1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 trace_stop_queue(local, queue, reason); 506 507 if (WARN_ON(queue >= hw->queues)) 508 return; 509 510 if (!refcounted) 511 local->q_stop_reasons[queue][reason] = 1; 512 else 513 local->q_stop_reasons[queue][reason]++; 514 515 set_bit(reason, &local->queue_stop_reasons[queue]); 516 } 517 518 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 519 enum queue_stop_reason reason, 520 bool refcounted) 521 { 522 struct ieee80211_local *local = hw_to_local(hw); 523 unsigned long flags; 524 525 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 526 __ieee80211_stop_queue(hw, queue, reason, refcounted); 527 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 528 } 529 530 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 531 { 532 ieee80211_stop_queue_by_reason(hw, queue, 533 IEEE80211_QUEUE_STOP_REASON_DRIVER, 534 false); 535 } 536 EXPORT_SYMBOL(ieee80211_stop_queue); 537 538 void ieee80211_add_pending_skb(struct ieee80211_local *local, 539 struct sk_buff *skb) 540 { 541 struct ieee80211_hw *hw = &local->hw; 542 unsigned long flags; 543 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 544 int queue = info->hw_queue; 545 546 if (WARN_ON(!info->control.vif)) { 547 ieee80211_free_txskb(&local->hw, skb); 548 return; 549 } 550 551 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 552 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 553 false); 554 __skb_queue_tail(&local->pending[queue], skb); 555 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 556 false, &flags); 557 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 558 } 559 560 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 561 struct sk_buff_head *skbs) 562 { 563 struct ieee80211_hw *hw = &local->hw; 564 struct sk_buff *skb; 565 unsigned long flags; 566 int queue, i; 567 568 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 569 while ((skb = skb_dequeue(skbs))) { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 572 if (WARN_ON(!info->control.vif)) { 573 ieee80211_free_txskb(&local->hw, skb); 574 continue; 575 } 576 577 queue = info->hw_queue; 578 579 __ieee80211_stop_queue(hw, queue, 580 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 581 false); 582 583 __skb_queue_tail(&local->pending[queue], skb); 584 } 585 586 for (i = 0; i < hw->queues; i++) 587 __ieee80211_wake_queue(hw, i, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 594 unsigned long queues, 595 enum queue_stop_reason reason, 596 bool refcounted) 597 { 598 struct ieee80211_local *local = hw_to_local(hw); 599 unsigned long flags; 600 int i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 604 for_each_set_bit(i, &queues, hw->queues) 605 __ieee80211_stop_queue(hw, i, reason, refcounted); 606 607 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 608 } 609 610 void ieee80211_stop_queues(struct ieee80211_hw *hw) 611 { 612 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 613 IEEE80211_QUEUE_STOP_REASON_DRIVER, 614 false); 615 } 616 EXPORT_SYMBOL(ieee80211_stop_queues); 617 618 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 619 { 620 struct ieee80211_local *local = hw_to_local(hw); 621 unsigned long flags; 622 int ret; 623 624 if (WARN_ON(queue >= hw->queues)) 625 return true; 626 627 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 628 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 629 &local->queue_stop_reasons[queue]); 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(ieee80211_queue_stopped); 634 635 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 636 unsigned long queues, 637 enum queue_stop_reason reason, 638 bool refcounted) 639 { 640 struct ieee80211_local *local = hw_to_local(hw); 641 unsigned long flags; 642 int i; 643 644 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 645 646 for_each_set_bit(i, &queues, hw->queues) 647 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 648 649 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 650 } 651 652 void ieee80211_wake_queues(struct ieee80211_hw *hw) 653 { 654 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 655 IEEE80211_QUEUE_STOP_REASON_DRIVER, 656 false); 657 } 658 EXPORT_SYMBOL(ieee80211_wake_queues); 659 660 unsigned int 661 ieee80211_get_vif_queues(struct ieee80211_local *local, 662 struct ieee80211_sub_if_data *sdata) 663 { 664 unsigned int queues; 665 666 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 667 int ac; 668 669 queues = 0; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 672 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 673 queues |= BIT(sdata->vif.hw_queue[ac]); 674 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 675 queues |= BIT(sdata->vif.cab_queue); 676 } else { 677 /* all queues */ 678 queues = BIT(local->hw.queues) - 1; 679 } 680 681 return queues; 682 } 683 684 void __ieee80211_flush_queues(struct ieee80211_local *local, 685 struct ieee80211_sub_if_data *sdata, 686 unsigned int queues, bool drop) 687 { 688 if (!local->ops->flush) 689 return; 690 691 /* 692 * If no queue was set, or if the HW doesn't support 693 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 694 */ 695 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 696 queues = ieee80211_get_vif_queues(local, sdata); 697 698 ieee80211_stop_queues_by_reason(&local->hw, queues, 699 IEEE80211_QUEUE_STOP_REASON_FLUSH, 700 false); 701 702 if (drop) { 703 struct sta_info *sta; 704 705 /* Purge the queues, so the frames on them won't be 706 * sent during __ieee80211_wake_queue() 707 */ 708 list_for_each_entry(sta, &local->sta_list, list) { 709 if (sdata != sta->sdata) 710 continue; 711 ieee80211_purge_sta_txqs(sta); 712 } 713 } 714 715 drv_flush(local, sdata, queues, drop); 716 717 ieee80211_wake_queues_by_reason(&local->hw, queues, 718 IEEE80211_QUEUE_STOP_REASON_FLUSH, 719 false); 720 } 721 722 void ieee80211_flush_queues(struct ieee80211_local *local, 723 struct ieee80211_sub_if_data *sdata, bool drop) 724 { 725 __ieee80211_flush_queues(local, sdata, 0, drop); 726 } 727 728 static void __iterate_interfaces(struct ieee80211_local *local, 729 u32 iter_flags, 730 void (*iterator)(void *data, u8 *mac, 731 struct ieee80211_vif *vif), 732 void *data) 733 { 734 struct ieee80211_sub_if_data *sdata; 735 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 736 737 list_for_each_entry_rcu(sdata, &local->interfaces, list, 738 lockdep_is_held(&local->iflist_mtx) || 739 lockdep_is_held(&local->hw.wiphy->mtx)) { 740 switch (sdata->vif.type) { 741 case NL80211_IFTYPE_MONITOR: 742 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 743 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 744 continue; 745 break; 746 case NL80211_IFTYPE_AP_VLAN: 747 continue; 748 default: 749 break; 750 } 751 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 752 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 753 continue; 754 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 755 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 756 continue; 757 if (ieee80211_sdata_running(sdata) || !active_only) 758 iterator(data, sdata->vif.addr, 759 &sdata->vif); 760 } 761 762 sdata = rcu_dereference_check(local->monitor_sdata, 763 lockdep_is_held(&local->iflist_mtx) || 764 lockdep_is_held(&local->hw.wiphy->mtx)); 765 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 766 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 767 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 768 iterator(data, sdata->vif.addr, &sdata->vif); 769 } 770 771 void ieee80211_iterate_interfaces( 772 struct ieee80211_hw *hw, u32 iter_flags, 773 void (*iterator)(void *data, u8 *mac, 774 struct ieee80211_vif *vif), 775 void *data) 776 { 777 struct ieee80211_local *local = hw_to_local(hw); 778 779 mutex_lock(&local->iflist_mtx); 780 __iterate_interfaces(local, iter_flags, iterator, data); 781 mutex_unlock(&local->iflist_mtx); 782 } 783 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 784 785 void ieee80211_iterate_active_interfaces_atomic( 786 struct ieee80211_hw *hw, u32 iter_flags, 787 void (*iterator)(void *data, u8 *mac, 788 struct ieee80211_vif *vif), 789 void *data) 790 { 791 struct ieee80211_local *local = hw_to_local(hw); 792 793 rcu_read_lock(); 794 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 795 iterator, data); 796 rcu_read_unlock(); 797 } 798 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 799 800 void ieee80211_iterate_active_interfaces_mtx( 801 struct ieee80211_hw *hw, u32 iter_flags, 802 void (*iterator)(void *data, u8 *mac, 803 struct ieee80211_vif *vif), 804 void *data) 805 { 806 struct ieee80211_local *local = hw_to_local(hw); 807 808 lockdep_assert_wiphy(hw->wiphy); 809 810 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 811 iterator, data); 812 } 813 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 814 815 static void __iterate_stations(struct ieee80211_local *local, 816 void (*iterator)(void *data, 817 struct ieee80211_sta *sta), 818 void *data) 819 { 820 struct sta_info *sta; 821 822 list_for_each_entry_rcu(sta, &local->sta_list, list, 823 lockdep_is_held(&local->hw.wiphy->mtx)) { 824 if (!sta->uploaded) 825 continue; 826 827 iterator(data, &sta->sta); 828 } 829 } 830 831 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 832 void (*iterator)(void *data, 833 struct ieee80211_sta *sta), 834 void *data) 835 { 836 struct ieee80211_local *local = hw_to_local(hw); 837 838 rcu_read_lock(); 839 __iterate_stations(local, iterator, data); 840 rcu_read_unlock(); 841 } 842 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 843 844 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 845 void (*iterator)(void *data, 846 struct ieee80211_sta *sta), 847 void *data) 848 { 849 struct ieee80211_local *local = hw_to_local(hw); 850 851 lockdep_assert_wiphy(local->hw.wiphy); 852 853 __iterate_stations(local, iterator, data); 854 } 855 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 856 857 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 858 { 859 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 860 861 if (!ieee80211_sdata_running(sdata) || 862 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 863 return NULL; 864 return &sdata->vif; 865 } 866 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 867 868 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 869 { 870 if (!vif) 871 return NULL; 872 873 return &vif_to_sdata(vif)->wdev; 874 } 875 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 876 877 /* 878 * Nothing should have been stuffed into the workqueue during 879 * the suspend->resume cycle. Since we can't check each caller 880 * of this function if we are already quiescing / suspended, 881 * check here and don't WARN since this can actually happen when 882 * the rx path (for example) is racing against __ieee80211_suspend 883 * and suspending / quiescing was set after the rx path checked 884 * them. 885 */ 886 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 887 { 888 if (local->quiescing || (local->suspended && !local->resuming)) { 889 pr_warn("queueing ieee80211 work while going to suspend\n"); 890 return false; 891 } 892 893 return true; 894 } 895 896 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 897 { 898 struct ieee80211_local *local = hw_to_local(hw); 899 900 if (!ieee80211_can_queue_work(local)) 901 return; 902 903 queue_work(local->workqueue, work); 904 } 905 EXPORT_SYMBOL(ieee80211_queue_work); 906 907 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 908 struct delayed_work *dwork, 909 unsigned long delay) 910 { 911 struct ieee80211_local *local = hw_to_local(hw); 912 913 if (!ieee80211_can_queue_work(local)) 914 return; 915 916 queue_delayed_work(local->workqueue, dwork, delay); 917 } 918 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 919 920 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 921 struct ieee80211_tx_queue_params 922 *qparam, int ac) 923 { 924 struct ieee80211_chanctx_conf *chanctx_conf; 925 const struct ieee80211_reg_rule *rrule; 926 const struct ieee80211_wmm_ac *wmm_ac; 927 u16 center_freq = 0; 928 929 if (sdata->vif.type != NL80211_IFTYPE_AP && 930 sdata->vif.type != NL80211_IFTYPE_STATION) 931 return; 932 933 rcu_read_lock(); 934 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 935 if (chanctx_conf) 936 center_freq = chanctx_conf->def.chan->center_freq; 937 938 if (!center_freq) { 939 rcu_read_unlock(); 940 return; 941 } 942 943 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 944 945 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 946 rcu_read_unlock(); 947 return; 948 } 949 950 if (sdata->vif.type == NL80211_IFTYPE_AP) 951 wmm_ac = &rrule->wmm_rule.ap[ac]; 952 else 953 wmm_ac = &rrule->wmm_rule.client[ac]; 954 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 955 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 956 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 957 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 958 rcu_read_unlock(); 959 } 960 961 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 962 bool bss_notify, bool enable_qos) 963 { 964 struct ieee80211_sub_if_data *sdata = link->sdata; 965 struct ieee80211_local *local = sdata->local; 966 struct ieee80211_tx_queue_params qparam; 967 struct ieee80211_chanctx_conf *chanctx_conf; 968 int ac; 969 bool use_11b; 970 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 971 int aCWmin, aCWmax; 972 973 if (!local->ops->conf_tx) 974 return; 975 976 if (local->hw.queues < IEEE80211_NUM_ACS) 977 return; 978 979 memset(&qparam, 0, sizeof(qparam)); 980 981 rcu_read_lock(); 982 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 983 use_11b = (chanctx_conf && 984 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 985 !link->operating_11g_mode; 986 rcu_read_unlock(); 987 988 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 989 990 /* Set defaults according to 802.11-2007 Table 7-37 */ 991 aCWmax = 1023; 992 if (use_11b) 993 aCWmin = 31; 994 else 995 aCWmin = 15; 996 997 /* Configure old 802.11b/g medium access rules. */ 998 qparam.cw_max = aCWmax; 999 qparam.cw_min = aCWmin; 1000 qparam.txop = 0; 1001 qparam.aifs = 2; 1002 1003 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1004 /* Update if QoS is enabled. */ 1005 if (enable_qos) { 1006 switch (ac) { 1007 case IEEE80211_AC_BK: 1008 qparam.cw_max = aCWmax; 1009 qparam.cw_min = aCWmin; 1010 qparam.txop = 0; 1011 if (is_ocb) 1012 qparam.aifs = 9; 1013 else 1014 qparam.aifs = 7; 1015 break; 1016 /* never happens but let's not leave undefined */ 1017 default: 1018 case IEEE80211_AC_BE: 1019 qparam.cw_max = aCWmax; 1020 qparam.cw_min = aCWmin; 1021 qparam.txop = 0; 1022 if (is_ocb) 1023 qparam.aifs = 6; 1024 else 1025 qparam.aifs = 3; 1026 break; 1027 case IEEE80211_AC_VI: 1028 qparam.cw_max = aCWmin; 1029 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1030 if (is_ocb) 1031 qparam.txop = 0; 1032 else if (use_11b) 1033 qparam.txop = 6016/32; 1034 else 1035 qparam.txop = 3008/32; 1036 1037 if (is_ocb) 1038 qparam.aifs = 3; 1039 else 1040 qparam.aifs = 2; 1041 break; 1042 case IEEE80211_AC_VO: 1043 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1044 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1045 if (is_ocb) 1046 qparam.txop = 0; 1047 else if (use_11b) 1048 qparam.txop = 3264/32; 1049 else 1050 qparam.txop = 1504/32; 1051 qparam.aifs = 2; 1052 break; 1053 } 1054 } 1055 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1056 1057 qparam.uapsd = false; 1058 1059 link->tx_conf[ac] = qparam; 1060 drv_conf_tx(local, link, ac, &qparam); 1061 } 1062 1063 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1064 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1065 sdata->vif.type != NL80211_IFTYPE_NAN) { 1066 link->conf->qos = enable_qos; 1067 if (bss_notify) 1068 ieee80211_link_info_change_notify(sdata, link, 1069 BSS_CHANGED_QOS); 1070 } 1071 } 1072 1073 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1074 u16 transaction, u16 auth_alg, u16 status, 1075 const u8 *extra, size_t extra_len, const u8 *da, 1076 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1077 u32 tx_flags) 1078 { 1079 struct ieee80211_local *local = sdata->local; 1080 struct sk_buff *skb; 1081 struct ieee80211_mgmt *mgmt; 1082 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1083 struct { 1084 u8 id; 1085 u8 len; 1086 u8 ext_id; 1087 struct ieee80211_multi_link_elem ml; 1088 struct ieee80211_mle_basic_common_info basic; 1089 } __packed mle = { 1090 .id = WLAN_EID_EXTENSION, 1091 .len = sizeof(mle) - 2, 1092 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1093 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1094 .basic.len = sizeof(mle.basic), 1095 }; 1096 int err; 1097 1098 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1099 1100 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1101 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1102 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1103 multi_link * sizeof(mle)); 1104 if (!skb) 1105 return; 1106 1107 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1108 1109 mgmt = skb_put_zero(skb, 24 + 6); 1110 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1111 IEEE80211_STYPE_AUTH); 1112 memcpy(mgmt->da, da, ETH_ALEN); 1113 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1114 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1115 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1116 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1117 mgmt->u.auth.status_code = cpu_to_le16(status); 1118 if (extra) 1119 skb_put_data(skb, extra, extra_len); 1120 if (multi_link) 1121 skb_put_data(skb, &mle, sizeof(mle)); 1122 1123 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1124 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1125 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1126 if (WARN_ON(err)) { 1127 kfree_skb(skb); 1128 return; 1129 } 1130 } 1131 1132 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1133 tx_flags; 1134 ieee80211_tx_skb(sdata, skb); 1135 } 1136 1137 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1138 const u8 *da, const u8 *bssid, 1139 u16 stype, u16 reason, 1140 bool send_frame, u8 *frame_buf) 1141 { 1142 struct ieee80211_local *local = sdata->local; 1143 struct sk_buff *skb; 1144 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1145 1146 /* build frame */ 1147 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1148 mgmt->duration = 0; /* initialize only */ 1149 mgmt->seq_ctrl = 0; /* initialize only */ 1150 memcpy(mgmt->da, da, ETH_ALEN); 1151 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1152 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1153 /* u.deauth.reason_code == u.disassoc.reason_code */ 1154 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1155 1156 if (send_frame) { 1157 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1158 IEEE80211_DEAUTH_FRAME_LEN); 1159 if (!skb) 1160 return; 1161 1162 skb_reserve(skb, local->hw.extra_tx_headroom); 1163 1164 /* copy in frame */ 1165 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1166 1167 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1168 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1169 IEEE80211_SKB_CB(skb)->flags |= 1170 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1171 1172 ieee80211_tx_skb(sdata, skb); 1173 } 1174 } 1175 1176 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1177 struct ieee80211_sta_s1g_cap *s1g_cap) 1178 { 1179 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1180 return -ENOBUFS; 1181 1182 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1183 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1184 1185 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1186 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1187 1188 return 0; 1189 } 1190 1191 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1192 struct ieee80211_sub_if_data *sdata, 1193 const u8 *ie, size_t ie_len, 1194 size_t *offset, 1195 enum nl80211_band band, 1196 u32 rate_mask, 1197 struct cfg80211_chan_def *chandef, 1198 u32 flags) 1199 { 1200 struct ieee80211_local *local = sdata->local; 1201 struct ieee80211_supported_band *sband; 1202 int i, err; 1203 size_t noffset; 1204 u32 rate_flags; 1205 bool have_80mhz = false; 1206 1207 *offset = 0; 1208 1209 sband = local->hw.wiphy->bands[band]; 1210 if (WARN_ON_ONCE(!sband)) 1211 return 0; 1212 1213 rate_flags = ieee80211_chandef_rate_flags(chandef); 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1220 ~rate_mask, WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1242 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates, rate_flags; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 rate_flags = 1530 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1531 1532 num_rates = sband->n_bitrates; 1533 supp_rates = 0; 1534 for (i = 0; i < elems->supp_rates_len + 1535 elems->ext_supp_rates_len; i++) { 1536 u8 rate = 0; 1537 int own_rate; 1538 bool is_basic; 1539 if (i < elems->supp_rates_len) 1540 rate = elems->supp_rates[i]; 1541 else if (elems->ext_supp_rates) 1542 rate = elems->ext_supp_rates 1543 [i - elems->supp_rates_len]; 1544 own_rate = 5 * (rate & 0x7f); 1545 is_basic = !!(rate & 0x80); 1546 1547 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1548 continue; 1549 1550 for (j = 0; j < num_rates; j++) { 1551 int brate; 1552 if ((rate_flags & sband->bitrates[j].flags) 1553 != rate_flags) 1554 continue; 1555 1556 brate = sband->bitrates[j].bitrate; 1557 1558 if (brate == own_rate) { 1559 supp_rates |= BIT(j); 1560 if (basic_rates && is_basic) 1561 *basic_rates |= BIT(j); 1562 } 1563 } 1564 } 1565 return supp_rates; 1566 } 1567 1568 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1569 { 1570 local_bh_disable(); 1571 ieee80211_handle_queued_frames(local); 1572 local_bh_enable(); 1573 1574 ieee80211_led_radio(local, false); 1575 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1576 1577 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1578 1579 flush_workqueue(local->workqueue); 1580 wiphy_work_flush(local->hw.wiphy, NULL); 1581 drv_stop(local, suspend); 1582 } 1583 1584 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1585 bool aborted) 1586 { 1587 /* It's possible that we don't handle the scan completion in 1588 * time during suspend, so if it's still marked as completed 1589 * here, queue the work and flush it to clean things up. 1590 * Instead of calling the worker function directly here, we 1591 * really queue it to avoid potential races with other flows 1592 * scheduling the same work. 1593 */ 1594 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1595 /* If coming from reconfiguration failure, abort the scan so 1596 * we don't attempt to continue a partial HW scan - which is 1597 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1598 * completed scan, and a 5 GHz portion is still pending. 1599 */ 1600 if (aborted) 1601 set_bit(SCAN_ABORTED, &local->scanning); 1602 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1603 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1604 } 1605 } 1606 1607 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1608 { 1609 struct ieee80211_sub_if_data *sdata; 1610 struct ieee80211_chanctx *ctx; 1611 1612 lockdep_assert_wiphy(local->hw.wiphy); 1613 1614 /* 1615 * We get here if during resume the device can't be restarted properly. 1616 * We might also get here if this happens during HW reset, which is a 1617 * slightly different situation and we need to drop all connections in 1618 * the latter case. 1619 * 1620 * Ask cfg80211 to turn off all interfaces, this will result in more 1621 * warnings but at least we'll then get into a clean stopped state. 1622 */ 1623 1624 local->resuming = false; 1625 local->suspended = false; 1626 local->in_reconfig = false; 1627 local->reconfig_failure = true; 1628 1629 ieee80211_flush_completed_scan(local, true); 1630 1631 /* scheduled scan clearly can't be running any more, but tell 1632 * cfg80211 and clear local state 1633 */ 1634 ieee80211_sched_scan_end(local); 1635 1636 list_for_each_entry(sdata, &local->interfaces, list) 1637 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1638 1639 /* Mark channel contexts as not being in the driver any more to avoid 1640 * removing them from the driver during the shutdown process... 1641 */ 1642 list_for_each_entry(ctx, &local->chanctx_list, list) 1643 ctx->driver_present = false; 1644 } 1645 1646 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1647 struct ieee80211_sub_if_data *sdata, 1648 struct ieee80211_link_data *link) 1649 { 1650 struct ieee80211_chanctx_conf *conf; 1651 struct ieee80211_chanctx *ctx; 1652 1653 lockdep_assert_wiphy(local->hw.wiphy); 1654 1655 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1656 lockdep_is_held(&local->hw.wiphy->mtx)); 1657 if (conf) { 1658 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1659 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1660 } 1661 } 1662 1663 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1664 { 1665 struct ieee80211_local *local = sdata->local; 1666 struct sta_info *sta; 1667 1668 lockdep_assert_wiphy(local->hw.wiphy); 1669 1670 /* add STAs back */ 1671 list_for_each_entry(sta, &local->sta_list, list) { 1672 enum ieee80211_sta_state state; 1673 1674 if (!sta->uploaded || sta->sdata != sdata) 1675 continue; 1676 1677 for (state = IEEE80211_STA_NOTEXIST; 1678 state < sta->sta_state; state++) 1679 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1680 state + 1)); 1681 } 1682 } 1683 1684 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1685 { 1686 struct cfg80211_nan_func *func, **funcs; 1687 int res, id, i = 0; 1688 1689 res = drv_start_nan(sdata->local, sdata, 1690 &sdata->u.nan.conf); 1691 if (WARN_ON(res)) 1692 return res; 1693 1694 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1695 sizeof(*funcs), 1696 GFP_KERNEL); 1697 if (!funcs) 1698 return -ENOMEM; 1699 1700 /* Add all the functions: 1701 * This is a little bit ugly. We need to call a potentially sleeping 1702 * callback for each NAN function, so we can't hold the spinlock. 1703 */ 1704 spin_lock_bh(&sdata->u.nan.func_lock); 1705 1706 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1707 funcs[i++] = func; 1708 1709 spin_unlock_bh(&sdata->u.nan.func_lock); 1710 1711 for (i = 0; funcs[i]; i++) { 1712 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1713 if (WARN_ON(res)) 1714 ieee80211_nan_func_terminated(&sdata->vif, 1715 funcs[i]->instance_id, 1716 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1717 GFP_KERNEL); 1718 } 1719 1720 kfree(funcs); 1721 1722 return 0; 1723 } 1724 1725 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1726 struct ieee80211_sub_if_data *sdata, 1727 u64 changed) 1728 { 1729 int link_id; 1730 1731 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1732 struct ieee80211_link_data *link; 1733 1734 if (!(sdata->vif.active_links & BIT(link_id))) 1735 continue; 1736 1737 link = sdata_dereference(sdata->link[link_id], sdata); 1738 if (!link) 1739 continue; 1740 1741 if (rcu_access_pointer(link->u.ap.beacon)) 1742 drv_start_ap(local, sdata, link->conf); 1743 1744 if (!link->conf->enable_beacon) 1745 continue; 1746 1747 changed |= BSS_CHANGED_BEACON | 1748 BSS_CHANGED_BEACON_ENABLED; 1749 1750 ieee80211_link_info_change_notify(sdata, link, changed); 1751 } 1752 } 1753 1754 int ieee80211_reconfig(struct ieee80211_local *local) 1755 { 1756 struct ieee80211_hw *hw = &local->hw; 1757 struct ieee80211_sub_if_data *sdata; 1758 struct ieee80211_chanctx *ctx; 1759 struct sta_info *sta; 1760 int res, i; 1761 bool reconfig_due_to_wowlan = false; 1762 struct ieee80211_sub_if_data *sched_scan_sdata; 1763 struct cfg80211_sched_scan_request *sched_scan_req; 1764 bool sched_scan_stopped = false; 1765 bool suspended = local->suspended; 1766 bool in_reconfig = false; 1767 1768 lockdep_assert_wiphy(local->hw.wiphy); 1769 1770 /* nothing to do if HW shouldn't run */ 1771 if (!local->open_count) 1772 goto wake_up; 1773 1774 #ifdef CONFIG_PM 1775 if (suspended) 1776 local->resuming = true; 1777 1778 if (local->wowlan) { 1779 /* 1780 * In the wowlan case, both mac80211 and the device 1781 * are functional when the resume op is called, so 1782 * clear local->suspended so the device could operate 1783 * normally (e.g. pass rx frames). 1784 */ 1785 local->suspended = false; 1786 res = drv_resume(local); 1787 local->wowlan = false; 1788 if (res < 0) { 1789 local->resuming = false; 1790 return res; 1791 } 1792 if (res == 0) 1793 goto wake_up; 1794 WARN_ON(res > 1); 1795 /* 1796 * res is 1, which means the driver requested 1797 * to go through a regular reset on wakeup. 1798 * restore local->suspended in this case. 1799 */ 1800 reconfig_due_to_wowlan = true; 1801 local->suspended = true; 1802 } 1803 #endif 1804 1805 /* 1806 * In case of hw_restart during suspend (without wowlan), 1807 * cancel restart work, as we are reconfiguring the device 1808 * anyway. 1809 * Note that restart_work is scheduled on a frozen workqueue, 1810 * so we can't deadlock in this case. 1811 */ 1812 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1813 cancel_work_sync(&local->restart_work); 1814 1815 local->started = false; 1816 1817 /* 1818 * Upon resume hardware can sometimes be goofy due to 1819 * various platform / driver / bus issues, so restarting 1820 * the device may at times not work immediately. Propagate 1821 * the error. 1822 */ 1823 res = drv_start(local); 1824 if (res) { 1825 if (suspended) 1826 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1827 else 1828 WARN(1, "Hardware became unavailable during restart.\n"); 1829 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1830 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1831 false); 1832 ieee80211_handle_reconfig_failure(local); 1833 return res; 1834 } 1835 1836 /* setup fragmentation threshold */ 1837 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1838 1839 /* setup RTS threshold */ 1840 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1841 1842 /* reset coverage class */ 1843 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1844 1845 ieee80211_led_radio(local, true); 1846 ieee80211_mod_tpt_led_trig(local, 1847 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1848 1849 /* add interfaces */ 1850 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1851 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1852 /* in HW restart it exists already */ 1853 WARN_ON(local->resuming); 1854 res = drv_add_interface(local, sdata); 1855 if (WARN_ON(res)) { 1856 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1857 synchronize_net(); 1858 kfree(sdata); 1859 } 1860 } 1861 1862 list_for_each_entry(sdata, &local->interfaces, list) { 1863 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1864 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1865 continue; 1866 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1867 ieee80211_sdata_running(sdata)) { 1868 res = drv_add_interface(local, sdata); 1869 if (WARN_ON(res)) 1870 break; 1871 } 1872 } 1873 1874 /* If adding any of the interfaces failed above, roll back and 1875 * report failure. 1876 */ 1877 if (res) { 1878 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1879 list) { 1880 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1881 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1882 continue; 1883 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1884 ieee80211_sdata_running(sdata)) 1885 drv_remove_interface(local, sdata); 1886 } 1887 ieee80211_handle_reconfig_failure(local); 1888 return res; 1889 } 1890 1891 /* add channel contexts */ 1892 list_for_each_entry(ctx, &local->chanctx_list, list) 1893 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1894 WARN_ON(drv_add_chanctx(local, ctx)); 1895 1896 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1897 if (sdata && ieee80211_sdata_running(sdata)) 1898 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1899 1900 /* reconfigure hardware */ 1901 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1902 IEEE80211_CONF_CHANGE_MONITOR | 1903 IEEE80211_CONF_CHANGE_PS | 1904 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1905 IEEE80211_CONF_CHANGE_IDLE); 1906 1907 ieee80211_configure_filter(local); 1908 1909 /* Finally also reconfigure all the BSS information */ 1910 list_for_each_entry(sdata, &local->interfaces, list) { 1911 /* common change flags for all interface types - link only */ 1912 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1913 BSS_CHANGED_ERP_PREAMBLE | 1914 BSS_CHANGED_ERP_SLOT | 1915 BSS_CHANGED_HT | 1916 BSS_CHANGED_BASIC_RATES | 1917 BSS_CHANGED_BEACON_INT | 1918 BSS_CHANGED_BSSID | 1919 BSS_CHANGED_CQM | 1920 BSS_CHANGED_QOS | 1921 BSS_CHANGED_TXPOWER | 1922 BSS_CHANGED_MCAST_RATE; 1923 struct ieee80211_link_data *link = NULL; 1924 unsigned int link_id; 1925 u32 active_links = 0; 1926 1927 if (!ieee80211_sdata_running(sdata)) 1928 continue; 1929 1930 if (ieee80211_vif_is_mld(&sdata->vif)) { 1931 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1932 [0] = &sdata->vif.bss_conf, 1933 }; 1934 1935 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1936 /* start with a single active link */ 1937 active_links = sdata->vif.active_links; 1938 link_id = ffs(active_links) - 1; 1939 sdata->vif.active_links = BIT(link_id); 1940 } 1941 1942 drv_change_vif_links(local, sdata, 0, 1943 sdata->vif.active_links, 1944 old); 1945 } 1946 1947 sdata->restart_active_links = active_links; 1948 1949 for (link_id = 0; 1950 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1951 link_id++) { 1952 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1953 continue; 1954 1955 link = sdata_dereference(sdata->link[link_id], sdata); 1956 if (!link) 1957 continue; 1958 1959 ieee80211_assign_chanctx(local, sdata, link); 1960 } 1961 1962 switch (sdata->vif.type) { 1963 case NL80211_IFTYPE_AP_VLAN: 1964 case NL80211_IFTYPE_MONITOR: 1965 break; 1966 case NL80211_IFTYPE_ADHOC: 1967 if (sdata->vif.cfg.ibss_joined) 1968 WARN_ON(drv_join_ibss(local, sdata)); 1969 fallthrough; 1970 default: 1971 ieee80211_reconfig_stations(sdata); 1972 fallthrough; 1973 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1974 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1975 drv_conf_tx(local, &sdata->deflink, i, 1976 &sdata->deflink.tx_conf[i]); 1977 break; 1978 } 1979 1980 if (sdata->vif.bss_conf.mu_mimo_owner) 1981 changed |= BSS_CHANGED_MU_GROUPS; 1982 1983 if (!ieee80211_vif_is_mld(&sdata->vif)) 1984 changed |= BSS_CHANGED_IDLE; 1985 1986 switch (sdata->vif.type) { 1987 case NL80211_IFTYPE_STATION: 1988 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1989 changed |= BSS_CHANGED_ASSOC | 1990 BSS_CHANGED_ARP_FILTER | 1991 BSS_CHANGED_PS; 1992 1993 /* Re-send beacon info report to the driver */ 1994 if (sdata->deflink.u.mgd.have_beacon) 1995 changed |= BSS_CHANGED_BEACON_INFO; 1996 1997 if (sdata->vif.bss_conf.max_idle_period || 1998 sdata->vif.bss_conf.protected_keep_alive) 1999 changed |= BSS_CHANGED_KEEP_ALIVE; 2000 2001 ieee80211_bss_info_change_notify(sdata, 2002 changed); 2003 } else if (!WARN_ON(!link)) { 2004 ieee80211_link_info_change_notify(sdata, link, 2005 changed); 2006 changed = BSS_CHANGED_ASSOC | 2007 BSS_CHANGED_IDLE | 2008 BSS_CHANGED_PS | 2009 BSS_CHANGED_ARP_FILTER; 2010 ieee80211_vif_cfg_change_notify(sdata, changed); 2011 } 2012 break; 2013 case NL80211_IFTYPE_OCB: 2014 changed |= BSS_CHANGED_OCB; 2015 ieee80211_bss_info_change_notify(sdata, changed); 2016 break; 2017 case NL80211_IFTYPE_ADHOC: 2018 changed |= BSS_CHANGED_IBSS; 2019 fallthrough; 2020 case NL80211_IFTYPE_AP: 2021 changed |= BSS_CHANGED_P2P_PS; 2022 2023 if (ieee80211_vif_is_mld(&sdata->vif)) 2024 ieee80211_vif_cfg_change_notify(sdata, 2025 BSS_CHANGED_SSID); 2026 else 2027 changed |= BSS_CHANGED_SSID; 2028 2029 if (sdata->vif.bss_conf.ftm_responder == 1 && 2030 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2031 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2032 changed |= BSS_CHANGED_FTM_RESPONDER; 2033 2034 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2035 changed |= BSS_CHANGED_AP_PROBE_RESP; 2036 2037 if (ieee80211_vif_is_mld(&sdata->vif)) { 2038 ieee80211_reconfig_ap_links(local, 2039 sdata, 2040 changed); 2041 break; 2042 } 2043 2044 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2045 drv_start_ap(local, sdata, 2046 sdata->deflink.conf); 2047 } 2048 fallthrough; 2049 case NL80211_IFTYPE_MESH_POINT: 2050 if (sdata->vif.bss_conf.enable_beacon) { 2051 changed |= BSS_CHANGED_BEACON | 2052 BSS_CHANGED_BEACON_ENABLED; 2053 ieee80211_bss_info_change_notify(sdata, changed); 2054 } 2055 break; 2056 case NL80211_IFTYPE_NAN: 2057 res = ieee80211_reconfig_nan(sdata); 2058 if (res < 0) { 2059 ieee80211_handle_reconfig_failure(local); 2060 return res; 2061 } 2062 break; 2063 case NL80211_IFTYPE_AP_VLAN: 2064 case NL80211_IFTYPE_MONITOR: 2065 case NL80211_IFTYPE_P2P_DEVICE: 2066 /* nothing to do */ 2067 break; 2068 case NL80211_IFTYPE_UNSPECIFIED: 2069 case NUM_NL80211_IFTYPES: 2070 case NL80211_IFTYPE_P2P_CLIENT: 2071 case NL80211_IFTYPE_P2P_GO: 2072 case NL80211_IFTYPE_WDS: 2073 WARN_ON(1); 2074 break; 2075 } 2076 } 2077 2078 ieee80211_recalc_ps(local); 2079 2080 /* 2081 * The sta might be in psm against the ap (e.g. because 2082 * this was the state before a hw restart), so we 2083 * explicitly send a null packet in order to make sure 2084 * it'll sync against the ap (and get out of psm). 2085 */ 2086 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2087 list_for_each_entry(sdata, &local->interfaces, list) { 2088 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2089 continue; 2090 if (!sdata->u.mgd.associated) 2091 continue; 2092 2093 ieee80211_send_nullfunc(local, sdata, false); 2094 } 2095 } 2096 2097 /* APs are now beaconing, add back stations */ 2098 list_for_each_entry(sdata, &local->interfaces, list) { 2099 if (!ieee80211_sdata_running(sdata)) 2100 continue; 2101 2102 switch (sdata->vif.type) { 2103 case NL80211_IFTYPE_AP_VLAN: 2104 case NL80211_IFTYPE_AP: 2105 ieee80211_reconfig_stations(sdata); 2106 break; 2107 default: 2108 break; 2109 } 2110 } 2111 2112 /* add back keys */ 2113 list_for_each_entry(sdata, &local->interfaces, list) 2114 ieee80211_reenable_keys(sdata); 2115 2116 /* re-enable multi-link for client interfaces */ 2117 list_for_each_entry(sdata, &local->interfaces, list) { 2118 if (sdata->restart_active_links) 2119 ieee80211_set_active_links(&sdata->vif, 2120 sdata->restart_active_links); 2121 /* 2122 * If a link switch was scheduled before the restart, and ran 2123 * before reconfig, it will do nothing, so re-schedule. 2124 */ 2125 if (sdata->desired_active_links) 2126 wiphy_work_queue(sdata->local->hw.wiphy, 2127 &sdata->activate_links_work); 2128 } 2129 2130 /* Reconfigure sched scan if it was interrupted by FW restart */ 2131 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2132 lockdep_is_held(&local->hw.wiphy->mtx)); 2133 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2134 lockdep_is_held(&local->hw.wiphy->mtx)); 2135 if (sched_scan_sdata && sched_scan_req) 2136 /* 2137 * Sched scan stopped, but we don't want to report it. Instead, 2138 * we're trying to reschedule. However, if more than one scan 2139 * plan was set, we cannot reschedule since we don't know which 2140 * scan plan was currently running (and some scan plans may have 2141 * already finished). 2142 */ 2143 if (sched_scan_req->n_scan_plans > 1 || 2144 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2145 sched_scan_req)) { 2146 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2147 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2148 sched_scan_stopped = true; 2149 } 2150 2151 if (sched_scan_stopped) 2152 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2153 2154 wake_up: 2155 2156 if (local->monitors == local->open_count && local->monitors > 0) 2157 ieee80211_add_virtual_monitor(local); 2158 2159 /* 2160 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2161 * sessions can be established after a resume. 2162 * 2163 * Also tear down aggregation sessions since reconfiguring 2164 * them in a hardware restart scenario is not easily done 2165 * right now, and the hardware will have lost information 2166 * about the sessions, but we and the AP still think they 2167 * are active. This is really a workaround though. 2168 */ 2169 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2170 list_for_each_entry(sta, &local->sta_list, list) { 2171 if (!local->resuming) 2172 ieee80211_sta_tear_down_BA_sessions( 2173 sta, AGG_STOP_LOCAL_REQUEST); 2174 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2175 } 2176 } 2177 2178 /* 2179 * If this is for hw restart things are still running. 2180 * We may want to change that later, however. 2181 */ 2182 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2183 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2184 2185 if (local->in_reconfig) { 2186 in_reconfig = local->in_reconfig; 2187 local->in_reconfig = false; 2188 barrier(); 2189 2190 ieee80211_reconfig_roc(local); 2191 2192 /* Requeue all works */ 2193 list_for_each_entry(sdata, &local->interfaces, list) 2194 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2195 } 2196 2197 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2198 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2199 false); 2200 2201 if (in_reconfig) { 2202 list_for_each_entry(sdata, &local->interfaces, list) { 2203 if (!ieee80211_sdata_running(sdata)) 2204 continue; 2205 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2206 ieee80211_sta_restart(sdata); 2207 } 2208 } 2209 2210 if (!suspended) 2211 return 0; 2212 2213 #ifdef CONFIG_PM 2214 /* first set suspended false, then resuming */ 2215 local->suspended = false; 2216 mb(); 2217 local->resuming = false; 2218 2219 ieee80211_flush_completed_scan(local, false); 2220 2221 if (local->open_count && !reconfig_due_to_wowlan) 2222 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2223 2224 list_for_each_entry(sdata, &local->interfaces, list) { 2225 if (!ieee80211_sdata_running(sdata)) 2226 continue; 2227 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2228 ieee80211_sta_restart(sdata); 2229 } 2230 2231 mod_timer(&local->sta_cleanup, jiffies + 1); 2232 #else 2233 WARN_ON(1); 2234 #endif 2235 2236 return 0; 2237 } 2238 2239 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2240 { 2241 struct ieee80211_sub_if_data *sdata; 2242 struct ieee80211_local *local; 2243 struct ieee80211_key *key; 2244 2245 if (WARN_ON(!vif)) 2246 return; 2247 2248 sdata = vif_to_sdata(vif); 2249 local = sdata->local; 2250 2251 lockdep_assert_wiphy(local->hw.wiphy); 2252 2253 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2254 !local->resuming)) 2255 return; 2256 2257 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2258 !local->in_reconfig)) 2259 return; 2260 2261 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2262 return; 2263 2264 sdata->flags |= flag; 2265 2266 list_for_each_entry(key, &sdata->key_list, list) 2267 key->flags |= KEY_FLAG_TAINTED; 2268 } 2269 2270 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2271 { 2272 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2273 } 2274 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2275 2276 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2277 { 2278 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2279 } 2280 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2281 2282 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2283 struct ieee80211_link_data *link) 2284 { 2285 struct ieee80211_local *local = sdata->local; 2286 struct ieee80211_chanctx_conf *chanctx_conf; 2287 struct ieee80211_chanctx *chanctx; 2288 2289 lockdep_assert_wiphy(local->hw.wiphy); 2290 2291 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2292 lockdep_is_held(&local->hw.wiphy->mtx)); 2293 2294 /* 2295 * This function can be called from a work, thus it may be possible 2296 * that the chanctx_conf is removed (due to a disconnection, for 2297 * example). 2298 * So nothing should be done in such case. 2299 */ 2300 if (!chanctx_conf) 2301 return; 2302 2303 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2304 ieee80211_recalc_smps_chanctx(local, chanctx); 2305 } 2306 2307 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2308 int link_id) 2309 { 2310 struct ieee80211_local *local = sdata->local; 2311 struct ieee80211_chanctx_conf *chanctx_conf; 2312 struct ieee80211_chanctx *chanctx; 2313 int i; 2314 2315 lockdep_assert_wiphy(local->hw.wiphy); 2316 2317 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2318 struct ieee80211_bss_conf *bss_conf; 2319 2320 if (link_id >= 0 && link_id != i) 2321 continue; 2322 2323 rcu_read_lock(); 2324 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2325 if (!bss_conf) { 2326 rcu_read_unlock(); 2327 continue; 2328 } 2329 2330 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2331 lockdep_is_held(&local->hw.wiphy->mtx)); 2332 /* 2333 * Since we hold the wiphy mutex (checked above) 2334 * we can take the chanctx_conf pointer out of the 2335 * RCU critical section, it cannot go away without 2336 * the mutex. Just the way we reached it could - in 2337 * theory - go away, but we don't really care and 2338 * it really shouldn't happen anyway. 2339 */ 2340 rcu_read_unlock(); 2341 2342 if (!chanctx_conf) 2343 return; 2344 2345 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2346 conf); 2347 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); 2348 } 2349 } 2350 2351 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2352 { 2353 size_t pos = offset; 2354 2355 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2356 pos += 2 + ies[pos + 1]; 2357 2358 return pos; 2359 } 2360 2361 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2362 u16 cap) 2363 { 2364 __le16 tmp; 2365 2366 *pos++ = WLAN_EID_HT_CAPABILITY; 2367 *pos++ = sizeof(struct ieee80211_ht_cap); 2368 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2369 2370 /* capability flags */ 2371 tmp = cpu_to_le16(cap); 2372 memcpy(pos, &tmp, sizeof(u16)); 2373 pos += sizeof(u16); 2374 2375 /* AMPDU parameters */ 2376 *pos++ = ht_cap->ampdu_factor | 2377 (ht_cap->ampdu_density << 2378 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2379 2380 /* MCS set */ 2381 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2382 pos += sizeof(ht_cap->mcs); 2383 2384 /* extended capabilities */ 2385 pos += sizeof(__le16); 2386 2387 /* BF capabilities */ 2388 pos += sizeof(__le32); 2389 2390 /* antenna selection */ 2391 pos += sizeof(u8); 2392 2393 return pos; 2394 } 2395 2396 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2397 u32 cap) 2398 { 2399 __le32 tmp; 2400 2401 *pos++ = WLAN_EID_VHT_CAPABILITY; 2402 *pos++ = sizeof(struct ieee80211_vht_cap); 2403 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2404 2405 /* capability flags */ 2406 tmp = cpu_to_le32(cap); 2407 memcpy(pos, &tmp, sizeof(u32)); 2408 pos += sizeof(u32); 2409 2410 /* VHT MCS set */ 2411 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2412 pos += sizeof(vht_cap->vht_mcs); 2413 2414 return pos; 2415 } 2416 2417 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2418 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2419 { 2420 const struct ieee80211_sta_he_cap *he_cap; 2421 struct ieee80211_supported_band *sband; 2422 u8 n; 2423 2424 sband = ieee80211_get_sband(sdata); 2425 if (!sband) 2426 return 0; 2427 2428 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2429 if (!he_cap) 2430 return 0; 2431 2432 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2433 return 2 + 1 + 2434 sizeof(he_cap->he_cap_elem) + n + 2435 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2436 he_cap->he_cap_elem.phy_cap_info); 2437 } 2438 2439 static void 2440 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2441 const struct ieee80211_sta_he_cap *he_cap, 2442 struct ieee80211_he_cap_elem *elem) 2443 { 2444 u8 ru_limit, max_ru; 2445 2446 *elem = he_cap->he_cap_elem; 2447 2448 switch (conn->bw_limit) { 2449 case IEEE80211_CONN_BW_LIMIT_20: 2450 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2451 break; 2452 case IEEE80211_CONN_BW_LIMIT_40: 2453 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2454 break; 2455 case IEEE80211_CONN_BW_LIMIT_80: 2456 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2457 break; 2458 default: 2459 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2460 break; 2461 } 2462 2463 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2464 max_ru = min(max_ru, ru_limit); 2465 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2466 elem->phy_cap_info[8] |= max_ru; 2467 2468 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2469 elem->phy_cap_info[0] &= 2470 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2471 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2472 elem->phy_cap_info[9] &= 2473 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2474 } 2475 2476 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2477 elem->phy_cap_info[0] &= 2478 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2479 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2480 elem->phy_cap_info[5] &= 2481 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2482 elem->phy_cap_info[7] &= 2483 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2484 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2485 } 2486 } 2487 2488 int ieee80211_put_he_cap(struct sk_buff *skb, 2489 struct ieee80211_sub_if_data *sdata, 2490 const struct ieee80211_supported_band *sband, 2491 const struct ieee80211_conn_settings *conn) 2492 { 2493 const struct ieee80211_sta_he_cap *he_cap; 2494 struct ieee80211_he_cap_elem elem; 2495 u8 *len; 2496 u8 n; 2497 u8 ie_len; 2498 2499 if (!conn) 2500 conn = &ieee80211_conn_settings_unlimited; 2501 2502 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2503 if (!he_cap) 2504 return 0; 2505 2506 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2507 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2508 2509 n = ieee80211_he_mcs_nss_size(&elem); 2510 ie_len = 2 + 1 + 2511 sizeof(he_cap->he_cap_elem) + n + 2512 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2513 he_cap->he_cap_elem.phy_cap_info); 2514 2515 if (skb_tailroom(skb) < ie_len) 2516 return -ENOBUFS; 2517 2518 skb_put_u8(skb, WLAN_EID_EXTENSION); 2519 len = skb_put(skb, 1); /* We'll set the size later below */ 2520 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2521 2522 /* Fixed data */ 2523 skb_put_data(skb, &elem, sizeof(elem)); 2524 2525 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2526 2527 /* Check if PPE Threshold should be present */ 2528 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2529 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2530 goto end; 2531 2532 /* 2533 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2534 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2535 */ 2536 n = hweight8(he_cap->ppe_thres[0] & 2537 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2538 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2539 IEEE80211_PPE_THRES_NSS_POS)); 2540 2541 /* 2542 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2543 * total size. 2544 */ 2545 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2546 n = DIV_ROUND_UP(n, 8); 2547 2548 /* Copy PPE Thresholds */ 2549 skb_put_data(skb, &he_cap->ppe_thres, n); 2550 2551 end: 2552 *len = skb_tail_pointer(skb) - len - 1; 2553 return 0; 2554 } 2555 2556 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2557 struct ieee80211_sub_if_data *sdata, 2558 enum ieee80211_smps_mode smps_mode) 2559 { 2560 struct ieee80211_supported_band *sband; 2561 const struct ieee80211_sband_iftype_data *iftd; 2562 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2563 __le16 cap; 2564 2565 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2566 BIT(NL80211_BAND_6GHZ), 2567 IEEE80211_CHAN_NO_HE)) 2568 return 0; 2569 2570 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2571 2572 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2573 if (!iftd) 2574 return 0; 2575 2576 /* Check for device HE 6 GHz capability before adding element */ 2577 if (!iftd->he_6ghz_capa.capa) 2578 return 0; 2579 2580 cap = iftd->he_6ghz_capa.capa; 2581 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2582 2583 switch (smps_mode) { 2584 case IEEE80211_SMPS_AUTOMATIC: 2585 case IEEE80211_SMPS_NUM_MODES: 2586 WARN_ON(1); 2587 fallthrough; 2588 case IEEE80211_SMPS_OFF: 2589 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2590 IEEE80211_HE_6GHZ_CAP_SM_PS); 2591 break; 2592 case IEEE80211_SMPS_STATIC: 2593 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2594 IEEE80211_HE_6GHZ_CAP_SM_PS); 2595 break; 2596 case IEEE80211_SMPS_DYNAMIC: 2597 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2598 IEEE80211_HE_6GHZ_CAP_SM_PS); 2599 break; 2600 } 2601 2602 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2603 return -ENOBUFS; 2604 2605 skb_put_u8(skb, WLAN_EID_EXTENSION); 2606 skb_put_u8(skb, 1 + sizeof(cap)); 2607 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2608 skb_put_data(skb, &cap, sizeof(cap)); 2609 return 0; 2610 } 2611 2612 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2613 const struct cfg80211_chan_def *chandef, 2614 u16 prot_mode, bool rifs_mode) 2615 { 2616 struct ieee80211_ht_operation *ht_oper; 2617 /* Build HT Information */ 2618 *pos++ = WLAN_EID_HT_OPERATION; 2619 *pos++ = sizeof(struct ieee80211_ht_operation); 2620 ht_oper = (struct ieee80211_ht_operation *)pos; 2621 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2622 chandef->chan->center_freq); 2623 switch (chandef->width) { 2624 case NL80211_CHAN_WIDTH_160: 2625 case NL80211_CHAN_WIDTH_80P80: 2626 case NL80211_CHAN_WIDTH_80: 2627 case NL80211_CHAN_WIDTH_40: 2628 if (chandef->center_freq1 > chandef->chan->center_freq) 2629 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2630 else 2631 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2632 break; 2633 case NL80211_CHAN_WIDTH_320: 2634 /* HT information element should not be included on 6GHz */ 2635 WARN_ON(1); 2636 return pos; 2637 default: 2638 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2639 break; 2640 } 2641 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2642 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2643 chandef->width != NL80211_CHAN_WIDTH_20) 2644 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2645 2646 if (rifs_mode) 2647 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2648 2649 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2650 ht_oper->stbc_param = 0x0000; 2651 2652 /* It seems that Basic MCS set and Supported MCS set 2653 are identical for the first 10 bytes */ 2654 memset(&ht_oper->basic_set, 0, 16); 2655 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2656 2657 return pos + sizeof(struct ieee80211_ht_operation); 2658 } 2659 2660 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2661 const struct cfg80211_chan_def *chandef) 2662 { 2663 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2664 *pos++ = 3; /* IE length */ 2665 /* New channel width */ 2666 switch (chandef->width) { 2667 case NL80211_CHAN_WIDTH_80: 2668 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2669 break; 2670 case NL80211_CHAN_WIDTH_160: 2671 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2672 break; 2673 case NL80211_CHAN_WIDTH_80P80: 2674 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2675 break; 2676 case NL80211_CHAN_WIDTH_320: 2677 /* The behavior is not defined for 320 MHz channels */ 2678 WARN_ON(1); 2679 fallthrough; 2680 default: 2681 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2682 } 2683 2684 /* new center frequency segment 0 */ 2685 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2686 /* new center frequency segment 1 */ 2687 if (chandef->center_freq2) 2688 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2689 else 2690 *pos++ = 0; 2691 } 2692 2693 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2694 const struct cfg80211_chan_def *chandef) 2695 { 2696 struct ieee80211_vht_operation *vht_oper; 2697 2698 *pos++ = WLAN_EID_VHT_OPERATION; 2699 *pos++ = sizeof(struct ieee80211_vht_operation); 2700 vht_oper = (struct ieee80211_vht_operation *)pos; 2701 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2702 chandef->center_freq1); 2703 if (chandef->center_freq2) 2704 vht_oper->center_freq_seg1_idx = 2705 ieee80211_frequency_to_channel(chandef->center_freq2); 2706 else 2707 vht_oper->center_freq_seg1_idx = 0x00; 2708 2709 switch (chandef->width) { 2710 case NL80211_CHAN_WIDTH_160: 2711 /* 2712 * Convert 160 MHz channel width to new style as interop 2713 * workaround. 2714 */ 2715 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2716 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2717 if (chandef->chan->center_freq < chandef->center_freq1) 2718 vht_oper->center_freq_seg0_idx -= 8; 2719 else 2720 vht_oper->center_freq_seg0_idx += 8; 2721 break; 2722 case NL80211_CHAN_WIDTH_80P80: 2723 /* 2724 * Convert 80+80 MHz channel width to new style as interop 2725 * workaround. 2726 */ 2727 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2728 break; 2729 case NL80211_CHAN_WIDTH_80: 2730 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2731 break; 2732 case NL80211_CHAN_WIDTH_320: 2733 /* VHT information element should not be included on 6GHz */ 2734 WARN_ON(1); 2735 return pos; 2736 default: 2737 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2738 break; 2739 } 2740 2741 /* don't require special VHT peer rates */ 2742 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2743 2744 return pos + sizeof(struct ieee80211_vht_operation); 2745 } 2746 2747 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2748 { 2749 struct ieee80211_he_operation *he_oper; 2750 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2751 struct cfg80211_chan_def he_chandef; 2752 u32 he_oper_params; 2753 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2754 2755 if (chandef->chan->band == NL80211_BAND_6GHZ) 2756 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2757 2758 *pos++ = WLAN_EID_EXTENSION; 2759 *pos++ = ie_len; 2760 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2761 2762 he_oper_params = 0; 2763 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2764 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2765 he_oper_params |= u32_encode_bits(1, 2766 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2767 he_oper_params |= u32_encode_bits(1, 2768 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2769 if (chandef->chan->band == NL80211_BAND_6GHZ) 2770 he_oper_params |= u32_encode_bits(1, 2771 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2772 2773 he_oper = (struct ieee80211_he_operation *)pos; 2774 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2775 2776 /* don't require special HE peer rates */ 2777 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2778 pos += sizeof(struct ieee80211_he_operation); 2779 2780 if (chandef->chan->band != NL80211_BAND_6GHZ) 2781 goto out; 2782 2783 cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); 2784 he_chandef.center_freq1 = chandef->center_freq1; 2785 he_chandef.center_freq2 = chandef->center_freq2; 2786 he_chandef.width = chandef->width; 2787 2788 /* TODO add VHT operational */ 2789 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2790 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2791 he_6ghz_op->primary = 2792 ieee80211_frequency_to_channel(he_chandef.chan->center_freq); 2793 he_6ghz_op->ccfs0 = 2794 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2795 if (he_chandef.center_freq2) 2796 he_6ghz_op->ccfs1 = 2797 ieee80211_frequency_to_channel(he_chandef.center_freq2); 2798 else 2799 he_6ghz_op->ccfs1 = 0; 2800 2801 switch (he_chandef.width) { 2802 case NL80211_CHAN_WIDTH_320: 2803 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new 2804 * center_freq1 2805 */ 2806 ieee80211_chandef_downgrade(&he_chandef, NULL); 2807 he_6ghz_op->ccfs0 = 2808 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2809 fallthrough; 2810 case NL80211_CHAN_WIDTH_160: 2811 /* Convert 160 MHz channel width to new style as interop 2812 * workaround. 2813 */ 2814 he_6ghz_op->control = 2815 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2816 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2817 if (he_chandef.chan->center_freq < he_chandef.center_freq1) 2818 he_6ghz_op->ccfs0 -= 8; 2819 else 2820 he_6ghz_op->ccfs0 += 8; 2821 fallthrough; 2822 case NL80211_CHAN_WIDTH_80P80: 2823 he_6ghz_op->control = 2824 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2825 break; 2826 case NL80211_CHAN_WIDTH_80: 2827 he_6ghz_op->control = 2828 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2829 break; 2830 case NL80211_CHAN_WIDTH_40: 2831 he_6ghz_op->control = 2832 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2833 break; 2834 default: 2835 he_6ghz_op->control = 2836 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2837 break; 2838 } 2839 2840 pos += sizeof(struct ieee80211_he_6ghz_oper); 2841 2842 out: 2843 return pos; 2844 } 2845 2846 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2847 const struct ieee80211_sta_eht_cap *eht_cap) 2848 2849 { 2850 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2851 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2852 struct ieee80211_eht_operation *eht_oper; 2853 struct ieee80211_eht_operation_info *eht_oper_info; 2854 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2855 u8 eht_oper_info_len = 2856 offsetof(struct ieee80211_eht_operation_info, optional); 2857 u8 chan_width = 0; 2858 2859 *pos++ = WLAN_EID_EXTENSION; 2860 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2861 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2862 2863 eht_oper = (struct ieee80211_eht_operation *)pos; 2864 2865 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2866 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2867 pos += eht_oper_len; 2868 2869 eht_oper_info = 2870 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2871 2872 eht_oper_info->ccfs0 = 2873 ieee80211_frequency_to_channel(chandef->center_freq1); 2874 if (chandef->center_freq2) 2875 eht_oper_info->ccfs1 = 2876 ieee80211_frequency_to_channel(chandef->center_freq2); 2877 else 2878 eht_oper_info->ccfs1 = 0; 2879 2880 switch (chandef->width) { 2881 case NL80211_CHAN_WIDTH_320: 2882 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2883 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2884 if (chandef->chan->center_freq < chandef->center_freq1) 2885 eht_oper_info->ccfs0 -= 16; 2886 else 2887 eht_oper_info->ccfs0 += 16; 2888 break; 2889 case NL80211_CHAN_WIDTH_160: 2890 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2891 if (chandef->chan->center_freq < chandef->center_freq1) 2892 eht_oper_info->ccfs0 -= 8; 2893 else 2894 eht_oper_info->ccfs0 += 8; 2895 fallthrough; 2896 case NL80211_CHAN_WIDTH_80P80: 2897 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2898 break; 2899 case NL80211_CHAN_WIDTH_80: 2900 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2901 break; 2902 case NL80211_CHAN_WIDTH_40: 2903 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2904 break; 2905 default: 2906 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2907 break; 2908 } 2909 eht_oper_info->control = chan_width; 2910 pos += eht_oper_info_len; 2911 2912 /* TODO: eht_oper_info->optional */ 2913 2914 return pos; 2915 } 2916 2917 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2918 struct cfg80211_chan_def *chandef) 2919 { 2920 enum nl80211_channel_type channel_type; 2921 2922 if (!ht_oper) 2923 return false; 2924 2925 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2926 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2927 channel_type = NL80211_CHAN_HT20; 2928 break; 2929 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2930 channel_type = NL80211_CHAN_HT40PLUS; 2931 break; 2932 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2933 channel_type = NL80211_CHAN_HT40MINUS; 2934 break; 2935 default: 2936 return false; 2937 } 2938 2939 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2940 return true; 2941 } 2942 2943 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2944 const struct ieee80211_vht_operation *oper, 2945 const struct ieee80211_ht_operation *htop, 2946 struct cfg80211_chan_def *chandef) 2947 { 2948 struct cfg80211_chan_def new = *chandef; 2949 int cf0, cf1; 2950 int ccfs0, ccfs1, ccfs2; 2951 int ccf0, ccf1; 2952 u32 vht_cap; 2953 bool support_80_80 = false; 2954 bool support_160 = false; 2955 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2956 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2957 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2958 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2959 2960 if (!oper || !htop) 2961 return false; 2962 2963 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2964 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2965 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2966 support_80_80 = ((vht_cap & 2967 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2968 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2969 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2970 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2971 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2972 ccfs0 = oper->center_freq_seg0_idx; 2973 ccfs1 = oper->center_freq_seg1_idx; 2974 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2975 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2976 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2977 2978 ccf0 = ccfs0; 2979 2980 /* if not supported, parse as though we didn't understand it */ 2981 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2982 ext_nss_bw_supp = 0; 2983 2984 /* 2985 * Cf. IEEE 802.11 Table 9-250 2986 * 2987 * We really just consider that because it's inefficient to connect 2988 * at a higher bandwidth than we'll actually be able to use. 2989 */ 2990 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2991 default: 2992 case 0x00: 2993 ccf1 = 0; 2994 support_160 = false; 2995 support_80_80 = false; 2996 break; 2997 case 0x01: 2998 support_80_80 = false; 2999 fallthrough; 3000 case 0x02: 3001 case 0x03: 3002 ccf1 = ccfs2; 3003 break; 3004 case 0x10: 3005 ccf1 = ccfs1; 3006 break; 3007 case 0x11: 3008 case 0x12: 3009 if (!ccfs1) 3010 ccf1 = ccfs2; 3011 else 3012 ccf1 = ccfs1; 3013 break; 3014 case 0x13: 3015 case 0x20: 3016 case 0x23: 3017 ccf1 = ccfs1; 3018 break; 3019 } 3020 3021 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3022 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3023 3024 switch (oper->chan_width) { 3025 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3026 /* just use HT information directly */ 3027 break; 3028 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3029 new.width = NL80211_CHAN_WIDTH_80; 3030 new.center_freq1 = cf0; 3031 /* If needed, adjust based on the newer interop workaround. */ 3032 if (ccf1) { 3033 unsigned int diff; 3034 3035 diff = abs(ccf1 - ccf0); 3036 if ((diff == 8) && support_160) { 3037 new.width = NL80211_CHAN_WIDTH_160; 3038 new.center_freq1 = cf1; 3039 } else if ((diff > 8) && support_80_80) { 3040 new.width = NL80211_CHAN_WIDTH_80P80; 3041 new.center_freq2 = cf1; 3042 } 3043 } 3044 break; 3045 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3046 /* deprecated encoding */ 3047 new.width = NL80211_CHAN_WIDTH_160; 3048 new.center_freq1 = cf0; 3049 break; 3050 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3051 /* deprecated encoding */ 3052 new.width = NL80211_CHAN_WIDTH_80P80; 3053 new.center_freq1 = cf0; 3054 new.center_freq2 = cf1; 3055 break; 3056 default: 3057 return false; 3058 } 3059 3060 if (!cfg80211_chandef_valid(&new)) 3061 return false; 3062 3063 *chandef = new; 3064 return true; 3065 } 3066 3067 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3068 struct cfg80211_chan_def *chandef) 3069 { 3070 chandef->center_freq1 = 3071 ieee80211_channel_to_frequency(info->ccfs0, 3072 chandef->chan->band); 3073 3074 switch (u8_get_bits(info->control, 3075 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3076 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3077 chandef->width = NL80211_CHAN_WIDTH_20; 3078 break; 3079 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3080 chandef->width = NL80211_CHAN_WIDTH_40; 3081 break; 3082 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3083 chandef->width = NL80211_CHAN_WIDTH_80; 3084 break; 3085 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3086 chandef->width = NL80211_CHAN_WIDTH_160; 3087 chandef->center_freq1 = 3088 ieee80211_channel_to_frequency(info->ccfs1, 3089 chandef->chan->band); 3090 break; 3091 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3092 chandef->width = NL80211_CHAN_WIDTH_320; 3093 chandef->center_freq1 = 3094 ieee80211_channel_to_frequency(info->ccfs1, 3095 chandef->chan->band); 3096 break; 3097 } 3098 } 3099 3100 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3101 const struct ieee80211_he_operation *he_oper, 3102 const struct ieee80211_eht_operation *eht_oper, 3103 struct cfg80211_chan_def *chandef) 3104 { 3105 struct cfg80211_chan_def he_chandef = *chandef; 3106 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3107 u32 freq; 3108 3109 if (chandef->chan->band != NL80211_BAND_6GHZ) 3110 return true; 3111 3112 if (!he_oper) 3113 return false; 3114 3115 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3116 if (!he_6ghz_oper) 3117 return false; 3118 3119 /* 3120 * The EHT operation IE does not contain the primary channel so the 3121 * primary channel frequency should be taken from the 6 GHz operation 3122 * information. 3123 */ 3124 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3125 NL80211_BAND_6GHZ); 3126 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3127 3128 if (!he_chandef.chan) 3129 return false; 3130 3131 if (!eht_oper || 3132 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3133 switch (u8_get_bits(he_6ghz_oper->control, 3134 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3135 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3136 he_chandef.width = NL80211_CHAN_WIDTH_20; 3137 break; 3138 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3139 he_chandef.width = NL80211_CHAN_WIDTH_40; 3140 break; 3141 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3142 he_chandef.width = NL80211_CHAN_WIDTH_80; 3143 break; 3144 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3145 he_chandef.width = NL80211_CHAN_WIDTH_80; 3146 if (!he_6ghz_oper->ccfs1) 3147 break; 3148 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3149 he_chandef.width = NL80211_CHAN_WIDTH_160; 3150 else 3151 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3152 break; 3153 } 3154 3155 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3156 he_chandef.center_freq1 = 3157 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3158 NL80211_BAND_6GHZ); 3159 } else { 3160 he_chandef.center_freq1 = 3161 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3162 NL80211_BAND_6GHZ); 3163 he_chandef.center_freq2 = 3164 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3165 NL80211_BAND_6GHZ); 3166 } 3167 } else { 3168 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3169 &he_chandef); 3170 he_chandef.punctured = 3171 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3172 } 3173 3174 if (!cfg80211_chandef_valid(&he_chandef)) 3175 return false; 3176 3177 *chandef = he_chandef; 3178 3179 return true; 3180 } 3181 3182 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3183 struct cfg80211_chan_def *chandef) 3184 { 3185 u32 oper_freq; 3186 3187 if (!oper) 3188 return false; 3189 3190 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3191 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3192 chandef->width = NL80211_CHAN_WIDTH_1; 3193 break; 3194 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3195 chandef->width = NL80211_CHAN_WIDTH_2; 3196 break; 3197 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3198 chandef->width = NL80211_CHAN_WIDTH_4; 3199 break; 3200 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3201 chandef->width = NL80211_CHAN_WIDTH_8; 3202 break; 3203 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3204 chandef->width = NL80211_CHAN_WIDTH_16; 3205 break; 3206 default: 3207 return false; 3208 } 3209 3210 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3211 NL80211_BAND_S1GHZ); 3212 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3213 chandef->freq1_offset = oper_freq % 1000; 3214 3215 return true; 3216 } 3217 3218 int ieee80211_put_srates_elem(struct sk_buff *skb, 3219 const struct ieee80211_supported_band *sband, 3220 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3221 u8 element_id) 3222 { 3223 u8 i, rates, skip; 3224 3225 rates = 0; 3226 for (i = 0; i < sband->n_bitrates; i++) { 3227 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3228 continue; 3229 if (masked_rates & BIT(i)) 3230 continue; 3231 rates++; 3232 } 3233 3234 if (element_id == WLAN_EID_SUPP_RATES) { 3235 rates = min_t(u8, rates, 8); 3236 skip = 0; 3237 } else { 3238 skip = 8; 3239 if (rates <= skip) 3240 return 0; 3241 rates -= skip; 3242 } 3243 3244 if (skb_tailroom(skb) < rates + 2) 3245 return -ENOBUFS; 3246 3247 skb_put_u8(skb, element_id); 3248 skb_put_u8(skb, rates); 3249 3250 for (i = 0; i < sband->n_bitrates && rates; i++) { 3251 int rate; 3252 u8 basic; 3253 3254 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3255 continue; 3256 if (masked_rates & BIT(i)) 3257 continue; 3258 3259 if (skip > 0) { 3260 skip--; 3261 continue; 3262 } 3263 3264 basic = basic_rates & BIT(i) ? 0x80 : 0; 3265 3266 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3267 skb_put_u8(skb, basic | (u8)rate); 3268 rates--; 3269 } 3270 3271 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3272 rates, element_id); 3273 3274 return 0; 3275 } 3276 3277 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3278 { 3279 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3280 3281 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3282 return 0; 3283 3284 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3285 } 3286 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3287 3288 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3289 { 3290 if (!mcs) 3291 return 1; 3292 3293 /* TODO: consider rx_highest */ 3294 3295 if (mcs->rx_mask[3]) 3296 return 4; 3297 if (mcs->rx_mask[2]) 3298 return 3; 3299 if (mcs->rx_mask[1]) 3300 return 2; 3301 return 1; 3302 } 3303 3304 /** 3305 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3306 * @local: mac80211 hw info struct 3307 * @status: RX status 3308 * @mpdu_len: total MPDU length (including FCS) 3309 * @mpdu_offset: offset into MPDU to calculate timestamp at 3310 * 3311 * This function calculates the RX timestamp at the given MPDU offset, taking 3312 * into account what the RX timestamp was. An offset of 0 will just normalize 3313 * the timestamp to TSF at beginning of MPDU reception. 3314 * 3315 * Returns: the calculated timestamp 3316 */ 3317 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3318 struct ieee80211_rx_status *status, 3319 unsigned int mpdu_len, 3320 unsigned int mpdu_offset) 3321 { 3322 u64 ts = status->mactime; 3323 bool mactime_plcp_start; 3324 struct rate_info ri; 3325 u16 rate; 3326 u8 n_ltf; 3327 3328 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3329 return 0; 3330 3331 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3332 RX_FLAG_MACTIME_PLCP_START; 3333 3334 memset(&ri, 0, sizeof(ri)); 3335 3336 ri.bw = status->bw; 3337 3338 /* Fill cfg80211 rate info */ 3339 switch (status->encoding) { 3340 case RX_ENC_EHT: 3341 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3342 ri.mcs = status->rate_idx; 3343 ri.nss = status->nss; 3344 ri.eht_ru_alloc = status->eht.ru; 3345 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3346 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3347 /* TODO/FIXME: is this right? handle other PPDUs */ 3348 if (mactime_plcp_start) { 3349 mpdu_offset += 2; 3350 ts += 36; 3351 } 3352 break; 3353 case RX_ENC_HE: 3354 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3355 ri.mcs = status->rate_idx; 3356 ri.nss = status->nss; 3357 ri.he_ru_alloc = status->he_ru; 3358 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3359 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3360 3361 /* 3362 * See P802.11ax_D6.0, section 27.3.4 for 3363 * VHT PPDU format. 3364 */ 3365 if (mactime_plcp_start) { 3366 mpdu_offset += 2; 3367 ts += 36; 3368 3369 /* 3370 * TODO: 3371 * For HE MU PPDU, add the HE-SIG-B. 3372 * For HE ER PPDU, add 8us for the HE-SIG-A. 3373 * For HE TB PPDU, add 4us for the HE-STF. 3374 * Add the HE-LTF durations - variable. 3375 */ 3376 } 3377 3378 break; 3379 case RX_ENC_HT: 3380 ri.mcs = status->rate_idx; 3381 ri.flags |= RATE_INFO_FLAGS_MCS; 3382 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3383 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3384 3385 /* 3386 * See P802.11REVmd_D3.0, section 19.3.2 for 3387 * HT PPDU format. 3388 */ 3389 if (mactime_plcp_start) { 3390 mpdu_offset += 2; 3391 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3392 ts += 24; 3393 else 3394 ts += 32; 3395 3396 /* 3397 * Add Data HT-LTFs per streams 3398 * TODO: add Extension HT-LTFs, 4us per LTF 3399 */ 3400 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3401 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3402 ts += n_ltf * 4; 3403 } 3404 3405 break; 3406 case RX_ENC_VHT: 3407 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3408 ri.mcs = status->rate_idx; 3409 ri.nss = status->nss; 3410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3411 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3412 3413 /* 3414 * See P802.11REVmd_D3.0, section 21.3.2 for 3415 * VHT PPDU format. 3416 */ 3417 if (mactime_plcp_start) { 3418 mpdu_offset += 2; 3419 ts += 36; 3420 3421 /* 3422 * Add VHT-LTFs per streams 3423 */ 3424 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3425 ri.nss + 1 : ri.nss; 3426 ts += 4 * n_ltf; 3427 } 3428 3429 break; 3430 default: 3431 WARN_ON(1); 3432 fallthrough; 3433 case RX_ENC_LEGACY: { 3434 struct ieee80211_supported_band *sband; 3435 3436 sband = local->hw.wiphy->bands[status->band]; 3437 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3438 3439 if (mactime_plcp_start) { 3440 if (status->band == NL80211_BAND_5GHZ) { 3441 ts += 20; 3442 mpdu_offset += 2; 3443 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3444 ts += 96; 3445 } else { 3446 ts += 192; 3447 } 3448 } 3449 break; 3450 } 3451 } 3452 3453 rate = cfg80211_calculate_bitrate(&ri); 3454 if (WARN_ONCE(!rate, 3455 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3456 (unsigned long long)status->flag, status->rate_idx, 3457 status->nss)) 3458 return 0; 3459 3460 /* rewind from end of MPDU */ 3461 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3462 ts -= mpdu_len * 8 * 10 / rate; 3463 3464 ts += mpdu_offset * 8 * 10 / rate; 3465 3466 return ts; 3467 } 3468 3469 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3470 * also provided, only the interfaces using that ctx will be canceled. 3471 */ 3472 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3473 struct ieee80211_chanctx *ctx) 3474 { 3475 struct ieee80211_sub_if_data *sdata; 3476 struct cfg80211_chan_def chandef; 3477 struct ieee80211_link_data *link; 3478 struct ieee80211_chanctx_conf *chanctx_conf; 3479 unsigned int link_id; 3480 3481 lockdep_assert_wiphy(local->hw.wiphy); 3482 3483 list_for_each_entry(sdata, &local->interfaces, list) { 3484 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3485 link_id++) { 3486 link = sdata_dereference(sdata->link[link_id], 3487 sdata); 3488 if (!link) 3489 continue; 3490 3491 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3492 sdata); 3493 if (ctx && &ctx->conf != chanctx_conf) 3494 continue; 3495 3496 wiphy_delayed_work_cancel(local->hw.wiphy, 3497 &link->dfs_cac_timer_work); 3498 3499 if (!sdata->wdev.links[link_id].cac_started) 3500 continue; 3501 3502 chandef = link->conf->chanreq.oper; 3503 ieee80211_link_release_channel(link); 3504 cfg80211_cac_event(sdata->dev, &chandef, 3505 NL80211_RADAR_CAC_ABORTED, 3506 GFP_KERNEL, link_id); 3507 } 3508 } 3509 } 3510 3511 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3512 struct wiphy_work *work) 3513 { 3514 struct ieee80211_local *local = 3515 container_of(work, struct ieee80211_local, radar_detected_work); 3516 struct cfg80211_chan_def chandef; 3517 struct ieee80211_chanctx *ctx; 3518 3519 lockdep_assert_wiphy(local->hw.wiphy); 3520 3521 list_for_each_entry(ctx, &local->chanctx_list, list) { 3522 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3523 continue; 3524 3525 if (!ctx->radar_detected) 3526 continue; 3527 3528 ctx->radar_detected = false; 3529 3530 chandef = ctx->conf.def; 3531 3532 ieee80211_dfs_cac_cancel(local, ctx); 3533 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3534 } 3535 } 3536 3537 static void 3538 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3539 struct ieee80211_chanctx_conf *chanctx_conf, 3540 void *data) 3541 { 3542 struct ieee80211_chanctx *ctx = 3543 container_of(chanctx_conf, struct ieee80211_chanctx, 3544 conf); 3545 3546 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3547 return; 3548 3549 if (data && data != chanctx_conf) 3550 return; 3551 3552 ctx->radar_detected = true; 3553 } 3554 3555 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3556 struct ieee80211_chanctx_conf *chanctx_conf) 3557 { 3558 struct ieee80211_local *local = hw_to_local(hw); 3559 3560 trace_api_radar_detected(local); 3561 3562 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3563 chanctx_conf); 3564 3565 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3566 } 3567 EXPORT_SYMBOL(ieee80211_radar_detected); 3568 3569 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3570 struct ieee80211_conn_settings *conn) 3571 { 3572 enum nl80211_chan_width new_primary_width; 3573 struct ieee80211_conn_settings _ignored = {}; 3574 3575 /* allow passing NULL if caller doesn't care */ 3576 if (!conn) 3577 conn = &_ignored; 3578 3579 again: 3580 /* no-HT indicates nothing to do */ 3581 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3582 3583 switch (c->width) { 3584 default: 3585 case NL80211_CHAN_WIDTH_20_NOHT: 3586 WARN_ON_ONCE(1); 3587 fallthrough; 3588 case NL80211_CHAN_WIDTH_20: 3589 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3590 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3591 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3592 c->punctured = 0; 3593 break; 3594 case NL80211_CHAN_WIDTH_40: 3595 c->width = NL80211_CHAN_WIDTH_20; 3596 c->center_freq1 = c->chan->center_freq; 3597 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3598 conn->mode = IEEE80211_CONN_MODE_HT; 3599 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3600 c->punctured = 0; 3601 break; 3602 case NL80211_CHAN_WIDTH_80: 3603 new_primary_width = NL80211_CHAN_WIDTH_40; 3604 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3605 conn->mode = IEEE80211_CONN_MODE_HT; 3606 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3607 break; 3608 case NL80211_CHAN_WIDTH_80P80: 3609 c->center_freq2 = 0; 3610 c->width = NL80211_CHAN_WIDTH_80; 3611 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3612 break; 3613 case NL80211_CHAN_WIDTH_160: 3614 new_primary_width = NL80211_CHAN_WIDTH_80; 3615 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3616 break; 3617 case NL80211_CHAN_WIDTH_320: 3618 new_primary_width = NL80211_CHAN_WIDTH_160; 3619 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3620 break; 3621 case NL80211_CHAN_WIDTH_1: 3622 case NL80211_CHAN_WIDTH_2: 3623 case NL80211_CHAN_WIDTH_4: 3624 case NL80211_CHAN_WIDTH_8: 3625 case NL80211_CHAN_WIDTH_16: 3626 WARN_ON_ONCE(1); 3627 /* keep c->width */ 3628 conn->mode = IEEE80211_CONN_MODE_S1G; 3629 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3630 break; 3631 case NL80211_CHAN_WIDTH_5: 3632 case NL80211_CHAN_WIDTH_10: 3633 WARN_ON_ONCE(1); 3634 /* keep c->width */ 3635 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3636 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3637 break; 3638 } 3639 3640 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3641 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3642 &c->punctured); 3643 c->width = new_primary_width; 3644 } 3645 3646 /* 3647 * With an 80 MHz channel, we might have the puncturing in the primary 3648 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3649 * In that case, downgrade again. 3650 */ 3651 if (!cfg80211_chandef_valid(c) && c->punctured) 3652 goto again; 3653 3654 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3655 } 3656 3657 /* 3658 * Returns true if smps_mode_new is strictly more restrictive than 3659 * smps_mode_old. 3660 */ 3661 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3662 enum ieee80211_smps_mode smps_mode_new) 3663 { 3664 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3665 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3666 return false; 3667 3668 switch (smps_mode_old) { 3669 case IEEE80211_SMPS_STATIC: 3670 return false; 3671 case IEEE80211_SMPS_DYNAMIC: 3672 return smps_mode_new == IEEE80211_SMPS_STATIC; 3673 case IEEE80211_SMPS_OFF: 3674 return smps_mode_new != IEEE80211_SMPS_OFF; 3675 default: 3676 WARN_ON(1); 3677 } 3678 3679 return false; 3680 } 3681 3682 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3683 struct cfg80211_csa_settings *csa_settings) 3684 { 3685 struct sk_buff *skb; 3686 struct ieee80211_mgmt *mgmt; 3687 struct ieee80211_local *local = sdata->local; 3688 int freq; 3689 int hdr_len = offsetofend(struct ieee80211_mgmt, 3690 u.action.u.chan_switch); 3691 u8 *pos; 3692 3693 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3694 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3695 return -EOPNOTSUPP; 3696 3697 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3698 5 + /* channel switch announcement element */ 3699 3 + /* secondary channel offset element */ 3700 5 + /* wide bandwidth channel switch announcement */ 3701 8); /* mesh channel switch parameters element */ 3702 if (!skb) 3703 return -ENOMEM; 3704 3705 skb_reserve(skb, local->tx_headroom); 3706 mgmt = skb_put_zero(skb, hdr_len); 3707 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3708 IEEE80211_STYPE_ACTION); 3709 3710 eth_broadcast_addr(mgmt->da); 3711 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3712 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3713 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3714 } else { 3715 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3716 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3717 } 3718 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3719 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3720 pos = skb_put(skb, 5); 3721 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3722 *pos++ = 3; /* IE length */ 3723 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3724 freq = csa_settings->chandef.chan->center_freq; 3725 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3726 *pos++ = csa_settings->count; /* count */ 3727 3728 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3729 enum nl80211_channel_type ch_type; 3730 3731 skb_put(skb, 3); 3732 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3733 *pos++ = 1; /* IE length */ 3734 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3735 if (ch_type == NL80211_CHAN_HT40PLUS) 3736 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3737 else 3738 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3739 } 3740 3741 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3742 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3743 3744 skb_put(skb, 8); 3745 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3746 *pos++ = 6; /* IE length */ 3747 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3748 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3749 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3750 *pos++ |= csa_settings->block_tx ? 3751 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3752 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3753 pos += 2; 3754 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3755 pos += 2; 3756 } 3757 3758 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3759 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3760 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3761 skb_put(skb, 5); 3762 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3763 } 3764 3765 ieee80211_tx_skb(sdata, skb); 3766 return 0; 3767 } 3768 3769 static bool 3770 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3771 { 3772 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3773 int skip; 3774 3775 if (end > 0) 3776 return false; 3777 3778 /* One shot NOA */ 3779 if (data->count[i] == 1) 3780 return false; 3781 3782 if (data->desc[i].interval == 0) 3783 return false; 3784 3785 /* End time is in the past, check for repetitions */ 3786 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3787 if (data->count[i] < 255) { 3788 if (data->count[i] <= skip) { 3789 data->count[i] = 0; 3790 return false; 3791 } 3792 3793 data->count[i] -= skip; 3794 } 3795 3796 data->desc[i].start += skip * data->desc[i].interval; 3797 3798 return true; 3799 } 3800 3801 static bool 3802 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3803 s32 *offset) 3804 { 3805 bool ret = false; 3806 int i; 3807 3808 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3809 s32 cur; 3810 3811 if (!data->count[i]) 3812 continue; 3813 3814 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3815 ret = true; 3816 3817 cur = data->desc[i].start - tsf; 3818 if (cur > *offset) 3819 continue; 3820 3821 cur = data->desc[i].start + data->desc[i].duration - tsf; 3822 if (cur > *offset) 3823 *offset = cur; 3824 } 3825 3826 return ret; 3827 } 3828 3829 static u32 3830 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3831 { 3832 s32 offset = 0; 3833 int tries = 0; 3834 /* 3835 * arbitrary limit, used to avoid infinite loops when combined NoA 3836 * descriptors cover the full time period. 3837 */ 3838 int max_tries = 5; 3839 3840 ieee80211_extend_absent_time(data, tsf, &offset); 3841 do { 3842 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3843 break; 3844 3845 tries++; 3846 } while (tries < max_tries); 3847 3848 return offset; 3849 } 3850 3851 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3852 { 3853 u32 next_offset = BIT(31) - 1; 3854 int i; 3855 3856 data->absent = 0; 3857 data->has_next_tsf = false; 3858 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3859 s32 start; 3860 3861 if (!data->count[i]) 3862 continue; 3863 3864 ieee80211_extend_noa_desc(data, tsf, i); 3865 start = data->desc[i].start - tsf; 3866 if (start <= 0) 3867 data->absent |= BIT(i); 3868 3869 if (next_offset > start) 3870 next_offset = start; 3871 3872 data->has_next_tsf = true; 3873 } 3874 3875 if (data->absent) 3876 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3877 3878 data->next_tsf = tsf + next_offset; 3879 } 3880 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3881 3882 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3883 struct ieee80211_noa_data *data, u32 tsf) 3884 { 3885 int ret = 0; 3886 int i; 3887 3888 memset(data, 0, sizeof(*data)); 3889 3890 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3891 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3892 3893 if (!desc->count || !desc->duration) 3894 continue; 3895 3896 data->count[i] = desc->count; 3897 data->desc[i].start = le32_to_cpu(desc->start_time); 3898 data->desc[i].duration = le32_to_cpu(desc->duration); 3899 data->desc[i].interval = le32_to_cpu(desc->interval); 3900 3901 if (data->count[i] > 1 && 3902 data->desc[i].interval < data->desc[i].duration) 3903 continue; 3904 3905 ieee80211_extend_noa_desc(data, tsf, i); 3906 ret++; 3907 } 3908 3909 if (ret) 3910 ieee80211_update_p2p_noa(data, tsf); 3911 3912 return ret; 3913 } 3914 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3915 3916 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3917 struct ieee80211_sub_if_data *sdata) 3918 { 3919 u64 tsf = drv_get_tsf(local, sdata); 3920 u64 dtim_count = 0; 3921 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3922 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3923 struct ps_data *ps; 3924 u8 bcns_from_dtim; 3925 3926 if (tsf == -1ULL || !beacon_int || !dtim_period) 3927 return; 3928 3929 if (sdata->vif.type == NL80211_IFTYPE_AP || 3930 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3931 if (!sdata->bss) 3932 return; 3933 3934 ps = &sdata->bss->ps; 3935 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3936 ps = &sdata->u.mesh.ps; 3937 } else { 3938 return; 3939 } 3940 3941 /* 3942 * actually finds last dtim_count, mac80211 will update in 3943 * __beacon_add_tim(). 3944 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3945 */ 3946 do_div(tsf, beacon_int); 3947 bcns_from_dtim = do_div(tsf, dtim_period); 3948 /* just had a DTIM */ 3949 if (!bcns_from_dtim) 3950 dtim_count = 0; 3951 else 3952 dtim_count = dtim_period - bcns_from_dtim; 3953 3954 ps->dtim_count = dtim_count; 3955 } 3956 3957 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3958 struct ieee80211_chanctx *ctx) 3959 { 3960 struct ieee80211_link_data *link; 3961 u8 radar_detect = 0; 3962 3963 lockdep_assert_wiphy(local->hw.wiphy); 3964 3965 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3966 return 0; 3967 3968 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3969 if (link->reserved_radar_required) 3970 radar_detect |= BIT(link->reserved.oper.width); 3971 3972 /* 3973 * An in-place reservation context should not have any assigned vifs 3974 * until it replaces the other context. 3975 */ 3976 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3977 !list_empty(&ctx->assigned_links)); 3978 3979 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3980 if (!link->radar_required) 3981 continue; 3982 3983 radar_detect |= 3984 BIT(link->conf->chanreq.oper.width); 3985 } 3986 3987 return radar_detect; 3988 } 3989 3990 static u32 3991 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 3992 { 3993 struct ieee80211_bss_conf *link_conf; 3994 struct ieee80211_chanctx_conf *conf; 3995 unsigned int link_id; 3996 u32 mask = 0; 3997 3998 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 3999 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 4000 if (!conf || conf->radio_idx < 0) 4001 continue; 4002 4003 mask |= BIT(conf->radio_idx); 4004 } 4005 4006 return mask; 4007 } 4008 4009 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4010 { 4011 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4012 4013 return __ieee80211_get_radio_mask(sdata); 4014 } 4015 4016 static bool 4017 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4018 { 4019 if (radio_idx < 0) 4020 return true; 4021 4022 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4023 } 4024 4025 static int 4026 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4027 struct iface_combination_params *params, 4028 const struct cfg80211_chan_def *chandef, 4029 struct ieee80211_sub_if_data *sdata) 4030 { 4031 struct ieee80211_sub_if_data *sdata_iter; 4032 struct ieee80211_chanctx *ctx; 4033 int total = !!sdata; 4034 4035 list_for_each_entry(ctx, &local->chanctx_list, list) { 4036 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4037 continue; 4038 4039 if (params->radio_idx >= 0 && 4040 ctx->conf.radio_idx != params->radio_idx) 4041 continue; 4042 4043 params->radar_detect |= 4044 ieee80211_chanctx_radar_detect(local, ctx); 4045 4046 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4047 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4048 continue; 4049 4050 params->num_different_channels++; 4051 } 4052 4053 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4054 struct wireless_dev *wdev_iter; 4055 4056 wdev_iter = &sdata_iter->wdev; 4057 4058 if (sdata_iter == sdata || 4059 !ieee80211_sdata_running(sdata_iter) || 4060 cfg80211_iftype_allowed(local->hw.wiphy, 4061 wdev_iter->iftype, 0, 1)) 4062 continue; 4063 4064 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4065 continue; 4066 4067 params->iftype_num[wdev_iter->iftype]++; 4068 total++; 4069 } 4070 4071 return total; 4072 } 4073 4074 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4075 const struct cfg80211_chan_def *chandef, 4076 enum ieee80211_chanctx_mode chanmode, 4077 u8 radar_detect, int radio_idx) 4078 { 4079 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4080 struct ieee80211_local *local = sdata->local; 4081 enum nl80211_iftype iftype = sdata->wdev.iftype; 4082 struct iface_combination_params params = { 4083 .radar_detect = radar_detect, 4084 .radio_idx = radio_idx, 4085 }; 4086 int total; 4087 4088 lockdep_assert_wiphy(local->hw.wiphy); 4089 4090 if (WARN_ON(hweight32(radar_detect) > 1)) 4091 return -EINVAL; 4092 4093 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4094 !chandef->chan)) 4095 return -EINVAL; 4096 4097 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4098 return -EINVAL; 4099 4100 if (sdata->vif.type == NL80211_IFTYPE_AP || 4101 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4102 /* 4103 * always passing this is harmless, since it'll be the 4104 * same value that cfg80211 finds if it finds the same 4105 * interface ... and that's always allowed 4106 */ 4107 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4108 } 4109 4110 /* Always allow software iftypes */ 4111 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4112 if (radar_detect) 4113 return -EINVAL; 4114 return 0; 4115 } 4116 4117 if (chandef) 4118 params.num_different_channels = 1; 4119 4120 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4121 params.iftype_num[iftype] = 1; 4122 4123 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4124 shared ? chandef : NULL, 4125 sdata); 4126 if (total == 1 && !params.radar_detect) 4127 return 0; 4128 4129 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4130 } 4131 4132 static void 4133 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4134 void *data) 4135 { 4136 u32 *max_num_different_channels = data; 4137 4138 *max_num_different_channels = max(*max_num_different_channels, 4139 c->num_different_channels); 4140 } 4141 4142 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4143 { 4144 u32 max_num_different_channels = 1; 4145 int err; 4146 struct iface_combination_params params = { 4147 .radio_idx = radio_idx, 4148 }; 4149 4150 lockdep_assert_wiphy(local->hw.wiphy); 4151 4152 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4153 4154 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4155 ieee80211_iter_max_chans, 4156 &max_num_different_channels); 4157 if (err < 0) 4158 return err; 4159 4160 return max_num_different_channels; 4161 } 4162 4163 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4164 struct ieee80211_sta_s1g_cap *caps, 4165 struct sk_buff *skb) 4166 { 4167 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4168 struct ieee80211_s1g_cap s1g_capab; 4169 u8 *pos; 4170 int i; 4171 4172 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4173 return; 4174 4175 if (!caps->s1g) 4176 return; 4177 4178 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4179 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4180 4181 /* override the capability info */ 4182 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4183 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4184 4185 s1g_capab.capab_info[i] &= ~mask; 4186 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4187 } 4188 4189 /* then MCS and NSS set */ 4190 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4191 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4192 4193 s1g_capab.supp_mcs_nss[i] &= ~mask; 4194 s1g_capab.supp_mcs_nss[i] |= 4195 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4196 } 4197 4198 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4199 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4200 *pos++ = sizeof(s1g_capab); 4201 4202 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4203 } 4204 4205 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4206 struct sk_buff *skb) 4207 { 4208 u8 *pos = skb_put(skb, 3); 4209 4210 *pos++ = WLAN_EID_AID_REQUEST; 4211 *pos++ = 1; 4212 *pos++ = 0; 4213 } 4214 4215 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4216 { 4217 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4218 *buf++ = 7; /* len */ 4219 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4220 *buf++ = 0x50; 4221 *buf++ = 0xf2; 4222 *buf++ = 2; /* WME */ 4223 *buf++ = 0; /* WME info */ 4224 *buf++ = 1; /* WME ver */ 4225 *buf++ = qosinfo; /* U-APSD no in use */ 4226 4227 return buf; 4228 } 4229 4230 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4231 unsigned long *frame_cnt, 4232 unsigned long *byte_cnt) 4233 { 4234 struct txq_info *txqi = to_txq_info(txq); 4235 u32 frag_cnt = 0, frag_bytes = 0; 4236 struct sk_buff *skb; 4237 4238 skb_queue_walk(&txqi->frags, skb) { 4239 frag_cnt++; 4240 frag_bytes += skb->len; 4241 } 4242 4243 if (frame_cnt) 4244 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4245 4246 if (byte_cnt) 4247 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4248 } 4249 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4250 4251 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4252 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4253 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4254 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4255 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4256 }; 4257 4258 u16 ieee80211_encode_usf(int listen_interval) 4259 { 4260 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4261 u16 ui, usf = 0; 4262 4263 /* find greatest USF */ 4264 while (usf < IEEE80211_MAX_USF) { 4265 if (listen_interval % listen_int_usf[usf + 1]) 4266 break; 4267 usf += 1; 4268 } 4269 ui = listen_interval / listen_int_usf[usf]; 4270 4271 /* error if there is a remainder. Should've been checked by user */ 4272 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4273 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4274 FIELD_PREP(LISTEN_INT_UI, ui); 4275 4276 return (u16) listen_interval; 4277 } 4278 4279 /* this may return more than ieee80211_put_eht_cap() will need */ 4280 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4281 { 4282 const struct ieee80211_sta_he_cap *he_cap; 4283 const struct ieee80211_sta_eht_cap *eht_cap; 4284 struct ieee80211_supported_band *sband; 4285 bool is_ap; 4286 u8 n; 4287 4288 sband = ieee80211_get_sband(sdata); 4289 if (!sband) 4290 return 0; 4291 4292 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4293 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4294 if (!he_cap || !eht_cap) 4295 return 0; 4296 4297 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4298 4299 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4300 &eht_cap->eht_cap_elem, 4301 is_ap); 4302 return 2 + 1 + 4303 sizeof(eht_cap->eht_cap_elem) + n + 4304 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4305 eht_cap->eht_cap_elem.phy_cap_info); 4306 return 0; 4307 } 4308 4309 int ieee80211_put_eht_cap(struct sk_buff *skb, 4310 struct ieee80211_sub_if_data *sdata, 4311 const struct ieee80211_supported_band *sband, 4312 const struct ieee80211_conn_settings *conn) 4313 { 4314 const struct ieee80211_sta_he_cap *he_cap = 4315 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4316 const struct ieee80211_sta_eht_cap *eht_cap = 4317 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4318 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4319 struct ieee80211_eht_cap_elem_fixed fixed; 4320 struct ieee80211_he_cap_elem he; 4321 u8 mcs_nss_len, ppet_len; 4322 u8 orig_mcs_nss_len; 4323 u8 ie_len; 4324 4325 if (!conn) 4326 conn = &ieee80211_conn_settings_unlimited; 4327 4328 /* Make sure we have place for the IE */ 4329 if (!he_cap || !eht_cap) 4330 return 0; 4331 4332 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4333 &eht_cap->eht_cap_elem, 4334 for_ap); 4335 4336 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4337 4338 fixed = eht_cap->eht_cap_elem; 4339 4340 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4341 fixed.phy_cap_info[6] &= 4342 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4343 4344 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4345 fixed.phy_cap_info[1] &= 4346 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4347 fixed.phy_cap_info[2] &= 4348 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4349 fixed.phy_cap_info[6] &= 4350 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4351 } 4352 4353 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4354 fixed.phy_cap_info[0] &= 4355 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4356 fixed.phy_cap_info[1] &= 4357 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4358 fixed.phy_cap_info[2] &= 4359 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4360 fixed.phy_cap_info[6] &= 4361 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4362 } 4363 4364 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4365 fixed.phy_cap_info[0] &= 4366 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4367 4368 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4369 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4370 fixed.phy_cap_info); 4371 4372 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4373 if (skb_tailroom(skb) < ie_len) 4374 return -ENOBUFS; 4375 4376 skb_put_u8(skb, WLAN_EID_EXTENSION); 4377 skb_put_u8(skb, ie_len - 2); 4378 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4379 skb_put_data(skb, &fixed, sizeof(fixed)); 4380 4381 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4382 /* 4383 * If the (non-AP) STA became 20 MHz only, then convert from 4384 * <=80 to 20-MHz-only format, where MCSes are indicated in 4385 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4386 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4387 */ 4388 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4389 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4390 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4391 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4392 } else { 4393 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4394 } 4395 4396 if (ppet_len) 4397 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4398 4399 return 0; 4400 } 4401 4402 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4403 { 4404 static const char * const modes[] = { 4405 [IEEE80211_CONN_MODE_S1G] = "S1G", 4406 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4407 [IEEE80211_CONN_MODE_HT] = "HT", 4408 [IEEE80211_CONN_MODE_VHT] = "VHT", 4409 [IEEE80211_CONN_MODE_HE] = "HE", 4410 [IEEE80211_CONN_MODE_EHT] = "EHT", 4411 }; 4412 4413 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4414 return "<out of range>"; 4415 4416 return modes[mode] ?: "<missing string>"; 4417 } 4418 4419 enum ieee80211_conn_bw_limit 4420 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4421 { 4422 switch (chandef->width) { 4423 case NL80211_CHAN_WIDTH_20_NOHT: 4424 case NL80211_CHAN_WIDTH_20: 4425 return IEEE80211_CONN_BW_LIMIT_20; 4426 case NL80211_CHAN_WIDTH_40: 4427 return IEEE80211_CONN_BW_LIMIT_40; 4428 case NL80211_CHAN_WIDTH_80: 4429 return IEEE80211_CONN_BW_LIMIT_80; 4430 case NL80211_CHAN_WIDTH_80P80: 4431 case NL80211_CHAN_WIDTH_160: 4432 return IEEE80211_CONN_BW_LIMIT_160; 4433 case NL80211_CHAN_WIDTH_320: 4434 return IEEE80211_CONN_BW_LIMIT_320; 4435 default: 4436 WARN(1, "unhandled chandef width %d\n", chandef->width); 4437 return IEEE80211_CONN_BW_LIMIT_20; 4438 } 4439 } 4440 4441 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4442 { 4443 for (int i = 0; i < 2; i++) { 4444 tpe->max_local[i].valid = false; 4445 memset(tpe->max_local[i].power, 4446 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4447 sizeof(tpe->max_local[i].power)); 4448 4449 tpe->max_reg_client[i].valid = false; 4450 memset(tpe->max_reg_client[i].power, 4451 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4452 sizeof(tpe->max_reg_client[i].power)); 4453 4454 tpe->psd_local[i].valid = false; 4455 memset(tpe->psd_local[i].power, 4456 IEEE80211_TPE_PSD_NO_LIMIT, 4457 sizeof(tpe->psd_local[i].power)); 4458 4459 tpe->psd_reg_client[i].valid = false; 4460 memset(tpe->psd_reg_client[i].power, 4461 IEEE80211_TPE_PSD_NO_LIMIT, 4462 sizeof(tpe->psd_reg_client[i].power)); 4463 } 4464 } 4465