &local->chanctx_list, list) { 4193 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4194 continue; 4195 params.radar_detect |= 4196 ieee80211_chanctx_radar_detect(local, ctx); 4197 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4198 params.num_different_channels++; 4199 continue; 4200 } 4201 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4202 cfg80211_chandef_compatible(chandef, 4203 &ctx->conf.def)) 4204 continue; 4205 params.num_different_channels++; 4206 } 4207 4208 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4209 struct wireless_dev *wdev_iter; 4210 4211 wdev_iter = &sdata_iter->wdev; 4212 4213 if (sdata_iter == sdata || 4214 !ieee80211_sdata_running(sdata_iter) || 4215 cfg80211_iftype_allowed(local->hw.wiphy, 4216 wdev_iter->iftype, 0, 1)) 4217 continue; 4218 4219 params.iftype_num[wdev_iter->iftype]++; 4220 total++; 4221 } 4222 4223 if (total == 1 && !params.radar_detect) 4224 return 0; 4225 4226 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4227 } 4228 4229 static void 4230 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4231 void *data) 4232 { 4233 u32 *max_num_different_channels = data; 4234 4235 *max_num_different_channels = max(*max_num_different_channels, 4236 c->num_different_channels); 4237 } 4238 4239 int ieee80211_max_num_channels(struct ieee80211_local *local) 4240 { 4241 struct ieee80211_sub_if_data *sdata; 4242 struct ieee80211_chanctx *ctx; 4243 u32 max_num_different_channels = 1; 4244 int err; 4245 struct iface_combination_params params = {0}; 4246 4247 lockdep_assert_held(&local->chanctx_mtx); 4248 4249 list_for_each_entry(ctx, &local->chanctx_list, list) { 4250 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4251 continue; 4252 4253 params.num_different_channels++; 4254 4255 params.radar_detect |= 4256 ieee80211_chanctx_radar_detect(local, ctx); 4257 } 4258 4259 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4260 params.iftype_num[sdata->wdev.iftype]++; 4261 4262 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4263 ieee80211_iter_max_chans, 4264 &max_num_different_channels); 4265 if (err < 0) 4266 return err; 4267 4268 return max_num_different_channels; 4269 } 4270 4271 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4272 { 4273 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4274 *buf++ = 7; /* len */ 4275 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4276 *buf++ = 0x50; 4277 *buf++ = 0xf2; 4278 *buf++ = 2; /* WME */ 4279 *buf++ = 0; /* WME info */ 4280 *buf++ = 1; /* WME ver */ 4281 *buf++ = qosinfo; /* U-APSD no in use */ 4282 4283 return buf; 4284 } 4285 4286 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4287 unsigned long *frame_cnt, 4288 unsigned long *byte_cnt) 4289 { 4290 struct txq_info *txqi = to_txq_info(txq); 4291 u32 frag_cnt = 0, frag_bytes = 0; 4292 struct sk_buff *skb; 4293 4294 skb_queue_walk(&txqi->frags, skb) { 4295 frag_cnt++; 4296 frag_bytes += skb->len; 4297 } 4298 4299 if (frame_cnt) 4300 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4301 4302 if (byte_cnt) 4303 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4304 } 4305 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4306 4307 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4308 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4309 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4310 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4311 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4312 }; 4313