1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 if (WARN_ON(queue >= hw->queues)) 441 return; 442 443 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 444 return; 445 446 if (!refcounted) { 447 local->q_stop_reasons[queue][reason] = 0; 448 } else { 449 local->q_stop_reasons[queue][reason]--; 450 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 451 local->q_stop_reasons[queue][reason] = 0; 452 } 453 454 if (local->q_stop_reasons[queue][reason] == 0) 455 __clear_bit(reason, &local->queue_stop_reasons[queue]); 456 457 trace_wake_queue(local, queue, reason, 458 local->q_stop_reasons[queue][reason]); 459 460 if (local->queue_stop_reasons[queue] != 0) 461 /* someone still has this queue stopped */ 462 return; 463 464 if (!skb_queue_empty(&local->pending[queue])) 465 tasklet_schedule(&local->tx_pending_tasklet); 466 467 /* 468 * Calling _ieee80211_wake_txqs here can be a problem because it may 469 * release queue_stop_reason_lock which has been taken by 470 * __ieee80211_wake_queue's caller. It is certainly not very nice to 471 * release someone's lock, but it is fine because all the callers of 472 * __ieee80211_wake_queue call it right before releasing the lock. 473 */ 474 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 475 tasklet_schedule(&local->wake_txqs_tasklet); 476 else 477 _ieee80211_wake_txqs(local, flags); 478 } 479 480 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 481 enum queue_stop_reason reason, 482 bool refcounted) 483 { 484 struct ieee80211_local *local = hw_to_local(hw); 485 unsigned long flags; 486 487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 488 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 489 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 490 } 491 492 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 493 { 494 ieee80211_wake_queue_by_reason(hw, queue, 495 IEEE80211_QUEUE_STOP_REASON_DRIVER, 496 false); 497 } 498 EXPORT_SYMBOL(ieee80211_wake_queue); 499 500 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 501 enum queue_stop_reason reason, 502 bool refcounted) 503 { 504 struct ieee80211_local *local = hw_to_local(hw); 505 506 if (WARN_ON(queue >= hw->queues)) 507 return; 508 509 if (!refcounted) 510 local->q_stop_reasons[queue][reason] = 1; 511 else 512 local->q_stop_reasons[queue][reason]++; 513 514 trace_stop_queue(local, queue, reason, 515 local->q_stop_reasons[queue][reason]); 516 517 set_bit(reason, &local->queue_stop_reasons[queue]); 518 } 519 520 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 521 enum queue_stop_reason reason, 522 bool refcounted) 523 { 524 struct ieee80211_local *local = hw_to_local(hw); 525 unsigned long flags; 526 527 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 528 __ieee80211_stop_queue(hw, queue, reason, refcounted); 529 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 530 } 531 532 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 533 { 534 ieee80211_stop_queue_by_reason(hw, queue, 535 IEEE80211_QUEUE_STOP_REASON_DRIVER, 536 false); 537 } 538 EXPORT_SYMBOL(ieee80211_stop_queue); 539 540 void ieee80211_add_pending_skb(struct ieee80211_local *local, 541 struct sk_buff *skb) 542 { 543 struct ieee80211_hw *hw = &local->hw; 544 unsigned long flags; 545 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 546 int queue = info->hw_queue; 547 548 if (WARN_ON(!info->control.vif)) { 549 ieee80211_free_txskb(&local->hw, skb); 550 return; 551 } 552 553 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 554 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 555 false); 556 __skb_queue_tail(&local->pending[queue], skb); 557 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 558 false, &flags); 559 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 560 } 561 562 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 563 struct sk_buff_head *skbs) 564 { 565 struct ieee80211_hw *hw = &local->hw; 566 struct sk_buff *skb; 567 unsigned long flags; 568 int queue, i; 569 570 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 571 while ((skb = skb_dequeue(skbs))) { 572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 573 574 if (WARN_ON(!info->control.vif)) { 575 ieee80211_free_txskb(&local->hw, skb); 576 continue; 577 } 578 579 queue = info->hw_queue; 580 581 __ieee80211_stop_queue(hw, queue, 582 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 583 false); 584 585 __skb_queue_tail(&local->pending[queue], skb); 586 } 587 588 for (i = 0; i < hw->queues; i++) 589 __ieee80211_wake_queue(hw, i, 590 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 591 false, &flags); 592 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 593 } 594 595 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 596 unsigned long queues, 597 enum queue_stop_reason reason, 598 bool refcounted) 599 { 600 struct ieee80211_local *local = hw_to_local(hw); 601 unsigned long flags; 602 int i; 603 604 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 605 606 for_each_set_bit(i, &queues, hw->queues) 607 __ieee80211_stop_queue(hw, i, reason, refcounted); 608 609 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 610 } 611 612 void ieee80211_stop_queues(struct ieee80211_hw *hw) 613 { 614 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 615 IEEE80211_QUEUE_STOP_REASON_DRIVER, 616 false); 617 } 618 EXPORT_SYMBOL(ieee80211_stop_queues); 619 620 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 621 { 622 struct ieee80211_local *local = hw_to_local(hw); 623 unsigned long flags; 624 int ret; 625 626 if (WARN_ON(queue >= hw->queues)) 627 return true; 628 629 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 630 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 631 &local->queue_stop_reasons[queue]); 632 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(ieee80211_queue_stopped); 636 637 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 638 unsigned long queues, 639 enum queue_stop_reason reason, 640 bool refcounted) 641 { 642 struct ieee80211_local *local = hw_to_local(hw); 643 unsigned long flags; 644 int i; 645 646 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 647 648 for_each_set_bit(i, &queues, hw->queues) 649 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 650 651 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 652 } 653 654 void ieee80211_wake_queues(struct ieee80211_hw *hw) 655 { 656 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 657 IEEE80211_QUEUE_STOP_REASON_DRIVER, 658 false); 659 } 660 EXPORT_SYMBOL(ieee80211_wake_queues); 661 662 unsigned int 663 ieee80211_get_vif_queues(struct ieee80211_local *local, 664 struct ieee80211_sub_if_data *sdata) 665 { 666 unsigned int queues; 667 668 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 669 int ac; 670 671 queues = 0; 672 673 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 674 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 675 queues |= BIT(sdata->vif.hw_queue[ac]); 676 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 677 queues |= BIT(sdata->vif.cab_queue); 678 } else { 679 /* all queues */ 680 queues = BIT(local->hw.queues) - 1; 681 } 682 683 return queues; 684 } 685 686 void __ieee80211_flush_queues(struct ieee80211_local *local, 687 struct ieee80211_sub_if_data *sdata, 688 unsigned int queues, bool drop) 689 { 690 if (!local->ops->flush && !drop) 691 return; 692 693 /* 694 * If no queue was set, or if the HW doesn't support 695 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 696 */ 697 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 698 queues = ieee80211_get_vif_queues(local, sdata); 699 700 ieee80211_stop_queues_by_reason(&local->hw, queues, 701 IEEE80211_QUEUE_STOP_REASON_FLUSH, 702 false); 703 704 if (drop) { 705 struct sta_info *sta; 706 707 /* Purge the queues, so the frames on them won't be 708 * sent during __ieee80211_wake_queue() 709 */ 710 list_for_each_entry(sta, &local->sta_list, list) { 711 if (sdata != sta->sdata) 712 continue; 713 ieee80211_purge_sta_txqs(sta); 714 } 715 } 716 717 if (local->ops->flush) 718 drv_flush(local, sdata, queues, drop); 719 720 ieee80211_wake_queues_by_reason(&local->hw, queues, 721 IEEE80211_QUEUE_STOP_REASON_FLUSH, 722 false); 723 } 724 725 void ieee80211_flush_queues(struct ieee80211_local *local, 726 struct ieee80211_sub_if_data *sdata, bool drop) 727 { 728 __ieee80211_flush_queues(local, sdata, 0, drop); 729 } 730 731 static void __iterate_interfaces(struct ieee80211_local *local, 732 u32 iter_flags, 733 void (*iterator)(void *data, u8 *mac, 734 struct ieee80211_vif *vif), 735 void *data) 736 { 737 struct ieee80211_sub_if_data *sdata; 738 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 739 740 list_for_each_entry_rcu(sdata, &local->interfaces, list, 741 lockdep_is_held(&local->iflist_mtx) || 742 lockdep_is_held(&local->hw.wiphy->mtx)) { 743 switch (sdata->vif.type) { 744 case NL80211_IFTYPE_MONITOR: 745 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 746 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 747 continue; 748 break; 749 case NL80211_IFTYPE_AP_VLAN: 750 continue; 751 default: 752 break; 753 } 754 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 755 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 756 continue; 757 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 758 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 759 continue; 760 if (ieee80211_sdata_running(sdata) || !active_only) 761 iterator(data, sdata->vif.addr, 762 &sdata->vif); 763 } 764 765 sdata = rcu_dereference_check(local->monitor_sdata, 766 lockdep_is_held(&local->iflist_mtx) || 767 lockdep_is_held(&local->hw.wiphy->mtx)); 768 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 769 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 770 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 771 iterator(data, sdata->vif.addr, &sdata->vif); 772 } 773 774 void ieee80211_iterate_interfaces( 775 struct ieee80211_hw *hw, u32 iter_flags, 776 void (*iterator)(void *data, u8 *mac, 777 struct ieee80211_vif *vif), 778 void *data) 779 { 780 struct ieee80211_local *local = hw_to_local(hw); 781 782 mutex_lock(&local->iflist_mtx); 783 __iterate_interfaces(local, iter_flags, iterator, data); 784 mutex_unlock(&local->iflist_mtx); 785 } 786 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 787 788 void ieee80211_iterate_active_interfaces_atomic( 789 struct ieee80211_hw *hw, u32 iter_flags, 790 void (*iterator)(void *data, u8 *mac, 791 struct ieee80211_vif *vif), 792 void *data) 793 { 794 struct ieee80211_local *local = hw_to_local(hw); 795 796 rcu_read_lock(); 797 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 798 iterator, data); 799 rcu_read_unlock(); 800 } 801 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 802 803 void ieee80211_iterate_active_interfaces_mtx( 804 struct ieee80211_hw *hw, u32 iter_flags, 805 void (*iterator)(void *data, u8 *mac, 806 struct ieee80211_vif *vif), 807 void *data) 808 { 809 struct ieee80211_local *local = hw_to_local(hw); 810 811 lockdep_assert_wiphy(hw->wiphy); 812 813 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 814 iterator, data); 815 } 816 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 817 818 static void __iterate_stations(struct ieee80211_local *local, 819 void (*iterator)(void *data, 820 struct ieee80211_sta *sta), 821 void *data) 822 { 823 struct sta_info *sta; 824 825 list_for_each_entry_rcu(sta, &local->sta_list, list, 826 lockdep_is_held(&local->hw.wiphy->mtx)) { 827 if (!sta->uploaded) 828 continue; 829 830 iterator(data, &sta->sta); 831 } 832 } 833 834 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 835 void (*iterator)(void *data, 836 struct ieee80211_sta *sta), 837 void *data) 838 { 839 struct ieee80211_local *local = hw_to_local(hw); 840 841 rcu_read_lock(); 842 __iterate_stations(local, iterator, data); 843 rcu_read_unlock(); 844 } 845 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 846 847 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 848 void (*iterator)(void *data, 849 struct ieee80211_sta *sta), 850 void *data) 851 { 852 struct ieee80211_local *local = hw_to_local(hw); 853 854 lockdep_assert_wiphy(local->hw.wiphy); 855 856 __iterate_stations(local, iterator, data); 857 } 858 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 859 860 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 861 { 862 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 863 864 if (!ieee80211_sdata_running(sdata) || 865 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 866 return NULL; 867 return &sdata->vif; 868 } 869 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 870 871 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 872 { 873 if (!vif) 874 return NULL; 875 876 return &vif_to_sdata(vif)->wdev; 877 } 878 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 879 880 /* 881 * Nothing should have been stuffed into the workqueue during 882 * the suspend->resume cycle. Since we can't check each caller 883 * of this function if we are already quiescing / suspended, 884 * check here and don't WARN since this can actually happen when 885 * the rx path (for example) is racing against __ieee80211_suspend 886 * and suspending / quiescing was set after the rx path checked 887 * them. 888 */ 889 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 890 { 891 if (local->quiescing || (local->suspended && !local->resuming)) { 892 pr_warn("queueing ieee80211 work while going to suspend\n"); 893 return false; 894 } 895 896 return true; 897 } 898 899 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 900 { 901 struct ieee80211_local *local = hw_to_local(hw); 902 903 if (!ieee80211_can_queue_work(local)) 904 return; 905 906 queue_work(local->workqueue, work); 907 } 908 EXPORT_SYMBOL(ieee80211_queue_work); 909 910 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 911 struct delayed_work *dwork, 912 unsigned long delay) 913 { 914 struct ieee80211_local *local = hw_to_local(hw); 915 916 if (!ieee80211_can_queue_work(local)) 917 return; 918 919 queue_delayed_work(local->workqueue, dwork, delay); 920 } 921 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 922 923 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 924 struct ieee80211_tx_queue_params 925 *qparam, int ac) 926 { 927 struct ieee80211_chanctx_conf *chanctx_conf; 928 const struct ieee80211_reg_rule *rrule; 929 const struct ieee80211_wmm_ac *wmm_ac; 930 u16 center_freq = 0; 931 932 if (sdata->vif.type != NL80211_IFTYPE_AP && 933 sdata->vif.type != NL80211_IFTYPE_STATION) 934 return; 935 936 rcu_read_lock(); 937 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 938 if (chanctx_conf) 939 center_freq = chanctx_conf->def.chan->center_freq; 940 941 if (!center_freq) { 942 rcu_read_unlock(); 943 return; 944 } 945 946 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 947 948 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 949 rcu_read_unlock(); 950 return; 951 } 952 953 if (sdata->vif.type == NL80211_IFTYPE_AP) 954 wmm_ac = &rrule->wmm_rule.ap[ac]; 955 else 956 wmm_ac = &rrule->wmm_rule.client[ac]; 957 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 958 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 959 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 960 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 961 rcu_read_unlock(); 962 } 963 964 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 965 bool bss_notify, bool enable_qos) 966 { 967 struct ieee80211_sub_if_data *sdata = link->sdata; 968 struct ieee80211_local *local = sdata->local; 969 struct ieee80211_tx_queue_params qparam; 970 struct ieee80211_chanctx_conf *chanctx_conf; 971 int ac; 972 bool use_11b; 973 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 974 int aCWmin, aCWmax; 975 976 if (!local->ops->conf_tx) 977 return; 978 979 if (local->hw.queues < IEEE80211_NUM_ACS) 980 return; 981 982 memset(&qparam, 0, sizeof(qparam)); 983 984 rcu_read_lock(); 985 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 986 use_11b = (chanctx_conf && 987 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 988 !link->operating_11g_mode; 989 rcu_read_unlock(); 990 991 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 992 993 /* Set defaults according to 802.11-2007 Table 7-37 */ 994 aCWmax = 1023; 995 if (use_11b) 996 aCWmin = 31; 997 else 998 aCWmin = 15; 999 1000 /* Configure old 802.11b/g medium access rules. */ 1001 qparam.cw_max = aCWmax; 1002 qparam.cw_min = aCWmin; 1003 qparam.txop = 0; 1004 qparam.aifs = 2; 1005 1006 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1007 /* Update if QoS is enabled. */ 1008 if (enable_qos) { 1009 switch (ac) { 1010 case IEEE80211_AC_BK: 1011 qparam.cw_max = aCWmax; 1012 qparam.cw_min = aCWmin; 1013 qparam.txop = 0; 1014 if (is_ocb) 1015 qparam.aifs = 9; 1016 else 1017 qparam.aifs = 7; 1018 break; 1019 /* never happens but let's not leave undefined */ 1020 default: 1021 case IEEE80211_AC_BE: 1022 qparam.cw_max = aCWmax; 1023 qparam.cw_min = aCWmin; 1024 qparam.txop = 0; 1025 if (is_ocb) 1026 qparam.aifs = 6; 1027 else 1028 qparam.aifs = 3; 1029 break; 1030 case IEEE80211_AC_VI: 1031 qparam.cw_max = aCWmin; 1032 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1033 if (is_ocb) 1034 qparam.txop = 0; 1035 else if (use_11b) 1036 qparam.txop = 6016/32; 1037 else 1038 qparam.txop = 3008/32; 1039 1040 if (is_ocb) 1041 qparam.aifs = 3; 1042 else 1043 qparam.aifs = 2; 1044 break; 1045 case IEEE80211_AC_VO: 1046 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1047 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1048 if (is_ocb) 1049 qparam.txop = 0; 1050 else if (use_11b) 1051 qparam.txop = 3264/32; 1052 else 1053 qparam.txop = 1504/32; 1054 qparam.aifs = 2; 1055 break; 1056 } 1057 } 1058 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1059 1060 qparam.uapsd = false; 1061 1062 link->tx_conf[ac] = qparam; 1063 drv_conf_tx(local, link, ac, &qparam); 1064 } 1065 1066 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1067 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1068 sdata->vif.type != NL80211_IFTYPE_NAN) { 1069 link->conf->qos = enable_qos; 1070 if (bss_notify) 1071 ieee80211_link_info_change_notify(sdata, link, 1072 BSS_CHANGED_QOS); 1073 } 1074 } 1075 1076 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1077 u16 transaction, u16 auth_alg, u16 status, 1078 const u8 *extra, size_t extra_len, const u8 *da, 1079 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1080 u32 tx_flags) 1081 { 1082 struct ieee80211_local *local = sdata->local; 1083 struct sk_buff *skb; 1084 struct ieee80211_mgmt *mgmt; 1085 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1086 struct { 1087 u8 id; 1088 u8 len; 1089 u8 ext_id; 1090 struct ieee80211_multi_link_elem ml; 1091 struct ieee80211_mle_basic_common_info basic; 1092 } __packed mle = { 1093 .id = WLAN_EID_EXTENSION, 1094 .len = sizeof(mle) - 2, 1095 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1096 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1097 .basic.len = sizeof(mle.basic), 1098 }; 1099 int err; 1100 1101 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1102 1103 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1104 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1105 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1106 multi_link * sizeof(mle)); 1107 if (!skb) 1108 return; 1109 1110 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1111 1112 mgmt = skb_put_zero(skb, 24 + 6); 1113 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1114 IEEE80211_STYPE_AUTH); 1115 memcpy(mgmt->da, da, ETH_ALEN); 1116 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1117 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1118 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1119 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1120 mgmt->u.auth.status_code = cpu_to_le16(status); 1121 if (extra) 1122 skb_put_data(skb, extra, extra_len); 1123 if (multi_link) 1124 skb_put_data(skb, &mle, sizeof(mle)); 1125 1126 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1127 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1128 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1129 if (WARN_ON(err)) { 1130 kfree_skb(skb); 1131 return; 1132 } 1133 } 1134 1135 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1136 tx_flags; 1137 ieee80211_tx_skb(sdata, skb); 1138 } 1139 1140 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1141 const u8 *da, const u8 *bssid, 1142 u16 stype, u16 reason, 1143 bool send_frame, u8 *frame_buf) 1144 { 1145 struct ieee80211_local *local = sdata->local; 1146 struct sk_buff *skb; 1147 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1148 1149 /* build frame */ 1150 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1151 mgmt->duration = 0; /* initialize only */ 1152 mgmt->seq_ctrl = 0; /* initialize only */ 1153 memcpy(mgmt->da, da, ETH_ALEN); 1154 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1155 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1156 /* u.deauth.reason_code == u.disassoc.reason_code */ 1157 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1158 1159 if (send_frame) { 1160 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1161 IEEE80211_DEAUTH_FRAME_LEN); 1162 if (!skb) 1163 return; 1164 1165 skb_reserve(skb, local->hw.extra_tx_headroom); 1166 1167 /* copy in frame */ 1168 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1169 1170 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1171 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1172 IEEE80211_SKB_CB(skb)->flags |= 1173 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1174 1175 ieee80211_tx_skb(sdata, skb); 1176 } 1177 } 1178 1179 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1180 struct ieee80211_sta_s1g_cap *s1g_cap) 1181 { 1182 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1183 return -ENOBUFS; 1184 1185 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1186 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1187 1188 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1189 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1190 1191 return 0; 1192 } 1193 1194 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1195 struct ieee80211_sub_if_data *sdata, 1196 const u8 *ie, size_t ie_len, 1197 size_t *offset, 1198 enum nl80211_band band, 1199 u32 rate_mask, 1200 struct cfg80211_chan_def *chandef, 1201 u32 flags) 1202 { 1203 struct ieee80211_local *local = sdata->local; 1204 struct ieee80211_supported_band *sband; 1205 int i, err; 1206 size_t noffset; 1207 u32 rate_flags; 1208 bool have_80mhz = false; 1209 1210 *offset = 0; 1211 1212 sband = local->hw.wiphy->bands[band]; 1213 if (WARN_ON_ONCE(!sband)) 1214 return 0; 1215 1216 rate_flags = ieee80211_chandef_rate_flags(chandef); 1217 1218 /* For direct scan add S1G IE and consider its override bits */ 1219 if (band == NL80211_BAND_S1GHZ) 1220 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1221 1222 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1223 ~rate_mask, WLAN_EID_SUPP_RATES); 1224 if (err) 1225 return err; 1226 1227 /* insert "request information" if in custom IEs */ 1228 if (ie && ie_len) { 1229 static const u8 before_extrates[] = { 1230 WLAN_EID_SSID, 1231 WLAN_EID_SUPP_RATES, 1232 WLAN_EID_REQUEST, 1233 }; 1234 noffset = ieee80211_ie_split(ie, ie_len, 1235 before_extrates, 1236 ARRAY_SIZE(before_extrates), 1237 *offset); 1238 if (skb_tailroom(skb) < noffset - *offset) 1239 return -ENOBUFS; 1240 skb_put_data(skb, ie + *offset, noffset - *offset); 1241 *offset = noffset; 1242 } 1243 1244 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1245 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1246 if (err) 1247 return err; 1248 1249 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1250 if (skb_tailroom(skb) < 3) 1251 return -ENOBUFS; 1252 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1253 skb_put_u8(skb, 1); 1254 skb_put_u8(skb, 1255 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1256 } 1257 1258 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1259 return 0; 1260 1261 /* insert custom IEs that go before HT */ 1262 if (ie && ie_len) { 1263 static const u8 before_ht[] = { 1264 /* 1265 * no need to list the ones split off already 1266 * (or generated here) 1267 */ 1268 WLAN_EID_DS_PARAMS, 1269 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1270 }; 1271 noffset = ieee80211_ie_split(ie, ie_len, 1272 before_ht, ARRAY_SIZE(before_ht), 1273 *offset); 1274 if (skb_tailroom(skb) < noffset - *offset) 1275 return -ENOBUFS; 1276 skb_put_data(skb, ie + *offset, noffset - *offset); 1277 *offset = noffset; 1278 } 1279 1280 if (sband->ht_cap.ht_supported) { 1281 u8 *pos; 1282 1283 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1284 return -ENOBUFS; 1285 1286 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1287 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1288 sband->ht_cap.cap); 1289 } 1290 1291 /* insert custom IEs that go before VHT */ 1292 if (ie && ie_len) { 1293 static const u8 before_vht[] = { 1294 /* 1295 * no need to list the ones split off already 1296 * (or generated here) 1297 */ 1298 WLAN_EID_BSS_COEX_2040, 1299 WLAN_EID_EXT_CAPABILITY, 1300 WLAN_EID_SSID_LIST, 1301 WLAN_EID_CHANNEL_USAGE, 1302 WLAN_EID_INTERWORKING, 1303 WLAN_EID_MESH_ID, 1304 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1305 }; 1306 noffset = ieee80211_ie_split(ie, ie_len, 1307 before_vht, ARRAY_SIZE(before_vht), 1308 *offset); 1309 if (skb_tailroom(skb) < noffset - *offset) 1310 return -ENOBUFS; 1311 skb_put_data(skb, ie + *offset, noffset - *offset); 1312 *offset = noffset; 1313 } 1314 1315 /* Check if any channel in this sband supports at least 80 MHz */ 1316 for (i = 0; i < sband->n_channels; i++) { 1317 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1318 IEEE80211_CHAN_NO_80MHZ)) 1319 continue; 1320 1321 have_80mhz = true; 1322 break; 1323 } 1324 1325 if (sband->vht_cap.vht_supported && have_80mhz) { 1326 u8 *pos; 1327 1328 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1329 return -ENOBUFS; 1330 1331 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1332 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1333 sband->vht_cap.cap); 1334 } 1335 1336 /* insert custom IEs that go before HE */ 1337 if (ie && ie_len) { 1338 static const u8 before_he[] = { 1339 /* 1340 * no need to list the ones split off before VHT 1341 * or generated here 1342 */ 1343 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1344 WLAN_EID_AP_CSN, 1345 /* TODO: add 11ah/11aj/11ak elements */ 1346 }; 1347 noffset = ieee80211_ie_split(ie, ie_len, 1348 before_he, ARRAY_SIZE(before_he), 1349 *offset); 1350 if (skb_tailroom(skb) < noffset - *offset) 1351 return -ENOBUFS; 1352 skb_put_data(skb, ie + *offset, noffset - *offset); 1353 *offset = noffset; 1354 } 1355 1356 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1357 IEEE80211_CHAN_NO_HE)) { 1358 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1359 if (err) 1360 return err; 1361 } 1362 1363 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1364 IEEE80211_CHAN_NO_HE | 1365 IEEE80211_CHAN_NO_EHT)) { 1366 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1367 if (err) 1368 return err; 1369 } 1370 1371 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1372 if (err) 1373 return err; 1374 1375 /* 1376 * If adding more here, adjust code in main.c 1377 * that calculates local->scan_ies_len. 1378 */ 1379 1380 return 0; 1381 } 1382 1383 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1384 struct ieee80211_sub_if_data *sdata, 1385 struct ieee80211_scan_ies *ie_desc, 1386 const u8 *ie, size_t ie_len, 1387 u8 bands_used, u32 *rate_masks, 1388 struct cfg80211_chan_def *chandef, 1389 u32 flags) 1390 { 1391 size_t custom_ie_offset = 0; 1392 int i, err; 1393 1394 memset(ie_desc, 0, sizeof(*ie_desc)); 1395 1396 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1397 if (bands_used & BIT(i)) { 1398 ie_desc->ies[i] = skb_tail_pointer(skb); 1399 err = ieee80211_put_preq_ies_band(skb, sdata, 1400 ie, ie_len, 1401 &custom_ie_offset, 1402 i, rate_masks[i], 1403 chandef, flags); 1404 if (err) 1405 return err; 1406 ie_desc->len[i] = skb_tail_pointer(skb) - 1407 ie_desc->ies[i]; 1408 } 1409 } 1410 1411 /* add any remaining custom IEs */ 1412 if (ie && ie_len) { 1413 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1414 "not enough space for preq custom IEs\n")) 1415 return -ENOBUFS; 1416 ie_desc->common_ies = skb_tail_pointer(skb); 1417 skb_put_data(skb, ie + custom_ie_offset, 1418 ie_len - custom_ie_offset); 1419 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1420 ie_desc->common_ies; 1421 } 1422 1423 return 0; 1424 }; 1425 1426 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1427 size_t buffer_len, 1428 struct ieee80211_scan_ies *ie_desc, 1429 const u8 *ie, size_t ie_len, 1430 u8 bands_used, u32 *rate_masks, 1431 struct cfg80211_chan_def *chandef, 1432 u32 flags) 1433 { 1434 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1435 uintptr_t offs; 1436 int ret, i; 1437 u8 *start; 1438 1439 if (!skb) 1440 return -ENOMEM; 1441 1442 start = skb_tail_pointer(skb); 1443 memset(start, 0, skb_tailroom(skb)); 1444 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1445 bands_used, rate_masks, chandef, 1446 flags); 1447 if (ret < 0) { 1448 goto out; 1449 } 1450 1451 if (skb->len > buffer_len) { 1452 ret = -ENOBUFS; 1453 goto out; 1454 } 1455 1456 memcpy(buffer, start, skb->len); 1457 1458 /* adjust ie_desc for copy */ 1459 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1460 offs = ie_desc->ies[i] - start; 1461 ie_desc->ies[i] = buffer + offs; 1462 } 1463 offs = ie_desc->common_ies - start; 1464 ie_desc->common_ies = buffer + offs; 1465 1466 ret = skb->len; 1467 out: 1468 consume_skb(skb); 1469 return ret; 1470 } 1471 1472 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1473 const u8 *src, const u8 *dst, 1474 u32 ratemask, 1475 struct ieee80211_channel *chan, 1476 const u8 *ssid, size_t ssid_len, 1477 const u8 *ie, size_t ie_len, 1478 u32 flags) 1479 { 1480 struct ieee80211_local *local = sdata->local; 1481 struct cfg80211_chan_def chandef; 1482 struct sk_buff *skb; 1483 struct ieee80211_mgmt *mgmt; 1484 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1485 struct ieee80211_scan_ies dummy_ie_desc; 1486 1487 /* 1488 * Do not send DS Channel parameter for directed probe requests 1489 * in order to maximize the chance that we get a response. Some 1490 * badly-behaved APs don't respond when this parameter is included. 1491 */ 1492 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1493 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1494 chandef.chan = NULL; 1495 else 1496 chandef.chan = chan; 1497 1498 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1499 local->scan_ies_len + ie_len); 1500 if (!skb) 1501 return NULL; 1502 1503 rate_masks[chan->band] = ratemask; 1504 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1505 ie, ie_len, BIT(chan->band), 1506 rate_masks, &chandef, flags); 1507 1508 if (dst) { 1509 mgmt = (struct ieee80211_mgmt *) skb->data; 1510 memcpy(mgmt->da, dst, ETH_ALEN); 1511 memcpy(mgmt->bssid, dst, ETH_ALEN); 1512 } 1513 1514 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1515 1516 return skb; 1517 } 1518 1519 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1520 struct ieee802_11_elems *elems, 1521 enum nl80211_band band, u32 *basic_rates) 1522 { 1523 struct ieee80211_supported_band *sband; 1524 size_t num_rates; 1525 u32 supp_rates, rate_flags; 1526 int i, j; 1527 1528 sband = sdata->local->hw.wiphy->bands[band]; 1529 if (WARN_ON(!sband)) 1530 return 1; 1531 1532 rate_flags = 1533 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1534 1535 num_rates = sband->n_bitrates; 1536 supp_rates = 0; 1537 for (i = 0; i < elems->supp_rates_len + 1538 elems->ext_supp_rates_len; i++) { 1539 u8 rate = 0; 1540 int own_rate; 1541 bool is_basic; 1542 if (i < elems->supp_rates_len) 1543 rate = elems->supp_rates[i]; 1544 else if (elems->ext_supp_rates) 1545 rate = elems->ext_supp_rates 1546 [i - elems->supp_rates_len]; 1547 own_rate = 5 * (rate & 0x7f); 1548 is_basic = !!(rate & 0x80); 1549 1550 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1551 continue; 1552 1553 for (j = 0; j < num_rates; j++) { 1554 int brate; 1555 if ((rate_flags & sband->bitrates[j].flags) 1556 != rate_flags) 1557 continue; 1558 1559 brate = sband->bitrates[j].bitrate; 1560 1561 if (brate == own_rate) { 1562 supp_rates |= BIT(j); 1563 if (basic_rates && is_basic) 1564 *basic_rates |= BIT(j); 1565 } 1566 } 1567 } 1568 return supp_rates; 1569 } 1570 1571 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1572 { 1573 local_bh_disable(); 1574 ieee80211_handle_queued_frames(local); 1575 local_bh_enable(); 1576 1577 ieee80211_led_radio(local, false); 1578 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1579 1580 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1581 1582 flush_workqueue(local->workqueue); 1583 wiphy_work_flush(local->hw.wiphy, NULL); 1584 drv_stop(local, suspend); 1585 } 1586 1587 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1588 bool aborted) 1589 { 1590 /* It's possible that we don't handle the scan completion in 1591 * time during suspend, so if it's still marked as completed 1592 * here, queue the work and flush it to clean things up. 1593 * Instead of calling the worker function directly here, we 1594 * really queue it to avoid potential races with other flows 1595 * scheduling the same work. 1596 */ 1597 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1598 /* If coming from reconfiguration failure, abort the scan so 1599 * we don't attempt to continue a partial HW scan - which is 1600 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1601 * completed scan, and a 5 GHz portion is still pending. 1602 */ 1603 if (aborted) 1604 set_bit(SCAN_ABORTED, &local->scanning); 1605 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1606 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1607 } 1608 } 1609 1610 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1611 { 1612 struct ieee80211_sub_if_data *sdata; 1613 struct ieee80211_chanctx *ctx; 1614 1615 lockdep_assert_wiphy(local->hw.wiphy); 1616 1617 /* 1618 * We get here if during resume the device can't be restarted properly. 1619 * We might also get here if this happens during HW reset, which is a 1620 * slightly different situation and we need to drop all connections in 1621 * the latter case. 1622 * 1623 * Ask cfg80211 to turn off all interfaces, this will result in more 1624 * warnings but at least we'll then get into a clean stopped state. 1625 */ 1626 1627 local->resuming = false; 1628 local->suspended = false; 1629 local->in_reconfig = false; 1630 local->reconfig_failure = true; 1631 1632 ieee80211_flush_completed_scan(local, true); 1633 1634 /* scheduled scan clearly can't be running any more, but tell 1635 * cfg80211 and clear local state 1636 */ 1637 ieee80211_sched_scan_end(local); 1638 1639 list_for_each_entry(sdata, &local->interfaces, list) 1640 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1641 1642 /* Mark channel contexts as not being in the driver any more to avoid 1643 * removing them from the driver during the shutdown process... 1644 */ 1645 list_for_each_entry(ctx, &local->chanctx_list, list) 1646 ctx->driver_present = false; 1647 } 1648 1649 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1650 struct ieee80211_sub_if_data *sdata, 1651 struct ieee80211_link_data *link) 1652 { 1653 struct ieee80211_chanctx_conf *conf; 1654 struct ieee80211_chanctx *ctx; 1655 1656 lockdep_assert_wiphy(local->hw.wiphy); 1657 1658 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1659 lockdep_is_held(&local->hw.wiphy->mtx)); 1660 if (conf) { 1661 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1662 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1663 } 1664 } 1665 1666 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1667 { 1668 struct ieee80211_local *local = sdata->local; 1669 struct sta_info *sta; 1670 1671 lockdep_assert_wiphy(local->hw.wiphy); 1672 1673 /* add STAs back */ 1674 list_for_each_entry(sta, &local->sta_list, list) { 1675 enum ieee80211_sta_state state; 1676 1677 if (!sta->uploaded || sta->sdata != sdata) 1678 continue; 1679 1680 for (state = IEEE80211_STA_NOTEXIST; 1681 state < sta->sta_state; state++) 1682 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1683 state + 1)); 1684 } 1685 } 1686 1687 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1688 { 1689 struct cfg80211_nan_func *func, **funcs; 1690 int res, id, i = 0; 1691 1692 res = drv_start_nan(sdata->local, sdata, 1693 &sdata->u.nan.conf); 1694 if (WARN_ON(res)) 1695 return res; 1696 1697 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1698 sizeof(*funcs), 1699 GFP_KERNEL); 1700 if (!funcs) 1701 return -ENOMEM; 1702 1703 /* Add all the functions: 1704 * This is a little bit ugly. We need to call a potentially sleeping 1705 * callback for each NAN function, so we can't hold the spinlock. 1706 */ 1707 spin_lock_bh(&sdata->u.nan.func_lock); 1708 1709 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1710 funcs[i++] = func; 1711 1712 spin_unlock_bh(&sdata->u.nan.func_lock); 1713 1714 for (i = 0; funcs[i]; i++) { 1715 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1716 if (WARN_ON(res)) 1717 ieee80211_nan_func_terminated(&sdata->vif, 1718 funcs[i]->instance_id, 1719 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1720 GFP_KERNEL); 1721 } 1722 1723 kfree(funcs); 1724 1725 return 0; 1726 } 1727 1728 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1729 struct ieee80211_sub_if_data *sdata, 1730 u64 changed) 1731 { 1732 int link_id; 1733 1734 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1735 struct ieee80211_link_data *link; 1736 1737 if (!(sdata->vif.active_links & BIT(link_id))) 1738 continue; 1739 1740 link = sdata_dereference(sdata->link[link_id], sdata); 1741 if (!link) 1742 continue; 1743 1744 if (rcu_access_pointer(link->u.ap.beacon)) 1745 drv_start_ap(local, sdata, link->conf); 1746 1747 if (!link->conf->enable_beacon) 1748 continue; 1749 1750 changed |= BSS_CHANGED_BEACON | 1751 BSS_CHANGED_BEACON_ENABLED; 1752 1753 ieee80211_link_info_change_notify(sdata, link, changed); 1754 } 1755 } 1756 1757 int ieee80211_reconfig(struct ieee80211_local *local) 1758 { 1759 struct ieee80211_hw *hw = &local->hw; 1760 struct ieee80211_sub_if_data *sdata; 1761 struct ieee80211_chanctx *ctx; 1762 struct sta_info *sta; 1763 int res, i; 1764 bool reconfig_due_to_wowlan = false; 1765 struct ieee80211_sub_if_data *sched_scan_sdata; 1766 struct cfg80211_sched_scan_request *sched_scan_req; 1767 bool sched_scan_stopped = false; 1768 bool suspended = local->suspended; 1769 bool in_reconfig = false; 1770 1771 lockdep_assert_wiphy(local->hw.wiphy); 1772 1773 /* nothing to do if HW shouldn't run */ 1774 if (!local->open_count) 1775 goto wake_up; 1776 1777 #ifdef CONFIG_PM 1778 if (suspended) 1779 local->resuming = true; 1780 1781 if (local->wowlan) { 1782 /* 1783 * In the wowlan case, both mac80211 and the device 1784 * are functional when the resume op is called, so 1785 * clear local->suspended so the device could operate 1786 * normally (e.g. pass rx frames). 1787 */ 1788 local->suspended = false; 1789 res = drv_resume(local); 1790 local->wowlan = false; 1791 if (res < 0) { 1792 local->resuming = false; 1793 return res; 1794 } 1795 if (res == 0) 1796 goto wake_up; 1797 WARN_ON(res > 1); 1798 /* 1799 * res is 1, which means the driver requested 1800 * to go through a regular reset on wakeup. 1801 * restore local->suspended in this case. 1802 */ 1803 reconfig_due_to_wowlan = true; 1804 local->suspended = true; 1805 } 1806 #endif 1807 1808 /* 1809 * In case of hw_restart during suspend (without wowlan), 1810 * cancel restart work, as we are reconfiguring the device 1811 * anyway. 1812 * Note that restart_work is scheduled on a frozen workqueue, 1813 * so we can't deadlock in this case. 1814 */ 1815 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1816 cancel_work_sync(&local->restart_work); 1817 1818 local->started = false; 1819 1820 /* 1821 * Upon resume hardware can sometimes be goofy due to 1822 * various platform / driver / bus issues, so restarting 1823 * the device may at times not work immediately. Propagate 1824 * the error. 1825 */ 1826 res = drv_start(local); 1827 if (res) { 1828 if (suspended) 1829 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1830 else 1831 WARN(1, "Hardware became unavailable during restart.\n"); 1832 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1833 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1834 false); 1835 ieee80211_handle_reconfig_failure(local); 1836 return res; 1837 } 1838 1839 /* setup fragmentation threshold */ 1840 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1841 1842 /* setup RTS threshold */ 1843 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1844 1845 /* reset coverage class */ 1846 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1847 1848 ieee80211_led_radio(local, true); 1849 ieee80211_mod_tpt_led_trig(local, 1850 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1851 1852 /* add interfaces */ 1853 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1854 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1855 /* in HW restart it exists already */ 1856 WARN_ON(local->resuming); 1857 res = drv_add_interface(local, sdata); 1858 if (WARN_ON(res)) { 1859 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1860 synchronize_net(); 1861 kfree(sdata); 1862 } 1863 } 1864 1865 list_for_each_entry(sdata, &local->interfaces, list) { 1866 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1867 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1868 continue; 1869 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1870 ieee80211_sdata_running(sdata)) { 1871 res = drv_add_interface(local, sdata); 1872 if (WARN_ON(res)) 1873 break; 1874 } 1875 } 1876 1877 /* If adding any of the interfaces failed above, roll back and 1878 * report failure. 1879 */ 1880 if (res) { 1881 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1882 list) { 1883 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1884 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1885 continue; 1886 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1887 ieee80211_sdata_running(sdata)) 1888 drv_remove_interface(local, sdata); 1889 } 1890 ieee80211_handle_reconfig_failure(local); 1891 return res; 1892 } 1893 1894 /* add channel contexts */ 1895 list_for_each_entry(ctx, &local->chanctx_list, list) 1896 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1897 WARN_ON(drv_add_chanctx(local, ctx)); 1898 1899 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1900 if (sdata && ieee80211_sdata_running(sdata)) 1901 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1902 1903 /* reconfigure hardware */ 1904 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1905 IEEE80211_CONF_CHANGE_MONITOR | 1906 IEEE80211_CONF_CHANGE_PS | 1907 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1908 IEEE80211_CONF_CHANGE_IDLE); 1909 1910 ieee80211_configure_filter(local); 1911 1912 /* Finally also reconfigure all the BSS information */ 1913 list_for_each_entry(sdata, &local->interfaces, list) { 1914 /* common change flags for all interface types - link only */ 1915 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1916 BSS_CHANGED_ERP_PREAMBLE | 1917 BSS_CHANGED_ERP_SLOT | 1918 BSS_CHANGED_HT | 1919 BSS_CHANGED_BASIC_RATES | 1920 BSS_CHANGED_BEACON_INT | 1921 BSS_CHANGED_BSSID | 1922 BSS_CHANGED_CQM | 1923 BSS_CHANGED_QOS | 1924 BSS_CHANGED_TXPOWER | 1925 BSS_CHANGED_MCAST_RATE; 1926 struct ieee80211_link_data *link = NULL; 1927 unsigned int link_id; 1928 u32 active_links = 0; 1929 1930 if (!ieee80211_sdata_running(sdata)) 1931 continue; 1932 1933 if (ieee80211_vif_is_mld(&sdata->vif)) { 1934 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1935 [0] = &sdata->vif.bss_conf, 1936 }; 1937 1938 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1939 /* start with a single active link */ 1940 active_links = sdata->vif.active_links; 1941 link_id = ffs(active_links) - 1; 1942 sdata->vif.active_links = BIT(link_id); 1943 } 1944 1945 drv_change_vif_links(local, sdata, 0, 1946 sdata->vif.active_links, 1947 old); 1948 } 1949 1950 sdata->restart_active_links = active_links; 1951 1952 for (link_id = 0; 1953 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1954 link_id++) { 1955 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1956 continue; 1957 1958 link = sdata_dereference(sdata->link[link_id], sdata); 1959 if (!link) 1960 continue; 1961 1962 ieee80211_assign_chanctx(local, sdata, link); 1963 } 1964 1965 switch (sdata->vif.type) { 1966 case NL80211_IFTYPE_AP_VLAN: 1967 case NL80211_IFTYPE_MONITOR: 1968 break; 1969 case NL80211_IFTYPE_ADHOC: 1970 if (sdata->vif.cfg.ibss_joined) 1971 WARN_ON(drv_join_ibss(local, sdata)); 1972 fallthrough; 1973 default: 1974 ieee80211_reconfig_stations(sdata); 1975 fallthrough; 1976 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1977 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1978 drv_conf_tx(local, &sdata->deflink, i, 1979 &sdata->deflink.tx_conf[i]); 1980 break; 1981 } 1982 1983 if (sdata->vif.bss_conf.mu_mimo_owner) 1984 changed |= BSS_CHANGED_MU_GROUPS; 1985 1986 if (!ieee80211_vif_is_mld(&sdata->vif)) 1987 changed |= BSS_CHANGED_IDLE; 1988 1989 switch (sdata->vif.type) { 1990 case NL80211_IFTYPE_STATION: 1991 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1992 changed |= BSS_CHANGED_ASSOC | 1993 BSS_CHANGED_ARP_FILTER | 1994 BSS_CHANGED_PS; 1995 1996 /* Re-send beacon info report to the driver */ 1997 if (sdata->deflink.u.mgd.have_beacon) 1998 changed |= BSS_CHANGED_BEACON_INFO; 1999 2000 if (sdata->vif.bss_conf.max_idle_period || 2001 sdata->vif.bss_conf.protected_keep_alive) 2002 changed |= BSS_CHANGED_KEEP_ALIVE; 2003 2004 ieee80211_bss_info_change_notify(sdata, 2005 changed); 2006 } else if (!WARN_ON(!link)) { 2007 ieee80211_link_info_change_notify(sdata, link, 2008 changed); 2009 changed = BSS_CHANGED_ASSOC | 2010 BSS_CHANGED_IDLE | 2011 BSS_CHANGED_PS | 2012 BSS_CHANGED_ARP_FILTER; 2013 ieee80211_vif_cfg_change_notify(sdata, changed); 2014 } 2015 break; 2016 case NL80211_IFTYPE_OCB: 2017 changed |= BSS_CHANGED_OCB; 2018 ieee80211_bss_info_change_notify(sdata, changed); 2019 break; 2020 case NL80211_IFTYPE_ADHOC: 2021 changed |= BSS_CHANGED_IBSS; 2022 fallthrough; 2023 case NL80211_IFTYPE_AP: 2024 changed |= BSS_CHANGED_P2P_PS; 2025 2026 if (ieee80211_vif_is_mld(&sdata->vif)) 2027 ieee80211_vif_cfg_change_notify(sdata, 2028 BSS_CHANGED_SSID); 2029 else 2030 changed |= BSS_CHANGED_SSID; 2031 2032 if (sdata->vif.bss_conf.ftm_responder == 1 && 2033 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2034 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2035 changed |= BSS_CHANGED_FTM_RESPONDER; 2036 2037 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2038 changed |= BSS_CHANGED_AP_PROBE_RESP; 2039 2040 if (ieee80211_vif_is_mld(&sdata->vif)) { 2041 ieee80211_reconfig_ap_links(local, 2042 sdata, 2043 changed); 2044 break; 2045 } 2046 2047 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2048 drv_start_ap(local, sdata, 2049 sdata->deflink.conf); 2050 } 2051 fallthrough; 2052 case NL80211_IFTYPE_MESH_POINT: 2053 if (sdata->vif.bss_conf.enable_beacon) { 2054 changed |= BSS_CHANGED_BEACON | 2055 BSS_CHANGED_BEACON_ENABLED; 2056 ieee80211_bss_info_change_notify(sdata, changed); 2057 } 2058 break; 2059 case NL80211_IFTYPE_NAN: 2060 res = ieee80211_reconfig_nan(sdata); 2061 if (res < 0) { 2062 ieee80211_handle_reconfig_failure(local); 2063 return res; 2064 } 2065 break; 2066 case NL80211_IFTYPE_AP_VLAN: 2067 case NL80211_IFTYPE_MONITOR: 2068 case NL80211_IFTYPE_P2P_DEVICE: 2069 /* nothing to do */ 2070 break; 2071 case NL80211_IFTYPE_UNSPECIFIED: 2072 case NUM_NL80211_IFTYPES: 2073 case NL80211_IFTYPE_P2P_CLIENT: 2074 case NL80211_IFTYPE_P2P_GO: 2075 case NL80211_IFTYPE_WDS: 2076 WARN_ON(1); 2077 break; 2078 } 2079 } 2080 2081 ieee80211_recalc_ps(local); 2082 2083 /* 2084 * The sta might be in psm against the ap (e.g. because 2085 * this was the state before a hw restart), so we 2086 * explicitly send a null packet in order to make sure 2087 * it'll sync against the ap (and get out of psm). 2088 */ 2089 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2090 list_for_each_entry(sdata, &local->interfaces, list) { 2091 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2092 continue; 2093 if (!sdata->u.mgd.associated) 2094 continue; 2095 2096 ieee80211_send_nullfunc(local, sdata, false); 2097 } 2098 } 2099 2100 /* APs are now beaconing, add back stations */ 2101 list_for_each_entry(sdata, &local->interfaces, list) { 2102 if (!ieee80211_sdata_running(sdata)) 2103 continue; 2104 2105 switch (sdata->vif.type) { 2106 case NL80211_IFTYPE_AP_VLAN: 2107 case NL80211_IFTYPE_AP: 2108 ieee80211_reconfig_stations(sdata); 2109 break; 2110 default: 2111 break; 2112 } 2113 } 2114 2115 /* add back keys */ 2116 list_for_each_entry(sdata, &local->interfaces, list) 2117 ieee80211_reenable_keys(sdata); 2118 2119 /* re-enable multi-link for client interfaces */ 2120 list_for_each_entry(sdata, &local->interfaces, list) { 2121 if (sdata->restart_active_links) 2122 ieee80211_set_active_links(&sdata->vif, 2123 sdata->restart_active_links); 2124 /* 2125 * If a link switch was scheduled before the restart, and ran 2126 * before reconfig, it will do nothing, so re-schedule. 2127 */ 2128 if (sdata->desired_active_links) 2129 wiphy_work_queue(sdata->local->hw.wiphy, 2130 &sdata->activate_links_work); 2131 } 2132 2133 /* Reconfigure sched scan if it was interrupted by FW restart */ 2134 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2135 lockdep_is_held(&local->hw.wiphy->mtx)); 2136 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2137 lockdep_is_held(&local->hw.wiphy->mtx)); 2138 if (sched_scan_sdata && sched_scan_req) 2139 /* 2140 * Sched scan stopped, but we don't want to report it. Instead, 2141 * we're trying to reschedule. However, if more than one scan 2142 * plan was set, we cannot reschedule since we don't know which 2143 * scan plan was currently running (and some scan plans may have 2144 * already finished). 2145 */ 2146 if (sched_scan_req->n_scan_plans > 1 || 2147 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2148 sched_scan_req)) { 2149 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2150 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2151 sched_scan_stopped = true; 2152 } 2153 2154 if (sched_scan_stopped) 2155 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2156 2157 wake_up: 2158 2159 if (local->monitors == local->open_count && local->monitors > 0) 2160 ieee80211_add_virtual_monitor(local); 2161 2162 /* 2163 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2164 * sessions can be established after a resume. 2165 * 2166 * Also tear down aggregation sessions since reconfiguring 2167 * them in a hardware restart scenario is not easily done 2168 * right now, and the hardware will have lost information 2169 * about the sessions, but we and the AP still think they 2170 * are active. This is really a workaround though. 2171 */ 2172 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2173 list_for_each_entry(sta, &local->sta_list, list) { 2174 if (!local->resuming) 2175 ieee80211_sta_tear_down_BA_sessions( 2176 sta, AGG_STOP_LOCAL_REQUEST); 2177 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2178 } 2179 } 2180 2181 /* 2182 * If this is for hw restart things are still running. 2183 * We may want to change that later, however. 2184 */ 2185 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2186 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2187 2188 if (local->in_reconfig) { 2189 in_reconfig = local->in_reconfig; 2190 local->in_reconfig = false; 2191 barrier(); 2192 2193 ieee80211_reconfig_roc(local); 2194 2195 /* Requeue all works */ 2196 list_for_each_entry(sdata, &local->interfaces, list) 2197 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2198 } 2199 2200 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2201 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2202 false); 2203 2204 if (in_reconfig) { 2205 list_for_each_entry(sdata, &local->interfaces, list) { 2206 if (!ieee80211_sdata_running(sdata)) 2207 continue; 2208 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2209 ieee80211_sta_restart(sdata); 2210 } 2211 } 2212 2213 if (!suspended) 2214 return 0; 2215 2216 #ifdef CONFIG_PM 2217 /* first set suspended false, then resuming */ 2218 local->suspended = false; 2219 mb(); 2220 local->resuming = false; 2221 2222 ieee80211_flush_completed_scan(local, false); 2223 2224 if (local->open_count && !reconfig_due_to_wowlan) 2225 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2226 2227 list_for_each_entry(sdata, &local->interfaces, list) { 2228 if (!ieee80211_sdata_running(sdata)) 2229 continue; 2230 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2231 ieee80211_sta_restart(sdata); 2232 } 2233 2234 mod_timer(&local->sta_cleanup, jiffies + 1); 2235 #else 2236 WARN_ON(1); 2237 #endif 2238 2239 return 0; 2240 } 2241 2242 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2243 { 2244 struct ieee80211_sub_if_data *sdata; 2245 struct ieee80211_local *local; 2246 struct ieee80211_key *key; 2247 2248 if (WARN_ON(!vif)) 2249 return; 2250 2251 sdata = vif_to_sdata(vif); 2252 local = sdata->local; 2253 2254 lockdep_assert_wiphy(local->hw.wiphy); 2255 2256 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2257 !local->resuming)) 2258 return; 2259 2260 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2261 !local->in_reconfig)) 2262 return; 2263 2264 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2265 return; 2266 2267 sdata->flags |= flag; 2268 2269 list_for_each_entry(key, &sdata->key_list, list) 2270 key->flags |= KEY_FLAG_TAINTED; 2271 } 2272 2273 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2274 { 2275 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2276 } 2277 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2278 2279 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2280 { 2281 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2282 } 2283 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2284 2285 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2286 struct ieee80211_link_data *link) 2287 { 2288 struct ieee80211_local *local = sdata->local; 2289 struct ieee80211_chanctx_conf *chanctx_conf; 2290 struct ieee80211_chanctx *chanctx; 2291 2292 lockdep_assert_wiphy(local->hw.wiphy); 2293 2294 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2295 lockdep_is_held(&local->hw.wiphy->mtx)); 2296 2297 /* 2298 * This function can be called from a work, thus it may be possible 2299 * that the chanctx_conf is removed (due to a disconnection, for 2300 * example). 2301 * So nothing should be done in such case. 2302 */ 2303 if (!chanctx_conf) 2304 return; 2305 2306 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2307 ieee80211_recalc_smps_chanctx(local, chanctx); 2308 } 2309 2310 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2311 int link_id) 2312 { 2313 struct ieee80211_local *local = sdata->local; 2314 struct ieee80211_chanctx_conf *chanctx_conf; 2315 struct ieee80211_chanctx *chanctx; 2316 int i; 2317 2318 lockdep_assert_wiphy(local->hw.wiphy); 2319 2320 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2321 struct ieee80211_bss_conf *bss_conf; 2322 2323 if (link_id >= 0 && link_id != i) 2324 continue; 2325 2326 rcu_read_lock(); 2327 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2328 if (!bss_conf) { 2329 rcu_read_unlock(); 2330 continue; 2331 } 2332 2333 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2334 lockdep_is_held(&local->hw.wiphy->mtx)); 2335 /* 2336 * Since we hold the wiphy mutex (checked above) 2337 * we can take the chanctx_conf pointer out of the 2338 * RCU critical section, it cannot go away without 2339 * the mutex. Just the way we reached it could - in 2340 * theory - go away, but we don't really care and 2341 * it really shouldn't happen anyway. 2342 */ 2343 rcu_read_unlock(); 2344 2345 if (!chanctx_conf) 2346 return; 2347 2348 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2349 conf); 2350 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); 2351 } 2352 } 2353 2354 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2355 { 2356 size_t pos = offset; 2357 2358 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2359 pos += 2 + ies[pos + 1]; 2360 2361 return pos; 2362 } 2363 2364 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2365 u16 cap) 2366 { 2367 __le16 tmp; 2368 2369 *pos++ = WLAN_EID_HT_CAPABILITY; 2370 *pos++ = sizeof(struct ieee80211_ht_cap); 2371 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2372 2373 /* capability flags */ 2374 tmp = cpu_to_le16(cap); 2375 memcpy(pos, &tmp, sizeof(u16)); 2376 pos += sizeof(u16); 2377 2378 /* AMPDU parameters */ 2379 *pos++ = ht_cap->ampdu_factor | 2380 (ht_cap->ampdu_density << 2381 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2382 2383 /* MCS set */ 2384 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2385 pos += sizeof(ht_cap->mcs); 2386 2387 /* extended capabilities */ 2388 pos += sizeof(__le16); 2389 2390 /* BF capabilities */ 2391 pos += sizeof(__le32); 2392 2393 /* antenna selection */ 2394 pos += sizeof(u8); 2395 2396 return pos; 2397 } 2398 2399 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2400 u32 cap) 2401 { 2402 __le32 tmp; 2403 2404 *pos++ = WLAN_EID_VHT_CAPABILITY; 2405 *pos++ = sizeof(struct ieee80211_vht_cap); 2406 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2407 2408 /* capability flags */ 2409 tmp = cpu_to_le32(cap); 2410 memcpy(pos, &tmp, sizeof(u32)); 2411 pos += sizeof(u32); 2412 2413 /* VHT MCS set */ 2414 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2415 pos += sizeof(vht_cap->vht_mcs); 2416 2417 return pos; 2418 } 2419 2420 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2421 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2422 { 2423 const struct ieee80211_sta_he_cap *he_cap; 2424 struct ieee80211_supported_band *sband; 2425 u8 n; 2426 2427 sband = ieee80211_get_sband(sdata); 2428 if (!sband) 2429 return 0; 2430 2431 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2432 if (!he_cap) 2433 return 0; 2434 2435 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2436 return 2 + 1 + 2437 sizeof(he_cap->he_cap_elem) + n + 2438 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2439 he_cap->he_cap_elem.phy_cap_info); 2440 } 2441 2442 static void 2443 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2444 const struct ieee80211_sta_he_cap *he_cap, 2445 struct ieee80211_he_cap_elem *elem) 2446 { 2447 u8 ru_limit, max_ru; 2448 2449 *elem = he_cap->he_cap_elem; 2450 2451 switch (conn->bw_limit) { 2452 case IEEE80211_CONN_BW_LIMIT_20: 2453 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2454 break; 2455 case IEEE80211_CONN_BW_LIMIT_40: 2456 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2457 break; 2458 case IEEE80211_CONN_BW_LIMIT_80: 2459 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2460 break; 2461 default: 2462 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2463 break; 2464 } 2465 2466 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2467 max_ru = min(max_ru, ru_limit); 2468 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2469 elem->phy_cap_info[8] |= max_ru; 2470 2471 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2472 elem->phy_cap_info[0] &= 2473 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2474 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2475 elem->phy_cap_info[9] &= 2476 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2477 } 2478 2479 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2480 elem->phy_cap_info[0] &= 2481 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2482 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2483 elem->phy_cap_info[5] &= 2484 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2485 elem->phy_cap_info[7] &= 2486 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2487 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2488 } 2489 } 2490 2491 int ieee80211_put_he_cap(struct sk_buff *skb, 2492 struct ieee80211_sub_if_data *sdata, 2493 const struct ieee80211_supported_band *sband, 2494 const struct ieee80211_conn_settings *conn) 2495 { 2496 const struct ieee80211_sta_he_cap *he_cap; 2497 struct ieee80211_he_cap_elem elem; 2498 u8 *len; 2499 u8 n; 2500 u8 ie_len; 2501 2502 if (!conn) 2503 conn = &ieee80211_conn_settings_unlimited; 2504 2505 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2506 if (!he_cap) 2507 return 0; 2508 2509 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2510 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2511 2512 n = ieee80211_he_mcs_nss_size(&elem); 2513 ie_len = 2 + 1 + 2514 sizeof(he_cap->he_cap_elem) + n + 2515 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2516 he_cap->he_cap_elem.phy_cap_info); 2517 2518 if (skb_tailroom(skb) < ie_len) 2519 return -ENOBUFS; 2520 2521 skb_put_u8(skb, WLAN_EID_EXTENSION); 2522 len = skb_put(skb, 1); /* We'll set the size later below */ 2523 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2524 2525 /* Fixed data */ 2526 skb_put_data(skb, &elem, sizeof(elem)); 2527 2528 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2529 2530 /* Check if PPE Threshold should be present */ 2531 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2532 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2533 goto end; 2534 2535 /* 2536 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2537 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2538 */ 2539 n = hweight8(he_cap->ppe_thres[0] & 2540 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2541 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2542 IEEE80211_PPE_THRES_NSS_POS)); 2543 2544 /* 2545 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2546 * total size. 2547 */ 2548 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2549 n = DIV_ROUND_UP(n, 8); 2550 2551 /* Copy PPE Thresholds */ 2552 skb_put_data(skb, &he_cap->ppe_thres, n); 2553 2554 end: 2555 *len = skb_tail_pointer(skb) - len - 1; 2556 return 0; 2557 } 2558 2559 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2560 struct ieee80211_sub_if_data *sdata, 2561 enum ieee80211_smps_mode smps_mode) 2562 { 2563 struct ieee80211_supported_band *sband; 2564 const struct ieee80211_sband_iftype_data *iftd; 2565 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2566 __le16 cap; 2567 2568 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2569 BIT(NL80211_BAND_6GHZ), 2570 IEEE80211_CHAN_NO_HE)) 2571 return 0; 2572 2573 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2574 2575 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2576 if (!iftd) 2577 return 0; 2578 2579 /* Check for device HE 6 GHz capability before adding element */ 2580 if (!iftd->he_6ghz_capa.capa) 2581 return 0; 2582 2583 cap = iftd->he_6ghz_capa.capa; 2584 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2585 2586 switch (smps_mode) { 2587 case IEEE80211_SMPS_AUTOMATIC: 2588 case IEEE80211_SMPS_NUM_MODES: 2589 WARN_ON(1); 2590 fallthrough; 2591 case IEEE80211_SMPS_OFF: 2592 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2593 IEEE80211_HE_6GHZ_CAP_SM_PS); 2594 break; 2595 case IEEE80211_SMPS_STATIC: 2596 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2597 IEEE80211_HE_6GHZ_CAP_SM_PS); 2598 break; 2599 case IEEE80211_SMPS_DYNAMIC: 2600 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2601 IEEE80211_HE_6GHZ_CAP_SM_PS); 2602 break; 2603 } 2604 2605 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2606 return -ENOBUFS; 2607 2608 skb_put_u8(skb, WLAN_EID_EXTENSION); 2609 skb_put_u8(skb, 1 + sizeof(cap)); 2610 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2611 skb_put_data(skb, &cap, sizeof(cap)); 2612 return 0; 2613 } 2614 2615 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2616 const struct cfg80211_chan_def *chandef, 2617 u16 prot_mode, bool rifs_mode) 2618 { 2619 struct ieee80211_ht_operation *ht_oper; 2620 /* Build HT Information */ 2621 *pos++ = WLAN_EID_HT_OPERATION; 2622 *pos++ = sizeof(struct ieee80211_ht_operation); 2623 ht_oper = (struct ieee80211_ht_operation *)pos; 2624 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2625 chandef->chan->center_freq); 2626 switch (chandef->width) { 2627 case NL80211_CHAN_WIDTH_160: 2628 case NL80211_CHAN_WIDTH_80P80: 2629 case NL80211_CHAN_WIDTH_80: 2630 case NL80211_CHAN_WIDTH_40: 2631 if (chandef->center_freq1 > chandef->chan->center_freq) 2632 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2633 else 2634 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2635 break; 2636 case NL80211_CHAN_WIDTH_320: 2637 /* HT information element should not be included on 6GHz */ 2638 WARN_ON(1); 2639 return pos; 2640 default: 2641 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2642 break; 2643 } 2644 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2645 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2646 chandef->width != NL80211_CHAN_WIDTH_20) 2647 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2648 2649 if (rifs_mode) 2650 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2651 2652 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2653 ht_oper->stbc_param = 0x0000; 2654 2655 /* It seems that Basic MCS set and Supported MCS set 2656 are identical for the first 10 bytes */ 2657 memset(&ht_oper->basic_set, 0, 16); 2658 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2659 2660 return pos + sizeof(struct ieee80211_ht_operation); 2661 } 2662 2663 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2664 const struct cfg80211_chan_def *chandef) 2665 { 2666 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2667 *pos++ = 3; /* IE length */ 2668 /* New channel width */ 2669 switch (chandef->width) { 2670 case NL80211_CHAN_WIDTH_80: 2671 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2672 break; 2673 case NL80211_CHAN_WIDTH_160: 2674 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2675 break; 2676 case NL80211_CHAN_WIDTH_80P80: 2677 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2678 break; 2679 case NL80211_CHAN_WIDTH_320: 2680 /* The behavior is not defined for 320 MHz channels */ 2681 WARN_ON(1); 2682 fallthrough; 2683 default: 2684 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2685 } 2686 2687 /* new center frequency segment 0 */ 2688 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2689 /* new center frequency segment 1 */ 2690 if (chandef->center_freq2) 2691 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2692 else 2693 *pos++ = 0; 2694 } 2695 2696 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2697 const struct cfg80211_chan_def *chandef) 2698 { 2699 struct ieee80211_vht_operation *vht_oper; 2700 2701 *pos++ = WLAN_EID_VHT_OPERATION; 2702 *pos++ = sizeof(struct ieee80211_vht_operation); 2703 vht_oper = (struct ieee80211_vht_operation *)pos; 2704 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2705 chandef->center_freq1); 2706 if (chandef->center_freq2) 2707 vht_oper->center_freq_seg1_idx = 2708 ieee80211_frequency_to_channel(chandef->center_freq2); 2709 else 2710 vht_oper->center_freq_seg1_idx = 0x00; 2711 2712 switch (chandef->width) { 2713 case NL80211_CHAN_WIDTH_160: 2714 /* 2715 * Convert 160 MHz channel width to new style as interop 2716 * workaround. 2717 */ 2718 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2719 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2720 if (chandef->chan->center_freq < chandef->center_freq1) 2721 vht_oper->center_freq_seg0_idx -= 8; 2722 else 2723 vht_oper->center_freq_seg0_idx += 8; 2724 break; 2725 case NL80211_CHAN_WIDTH_80P80: 2726 /* 2727 * Convert 80+80 MHz channel width to new style as interop 2728 * workaround. 2729 */ 2730 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2731 break; 2732 case NL80211_CHAN_WIDTH_80: 2733 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2734 break; 2735 case NL80211_CHAN_WIDTH_320: 2736 /* VHT information element should not be included on 6GHz */ 2737 WARN_ON(1); 2738 return pos; 2739 default: 2740 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2741 break; 2742 } 2743 2744 /* don't require special VHT peer rates */ 2745 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2746 2747 return pos + sizeof(struct ieee80211_vht_operation); 2748 } 2749 2750 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2751 { 2752 struct ieee80211_he_operation *he_oper; 2753 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2754 struct cfg80211_chan_def he_chandef; 2755 u32 he_oper_params; 2756 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2757 2758 if (chandef->chan->band == NL80211_BAND_6GHZ) 2759 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2760 2761 *pos++ = WLAN_EID_EXTENSION; 2762 *pos++ = ie_len; 2763 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2764 2765 he_oper_params = 0; 2766 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2767 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2768 he_oper_params |= u32_encode_bits(1, 2769 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2770 he_oper_params |= u32_encode_bits(1, 2771 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2772 if (chandef->chan->band == NL80211_BAND_6GHZ) 2773 he_oper_params |= u32_encode_bits(1, 2774 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2775 2776 he_oper = (struct ieee80211_he_operation *)pos; 2777 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2778 2779 /* don't require special HE peer rates */ 2780 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2781 pos += sizeof(struct ieee80211_he_operation); 2782 2783 if (chandef->chan->band != NL80211_BAND_6GHZ) 2784 goto out; 2785 2786 cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); 2787 he_chandef.center_freq1 = chandef->center_freq1; 2788 he_chandef.center_freq2 = chandef->center_freq2; 2789 he_chandef.width = chandef->width; 2790 2791 /* TODO add VHT operational */ 2792 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2793 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2794 he_6ghz_op->primary = 2795 ieee80211_frequency_to_channel(he_chandef.chan->center_freq); 2796 he_6ghz_op->ccfs0 = 2797 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2798 if (he_chandef.center_freq2) 2799 he_6ghz_op->ccfs1 = 2800 ieee80211_frequency_to_channel(he_chandef.center_freq2); 2801 else 2802 he_6ghz_op->ccfs1 = 0; 2803 2804 switch (he_chandef.width) { 2805 case NL80211_CHAN_WIDTH_320: 2806 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new 2807 * center_freq1 2808 */ 2809 ieee80211_chandef_downgrade(&he_chandef, NULL); 2810 he_6ghz_op->ccfs0 = 2811 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2812 fallthrough; 2813 case NL80211_CHAN_WIDTH_160: 2814 /* Convert 160 MHz channel width to new style as interop 2815 * workaround. 2816 */ 2817 he_6ghz_op->control = 2818 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2819 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2820 if (he_chandef.chan->center_freq < he_chandef.center_freq1) 2821 he_6ghz_op->ccfs0 -= 8; 2822 else 2823 he_6ghz_op->ccfs0 += 8; 2824 fallthrough; 2825 case NL80211_CHAN_WIDTH_80P80: 2826 he_6ghz_op->control = 2827 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2828 break; 2829 case NL80211_CHAN_WIDTH_80: 2830 he_6ghz_op->control = 2831 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2832 break; 2833 case NL80211_CHAN_WIDTH_40: 2834 he_6ghz_op->control = 2835 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2836 break; 2837 default: 2838 he_6ghz_op->control = 2839 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2840 break; 2841 } 2842 2843 pos += sizeof(struct ieee80211_he_6ghz_oper); 2844 2845 out: 2846 return pos; 2847 } 2848 2849 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2850 const struct ieee80211_sta_eht_cap *eht_cap) 2851 2852 { 2853 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2854 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2855 struct ieee80211_eht_operation *eht_oper; 2856 struct ieee80211_eht_operation_info *eht_oper_info; 2857 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2858 u8 eht_oper_info_len = 2859 offsetof(struct ieee80211_eht_operation_info, optional); 2860 u8 chan_width = 0; 2861 2862 *pos++ = WLAN_EID_EXTENSION; 2863 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2864 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2865 2866 eht_oper = (struct ieee80211_eht_operation *)pos; 2867 2868 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2869 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2870 pos += eht_oper_len; 2871 2872 eht_oper_info = 2873 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2874 2875 eht_oper_info->ccfs0 = 2876 ieee80211_frequency_to_channel(chandef->center_freq1); 2877 if (chandef->center_freq2) 2878 eht_oper_info->ccfs1 = 2879 ieee80211_frequency_to_channel(chandef->center_freq2); 2880 else 2881 eht_oper_info->ccfs1 = 0; 2882 2883 switch (chandef->width) { 2884 case NL80211_CHAN_WIDTH_320: 2885 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2886 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2887 if (chandef->chan->center_freq < chandef->center_freq1) 2888 eht_oper_info->ccfs0 -= 16; 2889 else 2890 eht_oper_info->ccfs0 += 16; 2891 break; 2892 case NL80211_CHAN_WIDTH_160: 2893 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2894 if (chandef->chan->center_freq < chandef->center_freq1) 2895 eht_oper_info->ccfs0 -= 8; 2896 else 2897 eht_oper_info->ccfs0 += 8; 2898 fallthrough; 2899 case NL80211_CHAN_WIDTH_80P80: 2900 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2901 break; 2902 case NL80211_CHAN_WIDTH_80: 2903 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2904 break; 2905 case NL80211_CHAN_WIDTH_40: 2906 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2907 break; 2908 default: 2909 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2910 break; 2911 } 2912 eht_oper_info->control = chan_width; 2913 pos += eht_oper_info_len; 2914 2915 /* TODO: eht_oper_info->optional */ 2916 2917 return pos; 2918 } 2919 2920 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2921 struct cfg80211_chan_def *chandef) 2922 { 2923 enum nl80211_channel_type channel_type; 2924 2925 if (!ht_oper) 2926 return false; 2927 2928 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2929 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2930 channel_type = NL80211_CHAN_HT20; 2931 break; 2932 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2933 channel_type = NL80211_CHAN_HT40PLUS; 2934 break; 2935 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2936 channel_type = NL80211_CHAN_HT40MINUS; 2937 break; 2938 default: 2939 return false; 2940 } 2941 2942 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2943 return true; 2944 } 2945 2946 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2947 const struct ieee80211_vht_operation *oper, 2948 const struct ieee80211_ht_operation *htop, 2949 struct cfg80211_chan_def *chandef) 2950 { 2951 struct cfg80211_chan_def new = *chandef; 2952 int cf0, cf1; 2953 int ccfs0, ccfs1, ccfs2; 2954 int ccf0, ccf1; 2955 u32 vht_cap; 2956 bool support_80_80 = false; 2957 bool support_160 = false; 2958 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2959 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2960 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2961 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2962 2963 if (!oper || !htop) 2964 return false; 2965 2966 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2967 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2968 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2969 support_80_80 = ((vht_cap & 2970 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2971 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2972 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2973 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2974 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2975 ccfs0 = oper->center_freq_seg0_idx; 2976 ccfs1 = oper->center_freq_seg1_idx; 2977 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2978 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2979 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2980 2981 ccf0 = ccfs0; 2982 2983 /* if not supported, parse as though we didn't understand it */ 2984 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2985 ext_nss_bw_supp = 0; 2986 2987 /* 2988 * Cf. IEEE 802.11 Table 9-250 2989 * 2990 * We really just consider that because it's inefficient to connect 2991 * at a higher bandwidth than we'll actually be able to use. 2992 */ 2993 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2994 default: 2995 case 0x00: 2996 ccf1 = 0; 2997 support_160 = false; 2998 support_80_80 = false; 2999 break; 3000 case 0x01: 3001 support_80_80 = false; 3002 fallthrough; 3003 case 0x02: 3004 case 0x03: 3005 ccf1 = ccfs2; 3006 break; 3007 case 0x10: 3008 ccf1 = ccfs1; 3009 break; 3010 case 0x11: 3011 case 0x12: 3012 if (!ccfs1) 3013 ccf1 = ccfs2; 3014 else 3015 ccf1 = ccfs1; 3016 break; 3017 case 0x13: 3018 case 0x20: 3019 case 0x23: 3020 ccf1 = ccfs1; 3021 break; 3022 } 3023 3024 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3025 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3026 3027 switch (oper->chan_width) { 3028 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3029 /* just use HT information directly */ 3030 break; 3031 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3032 new.width = NL80211_CHAN_WIDTH_80; 3033 new.center_freq1 = cf0; 3034 /* If needed, adjust based on the newer interop workaround. */ 3035 if (ccf1) { 3036 unsigned int diff; 3037 3038 diff = abs(ccf1 - ccf0); 3039 if ((diff == 8) && support_160) { 3040 new.width = NL80211_CHAN_WIDTH_160; 3041 new.center_freq1 = cf1; 3042 } else if ((diff > 8) && support_80_80) { 3043 new.width = NL80211_CHAN_WIDTH_80P80; 3044 new.center_freq2 = cf1; 3045 } 3046 } 3047 break; 3048 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3049 /* deprecated encoding */ 3050 new.width = NL80211_CHAN_WIDTH_160; 3051 new.center_freq1 = cf0; 3052 break; 3053 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3054 /* deprecated encoding */ 3055 new.width = NL80211_CHAN_WIDTH_80P80; 3056 new.center_freq1 = cf0; 3057 new.center_freq2 = cf1; 3058 break; 3059 default: 3060 return false; 3061 } 3062 3063 if (!cfg80211_chandef_valid(&new)) 3064 return false; 3065 3066 *chandef = new; 3067 return true; 3068 } 3069 3070 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3071 struct cfg80211_chan_def *chandef) 3072 { 3073 chandef->center_freq1 = 3074 ieee80211_channel_to_frequency(info->ccfs0, 3075 chandef->chan->band); 3076 3077 switch (u8_get_bits(info->control, 3078 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3079 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3080 chandef->width = NL80211_CHAN_WIDTH_20; 3081 break; 3082 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3083 chandef->width = NL80211_CHAN_WIDTH_40; 3084 break; 3085 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3086 chandef->width = NL80211_CHAN_WIDTH_80; 3087 break; 3088 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3089 chandef->width = NL80211_CHAN_WIDTH_160; 3090 chandef->center_freq1 = 3091 ieee80211_channel_to_frequency(info->ccfs1, 3092 chandef->chan->band); 3093 break; 3094 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3095 chandef->width = NL80211_CHAN_WIDTH_320; 3096 chandef->center_freq1 = 3097 ieee80211_channel_to_frequency(info->ccfs1, 3098 chandef->chan->band); 3099 break; 3100 } 3101 } 3102 3103 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3104 const struct ieee80211_he_operation *he_oper, 3105 const struct ieee80211_eht_operation *eht_oper, 3106 struct cfg80211_chan_def *chandef) 3107 { 3108 struct cfg80211_chan_def he_chandef = *chandef; 3109 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3110 u32 freq; 3111 3112 if (chandef->chan->band != NL80211_BAND_6GHZ) 3113 return true; 3114 3115 if (!he_oper) 3116 return false; 3117 3118 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3119 if (!he_6ghz_oper) 3120 return false; 3121 3122 /* 3123 * The EHT operation IE does not contain the primary channel so the 3124 * primary channel frequency should be taken from the 6 GHz operation 3125 * information. 3126 */ 3127 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3128 NL80211_BAND_6GHZ); 3129 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3130 3131 if (!he_chandef.chan) 3132 return false; 3133 3134 if (!eht_oper || 3135 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3136 switch (u8_get_bits(he_6ghz_oper->control, 3137 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3138 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3139 he_chandef.width = NL80211_CHAN_WIDTH_20; 3140 break; 3141 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3142 he_chandef.width = NL80211_CHAN_WIDTH_40; 3143 break; 3144 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3145 he_chandef.width = NL80211_CHAN_WIDTH_80; 3146 break; 3147 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3148 he_chandef.width = NL80211_CHAN_WIDTH_80; 3149 if (!he_6ghz_oper->ccfs1) 3150 break; 3151 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3152 he_chandef.width = NL80211_CHAN_WIDTH_160; 3153 else 3154 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3155 break; 3156 } 3157 3158 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3159 he_chandef.center_freq1 = 3160 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3161 NL80211_BAND_6GHZ); 3162 } else { 3163 he_chandef.center_freq1 = 3164 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3165 NL80211_BAND_6GHZ); 3166 he_chandef.center_freq2 = 3167 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3168 NL80211_BAND_6GHZ); 3169 } 3170 } else { 3171 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3172 &he_chandef); 3173 he_chandef.punctured = 3174 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3175 } 3176 3177 if (!cfg80211_chandef_valid(&he_chandef)) 3178 return false; 3179 3180 *chandef = he_chandef; 3181 3182 return true; 3183 } 3184 3185 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3186 struct cfg80211_chan_def *chandef) 3187 { 3188 u32 oper_freq; 3189 3190 if (!oper) 3191 return false; 3192 3193 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3194 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3195 chandef->width = NL80211_CHAN_WIDTH_1; 3196 break; 3197 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3198 chandef->width = NL80211_CHAN_WIDTH_2; 3199 break; 3200 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3201 chandef->width = NL80211_CHAN_WIDTH_4; 3202 break; 3203 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3204 chandef->width = NL80211_CHAN_WIDTH_8; 3205 break; 3206 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3207 chandef->width = NL80211_CHAN_WIDTH_16; 3208 break; 3209 default: 3210 return false; 3211 } 3212 3213 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3214 NL80211_BAND_S1GHZ); 3215 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3216 chandef->freq1_offset = oper_freq % 1000; 3217 3218 return true; 3219 } 3220 3221 int ieee80211_put_srates_elem(struct sk_buff *skb, 3222 const struct ieee80211_supported_band *sband, 3223 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3224 u8 element_id) 3225 { 3226 u8 i, rates, skip; 3227 3228 rates = 0; 3229 for (i = 0; i < sband->n_bitrates; i++) { 3230 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3231 continue; 3232 if (masked_rates & BIT(i)) 3233 continue; 3234 rates++; 3235 } 3236 3237 if (element_id == WLAN_EID_SUPP_RATES) { 3238 rates = min_t(u8, rates, 8); 3239 skip = 0; 3240 } else { 3241 skip = 8; 3242 if (rates <= skip) 3243 return 0; 3244 rates -= skip; 3245 } 3246 3247 if (skb_tailroom(skb) < rates + 2) 3248 return -ENOBUFS; 3249 3250 skb_put_u8(skb, element_id); 3251 skb_put_u8(skb, rates); 3252 3253 for (i = 0; i < sband->n_bitrates && rates; i++) { 3254 int rate; 3255 u8 basic; 3256 3257 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3258 continue; 3259 if (masked_rates & BIT(i)) 3260 continue; 3261 3262 if (skip > 0) { 3263 skip--; 3264 continue; 3265 } 3266 3267 basic = basic_rates & BIT(i) ? 0x80 : 0; 3268 3269 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3270 skb_put_u8(skb, basic | (u8)rate); 3271 rates--; 3272 } 3273 3274 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3275 rates, element_id); 3276 3277 return 0; 3278 } 3279 3280 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3281 { 3282 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3283 3284 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3285 return 0; 3286 3287 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3288 } 3289 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3290 3291 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3292 { 3293 if (!mcs) 3294 return 1; 3295 3296 /* TODO: consider rx_highest */ 3297 3298 if (mcs->rx_mask[3]) 3299 return 4; 3300 if (mcs->rx_mask[2]) 3301 return 3; 3302 if (mcs->rx_mask[1]) 3303 return 2; 3304 return 1; 3305 } 3306 3307 /** 3308 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3309 * @local: mac80211 hw info struct 3310 * @status: RX status 3311 * @mpdu_len: total MPDU length (including FCS) 3312 * @mpdu_offset: offset into MPDU to calculate timestamp at 3313 * 3314 * This function calculates the RX timestamp at the given MPDU offset, taking 3315 * into account what the RX timestamp was. An offset of 0 will just normalize 3316 * the timestamp to TSF at beginning of MPDU reception. 3317 * 3318 * Returns: the calculated timestamp 3319 */ 3320 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3321 struct ieee80211_rx_status *status, 3322 unsigned int mpdu_len, 3323 unsigned int mpdu_offset) 3324 { 3325 u64 ts = status->mactime; 3326 bool mactime_plcp_start; 3327 struct rate_info ri; 3328 u16 rate; 3329 u8 n_ltf; 3330 3331 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3332 return 0; 3333 3334 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3335 RX_FLAG_MACTIME_PLCP_START; 3336 3337 memset(&ri, 0, sizeof(ri)); 3338 3339 ri.bw = status->bw; 3340 3341 /* Fill cfg80211 rate info */ 3342 switch (status->encoding) { 3343 case RX_ENC_EHT: 3344 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3345 ri.mcs = status->rate_idx; 3346 ri.nss = status->nss; 3347 ri.eht_ru_alloc = status->eht.ru; 3348 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3349 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3350 /* TODO/FIXME: is this right? handle other PPDUs */ 3351 if (mactime_plcp_start) { 3352 mpdu_offset += 2; 3353 ts += 36; 3354 } 3355 break; 3356 case RX_ENC_HE: 3357 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3358 ri.mcs = status->rate_idx; 3359 ri.nss = status->nss; 3360 ri.he_ru_alloc = status->he_ru; 3361 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3362 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3363 3364 /* 3365 * See P802.11ax_D6.0, section 27.3.4 for 3366 * VHT PPDU format. 3367 */ 3368 if (mactime_plcp_start) { 3369 mpdu_offset += 2; 3370 ts += 36; 3371 3372 /* 3373 * TODO: 3374 * For HE MU PPDU, add the HE-SIG-B. 3375 * For HE ER PPDU, add 8us for the HE-SIG-A. 3376 * For HE TB PPDU, add 4us for the HE-STF. 3377 * Add the HE-LTF durations - variable. 3378 */ 3379 } 3380 3381 break; 3382 case RX_ENC_HT: 3383 ri.mcs = status->rate_idx; 3384 ri.flags |= RATE_INFO_FLAGS_MCS; 3385 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3386 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3387 3388 /* 3389 * See P802.11REVmd_D3.0, section 19.3.2 for 3390 * HT PPDU format. 3391 */ 3392 if (mactime_plcp_start) { 3393 mpdu_offset += 2; 3394 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3395 ts += 24; 3396 else 3397 ts += 32; 3398 3399 /* 3400 * Add Data HT-LTFs per streams 3401 * TODO: add Extension HT-LTFs, 4us per LTF 3402 */ 3403 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3404 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3405 ts += n_ltf * 4; 3406 } 3407 3408 break; 3409 case RX_ENC_VHT: 3410 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3411 ri.mcs = status->rate_idx; 3412 ri.nss = status->nss; 3413 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3414 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3415 3416 /* 3417 * See P802.11REVmd_D3.0, section 21.3.2 for 3418 * VHT PPDU format. 3419 */ 3420 if (mactime_plcp_start) { 3421 mpdu_offset += 2; 3422 ts += 36; 3423 3424 /* 3425 * Add VHT-LTFs per streams 3426 */ 3427 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3428 ri.nss + 1 : ri.nss; 3429 ts += 4 * n_ltf; 3430 } 3431 3432 break; 3433 default: 3434 WARN_ON(1); 3435 fallthrough; 3436 case RX_ENC_LEGACY: { 3437 struct ieee80211_supported_band *sband; 3438 3439 sband = local->hw.wiphy->bands[status->band]; 3440 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3441 3442 if (mactime_plcp_start) { 3443 if (status->band == NL80211_BAND_5GHZ) { 3444 ts += 20; 3445 mpdu_offset += 2; 3446 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3447 ts += 96; 3448 } else { 3449 ts += 192; 3450 } 3451 } 3452 break; 3453 } 3454 } 3455 3456 rate = cfg80211_calculate_bitrate(&ri); 3457 if (WARN_ONCE(!rate, 3458 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3459 (unsigned long long)status->flag, status->rate_idx, 3460 status->nss)) 3461 return 0; 3462 3463 /* rewind from end of MPDU */ 3464 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3465 ts -= mpdu_len * 8 * 10 / rate; 3466 3467 ts += mpdu_offset * 8 * 10 / rate; 3468 3469 return ts; 3470 } 3471 3472 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3473 * also provided, only the interfaces using that ctx will be canceled. 3474 */ 3475 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3476 struct ieee80211_chanctx *ctx) 3477 { 3478 struct ieee80211_sub_if_data *sdata; 3479 struct cfg80211_chan_def chandef; 3480 struct ieee80211_link_data *link; 3481 struct ieee80211_chanctx_conf *chanctx_conf; 3482 unsigned int link_id; 3483 3484 lockdep_assert_wiphy(local->hw.wiphy); 3485 3486 list_for_each_entry(sdata, &local->interfaces, list) { 3487 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3488 link_id++) { 3489 link = sdata_dereference(sdata->link[link_id], 3490 sdata); 3491 if (!link) 3492 continue; 3493 3494 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3495 sdata); 3496 if (ctx && &ctx->conf != chanctx_conf) 3497 continue; 3498 3499 wiphy_delayed_work_cancel(local->hw.wiphy, 3500 &link->dfs_cac_timer_work); 3501 3502 if (!sdata->wdev.links[link_id].cac_started) 3503 continue; 3504 3505 chandef = link->conf->chanreq.oper; 3506 ieee80211_link_release_channel(link); 3507 cfg80211_cac_event(sdata->dev, &chandef, 3508 NL80211_RADAR_CAC_ABORTED, 3509 GFP_KERNEL, link_id); 3510 } 3511 } 3512 } 3513 3514 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3515 struct wiphy_work *work) 3516 { 3517 struct ieee80211_local *local = 3518 container_of(work, struct ieee80211_local, radar_detected_work); 3519 struct cfg80211_chan_def chandef; 3520 struct ieee80211_chanctx *ctx; 3521 3522 lockdep_assert_wiphy(local->hw.wiphy); 3523 3524 list_for_each_entry(ctx, &local->chanctx_list, list) { 3525 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3526 continue; 3527 3528 if (!ctx->radar_detected) 3529 continue; 3530 3531 ctx->radar_detected = false; 3532 3533 chandef = ctx->conf.def; 3534 3535 ieee80211_dfs_cac_cancel(local, ctx); 3536 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3537 } 3538 } 3539 3540 static void 3541 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3542 struct ieee80211_chanctx_conf *chanctx_conf, 3543 void *data) 3544 { 3545 struct ieee80211_chanctx *ctx = 3546 container_of(chanctx_conf, struct ieee80211_chanctx, 3547 conf); 3548 3549 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3550 return; 3551 3552 if (data && data != chanctx_conf) 3553 return; 3554 3555 ctx->radar_detected = true; 3556 } 3557 3558 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3559 struct ieee80211_chanctx_conf *chanctx_conf) 3560 { 3561 struct ieee80211_local *local = hw_to_local(hw); 3562 3563 trace_api_radar_detected(local); 3564 3565 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3566 chanctx_conf); 3567 3568 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3569 } 3570 EXPORT_SYMBOL(ieee80211_radar_detected); 3571 3572 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3573 struct ieee80211_conn_settings *conn) 3574 { 3575 enum nl80211_chan_width new_primary_width; 3576 struct ieee80211_conn_settings _ignored = {}; 3577 3578 /* allow passing NULL if caller doesn't care */ 3579 if (!conn) 3580 conn = &_ignored; 3581 3582 again: 3583 /* no-HT indicates nothing to do */ 3584 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3585 3586 switch (c->width) { 3587 default: 3588 case NL80211_CHAN_WIDTH_20_NOHT: 3589 WARN_ON_ONCE(1); 3590 fallthrough; 3591 case NL80211_CHAN_WIDTH_20: 3592 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3593 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3594 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3595 c->punctured = 0; 3596 break; 3597 case NL80211_CHAN_WIDTH_40: 3598 c->width = NL80211_CHAN_WIDTH_20; 3599 c->center_freq1 = c->chan->center_freq; 3600 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3601 conn->mode = IEEE80211_CONN_MODE_HT; 3602 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3603 c->punctured = 0; 3604 break; 3605 case NL80211_CHAN_WIDTH_80: 3606 new_primary_width = NL80211_CHAN_WIDTH_40; 3607 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3608 conn->mode = IEEE80211_CONN_MODE_HT; 3609 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3610 break; 3611 case NL80211_CHAN_WIDTH_80P80: 3612 c->center_freq2 = 0; 3613 c->width = NL80211_CHAN_WIDTH_80; 3614 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3615 break; 3616 case NL80211_CHAN_WIDTH_160: 3617 new_primary_width = NL80211_CHAN_WIDTH_80; 3618 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3619 break; 3620 case NL80211_CHAN_WIDTH_320: 3621 new_primary_width = NL80211_CHAN_WIDTH_160; 3622 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3623 break; 3624 case NL80211_CHAN_WIDTH_1: 3625 case NL80211_CHAN_WIDTH_2: 3626 case NL80211_CHAN_WIDTH_4: 3627 case NL80211_CHAN_WIDTH_8: 3628 case NL80211_CHAN_WIDTH_16: 3629 WARN_ON_ONCE(1); 3630 /* keep c->width */ 3631 conn->mode = IEEE80211_CONN_MODE_S1G; 3632 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3633 break; 3634 case NL80211_CHAN_WIDTH_5: 3635 case NL80211_CHAN_WIDTH_10: 3636 WARN_ON_ONCE(1); 3637 /* keep c->width */ 3638 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3639 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3640 break; 3641 } 3642 3643 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3644 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3645 &c->punctured); 3646 c->width = new_primary_width; 3647 } 3648 3649 /* 3650 * With an 80 MHz channel, we might have the puncturing in the primary 3651 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3652 * In that case, downgrade again. 3653 */ 3654 if (!cfg80211_chandef_valid(c) && c->punctured) 3655 goto again; 3656 3657 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3658 } 3659 3660 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3661 struct cfg80211_csa_settings *csa_settings) 3662 { 3663 struct sk_buff *skb; 3664 struct ieee80211_mgmt *mgmt; 3665 struct ieee80211_local *local = sdata->local; 3666 int freq; 3667 int hdr_len = offsetofend(struct ieee80211_mgmt, 3668 u.action.u.chan_switch); 3669 u8 *pos; 3670 3671 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3672 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3673 return -EOPNOTSUPP; 3674 3675 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3676 5 + /* channel switch announcement element */ 3677 3 + /* secondary channel offset element */ 3678 5 + /* wide bandwidth channel switch announcement */ 3679 8); /* mesh channel switch parameters element */ 3680 if (!skb) 3681 return -ENOMEM; 3682 3683 skb_reserve(skb, local->tx_headroom); 3684 mgmt = skb_put_zero(skb, hdr_len); 3685 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3686 IEEE80211_STYPE_ACTION); 3687 3688 eth_broadcast_addr(mgmt->da); 3689 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3690 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3691 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3692 } else { 3693 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3694 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3695 } 3696 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3697 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3698 pos = skb_put(skb, 5); 3699 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3700 *pos++ = 3; /* IE length */ 3701 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3702 freq = csa_settings->chandef.chan->center_freq; 3703 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3704 *pos++ = csa_settings->count; /* count */ 3705 3706 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3707 enum nl80211_channel_type ch_type; 3708 3709 skb_put(skb, 3); 3710 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3711 *pos++ = 1; /* IE length */ 3712 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3713 if (ch_type == NL80211_CHAN_HT40PLUS) 3714 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3715 else 3716 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3717 } 3718 3719 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3720 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3721 3722 skb_put(skb, 8); 3723 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3724 *pos++ = 6; /* IE length */ 3725 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3726 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3727 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3728 *pos++ |= csa_settings->block_tx ? 3729 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3730 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3731 pos += 2; 3732 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3733 pos += 2; 3734 } 3735 3736 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3737 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3738 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3739 skb_put(skb, 5); 3740 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3741 } 3742 3743 ieee80211_tx_skb(sdata, skb); 3744 return 0; 3745 } 3746 3747 static bool 3748 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3749 { 3750 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3751 int skip; 3752 3753 if (end > 0) 3754 return false; 3755 3756 /* One shot NOA */ 3757 if (data->count[i] == 1) 3758 return false; 3759 3760 if (data->desc[i].interval == 0) 3761 return false; 3762 3763 /* End time is in the past, check for repetitions */ 3764 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3765 if (data->count[i] < 255) { 3766 if (data->count[i] <= skip) { 3767 data->count[i] = 0; 3768 return false; 3769 } 3770 3771 data->count[i] -= skip; 3772 } 3773 3774 data->desc[i].start += skip * data->desc[i].interval; 3775 3776 return true; 3777 } 3778 3779 static bool 3780 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3781 s32 *offset) 3782 { 3783 bool ret = false; 3784 int i; 3785 3786 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3787 s32 cur; 3788 3789 if (!data->count[i]) 3790 continue; 3791 3792 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3793 ret = true; 3794 3795 cur = data->desc[i].start - tsf; 3796 if (cur > *offset) 3797 continue; 3798 3799 cur = data->desc[i].start + data->desc[i].duration - tsf; 3800 if (cur > *offset) 3801 *offset = cur; 3802 } 3803 3804 return ret; 3805 } 3806 3807 static u32 3808 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3809 { 3810 s32 offset = 0; 3811 int tries = 0; 3812 /* 3813 * arbitrary limit, used to avoid infinite loops when combined NoA 3814 * descriptors cover the full time period. 3815 */ 3816 int max_tries = 5; 3817 3818 ieee80211_extend_absent_time(data, tsf, &offset); 3819 do { 3820 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3821 break; 3822 3823 tries++; 3824 } while (tries < max_tries); 3825 3826 return offset; 3827 } 3828 3829 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3830 { 3831 u32 next_offset = BIT(31) - 1; 3832 int i; 3833 3834 data->absent = 0; 3835 data->has_next_tsf = false; 3836 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3837 s32 start; 3838 3839 if (!data->count[i]) 3840 continue; 3841 3842 ieee80211_extend_noa_desc(data, tsf, i); 3843 start = data->desc[i].start - tsf; 3844 if (start <= 0) 3845 data->absent |= BIT(i); 3846 3847 if (next_offset > start) 3848 next_offset = start; 3849 3850 data->has_next_tsf = true; 3851 } 3852 3853 if (data->absent) 3854 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3855 3856 data->next_tsf = tsf + next_offset; 3857 } 3858 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3859 3860 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3861 struct ieee80211_noa_data *data, u32 tsf) 3862 { 3863 int ret = 0; 3864 int i; 3865 3866 memset(data, 0, sizeof(*data)); 3867 3868 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3869 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3870 3871 if (!desc->count || !desc->duration) 3872 continue; 3873 3874 data->count[i] = desc->count; 3875 data->desc[i].start = le32_to_cpu(desc->start_time); 3876 data->desc[i].duration = le32_to_cpu(desc->duration); 3877 data->desc[i].interval = le32_to_cpu(desc->interval); 3878 3879 if (data->count[i] > 1 && 3880 data->desc[i].interval < data->desc[i].duration) 3881 continue; 3882 3883 ieee80211_extend_noa_desc(data, tsf, i); 3884 ret++; 3885 } 3886 3887 if (ret) 3888 ieee80211_update_p2p_noa(data, tsf); 3889 3890 return ret; 3891 } 3892 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3893 3894 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3895 struct ieee80211_sub_if_data *sdata) 3896 { 3897 u64 tsf = drv_get_tsf(local, sdata); 3898 u64 dtim_count = 0; 3899 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3900 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3901 struct ps_data *ps; 3902 u8 bcns_from_dtim; 3903 3904 if (tsf == -1ULL || !beacon_int || !dtim_period) 3905 return; 3906 3907 if (sdata->vif.type == NL80211_IFTYPE_AP || 3908 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3909 if (!sdata->bss) 3910 return; 3911 3912 ps = &sdata->bss->ps; 3913 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3914 ps = &sdata->u.mesh.ps; 3915 } else { 3916 return; 3917 } 3918 3919 /* 3920 * actually finds last dtim_count, mac80211 will update in 3921 * __beacon_add_tim(). 3922 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3923 */ 3924 do_div(tsf, beacon_int); 3925 bcns_from_dtim = do_div(tsf, dtim_period); 3926 /* just had a DTIM */ 3927 if (!bcns_from_dtim) 3928 dtim_count = 0; 3929 else 3930 dtim_count = dtim_period - bcns_from_dtim; 3931 3932 ps->dtim_count = dtim_count; 3933 } 3934 3935 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3936 struct ieee80211_chanctx *ctx) 3937 { 3938 struct ieee80211_link_data *link; 3939 u8 radar_detect = 0; 3940 3941 lockdep_assert_wiphy(local->hw.wiphy); 3942 3943 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3944 return 0; 3945 3946 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3947 if (link->reserved_radar_required) 3948 radar_detect |= BIT(link->reserved.oper.width); 3949 3950 /* 3951 * An in-place reservation context should not have any assigned vifs 3952 * until it replaces the other context. 3953 */ 3954 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3955 !list_empty(&ctx->assigned_links)); 3956 3957 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3958 if (!link->radar_required) 3959 continue; 3960 3961 radar_detect |= 3962 BIT(link->conf->chanreq.oper.width); 3963 } 3964 3965 return radar_detect; 3966 } 3967 3968 static u32 3969 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 3970 { 3971 struct ieee80211_bss_conf *link_conf; 3972 struct ieee80211_chanctx_conf *conf; 3973 unsigned int link_id; 3974 u32 mask = 0; 3975 3976 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 3977 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 3978 if (!conf || conf->radio_idx < 0) 3979 continue; 3980 3981 mask |= BIT(conf->radio_idx); 3982 } 3983 3984 return mask; 3985 } 3986 3987 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 3988 { 3989 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 3990 3991 return __ieee80211_get_radio_mask(sdata); 3992 } 3993 3994 static bool 3995 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 3996 { 3997 if (radio_idx < 0) 3998 return true; 3999 4000 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4001 } 4002 4003 static int 4004 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4005 struct iface_combination_params *params, 4006 const struct cfg80211_chan_def *chandef, 4007 struct ieee80211_sub_if_data *sdata) 4008 { 4009 struct ieee80211_sub_if_data *sdata_iter; 4010 struct ieee80211_chanctx *ctx; 4011 int total = !!sdata; 4012 4013 list_for_each_entry(ctx, &local->chanctx_list, list) { 4014 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4015 continue; 4016 4017 if (params->radio_idx >= 0 && 4018 ctx->conf.radio_idx != params->radio_idx) 4019 continue; 4020 4021 params->radar_detect |= 4022 ieee80211_chanctx_radar_detect(local, ctx); 4023 4024 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4025 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4026 continue; 4027 4028 params->num_different_channels++; 4029 } 4030 4031 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4032 struct wireless_dev *wdev_iter; 4033 4034 wdev_iter = &sdata_iter->wdev; 4035 4036 if (sdata_iter == sdata || 4037 !ieee80211_sdata_running(sdata_iter) || 4038 cfg80211_iftype_allowed(local->hw.wiphy, 4039 wdev_iter->iftype, 0, 1)) 4040 continue; 4041 4042 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4043 continue; 4044 4045 params->iftype_num[wdev_iter->iftype]++; 4046 total++; 4047 } 4048 4049 return total; 4050 } 4051 4052 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4053 const struct cfg80211_chan_def *chandef, 4054 enum ieee80211_chanctx_mode chanmode, 4055 u8 radar_detect, int radio_idx) 4056 { 4057 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4058 struct ieee80211_local *local = sdata->local; 4059 enum nl80211_iftype iftype = sdata->wdev.iftype; 4060 struct iface_combination_params params = { 4061 .radar_detect = radar_detect, 4062 .radio_idx = radio_idx, 4063 }; 4064 int total; 4065 4066 lockdep_assert_wiphy(local->hw.wiphy); 4067 4068 if (WARN_ON(hweight32(radar_detect) > 1)) 4069 return -EINVAL; 4070 4071 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4072 !chandef->chan)) 4073 return -EINVAL; 4074 4075 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4076 return -EINVAL; 4077 4078 if (sdata->vif.type == NL80211_IFTYPE_AP || 4079 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4080 /* 4081 * always passing this is harmless, since it'll be the 4082 * same value that cfg80211 finds if it finds the same 4083 * interface ... and that's always allowed 4084 */ 4085 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4086 } 4087 4088 /* Always allow software iftypes */ 4089 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4090 if (radar_detect) 4091 return -EINVAL; 4092 return 0; 4093 } 4094 4095 if (chandef) 4096 params.num_different_channels = 1; 4097 4098 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4099 params.iftype_num[iftype] = 1; 4100 4101 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4102 shared ? chandef : NULL, 4103 sdata); 4104 if (total == 1 && !params.radar_detect) 4105 return 0; 4106 4107 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4108 } 4109 4110 static void 4111 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4112 void *data) 4113 { 4114 u32 *max_num_different_channels = data; 4115 4116 *max_num_different_channels = max(*max_num_different_channels, 4117 c->num_different_channels); 4118 } 4119 4120 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4121 { 4122 u32 max_num_different_channels = 1; 4123 int err; 4124 struct iface_combination_params params = { 4125 .radio_idx = radio_idx, 4126 }; 4127 4128 lockdep_assert_wiphy(local->hw.wiphy); 4129 4130 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4131 4132 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4133 ieee80211_iter_max_chans, 4134 &max_num_different_channels); 4135 if (err < 0) 4136 return err; 4137 4138 return max_num_different_channels; 4139 } 4140 4141 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4142 struct ieee80211_sta_s1g_cap *caps, 4143 struct sk_buff *skb) 4144 { 4145 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4146 struct ieee80211_s1g_cap s1g_capab; 4147 u8 *pos; 4148 int i; 4149 4150 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4151 return; 4152 4153 if (!caps->s1g) 4154 return; 4155 4156 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4157 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4158 4159 /* override the capability info */ 4160 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4161 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4162 4163 s1g_capab.capab_info[i] &= ~mask; 4164 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4165 } 4166 4167 /* then MCS and NSS set */ 4168 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4169 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4170 4171 s1g_capab.supp_mcs_nss[i] &= ~mask; 4172 s1g_capab.supp_mcs_nss[i] |= 4173 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4174 } 4175 4176 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4177 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4178 *pos++ = sizeof(s1g_capab); 4179 4180 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4181 } 4182 4183 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4184 struct sk_buff *skb) 4185 { 4186 u8 *pos = skb_put(skb, 3); 4187 4188 *pos++ = WLAN_EID_AID_REQUEST; 4189 *pos++ = 1; 4190 *pos++ = 0; 4191 } 4192 4193 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4194 { 4195 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4196 *buf++ = 7; /* len */ 4197 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4198 *buf++ = 0x50; 4199 *buf++ = 0xf2; 4200 *buf++ = 2; /* WME */ 4201 *buf++ = 0; /* WME info */ 4202 *buf++ = 1; /* WME ver */ 4203 *buf++ = qosinfo; /* U-APSD no in use */ 4204 4205 return buf; 4206 } 4207 4208 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4209 unsigned long *frame_cnt, 4210 unsigned long *byte_cnt) 4211 { 4212 struct txq_info *txqi = to_txq_info(txq); 4213 u32 frag_cnt = 0, frag_bytes = 0; 4214 struct sk_buff *skb; 4215 4216 skb_queue_walk(&txqi->frags, skb) { 4217 frag_cnt++; 4218 frag_bytes += skb->len; 4219 } 4220 4221 if (frame_cnt) 4222 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4223 4224 if (byte_cnt) 4225 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4226 } 4227 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4228 4229 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4230 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4231 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4232 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4233 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4234 }; 4235 4236 u16 ieee80211_encode_usf(int listen_interval) 4237 { 4238 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4239 u16 ui, usf = 0; 4240 4241 /* find greatest USF */ 4242 while (usf < IEEE80211_MAX_USF) { 4243 if (listen_interval % listen_int_usf[usf + 1]) 4244 break; 4245 usf += 1; 4246 } 4247 ui = listen_interval / listen_int_usf[usf]; 4248 4249 /* error if there is a remainder. Should've been checked by user */ 4250 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4251 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4252 FIELD_PREP(LISTEN_INT_UI, ui); 4253 4254 return (u16) listen_interval; 4255 } 4256 4257 /* this may return more than ieee80211_put_eht_cap() will need */ 4258 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4259 { 4260 const struct ieee80211_sta_he_cap *he_cap; 4261 const struct ieee80211_sta_eht_cap *eht_cap; 4262 struct ieee80211_supported_band *sband; 4263 bool is_ap; 4264 u8 n; 4265 4266 sband = ieee80211_get_sband(sdata); 4267 if (!sband) 4268 return 0; 4269 4270 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4271 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4272 if (!he_cap || !eht_cap) 4273 return 0; 4274 4275 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4276 4277 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4278 &eht_cap->eht_cap_elem, 4279 is_ap); 4280 return 2 + 1 + 4281 sizeof(eht_cap->eht_cap_elem) + n + 4282 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4283 eht_cap->eht_cap_elem.phy_cap_info); 4284 return 0; 4285 } 4286 4287 int ieee80211_put_eht_cap(struct sk_buff *skb, 4288 struct ieee80211_sub_if_data *sdata, 4289 const struct ieee80211_supported_band *sband, 4290 const struct ieee80211_conn_settings *conn) 4291 { 4292 const struct ieee80211_sta_he_cap *he_cap = 4293 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4294 const struct ieee80211_sta_eht_cap *eht_cap = 4295 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4296 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4297 struct ieee80211_eht_cap_elem_fixed fixed; 4298 struct ieee80211_he_cap_elem he; 4299 u8 mcs_nss_len, ppet_len; 4300 u8 orig_mcs_nss_len; 4301 u8 ie_len; 4302 4303 if (!conn) 4304 conn = &ieee80211_conn_settings_unlimited; 4305 4306 /* Make sure we have place for the IE */ 4307 if (!he_cap || !eht_cap) 4308 return 0; 4309 4310 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4311 &eht_cap->eht_cap_elem, 4312 for_ap); 4313 4314 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4315 4316 fixed = eht_cap->eht_cap_elem; 4317 4318 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4319 fixed.phy_cap_info[6] &= 4320 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4321 4322 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4323 fixed.phy_cap_info[1] &= 4324 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4325 fixed.phy_cap_info[2] &= 4326 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4327 fixed.phy_cap_info[6] &= 4328 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4329 } 4330 4331 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4332 fixed.phy_cap_info[0] &= 4333 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4334 fixed.phy_cap_info[1] &= 4335 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4336 fixed.phy_cap_info[2] &= 4337 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4338 fixed.phy_cap_info[6] &= 4339 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4340 } 4341 4342 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4343 fixed.phy_cap_info[0] &= 4344 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4345 4346 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4347 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4348 fixed.phy_cap_info); 4349 4350 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4351 if (skb_tailroom(skb) < ie_len) 4352 return -ENOBUFS; 4353 4354 skb_put_u8(skb, WLAN_EID_EXTENSION); 4355 skb_put_u8(skb, ie_len - 2); 4356 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4357 skb_put_data(skb, &fixed, sizeof(fixed)); 4358 4359 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4360 /* 4361 * If the (non-AP) STA became 20 MHz only, then convert from 4362 * <=80 to 20-MHz-only format, where MCSes are indicated in 4363 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4364 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4365 */ 4366 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4367 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4368 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4369 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4370 } else { 4371 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4372 } 4373 4374 if (ppet_len) 4375 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4376 4377 return 0; 4378 } 4379 4380 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4381 { 4382 static const char * const modes[] = { 4383 [IEEE80211_CONN_MODE_S1G] = "S1G", 4384 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4385 [IEEE80211_CONN_MODE_HT] = "HT", 4386 [IEEE80211_CONN_MODE_VHT] = "VHT", 4387 [IEEE80211_CONN_MODE_HE] = "HE", 4388 [IEEE80211_CONN_MODE_EHT] = "EHT", 4389 }; 4390 4391 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4392 return "<out of range>"; 4393 4394 return modes[mode] ?: "<missing string>"; 4395 } 4396 4397 enum ieee80211_conn_bw_limit 4398 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4399 { 4400 switch (chandef->width) { 4401 case NL80211_CHAN_WIDTH_20_NOHT: 4402 case NL80211_CHAN_WIDTH_20: 4403 return IEEE80211_CONN_BW_LIMIT_20; 4404 case NL80211_CHAN_WIDTH_40: 4405 return IEEE80211_CONN_BW_LIMIT_40; 4406 case NL80211_CHAN_WIDTH_80: 4407 return IEEE80211_CONN_BW_LIMIT_80; 4408 case NL80211_CHAN_WIDTH_80P80: 4409 case NL80211_CHAN_WIDTH_160: 4410 return IEEE80211_CONN_BW_LIMIT_160; 4411 case NL80211_CHAN_WIDTH_320: 4412 return IEEE80211_CONN_BW_LIMIT_320; 4413 default: 4414 WARN(1, "unhandled chandef width %d\n", chandef->width); 4415 return IEEE80211_CONN_BW_LIMIT_20; 4416 } 4417 } 4418 4419 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4420 { 4421 for (int i = 0; i < 2; i++) { 4422 tpe->max_local[i].valid = false; 4423 memset(tpe->max_local[i].power, 4424 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4425 sizeof(tpe->max_local[i].power)); 4426 4427 tpe->max_reg_client[i].valid = false; 4428 memset(tpe->max_reg_client[i].power, 4429 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4430 sizeof(tpe->max_reg_client[i].power)); 4431 4432 tpe->psd_local[i].valid = false; 4433 memset(tpe->psd_local[i].power, 4434 IEEE80211_TPE_PSD_NO_LIMIT, 4435 sizeof(tpe->psd_local[i].power)); 4436 4437 tpe->psd_reg_client[i].valid = false; 4438 memset(tpe->psd_reg_client[i].power, 4439 IEEE80211_TPE_PSD_NO_LIMIT, 4440 sizeof(tpe->psd_reg_client[i].power)); 4441 } 4442 } 4443