xref: /linux/net/mac80211/util.c (revision 8ce936c2f1a68c3a4f46578eed016ff92a67fbc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2005-2006, Devicescape Software, Inc.
5  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
6  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
7  * Copyright 2013-2014  Intel Mobile Communications GmbH
8  * Copyright (C) 2015-2017	Intel Deutschland GmbH
9  * Copyright (C) 2018-2021 Intel Corporation
10  *
11  * utilities for mac80211
12  */
13 
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27 
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35 
36 /* privid for wiphys to determine whether they belong to us or not */
37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid;
38 
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 	struct ieee80211_local *local;
42 
43 	local = wiphy_priv(wiphy);
44 	return &local->hw;
45 }
46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
47 
48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 			enum nl80211_iftype type)
50 {
51 	__le16 fc = hdr->frame_control;
52 
53 	if (ieee80211_is_data(fc)) {
54 		if (len < 24) /* drop incorrect hdr len (data) */
55 			return NULL;
56 
57 		if (ieee80211_has_a4(fc))
58 			return NULL;
59 		if (ieee80211_has_tods(fc))
60 			return hdr->addr1;
61 		if (ieee80211_has_fromds(fc))
62 			return hdr->addr2;
63 
64 		return hdr->addr3;
65 	}
66 
67 	if (ieee80211_is_s1g_beacon(fc)) {
68 		struct ieee80211_ext *ext = (void *) hdr;
69 
70 		return ext->u.s1g_beacon.sa;
71 	}
72 
73 	if (ieee80211_is_mgmt(fc)) {
74 		if (len < 24) /* drop incorrect hdr len (mgmt) */
75 			return NULL;
76 		return hdr->addr3;
77 	}
78 
79 	if (ieee80211_is_ctl(fc)) {
80 		if (ieee80211_is_pspoll(fc))
81 			return hdr->addr1;
82 
83 		if (ieee80211_is_back_req(fc)) {
84 			switch (type) {
85 			case NL80211_IFTYPE_STATION:
86 				return hdr->addr2;
87 			case NL80211_IFTYPE_AP:
88 			case NL80211_IFTYPE_AP_VLAN:
89 				return hdr->addr1;
90 			default:
91 				break; /* fall through to the return */
92 			}
93 		}
94 	}
95 
96 	return NULL;
97 }
98 EXPORT_SYMBOL(ieee80211_get_bssid);
99 
100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
101 {
102 	struct sk_buff *skb;
103 	struct ieee80211_hdr *hdr;
104 
105 	skb_queue_walk(&tx->skbs, skb) {
106 		hdr = (struct ieee80211_hdr *) skb->data;
107 		hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
108 	}
109 }
110 
111 int ieee80211_frame_duration(enum nl80211_band band, size_t len,
112 			     int rate, int erp, int short_preamble,
113 			     int shift)
114 {
115 	int dur;
116 
117 	/* calculate duration (in microseconds, rounded up to next higher
118 	 * integer if it includes a fractional microsecond) to send frame of
119 	 * len bytes (does not include FCS) at the given rate. Duration will
120 	 * also include SIFS.
121 	 *
122 	 * rate is in 100 kbps, so divident is multiplied by 10 in the
123 	 * DIV_ROUND_UP() operations.
124 	 *
125 	 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and
126 	 * is assumed to be 0 otherwise.
127 	 */
128 
129 	if (band == NL80211_BAND_5GHZ || erp) {
130 		/*
131 		 * OFDM:
132 		 *
133 		 * N_DBPS = DATARATE x 4
134 		 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
135 		 *	(16 = SIGNAL time, 6 = tail bits)
136 		 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
137 		 *
138 		 * T_SYM = 4 usec
139 		 * 802.11a - 18.5.2: aSIFSTime = 16 usec
140 		 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
141 		 *	signal ext = 6 usec
142 		 */
143 		dur = 16; /* SIFS + signal ext */
144 		dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */
145 		dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */
146 
147 		/* IEEE 802.11-2012 18.3.2.4: all values above are:
148 		 *  * times 4 for 5 MHz
149 		 *  * times 2 for 10 MHz
150 		 */
151 		dur *= 1 << shift;
152 
153 		/* rates should already consider the channel bandwidth,
154 		 * don't apply divisor again.
155 		 */
156 		dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
157 					4 * rate); /* T_SYM x N_SYM */
158 	} else {
159 		/*
160 		 * 802.11b or 802.11g with 802.11b compatibility:
161 		 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
162 		 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
163 		 *
164 		 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
165 		 * aSIFSTime = 10 usec
166 		 * aPreambleLength = 144 usec or 72 usec with short preamble
167 		 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
168 		 */
169 		dur = 10; /* aSIFSTime = 10 usec */
170 		dur += short_preamble ? (72 + 24) : (144 + 48);
171 
172 		dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
173 	}
174 
175 	return dur;
176 }
177 
178 /* Exported duration function for driver use */
179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
180 					struct ieee80211_vif *vif,
181 					enum nl80211_band band,
182 					size_t frame_len,
183 					struct ieee80211_rate *rate)
184 {
185 	struct ieee80211_sub_if_data *sdata;
186 	u16 dur;
187 	int erp, shift = 0;
188 	bool short_preamble = false;
189 
190 	erp = 0;
191 	if (vif) {
192 		sdata = vif_to_sdata(vif);
193 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
194 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
195 			erp = rate->flags & IEEE80211_RATE_ERP_G;
196 		shift = ieee80211_vif_get_shift(vif);
197 	}
198 
199 	dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
200 				       short_preamble, shift);
201 
202 	return cpu_to_le16(dur);
203 }
204 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
205 
206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
207 			      struct ieee80211_vif *vif, size_t frame_len,
208 			      const struct ieee80211_tx_info *frame_txctl)
209 {
210 	struct ieee80211_local *local = hw_to_local(hw);
211 	struct ieee80211_rate *rate;
212 	struct ieee80211_sub_if_data *sdata;
213 	bool short_preamble;
214 	int erp, shift = 0, bitrate;
215 	u16 dur;
216 	struct ieee80211_supported_band *sband;
217 
218 	sband = local->hw.wiphy->bands[frame_txctl->band];
219 
220 	short_preamble = false;
221 
222 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
223 
224 	erp = 0;
225 	if (vif) {
226 		sdata = vif_to_sdata(vif);
227 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
228 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
229 			erp = rate->flags & IEEE80211_RATE_ERP_G;
230 		shift = ieee80211_vif_get_shift(vif);
231 	}
232 
233 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
234 
235 	/* CTS duration */
236 	dur = ieee80211_frame_duration(sband->band, 10, bitrate,
237 				       erp, short_preamble, shift);
238 	/* Data frame duration */
239 	dur += ieee80211_frame_duration(sband->band, frame_len, bitrate,
240 					erp, short_preamble, shift);
241 	/* ACK duration */
242 	dur += ieee80211_frame_duration(sband->band, 10, bitrate,
243 					erp, short_preamble, shift);
244 
245 	return cpu_to_le16(dur);
246 }
247 EXPORT_SYMBOL(ieee80211_rts_duration);
248 
249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
250 				    struct ieee80211_vif *vif,
251 				    size_t frame_len,
252 				    const struct ieee80211_tx_info *frame_txctl)
253 {
254 	struct ieee80211_local *local = hw_to_local(hw);
255 	struct ieee80211_rate *rate;
256 	struct ieee80211_sub_if_data *sdata;
257 	bool short_preamble;
258 	int erp, shift = 0, bitrate;
259 	u16 dur;
260 	struct ieee80211_supported_band *sband;
261 
262 	sband = local->hw.wiphy->bands[frame_txctl->band];
263 
264 	short_preamble = false;
265 
266 	rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
267 	erp = 0;
268 	if (vif) {
269 		sdata = vif_to_sdata(vif);
270 		short_preamble = sdata->vif.bss_conf.use_short_preamble;
271 		if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
272 			erp = rate->flags & IEEE80211_RATE_ERP_G;
273 		shift = ieee80211_vif_get_shift(vif);
274 	}
275 
276 	bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift);
277 
278 	/* Data frame duration */
279 	dur = ieee80211_frame_duration(sband->band, frame_len, bitrate,
280 				       erp, short_preamble, shift);
281 	if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
282 		/* ACK duration */
283 		dur += ieee80211_frame_duration(sband->band, 10, bitrate,
284 						erp, short_preamble, shift);
285 	}
286 
287 	return cpu_to_le16(dur);
288 }
289 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
290 
291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac)
292 {
293 	struct ieee80211_local *local = sdata->local;
294 	struct ieee80211_vif *vif = &sdata->vif;
295 	struct fq *fq = &local->fq;
296 	struct ps_data *ps = NULL;
297 	struct txq_info *txqi;
298 	struct sta_info *sta;
299 	int i;
300 
301 	local_bh_disable();
302 	spin_lock(&fq->lock);
303 
304 	if (sdata->vif.type == NL80211_IFTYPE_AP)
305 		ps = &sdata->bss->ps;
306 
307 	sdata->vif.txqs_stopped[ac] = false;
308 
309 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
310 		if (sdata != sta->sdata)
311 			continue;
312 
313 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
314 			struct ieee80211_txq *txq = sta->sta.txq[i];
315 
316 			if (!txq)
317 				continue;
318 
319 			txqi = to_txq_info(txq);
320 
321 			if (ac != txq->ac)
322 				continue;
323 
324 			if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX,
325 						&txqi->flags))
326 				continue;
327 
328 			spin_unlock(&fq->lock);
329 			drv_wake_tx_queue(local, txqi);
330 			spin_lock(&fq->lock);
331 		}
332 	}
333 
334 	if (!vif->txq)
335 		goto out;
336 
337 	txqi = to_txq_info(vif->txq);
338 
339 	if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) ||
340 	    (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac)
341 		goto out;
342 
343 	spin_unlock(&fq->lock);
344 
345 	drv_wake_tx_queue(local, txqi);
346 	local_bh_enable();
347 	return;
348 out:
349 	spin_unlock(&fq->lock);
350 	local_bh_enable();
351 }
352 
353 static void
354 __releases(&local->queue_stop_reason_lock)
355 __acquires(&local->queue_stop_reason_lock)
356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags)
357 {
358 	struct ieee80211_sub_if_data *sdata;
359 	int n_acs = IEEE80211_NUM_ACS;
360 	int i;
361 
362 	rcu_read_lock();
363 
364 	if (local->hw.queues < IEEE80211_NUM_ACS)
365 		n_acs = 1;
366 
367 	for (i = 0; i < local->hw.queues; i++) {
368 		if (local->queue_stop_reasons[i])
369 			continue;
370 
371 		spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags);
372 		list_for_each_entry_rcu(sdata, &local->interfaces, list) {
373 			int ac;
374 
375 			for (ac = 0; ac < n_acs; ac++) {
376 				int ac_queue = sdata->vif.hw_queue[ac];
377 
378 				if (ac_queue == i ||
379 				    sdata->vif.cab_queue == i)
380 					__ieee80211_wake_txqs(sdata, ac);
381 			}
382 		}
383 		spin_lock_irqsave(&local->queue_stop_reason_lock, *flags);
384 	}
385 
386 	rcu_read_unlock();
387 }
388 
389 void ieee80211_wake_txqs(struct tasklet_struct *t)
390 {
391 	struct ieee80211_local *local = from_tasklet(local, t,
392 						     wake_txqs_tasklet);
393 	unsigned long flags;
394 
395 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
396 	_ieee80211_wake_txqs(local, &flags);
397 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
398 }
399 
400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
401 {
402 	struct ieee80211_sub_if_data *sdata;
403 	int n_acs = IEEE80211_NUM_ACS;
404 
405 	if (local->ops->wake_tx_queue)
406 		return;
407 
408 	if (local->hw.queues < IEEE80211_NUM_ACS)
409 		n_acs = 1;
410 
411 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
412 		int ac;
413 
414 		if (!sdata->dev)
415 			continue;
416 
417 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
418 		    local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
419 			continue;
420 
421 		for (ac = 0; ac < n_acs; ac++) {
422 			int ac_queue = sdata->vif.hw_queue[ac];
423 
424 			if (ac_queue == queue ||
425 			    (sdata->vif.cab_queue == queue &&
426 			     local->queue_stop_reasons[ac_queue] == 0 &&
427 			     skb_queue_empty(&local->pending[ac_queue])))
428 				netif_wake_subqueue(sdata->dev, ac);
429 		}
430 	}
431 }
432 
433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
434 				   enum queue_stop_reason reason,
435 				   bool refcounted,
436 				   unsigned long *flags)
437 {
438 	struct ieee80211_local *local = hw_to_local(hw);
439 
440 	trace_wake_queue(local, queue, reason);
441 
442 	if (WARN_ON(queue >= hw->queues))
443 		return;
444 
445 	if (!test_bit(reason, &local->queue_stop_reasons[queue]))
446 		return;
447 
448 	if (!refcounted) {
449 		local->q_stop_reasons[queue][reason] = 0;
450 	} else {
451 		local->q_stop_reasons[queue][reason]--;
452 		if (WARN_ON(local->q_stop_reasons[queue][reason] < 0))
453 			local->q_stop_reasons[queue][reason] = 0;
454 	}
455 
456 	if (local->q_stop_reasons[queue][reason] == 0)
457 		__clear_bit(reason, &local->queue_stop_reasons[queue]);
458 
459 	if (local->queue_stop_reasons[queue] != 0)
460 		/* someone still has this queue stopped */
461 		return;
462 
463 	if (skb_queue_empty(&local->pending[queue])) {
464 		rcu_read_lock();
465 		ieee80211_propagate_queue_wake(local, queue);
466 		rcu_read_unlock();
467 	} else
468 		tasklet_schedule(&local->tx_pending_tasklet);
469 
470 	/*
471 	 * Calling _ieee80211_wake_txqs here can be a problem because it may
472 	 * release queue_stop_reason_lock which has been taken by
473 	 * __ieee80211_wake_queue's caller. It is certainly not very nice to
474 	 * release someone's lock, but it is fine because all the callers of
475 	 * __ieee80211_wake_queue call it right before releasing the lock.
476 	 */
477 	if (local->ops->wake_tx_queue) {
478 		if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER)
479 			tasklet_schedule(&local->wake_txqs_tasklet);
480 		else
481 			_ieee80211_wake_txqs(local, flags);
482 	}
483 }
484 
485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
486 				    enum queue_stop_reason reason,
487 				    bool refcounted)
488 {
489 	struct ieee80211_local *local = hw_to_local(hw);
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
493 	__ieee80211_wake_queue(hw, queue, reason, refcounted, &flags);
494 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
495 }
496 
497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
498 {
499 	ieee80211_wake_queue_by_reason(hw, queue,
500 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
501 				       false);
502 }
503 EXPORT_SYMBOL(ieee80211_wake_queue);
504 
505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
506 				   enum queue_stop_reason reason,
507 				   bool refcounted)
508 {
509 	struct ieee80211_local *local = hw_to_local(hw);
510 	struct ieee80211_sub_if_data *sdata;
511 	int n_acs = IEEE80211_NUM_ACS;
512 
513 	trace_stop_queue(local, queue, reason);
514 
515 	if (WARN_ON(queue >= hw->queues))
516 		return;
517 
518 	if (!refcounted)
519 		local->q_stop_reasons[queue][reason] = 1;
520 	else
521 		local->q_stop_reasons[queue][reason]++;
522 
523 	if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue]))
524 		return;
525 
526 	if (local->hw.queues < IEEE80211_NUM_ACS)
527 		n_acs = 1;
528 
529 	rcu_read_lock();
530 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
531 		int ac;
532 
533 		if (!sdata->dev)
534 			continue;
535 
536 		for (ac = 0; ac < n_acs; ac++) {
537 			if (sdata->vif.hw_queue[ac] == queue ||
538 			    sdata->vif.cab_queue == queue) {
539 				if (!local->ops->wake_tx_queue) {
540 					netif_stop_subqueue(sdata->dev, ac);
541 					continue;
542 				}
543 				spin_lock(&local->fq.lock);
544 				sdata->vif.txqs_stopped[ac] = true;
545 				spin_unlock(&local->fq.lock);
546 			}
547 		}
548 	}
549 	rcu_read_unlock();
550 }
551 
552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
553 				    enum queue_stop_reason reason,
554 				    bool refcounted)
555 {
556 	struct ieee80211_local *local = hw_to_local(hw);
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
560 	__ieee80211_stop_queue(hw, queue, reason, refcounted);
561 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
562 }
563 
564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
565 {
566 	ieee80211_stop_queue_by_reason(hw, queue,
567 				       IEEE80211_QUEUE_STOP_REASON_DRIVER,
568 				       false);
569 }
570 EXPORT_SYMBOL(ieee80211_stop_queue);
571 
572 void ieee80211_add_pending_skb(struct ieee80211_local *local,
573 			       struct sk_buff *skb)
574 {
575 	struct ieee80211_hw *hw = &local->hw;
576 	unsigned long flags;
577 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
578 	int queue = info->hw_queue;
579 
580 	if (WARN_ON(!info->control.vif)) {
581 		ieee80211_free_txskb(&local->hw, skb);
582 		return;
583 	}
584 
585 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
586 	__ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
587 			       false);
588 	__skb_queue_tail(&local->pending[queue], skb);
589 	__ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
590 			       false, &flags);
591 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
592 }
593 
594 void ieee80211_add_pending_skbs(struct ieee80211_local *local,
595 				struct sk_buff_head *skbs)
596 {
597 	struct ieee80211_hw *hw = &local->hw;
598 	struct sk_buff *skb;
599 	unsigned long flags;
600 	int queue, i;
601 
602 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
603 	while ((skb = skb_dequeue(skbs))) {
604 		struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
605 
606 		if (WARN_ON(!info->control.vif)) {
607 			ieee80211_free_txskb(&local->hw, skb);
608 			continue;
609 		}
610 
611 		queue = info->hw_queue;
612 
613 		__ieee80211_stop_queue(hw, queue,
614 				IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
615 				false);
616 
617 		__skb_queue_tail(&local->pending[queue], skb);
618 	}
619 
620 	for (i = 0; i < hw->queues; i++)
621 		__ieee80211_wake_queue(hw, i,
622 			IEEE80211_QUEUE_STOP_REASON_SKB_ADD,
623 			false, &flags);
624 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
625 }
626 
627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
628 				     unsigned long queues,
629 				     enum queue_stop_reason reason,
630 				     bool refcounted)
631 {
632 	struct ieee80211_local *local = hw_to_local(hw);
633 	unsigned long flags;
634 	int i;
635 
636 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
637 
638 	for_each_set_bit(i, &queues, hw->queues)
639 		__ieee80211_stop_queue(hw, i, reason, refcounted);
640 
641 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
642 }
643 
644 void ieee80211_stop_queues(struct ieee80211_hw *hw)
645 {
646 	ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
647 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
648 					false);
649 }
650 EXPORT_SYMBOL(ieee80211_stop_queues);
651 
652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
653 {
654 	struct ieee80211_local *local = hw_to_local(hw);
655 	unsigned long flags;
656 	int ret;
657 
658 	if (WARN_ON(queue >= hw->queues))
659 		return true;
660 
661 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
662 	ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
663 		       &local->queue_stop_reasons[queue]);
664 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
665 	return ret;
666 }
667 EXPORT_SYMBOL(ieee80211_queue_stopped);
668 
669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
670 				     unsigned long queues,
671 				     enum queue_stop_reason reason,
672 				     bool refcounted)
673 {
674 	struct ieee80211_local *local = hw_to_local(hw);
675 	unsigned long flags;
676 	int i;
677 
678 	spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
679 
680 	for_each_set_bit(i, &queues, hw->queues)
681 		__ieee80211_wake_queue(hw, i, reason, refcounted, &flags);
682 
683 	spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
684 }
685 
686 void ieee80211_wake_queues(struct ieee80211_hw *hw)
687 {
688 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
689 					IEEE80211_QUEUE_STOP_REASON_DRIVER,
690 					false);
691 }
692 EXPORT_SYMBOL(ieee80211_wake_queues);
693 
694 static unsigned int
695 ieee80211_get_vif_queues(struct ieee80211_local *local,
696 			 struct ieee80211_sub_if_data *sdata)
697 {
698 	unsigned int queues;
699 
700 	if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) {
701 		int ac;
702 
703 		queues = 0;
704 
705 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
706 			queues |= BIT(sdata->vif.hw_queue[ac]);
707 		if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
708 			queues |= BIT(sdata->vif.cab_queue);
709 	} else {
710 		/* all queues */
711 		queues = BIT(local->hw.queues) - 1;
712 	}
713 
714 	return queues;
715 }
716 
717 void __ieee80211_flush_queues(struct ieee80211_local *local,
718 			      struct ieee80211_sub_if_data *sdata,
719 			      unsigned int queues, bool drop)
720 {
721 	if (!local->ops->flush)
722 		return;
723 
724 	/*
725 	 * If no queue was set, or if the HW doesn't support
726 	 * IEEE80211_HW_QUEUE_CONTROL - flush all queues
727 	 */
728 	if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
729 		queues = ieee80211_get_vif_queues(local, sdata);
730 
731 	ieee80211_stop_queues_by_reason(&local->hw, queues,
732 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
733 					false);
734 
735 	drv_flush(local, sdata, queues, drop);
736 
737 	ieee80211_wake_queues_by_reason(&local->hw, queues,
738 					IEEE80211_QUEUE_STOP_REASON_FLUSH,
739 					false);
740 }
741 
742 void ieee80211_flush_queues(struct ieee80211_local *local,
743 			    struct ieee80211_sub_if_data *sdata, bool drop)
744 {
745 	__ieee80211_flush_queues(local, sdata, 0, drop);
746 }
747 
748 void ieee80211_stop_vif_queues(struct ieee80211_local *local,
749 			       struct ieee80211_sub_if_data *sdata,
750 			       enum queue_stop_reason reason)
751 {
752 	ieee80211_stop_queues_by_reason(&local->hw,
753 					ieee80211_get_vif_queues(local, sdata),
754 					reason, true);
755 }
756 
757 void ieee80211_wake_vif_queues(struct ieee80211_local *local,
758 			       struct ieee80211_sub_if_data *sdata,
759 			       enum queue_stop_reason reason)
760 {
761 	ieee80211_wake_queues_by_reason(&local->hw,
762 					ieee80211_get_vif_queues(local, sdata),
763 					reason, true);
764 }
765 
766 static void __iterate_interfaces(struct ieee80211_local *local,
767 				 u32 iter_flags,
768 				 void (*iterator)(void *data, u8 *mac,
769 						  struct ieee80211_vif *vif),
770 				 void *data)
771 {
772 	struct ieee80211_sub_if_data *sdata;
773 	bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE;
774 
775 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
776 		switch (sdata->vif.type) {
777 		case NL80211_IFTYPE_MONITOR:
778 			if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE))
779 				continue;
780 			break;
781 		case NL80211_IFTYPE_AP_VLAN:
782 			continue;
783 		default:
784 			break;
785 		}
786 		if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
787 		    active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
788 			continue;
789 		if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) &&
790 		    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
791 			continue;
792 		if (ieee80211_sdata_running(sdata) || !active_only)
793 			iterator(data, sdata->vif.addr,
794 				 &sdata->vif);
795 	}
796 
797 	sdata = rcu_dereference_check(local->monitor_sdata,
798 				      lockdep_is_held(&local->iflist_mtx) ||
799 				      lockdep_rtnl_is_held());
800 	if (sdata &&
801 	    (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only ||
802 	     sdata->flags & IEEE80211_SDATA_IN_DRIVER))
803 		iterator(data, sdata->vif.addr, &sdata->vif);
804 }
805 
806 void ieee80211_iterate_interfaces(
807 	struct ieee80211_hw *hw, u32 iter_flags,
808 	void (*iterator)(void *data, u8 *mac,
809 			 struct ieee80211_vif *vif),
810 	void *data)
811 {
812 	struct ieee80211_local *local = hw_to_local(hw);
813 
814 	mutex_lock(&local->iflist_mtx);
815 	__iterate_interfaces(local, iter_flags, iterator, data);
816 	mutex_unlock(&local->iflist_mtx);
817 }
818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces);
819 
820 void ieee80211_iterate_active_interfaces_atomic(
821 	struct ieee80211_hw *hw, u32 iter_flags,
822 	void (*iterator)(void *data, u8 *mac,
823 			 struct ieee80211_vif *vif),
824 	void *data)
825 {
826 	struct ieee80211_local *local = hw_to_local(hw);
827 
828 	rcu_read_lock();
829 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
830 			     iterator, data);
831 	rcu_read_unlock();
832 }
833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
834 
835 void ieee80211_iterate_active_interfaces_mtx(
836 	struct ieee80211_hw *hw, u32 iter_flags,
837 	void (*iterator)(void *data, u8 *mac,
838 			 struct ieee80211_vif *vif),
839 	void *data)
840 {
841 	struct ieee80211_local *local = hw_to_local(hw);
842 
843 	lockdep_assert_wiphy(hw->wiphy);
844 
845 	__iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE,
846 			     iterator, data);
847 }
848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx);
849 
850 static void __iterate_stations(struct ieee80211_local *local,
851 			       void (*iterator)(void *data,
852 						struct ieee80211_sta *sta),
853 			       void *data)
854 {
855 	struct sta_info *sta;
856 
857 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
858 		if (!sta->uploaded)
859 			continue;
860 
861 		iterator(data, &sta->sta);
862 	}
863 }
864 
865 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw,
866 			void (*iterator)(void *data,
867 					 struct ieee80211_sta *sta),
868 			void *data)
869 {
870 	struct ieee80211_local *local = hw_to_local(hw);
871 
872 	rcu_read_lock();
873 	__iterate_stations(local, iterator, data);
874 	rcu_read_unlock();
875 }
876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic);
877 
878 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev)
879 {
880 	struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev);
881 
882 	if (!ieee80211_sdata_running(sdata) ||
883 	    !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
884 		return NULL;
885 	return &sdata->vif;
886 }
887 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif);
888 
889 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif)
890 {
891 	if (!vif)
892 		return NULL;
893 
894 	return &vif_to_sdata(vif)->wdev;
895 }
896 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev);
897 
898 /*
899  * Nothing should have been stuffed into the workqueue during
900  * the suspend->resume cycle. Since we can't check each caller
901  * of this function if we are already quiescing / suspended,
902  * check here and don't WARN since this can actually happen when
903  * the rx path (for example) is racing against __ieee80211_suspend
904  * and suspending / quiescing was set after the rx path checked
905  * them.
906  */
907 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
908 {
909 	if (local->quiescing || (local->suspended && !local->resuming)) {
910 		pr_warn("queueing ieee80211 work while going to suspend\n");
911 		return false;
912 	}
913 
914 	return true;
915 }
916 
917 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
918 {
919 	struct ieee80211_local *local = hw_to_local(hw);
920 
921 	if (!ieee80211_can_queue_work(local))
922 		return;
923 
924 	queue_work(local->workqueue, work);
925 }
926 EXPORT_SYMBOL(ieee80211_queue_work);
927 
928 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
929 				  struct delayed_work *dwork,
930 				  unsigned long delay)
931 {
932 	struct ieee80211_local *local = hw_to_local(hw);
933 
934 	if (!ieee80211_can_queue_work(local))
935 		return;
936 
937 	queue_delayed_work(local->workqueue, dwork, delay);
938 }
939 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
940 
941 static void ieee80211_parse_extension_element(u32 *crc,
942 					      const struct element *elem,
943 					      struct ieee802_11_elems *elems)
944 {
945 	const void *data = elem->data + 1;
946 	u8 len = elem->datalen - 1;
947 
948 	switch (elem->data[0]) {
949 	case WLAN_EID_EXT_HE_MU_EDCA:
950 		if (len >= sizeof(*elems->mu_edca_param_set)) {
951 			elems->mu_edca_param_set = data;
952 			if (crc)
953 				*crc = crc32_be(*crc, (void *)elem,
954 						elem->datalen + 2);
955 		}
956 		break;
957 	case WLAN_EID_EXT_HE_CAPABILITY:
958 		elems->he_cap = data;
959 		elems->he_cap_len = len;
960 		break;
961 	case WLAN_EID_EXT_HE_OPERATION:
962 		if (len >= sizeof(*elems->he_operation) &&
963 		    len >= ieee80211_he_oper_size(data) - 1) {
964 			if (crc)
965 				*crc = crc32_be(*crc, (void *)elem,
966 						elem->datalen + 2);
967 			elems->he_operation = data;
968 		}
969 		break;
970 	case WLAN_EID_EXT_UORA:
971 		if (len >= 1)
972 			elems->uora_element = data;
973 		break;
974 	case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME:
975 		if (len == 3)
976 			elems->max_channel_switch_time = data;
977 		break;
978 	case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION:
979 		if (len >= sizeof(*elems->mbssid_config_ie))
980 			elems->mbssid_config_ie = data;
981 		break;
982 	case WLAN_EID_EXT_HE_SPR:
983 		if (len >= sizeof(*elems->he_spr) &&
984 		    len >= ieee80211_he_spr_size(data))
985 			elems->he_spr = data;
986 		break;
987 	case WLAN_EID_EXT_HE_6GHZ_CAPA:
988 		if (len >= sizeof(*elems->he_6ghz_capa))
989 			elems->he_6ghz_capa = data;
990 		break;
991 	}
992 }
993 
994 static u32
995 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
996 			    struct ieee802_11_elems *elems,
997 			    u64 filter, u32 crc,
998 			    const struct element *check_inherit)
999 {
1000 	const struct element *elem;
1001 	bool calc_crc = filter != 0;
1002 	DECLARE_BITMAP(seen_elems, 256);
1003 	const u8 *ie;
1004 
1005 	bitmap_zero(seen_elems, 256);
1006 
1007 	for_each_element(elem, start, len) {
1008 		bool elem_parse_failed;
1009 		u8 id = elem->id;
1010 		u8 elen = elem->datalen;
1011 		const u8 *pos = elem->data;
1012 
1013 		if (check_inherit &&
1014 		    !cfg80211_is_element_inherited(elem,
1015 						   check_inherit))
1016 			continue;
1017 
1018 		switch (id) {
1019 		case WLAN_EID_SSID:
1020 		case WLAN_EID_SUPP_RATES:
1021 		case WLAN_EID_FH_PARAMS:
1022 		case WLAN_EID_DS_PARAMS:
1023 		case WLAN_EID_CF_PARAMS:
1024 		case WLAN_EID_TIM:
1025 		case WLAN_EID_IBSS_PARAMS:
1026 		case WLAN_EID_CHALLENGE:
1027 		case WLAN_EID_RSN:
1028 		case WLAN_EID_ERP_INFO:
1029 		case WLAN_EID_EXT_SUPP_RATES:
1030 		case WLAN_EID_HT_CAPABILITY:
1031 		case WLAN_EID_HT_OPERATION:
1032 		case WLAN_EID_VHT_CAPABILITY:
1033 		case WLAN_EID_VHT_OPERATION:
1034 		case WLAN_EID_MESH_ID:
1035 		case WLAN_EID_MESH_CONFIG:
1036 		case WLAN_EID_PEER_MGMT:
1037 		case WLAN_EID_PREQ:
1038 		case WLAN_EID_PREP:
1039 		case WLAN_EID_PERR:
1040 		case WLAN_EID_RANN:
1041 		case WLAN_EID_CHANNEL_SWITCH:
1042 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1043 		case WLAN_EID_COUNTRY:
1044 		case WLAN_EID_PWR_CONSTRAINT:
1045 		case WLAN_EID_TIMEOUT_INTERVAL:
1046 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1047 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1048 		case WLAN_EID_CHAN_SWITCH_PARAM:
1049 		case WLAN_EID_EXT_CAPABILITY:
1050 		case WLAN_EID_CHAN_SWITCH_TIMING:
1051 		case WLAN_EID_LINK_ID:
1052 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1053 		case WLAN_EID_RSNX:
1054 		case WLAN_EID_S1G_BCN_COMPAT:
1055 		case WLAN_EID_S1G_CAPABILITIES:
1056 		case WLAN_EID_S1G_OPERATION:
1057 		case WLAN_EID_AID_RESPONSE:
1058 		case WLAN_EID_S1G_SHORT_BCN_INTERVAL:
1059 		/*
1060 		 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
1061 		 * that if the content gets bigger it might be needed more than once
1062 		 */
1063 			if (test_bit(id, seen_elems)) {
1064 				elems->parse_error = true;
1065 				continue;
1066 			}
1067 			break;
1068 		}
1069 
1070 		if (calc_crc && id < 64 && (filter & (1ULL << id)))
1071 			crc = crc32_be(crc, pos - 2, elen + 2);
1072 
1073 		elem_parse_failed = false;
1074 
1075 		switch (id) {
1076 		case WLAN_EID_LINK_ID:
1077 			if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) {
1078 				elem_parse_failed = true;
1079 				break;
1080 			}
1081 			elems->lnk_id = (void *)(pos - 2);
1082 			break;
1083 		case WLAN_EID_CHAN_SWITCH_TIMING:
1084 			if (elen < sizeof(struct ieee80211_ch_switch_timing)) {
1085 				elem_parse_failed = true;
1086 				break;
1087 			}
1088 			elems->ch_sw_timing = (void *)pos;
1089 			break;
1090 		case WLAN_EID_EXT_CAPABILITY:
1091 			elems->ext_capab = pos;
1092 			elems->ext_capab_len = elen;
1093 			break;
1094 		case WLAN_EID_SSID:
1095 			elems->ssid = pos;
1096 			elems->ssid_len = elen;
1097 			break;
1098 		case WLAN_EID_SUPP_RATES:
1099 			elems->supp_rates = pos;
1100 			elems->supp_rates_len = elen;
1101 			break;
1102 		case WLAN_EID_DS_PARAMS:
1103 			if (elen >= 1)
1104 				elems->ds_params = pos;
1105 			else
1106 				elem_parse_failed = true;
1107 			break;
1108 		case WLAN_EID_TIM:
1109 			if (elen >= sizeof(struct ieee80211_tim_ie)) {
1110 				elems->tim = (void *)pos;
1111 				elems->tim_len = elen;
1112 			} else
1113 				elem_parse_failed = true;
1114 			break;
1115 		case WLAN_EID_CHALLENGE:
1116 			elems->challenge = pos;
1117 			elems->challenge_len = elen;
1118 			break;
1119 		case WLAN_EID_VENDOR_SPECIFIC:
1120 			if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
1121 			    pos[2] == 0xf2) {
1122 				/* Microsoft OUI (00:50:F2) */
1123 
1124 				if (calc_crc)
1125 					crc = crc32_be(crc, pos - 2, elen + 2);
1126 
1127 				if (elen >= 5 && pos[3] == 2) {
1128 					/* OUI Type 2 - WMM IE */
1129 					if (pos[4] == 0) {
1130 						elems->wmm_info = pos;
1131 						elems->wmm_info_len = elen;
1132 					} else if (pos[4] == 1) {
1133 						elems->wmm_param = pos;
1134 						elems->wmm_param_len = elen;
1135 					}
1136 				}
1137 			}
1138 			break;
1139 		case WLAN_EID_RSN:
1140 			elems->rsn = pos;
1141 			elems->rsn_len = elen;
1142 			break;
1143 		case WLAN_EID_ERP_INFO:
1144 			if (elen >= 1)
1145 				elems->erp_info = pos;
1146 			else
1147 				elem_parse_failed = true;
1148 			break;
1149 		case WLAN_EID_EXT_SUPP_RATES:
1150 			elems->ext_supp_rates = pos;
1151 			elems->ext_supp_rates_len = elen;
1152 			break;
1153 		case WLAN_EID_HT_CAPABILITY:
1154 			if (elen >= sizeof(struct ieee80211_ht_cap))
1155 				elems->ht_cap_elem = (void *)pos;
1156 			else
1157 				elem_parse_failed = true;
1158 			break;
1159 		case WLAN_EID_HT_OPERATION:
1160 			if (elen >= sizeof(struct ieee80211_ht_operation))
1161 				elems->ht_operation = (void *)pos;
1162 			else
1163 				elem_parse_failed = true;
1164 			break;
1165 		case WLAN_EID_VHT_CAPABILITY:
1166 			if (elen >= sizeof(struct ieee80211_vht_cap))
1167 				elems->vht_cap_elem = (void *)pos;
1168 			else
1169 				elem_parse_failed = true;
1170 			break;
1171 		case WLAN_EID_VHT_OPERATION:
1172 			if (elen >= sizeof(struct ieee80211_vht_operation)) {
1173 				elems->vht_operation = (void *)pos;
1174 				if (calc_crc)
1175 					crc = crc32_be(crc, pos - 2, elen + 2);
1176 				break;
1177 			}
1178 			elem_parse_failed = true;
1179 			break;
1180 		case WLAN_EID_OPMODE_NOTIF:
1181 			if (elen > 0) {
1182 				elems->opmode_notif = pos;
1183 				if (calc_crc)
1184 					crc = crc32_be(crc, pos - 2, elen + 2);
1185 				break;
1186 			}
1187 			elem_parse_failed = true;
1188 			break;
1189 		case WLAN_EID_MESH_ID:
1190 			elems->mesh_id = pos;
1191 			elems->mesh_id_len = elen;
1192 			break;
1193 		case WLAN_EID_MESH_CONFIG:
1194 			if (elen >= sizeof(struct ieee80211_meshconf_ie))
1195 				elems->mesh_config = (void *)pos;
1196 			else
1197 				elem_parse_failed = true;
1198 			break;
1199 		case WLAN_EID_PEER_MGMT:
1200 			elems->peering = pos;
1201 			elems->peering_len = elen;
1202 			break;
1203 		case WLAN_EID_MESH_AWAKE_WINDOW:
1204 			if (elen >= 2)
1205 				elems->awake_window = (void *)pos;
1206 			break;
1207 		case WLAN_EID_PREQ:
1208 			elems->preq = pos;
1209 			elems->preq_len = elen;
1210 			break;
1211 		case WLAN_EID_PREP:
1212 			elems->prep = pos;
1213 			elems->prep_len = elen;
1214 			break;
1215 		case WLAN_EID_PERR:
1216 			elems->perr = pos;
1217 			elems->perr_len = elen;
1218 			break;
1219 		case WLAN_EID_RANN:
1220 			if (elen >= sizeof(struct ieee80211_rann_ie))
1221 				elems->rann = (void *)pos;
1222 			else
1223 				elem_parse_failed = true;
1224 			break;
1225 		case WLAN_EID_CHANNEL_SWITCH:
1226 			if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
1227 				elem_parse_failed = true;
1228 				break;
1229 			}
1230 			elems->ch_switch_ie = (void *)pos;
1231 			break;
1232 		case WLAN_EID_EXT_CHANSWITCH_ANN:
1233 			if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
1234 				elem_parse_failed = true;
1235 				break;
1236 			}
1237 			elems->ext_chansw_ie = (void *)pos;
1238 			break;
1239 		case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
1240 			if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
1241 				elem_parse_failed = true;
1242 				break;
1243 			}
1244 			elems->sec_chan_offs = (void *)pos;
1245 			break;
1246 		case WLAN_EID_CHAN_SWITCH_PARAM:
1247 			if (elen <
1248 			    sizeof(*elems->mesh_chansw_params_ie)) {
1249 				elem_parse_failed = true;
1250 				break;
1251 			}
1252 			elems->mesh_chansw_params_ie = (void *)pos;
1253 			break;
1254 		case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
1255 			if (!action ||
1256 			    elen < sizeof(*elems->wide_bw_chansw_ie)) {
1257 				elem_parse_failed = true;
1258 				break;
1259 			}
1260 			elems->wide_bw_chansw_ie = (void *)pos;
1261 			break;
1262 		case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
1263 			if (action) {
1264 				elem_parse_failed = true;
1265 				break;
1266 			}
1267 			/*
1268 			 * This is a bit tricky, but as we only care about
1269 			 * the wide bandwidth channel switch element, so
1270 			 * just parse it out manually.
1271 			 */
1272 			ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
1273 					      pos, elen);
1274 			if (ie) {
1275 				if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie))
1276 					elems->wide_bw_chansw_ie =
1277 						(void *)(ie + 2);
1278 				else
1279 					elem_parse_failed = true;
1280 			}
1281 			break;
1282 		case WLAN_EID_COUNTRY:
1283 			elems->country_elem = pos;
1284 			elems->country_elem_len = elen;
1285 			break;
1286 		case WLAN_EID_PWR_CONSTRAINT:
1287 			if (elen != 1) {
1288 				elem_parse_failed = true;
1289 				break;
1290 			}
1291 			elems->pwr_constr_elem = pos;
1292 			break;
1293 		case WLAN_EID_CISCO_VENDOR_SPECIFIC:
1294 			/* Lots of different options exist, but we only care
1295 			 * about the Dynamic Transmit Power Control element.
1296 			 * First check for the Cisco OUI, then for the DTPC
1297 			 * tag (0x00).
1298 			 */
1299 			if (elen < 4) {
1300 				elem_parse_failed = true;
1301 				break;
1302 			}
1303 
1304 			if (pos[0] != 0x00 || pos[1] != 0x40 ||
1305 			    pos[2] != 0x96 || pos[3] != 0x00)
1306 				break;
1307 
1308 			if (elen != 6) {
1309 				elem_parse_failed = true;
1310 				break;
1311 			}
1312 
1313 			if (calc_crc)
1314 				crc = crc32_be(crc, pos - 2, elen + 2);
1315 
1316 			elems->cisco_dtpc_elem = pos;
1317 			break;
1318 		case WLAN_EID_ADDBA_EXT:
1319 			if (elen < sizeof(struct ieee80211_addba_ext_ie)) {
1320 				elem_parse_failed = true;
1321 				break;
1322 			}
1323 			elems->addba_ext_ie = (void *)pos;
1324 			break;
1325 		case WLAN_EID_TIMEOUT_INTERVAL:
1326 			if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
1327 				elems->timeout_int = (void *)pos;
1328 			else
1329 				elem_parse_failed = true;
1330 			break;
1331 		case WLAN_EID_BSS_MAX_IDLE_PERIOD:
1332 			if (elen >= sizeof(*elems->max_idle_period_ie))
1333 				elems->max_idle_period_ie = (void *)pos;
1334 			break;
1335 		case WLAN_EID_RSNX:
1336 			elems->rsnx = pos;
1337 			elems->rsnx_len = elen;
1338 			break;
1339 		case WLAN_EID_TX_POWER_ENVELOPE:
1340 			if (elen < 1 ||
1341 			    elen > sizeof(struct ieee80211_tx_pwr_env))
1342 				break;
1343 
1344 			if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env))
1345 				break;
1346 
1347 			elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos;
1348 			elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen;
1349 			elems->tx_pwr_env_num++;
1350 			break;
1351 		case WLAN_EID_EXTENSION:
1352 			ieee80211_parse_extension_element(calc_crc ?
1353 								&crc : NULL,
1354 							  elem, elems);
1355 			break;
1356 		case WLAN_EID_S1G_CAPABILITIES:
1357 			if (elen >= sizeof(*elems->s1g_capab))
1358 				elems->s1g_capab = (void *)pos;
1359 			else
1360 				elem_parse_failed = true;
1361 			break;
1362 		case WLAN_EID_S1G_OPERATION:
1363 			if (elen == sizeof(*elems->s1g_oper))
1364 				elems->s1g_oper = (void *)pos;
1365 			else
1366 				elem_parse_failed = true;
1367 			break;
1368 		case WLAN_EID_S1G_BCN_COMPAT:
1369 			if (elen == sizeof(*elems->s1g_bcn_compat))
1370 				elems->s1g_bcn_compat = (void *)pos;
1371 			else
1372 				elem_parse_failed = true;
1373 			break;
1374 		case WLAN_EID_AID_RESPONSE:
1375 			if (elen == sizeof(struct ieee80211_aid_response_ie))
1376 				elems->aid_resp = (void *)pos;
1377 			else
1378 				elem_parse_failed = true;
1379 			break;
1380 		default:
1381 			break;
1382 		}
1383 
1384 		if (elem_parse_failed)
1385 			elems->parse_error = true;
1386 		else
1387 			__set_bit(id, seen_elems);
1388 	}
1389 
1390 	if (!for_each_element_completed(elem, start, len))
1391 		elems->parse_error = true;
1392 
1393 	return crc;
1394 }
1395 
1396 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len,
1397 					    struct ieee802_11_elems *elems,
1398 					    u8 *transmitter_bssid,
1399 					    u8 *bss_bssid,
1400 					    u8 *nontransmitted_profile)
1401 {
1402 	const struct element *elem, *sub;
1403 	size_t profile_len = 0;
1404 	bool found = false;
1405 
1406 	if (!bss_bssid || !transmitter_bssid)
1407 		return profile_len;
1408 
1409 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) {
1410 		if (elem->datalen < 2)
1411 			continue;
1412 
1413 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
1414 			u8 new_bssid[ETH_ALEN];
1415 			const u8 *index;
1416 
1417 			if (sub->id != 0 || sub->datalen < 4) {
1418 				/* not a valid BSS profile */
1419 				continue;
1420 			}
1421 
1422 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
1423 			    sub->data[1] != 2) {
1424 				/* The first element of the
1425 				 * Nontransmitted BSSID Profile is not
1426 				 * the Nontransmitted BSSID Capability
1427 				 * element.
1428 				 */
1429 				continue;
1430 			}
1431 
1432 			memset(nontransmitted_profile, 0, len);
1433 			profile_len = cfg80211_merge_profile(start, len,
1434 							     elem,
1435 							     sub,
1436 							     nontransmitted_profile,
1437 							     len);
1438 
1439 			/* found a Nontransmitted BSSID Profile */
1440 			index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX,
1441 						 nontransmitted_profile,
1442 						 profile_len);
1443 			if (!index || index[1] < 1 || index[2] == 0) {
1444 				/* Invalid MBSSID Index element */
1445 				continue;
1446 			}
1447 
1448 			cfg80211_gen_new_bssid(transmitter_bssid,
1449 					       elem->data[0],
1450 					       index[2],
1451 					       new_bssid);
1452 			if (ether_addr_equal(new_bssid, bss_bssid)) {
1453 				found = true;
1454 				elems->bssid_index_len = index[1];
1455 				elems->bssid_index = (void *)&index[2];
1456 				break;
1457 			}
1458 		}
1459 	}
1460 
1461 	return found ? profile_len : 0;
1462 }
1463 
1464 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
1465 			       struct ieee802_11_elems *elems,
1466 			       u64 filter, u32 crc, u8 *transmitter_bssid,
1467 			       u8 *bss_bssid)
1468 {
1469 	const struct element *non_inherit = NULL;
1470 	u8 *nontransmitted_profile;
1471 	int nontransmitted_profile_len = 0;
1472 
1473 	memset(elems, 0, sizeof(*elems));
1474 	elems->ie_start = start;
1475 	elems->total_len = len;
1476 
1477 	nontransmitted_profile = kmalloc(len, GFP_ATOMIC);
1478 	if (nontransmitted_profile) {
1479 		nontransmitted_profile_len =
1480 			ieee802_11_find_bssid_profile(start, len, elems,
1481 						      transmitter_bssid,
1482 						      bss_bssid,
1483 						      nontransmitted_profile);
1484 		non_inherit =
1485 			cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
1486 					       nontransmitted_profile,
1487 					       nontransmitted_profile_len);
1488 	}
1489 
1490 	crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter,
1491 					  crc, non_inherit);
1492 
1493 	/* Override with nontransmitted profile, if found */
1494 	if (nontransmitted_profile_len)
1495 		_ieee802_11_parse_elems_crc(nontransmitted_profile,
1496 					    nontransmitted_profile_len,
1497 					    action, elems, 0, 0, NULL);
1498 
1499 	if (elems->tim && !elems->parse_error) {
1500 		const struct ieee80211_tim_ie *tim_ie = elems->tim;
1501 
1502 		elems->dtim_period = tim_ie->dtim_period;
1503 		elems->dtim_count = tim_ie->dtim_count;
1504 	}
1505 
1506 	/* Override DTIM period and count if needed */
1507 	if (elems->bssid_index &&
1508 	    elems->bssid_index_len >=
1509 	    offsetofend(struct ieee80211_bssid_index, dtim_period))
1510 		elems->dtim_period = elems->bssid_index->dtim_period;
1511 
1512 	if (elems->bssid_index &&
1513 	    elems->bssid_index_len >=
1514 	    offsetofend(struct ieee80211_bssid_index, dtim_count))
1515 		elems->dtim_count = elems->bssid_index->dtim_count;
1516 
1517 	kfree(nontransmitted_profile);
1518 
1519 	return crc;
1520 }
1521 
1522 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata,
1523 					   struct ieee80211_tx_queue_params
1524 					   *qparam, int ac)
1525 {
1526 	struct ieee80211_chanctx_conf *chanctx_conf;
1527 	const struct ieee80211_reg_rule *rrule;
1528 	const struct ieee80211_wmm_ac *wmm_ac;
1529 	u16 center_freq = 0;
1530 
1531 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1532 	    sdata->vif.type != NL80211_IFTYPE_STATION)
1533 		return;
1534 
1535 	rcu_read_lock();
1536 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1537 	if (chanctx_conf)
1538 		center_freq = chanctx_conf->def.chan->center_freq;
1539 
1540 	if (!center_freq) {
1541 		rcu_read_unlock();
1542 		return;
1543 	}
1544 
1545 	rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq));
1546 
1547 	if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) {
1548 		rcu_read_unlock();
1549 		return;
1550 	}
1551 
1552 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1553 		wmm_ac = &rrule->wmm_rule.ap[ac];
1554 	else
1555 		wmm_ac = &rrule->wmm_rule.client[ac];
1556 	qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min);
1557 	qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max);
1558 	qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn);
1559 	qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32);
1560 	rcu_read_unlock();
1561 }
1562 
1563 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
1564 			       bool bss_notify, bool enable_qos)
1565 {
1566 	struct ieee80211_local *local = sdata->local;
1567 	struct ieee80211_tx_queue_params qparam;
1568 	struct ieee80211_chanctx_conf *chanctx_conf;
1569 	int ac;
1570 	bool use_11b;
1571 	bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */
1572 	int aCWmin, aCWmax;
1573 
1574 	if (!local->ops->conf_tx)
1575 		return;
1576 
1577 	if (local->hw.queues < IEEE80211_NUM_ACS)
1578 		return;
1579 
1580 	memset(&qparam, 0, sizeof(qparam));
1581 
1582 	rcu_read_lock();
1583 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1584 	use_11b = (chanctx_conf &&
1585 		   chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) &&
1586 		 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
1587 	rcu_read_unlock();
1588 
1589 	is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB);
1590 
1591 	/* Set defaults according to 802.11-2007 Table 7-37 */
1592 	aCWmax = 1023;
1593 	if (use_11b)
1594 		aCWmin = 31;
1595 	else
1596 		aCWmin = 15;
1597 
1598 	/* Confiure old 802.11b/g medium access rules. */
1599 	qparam.cw_max = aCWmax;
1600 	qparam.cw_min = aCWmin;
1601 	qparam.txop = 0;
1602 	qparam.aifs = 2;
1603 
1604 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1605 		/* Update if QoS is enabled. */
1606 		if (enable_qos) {
1607 			switch (ac) {
1608 			case IEEE80211_AC_BK:
1609 				qparam.cw_max = aCWmax;
1610 				qparam.cw_min = aCWmin;
1611 				qparam.txop = 0;
1612 				if (is_ocb)
1613 					qparam.aifs = 9;
1614 				else
1615 					qparam.aifs = 7;
1616 				break;
1617 			/* never happens but let's not leave undefined */
1618 			default:
1619 			case IEEE80211_AC_BE:
1620 				qparam.cw_max = aCWmax;
1621 				qparam.cw_min = aCWmin;
1622 				qparam.txop = 0;
1623 				if (is_ocb)
1624 					qparam.aifs = 6;
1625 				else
1626 					qparam.aifs = 3;
1627 				break;
1628 			case IEEE80211_AC_VI:
1629 				qparam.cw_max = aCWmin;
1630 				qparam.cw_min = (aCWmin + 1) / 2 - 1;
1631 				if (is_ocb)
1632 					qparam.txop = 0;
1633 				else if (use_11b)
1634 					qparam.txop = 6016/32;
1635 				else
1636 					qparam.txop = 3008/32;
1637 
1638 				if (is_ocb)
1639 					qparam.aifs = 3;
1640 				else
1641 					qparam.aifs = 2;
1642 				break;
1643 			case IEEE80211_AC_VO:
1644 				qparam.cw_max = (aCWmin + 1) / 2 - 1;
1645 				qparam.cw_min = (aCWmin + 1) / 4 - 1;
1646 				if (is_ocb)
1647 					qparam.txop = 0;
1648 				else if (use_11b)
1649 					qparam.txop = 3264/32;
1650 				else
1651 					qparam.txop = 1504/32;
1652 				qparam.aifs = 2;
1653 				break;
1654 			}
1655 		}
1656 		ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac);
1657 
1658 		qparam.uapsd = false;
1659 
1660 		sdata->tx_conf[ac] = qparam;
1661 		drv_conf_tx(local, sdata, ac, &qparam);
1662 	}
1663 
1664 	if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1665 	    sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE &&
1666 	    sdata->vif.type != NL80211_IFTYPE_NAN) {
1667 		sdata->vif.bss_conf.qos = enable_qos;
1668 		if (bss_notify)
1669 			ieee80211_bss_info_change_notify(sdata,
1670 							 BSS_CHANGED_QOS);
1671 	}
1672 }
1673 
1674 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1675 			 u16 transaction, u16 auth_alg, u16 status,
1676 			 const u8 *extra, size_t extra_len, const u8 *da,
1677 			 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1678 			 u32 tx_flags)
1679 {
1680 	struct ieee80211_local *local = sdata->local;
1681 	struct sk_buff *skb;
1682 	struct ieee80211_mgmt *mgmt;
1683 	int err;
1684 
1685 	/* 24 + 6 = header + auth_algo + auth_transaction + status_code */
1686 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN +
1687 			    24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN);
1688 	if (!skb)
1689 		return;
1690 
1691 	skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN);
1692 
1693 	mgmt = skb_put_zero(skb, 24 + 6);
1694 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1695 					  IEEE80211_STYPE_AUTH);
1696 	memcpy(mgmt->da, da, ETH_ALEN);
1697 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1698 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1699 	mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1700 	mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1701 	mgmt->u.auth.status_code = cpu_to_le16(status);
1702 	if (extra)
1703 		skb_put_data(skb, extra, extra_len);
1704 
1705 	if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1706 		mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1707 		err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1708 		if (WARN_ON(err)) {
1709 			kfree_skb(skb);
1710 			return;
1711 		}
1712 	}
1713 
1714 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1715 					tx_flags;
1716 	ieee80211_tx_skb(sdata, skb);
1717 }
1718 
1719 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1720 				    const u8 *da, const u8 *bssid,
1721 				    u16 stype, u16 reason,
1722 				    bool send_frame, u8 *frame_buf)
1723 {
1724 	struct ieee80211_local *local = sdata->local;
1725 	struct sk_buff *skb;
1726 	struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1727 
1728 	/* build frame */
1729 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1730 	mgmt->duration = 0; /* initialize only */
1731 	mgmt->seq_ctrl = 0; /* initialize only */
1732 	memcpy(mgmt->da, da, ETH_ALEN);
1733 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1734 	memcpy(mgmt->bssid, bssid, ETH_ALEN);
1735 	/* u.deauth.reason_code == u.disassoc.reason_code */
1736 	mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1737 
1738 	if (send_frame) {
1739 		skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1740 				    IEEE80211_DEAUTH_FRAME_LEN);
1741 		if (!skb)
1742 			return;
1743 
1744 		skb_reserve(skb, local->hw.extra_tx_headroom);
1745 
1746 		/* copy in frame */
1747 		skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1748 
1749 		if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1750 		    !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1751 			IEEE80211_SKB_CB(skb)->flags |=
1752 				IEEE80211_TX_INTFL_DONT_ENCRYPT;
1753 
1754 		ieee80211_tx_skb(sdata, skb);
1755 	}
1756 }
1757 
1758 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end)
1759 {
1760 	if ((end - pos) < 5)
1761 		return pos;
1762 
1763 	*pos++ = WLAN_EID_EXTENSION;
1764 	*pos++ = 1 + sizeof(cap);
1765 	*pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA;
1766 	memcpy(pos, &cap, sizeof(cap));
1767 
1768 	return pos + 2;
1769 }
1770 
1771 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata,
1772 					 u8 *buffer, size_t buffer_len,
1773 					 const u8 *ie, size_t ie_len,
1774 					 enum nl80211_band band,
1775 					 u32 rate_mask,
1776 					 struct cfg80211_chan_def *chandef,
1777 					 size_t *offset, u32 flags)
1778 {
1779 	struct ieee80211_local *local = sdata->local;
1780 	struct ieee80211_supported_band *sband;
1781 	const struct ieee80211_sta_he_cap *he_cap;
1782 	u8 *pos = buffer, *end = buffer + buffer_len;
1783 	size_t noffset;
1784 	int supp_rates_len, i;
1785 	u8 rates[32];
1786 	int num_rates;
1787 	int ext_rates_len;
1788 	int shift;
1789 	u32 rate_flags;
1790 	bool have_80mhz = false;
1791 
1792 	*offset = 0;
1793 
1794 	sband = local->hw.wiphy->bands[band];
1795 	if (WARN_ON_ONCE(!sband))
1796 		return 0;
1797 
1798 	rate_flags = ieee80211_chandef_rate_flags(chandef);
1799 	shift = ieee80211_chandef_get_shift(chandef);
1800 
1801 	num_rates = 0;
1802 	for (i = 0; i < sband->n_bitrates; i++) {
1803 		if ((BIT(i) & rate_mask) == 0)
1804 			continue; /* skip rate */
1805 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1806 			continue;
1807 
1808 		rates[num_rates++] =
1809 			(u8) DIV_ROUND_UP(sband->bitrates[i].bitrate,
1810 					  (1 << shift) * 5);
1811 	}
1812 
1813 	supp_rates_len = min_t(int, num_rates, 8);
1814 
1815 	if (end - pos < 2 + supp_rates_len)
1816 		goto out_err;
1817 	*pos++ = WLAN_EID_SUPP_RATES;
1818 	*pos++ = supp_rates_len;
1819 	memcpy(pos, rates, supp_rates_len);
1820 	pos += supp_rates_len;
1821 
1822 	/* insert "request information" if in custom IEs */
1823 	if (ie && ie_len) {
1824 		static const u8 before_extrates[] = {
1825 			WLAN_EID_SSID,
1826 			WLAN_EID_SUPP_RATES,
1827 			WLAN_EID_REQUEST,
1828 		};
1829 		noffset = ieee80211_ie_split(ie, ie_len,
1830 					     before_extrates,
1831 					     ARRAY_SIZE(before_extrates),
1832 					     *offset);
1833 		if (end - pos < noffset - *offset)
1834 			goto out_err;
1835 		memcpy(pos, ie + *offset, noffset - *offset);
1836 		pos += noffset - *offset;
1837 		*offset = noffset;
1838 	}
1839 
1840 	ext_rates_len = num_rates - supp_rates_len;
1841 	if (ext_rates_len > 0) {
1842 		if (end - pos < 2 + ext_rates_len)
1843 			goto out_err;
1844 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
1845 		*pos++ = ext_rates_len;
1846 		memcpy(pos, rates + supp_rates_len, ext_rates_len);
1847 		pos += ext_rates_len;
1848 	}
1849 
1850 	if (chandef->chan && sband->band == NL80211_BAND_2GHZ) {
1851 		if (end - pos < 3)
1852 			goto out_err;
1853 		*pos++ = WLAN_EID_DS_PARAMS;
1854 		*pos++ = 1;
1855 		*pos++ = ieee80211_frequency_to_channel(
1856 				chandef->chan->center_freq);
1857 	}
1858 
1859 	if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT)
1860 		goto done;
1861 
1862 	/* insert custom IEs that go before HT */
1863 	if (ie && ie_len) {
1864 		static const u8 before_ht[] = {
1865 			/*
1866 			 * no need to list the ones split off already
1867 			 * (or generated here)
1868 			 */
1869 			WLAN_EID_DS_PARAMS,
1870 			WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1871 		};
1872 		noffset = ieee80211_ie_split(ie, ie_len,
1873 					     before_ht, ARRAY_SIZE(before_ht),
1874 					     *offset);
1875 		if (end - pos < noffset - *offset)
1876 			goto out_err;
1877 		memcpy(pos, ie + *offset, noffset - *offset);
1878 		pos += noffset - *offset;
1879 		*offset = noffset;
1880 	}
1881 
1882 	if (sband->ht_cap.ht_supported) {
1883 		if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1884 			goto out_err;
1885 		pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1886 						sband->ht_cap.cap);
1887 	}
1888 
1889 	/* insert custom IEs that go before VHT */
1890 	if (ie && ie_len) {
1891 		static const u8 before_vht[] = {
1892 			/*
1893 			 * no need to list the ones split off already
1894 			 * (or generated here)
1895 			 */
1896 			WLAN_EID_BSS_COEX_2040,
1897 			WLAN_EID_EXT_CAPABILITY,
1898 			WLAN_EID_SSID_LIST,
1899 			WLAN_EID_CHANNEL_USAGE,
1900 			WLAN_EID_INTERWORKING,
1901 			WLAN_EID_MESH_ID,
1902 			/* 60 GHz (Multi-band, DMG, MMS) can't happen */
1903 		};
1904 		noffset = ieee80211_ie_split(ie, ie_len,
1905 					     before_vht, ARRAY_SIZE(before_vht),
1906 					     *offset);
1907 		if (end - pos < noffset - *offset)
1908 			goto out_err;
1909 		memcpy(pos, ie + *offset, noffset - *offset);
1910 		pos += noffset - *offset;
1911 		*offset = noffset;
1912 	}
1913 
1914 	/* Check if any channel in this sband supports at least 80 MHz */
1915 	for (i = 0; i < sband->n_channels; i++) {
1916 		if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED |
1917 						IEEE80211_CHAN_NO_80MHZ))
1918 			continue;
1919 
1920 		have_80mhz = true;
1921 		break;
1922 	}
1923 
1924 	if (sband->vht_cap.vht_supported && have_80mhz) {
1925 		if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1926 			goto out_err;
1927 		pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1928 						 sband->vht_cap.cap);
1929 	}
1930 
1931 	/* insert custom IEs that go before HE */
1932 	if (ie && ie_len) {
1933 		static const u8 before_he[] = {
1934 			/*
1935 			 * no need to list the ones split off before VHT
1936 			 * or generated here
1937 			 */
1938 			WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS,
1939 			WLAN_EID_AP_CSN,
1940 			/* TODO: add 11ah/11aj/11ak elements */
1941 		};
1942 		noffset = ieee80211_ie_split(ie, ie_len,
1943 					     before_he, ARRAY_SIZE(before_he),
1944 					     *offset);
1945 		if (end - pos < noffset - *offset)
1946 			goto out_err;
1947 		memcpy(pos, ie + *offset, noffset - *offset);
1948 		pos += noffset - *offset;
1949 		*offset = noffset;
1950 	}
1951 
1952 	he_cap = ieee80211_get_he_iftype_cap(sband,
1953 					     ieee80211_vif_type_p2p(&sdata->vif));
1954 	if (he_cap &&
1955 	    cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band),
1956 					 IEEE80211_CHAN_NO_HE)) {
1957 		pos = ieee80211_ie_build_he_cap(pos, he_cap, end);
1958 		if (!pos)
1959 			goto out_err;
1960 	}
1961 
1962 	if (cfg80211_any_usable_channels(local->hw.wiphy,
1963 					 BIT(NL80211_BAND_6GHZ),
1964 					 IEEE80211_CHAN_NO_HE)) {
1965 		struct ieee80211_supported_band *sband6;
1966 
1967 		sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
1968 		he_cap = ieee80211_get_he_iftype_cap(sband6,
1969 				ieee80211_vif_type_p2p(&sdata->vif));
1970 
1971 		if (he_cap) {
1972 			enum nl80211_iftype iftype =
1973 				ieee80211_vif_type_p2p(&sdata->vif);
1974 			__le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype);
1975 
1976 			pos = ieee80211_write_he_6ghz_cap(pos, cap, end);
1977 		}
1978 	}
1979 
1980 	/*
1981 	 * If adding more here, adjust code in main.c
1982 	 * that calculates local->scan_ies_len.
1983 	 */
1984 
1985 	return pos - buffer;
1986  out_err:
1987 	WARN_ONCE(1, "not enough space for preq IEs\n");
1988  done:
1989 	return pos - buffer;
1990 }
1991 
1992 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer,
1993 			     size_t buffer_len,
1994 			     struct ieee80211_scan_ies *ie_desc,
1995 			     const u8 *ie, size_t ie_len,
1996 			     u8 bands_used, u32 *rate_masks,
1997 			     struct cfg80211_chan_def *chandef,
1998 			     u32 flags)
1999 {
2000 	size_t pos = 0, old_pos = 0, custom_ie_offset = 0;
2001 	int i;
2002 
2003 	memset(ie_desc, 0, sizeof(*ie_desc));
2004 
2005 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
2006 		if (bands_used & BIT(i)) {
2007 			pos += ieee80211_build_preq_ies_band(sdata,
2008 							     buffer + pos,
2009 							     buffer_len - pos,
2010 							     ie, ie_len, i,
2011 							     rate_masks[i],
2012 							     chandef,
2013 							     &custom_ie_offset,
2014 							     flags);
2015 			ie_desc->ies[i] = buffer + old_pos;
2016 			ie_desc->len[i] = pos - old_pos;
2017 			old_pos = pos;
2018 		}
2019 	}
2020 
2021 	/* add any remaining custom IEs */
2022 	if (ie && ie_len) {
2023 		if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset,
2024 			      "not enough space for preq custom IEs\n"))
2025 			return pos;
2026 		memcpy(buffer + pos, ie + custom_ie_offset,
2027 		       ie_len - custom_ie_offset);
2028 		ie_desc->common_ies = buffer + pos;
2029 		ie_desc->common_ie_len = ie_len - custom_ie_offset;
2030 		pos += ie_len - custom_ie_offset;
2031 	}
2032 
2033 	return pos;
2034 };
2035 
2036 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
2037 					  const u8 *src, const u8 *dst,
2038 					  u32 ratemask,
2039 					  struct ieee80211_channel *chan,
2040 					  const u8 *ssid, size_t ssid_len,
2041 					  const u8 *ie, size_t ie_len,
2042 					  u32 flags)
2043 {
2044 	struct ieee80211_local *local = sdata->local;
2045 	struct cfg80211_chan_def chandef;
2046 	struct sk_buff *skb;
2047 	struct ieee80211_mgmt *mgmt;
2048 	int ies_len;
2049 	u32 rate_masks[NUM_NL80211_BANDS] = {};
2050 	struct ieee80211_scan_ies dummy_ie_desc;
2051 
2052 	/*
2053 	 * Do not send DS Channel parameter for directed probe requests
2054 	 * in order to maximize the chance that we get a response.  Some
2055 	 * badly-behaved APs don't respond when this parameter is included.
2056 	 */
2057 	chandef.width = sdata->vif.bss_conf.chandef.width;
2058 	if (flags & IEEE80211_PROBE_FLAG_DIRECTED)
2059 		chandef.chan = NULL;
2060 	else
2061 		chandef.chan = chan;
2062 
2063 	skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len,
2064 				     100 + ie_len);
2065 	if (!skb)
2066 		return NULL;
2067 
2068 	rate_masks[chan->band] = ratemask;
2069 	ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb),
2070 					   skb_tailroom(skb), &dummy_ie_desc,
2071 					   ie, ie_len, BIT(chan->band),
2072 					   rate_masks, &chandef, flags);
2073 	skb_put(skb, ies_len);
2074 
2075 	if (dst) {
2076 		mgmt = (struct ieee80211_mgmt *) skb->data;
2077 		memcpy(mgmt->da, dst, ETH_ALEN);
2078 		memcpy(mgmt->bssid, dst, ETH_ALEN);
2079 	}
2080 
2081 	IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
2082 
2083 	return skb;
2084 }
2085 
2086 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata,
2087 			    struct ieee802_11_elems *elems,
2088 			    enum nl80211_band band, u32 *basic_rates)
2089 {
2090 	struct ieee80211_supported_band *sband;
2091 	size_t num_rates;
2092 	u32 supp_rates, rate_flags;
2093 	int i, j, shift;
2094 
2095 	sband = sdata->local->hw.wiphy->bands[band];
2096 	if (WARN_ON(!sband))
2097 		return 1;
2098 
2099 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
2100 	shift = ieee80211_vif_get_shift(&sdata->vif);
2101 
2102 	num_rates = sband->n_bitrates;
2103 	supp_rates = 0;
2104 	for (i = 0; i < elems->supp_rates_len +
2105 		     elems->ext_supp_rates_len; i++) {
2106 		u8 rate = 0;
2107 		int own_rate;
2108 		bool is_basic;
2109 		if (i < elems->supp_rates_len)
2110 			rate = elems->supp_rates[i];
2111 		else if (elems->ext_supp_rates)
2112 			rate = elems->ext_supp_rates
2113 				[i - elems->supp_rates_len];
2114 		own_rate = 5 * (rate & 0x7f);
2115 		is_basic = !!(rate & 0x80);
2116 
2117 		if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
2118 			continue;
2119 
2120 		for (j = 0; j < num_rates; j++) {
2121 			int brate;
2122 			if ((rate_flags & sband->bitrates[j].flags)
2123 			    != rate_flags)
2124 				continue;
2125 
2126 			brate = DIV_ROUND_UP(sband->bitrates[j].bitrate,
2127 					     1 << shift);
2128 
2129 			if (brate == own_rate) {
2130 				supp_rates |= BIT(j);
2131 				if (basic_rates && is_basic)
2132 					*basic_rates |= BIT(j);
2133 			}
2134 		}
2135 	}
2136 	return supp_rates;
2137 }
2138 
2139 void ieee80211_stop_device(struct ieee80211_local *local)
2140 {
2141 	ieee80211_led_radio(local, false);
2142 	ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
2143 
2144 	cancel_work_sync(&local->reconfig_filter);
2145 
2146 	flush_workqueue(local->workqueue);
2147 	drv_stop(local);
2148 }
2149 
2150 static void ieee80211_flush_completed_scan(struct ieee80211_local *local,
2151 					   bool aborted)
2152 {
2153 	/* It's possible that we don't handle the scan completion in
2154 	 * time during suspend, so if it's still marked as completed
2155 	 * here, queue the work and flush it to clean things up.
2156 	 * Instead of calling the worker function directly here, we
2157 	 * really queue it to avoid potential races with other flows
2158 	 * scheduling the same work.
2159 	 */
2160 	if (test_bit(SCAN_COMPLETED, &local->scanning)) {
2161 		/* If coming from reconfiguration failure, abort the scan so
2162 		 * we don't attempt to continue a partial HW scan - which is
2163 		 * possible otherwise if (e.g.) the 2.4 GHz portion was the
2164 		 * completed scan, and a 5 GHz portion is still pending.
2165 		 */
2166 		if (aborted)
2167 			set_bit(SCAN_ABORTED, &local->scanning);
2168 		ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0);
2169 		flush_delayed_work(&local->scan_work);
2170 	}
2171 }
2172 
2173 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local)
2174 {
2175 	struct ieee80211_sub_if_data *sdata;
2176 	struct ieee80211_chanctx *ctx;
2177 
2178 	/*
2179 	 * We get here if during resume the device can't be restarted properly.
2180 	 * We might also get here if this happens during HW reset, which is a
2181 	 * slightly different situation and we need to drop all connections in
2182 	 * the latter case.
2183 	 *
2184 	 * Ask cfg80211 to turn off all interfaces, this will result in more
2185 	 * warnings but at least we'll then get into a clean stopped state.
2186 	 */
2187 
2188 	local->resuming = false;
2189 	local->suspended = false;
2190 	local->in_reconfig = false;
2191 
2192 	ieee80211_flush_completed_scan(local, true);
2193 
2194 	/* scheduled scan clearly can't be running any more, but tell
2195 	 * cfg80211 and clear local state
2196 	 */
2197 	ieee80211_sched_scan_end(local);
2198 
2199 	list_for_each_entry(sdata, &local->interfaces, list)
2200 		sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER;
2201 
2202 	/* Mark channel contexts as not being in the driver any more to avoid
2203 	 * removing them from the driver during the shutdown process...
2204 	 */
2205 	mutex_lock(&local->chanctx_mtx);
2206 	list_for_each_entry(ctx, &local->chanctx_list, list)
2207 		ctx->driver_present = false;
2208 	mutex_unlock(&local->chanctx_mtx);
2209 }
2210 
2211 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
2212 				     struct ieee80211_sub_if_data *sdata)
2213 {
2214 	struct ieee80211_chanctx_conf *conf;
2215 	struct ieee80211_chanctx *ctx;
2216 
2217 	if (!local->use_chanctx)
2218 		return;
2219 
2220 	mutex_lock(&local->chanctx_mtx);
2221 	conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2222 					 lockdep_is_held(&local->chanctx_mtx));
2223 	if (conf) {
2224 		ctx = container_of(conf, struct ieee80211_chanctx, conf);
2225 		drv_assign_vif_chanctx(local, sdata, ctx);
2226 	}
2227 	mutex_unlock(&local->chanctx_mtx);
2228 }
2229 
2230 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata)
2231 {
2232 	struct ieee80211_local *local = sdata->local;
2233 	struct sta_info *sta;
2234 
2235 	/* add STAs back */
2236 	mutex_lock(&local->sta_mtx);
2237 	list_for_each_entry(sta, &local->sta_list, list) {
2238 		enum ieee80211_sta_state state;
2239 
2240 		if (!sta->uploaded || sta->sdata != sdata)
2241 			continue;
2242 
2243 		for (state = IEEE80211_STA_NOTEXIST;
2244 		     state < sta->sta_state; state++)
2245 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2246 					      state + 1));
2247 	}
2248 	mutex_unlock(&local->sta_mtx);
2249 }
2250 
2251 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata)
2252 {
2253 	struct cfg80211_nan_func *func, **funcs;
2254 	int res, id, i = 0;
2255 
2256 	res = drv_start_nan(sdata->local, sdata,
2257 			    &sdata->u.nan.conf);
2258 	if (WARN_ON(res))
2259 		return res;
2260 
2261 	funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1,
2262 			sizeof(*funcs),
2263 			GFP_KERNEL);
2264 	if (!funcs)
2265 		return -ENOMEM;
2266 
2267 	/* Add all the functions:
2268 	 * This is a little bit ugly. We need to call a potentially sleeping
2269 	 * callback for each NAN function, so we can't hold the spinlock.
2270 	 */
2271 	spin_lock_bh(&sdata->u.nan.func_lock);
2272 
2273 	idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id)
2274 		funcs[i++] = func;
2275 
2276 	spin_unlock_bh(&sdata->u.nan.func_lock);
2277 
2278 	for (i = 0; funcs[i]; i++) {
2279 		res = drv_add_nan_func(sdata->local, sdata, funcs[i]);
2280 		if (WARN_ON(res))
2281 			ieee80211_nan_func_terminated(&sdata->vif,
2282 						      funcs[i]->instance_id,
2283 						      NL80211_NAN_FUNC_TERM_REASON_ERROR,
2284 						      GFP_KERNEL);
2285 	}
2286 
2287 	kfree(funcs);
2288 
2289 	return 0;
2290 }
2291 
2292 int ieee80211_reconfig(struct ieee80211_local *local)
2293 {
2294 	struct ieee80211_hw *hw = &local->hw;
2295 	struct ieee80211_sub_if_data *sdata;
2296 	struct ieee80211_chanctx *ctx;
2297 	struct sta_info *sta;
2298 	int res, i;
2299 	bool reconfig_due_to_wowlan = false;
2300 	struct ieee80211_sub_if_data *sched_scan_sdata;
2301 	struct cfg80211_sched_scan_request *sched_scan_req;
2302 	bool sched_scan_stopped = false;
2303 	bool suspended = local->suspended;
2304 
2305 	/* nothing to do if HW shouldn't run */
2306 	if (!local->open_count)
2307 		goto wake_up;
2308 
2309 #ifdef CONFIG_PM
2310 	if (suspended)
2311 		local->resuming = true;
2312 
2313 	if (local->wowlan) {
2314 		/*
2315 		 * In the wowlan case, both mac80211 and the device
2316 		 * are functional when the resume op is called, so
2317 		 * clear local->suspended so the device could operate
2318 		 * normally (e.g. pass rx frames).
2319 		 */
2320 		local->suspended = false;
2321 		res = drv_resume(local);
2322 		local->wowlan = false;
2323 		if (res < 0) {
2324 			local->resuming = false;
2325 			return res;
2326 		}
2327 		if (res == 0)
2328 			goto wake_up;
2329 		WARN_ON(res > 1);
2330 		/*
2331 		 * res is 1, which means the driver requested
2332 		 * to go through a regular reset on wakeup.
2333 		 * restore local->suspended in this case.
2334 		 */
2335 		reconfig_due_to_wowlan = true;
2336 		local->suspended = true;
2337 	}
2338 #endif
2339 
2340 	/*
2341 	 * In case of hw_restart during suspend (without wowlan),
2342 	 * cancel restart work, as we are reconfiguring the device
2343 	 * anyway.
2344 	 * Note that restart_work is scheduled on a frozen workqueue,
2345 	 * so we can't deadlock in this case.
2346 	 */
2347 	if (suspended && local->in_reconfig && !reconfig_due_to_wowlan)
2348 		cancel_work_sync(&local->restart_work);
2349 
2350 	local->started = false;
2351 
2352 	/*
2353 	 * Upon resume hardware can sometimes be goofy due to
2354 	 * various platform / driver / bus issues, so restarting
2355 	 * the device may at times not work immediately. Propagate
2356 	 * the error.
2357 	 */
2358 	res = drv_start(local);
2359 	if (res) {
2360 		if (suspended)
2361 			WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n");
2362 		else
2363 			WARN(1, "Hardware became unavailable during restart.\n");
2364 		ieee80211_handle_reconfig_failure(local);
2365 		return res;
2366 	}
2367 
2368 	/* setup fragmentation threshold */
2369 	drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
2370 
2371 	/* setup RTS threshold */
2372 	drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
2373 
2374 	/* reset coverage class */
2375 	drv_set_coverage_class(local, hw->wiphy->coverage_class);
2376 
2377 	ieee80211_led_radio(local, true);
2378 	ieee80211_mod_tpt_led_trig(local,
2379 				   IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
2380 
2381 	/* add interfaces */
2382 	sdata = rtnl_dereference(local->monitor_sdata);
2383 	if (sdata) {
2384 		/* in HW restart it exists already */
2385 		WARN_ON(local->resuming);
2386 		res = drv_add_interface(local, sdata);
2387 		if (WARN_ON(res)) {
2388 			RCU_INIT_POINTER(local->monitor_sdata, NULL);
2389 			synchronize_net();
2390 			kfree(sdata);
2391 		}
2392 	}
2393 
2394 	list_for_each_entry(sdata, &local->interfaces, list) {
2395 		if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2396 		    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2397 		    ieee80211_sdata_running(sdata)) {
2398 			res = drv_add_interface(local, sdata);
2399 			if (WARN_ON(res))
2400 				break;
2401 		}
2402 	}
2403 
2404 	/* If adding any of the interfaces failed above, roll back and
2405 	 * report failure.
2406 	 */
2407 	if (res) {
2408 		list_for_each_entry_continue_reverse(sdata, &local->interfaces,
2409 						     list)
2410 			if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2411 			    sdata->vif.type != NL80211_IFTYPE_MONITOR &&
2412 			    ieee80211_sdata_running(sdata))
2413 				drv_remove_interface(local, sdata);
2414 		ieee80211_handle_reconfig_failure(local);
2415 		return res;
2416 	}
2417 
2418 	/* add channel contexts */
2419 	if (local->use_chanctx) {
2420 		mutex_lock(&local->chanctx_mtx);
2421 		list_for_each_entry(ctx, &local->chanctx_list, list)
2422 			if (ctx->replace_state !=
2423 			    IEEE80211_CHANCTX_REPLACES_OTHER)
2424 				WARN_ON(drv_add_chanctx(local, ctx));
2425 		mutex_unlock(&local->chanctx_mtx);
2426 
2427 		sdata = rtnl_dereference(local->monitor_sdata);
2428 		if (sdata && ieee80211_sdata_running(sdata))
2429 			ieee80211_assign_chanctx(local, sdata);
2430 	}
2431 
2432 	/* reconfigure hardware */
2433 	ieee80211_hw_config(local, ~0);
2434 
2435 	ieee80211_configure_filter(local);
2436 
2437 	/* Finally also reconfigure all the BSS information */
2438 	list_for_each_entry(sdata, &local->interfaces, list) {
2439 		u32 changed;
2440 
2441 		if (!ieee80211_sdata_running(sdata))
2442 			continue;
2443 
2444 		ieee80211_assign_chanctx(local, sdata);
2445 
2446 		switch (sdata->vif.type) {
2447 		case NL80211_IFTYPE_AP_VLAN:
2448 		case NL80211_IFTYPE_MONITOR:
2449 			break;
2450 		case NL80211_IFTYPE_ADHOC:
2451 			if (sdata->vif.bss_conf.ibss_joined)
2452 				WARN_ON(drv_join_ibss(local, sdata));
2453 			fallthrough;
2454 		default:
2455 			ieee80211_reconfig_stations(sdata);
2456 			fallthrough;
2457 		case NL80211_IFTYPE_AP: /* AP stations are handled later */
2458 			for (i = 0; i < IEEE80211_NUM_ACS; i++)
2459 				drv_conf_tx(local, sdata, i,
2460 					    &sdata->tx_conf[i]);
2461 			break;
2462 		}
2463 
2464 		/* common change flags for all interface types */
2465 		changed = BSS_CHANGED_ERP_CTS_PROT |
2466 			  BSS_CHANGED_ERP_PREAMBLE |
2467 			  BSS_CHANGED_ERP_SLOT |
2468 			  BSS_CHANGED_HT |
2469 			  BSS_CHANGED_BASIC_RATES |
2470 			  BSS_CHANGED_BEACON_INT |
2471 			  BSS_CHANGED_BSSID |
2472 			  BSS_CHANGED_CQM |
2473 			  BSS_CHANGED_QOS |
2474 			  BSS_CHANGED_IDLE |
2475 			  BSS_CHANGED_TXPOWER |
2476 			  BSS_CHANGED_MCAST_RATE;
2477 
2478 		if (sdata->vif.mu_mimo_owner)
2479 			changed |= BSS_CHANGED_MU_GROUPS;
2480 
2481 		switch (sdata->vif.type) {
2482 		case NL80211_IFTYPE_STATION:
2483 			changed |= BSS_CHANGED_ASSOC |
2484 				   BSS_CHANGED_ARP_FILTER |
2485 				   BSS_CHANGED_PS;
2486 
2487 			/* Re-send beacon info report to the driver */
2488 			if (sdata->u.mgd.have_beacon)
2489 				changed |= BSS_CHANGED_BEACON_INFO;
2490 
2491 			if (sdata->vif.bss_conf.max_idle_period ||
2492 			    sdata->vif.bss_conf.protected_keep_alive)
2493 				changed |= BSS_CHANGED_KEEP_ALIVE;
2494 
2495 			sdata_lock(sdata);
2496 			ieee80211_bss_info_change_notify(sdata, changed);
2497 			sdata_unlock(sdata);
2498 			break;
2499 		case NL80211_IFTYPE_OCB:
2500 			changed |= BSS_CHANGED_OCB;
2501 			ieee80211_bss_info_change_notify(sdata, changed);
2502 			break;
2503 		case NL80211_IFTYPE_ADHOC:
2504 			changed |= BSS_CHANGED_IBSS;
2505 			fallthrough;
2506 		case NL80211_IFTYPE_AP:
2507 			changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
2508 
2509 			if (sdata->vif.bss_conf.ftm_responder == 1 &&
2510 			    wiphy_ext_feature_isset(sdata->local->hw.wiphy,
2511 					NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER))
2512 				changed |= BSS_CHANGED_FTM_RESPONDER;
2513 
2514 			if (sdata->vif.type == NL80211_IFTYPE_AP) {
2515 				changed |= BSS_CHANGED_AP_PROBE_RESP;
2516 
2517 				if (rcu_access_pointer(sdata->u.ap.beacon))
2518 					drv_start_ap(local, sdata);
2519 			}
2520 			fallthrough;
2521 		case NL80211_IFTYPE_MESH_POINT:
2522 			if (sdata->vif.bss_conf.enable_beacon) {
2523 				changed |= BSS_CHANGED_BEACON |
2524 					   BSS_CHANGED_BEACON_ENABLED;
2525 				ieee80211_bss_info_change_notify(sdata, changed);
2526 			}
2527 			break;
2528 		case NL80211_IFTYPE_NAN:
2529 			res = ieee80211_reconfig_nan(sdata);
2530 			if (res < 0) {
2531 				ieee80211_handle_reconfig_failure(local);
2532 				return res;
2533 			}
2534 			break;
2535 		case NL80211_IFTYPE_AP_VLAN:
2536 		case NL80211_IFTYPE_MONITOR:
2537 		case NL80211_IFTYPE_P2P_DEVICE:
2538 			/* nothing to do */
2539 			break;
2540 		case NL80211_IFTYPE_UNSPECIFIED:
2541 		case NUM_NL80211_IFTYPES:
2542 		case NL80211_IFTYPE_P2P_CLIENT:
2543 		case NL80211_IFTYPE_P2P_GO:
2544 		case NL80211_IFTYPE_WDS:
2545 			WARN_ON(1);
2546 			break;
2547 		}
2548 	}
2549 
2550 	ieee80211_recalc_ps(local);
2551 
2552 	/*
2553 	 * The sta might be in psm against the ap (e.g. because
2554 	 * this was the state before a hw restart), so we
2555 	 * explicitly send a null packet in order to make sure
2556 	 * it'll sync against the ap (and get out of psm).
2557 	 */
2558 	if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
2559 		list_for_each_entry(sdata, &local->interfaces, list) {
2560 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2561 				continue;
2562 			if (!sdata->u.mgd.associated)
2563 				continue;
2564 
2565 			ieee80211_send_nullfunc(local, sdata, false);
2566 		}
2567 	}
2568 
2569 	/* APs are now beaconing, add back stations */
2570 	mutex_lock(&local->sta_mtx);
2571 	list_for_each_entry(sta, &local->sta_list, list) {
2572 		enum ieee80211_sta_state state;
2573 
2574 		if (!sta->uploaded)
2575 			continue;
2576 
2577 		if (sta->sdata->vif.type != NL80211_IFTYPE_AP &&
2578 		    sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
2579 			continue;
2580 
2581 		for (state = IEEE80211_STA_NOTEXIST;
2582 		     state < sta->sta_state; state++)
2583 			WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
2584 					      state + 1));
2585 	}
2586 	mutex_unlock(&local->sta_mtx);
2587 
2588 	/* add back keys */
2589 	list_for_each_entry(sdata, &local->interfaces, list)
2590 		ieee80211_reenable_keys(sdata);
2591 
2592 	/* Reconfigure sched scan if it was interrupted by FW restart */
2593 	mutex_lock(&local->mtx);
2594 	sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata,
2595 						lockdep_is_held(&local->mtx));
2596 	sched_scan_req = rcu_dereference_protected(local->sched_scan_req,
2597 						lockdep_is_held(&local->mtx));
2598 	if (sched_scan_sdata && sched_scan_req)
2599 		/*
2600 		 * Sched scan stopped, but we don't want to report it. Instead,
2601 		 * we're trying to reschedule. However, if more than one scan
2602 		 * plan was set, we cannot reschedule since we don't know which
2603 		 * scan plan was currently running (and some scan plans may have
2604 		 * already finished).
2605 		 */
2606 		if (sched_scan_req->n_scan_plans > 1 ||
2607 		    __ieee80211_request_sched_scan_start(sched_scan_sdata,
2608 							 sched_scan_req)) {
2609 			RCU_INIT_POINTER(local->sched_scan_sdata, NULL);
2610 			RCU_INIT_POINTER(local->sched_scan_req, NULL);
2611 			sched_scan_stopped = true;
2612 		}
2613 	mutex_unlock(&local->mtx);
2614 
2615 	if (sched_scan_stopped)
2616 		cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0);
2617 
2618  wake_up:
2619 
2620 	if (local->monitors == local->open_count && local->monitors > 0)
2621 		ieee80211_add_virtual_monitor(local);
2622 
2623 	/*
2624 	 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
2625 	 * sessions can be established after a resume.
2626 	 *
2627 	 * Also tear down aggregation sessions since reconfiguring
2628 	 * them in a hardware restart scenario is not easily done
2629 	 * right now, and the hardware will have lost information
2630 	 * about the sessions, but we and the AP still think they
2631 	 * are active. This is really a workaround though.
2632 	 */
2633 	if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) {
2634 		mutex_lock(&local->sta_mtx);
2635 
2636 		list_for_each_entry(sta, &local->sta_list, list) {
2637 			if (!local->resuming)
2638 				ieee80211_sta_tear_down_BA_sessions(
2639 						sta, AGG_STOP_LOCAL_REQUEST);
2640 			clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
2641 		}
2642 
2643 		mutex_unlock(&local->sta_mtx);
2644 	}
2645 
2646 	if (local->in_reconfig) {
2647 		local->in_reconfig = false;
2648 		barrier();
2649 
2650 		/* Restart deferred ROCs */
2651 		mutex_lock(&local->mtx);
2652 		ieee80211_start_next_roc(local);
2653 		mutex_unlock(&local->mtx);
2654 
2655 		/* Requeue all works */
2656 		list_for_each_entry(sdata, &local->interfaces, list)
2657 			ieee80211_queue_work(&local->hw, &sdata->work);
2658 	}
2659 
2660 	ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
2661 					IEEE80211_QUEUE_STOP_REASON_SUSPEND,
2662 					false);
2663 
2664 	/*
2665 	 * If this is for hw restart things are still running.
2666 	 * We may want to change that later, however.
2667 	 */
2668 	if (local->open_count && (!suspended || reconfig_due_to_wowlan))
2669 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART);
2670 
2671 	if (!suspended)
2672 		return 0;
2673 
2674 #ifdef CONFIG_PM
2675 	/* first set suspended false, then resuming */
2676 	local->suspended = false;
2677 	mb();
2678 	local->resuming = false;
2679 
2680 	ieee80211_flush_completed_scan(local, false);
2681 
2682 	if (local->open_count && !reconfig_due_to_wowlan)
2683 		drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND);
2684 
2685 	list_for_each_entry(sdata, &local->interfaces, list) {
2686 		if (!ieee80211_sdata_running(sdata))
2687 			continue;
2688 		if (sdata->vif.type == NL80211_IFTYPE_STATION)
2689 			ieee80211_sta_restart(sdata);
2690 	}
2691 
2692 	mod_timer(&local->sta_cleanup, jiffies + 1);
2693 #else
2694 	WARN_ON(1);
2695 #endif
2696 
2697 	return 0;
2698 }
2699 
2700 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
2701 {
2702 	struct ieee80211_sub_if_data *sdata;
2703 	struct ieee80211_local *local;
2704 	struct ieee80211_key *key;
2705 
2706 	if (WARN_ON(!vif))
2707 		return;
2708 
2709 	sdata = vif_to_sdata(vif);
2710 	local = sdata->local;
2711 
2712 	if (WARN_ON(!local->resuming))
2713 		return;
2714 
2715 	if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
2716 		return;
2717 
2718 	sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
2719 
2720 	mutex_lock(&local->key_mtx);
2721 	list_for_each_entry(key, &sdata->key_list, list)
2722 		key->flags |= KEY_FLAG_TAINTED;
2723 	mutex_unlock(&local->key_mtx);
2724 }
2725 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
2726 
2727 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
2728 {
2729 	struct ieee80211_local *local = sdata->local;
2730 	struct ieee80211_chanctx_conf *chanctx_conf;
2731 	struct ieee80211_chanctx *chanctx;
2732 
2733 	mutex_lock(&local->chanctx_mtx);
2734 
2735 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2736 					lockdep_is_held(&local->chanctx_mtx));
2737 
2738 	/*
2739 	 * This function can be called from a work, thus it may be possible
2740 	 * that the chanctx_conf is removed (due to a disconnection, for
2741 	 * example).
2742 	 * So nothing should be done in such case.
2743 	 */
2744 	if (!chanctx_conf)
2745 		goto unlock;
2746 
2747 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2748 	ieee80211_recalc_smps_chanctx(local, chanctx);
2749  unlock:
2750 	mutex_unlock(&local->chanctx_mtx);
2751 }
2752 
2753 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata)
2754 {
2755 	struct ieee80211_local *local = sdata->local;
2756 	struct ieee80211_chanctx_conf *chanctx_conf;
2757 	struct ieee80211_chanctx *chanctx;
2758 
2759 	mutex_lock(&local->chanctx_mtx);
2760 
2761 	chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
2762 					lockdep_is_held(&local->chanctx_mtx));
2763 
2764 	if (WARN_ON_ONCE(!chanctx_conf))
2765 		goto unlock;
2766 
2767 	chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
2768 	ieee80211_recalc_chanctx_min_def(local, chanctx);
2769  unlock:
2770 	mutex_unlock(&local->chanctx_mtx);
2771 }
2772 
2773 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
2774 {
2775 	size_t pos = offset;
2776 
2777 	while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
2778 		pos += 2 + ies[pos + 1];
2779 
2780 	return pos;
2781 }
2782 
2783 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
2784 					    int rssi_min_thold,
2785 					    int rssi_max_thold)
2786 {
2787 	trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
2788 
2789 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
2790 		return;
2791 
2792 	/*
2793 	 * Scale up threshold values before storing it, as the RSSI averaging
2794 	 * algorithm uses a scaled up value as well. Change this scaling
2795 	 * factor if the RSSI averaging algorithm changes.
2796 	 */
2797 	sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
2798 	sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
2799 }
2800 
2801 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
2802 				    int rssi_min_thold,
2803 				    int rssi_max_thold)
2804 {
2805 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2806 
2807 	WARN_ON(rssi_min_thold == rssi_max_thold ||
2808 		rssi_min_thold > rssi_max_thold);
2809 
2810 	_ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
2811 				       rssi_max_thold);
2812 }
2813 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
2814 
2815 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
2816 {
2817 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2818 
2819 	_ieee80211_enable_rssi_reports(sdata, 0, 0);
2820 }
2821 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
2822 
2823 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
2824 			      u16 cap)
2825 {
2826 	__le16 tmp;
2827 
2828 	*pos++ = WLAN_EID_HT_CAPABILITY;
2829 	*pos++ = sizeof(struct ieee80211_ht_cap);
2830 	memset(pos, 0, sizeof(struct ieee80211_ht_cap));
2831 
2832 	/* capability flags */
2833 	tmp = cpu_to_le16(cap);
2834 	memcpy(pos, &tmp, sizeof(u16));
2835 	pos += sizeof(u16);
2836 
2837 	/* AMPDU parameters */
2838 	*pos++ = ht_cap->ampdu_factor |
2839 		 (ht_cap->ampdu_density <<
2840 			IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
2841 
2842 	/* MCS set */
2843 	memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
2844 	pos += sizeof(ht_cap->mcs);
2845 
2846 	/* extended capabilities */
2847 	pos += sizeof(__le16);
2848 
2849 	/* BF capabilities */
2850 	pos += sizeof(__le32);
2851 
2852 	/* antenna selection */
2853 	pos += sizeof(u8);
2854 
2855 	return pos;
2856 }
2857 
2858 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
2859 			       u32 cap)
2860 {
2861 	__le32 tmp;
2862 
2863 	*pos++ = WLAN_EID_VHT_CAPABILITY;
2864 	*pos++ = sizeof(struct ieee80211_vht_cap);
2865 	memset(pos, 0, sizeof(struct ieee80211_vht_cap));
2866 
2867 	/* capability flags */
2868 	tmp = cpu_to_le32(cap);
2869 	memcpy(pos, &tmp, sizeof(u32));
2870 	pos += sizeof(u32);
2871 
2872 	/* VHT MCS set */
2873 	memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
2874 	pos += sizeof(vht_cap->vht_mcs);
2875 
2876 	return pos;
2877 }
2878 
2879 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype)
2880 {
2881 	const struct ieee80211_sta_he_cap *he_cap;
2882 	struct ieee80211_supported_band *sband;
2883 	u8 n;
2884 
2885 	sband = ieee80211_get_sband(sdata);
2886 	if (!sband)
2887 		return 0;
2888 
2889 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
2890 	if (!he_cap)
2891 		return 0;
2892 
2893 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2894 	return 2 + 1 +
2895 	       sizeof(he_cap->he_cap_elem) + n +
2896 	       ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2897 				     he_cap->he_cap_elem.phy_cap_info);
2898 }
2899 
2900 u8 *ieee80211_ie_build_he_cap(u8 *pos,
2901 			      const struct ieee80211_sta_he_cap *he_cap,
2902 			      u8 *end)
2903 {
2904 	u8 n;
2905 	u8 ie_len;
2906 	u8 *orig_pos = pos;
2907 
2908 	/* Make sure we have place for the IE */
2909 	/*
2910 	 * TODO: the 1 added is because this temporarily is under the EXTENSION
2911 	 * IE. Get rid of it when it moves.
2912 	 */
2913 	if (!he_cap)
2914 		return orig_pos;
2915 
2916 	n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem);
2917 	ie_len = 2 + 1 +
2918 		 sizeof(he_cap->he_cap_elem) + n +
2919 		 ieee80211_he_ppe_size(he_cap->ppe_thres[0],
2920 				       he_cap->he_cap_elem.phy_cap_info);
2921 
2922 	if ((end - pos) < ie_len)
2923 		return orig_pos;
2924 
2925 	*pos++ = WLAN_EID_EXTENSION;
2926 	pos++; /* We'll set the size later below */
2927 	*pos++ = WLAN_EID_EXT_HE_CAPABILITY;
2928 
2929 	/* Fixed data */
2930 	memcpy(pos, &he_cap->he_cap_elem, sizeof(he_cap->he_cap_elem));
2931 	pos += sizeof(he_cap->he_cap_elem);
2932 
2933 	memcpy(pos, &he_cap->he_mcs_nss_supp, n);
2934 	pos += n;
2935 
2936 	/* Check if PPE Threshold should be present */
2937 	if ((he_cap->he_cap_elem.phy_cap_info[6] &
2938 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2939 		goto end;
2940 
2941 	/*
2942 	 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm:
2943 	 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK)
2944 	 */
2945 	n = hweight8(he_cap->ppe_thres[0] &
2946 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2947 	n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >>
2948 		   IEEE80211_PPE_THRES_NSS_POS));
2949 
2950 	/*
2951 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2952 	 * total size.
2953 	 */
2954 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2955 	n = DIV_ROUND_UP(n, 8);
2956 
2957 	/* Copy PPE Thresholds */
2958 	memcpy(pos, &he_cap->ppe_thres, n);
2959 	pos += n;
2960 
2961 end:
2962 	orig_pos[1] = (pos - orig_pos) - 2;
2963 	return pos;
2964 }
2965 
2966 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata,
2967 				    struct sk_buff *skb)
2968 {
2969 	struct ieee80211_supported_band *sband;
2970 	const struct ieee80211_sband_iftype_data *iftd;
2971 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
2972 	u8 *pos;
2973 	u16 cap;
2974 
2975 	if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy,
2976 					  BIT(NL80211_BAND_6GHZ),
2977 					  IEEE80211_CHAN_NO_HE))
2978 		return;
2979 
2980 	sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ];
2981 
2982 	iftd = ieee80211_get_sband_iftype_data(sband, iftype);
2983 	if (!iftd)
2984 		return;
2985 
2986 	/* Check for device HE 6 GHz capability before adding element */
2987 	if (!iftd->he_6ghz_capa.capa)
2988 		return;
2989 
2990 	cap = le16_to_cpu(iftd->he_6ghz_capa.capa);
2991 	cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS;
2992 
2993 	switch (sdata->smps_mode) {
2994 	case IEEE80211_SMPS_AUTOMATIC:
2995 	case IEEE80211_SMPS_NUM_MODES:
2996 		WARN_ON(1);
2997 		fallthrough;
2998 	case IEEE80211_SMPS_OFF:
2999 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED,
3000 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3001 		break;
3002 	case IEEE80211_SMPS_STATIC:
3003 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC,
3004 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3005 		break;
3006 	case IEEE80211_SMPS_DYNAMIC:
3007 		cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC,
3008 				       IEEE80211_HE_6GHZ_CAP_SM_PS);
3009 		break;
3010 	}
3011 
3012 	pos = skb_put(skb, 2 + 1 + sizeof(cap));
3013 	ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap),
3014 				    pos + 2 + 1 + sizeof(cap));
3015 }
3016 
3017 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
3018 			       const struct cfg80211_chan_def *chandef,
3019 			       u16 prot_mode, bool rifs_mode)
3020 {
3021 	struct ieee80211_ht_operation *ht_oper;
3022 	/* Build HT Information */
3023 	*pos++ = WLAN_EID_HT_OPERATION;
3024 	*pos++ = sizeof(struct ieee80211_ht_operation);
3025 	ht_oper = (struct ieee80211_ht_operation *)pos;
3026 	ht_oper->primary_chan = ieee80211_frequency_to_channel(
3027 					chandef->chan->center_freq);
3028 	switch (chandef->width) {
3029 	case NL80211_CHAN_WIDTH_160:
3030 	case NL80211_CHAN_WIDTH_80P80:
3031 	case NL80211_CHAN_WIDTH_80:
3032 	case NL80211_CHAN_WIDTH_40:
3033 		if (chandef->center_freq1 > chandef->chan->center_freq)
3034 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
3035 		else
3036 			ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
3037 		break;
3038 	default:
3039 		ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
3040 		break;
3041 	}
3042 	if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
3043 	    chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
3044 	    chandef->width != NL80211_CHAN_WIDTH_20)
3045 		ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
3046 
3047 	if (rifs_mode)
3048 		ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE;
3049 
3050 	ht_oper->operation_mode = cpu_to_le16(prot_mode);
3051 	ht_oper->stbc_param = 0x0000;
3052 
3053 	/* It seems that Basic MCS set and Supported MCS set
3054 	   are identical for the first 10 bytes */
3055 	memset(&ht_oper->basic_set, 0, 16);
3056 	memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
3057 
3058 	return pos + sizeof(struct ieee80211_ht_operation);
3059 }
3060 
3061 void ieee80211_ie_build_wide_bw_cs(u8 *pos,
3062 				   const struct cfg80211_chan_def *chandef)
3063 {
3064 	*pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH;	/* EID */
3065 	*pos++ = 3;					/* IE length */
3066 	/* New channel width */
3067 	switch (chandef->width) {
3068 	case NL80211_CHAN_WIDTH_80:
3069 		*pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ;
3070 		break;
3071 	case NL80211_CHAN_WIDTH_160:
3072 		*pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ;
3073 		break;
3074 	case NL80211_CHAN_WIDTH_80P80:
3075 		*pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ;
3076 		break;
3077 	default:
3078 		*pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT;
3079 	}
3080 
3081 	/* new center frequency segment 0 */
3082 	*pos++ = ieee80211_frequency_to_channel(chandef->center_freq1);
3083 	/* new center frequency segment 1 */
3084 	if (chandef->center_freq2)
3085 		*pos++ = ieee80211_frequency_to_channel(chandef->center_freq2);
3086 	else
3087 		*pos++ = 0;
3088 }
3089 
3090 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
3091 				const struct cfg80211_chan_def *chandef)
3092 {
3093 	struct ieee80211_vht_operation *vht_oper;
3094 
3095 	*pos++ = WLAN_EID_VHT_OPERATION;
3096 	*pos++ = sizeof(struct ieee80211_vht_operation);
3097 	vht_oper = (struct ieee80211_vht_operation *)pos;
3098 	vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel(
3099 							chandef->center_freq1);
3100 	if (chandef->center_freq2)
3101 		vht_oper->center_freq_seg1_idx =
3102 			ieee80211_frequency_to_channel(chandef->center_freq2);
3103 	else
3104 		vht_oper->center_freq_seg1_idx = 0x00;
3105 
3106 	switch (chandef->width) {
3107 	case NL80211_CHAN_WIDTH_160:
3108 		/*
3109 		 * Convert 160 MHz channel width to new style as interop
3110 		 * workaround.
3111 		 */
3112 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3113 		vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx;
3114 		if (chandef->chan->center_freq < chandef->center_freq1)
3115 			vht_oper->center_freq_seg0_idx -= 8;
3116 		else
3117 			vht_oper->center_freq_seg0_idx += 8;
3118 		break;
3119 	case NL80211_CHAN_WIDTH_80P80:
3120 		/*
3121 		 * Convert 80+80 MHz channel width to new style as interop
3122 		 * workaround.
3123 		 */
3124 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3125 		break;
3126 	case NL80211_CHAN_WIDTH_80:
3127 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ;
3128 		break;
3129 	default:
3130 		vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT;
3131 		break;
3132 	}
3133 
3134 	/* don't require special VHT peer rates */
3135 	vht_oper->basic_mcs_set = cpu_to_le16(0xffff);
3136 
3137 	return pos + sizeof(struct ieee80211_vht_operation);
3138 }
3139 
3140 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef)
3141 {
3142 	struct ieee80211_he_operation *he_oper;
3143 	struct ieee80211_he_6ghz_oper *he_6ghz_op;
3144 	u32 he_oper_params;
3145 	u8 ie_len = 1 + sizeof(struct ieee80211_he_operation);
3146 
3147 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3148 		ie_len += sizeof(struct ieee80211_he_6ghz_oper);
3149 
3150 	*pos++ = WLAN_EID_EXTENSION;
3151 	*pos++ = ie_len;
3152 	*pos++ = WLAN_EID_EXT_HE_OPERATION;
3153 
3154 	he_oper_params = 0;
3155 	he_oper_params |= u32_encode_bits(1023, /* disabled */
3156 				IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK);
3157 	he_oper_params |= u32_encode_bits(1,
3158 				IEEE80211_HE_OPERATION_ER_SU_DISABLE);
3159 	he_oper_params |= u32_encode_bits(1,
3160 				IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED);
3161 	if (chandef->chan->band == NL80211_BAND_6GHZ)
3162 		he_oper_params |= u32_encode_bits(1,
3163 				IEEE80211_HE_OPERATION_6GHZ_OP_INFO);
3164 
3165 	he_oper = (struct ieee80211_he_operation *)pos;
3166 	he_oper->he_oper_params = cpu_to_le32(he_oper_params);
3167 
3168 	/* don't require special HE peer rates */
3169 	he_oper->he_mcs_nss_set = cpu_to_le16(0xffff);
3170 	pos += sizeof(struct ieee80211_he_operation);
3171 
3172 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3173 		goto out;
3174 
3175 	/* TODO add VHT operational */
3176 	he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos;
3177 	he_6ghz_op->minrate = 6; /* 6 Mbps */
3178 	he_6ghz_op->primary =
3179 		ieee80211_frequency_to_channel(chandef->chan->center_freq);
3180 	he_6ghz_op->ccfs0 =
3181 		ieee80211_frequency_to_channel(chandef->center_freq1);
3182 	if (chandef->center_freq2)
3183 		he_6ghz_op->ccfs1 =
3184 			ieee80211_frequency_to_channel(chandef->center_freq2);
3185 	else
3186 		he_6ghz_op->ccfs1 = 0;
3187 
3188 	switch (chandef->width) {
3189 	case NL80211_CHAN_WIDTH_160:
3190 		/* Convert 160 MHz channel width to new style as interop
3191 		 * workaround.
3192 		 */
3193 		he_6ghz_op->control =
3194 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3195 		he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0;
3196 		if (chandef->chan->center_freq < chandef->center_freq1)
3197 			he_6ghz_op->ccfs0 -= 8;
3198 		else
3199 			he_6ghz_op->ccfs0 += 8;
3200 		fallthrough;
3201 	case NL80211_CHAN_WIDTH_80P80:
3202 		he_6ghz_op->control =
3203 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ;
3204 		break;
3205 	case NL80211_CHAN_WIDTH_80:
3206 		he_6ghz_op->control =
3207 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ;
3208 		break;
3209 	case NL80211_CHAN_WIDTH_40:
3210 		he_6ghz_op->control =
3211 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ;
3212 		break;
3213 	default:
3214 		he_6ghz_op->control =
3215 			IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ;
3216 		break;
3217 	}
3218 
3219 	pos += sizeof(struct ieee80211_he_6ghz_oper);
3220 
3221 out:
3222 	return pos;
3223 }
3224 
3225 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper,
3226 			       struct cfg80211_chan_def *chandef)
3227 {
3228 	enum nl80211_channel_type channel_type;
3229 
3230 	if (!ht_oper)
3231 		return false;
3232 
3233 	switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
3234 	case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3235 		channel_type = NL80211_CHAN_HT20;
3236 		break;
3237 	case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3238 		channel_type = NL80211_CHAN_HT40PLUS;
3239 		break;
3240 	case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3241 		channel_type = NL80211_CHAN_HT40MINUS;
3242 		break;
3243 	default:
3244 		channel_type = NL80211_CHAN_NO_HT;
3245 		return false;
3246 	}
3247 
3248 	cfg80211_chandef_create(chandef, chandef->chan, channel_type);
3249 	return true;
3250 }
3251 
3252 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info,
3253 				const struct ieee80211_vht_operation *oper,
3254 				const struct ieee80211_ht_operation *htop,
3255 				struct cfg80211_chan_def *chandef)
3256 {
3257 	struct cfg80211_chan_def new = *chandef;
3258 	int cf0, cf1;
3259 	int ccfs0, ccfs1, ccfs2;
3260 	int ccf0, ccf1;
3261 	u32 vht_cap;
3262 	bool support_80_80 = false;
3263 	bool support_160 = false;
3264 	u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info,
3265 					  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
3266 	u8 supp_chwidth = u32_get_bits(vht_cap_info,
3267 				       IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
3268 
3269 	if (!oper || !htop)
3270 		return false;
3271 
3272 	vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap;
3273 	support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK |
3274 				  IEEE80211_VHT_CAP_EXT_NSS_BW_MASK));
3275 	support_80_80 = ((vht_cap &
3276 			 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
3277 			(vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
3278 			 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
3279 			((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >>
3280 				    IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1));
3281 	ccfs0 = oper->center_freq_seg0_idx;
3282 	ccfs1 = oper->center_freq_seg1_idx;
3283 	ccfs2 = (le16_to_cpu(htop->operation_mode) &
3284 				IEEE80211_HT_OP_MODE_CCFS2_MASK)
3285 			>> IEEE80211_HT_OP_MODE_CCFS2_SHIFT;
3286 
3287 	ccf0 = ccfs0;
3288 
3289 	/* if not supported, parse as though we didn't understand it */
3290 	if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW))
3291 		ext_nss_bw_supp = 0;
3292 
3293 	/*
3294 	 * Cf. IEEE 802.11 Table 9-250
3295 	 *
3296 	 * We really just consider that because it's inefficient to connect
3297 	 * at a higher bandwidth than we'll actually be able to use.
3298 	 */
3299 	switch ((supp_chwidth << 4) | ext_nss_bw_supp) {
3300 	default:
3301 	case 0x00:
3302 		ccf1 = 0;
3303 		support_160 = false;
3304 		support_80_80 = false;
3305 		break;
3306 	case 0x01:
3307 		support_80_80 = false;
3308 		fallthrough;
3309 	case 0x02:
3310 	case 0x03:
3311 		ccf1 = ccfs2;
3312 		break;
3313 	case 0x10:
3314 		ccf1 = ccfs1;
3315 		break;
3316 	case 0x11:
3317 	case 0x12:
3318 		if (!ccfs1)
3319 			ccf1 = ccfs2;
3320 		else
3321 			ccf1 = ccfs1;
3322 		break;
3323 	case 0x13:
3324 	case 0x20:
3325 	case 0x23:
3326 		ccf1 = ccfs1;
3327 		break;
3328 	}
3329 
3330 	cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band);
3331 	cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band);
3332 
3333 	switch (oper->chan_width) {
3334 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
3335 		/* just use HT information directly */
3336 		break;
3337 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
3338 		new.width = NL80211_CHAN_WIDTH_80;
3339 		new.center_freq1 = cf0;
3340 		/* If needed, adjust based on the newer interop workaround. */
3341 		if (ccf1) {
3342 			unsigned int diff;
3343 
3344 			diff = abs(ccf1 - ccf0);
3345 			if ((diff == 8) && support_160) {
3346 				new.width = NL80211_CHAN_WIDTH_160;
3347 				new.center_freq1 = cf1;
3348 			} else if ((diff > 8) && support_80_80) {
3349 				new.width = NL80211_CHAN_WIDTH_80P80;
3350 				new.center_freq2 = cf1;
3351 			}
3352 		}
3353 		break;
3354 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
3355 		/* deprecated encoding */
3356 		new.width = NL80211_CHAN_WIDTH_160;
3357 		new.center_freq1 = cf0;
3358 		break;
3359 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
3360 		/* deprecated encoding */
3361 		new.width = NL80211_CHAN_WIDTH_80P80;
3362 		new.center_freq1 = cf0;
3363 		new.center_freq2 = cf1;
3364 		break;
3365 	default:
3366 		return false;
3367 	}
3368 
3369 	if (!cfg80211_chandef_valid(&new))
3370 		return false;
3371 
3372 	*chandef = new;
3373 	return true;
3374 }
3375 
3376 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata,
3377 				    const struct ieee80211_he_operation *he_oper,
3378 				    struct cfg80211_chan_def *chandef)
3379 {
3380 	struct ieee80211_local *local = sdata->local;
3381 	struct ieee80211_supported_band *sband;
3382 	enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif);
3383 	const struct ieee80211_sta_he_cap *he_cap;
3384 	struct cfg80211_chan_def he_chandef = *chandef;
3385 	const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
3386 	bool support_80_80, support_160;
3387 	u8 he_phy_cap;
3388 	u32 freq;
3389 
3390 	if (chandef->chan->band != NL80211_BAND_6GHZ)
3391 		return true;
3392 
3393 	sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ];
3394 
3395 	he_cap = ieee80211_get_he_iftype_cap(sband, iftype);
3396 	if (!he_cap) {
3397 		sdata_info(sdata, "Missing iftype sband data/HE cap");
3398 		return false;
3399 	}
3400 
3401 	he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0];
3402 	support_160 =
3403 		he_phy_cap &
3404 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
3405 	support_80_80 =
3406 		he_phy_cap &
3407 		IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G;
3408 
3409 	if (!he_oper) {
3410 		sdata_info(sdata,
3411 			   "HE is not advertised on (on %d MHz), expect issues\n",
3412 			   chandef->chan->center_freq);
3413 		return false;
3414 	}
3415 
3416 	he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
3417 
3418 	if (!he_6ghz_oper) {
3419 		sdata_info(sdata,
3420 			   "HE 6GHz operation missing (on %d MHz), expect issues\n",
3421 			   chandef->chan->center_freq);
3422 		return false;
3423 	}
3424 
3425 	freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary,
3426 					      NL80211_BAND_6GHZ);
3427 	he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq);
3428 
3429 	switch (u8_get_bits(he_6ghz_oper->control,
3430 			    IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) {
3431 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ:
3432 		he_chandef.width = NL80211_CHAN_WIDTH_20;
3433 		break;
3434 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ:
3435 		he_chandef.width = NL80211_CHAN_WIDTH_40;
3436 		break;
3437 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ:
3438 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3439 		break;
3440 	case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ:
3441 		he_chandef.width = NL80211_CHAN_WIDTH_80;
3442 		if (!he_6ghz_oper->ccfs1)
3443 			break;
3444 		if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) {
3445 			if (support_160)
3446 				he_chandef.width = NL80211_CHAN_WIDTH_160;
3447 		} else {
3448 			if (support_80_80)
3449 				he_chandef.width = NL80211_CHAN_WIDTH_80P80;
3450 		}
3451 		break;
3452 	}
3453 
3454 	if (he_chandef.width == NL80211_CHAN_WIDTH_160) {
3455 		he_chandef.center_freq1 =
3456 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3457 						       NL80211_BAND_6GHZ);
3458 	} else {
3459 		he_chandef.center_freq1 =
3460 			ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0,
3461 						       NL80211_BAND_6GHZ);
3462 		if (support_80_80 || support_160)
3463 			he_chandef.center_freq2 =
3464 				ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1,
3465 							       NL80211_BAND_6GHZ);
3466 	}
3467 
3468 	if (!cfg80211_chandef_valid(&he_chandef)) {
3469 		sdata_info(sdata,
3470 			   "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n",
3471 			   he_chandef.chan ? he_chandef.chan->center_freq : 0,
3472 			   he_chandef.width,
3473 			   he_chandef.center_freq1,
3474 			   he_chandef.center_freq2);
3475 		return false;
3476 	}
3477 
3478 	*chandef = he_chandef;
3479 
3480 	return true;
3481 }
3482 
3483 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper,
3484 				struct cfg80211_chan_def *chandef)
3485 {
3486 	u32 oper_freq;
3487 
3488 	if (!oper)
3489 		return false;
3490 
3491 	switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) {
3492 	case IEEE80211_S1G_CHANWIDTH_1MHZ:
3493 		chandef->width = NL80211_CHAN_WIDTH_1;
3494 		break;
3495 	case IEEE80211_S1G_CHANWIDTH_2MHZ:
3496 		chandef->width = NL80211_CHAN_WIDTH_2;
3497 		break;
3498 	case IEEE80211_S1G_CHANWIDTH_4MHZ:
3499 		chandef->width = NL80211_CHAN_WIDTH_4;
3500 		break;
3501 	case IEEE80211_S1G_CHANWIDTH_8MHZ:
3502 		chandef->width = NL80211_CHAN_WIDTH_8;
3503 		break;
3504 	case IEEE80211_S1G_CHANWIDTH_16MHZ:
3505 		chandef->width = NL80211_CHAN_WIDTH_16;
3506 		break;
3507 	default:
3508 		return false;
3509 	}
3510 
3511 	oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch,
3512 						  NL80211_BAND_S1GHZ);
3513 	chandef->center_freq1 = KHZ_TO_MHZ(oper_freq);
3514 	chandef->freq1_offset = oper_freq % 1000;
3515 
3516 	return true;
3517 }
3518 
3519 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef,
3520 			     const struct ieee80211_supported_band *sband,
3521 			     const u8 *srates, int srates_len, u32 *rates)
3522 {
3523 	u32 rate_flags = ieee80211_chandef_rate_flags(chandef);
3524 	int shift = ieee80211_chandef_get_shift(chandef);
3525 	struct ieee80211_rate *br;
3526 	int brate, rate, i, j, count = 0;
3527 
3528 	*rates = 0;
3529 
3530 	for (i = 0; i < srates_len; i++) {
3531 		rate = srates[i] & 0x7f;
3532 
3533 		for (j = 0; j < sband->n_bitrates; j++) {
3534 			br = &sband->bitrates[j];
3535 			if ((rate_flags & br->flags) != rate_flags)
3536 				continue;
3537 
3538 			brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5);
3539 			if (brate == rate) {
3540 				*rates |= BIT(j);
3541 				count++;
3542 				break;
3543 			}
3544 		}
3545 	}
3546 	return count;
3547 }
3548 
3549 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
3550 			    struct sk_buff *skb, bool need_basic,
3551 			    enum nl80211_band band)
3552 {
3553 	struct ieee80211_local *local = sdata->local;
3554 	struct ieee80211_supported_band *sband;
3555 	int rate, shift;
3556 	u8 i, rates, *pos;
3557 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3558 	u32 rate_flags;
3559 
3560 	shift = ieee80211_vif_get_shift(&sdata->vif);
3561 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3562 	sband = local->hw.wiphy->bands[band];
3563 	rates = 0;
3564 	for (i = 0; i < sband->n_bitrates; i++) {
3565 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3566 			continue;
3567 		rates++;
3568 	}
3569 	if (rates > 8)
3570 		rates = 8;
3571 
3572 	if (skb_tailroom(skb) < rates + 2)
3573 		return -ENOMEM;
3574 
3575 	pos = skb_put(skb, rates + 2);
3576 	*pos++ = WLAN_EID_SUPP_RATES;
3577 	*pos++ = rates;
3578 	for (i = 0; i < rates; i++) {
3579 		u8 basic = 0;
3580 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3581 			continue;
3582 
3583 		if (need_basic && basic_rates & BIT(i))
3584 			basic = 0x80;
3585 		rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3586 				    5 * (1 << shift));
3587 		*pos++ = basic | (u8) rate;
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
3594 				struct sk_buff *skb, bool need_basic,
3595 				enum nl80211_band band)
3596 {
3597 	struct ieee80211_local *local = sdata->local;
3598 	struct ieee80211_supported_band *sband;
3599 	int rate, shift;
3600 	u8 i, exrates, *pos;
3601 	u32 basic_rates = sdata->vif.bss_conf.basic_rates;
3602 	u32 rate_flags;
3603 
3604 	rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef);
3605 	shift = ieee80211_vif_get_shift(&sdata->vif);
3606 
3607 	sband = local->hw.wiphy->bands[band];
3608 	exrates = 0;
3609 	for (i = 0; i < sband->n_bitrates; i++) {
3610 		if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
3611 			continue;
3612 		exrates++;
3613 	}
3614 
3615 	if (exrates > 8)
3616 		exrates -= 8;
3617 	else
3618 		exrates = 0;
3619 
3620 	if (skb_tailroom(skb) < exrates + 2)
3621 		return -ENOMEM;
3622 
3623 	if (exrates) {
3624 		pos = skb_put(skb, exrates + 2);
3625 		*pos++ = WLAN_EID_EXT_SUPP_RATES;
3626 		*pos++ = exrates;
3627 		for (i = 8; i < sband->n_bitrates; i++) {
3628 			u8 basic = 0;
3629 			if ((rate_flags & sband->bitrates[i].flags)
3630 			    != rate_flags)
3631 				continue;
3632 			if (need_basic && basic_rates & BIT(i))
3633 				basic = 0x80;
3634 			rate = DIV_ROUND_UP(sband->bitrates[i].bitrate,
3635 					    5 * (1 << shift));
3636 			*pos++ = basic | (u8) rate;
3637 		}
3638 	}
3639 	return 0;
3640 }
3641 
3642 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
3643 {
3644 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
3645 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
3646 
3647 	if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
3648 		/* non-managed type inferfaces */
3649 		return 0;
3650 	}
3651 	return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal);
3652 }
3653 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
3654 
3655 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
3656 {
3657 	if (!mcs)
3658 		return 1;
3659 
3660 	/* TODO: consider rx_highest */
3661 
3662 	if (mcs->rx_mask[3])
3663 		return 4;
3664 	if (mcs->rx_mask[2])
3665 		return 3;
3666 	if (mcs->rx_mask[1])
3667 		return 2;
3668 	return 1;
3669 }
3670 
3671 /**
3672  * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
3673  * @local: mac80211 hw info struct
3674  * @status: RX status
3675  * @mpdu_len: total MPDU length (including FCS)
3676  * @mpdu_offset: offset into MPDU to calculate timestamp at
3677  *
3678  * This function calculates the RX timestamp at the given MPDU offset, taking
3679  * into account what the RX timestamp was. An offset of 0 will just normalize
3680  * the timestamp to TSF at beginning of MPDU reception.
3681  */
3682 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
3683 				     struct ieee80211_rx_status *status,
3684 				     unsigned int mpdu_len,
3685 				     unsigned int mpdu_offset)
3686 {
3687 	u64 ts = status->mactime;
3688 	struct rate_info ri;
3689 	u16 rate;
3690 	u8 n_ltf;
3691 
3692 	if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
3693 		return 0;
3694 
3695 	memset(&ri, 0, sizeof(ri));
3696 
3697 	ri.bw = status->bw;
3698 
3699 	/* Fill cfg80211 rate info */
3700 	switch (status->encoding) {
3701 	case RX_ENC_HE:
3702 		ri.flags |= RATE_INFO_FLAGS_HE_MCS;
3703 		ri.mcs = status->rate_idx;
3704 		ri.nss = status->nss;
3705 		ri.he_ru_alloc = status->he_ru;
3706 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3707 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3708 
3709 		/*
3710 		 * See P802.11ax_D6.0, section 27.3.4 for
3711 		 * VHT PPDU format.
3712 		 */
3713 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3714 			mpdu_offset += 2;
3715 			ts += 36;
3716 
3717 			/*
3718 			 * TODO:
3719 			 * For HE MU PPDU, add the HE-SIG-B.
3720 			 * For HE ER PPDU, add 8us for the HE-SIG-A.
3721 			 * For HE TB PPDU, add 4us for the HE-STF.
3722 			 * Add the HE-LTF durations - variable.
3723 			 */
3724 		}
3725 
3726 		break;
3727 	case RX_ENC_HT:
3728 		ri.mcs = status->rate_idx;
3729 		ri.flags |= RATE_INFO_FLAGS_MCS;
3730 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3731 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3732 
3733 		/*
3734 		 * See P802.11REVmd_D3.0, section 19.3.2 for
3735 		 * HT PPDU format.
3736 		 */
3737 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3738 			mpdu_offset += 2;
3739 			if (status->enc_flags & RX_ENC_FLAG_HT_GF)
3740 				ts += 24;
3741 			else
3742 				ts += 32;
3743 
3744 			/*
3745 			 * Add Data HT-LTFs per streams
3746 			 * TODO: add Extension HT-LTFs, 4us per LTF
3747 			 */
3748 			n_ltf = ((ri.mcs >> 3) & 3) + 1;
3749 			n_ltf = n_ltf == 3 ? 4 : n_ltf;
3750 			ts += n_ltf * 4;
3751 		}
3752 
3753 		break;
3754 	case RX_ENC_VHT:
3755 		ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
3756 		ri.mcs = status->rate_idx;
3757 		ri.nss = status->nss;
3758 		if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
3759 			ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
3760 
3761 		/*
3762 		 * See P802.11REVmd_D3.0, section 21.3.2 for
3763 		 * VHT PPDU format.
3764 		 */
3765 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3766 			mpdu_offset += 2;
3767 			ts += 36;
3768 
3769 			/*
3770 			 * Add VHT-LTFs per streams
3771 			 */
3772 			n_ltf = (ri.nss != 1) && (ri.nss % 2) ?
3773 				ri.nss + 1 : ri.nss;
3774 			ts += 4 * n_ltf;
3775 		}
3776 
3777 		break;
3778 	default:
3779 		WARN_ON(1);
3780 		fallthrough;
3781 	case RX_ENC_LEGACY: {
3782 		struct ieee80211_supported_band *sband;
3783 		int shift = 0;
3784 		int bitrate;
3785 
3786 		switch (status->bw) {
3787 		case RATE_INFO_BW_10:
3788 			shift = 1;
3789 			break;
3790 		case RATE_INFO_BW_5:
3791 			shift = 2;
3792 			break;
3793 		}
3794 
3795 		sband = local->hw.wiphy->bands[status->band];
3796 		bitrate = sband->bitrates[status->rate_idx].bitrate;
3797 		ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift));
3798 
3799 		if (status->flag & RX_FLAG_MACTIME_PLCP_START) {
3800 			if (status->band == NL80211_BAND_5GHZ) {
3801 				ts += 20 << shift;
3802 				mpdu_offset += 2;
3803 			} else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) {
3804 				ts += 96;
3805 			} else {
3806 				ts += 192;
3807 			}
3808 		}
3809 		break;
3810 		}
3811 	}
3812 
3813 	rate = cfg80211_calculate_bitrate(&ri);
3814 	if (WARN_ONCE(!rate,
3815 		      "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n",
3816 		      (unsigned long long)status->flag, status->rate_idx,
3817 		      status->nss))
3818 		return 0;
3819 
3820 	/* rewind from end of MPDU */
3821 	if (status->flag & RX_FLAG_MACTIME_END)
3822 		ts -= mpdu_len * 8 * 10 / rate;
3823 
3824 	ts += mpdu_offset * 8 * 10 / rate;
3825 
3826 	return ts;
3827 }
3828 
3829 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
3830 {
3831 	struct ieee80211_sub_if_data *sdata;
3832 	struct cfg80211_chan_def chandef;
3833 
3834 	/* for interface list, to avoid linking iflist_mtx and chanctx_mtx */
3835 	lockdep_assert_wiphy(local->hw.wiphy);
3836 
3837 	mutex_lock(&local->mtx);
3838 	list_for_each_entry(sdata, &local->interfaces, list) {
3839 		/* it might be waiting for the local->mtx, but then
3840 		 * by the time it gets it, sdata->wdev.cac_started
3841 		 * will no longer be true
3842 		 */
3843 		cancel_delayed_work(&sdata->dfs_cac_timer_work);
3844 
3845 		if (sdata->wdev.cac_started) {
3846 			chandef = sdata->vif.bss_conf.chandef;
3847 			ieee80211_vif_release_channel(sdata);
3848 			cfg80211_cac_event(sdata->dev,
3849 					   &chandef,
3850 					   NL80211_RADAR_CAC_ABORTED,
3851 					   GFP_KERNEL);
3852 		}
3853 	}
3854 	mutex_unlock(&local->mtx);
3855 }
3856 
3857 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
3858 {
3859 	struct ieee80211_local *local =
3860 		container_of(work, struct ieee80211_local, radar_detected_work);
3861 	struct cfg80211_chan_def chandef = local->hw.conf.chandef;
3862 	struct ieee80211_chanctx *ctx;
3863 	int num_chanctx = 0;
3864 
3865 	mutex_lock(&local->chanctx_mtx);
3866 	list_for_each_entry(ctx, &local->chanctx_list, list) {
3867 		if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER)
3868 			continue;
3869 
3870 		num_chanctx++;
3871 		chandef = ctx->conf.def;
3872 	}
3873 	mutex_unlock(&local->chanctx_mtx);
3874 
3875 	wiphy_lock(local->hw.wiphy);
3876 	ieee80211_dfs_cac_cancel(local);
3877 	wiphy_unlock(local->hw.wiphy);
3878 
3879 	if (num_chanctx > 1)
3880 		/* XXX: multi-channel is not supported yet */
3881 		WARN_ON(1);
3882 	else
3883 		cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
3884 }
3885 
3886 void ieee80211_radar_detected(struct ieee80211_hw *hw)
3887 {
3888 	struct ieee80211_local *local = hw_to_local(hw);
3889 
3890 	trace_api_radar_detected(local);
3891 
3892 	schedule_work(&local->radar_detected_work);
3893 }
3894 EXPORT_SYMBOL(ieee80211_radar_detected);
3895 
3896 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c)
3897 {
3898 	u32 ret;
3899 	int tmp;
3900 
3901 	switch (c->width) {
3902 	case NL80211_CHAN_WIDTH_20:
3903 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3904 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3905 		break;
3906 	case NL80211_CHAN_WIDTH_40:
3907 		c->width = NL80211_CHAN_WIDTH_20;
3908 		c->center_freq1 = c->chan->center_freq;
3909 		ret = IEEE80211_STA_DISABLE_40MHZ |
3910 		      IEEE80211_STA_DISABLE_VHT;
3911 		break;
3912 	case NL80211_CHAN_WIDTH_80:
3913 		tmp = (30 + c->chan->center_freq - c->center_freq1)/20;
3914 		/* n_P40 */
3915 		tmp /= 2;
3916 		/* freq_P40 */
3917 		c->center_freq1 = c->center_freq1 - 20 + 40 * tmp;
3918 		c->width = NL80211_CHAN_WIDTH_40;
3919 		ret = IEEE80211_STA_DISABLE_VHT;
3920 		break;
3921 	case NL80211_CHAN_WIDTH_80P80:
3922 		c->center_freq2 = 0;
3923 		c->width = NL80211_CHAN_WIDTH_80;
3924 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3925 		      IEEE80211_STA_DISABLE_160MHZ;
3926 		break;
3927 	case NL80211_CHAN_WIDTH_160:
3928 		/* n_P20 */
3929 		tmp = (70 + c->chan->center_freq - c->center_freq1)/20;
3930 		/* n_P80 */
3931 		tmp /= 4;
3932 		c->center_freq1 = c->center_freq1 - 40 + 80 * tmp;
3933 		c->width = NL80211_CHAN_WIDTH_80;
3934 		ret = IEEE80211_STA_DISABLE_80P80MHZ |
3935 		      IEEE80211_STA_DISABLE_160MHZ;
3936 		break;
3937 	default:
3938 	case NL80211_CHAN_WIDTH_20_NOHT:
3939 		WARN_ON_ONCE(1);
3940 		c->width = NL80211_CHAN_WIDTH_20_NOHT;
3941 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3942 		break;
3943 	case NL80211_CHAN_WIDTH_1:
3944 	case NL80211_CHAN_WIDTH_2:
3945 	case NL80211_CHAN_WIDTH_4:
3946 	case NL80211_CHAN_WIDTH_8:
3947 	case NL80211_CHAN_WIDTH_16:
3948 	case NL80211_CHAN_WIDTH_5:
3949 	case NL80211_CHAN_WIDTH_10:
3950 		WARN_ON_ONCE(1);
3951 		/* keep c->width */
3952 		ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT;
3953 		break;
3954 	}
3955 
3956 	WARN_ON_ONCE(!cfg80211_chandef_valid(c));
3957 
3958 	return ret;
3959 }
3960 
3961 /*
3962  * Returns true if smps_mode_new is strictly more restrictive than
3963  * smps_mode_old.
3964  */
3965 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old,
3966 				   enum ieee80211_smps_mode smps_mode_new)
3967 {
3968 	if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC ||
3969 			 smps_mode_new == IEEE80211_SMPS_AUTOMATIC))
3970 		return false;
3971 
3972 	switch (smps_mode_old) {
3973 	case IEEE80211_SMPS_STATIC:
3974 		return false;
3975 	case IEEE80211_SMPS_DYNAMIC:
3976 		return smps_mode_new == IEEE80211_SMPS_STATIC;
3977 	case IEEE80211_SMPS_OFF:
3978 		return smps_mode_new != IEEE80211_SMPS_OFF;
3979 	default:
3980 		WARN_ON(1);
3981 	}
3982 
3983 	return false;
3984 }
3985 
3986 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata,
3987 			      struct cfg80211_csa_settings *csa_settings)
3988 {
3989 	struct sk_buff *skb;
3990 	struct ieee80211_mgmt *mgmt;
3991 	struct ieee80211_local *local = sdata->local;
3992 	int freq;
3993 	int hdr_len = offsetofend(struct ieee80211_mgmt,
3994 				  u.action.u.chan_switch);
3995 	u8 *pos;
3996 
3997 	if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3998 	    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3999 		return -EOPNOTSUPP;
4000 
4001 	skb = dev_alloc_skb(local->tx_headroom + hdr_len +
4002 			    5 + /* channel switch announcement element */
4003 			    3 + /* secondary channel offset element */
4004 			    5 + /* wide bandwidth channel switch announcement */
4005 			    8); /* mesh channel switch parameters element */
4006 	if (!skb)
4007 		return -ENOMEM;
4008 
4009 	skb_reserve(skb, local->tx_headroom);
4010 	mgmt = skb_put_zero(skb, hdr_len);
4011 	mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
4012 					  IEEE80211_STYPE_ACTION);
4013 
4014 	eth_broadcast_addr(mgmt->da);
4015 	memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
4016 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4017 		memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN);
4018 	} else {
4019 		struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
4020 		memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN);
4021 	}
4022 	mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT;
4023 	mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH;
4024 	pos = skb_put(skb, 5);
4025 	*pos++ = WLAN_EID_CHANNEL_SWITCH;			/* EID */
4026 	*pos++ = 3;						/* IE length */
4027 	*pos++ = csa_settings->block_tx ? 1 : 0;		/* CSA mode */
4028 	freq = csa_settings->chandef.chan->center_freq;
4029 	*pos++ = ieee80211_frequency_to_channel(freq);		/* channel */
4030 	*pos++ = csa_settings->count;				/* count */
4031 
4032 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) {
4033 		enum nl80211_channel_type ch_type;
4034 
4035 		skb_put(skb, 3);
4036 		*pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET;	/* EID */
4037 		*pos++ = 1;					/* IE length */
4038 		ch_type = cfg80211_get_chandef_type(&csa_settings->chandef);
4039 		if (ch_type == NL80211_CHAN_HT40PLUS)
4040 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
4041 		else
4042 			*pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
4043 	}
4044 
4045 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
4046 		struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
4047 
4048 		skb_put(skb, 8);
4049 		*pos++ = WLAN_EID_CHAN_SWITCH_PARAM;		/* EID */
4050 		*pos++ = 6;					/* IE length */
4051 		*pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL;	/* Mesh TTL */
4052 		*pos = 0x00;	/* Mesh Flag: Tx Restrict, Initiator, Reason */
4053 		*pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR;
4054 		*pos++ |= csa_settings->block_tx ?
4055 			  WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00;
4056 		put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */
4057 		pos += 2;
4058 		put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */
4059 		pos += 2;
4060 	}
4061 
4062 	if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 ||
4063 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 ||
4064 	    csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) {
4065 		skb_put(skb, 5);
4066 		ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef);
4067 	}
4068 
4069 	ieee80211_tx_skb(sdata, skb);
4070 	return 0;
4071 }
4072 
4073 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs)
4074 {
4075 	return !(cs == NULL || cs->cipher == 0 ||
4076 		 cs->hdr_len < cs->pn_len + cs->pn_off ||
4077 		 cs->hdr_len <= cs->key_idx_off ||
4078 		 cs->key_idx_shift > 7 ||
4079 		 cs->key_idx_mask == 0);
4080 }
4081 
4082 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n)
4083 {
4084 	int i;
4085 
4086 	/* Ensure we have enough iftype bitmap space for all iftype values */
4087 	WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype));
4088 
4089 	for (i = 0; i < n; i++)
4090 		if (!ieee80211_cs_valid(&cs[i]))
4091 			return false;
4092 
4093 	return true;
4094 }
4095 
4096 const struct ieee80211_cipher_scheme *
4097 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher,
4098 		 enum nl80211_iftype iftype)
4099 {
4100 	const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes;
4101 	int n = local->hw.n_cipher_schemes;
4102 	int i;
4103 	const struct ieee80211_cipher_scheme *cs = NULL;
4104 
4105 	for (i = 0; i < n; i++) {
4106 		if (l[i].cipher == cipher) {
4107 			cs = &l[i];
4108 			break;
4109 		}
4110 	}
4111 
4112 	if (!cs || !(cs->iftype & BIT(iftype)))
4113 		return NULL;
4114 
4115 	return cs;
4116 }
4117 
4118 int ieee80211_cs_headroom(struct ieee80211_local *local,
4119 			  struct cfg80211_crypto_settings *crypto,
4120 			  enum nl80211_iftype iftype)
4121 {
4122 	const struct ieee80211_cipher_scheme *cs;
4123 	int headroom = IEEE80211_ENCRYPT_HEADROOM;
4124 	int i;
4125 
4126 	for (i = 0; i < crypto->n_ciphers_pairwise; i++) {
4127 		cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i],
4128 				      iftype);
4129 
4130 		if (cs && headroom < cs->hdr_len)
4131 			headroom = cs->hdr_len;
4132 	}
4133 
4134 	cs = ieee80211_cs_get(local, crypto->cipher_group, iftype);
4135 	if (cs && headroom < cs->hdr_len)
4136 		headroom = cs->hdr_len;
4137 
4138 	return headroom;
4139 }
4140 
4141 static bool
4142 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i)
4143 {
4144 	s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1);
4145 	int skip;
4146 
4147 	if (end > 0)
4148 		return false;
4149 
4150 	/* One shot NOA  */
4151 	if (data->count[i] == 1)
4152 		return false;
4153 
4154 	if (data->desc[i].interval == 0)
4155 		return false;
4156 
4157 	/* End time is in the past, check for repetitions */
4158 	skip = DIV_ROUND_UP(-end, data->desc[i].interval);
4159 	if (data->count[i] < 255) {
4160 		if (data->count[i] <= skip) {
4161 			data->count[i] = 0;
4162 			return false;
4163 		}
4164 
4165 		data->count[i] -= skip;
4166 	}
4167 
4168 	data->desc[i].start += skip * data->desc[i].interval;
4169 
4170 	return true;
4171 }
4172 
4173 static bool
4174 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf,
4175 			     s32 *offset)
4176 {
4177 	bool ret = false;
4178 	int i;
4179 
4180 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4181 		s32 cur;
4182 
4183 		if (!data->count[i])
4184 			continue;
4185 
4186 		if (ieee80211_extend_noa_desc(data, tsf + *offset, i))
4187 			ret = true;
4188 
4189 		cur = data->desc[i].start - tsf;
4190 		if (cur > *offset)
4191 			continue;
4192 
4193 		cur = data->desc[i].start + data->desc[i].duration - tsf;
4194 		if (cur > *offset)
4195 			*offset = cur;
4196 	}
4197 
4198 	return ret;
4199 }
4200 
4201 static u32
4202 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf)
4203 {
4204 	s32 offset = 0;
4205 	int tries = 0;
4206 	/*
4207 	 * arbitrary limit, used to avoid infinite loops when combined NoA
4208 	 * descriptors cover the full time period.
4209 	 */
4210 	int max_tries = 5;
4211 
4212 	ieee80211_extend_absent_time(data, tsf, &offset);
4213 	do {
4214 		if (!ieee80211_extend_absent_time(data, tsf, &offset))
4215 			break;
4216 
4217 		tries++;
4218 	} while (tries < max_tries);
4219 
4220 	return offset;
4221 }
4222 
4223 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf)
4224 {
4225 	u32 next_offset = BIT(31) - 1;
4226 	int i;
4227 
4228 	data->absent = 0;
4229 	data->has_next_tsf = false;
4230 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4231 		s32 start;
4232 
4233 		if (!data->count[i])
4234 			continue;
4235 
4236 		ieee80211_extend_noa_desc(data, tsf, i);
4237 		start = data->desc[i].start - tsf;
4238 		if (start <= 0)
4239 			data->absent |= BIT(i);
4240 
4241 		if (next_offset > start)
4242 			next_offset = start;
4243 
4244 		data->has_next_tsf = true;
4245 	}
4246 
4247 	if (data->absent)
4248 		next_offset = ieee80211_get_noa_absent_time(data, tsf);
4249 
4250 	data->next_tsf = tsf + next_offset;
4251 }
4252 EXPORT_SYMBOL(ieee80211_update_p2p_noa);
4253 
4254 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr,
4255 			    struct ieee80211_noa_data *data, u32 tsf)
4256 {
4257 	int ret = 0;
4258 	int i;
4259 
4260 	memset(data, 0, sizeof(*data));
4261 
4262 	for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) {
4263 		const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i];
4264 
4265 		if (!desc->count || !desc->duration)
4266 			continue;
4267 
4268 		data->count[i] = desc->count;
4269 		data->desc[i].start = le32_to_cpu(desc->start_time);
4270 		data->desc[i].duration = le32_to_cpu(desc->duration);
4271 		data->desc[i].interval = le32_to_cpu(desc->interval);
4272 
4273 		if (data->count[i] > 1 &&
4274 		    data->desc[i].interval < data->desc[i].duration)
4275 			continue;
4276 
4277 		ieee80211_extend_noa_desc(data, tsf, i);
4278 		ret++;
4279 	}
4280 
4281 	if (ret)
4282 		ieee80211_update_p2p_noa(data, tsf);
4283 
4284 	return ret;
4285 }
4286 EXPORT_SYMBOL(ieee80211_parse_p2p_noa);
4287 
4288 void ieee80211_recalc_dtim(struct ieee80211_local *local,
4289 			   struct ieee80211_sub_if_data *sdata)
4290 {
4291 	u64 tsf = drv_get_tsf(local, sdata);
4292 	u64 dtim_count = 0;
4293 	u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024;
4294 	u8 dtim_period = sdata->vif.bss_conf.dtim_period;
4295 	struct ps_data *ps;
4296 	u8 bcns_from_dtim;
4297 
4298 	if (tsf == -1ULL || !beacon_int || !dtim_period)
4299 		return;
4300 
4301 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4302 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
4303 		if (!sdata->bss)
4304 			return;
4305 
4306 		ps = &sdata->bss->ps;
4307 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
4308 		ps = &sdata->u.mesh.ps;
4309 	} else {
4310 		return;
4311 	}
4312 
4313 	/*
4314 	 * actually finds last dtim_count, mac80211 will update in
4315 	 * __beacon_add_tim().
4316 	 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period
4317 	 */
4318 	do_div(tsf, beacon_int);
4319 	bcns_from_dtim = do_div(tsf, dtim_period);
4320 	/* just had a DTIM */
4321 	if (!bcns_from_dtim)
4322 		dtim_count = 0;
4323 	else
4324 		dtim_count = dtim_period - bcns_from_dtim;
4325 
4326 	ps->dtim_count = dtim_count;
4327 }
4328 
4329 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local,
4330 					 struct ieee80211_chanctx *ctx)
4331 {
4332 	struct ieee80211_sub_if_data *sdata;
4333 	u8 radar_detect = 0;
4334 
4335 	lockdep_assert_held(&local->chanctx_mtx);
4336 
4337 	if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED))
4338 		return 0;
4339 
4340 	list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list)
4341 		if (sdata->reserved_radar_required)
4342 			radar_detect |= BIT(sdata->reserved_chandef.width);
4343 
4344 	/*
4345 	 * An in-place reservation context should not have any assigned vifs
4346 	 * until it replaces the other context.
4347 	 */
4348 	WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER &&
4349 		!list_empty(&ctx->assigned_vifs));
4350 
4351 	list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list)
4352 		if (sdata->radar_required)
4353 			radar_detect |= BIT(sdata->vif.bss_conf.chandef.width);
4354 
4355 	return radar_detect;
4356 }
4357 
4358 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata,
4359 				 const struct cfg80211_chan_def *chandef,
4360 				 enum ieee80211_chanctx_mode chanmode,
4361 				 u8 radar_detect)
4362 {
4363 	struct ieee80211_local *local = sdata->local;
4364 	struct ieee80211_sub_if_data *sdata_iter;
4365 	enum nl80211_iftype iftype = sdata->wdev.iftype;
4366 	struct ieee80211_chanctx *ctx;
4367 	int total = 1;
4368 	struct iface_combination_params params = {
4369 		.radar_detect = radar_detect,
4370 	};
4371 
4372 	lockdep_assert_held(&local->chanctx_mtx);
4373 
4374 	if (WARN_ON(hweight32(radar_detect) > 1))
4375 		return -EINVAL;
4376 
4377 	if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4378 		    !chandef->chan))
4379 		return -EINVAL;
4380 
4381 	if (WARN_ON(iftype >= NUM_NL80211_IFTYPES))
4382 		return -EINVAL;
4383 
4384 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
4385 	    sdata->vif.type == NL80211_IFTYPE_MESH_POINT) {
4386 		/*
4387 		 * always passing this is harmless, since it'll be the
4388 		 * same value that cfg80211 finds if it finds the same
4389 		 * interface ... and that's always allowed
4390 		 */
4391 		params.new_beacon_int = sdata->vif.bss_conf.beacon_int;
4392 	}
4393 
4394 	/* Always allow software iftypes */
4395 	if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) {
4396 		if (radar_detect)
4397 			return -EINVAL;
4398 		return 0;
4399 	}
4400 
4401 	if (chandef)
4402 		params.num_different_channels = 1;
4403 
4404 	if (iftype != NL80211_IFTYPE_UNSPECIFIED)
4405 		params.iftype_num[iftype] = 1;
4406 
4407 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4408 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4409 			continue;
4410 		params.radar_detect |=
4411 			ieee80211_chanctx_radar_detect(local, ctx);
4412 		if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) {
4413 			params.num_different_channels++;
4414 			continue;
4415 		}
4416 		if (chandef && chanmode == IEEE80211_CHANCTX_SHARED &&
4417 		    cfg80211_chandef_compatible(chandef,
4418 						&ctx->conf.def))
4419 			continue;
4420 		params.num_different_channels++;
4421 	}
4422 
4423 	list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) {
4424 		struct wireless_dev *wdev_iter;
4425 
4426 		wdev_iter = &sdata_iter->wdev;
4427 
4428 		if (sdata_iter == sdata ||
4429 		    !ieee80211_sdata_running(sdata_iter) ||
4430 		    cfg80211_iftype_allowed(local->hw.wiphy,
4431 					    wdev_iter->iftype, 0, 1))
4432 			continue;
4433 
4434 		params.iftype_num[wdev_iter->iftype]++;
4435 		total++;
4436 	}
4437 
4438 	if (total == 1 && !params.radar_detect)
4439 		return 0;
4440 
4441 	return cfg80211_check_combinations(local->hw.wiphy, &params);
4442 }
4443 
4444 static void
4445 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c,
4446 			 void *data)
4447 {
4448 	u32 *max_num_different_channels = data;
4449 
4450 	*max_num_different_channels = max(*max_num_different_channels,
4451 					  c->num_different_channels);
4452 }
4453 
4454 int ieee80211_max_num_channels(struct ieee80211_local *local)
4455 {
4456 	struct ieee80211_sub_if_data *sdata;
4457 	struct ieee80211_chanctx *ctx;
4458 	u32 max_num_different_channels = 1;
4459 	int err;
4460 	struct iface_combination_params params = {0};
4461 
4462 	lockdep_assert_held(&local->chanctx_mtx);
4463 
4464 	list_for_each_entry(ctx, &local->chanctx_list, list) {
4465 		if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)
4466 			continue;
4467 
4468 		params.num_different_channels++;
4469 
4470 		params.radar_detect |=
4471 			ieee80211_chanctx_radar_detect(local, ctx);
4472 	}
4473 
4474 	list_for_each_entry_rcu(sdata, &local->interfaces, list)
4475 		params.iftype_num[sdata->wdev.iftype]++;
4476 
4477 	err = cfg80211_iter_combinations(local->hw.wiphy, &params,
4478 					 ieee80211_iter_max_chans,
4479 					 &max_num_different_channels);
4480 	if (err < 0)
4481 		return err;
4482 
4483 	return max_num_different_channels;
4484 }
4485 
4486 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata,
4487 				struct ieee80211_sta_s1g_cap *caps,
4488 				struct sk_buff *skb)
4489 {
4490 	struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
4491 	struct ieee80211_s1g_cap s1g_capab;
4492 	u8 *pos;
4493 	int i;
4494 
4495 	if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
4496 		return;
4497 
4498 	if (!caps->s1g)
4499 		return;
4500 
4501 	memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap));
4502 	memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs));
4503 
4504 	/* override the capability info */
4505 	for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) {
4506 		u8 mask = ifmgd->s1g_capa_mask.capab_info[i];
4507 
4508 		s1g_capab.capab_info[i] &= ~mask;
4509 		s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask;
4510 	}
4511 
4512 	/* then MCS and NSS set */
4513 	for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) {
4514 		u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i];
4515 
4516 		s1g_capab.supp_mcs_nss[i] &= ~mask;
4517 		s1g_capab.supp_mcs_nss[i] |=
4518 			ifmgd->s1g_capa.supp_mcs_nss[i] & mask;
4519 	}
4520 
4521 	pos = skb_put(skb, 2 + sizeof(s1g_capab));
4522 	*pos++ = WLAN_EID_S1G_CAPABILITIES;
4523 	*pos++ = sizeof(s1g_capab);
4524 
4525 	memcpy(pos, &s1g_capab, sizeof(s1g_capab));
4526 }
4527 
4528 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata,
4529 				  struct sk_buff *skb)
4530 {
4531 	u8 *pos = skb_put(skb, 3);
4532 
4533 	*pos++ = WLAN_EID_AID_REQUEST;
4534 	*pos++ = 1;
4535 	*pos++ = 0;
4536 }
4537 
4538 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo)
4539 {
4540 	*buf++ = WLAN_EID_VENDOR_SPECIFIC;
4541 	*buf++ = 7; /* len */
4542 	*buf++ = 0x00; /* Microsoft OUI 00:50:F2 */
4543 	*buf++ = 0x50;
4544 	*buf++ = 0xf2;
4545 	*buf++ = 2; /* WME */
4546 	*buf++ = 0; /* WME info */
4547 	*buf++ = 1; /* WME ver */
4548 	*buf++ = qosinfo; /* U-APSD no in use */
4549 
4550 	return buf;
4551 }
4552 
4553 void ieee80211_txq_get_depth(struct ieee80211_txq *txq,
4554 			     unsigned long *frame_cnt,
4555 			     unsigned long *byte_cnt)
4556 {
4557 	struct txq_info *txqi = to_txq_info(txq);
4558 	u32 frag_cnt = 0, frag_bytes = 0;
4559 	struct sk_buff *skb;
4560 
4561 	skb_queue_walk(&txqi->frags, skb) {
4562 		frag_cnt++;
4563 		frag_bytes += skb->len;
4564 	}
4565 
4566 	if (frame_cnt)
4567 		*frame_cnt = txqi->tin.backlog_packets + frag_cnt;
4568 
4569 	if (byte_cnt)
4570 		*byte_cnt = txqi->tin.backlog_bytes + frag_bytes;
4571 }
4572 EXPORT_SYMBOL(ieee80211_txq_get_depth);
4573 
4574 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = {
4575 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VO,
4576 	IEEE80211_WMM_IE_STA_QOSINFO_AC_VI,
4577 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BE,
4578 	IEEE80211_WMM_IE_STA_QOSINFO_AC_BK
4579 };
4580 
4581 u16 ieee80211_encode_usf(int listen_interval)
4582 {
4583 	static const int listen_int_usf[] = { 1, 10, 1000, 10000 };
4584 	u16 ui, usf = 0;
4585 
4586 	/* find greatest USF */
4587 	while (usf < IEEE80211_MAX_USF) {
4588 		if (listen_interval % listen_int_usf[usf + 1])
4589 			break;
4590 		usf += 1;
4591 	}
4592 	ui = listen_interval / listen_int_usf[usf];
4593 
4594 	/* error if there is a remainder. Should've been checked by user */
4595 	WARN_ON_ONCE(ui > IEEE80211_MAX_UI);
4596 	listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) |
4597 			  FIELD_PREP(LISTEN_INT_UI, ui);
4598 
4599 	return (u16) listen_interval;
4600 }
4601