1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 49 { 50 struct sk_buff *skb; 51 struct ieee80211_hdr *hdr; 52 53 skb_queue_walk(&tx->skbs, skb) { 54 hdr = (struct ieee80211_hdr *) skb->data; 55 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 56 } 57 } 58 59 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 60 int rate, int erp, int short_preamble, 61 int shift) 62 { 63 int dur; 64 65 /* calculate duration (in microseconds, rounded up to next higher 66 * integer if it includes a fractional microsecond) to send frame of 67 * len bytes (does not include FCS) at the given rate. Duration will 68 * also include SIFS. 69 * 70 * rate is in 100 kbps, so divident is multiplied by 10 in the 71 * DIV_ROUND_UP() operations. 72 * 73 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 74 * is assumed to be 0 otherwise. 75 */ 76 77 if (band == NL80211_BAND_5GHZ || erp) { 78 /* 79 * OFDM: 80 * 81 * N_DBPS = DATARATE x 4 82 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 83 * (16 = SIGNAL time, 6 = tail bits) 84 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 85 * 86 * T_SYM = 4 usec 87 * 802.11a - 18.5.2: aSIFSTime = 16 usec 88 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 89 * signal ext = 6 usec 90 */ 91 dur = 16; /* SIFS + signal ext */ 92 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 93 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 94 95 /* IEEE 802.11-2012 18.3.2.4: all values above are: 96 * * times 4 for 5 MHz 97 * * times 2 for 10 MHz 98 */ 99 dur *= 1 << shift; 100 101 /* rates should already consider the channel bandwidth, 102 * don't apply divisor again. 103 */ 104 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 105 4 * rate); /* T_SYM x N_SYM */ 106 } else { 107 /* 108 * 802.11b or 802.11g with 802.11b compatibility: 109 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 110 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 111 * 112 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 113 * aSIFSTime = 10 usec 114 * aPreambleLength = 144 usec or 72 usec with short preamble 115 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 116 */ 117 dur = 10; /* aSIFSTime = 10 usec */ 118 dur += short_preamble ? (72 + 24) : (144 + 48); 119 120 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 121 } 122 123 return dur; 124 } 125 126 /* Exported duration function for driver use */ 127 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 128 struct ieee80211_vif *vif, 129 enum nl80211_band band, 130 size_t frame_len, 131 struct ieee80211_rate *rate) 132 { 133 struct ieee80211_sub_if_data *sdata; 134 u16 dur; 135 int erp, shift = 0; 136 bool short_preamble = false; 137 138 erp = 0; 139 if (vif) { 140 sdata = vif_to_sdata(vif); 141 short_preamble = sdata->vif.bss_conf.use_short_preamble; 142 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 143 erp = rate->flags & IEEE80211_RATE_ERP_G; 144 shift = ieee80211_vif_get_shift(vif); 145 } 146 147 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 148 short_preamble, shift); 149 150 return cpu_to_le16(dur); 151 } 152 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 153 154 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 155 struct ieee80211_vif *vif, size_t frame_len, 156 const struct ieee80211_tx_info *frame_txctl) 157 { 158 struct ieee80211_local *local = hw_to_local(hw); 159 struct ieee80211_rate *rate; 160 struct ieee80211_sub_if_data *sdata; 161 bool short_preamble; 162 int erp, shift = 0, bitrate; 163 u16 dur; 164 struct ieee80211_supported_band *sband; 165 166 sband = local->hw.wiphy->bands[frame_txctl->band]; 167 168 short_preamble = false; 169 170 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 171 172 erp = 0; 173 if (vif) { 174 sdata = vif_to_sdata(vif); 175 short_preamble = sdata->vif.bss_conf.use_short_preamble; 176 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 177 erp = rate->flags & IEEE80211_RATE_ERP_G; 178 shift = ieee80211_vif_get_shift(vif); 179 } 180 181 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 182 183 /* CTS duration */ 184 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 185 erp, short_preamble, shift); 186 /* Data frame duration */ 187 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 188 erp, short_preamble, shift); 189 /* ACK duration */ 190 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 191 erp, short_preamble, shift); 192 193 return cpu_to_le16(dur); 194 } 195 EXPORT_SYMBOL(ieee80211_rts_duration); 196 197 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 198 struct ieee80211_vif *vif, 199 size_t frame_len, 200 const struct ieee80211_tx_info *frame_txctl) 201 { 202 struct ieee80211_local *local = hw_to_local(hw); 203 struct ieee80211_rate *rate; 204 struct ieee80211_sub_if_data *sdata; 205 bool short_preamble; 206 int erp, shift = 0, bitrate; 207 u16 dur; 208 struct ieee80211_supported_band *sband; 209 210 sband = local->hw.wiphy->bands[frame_txctl->band]; 211 212 short_preamble = false; 213 214 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 215 erp = 0; 216 if (vif) { 217 sdata = vif_to_sdata(vif); 218 short_preamble = sdata->vif.bss_conf.use_short_preamble; 219 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 220 erp = rate->flags & IEEE80211_RATE_ERP_G; 221 shift = ieee80211_vif_get_shift(vif); 222 } 223 224 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 225 226 /* Data frame duration */ 227 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 228 erp, short_preamble, shift); 229 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 230 /* ACK duration */ 231 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 232 erp, short_preamble, shift); 233 } 234 235 return cpu_to_le16(dur); 236 } 237 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 238 239 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 240 { 241 struct ieee80211_local *local = sdata->local; 242 struct ieee80211_vif *vif = &sdata->vif; 243 struct fq *fq = &local->fq; 244 struct ps_data *ps = NULL; 245 struct txq_info *txqi; 246 struct sta_info *sta; 247 int i; 248 249 local_bh_disable(); 250 spin_lock(&fq->lock); 251 252 if (sdata->vif.type == NL80211_IFTYPE_AP) 253 ps = &sdata->bss->ps; 254 255 sdata->vif.txqs_stopped[ac] = false; 256 257 list_for_each_entry_rcu(sta, &local->sta_list, list) { 258 if (sdata != sta->sdata) 259 continue; 260 261 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 262 struct ieee80211_txq *txq = sta->sta.txq[i]; 263 264 if (!txq) 265 continue; 266 267 txqi = to_txq_info(txq); 268 269 if (ac != txq->ac) 270 continue; 271 272 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 273 &txqi->flags)) 274 continue; 275 276 spin_unlock(&fq->lock); 277 drv_wake_tx_queue(local, txqi); 278 spin_lock(&fq->lock); 279 } 280 } 281 282 if (!vif->txq) 283 goto out; 284 285 txqi = to_txq_info(vif->txq); 286 287 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 288 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 289 goto out; 290 291 spin_unlock(&fq->lock); 292 293 drv_wake_tx_queue(local, txqi); 294 local_bh_enable(); 295 return; 296 out: 297 spin_unlock(&fq->lock); 298 local_bh_enable(); 299 } 300 301 static void 302 __releases(&local->queue_stop_reason_lock) 303 __acquires(&local->queue_stop_reason_lock) 304 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 305 { 306 struct ieee80211_sub_if_data *sdata; 307 int n_acs = IEEE80211_NUM_ACS; 308 int i; 309 310 rcu_read_lock(); 311 312 if (local->hw.queues < IEEE80211_NUM_ACS) 313 n_acs = 1; 314 315 for (i = 0; i < local->hw.queues; i++) { 316 if (local->queue_stop_reasons[i]) 317 continue; 318 319 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 320 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 321 int ac; 322 323 for (ac = 0; ac < n_acs; ac++) { 324 int ac_queue = sdata->vif.hw_queue[ac]; 325 326 if (ac_queue == i || 327 sdata->vif.cab_queue == i) 328 __ieee80211_wake_txqs(sdata, ac); 329 } 330 } 331 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 332 } 333 334 rcu_read_unlock(); 335 } 336 337 void ieee80211_wake_txqs(unsigned long data) 338 { 339 struct ieee80211_local *local = (struct ieee80211_local *)data; 340 unsigned long flags; 341 342 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 343 _ieee80211_wake_txqs(local, &flags); 344 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 345 } 346 347 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 348 { 349 struct ieee80211_sub_if_data *sdata; 350 int n_acs = IEEE80211_NUM_ACS; 351 352 if (local->ops->wake_tx_queue) 353 return; 354 355 if (local->hw.queues < IEEE80211_NUM_ACS) 356 n_acs = 1; 357 358 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 359 int ac; 360 361 if (!sdata->dev) 362 continue; 363 364 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 365 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 366 continue; 367 368 for (ac = 0; ac < n_acs; ac++) { 369 int ac_queue = sdata->vif.hw_queue[ac]; 370 371 if (ac_queue == queue || 372 (sdata->vif.cab_queue == queue && 373 local->queue_stop_reasons[ac_queue] == 0 && 374 skb_queue_empty(&local->pending[ac_queue]))) 375 netif_wake_subqueue(sdata->dev, ac); 376 } 377 } 378 } 379 380 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 381 enum queue_stop_reason reason, 382 bool refcounted, 383 unsigned long *flags) 384 { 385 struct ieee80211_local *local = hw_to_local(hw); 386 387 trace_wake_queue(local, queue, reason); 388 389 if (WARN_ON(queue >= hw->queues)) 390 return; 391 392 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 393 return; 394 395 if (!refcounted) { 396 local->q_stop_reasons[queue][reason] = 0; 397 } else { 398 local->q_stop_reasons[queue][reason]--; 399 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 400 local->q_stop_reasons[queue][reason] = 0; 401 } 402 403 if (local->q_stop_reasons[queue][reason] == 0) 404 __clear_bit(reason, &local->queue_stop_reasons[queue]); 405 406 if (local->queue_stop_reasons[queue] != 0) 407 /* someone still has this queue stopped */ 408 return; 409 410 if (skb_queue_empty(&local->pending[queue])) { 411 rcu_read_lock(); 412 ieee80211_propagate_queue_wake(local, queue); 413 rcu_read_unlock(); 414 } else 415 tasklet_schedule(&local->tx_pending_tasklet); 416 417 /* 418 * Calling _ieee80211_wake_txqs here can be a problem because it may 419 * release queue_stop_reason_lock which has been taken by 420 * __ieee80211_wake_queue's caller. It is certainly not very nice to 421 * release someone's lock, but it is fine because all the callers of 422 * __ieee80211_wake_queue call it right before releasing the lock. 423 */ 424 if (local->ops->wake_tx_queue) { 425 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 426 tasklet_schedule(&local->wake_txqs_tasklet); 427 else 428 _ieee80211_wake_txqs(local, flags); 429 } 430 } 431 432 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 433 enum queue_stop_reason reason, 434 bool refcounted) 435 { 436 struct ieee80211_local *local = hw_to_local(hw); 437 unsigned long flags; 438 439 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 440 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 441 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 442 } 443 444 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 445 { 446 ieee80211_wake_queue_by_reason(hw, queue, 447 IEEE80211_QUEUE_STOP_REASON_DRIVER, 448 false); 449 } 450 EXPORT_SYMBOL(ieee80211_wake_queue); 451 452 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 453 enum queue_stop_reason reason, 454 bool refcounted) 455 { 456 struct ieee80211_local *local = hw_to_local(hw); 457 struct ieee80211_sub_if_data *sdata; 458 int n_acs = IEEE80211_NUM_ACS; 459 460 trace_stop_queue(local, queue, reason); 461 462 if (WARN_ON(queue >= hw->queues)) 463 return; 464 465 if (!refcounted) 466 local->q_stop_reasons[queue][reason] = 1; 467 else 468 local->q_stop_reasons[queue][reason]++; 469 470 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 471 return; 472 473 if (local->hw.queues < IEEE80211_NUM_ACS) 474 n_acs = 1; 475 476 rcu_read_lock(); 477 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 478 int ac; 479 480 if (!sdata->dev) 481 continue; 482 483 for (ac = 0; ac < n_acs; ac++) { 484 if (sdata->vif.hw_queue[ac] == queue || 485 sdata->vif.cab_queue == queue) { 486 if (!local->ops->wake_tx_queue) { 487 netif_stop_subqueue(sdata->dev, ac); 488 continue; 489 } 490 spin_lock(&local->fq.lock); 491 sdata->vif.txqs_stopped[ac] = true; 492 spin_unlock(&local->fq.lock); 493 } 494 } 495 } 496 rcu_read_unlock(); 497 } 498 499 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 unsigned long flags; 505 506 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 507 __ieee80211_stop_queue(hw, queue, reason, refcounted); 508 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 509 } 510 511 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 512 { 513 ieee80211_stop_queue_by_reason(hw, queue, 514 IEEE80211_QUEUE_STOP_REASON_DRIVER, 515 false); 516 } 517 EXPORT_SYMBOL(ieee80211_stop_queue); 518 519 void ieee80211_add_pending_skb(struct ieee80211_local *local, 520 struct sk_buff *skb) 521 { 522 struct ieee80211_hw *hw = &local->hw; 523 unsigned long flags; 524 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 525 int queue = info->hw_queue; 526 527 if (WARN_ON(!info->control.vif)) { 528 ieee80211_free_txskb(&local->hw, skb); 529 return; 530 } 531 532 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 533 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 534 false); 535 __skb_queue_tail(&local->pending[queue], skb); 536 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 537 false, &flags); 538 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 539 } 540 541 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 542 struct sk_buff_head *skbs) 543 { 544 struct ieee80211_hw *hw = &local->hw; 545 struct sk_buff *skb; 546 unsigned long flags; 547 int queue, i; 548 549 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 550 while ((skb = skb_dequeue(skbs))) { 551 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 552 553 if (WARN_ON(!info->control.vif)) { 554 ieee80211_free_txskb(&local->hw, skb); 555 continue; 556 } 557 558 queue = info->hw_queue; 559 560 __ieee80211_stop_queue(hw, queue, 561 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 562 false); 563 564 __skb_queue_tail(&local->pending[queue], skb); 565 } 566 567 for (i = 0; i < hw->queues; i++) 568 __ieee80211_wake_queue(hw, i, 569 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 570 false, &flags); 571 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 572 } 573 574 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 575 unsigned long queues, 576 enum queue_stop_reason reason, 577 bool refcounted) 578 { 579 struct ieee80211_local *local = hw_to_local(hw); 580 unsigned long flags; 581 int i; 582 583 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 584 585 for_each_set_bit(i, &queues, hw->queues) 586 __ieee80211_stop_queue(hw, i, reason, refcounted); 587 588 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 589 } 590 591 void ieee80211_stop_queues(struct ieee80211_hw *hw) 592 { 593 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 594 IEEE80211_QUEUE_STOP_REASON_DRIVER, 595 false); 596 } 597 EXPORT_SYMBOL(ieee80211_stop_queues); 598 599 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 600 { 601 struct ieee80211_local *local = hw_to_local(hw); 602 unsigned long flags; 603 int ret; 604 605 if (WARN_ON(queue >= hw->queues)) 606 return true; 607 608 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 609 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 610 &local->queue_stop_reasons[queue]); 611 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 612 return ret; 613 } 614 EXPORT_SYMBOL(ieee80211_queue_stopped); 615 616 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 617 unsigned long queues, 618 enum queue_stop_reason reason, 619 bool refcounted) 620 { 621 struct ieee80211_local *local = hw_to_local(hw); 622 unsigned long flags; 623 int i; 624 625 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 626 627 for_each_set_bit(i, &queues, hw->queues) 628 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 629 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 } 632 633 void ieee80211_wake_queues(struct ieee80211_hw *hw) 634 { 635 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 636 IEEE80211_QUEUE_STOP_REASON_DRIVER, 637 false); 638 } 639 EXPORT_SYMBOL(ieee80211_wake_queues); 640 641 static unsigned int 642 ieee80211_get_vif_queues(struct ieee80211_local *local, 643 struct ieee80211_sub_if_data *sdata) 644 { 645 unsigned int queues; 646 647 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 648 int ac; 649 650 queues = 0; 651 652 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 653 queues |= BIT(sdata->vif.hw_queue[ac]); 654 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 655 queues |= BIT(sdata->vif.cab_queue); 656 } else { 657 /* all queues */ 658 queues = BIT(local->hw.queues) - 1; 659 } 660 661 return queues; 662 } 663 664 void __ieee80211_flush_queues(struct ieee80211_local *local, 665 struct ieee80211_sub_if_data *sdata, 666 unsigned int queues, bool drop) 667 { 668 if (!local->ops->flush) 669 return; 670 671 /* 672 * If no queue was set, or if the HW doesn't support 673 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 674 */ 675 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 676 queues = ieee80211_get_vif_queues(local, sdata); 677 678 ieee80211_stop_queues_by_reason(&local->hw, queues, 679 IEEE80211_QUEUE_STOP_REASON_FLUSH, 680 false); 681 682 drv_flush(local, sdata, queues, drop); 683 684 ieee80211_wake_queues_by_reason(&local->hw, queues, 685 IEEE80211_QUEUE_STOP_REASON_FLUSH, 686 false); 687 } 688 689 void ieee80211_flush_queues(struct ieee80211_local *local, 690 struct ieee80211_sub_if_data *sdata, bool drop) 691 { 692 __ieee80211_flush_queues(local, sdata, 0, drop); 693 } 694 695 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata, 697 enum queue_stop_reason reason) 698 { 699 ieee80211_stop_queues_by_reason(&local->hw, 700 ieee80211_get_vif_queues(local, sdata), 701 reason, true); 702 } 703 704 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 705 struct ieee80211_sub_if_data *sdata, 706 enum queue_stop_reason reason) 707 { 708 ieee80211_wake_queues_by_reason(&local->hw, 709 ieee80211_get_vif_queues(local, sdata), 710 reason, true); 711 } 712 713 static void __iterate_interfaces(struct ieee80211_local *local, 714 u32 iter_flags, 715 void (*iterator)(void *data, u8 *mac, 716 struct ieee80211_vif *vif), 717 void *data) 718 { 719 struct ieee80211_sub_if_data *sdata; 720 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 721 722 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 723 switch (sdata->vif.type) { 724 case NL80211_IFTYPE_MONITOR: 725 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 726 continue; 727 break; 728 case NL80211_IFTYPE_AP_VLAN: 729 continue; 730 default: 731 break; 732 } 733 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 734 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 735 continue; 736 if (ieee80211_sdata_running(sdata) || !active_only) 737 iterator(data, sdata->vif.addr, 738 &sdata->vif); 739 } 740 741 sdata = rcu_dereference_check(local->monitor_sdata, 742 lockdep_is_held(&local->iflist_mtx) || 743 lockdep_rtnl_is_held()); 744 if (sdata && 745 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 746 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 747 iterator(data, sdata->vif.addr, &sdata->vif); 748 } 749 750 void ieee80211_iterate_interfaces( 751 struct ieee80211_hw *hw, u32 iter_flags, 752 void (*iterator)(void *data, u8 *mac, 753 struct ieee80211_vif *vif), 754 void *data) 755 { 756 struct ieee80211_local *local = hw_to_local(hw); 757 758 mutex_lock(&local->iflist_mtx); 759 __iterate_interfaces(local, iter_flags, iterator, data); 760 mutex_unlock(&local->iflist_mtx); 761 } 762 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 763 764 void ieee80211_iterate_active_interfaces_atomic( 765 struct ieee80211_hw *hw, u32 iter_flags, 766 void (*iterator)(void *data, u8 *mac, 767 struct ieee80211_vif *vif), 768 void *data) 769 { 770 struct ieee80211_local *local = hw_to_local(hw); 771 772 rcu_read_lock(); 773 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 774 iterator, data); 775 rcu_read_unlock(); 776 } 777 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 778 779 void ieee80211_iterate_active_interfaces_rtnl( 780 struct ieee80211_hw *hw, u32 iter_flags, 781 void (*iterator)(void *data, u8 *mac, 782 struct ieee80211_vif *vif), 783 void *data) 784 { 785 struct ieee80211_local *local = hw_to_local(hw); 786 787 ASSERT_RTNL(); 788 789 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 790 iterator, data); 791 } 792 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_rtnl); 793 794 static void __iterate_stations(struct ieee80211_local *local, 795 void (*iterator)(void *data, 796 struct ieee80211_sta *sta), 797 void *data) 798 { 799 struct sta_info *sta; 800 801 list_for_each_entry_rcu(sta, &local->sta_list, list) { 802 if (!sta->uploaded) 803 continue; 804 805 iterator(data, &sta->sta); 806 } 807 } 808 809 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 810 void (*iterator)(void *data, 811 struct ieee80211_sta *sta), 812 void *data) 813 { 814 struct ieee80211_local *local = hw_to_local(hw); 815 816 rcu_read_lock(); 817 __iterate_stations(local, iterator, data); 818 rcu_read_unlock(); 819 } 820 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 821 822 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 823 { 824 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 825 826 if (!ieee80211_sdata_running(sdata) || 827 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 828 return NULL; 829 return &sdata->vif; 830 } 831 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 832 833 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 834 { 835 struct ieee80211_sub_if_data *sdata; 836 837 if (!vif) 838 return NULL; 839 840 sdata = vif_to_sdata(vif); 841 842 if (!ieee80211_sdata_running(sdata) || 843 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 844 return NULL; 845 846 return &sdata->wdev; 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 849 850 /* 851 * Nothing should have been stuffed into the workqueue during 852 * the suspend->resume cycle. Since we can't check each caller 853 * of this function if we are already quiescing / suspended, 854 * check here and don't WARN since this can actually happen when 855 * the rx path (for example) is racing against __ieee80211_suspend 856 * and suspending / quiescing was set after the rx path checked 857 * them. 858 */ 859 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 860 { 861 if (local->quiescing || (local->suspended && !local->resuming)) { 862 pr_warn("queueing ieee80211 work while going to suspend\n"); 863 return false; 864 } 865 866 return true; 867 } 868 869 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 870 { 871 struct ieee80211_local *local = hw_to_local(hw); 872 873 if (!ieee80211_can_queue_work(local)) 874 return; 875 876 queue_work(local->workqueue, work); 877 } 878 EXPORT_SYMBOL(ieee80211_queue_work); 879 880 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 881 struct delayed_work *dwork, 882 unsigned long delay) 883 { 884 struct ieee80211_local *local = hw_to_local(hw); 885 886 if (!ieee80211_can_queue_work(local)) 887 return; 888 889 queue_delayed_work(local->workqueue, dwork, delay); 890 } 891 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 892 893 static void ieee80211_parse_extension_element(u32 *crc, 894 const struct element *elem, 895 struct ieee802_11_elems *elems) 896 { 897 const void *data = elem->data + 1; 898 u8 len = elem->datalen - 1; 899 900 switch (elem->data[0]) { 901 case WLAN_EID_EXT_HE_MU_EDCA: 902 if (len == sizeof(*elems->mu_edca_param_set)) { 903 elems->mu_edca_param_set = data; 904 if (crc) 905 *crc = crc32_be(*crc, (void *)elem, 906 elem->datalen + 2); 907 } 908 break; 909 case WLAN_EID_EXT_HE_CAPABILITY: 910 elems->he_cap = data; 911 elems->he_cap_len = len; 912 break; 913 case WLAN_EID_EXT_HE_OPERATION: 914 if (len >= sizeof(*elems->he_operation) && 915 len == ieee80211_he_oper_size(data) - 1) { 916 if (crc) 917 *crc = crc32_be(*crc, (void *)elem, 918 elem->datalen + 2); 919 elems->he_operation = data; 920 } 921 break; 922 case WLAN_EID_EXT_UORA: 923 if (len == 1) 924 elems->uora_element = data; 925 break; 926 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 927 if (len == 3) 928 elems->max_channel_switch_time = data; 929 break; 930 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 931 if (len == sizeof(*elems->mbssid_config_ie)) 932 elems->mbssid_config_ie = data; 933 break; 934 case WLAN_EID_EXT_HE_SPR: 935 if (len >= sizeof(*elems->he_spr) && 936 len >= ieee80211_he_spr_size(data)) 937 elems->he_spr = data; 938 break; 939 case WLAN_EID_EXT_HE_6GHZ_CAPA: 940 if (len == sizeof(*elems->he_6ghz_capa)) 941 elems->he_6ghz_capa = data; 942 break; 943 } 944 } 945 946 static u32 947 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 948 struct ieee802_11_elems *elems, 949 u64 filter, u32 crc, 950 const struct element *check_inherit) 951 { 952 const struct element *elem; 953 bool calc_crc = filter != 0; 954 DECLARE_BITMAP(seen_elems, 256); 955 const u8 *ie; 956 957 bitmap_zero(seen_elems, 256); 958 959 for_each_element(elem, start, len) { 960 bool elem_parse_failed; 961 u8 id = elem->id; 962 u8 elen = elem->datalen; 963 const u8 *pos = elem->data; 964 965 if (check_inherit && 966 !cfg80211_is_element_inherited(elem, 967 check_inherit)) 968 continue; 969 970 switch (id) { 971 case WLAN_EID_SSID: 972 case WLAN_EID_SUPP_RATES: 973 case WLAN_EID_FH_PARAMS: 974 case WLAN_EID_DS_PARAMS: 975 case WLAN_EID_CF_PARAMS: 976 case WLAN_EID_TIM: 977 case WLAN_EID_IBSS_PARAMS: 978 case WLAN_EID_CHALLENGE: 979 case WLAN_EID_RSN: 980 case WLAN_EID_ERP_INFO: 981 case WLAN_EID_EXT_SUPP_RATES: 982 case WLAN_EID_HT_CAPABILITY: 983 case WLAN_EID_HT_OPERATION: 984 case WLAN_EID_VHT_CAPABILITY: 985 case WLAN_EID_VHT_OPERATION: 986 case WLAN_EID_MESH_ID: 987 case WLAN_EID_MESH_CONFIG: 988 case WLAN_EID_PEER_MGMT: 989 case WLAN_EID_PREQ: 990 case WLAN_EID_PREP: 991 case WLAN_EID_PERR: 992 case WLAN_EID_RANN: 993 case WLAN_EID_CHANNEL_SWITCH: 994 case WLAN_EID_EXT_CHANSWITCH_ANN: 995 case WLAN_EID_COUNTRY: 996 case WLAN_EID_PWR_CONSTRAINT: 997 case WLAN_EID_TIMEOUT_INTERVAL: 998 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 999 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1000 case WLAN_EID_CHAN_SWITCH_PARAM: 1001 case WLAN_EID_EXT_CAPABILITY: 1002 case WLAN_EID_CHAN_SWITCH_TIMING: 1003 case WLAN_EID_LINK_ID: 1004 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1005 case WLAN_EID_RSNX: 1006 /* 1007 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1008 * that if the content gets bigger it might be needed more than once 1009 */ 1010 if (test_bit(id, seen_elems)) { 1011 elems->parse_error = true; 1012 continue; 1013 } 1014 break; 1015 } 1016 1017 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1018 crc = crc32_be(crc, pos - 2, elen + 2); 1019 1020 elem_parse_failed = false; 1021 1022 switch (id) { 1023 case WLAN_EID_LINK_ID: 1024 if (elen + 2 != sizeof(struct ieee80211_tdls_lnkie)) { 1025 elem_parse_failed = true; 1026 break; 1027 } 1028 elems->lnk_id = (void *)(pos - 2); 1029 break; 1030 case WLAN_EID_CHAN_SWITCH_TIMING: 1031 if (elen != sizeof(struct ieee80211_ch_switch_timing)) { 1032 elem_parse_failed = true; 1033 break; 1034 } 1035 elems->ch_sw_timing = (void *)pos; 1036 break; 1037 case WLAN_EID_EXT_CAPABILITY: 1038 elems->ext_capab = pos; 1039 elems->ext_capab_len = elen; 1040 break; 1041 case WLAN_EID_SSID: 1042 elems->ssid = pos; 1043 elems->ssid_len = elen; 1044 break; 1045 case WLAN_EID_SUPP_RATES: 1046 elems->supp_rates = pos; 1047 elems->supp_rates_len = elen; 1048 break; 1049 case WLAN_EID_DS_PARAMS: 1050 if (elen >= 1) 1051 elems->ds_params = pos; 1052 else 1053 elem_parse_failed = true; 1054 break; 1055 case WLAN_EID_TIM: 1056 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1057 elems->tim = (void *)pos; 1058 elems->tim_len = elen; 1059 } else 1060 elem_parse_failed = true; 1061 break; 1062 case WLAN_EID_CHALLENGE: 1063 elems->challenge = pos; 1064 elems->challenge_len = elen; 1065 break; 1066 case WLAN_EID_VENDOR_SPECIFIC: 1067 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1068 pos[2] == 0xf2) { 1069 /* Microsoft OUI (00:50:F2) */ 1070 1071 if (calc_crc) 1072 crc = crc32_be(crc, pos - 2, elen + 2); 1073 1074 if (elen >= 5 && pos[3] == 2) { 1075 /* OUI Type 2 - WMM IE */ 1076 if (pos[4] == 0) { 1077 elems->wmm_info = pos; 1078 elems->wmm_info_len = elen; 1079 } else if (pos[4] == 1) { 1080 elems->wmm_param = pos; 1081 elems->wmm_param_len = elen; 1082 } 1083 } 1084 } 1085 break; 1086 case WLAN_EID_RSN: 1087 elems->rsn = pos; 1088 elems->rsn_len = elen; 1089 break; 1090 case WLAN_EID_ERP_INFO: 1091 if (elen >= 1) 1092 elems->erp_info = pos; 1093 else 1094 elem_parse_failed = true; 1095 break; 1096 case WLAN_EID_EXT_SUPP_RATES: 1097 elems->ext_supp_rates = pos; 1098 elems->ext_supp_rates_len = elen; 1099 break; 1100 case WLAN_EID_HT_CAPABILITY: 1101 if (elen >= sizeof(struct ieee80211_ht_cap)) 1102 elems->ht_cap_elem = (void *)pos; 1103 else 1104 elem_parse_failed = true; 1105 break; 1106 case WLAN_EID_HT_OPERATION: 1107 if (elen >= sizeof(struct ieee80211_ht_operation)) 1108 elems->ht_operation = (void *)pos; 1109 else 1110 elem_parse_failed = true; 1111 break; 1112 case WLAN_EID_VHT_CAPABILITY: 1113 if (elen >= sizeof(struct ieee80211_vht_cap)) 1114 elems->vht_cap_elem = (void *)pos; 1115 else 1116 elem_parse_failed = true; 1117 break; 1118 case WLAN_EID_VHT_OPERATION: 1119 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1120 elems->vht_operation = (void *)pos; 1121 if (calc_crc) 1122 crc = crc32_be(crc, pos - 2, elen + 2); 1123 break; 1124 } 1125 elem_parse_failed = true; 1126 break; 1127 case WLAN_EID_OPMODE_NOTIF: 1128 if (elen > 0) { 1129 elems->opmode_notif = pos; 1130 if (calc_crc) 1131 crc = crc32_be(crc, pos - 2, elen + 2); 1132 break; 1133 } 1134 elem_parse_failed = true; 1135 break; 1136 case WLAN_EID_MESH_ID: 1137 elems->mesh_id = pos; 1138 elems->mesh_id_len = elen; 1139 break; 1140 case WLAN_EID_MESH_CONFIG: 1141 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1142 elems->mesh_config = (void *)pos; 1143 else 1144 elem_parse_failed = true; 1145 break; 1146 case WLAN_EID_PEER_MGMT: 1147 elems->peering = pos; 1148 elems->peering_len = elen; 1149 break; 1150 case WLAN_EID_MESH_AWAKE_WINDOW: 1151 if (elen >= 2) 1152 elems->awake_window = (void *)pos; 1153 break; 1154 case WLAN_EID_PREQ: 1155 elems->preq = pos; 1156 elems->preq_len = elen; 1157 break; 1158 case WLAN_EID_PREP: 1159 elems->prep = pos; 1160 elems->prep_len = elen; 1161 break; 1162 case WLAN_EID_PERR: 1163 elems->perr = pos; 1164 elems->perr_len = elen; 1165 break; 1166 case WLAN_EID_RANN: 1167 if (elen >= sizeof(struct ieee80211_rann_ie)) 1168 elems->rann = (void *)pos; 1169 else 1170 elem_parse_failed = true; 1171 break; 1172 case WLAN_EID_CHANNEL_SWITCH: 1173 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1174 elem_parse_failed = true; 1175 break; 1176 } 1177 elems->ch_switch_ie = (void *)pos; 1178 break; 1179 case WLAN_EID_EXT_CHANSWITCH_ANN: 1180 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1181 elem_parse_failed = true; 1182 break; 1183 } 1184 elems->ext_chansw_ie = (void *)pos; 1185 break; 1186 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1187 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1188 elem_parse_failed = true; 1189 break; 1190 } 1191 elems->sec_chan_offs = (void *)pos; 1192 break; 1193 case WLAN_EID_CHAN_SWITCH_PARAM: 1194 if (elen != 1195 sizeof(*elems->mesh_chansw_params_ie)) { 1196 elem_parse_failed = true; 1197 break; 1198 } 1199 elems->mesh_chansw_params_ie = (void *)pos; 1200 break; 1201 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1202 if (!action || 1203 elen != sizeof(*elems->wide_bw_chansw_ie)) { 1204 elem_parse_failed = true; 1205 break; 1206 } 1207 elems->wide_bw_chansw_ie = (void *)pos; 1208 break; 1209 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1210 if (action) { 1211 elem_parse_failed = true; 1212 break; 1213 } 1214 /* 1215 * This is a bit tricky, but as we only care about 1216 * the wide bandwidth channel switch element, so 1217 * just parse it out manually. 1218 */ 1219 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1220 pos, elen); 1221 if (ie) { 1222 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie)) 1223 elems->wide_bw_chansw_ie = 1224 (void *)(ie + 2); 1225 else 1226 elem_parse_failed = true; 1227 } 1228 break; 1229 case WLAN_EID_COUNTRY: 1230 elems->country_elem = pos; 1231 elems->country_elem_len = elen; 1232 break; 1233 case WLAN_EID_PWR_CONSTRAINT: 1234 if (elen != 1) { 1235 elem_parse_failed = true; 1236 break; 1237 } 1238 elems->pwr_constr_elem = pos; 1239 break; 1240 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1241 /* Lots of different options exist, but we only care 1242 * about the Dynamic Transmit Power Control element. 1243 * First check for the Cisco OUI, then for the DTPC 1244 * tag (0x00). 1245 */ 1246 if (elen < 4) { 1247 elem_parse_failed = true; 1248 break; 1249 } 1250 1251 if (pos[0] != 0x00 || pos[1] != 0x40 || 1252 pos[2] != 0x96 || pos[3] != 0x00) 1253 break; 1254 1255 if (elen != 6) { 1256 elem_parse_failed = true; 1257 break; 1258 } 1259 1260 if (calc_crc) 1261 crc = crc32_be(crc, pos - 2, elen + 2); 1262 1263 elems->cisco_dtpc_elem = pos; 1264 break; 1265 case WLAN_EID_ADDBA_EXT: 1266 if (elen != sizeof(struct ieee80211_addba_ext_ie)) { 1267 elem_parse_failed = true; 1268 break; 1269 } 1270 elems->addba_ext_ie = (void *)pos; 1271 break; 1272 case WLAN_EID_TIMEOUT_INTERVAL: 1273 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1274 elems->timeout_int = (void *)pos; 1275 else 1276 elem_parse_failed = true; 1277 break; 1278 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1279 if (elen >= sizeof(*elems->max_idle_period_ie)) 1280 elems->max_idle_period_ie = (void *)pos; 1281 break; 1282 case WLAN_EID_RSNX: 1283 elems->rsnx = pos; 1284 elems->rsnx_len = elen; 1285 break; 1286 case WLAN_EID_EXTENSION: 1287 ieee80211_parse_extension_element(calc_crc ? 1288 &crc : NULL, 1289 elem, elems); 1290 break; 1291 default: 1292 break; 1293 } 1294 1295 if (elem_parse_failed) 1296 elems->parse_error = true; 1297 else 1298 __set_bit(id, seen_elems); 1299 } 1300 1301 if (!for_each_element_completed(elem, start, len)) 1302 elems->parse_error = true; 1303 1304 return crc; 1305 } 1306 1307 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1308 struct ieee802_11_elems *elems, 1309 u8 *transmitter_bssid, 1310 u8 *bss_bssid, 1311 u8 *nontransmitted_profile) 1312 { 1313 const struct element *elem, *sub; 1314 size_t profile_len = 0; 1315 bool found = false; 1316 1317 if (!bss_bssid || !transmitter_bssid) 1318 return profile_len; 1319 1320 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1321 if (elem->datalen < 2) 1322 continue; 1323 1324 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1325 u8 new_bssid[ETH_ALEN]; 1326 const u8 *index; 1327 1328 if (sub->id != 0 || sub->datalen < 4) { 1329 /* not a valid BSS profile */ 1330 continue; 1331 } 1332 1333 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1334 sub->data[1] != 2) { 1335 /* The first element of the 1336 * Nontransmitted BSSID Profile is not 1337 * the Nontransmitted BSSID Capability 1338 * element. 1339 */ 1340 continue; 1341 } 1342 1343 memset(nontransmitted_profile, 0, len); 1344 profile_len = cfg80211_merge_profile(start, len, 1345 elem, 1346 sub, 1347 nontransmitted_profile, 1348 len); 1349 1350 /* found a Nontransmitted BSSID Profile */ 1351 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1352 nontransmitted_profile, 1353 profile_len); 1354 if (!index || index[1] < 1 || index[2] == 0) { 1355 /* Invalid MBSSID Index element */ 1356 continue; 1357 } 1358 1359 cfg80211_gen_new_bssid(transmitter_bssid, 1360 elem->data[0], 1361 index[2], 1362 new_bssid); 1363 if (ether_addr_equal(new_bssid, bss_bssid)) { 1364 found = true; 1365 elems->bssid_index_len = index[1]; 1366 elems->bssid_index = (void *)&index[2]; 1367 break; 1368 } 1369 } 1370 } 1371 1372 return found ? profile_len : 0; 1373 } 1374 1375 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1376 struct ieee802_11_elems *elems, 1377 u64 filter, u32 crc, u8 *transmitter_bssid, 1378 u8 *bss_bssid) 1379 { 1380 const struct element *non_inherit = NULL; 1381 u8 *nontransmitted_profile; 1382 int nontransmitted_profile_len = 0; 1383 1384 memset(elems, 0, sizeof(*elems)); 1385 elems->ie_start = start; 1386 elems->total_len = len; 1387 1388 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1389 if (nontransmitted_profile) { 1390 nontransmitted_profile_len = 1391 ieee802_11_find_bssid_profile(start, len, elems, 1392 transmitter_bssid, 1393 bss_bssid, 1394 nontransmitted_profile); 1395 non_inherit = 1396 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1397 nontransmitted_profile, 1398 nontransmitted_profile_len); 1399 } 1400 1401 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1402 crc, non_inherit); 1403 1404 /* Override with nontransmitted profile, if found */ 1405 if (nontransmitted_profile_len) 1406 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1407 nontransmitted_profile_len, 1408 action, elems, 0, 0, NULL); 1409 1410 if (elems->tim && !elems->parse_error) { 1411 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1412 1413 elems->dtim_period = tim_ie->dtim_period; 1414 elems->dtim_count = tim_ie->dtim_count; 1415 } 1416 1417 /* Override DTIM period and count if needed */ 1418 if (elems->bssid_index && 1419 elems->bssid_index_len >= 1420 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1421 elems->dtim_period = elems->bssid_index->dtim_period; 1422 1423 if (elems->bssid_index && 1424 elems->bssid_index_len >= 1425 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1426 elems->dtim_count = elems->bssid_index->dtim_count; 1427 1428 kfree(nontransmitted_profile); 1429 1430 return crc; 1431 } 1432 1433 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1434 struct ieee80211_tx_queue_params 1435 *qparam, int ac) 1436 { 1437 struct ieee80211_chanctx_conf *chanctx_conf; 1438 const struct ieee80211_reg_rule *rrule; 1439 const struct ieee80211_wmm_ac *wmm_ac; 1440 u16 center_freq = 0; 1441 1442 if (sdata->vif.type != NL80211_IFTYPE_AP && 1443 sdata->vif.type != NL80211_IFTYPE_STATION) 1444 return; 1445 1446 rcu_read_lock(); 1447 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1448 if (chanctx_conf) 1449 center_freq = chanctx_conf->def.chan->center_freq; 1450 1451 if (!center_freq) { 1452 rcu_read_unlock(); 1453 return; 1454 } 1455 1456 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1457 1458 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1459 rcu_read_unlock(); 1460 return; 1461 } 1462 1463 if (sdata->vif.type == NL80211_IFTYPE_AP) 1464 wmm_ac = &rrule->wmm_rule.ap[ac]; 1465 else 1466 wmm_ac = &rrule->wmm_rule.client[ac]; 1467 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1468 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1469 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1470 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1471 rcu_read_unlock(); 1472 } 1473 1474 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1475 bool bss_notify, bool enable_qos) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct ieee80211_tx_queue_params qparam; 1479 struct ieee80211_chanctx_conf *chanctx_conf; 1480 int ac; 1481 bool use_11b; 1482 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1483 int aCWmin, aCWmax; 1484 1485 if (!local->ops->conf_tx) 1486 return; 1487 1488 if (local->hw.queues < IEEE80211_NUM_ACS) 1489 return; 1490 1491 memset(&qparam, 0, sizeof(qparam)); 1492 1493 rcu_read_lock(); 1494 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1495 use_11b = (chanctx_conf && 1496 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1497 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1498 rcu_read_unlock(); 1499 1500 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1501 1502 /* Set defaults according to 802.11-2007 Table 7-37 */ 1503 aCWmax = 1023; 1504 if (use_11b) 1505 aCWmin = 31; 1506 else 1507 aCWmin = 15; 1508 1509 /* Confiure old 802.11b/g medium access rules. */ 1510 qparam.cw_max = aCWmax; 1511 qparam.cw_min = aCWmin; 1512 qparam.txop = 0; 1513 qparam.aifs = 2; 1514 1515 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1516 /* Update if QoS is enabled. */ 1517 if (enable_qos) { 1518 switch (ac) { 1519 case IEEE80211_AC_BK: 1520 qparam.cw_max = aCWmax; 1521 qparam.cw_min = aCWmin; 1522 qparam.txop = 0; 1523 if (is_ocb) 1524 qparam.aifs = 9; 1525 else 1526 qparam.aifs = 7; 1527 break; 1528 /* never happens but let's not leave undefined */ 1529 default: 1530 case IEEE80211_AC_BE: 1531 qparam.cw_max = aCWmax; 1532 qparam.cw_min = aCWmin; 1533 qparam.txop = 0; 1534 if (is_ocb) 1535 qparam.aifs = 6; 1536 else 1537 qparam.aifs = 3; 1538 break; 1539 case IEEE80211_AC_VI: 1540 qparam.cw_max = aCWmin; 1541 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1542 if (is_ocb) 1543 qparam.txop = 0; 1544 else if (use_11b) 1545 qparam.txop = 6016/32; 1546 else 1547 qparam.txop = 3008/32; 1548 1549 if (is_ocb) 1550 qparam.aifs = 3; 1551 else 1552 qparam.aifs = 2; 1553 break; 1554 case IEEE80211_AC_VO: 1555 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1556 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1557 if (is_ocb) 1558 qparam.txop = 0; 1559 else if (use_11b) 1560 qparam.txop = 3264/32; 1561 else 1562 qparam.txop = 1504/32; 1563 qparam.aifs = 2; 1564 break; 1565 } 1566 } 1567 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1568 1569 qparam.uapsd = false; 1570 1571 sdata->tx_conf[ac] = qparam; 1572 drv_conf_tx(local, sdata, ac, &qparam); 1573 } 1574 1575 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1576 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1577 sdata->vif.type != NL80211_IFTYPE_NAN) { 1578 sdata->vif.bss_conf.qos = enable_qos; 1579 if (bss_notify) 1580 ieee80211_bss_info_change_notify(sdata, 1581 BSS_CHANGED_QOS); 1582 } 1583 } 1584 1585 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1586 u16 transaction, u16 auth_alg, u16 status, 1587 const u8 *extra, size_t extra_len, const u8 *da, 1588 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1589 u32 tx_flags) 1590 { 1591 struct ieee80211_local *local = sdata->local; 1592 struct sk_buff *skb; 1593 struct ieee80211_mgmt *mgmt; 1594 int err; 1595 1596 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1597 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1598 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1599 if (!skb) 1600 return; 1601 1602 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1603 1604 mgmt = skb_put_zero(skb, 24 + 6); 1605 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1606 IEEE80211_STYPE_AUTH); 1607 memcpy(mgmt->da, da, ETH_ALEN); 1608 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1609 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1610 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1611 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1612 mgmt->u.auth.status_code = cpu_to_le16(status); 1613 if (extra) 1614 skb_put_data(skb, extra, extra_len); 1615 1616 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1617 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1618 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1619 WARN_ON(err); 1620 } 1621 1622 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1623 tx_flags; 1624 ieee80211_tx_skb(sdata, skb); 1625 } 1626 1627 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1628 const u8 *da, const u8 *bssid, 1629 u16 stype, u16 reason, 1630 bool send_frame, u8 *frame_buf) 1631 { 1632 struct ieee80211_local *local = sdata->local; 1633 struct sk_buff *skb; 1634 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1635 1636 /* build frame */ 1637 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1638 mgmt->duration = 0; /* initialize only */ 1639 mgmt->seq_ctrl = 0; /* initialize only */ 1640 memcpy(mgmt->da, da, ETH_ALEN); 1641 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1642 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1643 /* u.deauth.reason_code == u.disassoc.reason_code */ 1644 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1645 1646 if (send_frame) { 1647 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1648 IEEE80211_DEAUTH_FRAME_LEN); 1649 if (!skb) 1650 return; 1651 1652 skb_reserve(skb, local->hw.extra_tx_headroom); 1653 1654 /* copy in frame */ 1655 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1656 1657 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1658 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1659 IEEE80211_SKB_CB(skb)->flags |= 1660 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1661 1662 ieee80211_tx_skb(sdata, skb); 1663 } 1664 } 1665 1666 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1667 { 1668 if ((end - pos) < 5) 1669 return pos; 1670 1671 *pos++ = WLAN_EID_EXTENSION; 1672 *pos++ = 1 + sizeof(cap); 1673 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1674 memcpy(pos, &cap, sizeof(cap)); 1675 1676 return pos + 2; 1677 } 1678 1679 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1680 u8 *buffer, size_t buffer_len, 1681 const u8 *ie, size_t ie_len, 1682 enum nl80211_band band, 1683 u32 rate_mask, 1684 struct cfg80211_chan_def *chandef, 1685 size_t *offset, u32 flags) 1686 { 1687 struct ieee80211_local *local = sdata->local; 1688 struct ieee80211_supported_band *sband; 1689 const struct ieee80211_sta_he_cap *he_cap; 1690 u8 *pos = buffer, *end = buffer + buffer_len; 1691 size_t noffset; 1692 int supp_rates_len, i; 1693 u8 rates[32]; 1694 int num_rates; 1695 int ext_rates_len; 1696 int shift; 1697 u32 rate_flags; 1698 bool have_80mhz = false; 1699 1700 *offset = 0; 1701 1702 sband = local->hw.wiphy->bands[band]; 1703 if (WARN_ON_ONCE(!sband)) 1704 return 0; 1705 1706 rate_flags = ieee80211_chandef_rate_flags(chandef); 1707 shift = ieee80211_chandef_get_shift(chandef); 1708 1709 num_rates = 0; 1710 for (i = 0; i < sband->n_bitrates; i++) { 1711 if ((BIT(i) & rate_mask) == 0) 1712 continue; /* skip rate */ 1713 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1714 continue; 1715 1716 rates[num_rates++] = 1717 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1718 (1 << shift) * 5); 1719 } 1720 1721 supp_rates_len = min_t(int, num_rates, 8); 1722 1723 if (end - pos < 2 + supp_rates_len) 1724 goto out_err; 1725 *pos++ = WLAN_EID_SUPP_RATES; 1726 *pos++ = supp_rates_len; 1727 memcpy(pos, rates, supp_rates_len); 1728 pos += supp_rates_len; 1729 1730 /* insert "request information" if in custom IEs */ 1731 if (ie && ie_len) { 1732 static const u8 before_extrates[] = { 1733 WLAN_EID_SSID, 1734 WLAN_EID_SUPP_RATES, 1735 WLAN_EID_REQUEST, 1736 }; 1737 noffset = ieee80211_ie_split(ie, ie_len, 1738 before_extrates, 1739 ARRAY_SIZE(before_extrates), 1740 *offset); 1741 if (end - pos < noffset - *offset) 1742 goto out_err; 1743 memcpy(pos, ie + *offset, noffset - *offset); 1744 pos += noffset - *offset; 1745 *offset = noffset; 1746 } 1747 1748 ext_rates_len = num_rates - supp_rates_len; 1749 if (ext_rates_len > 0) { 1750 if (end - pos < 2 + ext_rates_len) 1751 goto out_err; 1752 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1753 *pos++ = ext_rates_len; 1754 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1755 pos += ext_rates_len; 1756 } 1757 1758 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1759 if (end - pos < 3) 1760 goto out_err; 1761 *pos++ = WLAN_EID_DS_PARAMS; 1762 *pos++ = 1; 1763 *pos++ = ieee80211_frequency_to_channel( 1764 chandef->chan->center_freq); 1765 } 1766 1767 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1768 goto done; 1769 1770 /* insert custom IEs that go before HT */ 1771 if (ie && ie_len) { 1772 static const u8 before_ht[] = { 1773 /* 1774 * no need to list the ones split off already 1775 * (or generated here) 1776 */ 1777 WLAN_EID_DS_PARAMS, 1778 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1779 }; 1780 noffset = ieee80211_ie_split(ie, ie_len, 1781 before_ht, ARRAY_SIZE(before_ht), 1782 *offset); 1783 if (end - pos < noffset - *offset) 1784 goto out_err; 1785 memcpy(pos, ie + *offset, noffset - *offset); 1786 pos += noffset - *offset; 1787 *offset = noffset; 1788 } 1789 1790 if (sband->ht_cap.ht_supported) { 1791 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1792 goto out_err; 1793 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1794 sband->ht_cap.cap); 1795 } 1796 1797 /* insert custom IEs that go before VHT */ 1798 if (ie && ie_len) { 1799 static const u8 before_vht[] = { 1800 /* 1801 * no need to list the ones split off already 1802 * (or generated here) 1803 */ 1804 WLAN_EID_BSS_COEX_2040, 1805 WLAN_EID_EXT_CAPABILITY, 1806 WLAN_EID_SSID_LIST, 1807 WLAN_EID_CHANNEL_USAGE, 1808 WLAN_EID_INTERWORKING, 1809 WLAN_EID_MESH_ID, 1810 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1811 }; 1812 noffset = ieee80211_ie_split(ie, ie_len, 1813 before_vht, ARRAY_SIZE(before_vht), 1814 *offset); 1815 if (end - pos < noffset - *offset) 1816 goto out_err; 1817 memcpy(pos, ie + *offset, noffset - *offset); 1818 pos += noffset - *offset; 1819 *offset = noffset; 1820 } 1821 1822 /* Check if any channel in this sband supports at least 80 MHz */ 1823 for (i = 0; i < sband->n_channels; i++) { 1824 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1825 IEEE80211_CHAN_NO_80MHZ)) 1826 continue; 1827 1828 have_80mhz = true; 1829 break; 1830 } 1831 1832 if (sband->vht_cap.vht_supported && have_80mhz) { 1833 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1834 goto out_err; 1835 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1836 sband->vht_cap.cap); 1837 } 1838 1839 /* insert custom IEs that go before HE */ 1840 if (ie && ie_len) { 1841 static const u8 before_he[] = { 1842 /* 1843 * no need to list the ones split off before VHT 1844 * or generated here 1845 */ 1846 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1847 WLAN_EID_AP_CSN, 1848 /* TODO: add 11ah/11aj/11ak elements */ 1849 }; 1850 noffset = ieee80211_ie_split(ie, ie_len, 1851 before_he, ARRAY_SIZE(before_he), 1852 *offset); 1853 if (end - pos < noffset - *offset) 1854 goto out_err; 1855 memcpy(pos, ie + *offset, noffset - *offset); 1856 pos += noffset - *offset; 1857 *offset = noffset; 1858 } 1859 1860 he_cap = ieee80211_get_he_sta_cap(sband); 1861 if (he_cap) { 1862 pos = ieee80211_ie_build_he_cap(pos, he_cap, end); 1863 if (!pos) 1864 goto out_err; 1865 1866 if (sband->band == NL80211_BAND_6GHZ) { 1867 enum nl80211_iftype iftype = 1868 ieee80211_vif_type_p2p(&sdata->vif); 1869 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 1870 1871 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 1872 } 1873 } 1874 1875 /* 1876 * If adding more here, adjust code in main.c 1877 * that calculates local->scan_ies_len. 1878 */ 1879 1880 return pos - buffer; 1881 out_err: 1882 WARN_ONCE(1, "not enough space for preq IEs\n"); 1883 done: 1884 return pos - buffer; 1885 } 1886 1887 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1888 size_t buffer_len, 1889 struct ieee80211_scan_ies *ie_desc, 1890 const u8 *ie, size_t ie_len, 1891 u8 bands_used, u32 *rate_masks, 1892 struct cfg80211_chan_def *chandef, 1893 u32 flags) 1894 { 1895 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 1896 int i; 1897 1898 memset(ie_desc, 0, sizeof(*ie_desc)); 1899 1900 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1901 if (bands_used & BIT(i)) { 1902 pos += ieee80211_build_preq_ies_band(sdata, 1903 buffer + pos, 1904 buffer_len - pos, 1905 ie, ie_len, i, 1906 rate_masks[i], 1907 chandef, 1908 &custom_ie_offset, 1909 flags); 1910 ie_desc->ies[i] = buffer + old_pos; 1911 ie_desc->len[i] = pos - old_pos; 1912 old_pos = pos; 1913 } 1914 } 1915 1916 /* add any remaining custom IEs */ 1917 if (ie && ie_len) { 1918 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 1919 "not enough space for preq custom IEs\n")) 1920 return pos; 1921 memcpy(buffer + pos, ie + custom_ie_offset, 1922 ie_len - custom_ie_offset); 1923 ie_desc->common_ies = buffer + pos; 1924 ie_desc->common_ie_len = ie_len - custom_ie_offset; 1925 pos += ie_len - custom_ie_offset; 1926 } 1927 1928 return pos; 1929 }; 1930 1931 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1932 const u8 *src, const u8 *dst, 1933 u32 ratemask, 1934 struct ieee80211_channel *chan, 1935 const u8 *ssid, size_t ssid_len, 1936 const u8 *ie, size_t ie_len, 1937 u32 flags) 1938 { 1939 struct ieee80211_local *local = sdata->local; 1940 struct cfg80211_chan_def chandef; 1941 struct sk_buff *skb; 1942 struct ieee80211_mgmt *mgmt; 1943 int ies_len; 1944 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1945 struct ieee80211_scan_ies dummy_ie_desc; 1946 1947 /* 1948 * Do not send DS Channel parameter for directed probe requests 1949 * in order to maximize the chance that we get a response. Some 1950 * badly-behaved APs don't respond when this parameter is included. 1951 */ 1952 chandef.width = sdata->vif.bss_conf.chandef.width; 1953 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1954 chandef.chan = NULL; 1955 else 1956 chandef.chan = chan; 1957 1958 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1959 100 + ie_len); 1960 if (!skb) 1961 return NULL; 1962 1963 rate_masks[chan->band] = ratemask; 1964 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 1965 skb_tailroom(skb), &dummy_ie_desc, 1966 ie, ie_len, BIT(chan->band), 1967 rate_masks, &chandef, flags); 1968 skb_put(skb, ies_len); 1969 1970 if (dst) { 1971 mgmt = (struct ieee80211_mgmt *) skb->data; 1972 memcpy(mgmt->da, dst, ETH_ALEN); 1973 memcpy(mgmt->bssid, dst, ETH_ALEN); 1974 } 1975 1976 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1977 1978 return skb; 1979 } 1980 1981 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1982 struct ieee802_11_elems *elems, 1983 enum nl80211_band band, u32 *basic_rates) 1984 { 1985 struct ieee80211_supported_band *sband; 1986 size_t num_rates; 1987 u32 supp_rates, rate_flags; 1988 int i, j, shift; 1989 1990 sband = sdata->local->hw.wiphy->bands[band]; 1991 if (WARN_ON(!sband)) 1992 return 1; 1993 1994 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 1995 shift = ieee80211_vif_get_shift(&sdata->vif); 1996 1997 num_rates = sband->n_bitrates; 1998 supp_rates = 0; 1999 for (i = 0; i < elems->supp_rates_len + 2000 elems->ext_supp_rates_len; i++) { 2001 u8 rate = 0; 2002 int own_rate; 2003 bool is_basic; 2004 if (i < elems->supp_rates_len) 2005 rate = elems->supp_rates[i]; 2006 else if (elems->ext_supp_rates) 2007 rate = elems->ext_supp_rates 2008 [i - elems->supp_rates_len]; 2009 own_rate = 5 * (rate & 0x7f); 2010 is_basic = !!(rate & 0x80); 2011 2012 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2013 continue; 2014 2015 for (j = 0; j < num_rates; j++) { 2016 int brate; 2017 if ((rate_flags & sband->bitrates[j].flags) 2018 != rate_flags) 2019 continue; 2020 2021 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2022 1 << shift); 2023 2024 if (brate == own_rate) { 2025 supp_rates |= BIT(j); 2026 if (basic_rates && is_basic) 2027 *basic_rates |= BIT(j); 2028 } 2029 } 2030 } 2031 return supp_rates; 2032 } 2033 2034 void ieee80211_stop_device(struct ieee80211_local *local) 2035 { 2036 ieee80211_led_radio(local, false); 2037 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2038 2039 cancel_work_sync(&local->reconfig_filter); 2040 2041 flush_workqueue(local->workqueue); 2042 drv_stop(local); 2043 } 2044 2045 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2046 bool aborted) 2047 { 2048 /* It's possible that we don't handle the scan completion in 2049 * time during suspend, so if it's still marked as completed 2050 * here, queue the work and flush it to clean things up. 2051 * Instead of calling the worker function directly here, we 2052 * really queue it to avoid potential races with other flows 2053 * scheduling the same work. 2054 */ 2055 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2056 /* If coming from reconfiguration failure, abort the scan so 2057 * we don't attempt to continue a partial HW scan - which is 2058 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2059 * completed scan, and a 5 GHz portion is still pending. 2060 */ 2061 if (aborted) 2062 set_bit(SCAN_ABORTED, &local->scanning); 2063 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2064 flush_delayed_work(&local->scan_work); 2065 } 2066 } 2067 2068 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2069 { 2070 struct ieee80211_sub_if_data *sdata; 2071 struct ieee80211_chanctx *ctx; 2072 2073 /* 2074 * We get here if during resume the device can't be restarted properly. 2075 * We might also get here if this happens during HW reset, which is a 2076 * slightly different situation and we need to drop all connections in 2077 * the latter case. 2078 * 2079 * Ask cfg80211 to turn off all interfaces, this will result in more 2080 * warnings but at least we'll then get into a clean stopped state. 2081 */ 2082 2083 local->resuming = false; 2084 local->suspended = false; 2085 local->in_reconfig = false; 2086 2087 ieee80211_flush_completed_scan(local, true); 2088 2089 /* scheduled scan clearly can't be running any more, but tell 2090 * cfg80211 and clear local state 2091 */ 2092 ieee80211_sched_scan_end(local); 2093 2094 list_for_each_entry(sdata, &local->interfaces, list) 2095 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2096 2097 /* Mark channel contexts as not being in the driver any more to avoid 2098 * removing them from the driver during the shutdown process... 2099 */ 2100 mutex_lock(&local->chanctx_mtx); 2101 list_for_each_entry(ctx, &local->chanctx_list, list) 2102 ctx->driver_present = false; 2103 mutex_unlock(&local->chanctx_mtx); 2104 2105 cfg80211_shutdown_all_interfaces(local->hw.wiphy); 2106 } 2107 2108 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2109 struct ieee80211_sub_if_data *sdata) 2110 { 2111 struct ieee80211_chanctx_conf *conf; 2112 struct ieee80211_chanctx *ctx; 2113 2114 if (!local->use_chanctx) 2115 return; 2116 2117 mutex_lock(&local->chanctx_mtx); 2118 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2119 lockdep_is_held(&local->chanctx_mtx)); 2120 if (conf) { 2121 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2122 drv_assign_vif_chanctx(local, sdata, ctx); 2123 } 2124 mutex_unlock(&local->chanctx_mtx); 2125 } 2126 2127 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2128 { 2129 struct ieee80211_local *local = sdata->local; 2130 struct sta_info *sta; 2131 2132 /* add STAs back */ 2133 mutex_lock(&local->sta_mtx); 2134 list_for_each_entry(sta, &local->sta_list, list) { 2135 enum ieee80211_sta_state state; 2136 2137 if (!sta->uploaded || sta->sdata != sdata) 2138 continue; 2139 2140 for (state = IEEE80211_STA_NOTEXIST; 2141 state < sta->sta_state; state++) 2142 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2143 state + 1)); 2144 } 2145 mutex_unlock(&local->sta_mtx); 2146 } 2147 2148 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2149 { 2150 struct cfg80211_nan_func *func, **funcs; 2151 int res, id, i = 0; 2152 2153 res = drv_start_nan(sdata->local, sdata, 2154 &sdata->u.nan.conf); 2155 if (WARN_ON(res)) 2156 return res; 2157 2158 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2159 sizeof(*funcs), 2160 GFP_KERNEL); 2161 if (!funcs) 2162 return -ENOMEM; 2163 2164 /* Add all the functions: 2165 * This is a little bit ugly. We need to call a potentially sleeping 2166 * callback for each NAN function, so we can't hold the spinlock. 2167 */ 2168 spin_lock_bh(&sdata->u.nan.func_lock); 2169 2170 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2171 funcs[i++] = func; 2172 2173 spin_unlock_bh(&sdata->u.nan.func_lock); 2174 2175 for (i = 0; funcs[i]; i++) { 2176 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2177 if (WARN_ON(res)) 2178 ieee80211_nan_func_terminated(&sdata->vif, 2179 funcs[i]->instance_id, 2180 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2181 GFP_KERNEL); 2182 } 2183 2184 kfree(funcs); 2185 2186 return 0; 2187 } 2188 2189 int ieee80211_reconfig(struct ieee80211_local *local) 2190 { 2191 struct ieee80211_hw *hw = &local->hw; 2192 struct ieee80211_sub_if_data *sdata; 2193 struct ieee80211_chanctx *ctx; 2194 struct sta_info *sta; 2195 int res, i; 2196 bool reconfig_due_to_wowlan = false; 2197 struct ieee80211_sub_if_data *sched_scan_sdata; 2198 struct cfg80211_sched_scan_request *sched_scan_req; 2199 bool sched_scan_stopped = false; 2200 bool suspended = local->suspended; 2201 2202 /* nothing to do if HW shouldn't run */ 2203 if (!local->open_count) 2204 goto wake_up; 2205 2206 #ifdef CONFIG_PM 2207 if (suspended) 2208 local->resuming = true; 2209 2210 if (local->wowlan) { 2211 /* 2212 * In the wowlan case, both mac80211 and the device 2213 * are functional when the resume op is called, so 2214 * clear local->suspended so the device could operate 2215 * normally (e.g. pass rx frames). 2216 */ 2217 local->suspended = false; 2218 res = drv_resume(local); 2219 local->wowlan = false; 2220 if (res < 0) { 2221 local->resuming = false; 2222 return res; 2223 } 2224 if (res == 0) 2225 goto wake_up; 2226 WARN_ON(res > 1); 2227 /* 2228 * res is 1, which means the driver requested 2229 * to go through a regular reset on wakeup. 2230 * restore local->suspended in this case. 2231 */ 2232 reconfig_due_to_wowlan = true; 2233 local->suspended = true; 2234 } 2235 #endif 2236 2237 /* 2238 * In case of hw_restart during suspend (without wowlan), 2239 * cancel restart work, as we are reconfiguring the device 2240 * anyway. 2241 * Note that restart_work is scheduled on a frozen workqueue, 2242 * so we can't deadlock in this case. 2243 */ 2244 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2245 cancel_work_sync(&local->restart_work); 2246 2247 local->started = false; 2248 2249 /* 2250 * Upon resume hardware can sometimes be goofy due to 2251 * various platform / driver / bus issues, so restarting 2252 * the device may at times not work immediately. Propagate 2253 * the error. 2254 */ 2255 res = drv_start(local); 2256 if (res) { 2257 if (suspended) 2258 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2259 else 2260 WARN(1, "Hardware became unavailable during restart.\n"); 2261 ieee80211_handle_reconfig_failure(local); 2262 return res; 2263 } 2264 2265 /* setup fragmentation threshold */ 2266 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2267 2268 /* setup RTS threshold */ 2269 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2270 2271 /* reset coverage class */ 2272 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2273 2274 ieee80211_led_radio(local, true); 2275 ieee80211_mod_tpt_led_trig(local, 2276 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2277 2278 /* add interfaces */ 2279 sdata = rtnl_dereference(local->monitor_sdata); 2280 if (sdata) { 2281 /* in HW restart it exists already */ 2282 WARN_ON(local->resuming); 2283 res = drv_add_interface(local, sdata); 2284 if (WARN_ON(res)) { 2285 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2286 synchronize_net(); 2287 kfree(sdata); 2288 } 2289 } 2290 2291 list_for_each_entry(sdata, &local->interfaces, list) { 2292 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2293 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2294 ieee80211_sdata_running(sdata)) { 2295 res = drv_add_interface(local, sdata); 2296 if (WARN_ON(res)) 2297 break; 2298 } 2299 } 2300 2301 /* If adding any of the interfaces failed above, roll back and 2302 * report failure. 2303 */ 2304 if (res) { 2305 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2306 list) 2307 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2308 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2309 ieee80211_sdata_running(sdata)) 2310 drv_remove_interface(local, sdata); 2311 ieee80211_handle_reconfig_failure(local); 2312 return res; 2313 } 2314 2315 /* add channel contexts */ 2316 if (local->use_chanctx) { 2317 mutex_lock(&local->chanctx_mtx); 2318 list_for_each_entry(ctx, &local->chanctx_list, list) 2319 if (ctx->replace_state != 2320 IEEE80211_CHANCTX_REPLACES_OTHER) 2321 WARN_ON(drv_add_chanctx(local, ctx)); 2322 mutex_unlock(&local->chanctx_mtx); 2323 2324 sdata = rtnl_dereference(local->monitor_sdata); 2325 if (sdata && ieee80211_sdata_running(sdata)) 2326 ieee80211_assign_chanctx(local, sdata); 2327 } 2328 2329 /* reconfigure hardware */ 2330 ieee80211_hw_config(local, ~0); 2331 2332 ieee80211_configure_filter(local); 2333 2334 /* Finally also reconfigure all the BSS information */ 2335 list_for_each_entry(sdata, &local->interfaces, list) { 2336 u32 changed; 2337 2338 if (!ieee80211_sdata_running(sdata)) 2339 continue; 2340 2341 ieee80211_assign_chanctx(local, sdata); 2342 2343 switch (sdata->vif.type) { 2344 case NL80211_IFTYPE_AP_VLAN: 2345 case NL80211_IFTYPE_MONITOR: 2346 break; 2347 case NL80211_IFTYPE_ADHOC: 2348 if (sdata->vif.bss_conf.ibss_joined) 2349 WARN_ON(drv_join_ibss(local, sdata)); 2350 fallthrough; 2351 default: 2352 ieee80211_reconfig_stations(sdata); 2353 fallthrough; 2354 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2355 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2356 drv_conf_tx(local, sdata, i, 2357 &sdata->tx_conf[i]); 2358 break; 2359 } 2360 2361 /* common change flags for all interface types */ 2362 changed = BSS_CHANGED_ERP_CTS_PROT | 2363 BSS_CHANGED_ERP_PREAMBLE | 2364 BSS_CHANGED_ERP_SLOT | 2365 BSS_CHANGED_HT | 2366 BSS_CHANGED_BASIC_RATES | 2367 BSS_CHANGED_BEACON_INT | 2368 BSS_CHANGED_BSSID | 2369 BSS_CHANGED_CQM | 2370 BSS_CHANGED_QOS | 2371 BSS_CHANGED_IDLE | 2372 BSS_CHANGED_TXPOWER | 2373 BSS_CHANGED_MCAST_RATE; 2374 2375 if (sdata->vif.mu_mimo_owner) 2376 changed |= BSS_CHANGED_MU_GROUPS; 2377 2378 switch (sdata->vif.type) { 2379 case NL80211_IFTYPE_STATION: 2380 changed |= BSS_CHANGED_ASSOC | 2381 BSS_CHANGED_ARP_FILTER | 2382 BSS_CHANGED_PS; 2383 2384 /* Re-send beacon info report to the driver */ 2385 if (sdata->u.mgd.have_beacon) 2386 changed |= BSS_CHANGED_BEACON_INFO; 2387 2388 if (sdata->vif.bss_conf.max_idle_period || 2389 sdata->vif.bss_conf.protected_keep_alive) 2390 changed |= BSS_CHANGED_KEEP_ALIVE; 2391 2392 sdata_lock(sdata); 2393 ieee80211_bss_info_change_notify(sdata, changed); 2394 sdata_unlock(sdata); 2395 break; 2396 case NL80211_IFTYPE_OCB: 2397 changed |= BSS_CHANGED_OCB; 2398 ieee80211_bss_info_change_notify(sdata, changed); 2399 break; 2400 case NL80211_IFTYPE_ADHOC: 2401 changed |= BSS_CHANGED_IBSS; 2402 fallthrough; 2403 case NL80211_IFTYPE_AP: 2404 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2405 2406 if (sdata->vif.bss_conf.ftm_responder == 1 && 2407 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2408 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2409 changed |= BSS_CHANGED_FTM_RESPONDER; 2410 2411 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2412 changed |= BSS_CHANGED_AP_PROBE_RESP; 2413 2414 if (rcu_access_pointer(sdata->u.ap.beacon)) 2415 drv_start_ap(local, sdata); 2416 } 2417 fallthrough; 2418 case NL80211_IFTYPE_MESH_POINT: 2419 if (sdata->vif.bss_conf.enable_beacon) { 2420 changed |= BSS_CHANGED_BEACON | 2421 BSS_CHANGED_BEACON_ENABLED; 2422 ieee80211_bss_info_change_notify(sdata, changed); 2423 } 2424 break; 2425 case NL80211_IFTYPE_NAN: 2426 res = ieee80211_reconfig_nan(sdata); 2427 if (res < 0) { 2428 ieee80211_handle_reconfig_failure(local); 2429 return res; 2430 } 2431 break; 2432 case NL80211_IFTYPE_WDS: 2433 case NL80211_IFTYPE_AP_VLAN: 2434 case NL80211_IFTYPE_MONITOR: 2435 case NL80211_IFTYPE_P2P_DEVICE: 2436 /* nothing to do */ 2437 break; 2438 case NL80211_IFTYPE_UNSPECIFIED: 2439 case NUM_NL80211_IFTYPES: 2440 case NL80211_IFTYPE_P2P_CLIENT: 2441 case NL80211_IFTYPE_P2P_GO: 2442 WARN_ON(1); 2443 break; 2444 } 2445 } 2446 2447 ieee80211_recalc_ps(local); 2448 2449 /* 2450 * The sta might be in psm against the ap (e.g. because 2451 * this was the state before a hw restart), so we 2452 * explicitly send a null packet in order to make sure 2453 * it'll sync against the ap (and get out of psm). 2454 */ 2455 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2456 list_for_each_entry(sdata, &local->interfaces, list) { 2457 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2458 continue; 2459 if (!sdata->u.mgd.associated) 2460 continue; 2461 2462 ieee80211_send_nullfunc(local, sdata, false); 2463 } 2464 } 2465 2466 /* APs are now beaconing, add back stations */ 2467 mutex_lock(&local->sta_mtx); 2468 list_for_each_entry(sta, &local->sta_list, list) { 2469 enum ieee80211_sta_state state; 2470 2471 if (!sta->uploaded) 2472 continue; 2473 2474 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2475 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2476 continue; 2477 2478 for (state = IEEE80211_STA_NOTEXIST; 2479 state < sta->sta_state; state++) 2480 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2481 state + 1)); 2482 } 2483 mutex_unlock(&local->sta_mtx); 2484 2485 /* add back keys */ 2486 list_for_each_entry(sdata, &local->interfaces, list) 2487 ieee80211_reenable_keys(sdata); 2488 2489 /* Reconfigure sched scan if it was interrupted by FW restart */ 2490 mutex_lock(&local->mtx); 2491 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2492 lockdep_is_held(&local->mtx)); 2493 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2494 lockdep_is_held(&local->mtx)); 2495 if (sched_scan_sdata && sched_scan_req) 2496 /* 2497 * Sched scan stopped, but we don't want to report it. Instead, 2498 * we're trying to reschedule. However, if more than one scan 2499 * plan was set, we cannot reschedule since we don't know which 2500 * scan plan was currently running (and some scan plans may have 2501 * already finished). 2502 */ 2503 if (sched_scan_req->n_scan_plans > 1 || 2504 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2505 sched_scan_req)) { 2506 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2507 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2508 sched_scan_stopped = true; 2509 } 2510 mutex_unlock(&local->mtx); 2511 2512 if (sched_scan_stopped) 2513 cfg80211_sched_scan_stopped_rtnl(local->hw.wiphy, 0); 2514 2515 wake_up: 2516 2517 if (local->monitors == local->open_count && local->monitors > 0) 2518 ieee80211_add_virtual_monitor(local); 2519 2520 /* 2521 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2522 * sessions can be established after a resume. 2523 * 2524 * Also tear down aggregation sessions since reconfiguring 2525 * them in a hardware restart scenario is not easily done 2526 * right now, and the hardware will have lost information 2527 * about the sessions, but we and the AP still think they 2528 * are active. This is really a workaround though. 2529 */ 2530 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2531 mutex_lock(&local->sta_mtx); 2532 2533 list_for_each_entry(sta, &local->sta_list, list) { 2534 if (!local->resuming) 2535 ieee80211_sta_tear_down_BA_sessions( 2536 sta, AGG_STOP_LOCAL_REQUEST); 2537 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2538 } 2539 2540 mutex_unlock(&local->sta_mtx); 2541 } 2542 2543 if (local->in_reconfig) { 2544 local->in_reconfig = false; 2545 barrier(); 2546 2547 /* Restart deferred ROCs */ 2548 mutex_lock(&local->mtx); 2549 ieee80211_start_next_roc(local); 2550 mutex_unlock(&local->mtx); 2551 2552 /* Requeue all works */ 2553 list_for_each_entry(sdata, &local->interfaces, list) 2554 ieee80211_queue_work(&local->hw, &sdata->work); 2555 } 2556 2557 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2558 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2559 false); 2560 2561 /* 2562 * If this is for hw restart things are still running. 2563 * We may want to change that later, however. 2564 */ 2565 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2566 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2567 2568 if (!suspended) 2569 return 0; 2570 2571 #ifdef CONFIG_PM 2572 /* first set suspended false, then resuming */ 2573 local->suspended = false; 2574 mb(); 2575 local->resuming = false; 2576 2577 ieee80211_flush_completed_scan(local, false); 2578 2579 if (local->open_count && !reconfig_due_to_wowlan) 2580 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2581 2582 list_for_each_entry(sdata, &local->interfaces, list) { 2583 if (!ieee80211_sdata_running(sdata)) 2584 continue; 2585 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2586 ieee80211_sta_restart(sdata); 2587 } 2588 2589 mod_timer(&local->sta_cleanup, jiffies + 1); 2590 #else 2591 WARN_ON(1); 2592 #endif 2593 2594 return 0; 2595 } 2596 2597 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2598 { 2599 struct ieee80211_sub_if_data *sdata; 2600 struct ieee80211_local *local; 2601 struct ieee80211_key *key; 2602 2603 if (WARN_ON(!vif)) 2604 return; 2605 2606 sdata = vif_to_sdata(vif); 2607 local = sdata->local; 2608 2609 if (WARN_ON(!local->resuming)) 2610 return; 2611 2612 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2613 return; 2614 2615 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME; 2616 2617 mutex_lock(&local->key_mtx); 2618 list_for_each_entry(key, &sdata->key_list, list) 2619 key->flags |= KEY_FLAG_TAINTED; 2620 mutex_unlock(&local->key_mtx); 2621 } 2622 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2623 2624 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2625 { 2626 struct ieee80211_local *local = sdata->local; 2627 struct ieee80211_chanctx_conf *chanctx_conf; 2628 struct ieee80211_chanctx *chanctx; 2629 2630 mutex_lock(&local->chanctx_mtx); 2631 2632 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2633 lockdep_is_held(&local->chanctx_mtx)); 2634 2635 /* 2636 * This function can be called from a work, thus it may be possible 2637 * that the chanctx_conf is removed (due to a disconnection, for 2638 * example). 2639 * So nothing should be done in such case. 2640 */ 2641 if (!chanctx_conf) 2642 goto unlock; 2643 2644 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2645 ieee80211_recalc_smps_chanctx(local, chanctx); 2646 unlock: 2647 mutex_unlock(&local->chanctx_mtx); 2648 } 2649 2650 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2651 { 2652 struct ieee80211_local *local = sdata->local; 2653 struct ieee80211_chanctx_conf *chanctx_conf; 2654 struct ieee80211_chanctx *chanctx; 2655 2656 mutex_lock(&local->chanctx_mtx); 2657 2658 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2659 lockdep_is_held(&local->chanctx_mtx)); 2660 2661 if (WARN_ON_ONCE(!chanctx_conf)) 2662 goto unlock; 2663 2664 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2665 ieee80211_recalc_chanctx_min_def(local, chanctx); 2666 unlock: 2667 mutex_unlock(&local->chanctx_mtx); 2668 } 2669 2670 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2671 { 2672 size_t pos = offset; 2673 2674 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2675 pos += 2 + ies[pos + 1]; 2676 2677 return pos; 2678 } 2679 2680 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2681 int rssi_min_thold, 2682 int rssi_max_thold) 2683 { 2684 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2685 2686 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2687 return; 2688 2689 /* 2690 * Scale up threshold values before storing it, as the RSSI averaging 2691 * algorithm uses a scaled up value as well. Change this scaling 2692 * factor if the RSSI averaging algorithm changes. 2693 */ 2694 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2695 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2696 } 2697 2698 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2699 int rssi_min_thold, 2700 int rssi_max_thold) 2701 { 2702 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2703 2704 WARN_ON(rssi_min_thold == rssi_max_thold || 2705 rssi_min_thold > rssi_max_thold); 2706 2707 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2708 rssi_max_thold); 2709 } 2710 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2711 2712 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2713 { 2714 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2715 2716 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2717 } 2718 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2719 2720 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2721 u16 cap) 2722 { 2723 __le16 tmp; 2724 2725 *pos++ = WLAN_EID_HT_CAPABILITY; 2726 *pos++ = sizeof(struct ieee80211_ht_cap); 2727 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2728 2729 /* capability flags */ 2730 tmp = cpu_to_le16(cap); 2731 memcpy(pos, &tmp, sizeof(u16)); 2732 pos += sizeof(u16); 2733 2734 /* AMPDU parameters */ 2735 *pos++ = ht_cap->ampdu_factor | 2736 (ht_cap->ampdu_density << 2737 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2738 2739 /* MCS set */ 2740 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2741 pos += sizeof(ht_cap->mcs); 2742 2743 /* extended capabilities */ 2744 pos += sizeof(__le16); 2745 2746 /* BF capabilities */ 2747 pos += sizeof(__le32); 2748 2749 /* antenna selection */ 2750 pos += sizeof(u8); 2751 2752 return pos; 2753 } 2754 2755 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2756 u32 cap) 2757 { 2758 __le32 tmp; 2759 2760 *pos++ = WLAN_EID_VHT_CAPABILITY; 2761 *pos++ = sizeof(struct ieee80211_vht_cap); 2762 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2763 2764 /* capability flags */ 2765 tmp = cpu_to_le32(cap); 2766 memcpy(pos, &tmp, sizeof(u32)); 2767 pos += sizeof(u32); 2768 2769 /* VHT MCS set */ 2770 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2771 pos += sizeof(vht_cap->vht_mcs); 2772 2773 return pos; 2774 } 2775 2776 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2777 { 2778 const struct ieee80211_sta_he_cap *he_cap; 2779 struct ieee80211_supported_band *sband; 2780 u8 n; 2781 2782 sband = ieee80211_get_sband(sdata); 2783 if (!sband) 2784 return 0; 2785 2786 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2787 if (!he_cap) 2788 return 0; 2789 2790 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2791 return 2 + 1 + 2792 sizeof(he_cap->he_cap_elem) + n + 2793 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2794 he_cap->he_cap_elem.phy_cap_info); 2795 } 2796 2797 u8 *ieee80211_ie_build_he_cap(u8 *pos, 2798 const struct ieee80211_sta_he_cap *he_cap, 2799 u8 *end) 2800 { 2801 u8 n; 2802 u8 ie_len; 2803 u8 *orig_pos = pos; 2804 2805 /* Make sure we have place for the IE */ 2806 /* 2807 * TODO: the 1 added is because this temporarily is under the EXTENSION 2808 * IE. Get rid of it when it moves. 2809 */ 2810 if (!he_cap) 2811 return orig_pos; 2812 2813 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2814 ie_len = 2 + 1 + 2815 sizeof(he_cap->he_cap_elem) + n + 2816 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2817 he_cap->he_cap_elem.phy_cap_info); 2818 2819 if ((end - pos) < ie_len) 2820 return orig_pos; 2821 2822 *pos++ = WLAN_EID_EXTENSION; 2823 pos++; /* We'll set the size later below */ 2824 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 2825 2826 /* Fixed data */ 2827 memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem)); 2828 pos += sizeof(he_cap->he_cap_elem); 2829 2830 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 2831 pos += n; 2832 2833 /* Check if PPE Threshold should be present */ 2834 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2835 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2836 goto end; 2837 2838 /* 2839 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2840 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2841 */ 2842 n = hweight8(he_cap->ppe_thres[0] & 2843 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2844 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2845 IEEE80211_PPE_THRES_NSS_POS)); 2846 2847 /* 2848 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2849 * total size. 2850 */ 2851 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2852 n = DIV_ROUND_UP(n, 8); 2853 2854 /* Copy PPE Thresholds */ 2855 memcpy(pos, &he_cap->ppe_thres, n); 2856 pos += n; 2857 2858 end: 2859 orig_pos[1] = (pos - orig_pos) - 2; 2860 return pos; 2861 } 2862 2863 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 2864 struct sk_buff *skb) 2865 { 2866 struct ieee80211_supported_band *sband; 2867 const struct ieee80211_sband_iftype_data *iftd; 2868 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2869 u8 *pos; 2870 u16 cap; 2871 2872 sband = ieee80211_get_sband(sdata); 2873 if (!sband) 2874 return; 2875 2876 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2877 if (WARN_ON(!iftd)) 2878 return; 2879 2880 /* Check for device HE 6 GHz capability before adding element */ 2881 if (!iftd->he_6ghz_capa.capa) 2882 return; 2883 2884 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 2885 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 2886 2887 switch (sdata->smps_mode) { 2888 case IEEE80211_SMPS_AUTOMATIC: 2889 case IEEE80211_SMPS_NUM_MODES: 2890 WARN_ON(1); 2891 fallthrough; 2892 case IEEE80211_SMPS_OFF: 2893 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2894 IEEE80211_HE_6GHZ_CAP_SM_PS); 2895 break; 2896 case IEEE80211_SMPS_STATIC: 2897 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2898 IEEE80211_HE_6GHZ_CAP_SM_PS); 2899 break; 2900 case IEEE80211_SMPS_DYNAMIC: 2901 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2902 IEEE80211_HE_6GHZ_CAP_SM_PS); 2903 break; 2904 } 2905 2906 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 2907 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 2908 pos + 2 + 1 + sizeof(cap)); 2909 } 2910 2911 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2912 const struct cfg80211_chan_def *chandef, 2913 u16 prot_mode, bool rifs_mode) 2914 { 2915 struct ieee80211_ht_operation *ht_oper; 2916 /* Build HT Information */ 2917 *pos++ = WLAN_EID_HT_OPERATION; 2918 *pos++ = sizeof(struct ieee80211_ht_operation); 2919 ht_oper = (struct ieee80211_ht_operation *)pos; 2920 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2921 chandef->chan->center_freq); 2922 switch (chandef->width) { 2923 case NL80211_CHAN_WIDTH_160: 2924 case NL80211_CHAN_WIDTH_80P80: 2925 case NL80211_CHAN_WIDTH_80: 2926 case NL80211_CHAN_WIDTH_40: 2927 if (chandef->center_freq1 > chandef->chan->center_freq) 2928 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2929 else 2930 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2931 break; 2932 default: 2933 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2934 break; 2935 } 2936 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2937 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2938 chandef->width != NL80211_CHAN_WIDTH_20) 2939 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2940 2941 if (rifs_mode) 2942 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2943 2944 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2945 ht_oper->stbc_param = 0x0000; 2946 2947 /* It seems that Basic MCS set and Supported MCS set 2948 are identical for the first 10 bytes */ 2949 memset(&ht_oper->basic_set, 0, 16); 2950 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2951 2952 return pos + sizeof(struct ieee80211_ht_operation); 2953 } 2954 2955 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2956 const struct cfg80211_chan_def *chandef) 2957 { 2958 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2959 *pos++ = 3; /* IE length */ 2960 /* New channel width */ 2961 switch (chandef->width) { 2962 case NL80211_CHAN_WIDTH_80: 2963 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2964 break; 2965 case NL80211_CHAN_WIDTH_160: 2966 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2967 break; 2968 case NL80211_CHAN_WIDTH_80P80: 2969 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2970 break; 2971 default: 2972 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2973 } 2974 2975 /* new center frequency segment 0 */ 2976 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2977 /* new center frequency segment 1 */ 2978 if (chandef->center_freq2) 2979 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2980 else 2981 *pos++ = 0; 2982 } 2983 2984 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2985 const struct cfg80211_chan_def *chandef) 2986 { 2987 struct ieee80211_vht_operation *vht_oper; 2988 2989 *pos++ = WLAN_EID_VHT_OPERATION; 2990 *pos++ = sizeof(struct ieee80211_vht_operation); 2991 vht_oper = (struct ieee80211_vht_operation *)pos; 2992 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2993 chandef->center_freq1); 2994 if (chandef->center_freq2) 2995 vht_oper->center_freq_seg1_idx = 2996 ieee80211_frequency_to_channel(chandef->center_freq2); 2997 else 2998 vht_oper->center_freq_seg1_idx = 0x00; 2999 3000 switch (chandef->width) { 3001 case NL80211_CHAN_WIDTH_160: 3002 /* 3003 * Convert 160 MHz channel width to new style as interop 3004 * workaround. 3005 */ 3006 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3007 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3008 if (chandef->chan->center_freq < chandef->center_freq1) 3009 vht_oper->center_freq_seg0_idx -= 8; 3010 else 3011 vht_oper->center_freq_seg0_idx += 8; 3012 break; 3013 case NL80211_CHAN_WIDTH_80P80: 3014 /* 3015 * Convert 80+80 MHz channel width to new style as interop 3016 * workaround. 3017 */ 3018 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3019 break; 3020 case NL80211_CHAN_WIDTH_80: 3021 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3022 break; 3023 default: 3024 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3025 break; 3026 } 3027 3028 /* don't require special VHT peer rates */ 3029 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3030 3031 return pos + sizeof(struct ieee80211_vht_operation); 3032 } 3033 3034 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3035 { 3036 struct ieee80211_he_operation *he_oper; 3037 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3038 u32 he_oper_params; 3039 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3040 3041 if (chandef->chan->band == NL80211_BAND_6GHZ) 3042 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3043 3044 *pos++ = WLAN_EID_EXTENSION; 3045 *pos++ = ie_len; 3046 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3047 3048 he_oper_params = 0; 3049 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3050 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3051 he_oper_params |= u32_encode_bits(1, 3052 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3053 he_oper_params |= u32_encode_bits(1, 3054 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3055 if (chandef->chan->band == NL80211_BAND_6GHZ) 3056 he_oper_params |= u32_encode_bits(1, 3057 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3058 3059 he_oper = (struct ieee80211_he_operation *)pos; 3060 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3061 3062 /* don't require special HE peer rates */ 3063 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3064 pos += sizeof(struct ieee80211_he_operation); 3065 3066 if (chandef->chan->band != NL80211_BAND_6GHZ) 3067 goto out; 3068 3069 /* TODO add VHT operational */ 3070 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3071 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3072 he_6ghz_op->primary = 3073 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3074 he_6ghz_op->ccfs0 = 3075 ieee80211_frequency_to_channel(chandef->center_freq1); 3076 if (chandef->center_freq2) 3077 he_6ghz_op->ccfs1 = 3078 ieee80211_frequency_to_channel(chandef->center_freq2); 3079 else 3080 he_6ghz_op->ccfs1 = 0; 3081 3082 switch (chandef->width) { 3083 case NL80211_CHAN_WIDTH_160: 3084 /* Convert 160 MHz channel width to new style as interop 3085 * workaround. 3086 */ 3087 he_6ghz_op->control = 3088 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3089 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3090 if (chandef->chan->center_freq < chandef->center_freq1) 3091 he_6ghz_op->ccfs0 -= 8; 3092 else 3093 he_6ghz_op->ccfs0 += 8; 3094 fallthrough; 3095 case NL80211_CHAN_WIDTH_80P80: 3096 he_6ghz_op->control = 3097 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3098 break; 3099 case NL80211_CHAN_WIDTH_80: 3100 he_6ghz_op->control = 3101 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3102 break; 3103 case NL80211_CHAN_WIDTH_40: 3104 he_6ghz_op->control = 3105 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3106 break; 3107 default: 3108 he_6ghz_op->control = 3109 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3110 break; 3111 } 3112 3113 pos += sizeof(struct ieee80211_he_6ghz_oper); 3114 3115 out: 3116 return pos; 3117 } 3118 3119 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3120 struct cfg80211_chan_def *chandef) 3121 { 3122 enum nl80211_channel_type channel_type; 3123 3124 if (!ht_oper) 3125 return false; 3126 3127 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3128 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3129 channel_type = NL80211_CHAN_HT20; 3130 break; 3131 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3132 channel_type = NL80211_CHAN_HT40PLUS; 3133 break; 3134 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3135 channel_type = NL80211_CHAN_HT40MINUS; 3136 break; 3137 default: 3138 channel_type = NL80211_CHAN_NO_HT; 3139 return false; 3140 } 3141 3142 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3143 return true; 3144 } 3145 3146 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3147 const struct ieee80211_vht_operation *oper, 3148 const struct ieee80211_ht_operation *htop, 3149 struct cfg80211_chan_def *chandef) 3150 { 3151 struct cfg80211_chan_def new = *chandef; 3152 int cf0, cf1; 3153 int ccfs0, ccfs1, ccfs2; 3154 int ccf0, ccf1; 3155 u32 vht_cap; 3156 bool support_80_80 = false; 3157 bool support_160 = false; 3158 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3159 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3160 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3161 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3162 3163 if (!oper || !htop) 3164 return false; 3165 3166 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3167 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3168 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3169 support_80_80 = ((vht_cap & 3170 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3171 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3172 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3173 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3174 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3175 ccfs0 = oper->center_freq_seg0_idx; 3176 ccfs1 = oper->center_freq_seg1_idx; 3177 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3178 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3179 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3180 3181 ccf0 = ccfs0; 3182 3183 /* if not supported, parse as though we didn't understand it */ 3184 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3185 ext_nss_bw_supp = 0; 3186 3187 /* 3188 * Cf. IEEE 802.11 Table 9-250 3189 * 3190 * We really just consider that because it's inefficient to connect 3191 * at a higher bandwidth than we'll actually be able to use. 3192 */ 3193 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3194 default: 3195 case 0x00: 3196 ccf1 = 0; 3197 support_160 = false; 3198 support_80_80 = false; 3199 break; 3200 case 0x01: 3201 support_80_80 = false; 3202 fallthrough; 3203 case 0x02: 3204 case 0x03: 3205 ccf1 = ccfs2; 3206 break; 3207 case 0x10: 3208 ccf1 = ccfs1; 3209 break; 3210 case 0x11: 3211 case 0x12: 3212 if (!ccfs1) 3213 ccf1 = ccfs2; 3214 else 3215 ccf1 = ccfs1; 3216 break; 3217 case 0x13: 3218 case 0x20: 3219 case 0x23: 3220 ccf1 = ccfs1; 3221 break; 3222 } 3223 3224 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3225 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3226 3227 switch (oper->chan_width) { 3228 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3229 /* just use HT information directly */ 3230 break; 3231 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3232 new.width = NL80211_CHAN_WIDTH_80; 3233 new.center_freq1 = cf0; 3234 /* If needed, adjust based on the newer interop workaround. */ 3235 if (ccf1) { 3236 unsigned int diff; 3237 3238 diff = abs(ccf1 - ccf0); 3239 if ((diff == 8) && support_160) { 3240 new.width = NL80211_CHAN_WIDTH_160; 3241 new.center_freq1 = cf1; 3242 } else if ((diff > 8) && support_80_80) { 3243 new.width = NL80211_CHAN_WIDTH_80P80; 3244 new.center_freq2 = cf1; 3245 } 3246 } 3247 break; 3248 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3249 /* deprecated encoding */ 3250 new.width = NL80211_CHAN_WIDTH_160; 3251 new.center_freq1 = cf0; 3252 break; 3253 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3254 /* deprecated encoding */ 3255 new.width = NL80211_CHAN_WIDTH_80P80; 3256 new.center_freq1 = cf0; 3257 new.center_freq2 = cf1; 3258 break; 3259 default: 3260 return false; 3261 } 3262 3263 if (!cfg80211_chandef_valid(&new)) 3264 return false; 3265 3266 *chandef = new; 3267 return true; 3268 } 3269 3270 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3271 const struct ieee80211_he_operation *he_oper, 3272 struct cfg80211_chan_def *chandef) 3273 { 3274 struct ieee80211_local *local = sdata->local; 3275 struct ieee80211_supported_band *sband; 3276 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3277 const struct ieee80211_sta_he_cap *he_cap; 3278 struct cfg80211_chan_def he_chandef = *chandef; 3279 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3280 bool support_80_80, support_160; 3281 u8 he_phy_cap; 3282 u32 freq; 3283 3284 if (chandef->chan->band != NL80211_BAND_6GHZ) 3285 return true; 3286 3287 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3288 3289 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3290 if (!he_cap) { 3291 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3292 return false; 3293 } 3294 3295 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3296 support_160 = 3297 he_phy_cap & 3298 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3299 support_80_80 = 3300 he_phy_cap & 3301 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3302 3303 if (!he_oper) { 3304 sdata_info(sdata, 3305 "HE is not advertised on (on %d MHz), expect issues\n", 3306 chandef->chan->center_freq); 3307 return false; 3308 } 3309 3310 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3311 3312 if (!he_6ghz_oper) { 3313 sdata_info(sdata, 3314 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3315 chandef->chan->center_freq); 3316 return false; 3317 } 3318 3319 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3320 NL80211_BAND_6GHZ); 3321 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3322 3323 switch (u8_get_bits(he_6ghz_oper->control, 3324 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3325 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3326 he_chandef.width = NL80211_CHAN_WIDTH_20; 3327 break; 3328 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3329 he_chandef.width = NL80211_CHAN_WIDTH_40; 3330 break; 3331 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3332 he_chandef.width = NL80211_CHAN_WIDTH_80; 3333 break; 3334 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3335 he_chandef.width = NL80211_CHAN_WIDTH_80; 3336 if (!he_6ghz_oper->ccfs1) 3337 break; 3338 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3339 if (support_160) 3340 he_chandef.width = NL80211_CHAN_WIDTH_160; 3341 } else { 3342 if (support_80_80) 3343 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3344 } 3345 break; 3346 } 3347 3348 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3349 he_chandef.center_freq1 = 3350 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3351 NL80211_BAND_6GHZ); 3352 } else { 3353 he_chandef.center_freq1 = 3354 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3355 NL80211_BAND_6GHZ); 3356 he_chandef.center_freq2 = 3357 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3358 NL80211_BAND_6GHZ); 3359 } 3360 3361 if (!cfg80211_chandef_valid(&he_chandef)) { 3362 sdata_info(sdata, 3363 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3364 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3365 he_chandef.width, 3366 he_chandef.center_freq1, 3367 he_chandef.center_freq2); 3368 return false; 3369 } 3370 3371 *chandef = he_chandef; 3372 3373 return true; 3374 } 3375 3376 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3377 const struct ieee80211_supported_band *sband, 3378 const u8 *srates, int srates_len, u32 *rates) 3379 { 3380 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3381 int shift = ieee80211_chandef_get_shift(chandef); 3382 struct ieee80211_rate *br; 3383 int brate, rate, i, j, count = 0; 3384 3385 *rates = 0; 3386 3387 for (i = 0; i < srates_len; i++) { 3388 rate = srates[i] & 0x7f; 3389 3390 for (j = 0; j < sband->n_bitrates; j++) { 3391 br = &sband->bitrates[j]; 3392 if ((rate_flags & br->flags) != rate_flags) 3393 continue; 3394 3395 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3396 if (brate == rate) { 3397 *rates |= BIT(j); 3398 count++; 3399 break; 3400 } 3401 } 3402 } 3403 return count; 3404 } 3405 3406 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3407 struct sk_buff *skb, bool need_basic, 3408 enum nl80211_band band) 3409 { 3410 struct ieee80211_local *local = sdata->local; 3411 struct ieee80211_supported_band *sband; 3412 int rate, shift; 3413 u8 i, rates, *pos; 3414 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3415 u32 rate_flags; 3416 3417 shift = ieee80211_vif_get_shift(&sdata->vif); 3418 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3419 sband = local->hw.wiphy->bands[band]; 3420 rates = 0; 3421 for (i = 0; i < sband->n_bitrates; i++) { 3422 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3423 continue; 3424 rates++; 3425 } 3426 if (rates > 8) 3427 rates = 8; 3428 3429 if (skb_tailroom(skb) < rates + 2) 3430 return -ENOMEM; 3431 3432 pos = skb_put(skb, rates + 2); 3433 *pos++ = WLAN_EID_SUPP_RATES; 3434 *pos++ = rates; 3435 for (i = 0; i < rates; i++) { 3436 u8 basic = 0; 3437 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3438 continue; 3439 3440 if (need_basic && basic_rates & BIT(i)) 3441 basic = 0x80; 3442 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3443 5 * (1 << shift)); 3444 *pos++ = basic | (u8) rate; 3445 } 3446 3447 return 0; 3448 } 3449 3450 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3451 struct sk_buff *skb, bool need_basic, 3452 enum nl80211_band band) 3453 { 3454 struct ieee80211_local *local = sdata->local; 3455 struct ieee80211_supported_band *sband; 3456 int rate, shift; 3457 u8 i, exrates, *pos; 3458 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3459 u32 rate_flags; 3460 3461 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3462 shift = ieee80211_vif_get_shift(&sdata->vif); 3463 3464 sband = local->hw.wiphy->bands[band]; 3465 exrates = 0; 3466 for (i = 0; i < sband->n_bitrates; i++) { 3467 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3468 continue; 3469 exrates++; 3470 } 3471 3472 if (exrates > 8) 3473 exrates -= 8; 3474 else 3475 exrates = 0; 3476 3477 if (skb_tailroom(skb) < exrates + 2) 3478 return -ENOMEM; 3479 3480 if (exrates) { 3481 pos = skb_put(skb, exrates + 2); 3482 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3483 *pos++ = exrates; 3484 for (i = 8; i < sband->n_bitrates; i++) { 3485 u8 basic = 0; 3486 if ((rate_flags & sband->bitrates[i].flags) 3487 != rate_flags) 3488 continue; 3489 if (need_basic && basic_rates & BIT(i)) 3490 basic = 0x80; 3491 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3492 5 * (1 << shift)); 3493 *pos++ = basic | (u8) rate; 3494 } 3495 } 3496 return 0; 3497 } 3498 3499 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3500 { 3501 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3502 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3503 3504 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3505 /* non-managed type inferfaces */ 3506 return 0; 3507 } 3508 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3509 } 3510 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3511 3512 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3513 { 3514 if (!mcs) 3515 return 1; 3516 3517 /* TODO: consider rx_highest */ 3518 3519 if (mcs->rx_mask[3]) 3520 return 4; 3521 if (mcs->rx_mask[2]) 3522 return 3; 3523 if (mcs->rx_mask[1]) 3524 return 2; 3525 return 1; 3526 } 3527 3528 /** 3529 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3530 * @local: mac80211 hw info struct 3531 * @status: RX status 3532 * @mpdu_len: total MPDU length (including FCS) 3533 * @mpdu_offset: offset into MPDU to calculate timestamp at 3534 * 3535 * This function calculates the RX timestamp at the given MPDU offset, taking 3536 * into account what the RX timestamp was. An offset of 0 will just normalize 3537 * the timestamp to TSF at beginning of MPDU reception. 3538 */ 3539 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3540 struct ieee80211_rx_status *status, 3541 unsigned int mpdu_len, 3542 unsigned int mpdu_offset) 3543 { 3544 u64 ts = status->mactime; 3545 struct rate_info ri; 3546 u16 rate; 3547 3548 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3549 return 0; 3550 3551 memset(&ri, 0, sizeof(ri)); 3552 3553 ri.bw = status->bw; 3554 3555 /* Fill cfg80211 rate info */ 3556 switch (status->encoding) { 3557 case RX_ENC_HT: 3558 ri.mcs = status->rate_idx; 3559 ri.flags |= RATE_INFO_FLAGS_MCS; 3560 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3561 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3562 break; 3563 case RX_ENC_VHT: 3564 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3565 ri.mcs = status->rate_idx; 3566 ri.nss = status->nss; 3567 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3568 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3569 break; 3570 default: 3571 WARN_ON(1); 3572 fallthrough; 3573 case RX_ENC_LEGACY: { 3574 struct ieee80211_supported_band *sband; 3575 int shift = 0; 3576 int bitrate; 3577 3578 switch (status->bw) { 3579 case RATE_INFO_BW_10: 3580 shift = 1; 3581 break; 3582 case RATE_INFO_BW_5: 3583 shift = 2; 3584 break; 3585 } 3586 3587 sband = local->hw.wiphy->bands[status->band]; 3588 bitrate = sband->bitrates[status->rate_idx].bitrate; 3589 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3590 3591 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3592 /* TODO: handle HT/VHT preambles */ 3593 if (status->band == NL80211_BAND_5GHZ) { 3594 ts += 20 << shift; 3595 mpdu_offset += 2; 3596 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3597 ts += 96; 3598 } else { 3599 ts += 192; 3600 } 3601 } 3602 break; 3603 } 3604 } 3605 3606 rate = cfg80211_calculate_bitrate(&ri); 3607 if (WARN_ONCE(!rate, 3608 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3609 (unsigned long long)status->flag, status->rate_idx, 3610 status->nss)) 3611 return 0; 3612 3613 /* rewind from end of MPDU */ 3614 if (status->flag & RX_FLAG_MACTIME_END) 3615 ts -= mpdu_len * 8 * 10 / rate; 3616 3617 ts += mpdu_offset * 8 * 10 / rate; 3618 3619 return ts; 3620 } 3621 3622 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3623 { 3624 struct ieee80211_sub_if_data *sdata; 3625 struct cfg80211_chan_def chandef; 3626 3627 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 3628 ASSERT_RTNL(); 3629 3630 mutex_lock(&local->mtx); 3631 list_for_each_entry(sdata, &local->interfaces, list) { 3632 /* it might be waiting for the local->mtx, but then 3633 * by the time it gets it, sdata->wdev.cac_started 3634 * will no longer be true 3635 */ 3636 cancel_delayed_work(&sdata->dfs_cac_timer_work); 3637 3638 if (sdata->wdev.cac_started) { 3639 chandef = sdata->vif.bss_conf.chandef; 3640 ieee80211_vif_release_channel(sdata); 3641 cfg80211_cac_event(sdata->dev, 3642 &chandef, 3643 NL80211_RADAR_CAC_ABORTED, 3644 GFP_KERNEL); 3645 } 3646 } 3647 mutex_unlock(&local->mtx); 3648 } 3649 3650 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 3651 { 3652 struct ieee80211_local *local = 3653 container_of(work, struct ieee80211_local, radar_detected_work); 3654 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3655 struct ieee80211_chanctx *ctx; 3656 int num_chanctx = 0; 3657 3658 mutex_lock(&local->chanctx_mtx); 3659 list_for_each_entry(ctx, &local->chanctx_list, list) { 3660 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3661 continue; 3662 3663 num_chanctx++; 3664 chandef = ctx->conf.def; 3665 } 3666 mutex_unlock(&local->chanctx_mtx); 3667 3668 rtnl_lock(); 3669 ieee80211_dfs_cac_cancel(local); 3670 rtnl_unlock(); 3671 3672 if (num_chanctx > 1) 3673 /* XXX: multi-channel is not supported yet */ 3674 WARN_ON(1); 3675 else 3676 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3677 } 3678 3679 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3680 { 3681 struct ieee80211_local *local = hw_to_local(hw); 3682 3683 trace_api_radar_detected(local); 3684 3685 schedule_work(&local->radar_detected_work); 3686 } 3687 EXPORT_SYMBOL(ieee80211_radar_detected); 3688 3689 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 3690 { 3691 u32 ret; 3692 int tmp; 3693 3694 switch (c->width) { 3695 case NL80211_CHAN_WIDTH_20: 3696 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3697 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3698 break; 3699 case NL80211_CHAN_WIDTH_40: 3700 c->width = NL80211_CHAN_WIDTH_20; 3701 c->center_freq1 = c->chan->center_freq; 3702 ret = IEEE80211_STA_DISABLE_40MHZ | 3703 IEEE80211_STA_DISABLE_VHT; 3704 break; 3705 case NL80211_CHAN_WIDTH_80: 3706 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 3707 /* n_P40 */ 3708 tmp /= 2; 3709 /* freq_P40 */ 3710 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 3711 c->width = NL80211_CHAN_WIDTH_40; 3712 ret = IEEE80211_STA_DISABLE_VHT; 3713 break; 3714 case NL80211_CHAN_WIDTH_80P80: 3715 c->center_freq2 = 0; 3716 c->width = NL80211_CHAN_WIDTH_80; 3717 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3718 IEEE80211_STA_DISABLE_160MHZ; 3719 break; 3720 case NL80211_CHAN_WIDTH_160: 3721 /* n_P20 */ 3722 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 3723 /* n_P80 */ 3724 tmp /= 4; 3725 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 3726 c->width = NL80211_CHAN_WIDTH_80; 3727 ret = IEEE80211_STA_DISABLE_80P80MHZ | 3728 IEEE80211_STA_DISABLE_160MHZ; 3729 break; 3730 default: 3731 case NL80211_CHAN_WIDTH_20_NOHT: 3732 WARN_ON_ONCE(1); 3733 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3734 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3735 break; 3736 case NL80211_CHAN_WIDTH_1: 3737 case NL80211_CHAN_WIDTH_2: 3738 case NL80211_CHAN_WIDTH_4: 3739 case NL80211_CHAN_WIDTH_8: 3740 case NL80211_CHAN_WIDTH_16: 3741 case NL80211_CHAN_WIDTH_5: 3742 case NL80211_CHAN_WIDTH_10: 3743 WARN_ON_ONCE(1); 3744 /* keep c->width */ 3745 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 3746 break; 3747 } 3748 3749 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3750 3751 return ret; 3752 } 3753 3754 /* 3755 * Returns true if smps_mode_new is strictly more restrictive than 3756 * smps_mode_old. 3757 */ 3758 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3759 enum ieee80211_smps_mode smps_mode_new) 3760 { 3761 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3762 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3763 return false; 3764 3765 switch (smps_mode_old) { 3766 case IEEE80211_SMPS_STATIC: 3767 return false; 3768 case IEEE80211_SMPS_DYNAMIC: 3769 return smps_mode_new == IEEE80211_SMPS_STATIC; 3770 case IEEE80211_SMPS_OFF: 3771 return smps_mode_new != IEEE80211_SMPS_OFF; 3772 default: 3773 WARN_ON(1); 3774 } 3775 3776 return false; 3777 } 3778 3779 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3780 struct cfg80211_csa_settings *csa_settings) 3781 { 3782 struct sk_buff *skb; 3783 struct ieee80211_mgmt *mgmt; 3784 struct ieee80211_local *local = sdata->local; 3785 int freq; 3786 int hdr_len = offsetofend(struct ieee80211_mgmt, 3787 u.action.u.chan_switch); 3788 u8 *pos; 3789 3790 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3791 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3792 return -EOPNOTSUPP; 3793 3794 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3795 5 + /* channel switch announcement element */ 3796 3 + /* secondary channel offset element */ 3797 5 + /* wide bandwidth channel switch announcement */ 3798 8); /* mesh channel switch parameters element */ 3799 if (!skb) 3800 return -ENOMEM; 3801 3802 skb_reserve(skb, local->tx_headroom); 3803 mgmt = skb_put_zero(skb, hdr_len); 3804 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3805 IEEE80211_STYPE_ACTION); 3806 3807 eth_broadcast_addr(mgmt->da); 3808 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3809 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3810 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3811 } else { 3812 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3813 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3814 } 3815 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3816 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3817 pos = skb_put(skb, 5); 3818 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3819 *pos++ = 3; /* IE length */ 3820 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3821 freq = csa_settings->chandef.chan->center_freq; 3822 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3823 *pos++ = csa_settings->count; /* count */ 3824 3825 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3826 enum nl80211_channel_type ch_type; 3827 3828 skb_put(skb, 3); 3829 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3830 *pos++ = 1; /* IE length */ 3831 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3832 if (ch_type == NL80211_CHAN_HT40PLUS) 3833 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3834 else 3835 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3836 } 3837 3838 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3839 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3840 3841 skb_put(skb, 8); 3842 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3843 *pos++ = 6; /* IE length */ 3844 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3845 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3846 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3847 *pos++ |= csa_settings->block_tx ? 3848 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3849 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3850 pos += 2; 3851 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3852 pos += 2; 3853 } 3854 3855 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3856 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3857 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3858 skb_put(skb, 5); 3859 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3860 } 3861 3862 ieee80211_tx_skb(sdata, skb); 3863 return 0; 3864 } 3865 3866 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 3867 { 3868 return !(cs == NULL || cs->cipher == 0 || 3869 cs->hdr_len < cs->pn_len + cs->pn_off || 3870 cs->hdr_len <= cs->key_idx_off || 3871 cs->key_idx_shift > 7 || 3872 cs->key_idx_mask == 0); 3873 } 3874 3875 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 3876 { 3877 int i; 3878 3879 /* Ensure we have enough iftype bitmap space for all iftype values */ 3880 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 3881 3882 for (i = 0; i < n; i++) 3883 if (!ieee80211_cs_valid(&cs[i])) 3884 return false; 3885 3886 return true; 3887 } 3888 3889 const struct ieee80211_cipher_scheme * 3890 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 3891 enum nl80211_iftype iftype) 3892 { 3893 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 3894 int n = local->hw.n_cipher_schemes; 3895 int i; 3896 const struct ieee80211_cipher_scheme *cs = NULL; 3897 3898 for (i = 0; i < n; i++) { 3899 if (l[i].cipher == cipher) { 3900 cs = &l[i]; 3901 break; 3902 } 3903 } 3904 3905 if (!cs || !(cs->iftype & BIT(iftype))) 3906 return NULL; 3907 3908 return cs; 3909 } 3910 3911 int ieee80211_cs_headroom(struct ieee80211_local *local, 3912 struct cfg80211_crypto_settings *crypto, 3913 enum nl80211_iftype iftype) 3914 { 3915 const struct ieee80211_cipher_scheme *cs; 3916 int headroom = IEEE80211_ENCRYPT_HEADROOM; 3917 int i; 3918 3919 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 3920 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 3921 iftype); 3922 3923 if (cs && headroom < cs->hdr_len) 3924 headroom = cs->hdr_len; 3925 } 3926 3927 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 3928 if (cs && headroom < cs->hdr_len) 3929 headroom = cs->hdr_len; 3930 3931 return headroom; 3932 } 3933 3934 static bool 3935 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3936 { 3937 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3938 int skip; 3939 3940 if (end > 0) 3941 return false; 3942 3943 /* One shot NOA */ 3944 if (data->count[i] == 1) 3945 return false; 3946 3947 if (data->desc[i].interval == 0) 3948 return false; 3949 3950 /* End time is in the past, check for repetitions */ 3951 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3952 if (data->count[i] < 255) { 3953 if (data->count[i] <= skip) { 3954 data->count[i] = 0; 3955 return false; 3956 } 3957 3958 data->count[i] -= skip; 3959 } 3960 3961 data->desc[i].start += skip * data->desc[i].interval; 3962 3963 return true; 3964 } 3965 3966 static bool 3967 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3968 s32 *offset) 3969 { 3970 bool ret = false; 3971 int i; 3972 3973 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3974 s32 cur; 3975 3976 if (!data->count[i]) 3977 continue; 3978 3979 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3980 ret = true; 3981 3982 cur = data->desc[i].start - tsf; 3983 if (cur > *offset) 3984 continue; 3985 3986 cur = data->desc[i].start + data->desc[i].duration - tsf; 3987 if (cur > *offset) 3988 *offset = cur; 3989 } 3990 3991 return ret; 3992 } 3993 3994 static u32 3995 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3996 { 3997 s32 offset = 0; 3998 int tries = 0; 3999 /* 4000 * arbitrary limit, used to avoid infinite loops when combined NoA 4001 * descriptors cover the full time period. 4002 */ 4003 int max_tries = 5; 4004 4005 ieee80211_extend_absent_time(data, tsf, &offset); 4006 do { 4007 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4008 break; 4009 4010 tries++; 4011 } while (tries < max_tries); 4012 4013 return offset; 4014 } 4015 4016 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4017 { 4018 u32 next_offset = BIT(31) - 1; 4019 int i; 4020 4021 data->absent = 0; 4022 data->has_next_tsf = false; 4023 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4024 s32 start; 4025 4026 if (!data->count[i]) 4027 continue; 4028 4029 ieee80211_extend_noa_desc(data, tsf, i); 4030 start = data->desc[i].start - tsf; 4031 if (start <= 0) 4032 data->absent |= BIT(i); 4033 4034 if (next_offset > start) 4035 next_offset = start; 4036 4037 data->has_next_tsf = true; 4038 } 4039 4040 if (data->absent) 4041 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4042 4043 data->next_tsf = tsf + next_offset; 4044 } 4045 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4046 4047 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4048 struct ieee80211_noa_data *data, u32 tsf) 4049 { 4050 int ret = 0; 4051 int i; 4052 4053 memset(data, 0, sizeof(*data)); 4054 4055 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4056 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4057 4058 if (!desc->count || !desc->duration) 4059 continue; 4060 4061 data->count[i] = desc->count; 4062 data->desc[i].start = le32_to_cpu(desc->start_time); 4063 data->desc[i].duration = le32_to_cpu(desc->duration); 4064 data->desc[i].interval = le32_to_cpu(desc->interval); 4065 4066 if (data->count[i] > 1 && 4067 data->desc[i].interval < data->desc[i].duration) 4068 continue; 4069 4070 ieee80211_extend_noa_desc(data, tsf, i); 4071 ret++; 4072 } 4073 4074 if (ret) 4075 ieee80211_update_p2p_noa(data, tsf); 4076 4077 return ret; 4078 } 4079 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4080 4081 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4082 struct ieee80211_sub_if_data *sdata) 4083 { 4084 u64 tsf = drv_get_tsf(local, sdata); 4085 u64 dtim_count = 0; 4086 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4087 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4088 struct ps_data *ps; 4089 u8 bcns_from_dtim; 4090 4091 if (tsf == -1ULL || !beacon_int || !dtim_period) 4092 return; 4093 4094 if (sdata->vif.type == NL80211_IFTYPE_AP || 4095 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4096 if (!sdata->bss) 4097 return; 4098 4099 ps = &sdata->bss->ps; 4100 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4101 ps = &sdata->u.mesh.ps; 4102 } else { 4103 return; 4104 } 4105 4106 /* 4107 * actually finds last dtim_count, mac80211 will update in 4108 * __beacon_add_tim(). 4109 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4110 */ 4111 do_div(tsf, beacon_int); 4112 bcns_from_dtim = do_div(tsf, dtim_period); 4113 /* just had a DTIM */ 4114 if (!bcns_from_dtim) 4115 dtim_count = 0; 4116 else 4117 dtim_count = dtim_period - bcns_from_dtim; 4118 4119 ps->dtim_count = dtim_count; 4120 } 4121 4122 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4123 struct ieee80211_chanctx *ctx) 4124 { 4125 struct ieee80211_sub_if_data *sdata; 4126 u8 radar_detect = 0; 4127 4128 lockdep_assert_held(&local->chanctx_mtx); 4129 4130 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4131 return 0; 4132 4133 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4134 if (sdata->reserved_radar_required) 4135 radar_detect |= BIT(sdata->reserved_chandef.width); 4136 4137 /* 4138 * An in-place reservation context should not have any assigned vifs 4139 * until it replaces the other context. 4140 */ 4141 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4142 !list_empty(&ctx->assigned_vifs)); 4143 4144 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4145 if (sdata->radar_required) 4146 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4147 4148 return radar_detect; 4149 } 4150 4151 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4152 const struct cfg80211_chan_def *chandef, 4153 enum ieee80211_chanctx_mode chanmode, 4154 u8 radar_detect) 4155 { 4156 struct ieee80211_local *local = sdata->local; 4157 struct ieee80211_sub_if_data *sdata_iter; 4158 enum nl80211_iftype iftype = sdata->wdev.iftype; 4159 struct ieee80211_chanctx *ctx; 4160 int total = 1; 4161 struct iface_combination_params params = { 4162 .radar_detect = radar_detect, 4163 }; 4164 4165 lockdep_assert_held(&local->chanctx_mtx); 4166 4167 if (WARN_ON(hweight32(radar_detect) > 1)) 4168 return -EINVAL; 4169 4170 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4171 !chandef->chan)) 4172 return -EINVAL; 4173 4174 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4175 return -EINVAL; 4176 4177 if (sdata->vif.type == NL80211_IFTYPE_AP || 4178 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4179 /* 4180 * always passing this is harmless, since it'll be the 4181 * same value that cfg80211 finds if it finds the same 4182 * interface ... and that's always allowed 4183 */ 4184 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4185 } 4186 4187 /* Always allow software iftypes */ 4188 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4189 if (radar_detect) 4190 return -EINVAL; 4191 return 0; 4192 } 4193 4194 if (chandef) 4195 params.num_different_channels = 1; 4196 4197 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4198 params.iftype_num[iftype] = 1; 4199 4200 list_for_each_entry(ctx, &local->chanctx_list, list) { 4201 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4202 continue; 4203 params.radar_detect |= 4204 ieee80211_chanctx_radar_detect(local, ctx); 4205 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4206 params.num_different_channels++; 4207 continue; 4208 } 4209 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4210 cfg80211_chandef_compatible(chandef, 4211 &ctx->conf.def)) 4212 continue; 4213 params.num_different_channels++; 4214 } 4215 4216 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4217 struct wireless_dev *wdev_iter; 4218 4219 wdev_iter = &sdata_iter->wdev; 4220 4221 if (sdata_iter == sdata || 4222 !ieee80211_sdata_running(sdata_iter) || 4223 cfg80211_iftype_allowed(local->hw.wiphy, 4224 wdev_iter->iftype, 0, 1)) 4225 continue; 4226 4227 params.iftype_num[wdev_iter->iftype]++; 4228 total++; 4229 } 4230 4231 if (total == 1 && !params.radar_detect) 4232 return 0; 4233 4234 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4235 } 4236 4237 static void 4238 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4239 void *data) 4240 { 4241 u32 *max_num_different_channels = data; 4242 4243 *max_num_different_channels = max(*max_num_different_channels, 4244 c->num_different_channels); 4245 } 4246 4247 int ieee80211_max_num_channels(struct ieee80211_local *local) 4248 { 4249 struct ieee80211_sub_if_data *sdata; 4250 struct ieee80211_chanctx *ctx; 4251 u32 max_num_different_channels = 1; 4252 int err; 4253 struct iface_combination_params params = {0}; 4254 4255 lockdep_assert_held(&local->chanctx_mtx); 4256 4257 list_for_each_entry(ctx, &local->chanctx_list, list) { 4258 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4259 continue; 4260 4261 params.num_different_channels++; 4262 4263 params.radar_detect |= 4264 ieee80211_chanctx_radar_detect(local, ctx); 4265 } 4266 4267 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4268 params.iftype_num[sdata->wdev.iftype]++; 4269 4270 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4271 ieee80211_iter_max_chans, 4272 &max_num_different_channels); 4273 if (err < 0) 4274 return err; 4275 4276 return max_num_different_channels; 4277 } 4278 4279 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4280 { 4281 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4282 *buf++ = 7; /* len */ 4283 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4284 *buf++ = 0x50; 4285 *buf++ = 0xf2; 4286 *buf++ = 2; /* WME */ 4287 *buf++ = 0; /* WME info */ 4288 *buf++ = 1; /* WME ver */ 4289 *buf++ = qosinfo; /* U-APSD no in use */ 4290 4291 return buf; 4292 } 4293 4294 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4295 unsigned long *frame_cnt, 4296 unsigned long *byte_cnt) 4297 { 4298 struct txq_info *txqi = to_txq_info(txq); 4299 u32 frag_cnt = 0, frag_bytes = 0; 4300 struct sk_buff *skb; 4301 4302 skb_queue_walk(&txqi->frags, skb) { 4303 frag_cnt++; 4304 frag_bytes += skb->len; 4305 } 4306 4307 if (frame_cnt) 4308 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4309 4310 if (byte_cnt) 4311 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4312 } 4313 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4314 4315 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4316 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4317 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4318 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4319 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4320 }; 4321