1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2025 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 if (WARN_ON(queue >= hw->queues)) 441 return; 442 443 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 444 return; 445 446 if (!refcounted) { 447 local->q_stop_reasons[queue][reason] = 0; 448 } else { 449 local->q_stop_reasons[queue][reason]--; 450 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 451 local->q_stop_reasons[queue][reason] = 0; 452 } 453 454 if (local->q_stop_reasons[queue][reason] == 0) 455 __clear_bit(reason, &local->queue_stop_reasons[queue]); 456 457 trace_wake_queue(local, queue, reason, 458 local->q_stop_reasons[queue][reason]); 459 460 if (local->queue_stop_reasons[queue] != 0) 461 /* someone still has this queue stopped */ 462 return; 463 464 if (!skb_queue_empty(&local->pending[queue])) 465 tasklet_schedule(&local->tx_pending_tasklet); 466 467 /* 468 * Calling _ieee80211_wake_txqs here can be a problem because it may 469 * release queue_stop_reason_lock which has been taken by 470 * __ieee80211_wake_queue's caller. It is certainly not very nice to 471 * release someone's lock, but it is fine because all the callers of 472 * __ieee80211_wake_queue call it right before releasing the lock. 473 */ 474 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 475 tasklet_schedule(&local->wake_txqs_tasklet); 476 else 477 _ieee80211_wake_txqs(local, flags); 478 } 479 480 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 481 enum queue_stop_reason reason, 482 bool refcounted) 483 { 484 struct ieee80211_local *local = hw_to_local(hw); 485 unsigned long flags; 486 487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 488 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 489 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 490 } 491 492 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 493 { 494 ieee80211_wake_queue_by_reason(hw, queue, 495 IEEE80211_QUEUE_STOP_REASON_DRIVER, 496 false); 497 } 498 EXPORT_SYMBOL(ieee80211_wake_queue); 499 500 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 501 enum queue_stop_reason reason, 502 bool refcounted) 503 { 504 struct ieee80211_local *local = hw_to_local(hw); 505 506 if (WARN_ON(queue >= hw->queues)) 507 return; 508 509 if (!refcounted) 510 local->q_stop_reasons[queue][reason] = 1; 511 else 512 local->q_stop_reasons[queue][reason]++; 513 514 trace_stop_queue(local, queue, reason, 515 local->q_stop_reasons[queue][reason]); 516 517 set_bit(reason, &local->queue_stop_reasons[queue]); 518 } 519 520 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 521 enum queue_stop_reason reason, 522 bool refcounted) 523 { 524 struct ieee80211_local *local = hw_to_local(hw); 525 unsigned long flags; 526 527 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 528 __ieee80211_stop_queue(hw, queue, reason, refcounted); 529 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 530 } 531 532 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 533 { 534 ieee80211_stop_queue_by_reason(hw, queue, 535 IEEE80211_QUEUE_STOP_REASON_DRIVER, 536 false); 537 } 538 EXPORT_SYMBOL(ieee80211_stop_queue); 539 540 void ieee80211_add_pending_skb(struct ieee80211_local *local, 541 struct sk_buff *skb) 542 { 543 struct ieee80211_hw *hw = &local->hw; 544 unsigned long flags; 545 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 546 int queue = info->hw_queue; 547 548 if (WARN_ON(!info->control.vif)) { 549 ieee80211_free_txskb(&local->hw, skb); 550 return; 551 } 552 553 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 554 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 555 false); 556 __skb_queue_tail(&local->pending[queue], skb); 557 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 558 false, &flags); 559 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 560 } 561 562 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 563 struct sk_buff_head *skbs) 564 { 565 struct ieee80211_hw *hw = &local->hw; 566 struct sk_buff *skb; 567 unsigned long flags; 568 int queue, i; 569 570 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 571 while ((skb = skb_dequeue(skbs))) { 572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 573 574 if (WARN_ON(!info->control.vif)) { 575 ieee80211_free_txskb(&local->hw, skb); 576 continue; 577 } 578 579 queue = info->hw_queue; 580 581 __ieee80211_stop_queue(hw, queue, 582 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 583 false); 584 585 __skb_queue_tail(&local->pending[queue], skb); 586 } 587 588 for (i = 0; i < hw->queues; i++) 589 __ieee80211_wake_queue(hw, i, 590 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 591 false, &flags); 592 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 593 } 594 595 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 596 unsigned long queues, 597 enum queue_stop_reason reason, 598 bool refcounted) 599 { 600 struct ieee80211_local *local = hw_to_local(hw); 601 unsigned long flags; 602 int i; 603 604 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 605 606 for_each_set_bit(i, &queues, hw->queues) 607 __ieee80211_stop_queue(hw, i, reason, refcounted); 608 609 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 610 } 611 612 void ieee80211_stop_queues(struct ieee80211_hw *hw) 613 { 614 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 615 IEEE80211_QUEUE_STOP_REASON_DRIVER, 616 false); 617 } 618 EXPORT_SYMBOL(ieee80211_stop_queues); 619 620 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 621 { 622 struct ieee80211_local *local = hw_to_local(hw); 623 unsigned long flags; 624 int ret; 625 626 if (WARN_ON(queue >= hw->queues)) 627 return true; 628 629 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 630 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 631 &local->queue_stop_reasons[queue]); 632 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(ieee80211_queue_stopped); 636 637 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 638 unsigned long queues, 639 enum queue_stop_reason reason, 640 bool refcounted) 641 { 642 struct ieee80211_local *local = hw_to_local(hw); 643 unsigned long flags; 644 int i; 645 646 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 647 648 for_each_set_bit(i, &queues, hw->queues) 649 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 650 651 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 652 } 653 654 void ieee80211_wake_queues(struct ieee80211_hw *hw) 655 { 656 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 657 IEEE80211_QUEUE_STOP_REASON_DRIVER, 658 false); 659 } 660 EXPORT_SYMBOL(ieee80211_wake_queues); 661 662 unsigned int 663 ieee80211_get_vif_queues(struct ieee80211_local *local, 664 struct ieee80211_sub_if_data *sdata) 665 { 666 unsigned int queues; 667 668 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 669 int ac; 670 671 queues = 0; 672 673 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 674 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 675 queues |= BIT(sdata->vif.hw_queue[ac]); 676 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 677 queues |= BIT(sdata->vif.cab_queue); 678 } else { 679 /* all queues */ 680 queues = BIT(local->hw.queues) - 1; 681 } 682 683 return queues; 684 } 685 686 void __ieee80211_flush_queues(struct ieee80211_local *local, 687 struct ieee80211_sub_if_data *sdata, 688 unsigned int queues, bool drop) 689 { 690 if (!local->ops->flush && !drop) 691 return; 692 693 /* 694 * If no queue was set, or if the HW doesn't support 695 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 696 */ 697 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 698 queues = ieee80211_get_vif_queues(local, sdata); 699 700 ieee80211_stop_queues_by_reason(&local->hw, queues, 701 IEEE80211_QUEUE_STOP_REASON_FLUSH, 702 false); 703 704 if (drop) { 705 struct sta_info *sta; 706 707 /* Purge the queues, so the frames on them won't be 708 * sent during __ieee80211_wake_queue() 709 */ 710 list_for_each_entry(sta, &local->sta_list, list) { 711 if (sdata != sta->sdata) 712 continue; 713 ieee80211_purge_sta_txqs(sta); 714 } 715 } 716 717 if (local->ops->flush) 718 drv_flush(local, sdata, queues, drop); 719 720 ieee80211_wake_queues_by_reason(&local->hw, queues, 721 IEEE80211_QUEUE_STOP_REASON_FLUSH, 722 false); 723 } 724 725 void ieee80211_flush_queues(struct ieee80211_local *local, 726 struct ieee80211_sub_if_data *sdata, bool drop) 727 { 728 __ieee80211_flush_queues(local, sdata, 0, drop); 729 } 730 731 static void __iterate_interfaces(struct ieee80211_local *local, 732 u32 iter_flags, 733 void (*iterator)(void *data, u8 *mac, 734 struct ieee80211_vif *vif), 735 void *data) 736 { 737 struct ieee80211_sub_if_data *sdata; 738 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 739 740 list_for_each_entry_rcu(sdata, &local->interfaces, list, 741 lockdep_is_held(&local->iflist_mtx) || 742 lockdep_is_held(&local->hw.wiphy->mtx)) { 743 switch (sdata->vif.type) { 744 case NL80211_IFTYPE_MONITOR: 745 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 746 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 747 continue; 748 break; 749 case NL80211_IFTYPE_AP_VLAN: 750 continue; 751 default: 752 break; 753 } 754 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 755 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 756 continue; 757 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 758 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 759 continue; 760 if (ieee80211_sdata_running(sdata) || !active_only) 761 iterator(data, sdata->vif.addr, 762 &sdata->vif); 763 } 764 765 sdata = rcu_dereference_check(local->monitor_sdata, 766 lockdep_is_held(&local->iflist_mtx) || 767 lockdep_is_held(&local->hw.wiphy->mtx)); 768 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 769 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 770 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 771 iterator(data, sdata->vif.addr, &sdata->vif); 772 } 773 774 void ieee80211_iterate_interfaces( 775 struct ieee80211_hw *hw, u32 iter_flags, 776 void (*iterator)(void *data, u8 *mac, 777 struct ieee80211_vif *vif), 778 void *data) 779 { 780 struct ieee80211_local *local = hw_to_local(hw); 781 782 mutex_lock(&local->iflist_mtx); 783 __iterate_interfaces(local, iter_flags, iterator, data); 784 mutex_unlock(&local->iflist_mtx); 785 } 786 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 787 788 void ieee80211_iterate_active_interfaces_atomic( 789 struct ieee80211_hw *hw, u32 iter_flags, 790 void (*iterator)(void *data, u8 *mac, 791 struct ieee80211_vif *vif), 792 void *data) 793 { 794 struct ieee80211_local *local = hw_to_local(hw); 795 796 rcu_read_lock(); 797 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 798 iterator, data); 799 rcu_read_unlock(); 800 } 801 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 802 803 void ieee80211_iterate_active_interfaces_mtx( 804 struct ieee80211_hw *hw, u32 iter_flags, 805 void (*iterator)(void *data, u8 *mac, 806 struct ieee80211_vif *vif), 807 void *data) 808 { 809 struct ieee80211_local *local = hw_to_local(hw); 810 811 lockdep_assert_wiphy(hw->wiphy); 812 813 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 814 iterator, data); 815 } 816 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 817 818 static void __iterate_stations(struct ieee80211_local *local, 819 void (*iterator)(void *data, 820 struct ieee80211_sta *sta), 821 void *data) 822 { 823 struct sta_info *sta; 824 825 list_for_each_entry_rcu(sta, &local->sta_list, list, 826 lockdep_is_held(&local->hw.wiphy->mtx)) { 827 if (!sta->uploaded) 828 continue; 829 830 iterator(data, &sta->sta); 831 } 832 } 833 834 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 835 void (*iterator)(void *data, 836 struct ieee80211_sta *sta), 837 void *data) 838 { 839 struct ieee80211_local *local = hw_to_local(hw); 840 841 rcu_read_lock(); 842 __iterate_stations(local, iterator, data); 843 rcu_read_unlock(); 844 } 845 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 846 847 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 848 void (*iterator)(void *data, 849 struct ieee80211_sta *sta), 850 void *data) 851 { 852 struct ieee80211_local *local = hw_to_local(hw); 853 854 lockdep_assert_wiphy(local->hw.wiphy); 855 856 __iterate_stations(local, iterator, data); 857 } 858 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 859 860 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 861 { 862 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 863 864 if (!ieee80211_sdata_running(sdata) || 865 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 866 return NULL; 867 return &sdata->vif; 868 } 869 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 870 871 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 872 { 873 if (!vif) 874 return NULL; 875 876 return &vif_to_sdata(vif)->wdev; 877 } 878 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 879 880 /* 881 * Nothing should have been stuffed into the workqueue during 882 * the suspend->resume cycle. Since we can't check each caller 883 * of this function if we are already quiescing / suspended, 884 * check here and don't WARN since this can actually happen when 885 * the rx path (for example) is racing against __ieee80211_suspend 886 * and suspending / quiescing was set after the rx path checked 887 * them. 888 */ 889 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 890 { 891 if (local->quiescing || (local->suspended && !local->resuming)) { 892 pr_warn("queueing ieee80211 work while going to suspend\n"); 893 return false; 894 } 895 896 return true; 897 } 898 899 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 900 { 901 struct ieee80211_local *local = hw_to_local(hw); 902 903 if (!ieee80211_can_queue_work(local)) 904 return; 905 906 queue_work(local->workqueue, work); 907 } 908 EXPORT_SYMBOL(ieee80211_queue_work); 909 910 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 911 struct delayed_work *dwork, 912 unsigned long delay) 913 { 914 struct ieee80211_local *local = hw_to_local(hw); 915 916 if (!ieee80211_can_queue_work(local)) 917 return; 918 919 queue_delayed_work(local->workqueue, dwork, delay); 920 } 921 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 922 923 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 924 struct ieee80211_tx_queue_params 925 *qparam, int ac) 926 { 927 struct ieee80211_chanctx_conf *chanctx_conf; 928 const struct ieee80211_reg_rule *rrule; 929 const struct ieee80211_wmm_ac *wmm_ac; 930 u16 center_freq = 0; 931 932 if (sdata->vif.type != NL80211_IFTYPE_AP && 933 sdata->vif.type != NL80211_IFTYPE_STATION) 934 return; 935 936 rcu_read_lock(); 937 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 938 if (chanctx_conf) 939 center_freq = chanctx_conf->def.chan->center_freq; 940 941 if (!center_freq) { 942 rcu_read_unlock(); 943 return; 944 } 945 946 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 947 948 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 949 rcu_read_unlock(); 950 return; 951 } 952 953 if (sdata->vif.type == NL80211_IFTYPE_AP) 954 wmm_ac = &rrule->wmm_rule.ap[ac]; 955 else 956 wmm_ac = &rrule->wmm_rule.client[ac]; 957 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 958 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 959 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 960 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 961 rcu_read_unlock(); 962 } 963 964 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 965 bool bss_notify, bool enable_qos) 966 { 967 struct ieee80211_sub_if_data *sdata = link->sdata; 968 struct ieee80211_local *local = sdata->local; 969 struct ieee80211_tx_queue_params qparam; 970 struct ieee80211_chanctx_conf *chanctx_conf; 971 int ac; 972 bool use_11b; 973 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 974 int aCWmin, aCWmax; 975 976 if (!local->ops->conf_tx) 977 return; 978 979 if (local->hw.queues < IEEE80211_NUM_ACS) 980 return; 981 982 memset(&qparam, 0, sizeof(qparam)); 983 984 rcu_read_lock(); 985 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 986 use_11b = (chanctx_conf && 987 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 988 !link->operating_11g_mode; 989 rcu_read_unlock(); 990 991 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 992 993 /* Set defaults according to 802.11-2007 Table 7-37 */ 994 aCWmax = 1023; 995 if (use_11b) 996 aCWmin = 31; 997 else 998 aCWmin = 15; 999 1000 /* Configure old 802.11b/g medium access rules. */ 1001 qparam.cw_max = aCWmax; 1002 qparam.cw_min = aCWmin; 1003 qparam.txop = 0; 1004 qparam.aifs = 2; 1005 1006 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1007 /* Update if QoS is enabled. */ 1008 if (enable_qos) { 1009 switch (ac) { 1010 case IEEE80211_AC_BK: 1011 qparam.cw_max = aCWmax; 1012 qparam.cw_min = aCWmin; 1013 qparam.txop = 0; 1014 if (is_ocb) 1015 qparam.aifs = 9; 1016 else 1017 qparam.aifs = 7; 1018 break; 1019 /* never happens but let's not leave undefined */ 1020 default: 1021 case IEEE80211_AC_BE: 1022 qparam.cw_max = aCWmax; 1023 qparam.cw_min = aCWmin; 1024 qparam.txop = 0; 1025 if (is_ocb) 1026 qparam.aifs = 6; 1027 else 1028 qparam.aifs = 3; 1029 break; 1030 case IEEE80211_AC_VI: 1031 qparam.cw_max = aCWmin; 1032 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1033 if (is_ocb) 1034 qparam.txop = 0; 1035 else if (use_11b) 1036 qparam.txop = 6016/32; 1037 else 1038 qparam.txop = 3008/32; 1039 1040 if (is_ocb) 1041 qparam.aifs = 3; 1042 else 1043 qparam.aifs = 2; 1044 break; 1045 case IEEE80211_AC_VO: 1046 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1047 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1048 if (is_ocb) 1049 qparam.txop = 0; 1050 else if (use_11b) 1051 qparam.txop = 3264/32; 1052 else 1053 qparam.txop = 1504/32; 1054 qparam.aifs = 2; 1055 break; 1056 } 1057 } 1058 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1059 1060 qparam.uapsd = false; 1061 1062 link->tx_conf[ac] = qparam; 1063 drv_conf_tx(local, link, ac, &qparam); 1064 } 1065 1066 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1067 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1068 sdata->vif.type != NL80211_IFTYPE_NAN) { 1069 link->conf->qos = enable_qos; 1070 if (bss_notify) 1071 ieee80211_link_info_change_notify(sdata, link, 1072 BSS_CHANGED_QOS); 1073 } 1074 } 1075 1076 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1077 u16 transaction, u16 auth_alg, u16 status, 1078 const u8 *extra, size_t extra_len, const u8 *da, 1079 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1080 u32 tx_flags) 1081 { 1082 struct ieee80211_local *local = sdata->local; 1083 struct sk_buff *skb; 1084 struct ieee80211_mgmt *mgmt; 1085 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1086 struct { 1087 u8 id; 1088 u8 len; 1089 u8 ext_id; 1090 struct ieee80211_multi_link_elem ml; 1091 struct ieee80211_mle_basic_common_info basic; 1092 } __packed mle = { 1093 .id = WLAN_EID_EXTENSION, 1094 .len = sizeof(mle) - 2, 1095 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1096 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1097 .basic.len = sizeof(mle.basic), 1098 }; 1099 int err; 1100 1101 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1102 1103 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1104 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1105 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1106 multi_link * sizeof(mle)); 1107 if (!skb) 1108 return; 1109 1110 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1111 1112 mgmt = skb_put_zero(skb, 24 + 6); 1113 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1114 IEEE80211_STYPE_AUTH); 1115 memcpy(mgmt->da, da, ETH_ALEN); 1116 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1117 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1118 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1119 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1120 mgmt->u.auth.status_code = cpu_to_le16(status); 1121 if (extra) 1122 skb_put_data(skb, extra, extra_len); 1123 if (multi_link) 1124 skb_put_data(skb, &mle, sizeof(mle)); 1125 1126 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1127 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1128 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1129 if (WARN_ON(err)) { 1130 kfree_skb(skb); 1131 return; 1132 } 1133 } 1134 1135 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1136 tx_flags; 1137 ieee80211_tx_skb(sdata, skb); 1138 } 1139 1140 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1141 const u8 *da, const u8 *bssid, 1142 u16 stype, u16 reason, 1143 bool send_frame, u8 *frame_buf) 1144 { 1145 struct ieee80211_local *local = sdata->local; 1146 struct sk_buff *skb; 1147 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1148 1149 /* build frame */ 1150 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1151 mgmt->duration = 0; /* initialize only */ 1152 mgmt->seq_ctrl = 0; /* initialize only */ 1153 memcpy(mgmt->da, da, ETH_ALEN); 1154 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1155 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1156 /* u.deauth.reason_code == u.disassoc.reason_code */ 1157 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1158 1159 if (send_frame) { 1160 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1161 IEEE80211_DEAUTH_FRAME_LEN); 1162 if (!skb) 1163 return; 1164 1165 skb_reserve(skb, local->hw.extra_tx_headroom); 1166 1167 /* copy in frame */ 1168 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1169 1170 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1171 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1172 IEEE80211_SKB_CB(skb)->flags |= 1173 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1174 1175 ieee80211_tx_skb(sdata, skb); 1176 } 1177 } 1178 1179 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1180 struct ieee80211_sta_s1g_cap *s1g_cap) 1181 { 1182 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1183 return -ENOBUFS; 1184 1185 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1186 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1187 1188 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1189 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1190 1191 return 0; 1192 } 1193 1194 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1195 struct ieee80211_sub_if_data *sdata, 1196 const u8 *ie, size_t ie_len, 1197 size_t *offset, 1198 enum nl80211_band band, 1199 u32 rate_mask, 1200 struct cfg80211_chan_def *chandef, 1201 u32 flags) 1202 { 1203 struct ieee80211_local *local = sdata->local; 1204 struct ieee80211_supported_band *sband; 1205 int i, err; 1206 size_t noffset; 1207 bool have_80mhz = false; 1208 1209 *offset = 0; 1210 1211 sband = local->hw.wiphy->bands[band]; 1212 if (WARN_ON_ONCE(!sband)) 1213 return 0; 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, 1220 ~rate_mask, WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, 1242 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 num_rates = sband->n_bitrates; 1530 supp_rates = 0; 1531 for (i = 0; i < elems->supp_rates_len + 1532 elems->ext_supp_rates_len; i++) { 1533 u8 rate = 0; 1534 int own_rate; 1535 bool is_basic; 1536 if (i < elems->supp_rates_len) 1537 rate = elems->supp_rates[i]; 1538 else if (elems->ext_supp_rates) 1539 rate = elems->ext_supp_rates 1540 [i - elems->supp_rates_len]; 1541 own_rate = 5 * (rate & 0x7f); 1542 is_basic = !!(rate & 0x80); 1543 1544 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1545 continue; 1546 1547 for (j = 0; j < num_rates; j++) { 1548 int brate = sband->bitrates[j].bitrate; 1549 1550 if (brate == own_rate) { 1551 supp_rates |= BIT(j); 1552 if (basic_rates && is_basic) 1553 *basic_rates |= BIT(j); 1554 } 1555 } 1556 } 1557 return supp_rates; 1558 } 1559 1560 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1561 { 1562 local_bh_disable(); 1563 ieee80211_handle_queued_frames(local); 1564 local_bh_enable(); 1565 1566 ieee80211_led_radio(local, false); 1567 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1568 1569 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1570 1571 flush_workqueue(local->workqueue); 1572 wiphy_work_flush(local->hw.wiphy, NULL); 1573 drv_stop(local, suspend); 1574 } 1575 1576 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1577 bool aborted) 1578 { 1579 /* It's possible that we don't handle the scan completion in 1580 * time during suspend, so if it's still marked as completed 1581 * here, queue the work and flush it to clean things up. 1582 * Instead of calling the worker function directly here, we 1583 * really queue it to avoid potential races with other flows 1584 * scheduling the same work. 1585 */ 1586 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1587 /* If coming from reconfiguration failure, abort the scan so 1588 * we don't attempt to continue a partial HW scan - which is 1589 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1590 * completed scan, and a 5 GHz portion is still pending. 1591 */ 1592 if (aborted) 1593 set_bit(SCAN_ABORTED, &local->scanning); 1594 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1595 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1596 } 1597 } 1598 1599 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1600 { 1601 struct ieee80211_sub_if_data *sdata; 1602 struct ieee80211_chanctx *ctx; 1603 1604 lockdep_assert_wiphy(local->hw.wiphy); 1605 1606 /* 1607 * We get here if during resume the device can't be restarted properly. 1608 * We might also get here if this happens during HW reset, which is a 1609 * slightly different situation and we need to drop all connections in 1610 * the latter case. 1611 * 1612 * Ask cfg80211 to turn off all interfaces, this will result in more 1613 * warnings but at least we'll then get into a clean stopped state. 1614 */ 1615 1616 local->resuming = false; 1617 local->suspended = false; 1618 local->in_reconfig = false; 1619 local->reconfig_failure = true; 1620 1621 ieee80211_flush_completed_scan(local, true); 1622 1623 /* scheduled scan clearly can't be running any more, but tell 1624 * cfg80211 and clear local state 1625 */ 1626 ieee80211_sched_scan_end(local); 1627 1628 list_for_each_entry(sdata, &local->interfaces, list) 1629 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1630 1631 /* Mark channel contexts as not being in the driver any more to avoid 1632 * removing them from the driver during the shutdown process... 1633 */ 1634 list_for_each_entry(ctx, &local->chanctx_list, list) 1635 ctx->driver_present = false; 1636 } 1637 1638 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1639 struct ieee80211_sub_if_data *sdata, 1640 struct ieee80211_link_data *link) 1641 { 1642 struct ieee80211_chanctx_conf *conf; 1643 struct ieee80211_chanctx *ctx; 1644 1645 lockdep_assert_wiphy(local->hw.wiphy); 1646 1647 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1648 lockdep_is_held(&local->hw.wiphy->mtx)); 1649 if (conf) { 1650 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1651 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1652 } 1653 } 1654 1655 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1656 { 1657 struct ieee80211_local *local = sdata->local; 1658 struct sta_info *sta; 1659 1660 lockdep_assert_wiphy(local->hw.wiphy); 1661 1662 /* add STAs back */ 1663 list_for_each_entry(sta, &local->sta_list, list) { 1664 enum ieee80211_sta_state state; 1665 1666 if (!sta->uploaded || sta->sdata != sdata) 1667 continue; 1668 1669 for (state = IEEE80211_STA_NOTEXIST; 1670 state < sta->sta_state; state++) 1671 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1672 state + 1)); 1673 } 1674 } 1675 1676 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1677 { 1678 struct cfg80211_nan_func *func, **funcs; 1679 int res, id, i = 0; 1680 1681 res = drv_start_nan(sdata->local, sdata, 1682 &sdata->u.nan.conf); 1683 if (WARN_ON(res)) 1684 return res; 1685 1686 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1687 sizeof(*funcs), 1688 GFP_KERNEL); 1689 if (!funcs) 1690 return -ENOMEM; 1691 1692 /* Add all the functions: 1693 * This is a little bit ugly. We need to call a potentially sleeping 1694 * callback for each NAN function, so we can't hold the spinlock. 1695 */ 1696 spin_lock_bh(&sdata->u.nan.func_lock); 1697 1698 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1699 funcs[i++] = func; 1700 1701 spin_unlock_bh(&sdata->u.nan.func_lock); 1702 1703 for (i = 0; funcs[i]; i++) { 1704 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1705 if (WARN_ON(res)) 1706 ieee80211_nan_func_terminated(&sdata->vif, 1707 funcs[i]->instance_id, 1708 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1709 GFP_KERNEL); 1710 } 1711 1712 kfree(funcs); 1713 1714 return 0; 1715 } 1716 1717 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1718 struct ieee80211_sub_if_data *sdata, 1719 u64 changed) 1720 { 1721 int link_id; 1722 1723 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1724 struct ieee80211_link_data *link; 1725 1726 if (!(sdata->vif.active_links & BIT(link_id))) 1727 continue; 1728 1729 link = sdata_dereference(sdata->link[link_id], sdata); 1730 if (!link) 1731 continue; 1732 1733 if (rcu_access_pointer(link->u.ap.beacon)) 1734 drv_start_ap(local, sdata, link->conf); 1735 1736 if (!link->conf->enable_beacon) 1737 continue; 1738 1739 changed |= BSS_CHANGED_BEACON | 1740 BSS_CHANGED_BEACON_ENABLED; 1741 1742 ieee80211_link_info_change_notify(sdata, link, changed); 1743 } 1744 } 1745 1746 int ieee80211_reconfig(struct ieee80211_local *local) 1747 { 1748 struct ieee80211_hw *hw = &local->hw; 1749 struct ieee80211_sub_if_data *sdata; 1750 struct ieee80211_chanctx *ctx; 1751 struct sta_info *sta; 1752 int res, i; 1753 bool reconfig_due_to_wowlan = false; 1754 struct ieee80211_sub_if_data *sched_scan_sdata; 1755 struct cfg80211_sched_scan_request *sched_scan_req; 1756 bool sched_scan_stopped = false; 1757 bool suspended = local->suspended; 1758 bool in_reconfig = false; 1759 1760 lockdep_assert_wiphy(local->hw.wiphy); 1761 1762 /* nothing to do if HW shouldn't run */ 1763 if (!local->open_count) 1764 goto wake_up; 1765 1766 #ifdef CONFIG_PM 1767 if (suspended) 1768 local->resuming = true; 1769 1770 if (local->wowlan) { 1771 /* 1772 * In the wowlan case, both mac80211 and the device 1773 * are functional when the resume op is called, so 1774 * clear local->suspended so the device could operate 1775 * normally (e.g. pass rx frames). 1776 */ 1777 local->suspended = false; 1778 res = drv_resume(local); 1779 local->wowlan = false; 1780 if (res < 0) { 1781 local->resuming = false; 1782 return res; 1783 } 1784 if (res == 0) 1785 goto wake_up; 1786 WARN_ON(res > 1); 1787 /* 1788 * res is 1, which means the driver requested 1789 * to go through a regular reset on wakeup. 1790 * restore local->suspended in this case. 1791 */ 1792 reconfig_due_to_wowlan = true; 1793 local->suspended = true; 1794 } 1795 #endif 1796 1797 /* 1798 * In case of hw_restart during suspend (without wowlan), 1799 * cancel restart work, as we are reconfiguring the device 1800 * anyway. 1801 * Note that restart_work is scheduled on a frozen workqueue, 1802 * so we can't deadlock in this case. 1803 */ 1804 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1805 cancel_work_sync(&local->restart_work); 1806 1807 local->started = false; 1808 1809 /* 1810 * Upon resume hardware can sometimes be goofy due to 1811 * various platform / driver / bus issues, so restarting 1812 * the device may at times not work immediately. Propagate 1813 * the error. 1814 */ 1815 res = drv_start(local); 1816 if (res) { 1817 if (suspended) 1818 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1819 else 1820 WARN(1, "Hardware became unavailable during restart.\n"); 1821 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1822 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1823 false); 1824 ieee80211_handle_reconfig_failure(local); 1825 return res; 1826 } 1827 1828 /* setup fragmentation threshold */ 1829 drv_set_frag_threshold(local, -1, hw->wiphy->frag_threshold); 1830 1831 /* setup RTS threshold */ 1832 if (hw->wiphy->n_radio > 0) { 1833 for (i = 0; i < hw->wiphy->n_radio; i++) { 1834 u32 rts_threshold = 1835 hw->wiphy->radio_cfg[i].rts_threshold; 1836 1837 drv_set_rts_threshold(local, i, rts_threshold); 1838 } 1839 } else { 1840 drv_set_rts_threshold(local, -1, hw->wiphy->rts_threshold); 1841 } 1842 1843 /* reset coverage class */ 1844 drv_set_coverage_class(local, -1, hw->wiphy->coverage_class); 1845 1846 ieee80211_led_radio(local, true); 1847 ieee80211_mod_tpt_led_trig(local, 1848 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1849 1850 /* add interfaces */ 1851 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1852 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1853 /* in HW restart it exists already */ 1854 WARN_ON(local->resuming); 1855 res = drv_add_interface(local, sdata); 1856 if (WARN_ON(res)) { 1857 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1858 synchronize_net(); 1859 kfree(sdata); 1860 } 1861 } 1862 1863 list_for_each_entry(sdata, &local->interfaces, list) { 1864 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1865 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1866 continue; 1867 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1868 ieee80211_sdata_running(sdata)) { 1869 res = drv_add_interface(local, sdata); 1870 if (WARN_ON(res)) 1871 break; 1872 } 1873 } 1874 1875 /* If adding any of the interfaces failed above, roll back and 1876 * report failure. 1877 */ 1878 if (res) { 1879 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1880 list) { 1881 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1882 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1883 continue; 1884 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1885 ieee80211_sdata_running(sdata)) 1886 drv_remove_interface(local, sdata); 1887 } 1888 ieee80211_handle_reconfig_failure(local); 1889 return res; 1890 } 1891 1892 /* add channel contexts */ 1893 list_for_each_entry(ctx, &local->chanctx_list, list) 1894 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1895 WARN_ON(drv_add_chanctx(local, ctx)); 1896 1897 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1898 if (sdata && ieee80211_sdata_running(sdata)) 1899 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1900 1901 /* reconfigure hardware */ 1902 ieee80211_hw_config(local, -1, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1903 IEEE80211_CONF_CHANGE_MONITOR | 1904 IEEE80211_CONF_CHANGE_PS | 1905 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1906 IEEE80211_CONF_CHANGE_IDLE); 1907 1908 ieee80211_configure_filter(local); 1909 1910 /* Finally also reconfigure all the BSS information */ 1911 list_for_each_entry(sdata, &local->interfaces, list) { 1912 /* common change flags for all interface types - link only */ 1913 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1914 BSS_CHANGED_ERP_PREAMBLE | 1915 BSS_CHANGED_ERP_SLOT | 1916 BSS_CHANGED_HT | 1917 BSS_CHANGED_BASIC_RATES | 1918 BSS_CHANGED_BEACON_INT | 1919 BSS_CHANGED_BSSID | 1920 BSS_CHANGED_CQM | 1921 BSS_CHANGED_QOS | 1922 BSS_CHANGED_TXPOWER | 1923 BSS_CHANGED_MCAST_RATE; 1924 struct ieee80211_link_data *link = NULL; 1925 unsigned int link_id; 1926 u32 active_links = 0; 1927 1928 if (!ieee80211_sdata_running(sdata)) 1929 continue; 1930 1931 if (ieee80211_vif_is_mld(&sdata->vif)) { 1932 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1933 [0] = &sdata->vif.bss_conf, 1934 }; 1935 1936 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1937 /* start with a single active link */ 1938 active_links = sdata->vif.active_links; 1939 link_id = ffs(active_links) - 1; 1940 sdata->vif.active_links = BIT(link_id); 1941 } 1942 1943 drv_change_vif_links(local, sdata, 0, 1944 sdata->vif.active_links, 1945 old); 1946 } 1947 1948 sdata->restart_active_links = active_links; 1949 1950 for (link_id = 0; 1951 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1952 link_id++) { 1953 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1954 continue; 1955 1956 link = sdata_dereference(sdata->link[link_id], sdata); 1957 if (!link) 1958 continue; 1959 1960 ieee80211_assign_chanctx(local, sdata, link); 1961 } 1962 1963 switch (sdata->vif.type) { 1964 case NL80211_IFTYPE_AP_VLAN: 1965 case NL80211_IFTYPE_MONITOR: 1966 break; 1967 case NL80211_IFTYPE_ADHOC: 1968 if (sdata->vif.cfg.ibss_joined) 1969 WARN_ON(drv_join_ibss(local, sdata)); 1970 fallthrough; 1971 default: 1972 ieee80211_reconfig_stations(sdata); 1973 fallthrough; 1974 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1975 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1976 drv_conf_tx(local, &sdata->deflink, i, 1977 &sdata->deflink.tx_conf[i]); 1978 break; 1979 } 1980 1981 if (sdata->vif.bss_conf.mu_mimo_owner) 1982 changed |= BSS_CHANGED_MU_GROUPS; 1983 1984 if (!ieee80211_vif_is_mld(&sdata->vif)) 1985 changed |= BSS_CHANGED_IDLE; 1986 1987 switch (sdata->vif.type) { 1988 case NL80211_IFTYPE_STATION: 1989 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1990 changed |= BSS_CHANGED_ASSOC | 1991 BSS_CHANGED_ARP_FILTER | 1992 BSS_CHANGED_PS; 1993 1994 /* Re-send beacon info report to the driver */ 1995 if (sdata->deflink.u.mgd.have_beacon) 1996 changed |= BSS_CHANGED_BEACON_INFO; 1997 1998 if (sdata->vif.bss_conf.max_idle_period || 1999 sdata->vif.bss_conf.protected_keep_alive) 2000 changed |= BSS_CHANGED_KEEP_ALIVE; 2001 2002 ieee80211_bss_info_change_notify(sdata, 2003 changed); 2004 } else if (!WARN_ON(!link)) { 2005 ieee80211_link_info_change_notify(sdata, link, 2006 changed); 2007 changed = BSS_CHANGED_ASSOC | 2008 BSS_CHANGED_IDLE | 2009 BSS_CHANGED_PS | 2010 BSS_CHANGED_ARP_FILTER; 2011 ieee80211_vif_cfg_change_notify(sdata, changed); 2012 } 2013 break; 2014 case NL80211_IFTYPE_OCB: 2015 changed |= BSS_CHANGED_OCB; 2016 ieee80211_bss_info_change_notify(sdata, changed); 2017 break; 2018 case NL80211_IFTYPE_ADHOC: 2019 changed |= BSS_CHANGED_IBSS; 2020 fallthrough; 2021 case NL80211_IFTYPE_AP: 2022 changed |= BSS_CHANGED_P2P_PS; 2023 2024 if (ieee80211_vif_is_mld(&sdata->vif)) 2025 ieee80211_vif_cfg_change_notify(sdata, 2026 BSS_CHANGED_SSID); 2027 else 2028 changed |= BSS_CHANGED_SSID; 2029 2030 if (sdata->vif.bss_conf.ftm_responder == 1 && 2031 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2032 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2033 changed |= BSS_CHANGED_FTM_RESPONDER; 2034 2035 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2036 changed |= BSS_CHANGED_AP_PROBE_RESP; 2037 2038 if (ieee80211_vif_is_mld(&sdata->vif)) { 2039 ieee80211_reconfig_ap_links(local, 2040 sdata, 2041 changed); 2042 break; 2043 } 2044 2045 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2046 drv_start_ap(local, sdata, 2047 sdata->deflink.conf); 2048 } 2049 fallthrough; 2050 case NL80211_IFTYPE_MESH_POINT: 2051 if (sdata->vif.bss_conf.enable_beacon) { 2052 changed |= BSS_CHANGED_BEACON | 2053 BSS_CHANGED_BEACON_ENABLED; 2054 ieee80211_bss_info_change_notify(sdata, changed); 2055 } 2056 break; 2057 case NL80211_IFTYPE_NAN: 2058 res = ieee80211_reconfig_nan(sdata); 2059 if (res < 0) { 2060 ieee80211_handle_reconfig_failure(local); 2061 return res; 2062 } 2063 break; 2064 case NL80211_IFTYPE_AP_VLAN: 2065 case NL80211_IFTYPE_MONITOR: 2066 case NL80211_IFTYPE_P2P_DEVICE: 2067 /* nothing to do */ 2068 break; 2069 case NL80211_IFTYPE_UNSPECIFIED: 2070 case NUM_NL80211_IFTYPES: 2071 case NL80211_IFTYPE_P2P_CLIENT: 2072 case NL80211_IFTYPE_P2P_GO: 2073 case NL80211_IFTYPE_WDS: 2074 WARN_ON(1); 2075 break; 2076 } 2077 } 2078 2079 ieee80211_recalc_ps(local); 2080 2081 /* 2082 * The sta might be in psm against the ap (e.g. because 2083 * this was the state before a hw restart), so we 2084 * explicitly send a null packet in order to make sure 2085 * it'll sync against the ap (and get out of psm). 2086 */ 2087 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2088 list_for_each_entry(sdata, &local->interfaces, list) { 2089 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2090 continue; 2091 if (!sdata->u.mgd.associated) 2092 continue; 2093 2094 ieee80211_send_nullfunc(local, sdata, false); 2095 } 2096 } 2097 2098 /* APs are now beaconing, add back stations */ 2099 list_for_each_entry(sdata, &local->interfaces, list) { 2100 if (!ieee80211_sdata_running(sdata)) 2101 continue; 2102 2103 switch (sdata->vif.type) { 2104 case NL80211_IFTYPE_AP_VLAN: 2105 case NL80211_IFTYPE_AP: 2106 ieee80211_reconfig_stations(sdata); 2107 break; 2108 default: 2109 break; 2110 } 2111 } 2112 2113 /* add back keys */ 2114 list_for_each_entry(sdata, &local->interfaces, list) 2115 ieee80211_reenable_keys(sdata); 2116 2117 /* re-enable multi-link for client interfaces */ 2118 list_for_each_entry(sdata, &local->interfaces, list) { 2119 if (sdata->restart_active_links) 2120 ieee80211_set_active_links(&sdata->vif, 2121 sdata->restart_active_links); 2122 /* 2123 * If a link switch was scheduled before the restart, and ran 2124 * before reconfig, it will do nothing, so re-schedule. 2125 */ 2126 if (sdata->desired_active_links) 2127 wiphy_work_queue(sdata->local->hw.wiphy, 2128 &sdata->activate_links_work); 2129 } 2130 2131 /* Reconfigure sched scan if it was interrupted by FW restart */ 2132 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2133 lockdep_is_held(&local->hw.wiphy->mtx)); 2134 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2135 lockdep_is_held(&local->hw.wiphy->mtx)); 2136 if (sched_scan_sdata && sched_scan_req) 2137 /* 2138 * Sched scan stopped, but we don't want to report it. Instead, 2139 * we're trying to reschedule. However, if more than one scan 2140 * plan was set, we cannot reschedule since we don't know which 2141 * scan plan was currently running (and some scan plans may have 2142 * already finished). 2143 */ 2144 if (sched_scan_req->n_scan_plans > 1 || 2145 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2146 sched_scan_req)) { 2147 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2148 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2149 sched_scan_stopped = true; 2150 } 2151 2152 if (sched_scan_stopped) 2153 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2154 2155 wake_up: 2156 /* 2157 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2158 * sessions can be established after a resume. 2159 * 2160 * Also tear down aggregation sessions since reconfiguring 2161 * them in a hardware restart scenario is not easily done 2162 * right now, and the hardware will have lost information 2163 * about the sessions, but we and the AP still think they 2164 * are active. This is really a workaround though. 2165 */ 2166 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2167 list_for_each_entry(sta, &local->sta_list, list) { 2168 if (!local->resuming) 2169 ieee80211_sta_tear_down_BA_sessions( 2170 sta, AGG_STOP_LOCAL_REQUEST); 2171 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2172 } 2173 } 2174 2175 /* 2176 * If this is for hw restart things are still running. 2177 * We may want to change that later, however. 2178 */ 2179 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2180 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2181 2182 if (local->in_reconfig) { 2183 in_reconfig = local->in_reconfig; 2184 local->in_reconfig = false; 2185 barrier(); 2186 2187 ieee80211_reconfig_roc(local); 2188 2189 /* Requeue all works */ 2190 list_for_each_entry(sdata, &local->interfaces, list) { 2191 if (ieee80211_sdata_running(sdata)) 2192 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2193 } 2194 } 2195 2196 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2197 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2198 false); 2199 2200 if (in_reconfig) { 2201 list_for_each_entry(sdata, &local->interfaces, list) { 2202 if (!ieee80211_sdata_running(sdata)) 2203 continue; 2204 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2205 ieee80211_sta_restart(sdata); 2206 } 2207 } 2208 2209 /* Passing NULL means an interface is picked for configuration */ 2210 if (local->virt_monitors > 0 && 2211 local->virt_monitors == local->open_count) 2212 ieee80211_add_virtual_monitor(local, NULL); 2213 2214 if (!suspended) 2215 return 0; 2216 2217 #ifdef CONFIG_PM 2218 /* first set suspended false, then resuming */ 2219 local->suspended = false; 2220 mb(); 2221 local->resuming = false; 2222 2223 ieee80211_flush_completed_scan(local, false); 2224 2225 if (local->open_count && !reconfig_due_to_wowlan) 2226 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2227 2228 list_for_each_entry(sdata, &local->interfaces, list) { 2229 if (!ieee80211_sdata_running(sdata)) 2230 continue; 2231 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2232 ieee80211_sta_restart(sdata); 2233 } 2234 2235 mod_timer(&local->sta_cleanup, jiffies + 1); 2236 #else 2237 WARN_ON(1); 2238 #endif 2239 2240 return 0; 2241 } 2242 2243 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2244 { 2245 struct ieee80211_sub_if_data *sdata; 2246 struct ieee80211_local *local; 2247 struct ieee80211_key *key; 2248 2249 if (WARN_ON(!vif)) 2250 return; 2251 2252 sdata = vif_to_sdata(vif); 2253 local = sdata->local; 2254 2255 lockdep_assert_wiphy(local->hw.wiphy); 2256 2257 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2258 !local->resuming)) 2259 return; 2260 2261 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2262 !local->in_reconfig)) 2263 return; 2264 2265 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2266 return; 2267 2268 sdata->flags |= flag; 2269 2270 list_for_each_entry(key, &sdata->key_list, list) 2271 key->flags |= KEY_FLAG_TAINTED; 2272 } 2273 2274 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2275 { 2276 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2277 } 2278 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2279 2280 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2281 { 2282 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2283 } 2284 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2285 2286 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2287 struct ieee80211_link_data *link) 2288 { 2289 struct ieee80211_local *local = sdata->local; 2290 struct ieee80211_chanctx_conf *chanctx_conf; 2291 struct ieee80211_chanctx *chanctx; 2292 2293 lockdep_assert_wiphy(local->hw.wiphy); 2294 2295 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2296 lockdep_is_held(&local->hw.wiphy->mtx)); 2297 2298 /* 2299 * This function can be called from a work, thus it may be possible 2300 * that the chanctx_conf is removed (due to a disconnection, for 2301 * example). 2302 * So nothing should be done in such case. 2303 */ 2304 if (!chanctx_conf) 2305 return; 2306 2307 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2308 ieee80211_recalc_smps_chanctx(local, chanctx); 2309 } 2310 2311 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2312 int link_id) 2313 { 2314 struct ieee80211_local *local = sdata->local; 2315 struct ieee80211_chanctx_conf *chanctx_conf; 2316 struct ieee80211_chanctx *chanctx; 2317 int i; 2318 2319 lockdep_assert_wiphy(local->hw.wiphy); 2320 2321 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2322 struct ieee80211_bss_conf *bss_conf; 2323 2324 if (link_id >= 0 && link_id != i) 2325 continue; 2326 2327 rcu_read_lock(); 2328 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2329 if (!bss_conf) { 2330 rcu_read_unlock(); 2331 continue; 2332 } 2333 2334 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2335 lockdep_is_held(&local->hw.wiphy->mtx)); 2336 /* 2337 * Since we hold the wiphy mutex (checked above) 2338 * we can take the chanctx_conf pointer out of the 2339 * RCU critical section, it cannot go away without 2340 * the mutex. Just the way we reached it could - in 2341 * theory - go away, but we don't really care and 2342 * it really shouldn't happen anyway. 2343 */ 2344 rcu_read_unlock(); 2345 2346 if (!chanctx_conf) 2347 return; 2348 2349 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2350 conf); 2351 ieee80211_recalc_chanctx_min_def(local, chanctx); 2352 } 2353 } 2354 2355 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2356 { 2357 size_t pos = offset; 2358 2359 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2360 pos += 2 + ies[pos + 1]; 2361 2362 return pos; 2363 } 2364 2365 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2366 u16 cap) 2367 { 2368 __le16 tmp; 2369 2370 *pos++ = WLAN_EID_HT_CAPABILITY; 2371 *pos++ = sizeof(struct ieee80211_ht_cap); 2372 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2373 2374 /* capability flags */ 2375 tmp = cpu_to_le16(cap); 2376 memcpy(pos, &tmp, sizeof(u16)); 2377 pos += sizeof(u16); 2378 2379 /* AMPDU parameters */ 2380 *pos++ = ht_cap->ampdu_factor | 2381 (ht_cap->ampdu_density << 2382 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2383 2384 /* MCS set */ 2385 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2386 pos += sizeof(ht_cap->mcs); 2387 2388 /* extended capabilities */ 2389 pos += sizeof(__le16); 2390 2391 /* BF capabilities */ 2392 pos += sizeof(__le32); 2393 2394 /* antenna selection */ 2395 pos += sizeof(u8); 2396 2397 return pos; 2398 } 2399 2400 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2401 u32 cap) 2402 { 2403 __le32 tmp; 2404 2405 *pos++ = WLAN_EID_VHT_CAPABILITY; 2406 *pos++ = sizeof(struct ieee80211_vht_cap); 2407 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2408 2409 /* capability flags */ 2410 tmp = cpu_to_le32(cap); 2411 memcpy(pos, &tmp, sizeof(u32)); 2412 pos += sizeof(u32); 2413 2414 /* VHT MCS set */ 2415 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2416 pos += sizeof(vht_cap->vht_mcs); 2417 2418 return pos; 2419 } 2420 2421 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2422 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2423 { 2424 const struct ieee80211_sta_he_cap *he_cap; 2425 struct ieee80211_supported_band *sband; 2426 u8 n; 2427 2428 sband = ieee80211_get_sband(sdata); 2429 if (!sband) 2430 return 0; 2431 2432 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2433 if (!he_cap) 2434 return 0; 2435 2436 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2437 return 2 + 1 + 2438 sizeof(he_cap->he_cap_elem) + n + 2439 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2440 he_cap->he_cap_elem.phy_cap_info); 2441 } 2442 2443 static void 2444 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2445 const struct ieee80211_sta_he_cap *he_cap, 2446 struct ieee80211_he_cap_elem *elem) 2447 { 2448 u8 ru_limit, max_ru; 2449 2450 *elem = he_cap->he_cap_elem; 2451 2452 switch (conn->bw_limit) { 2453 case IEEE80211_CONN_BW_LIMIT_20: 2454 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2455 break; 2456 case IEEE80211_CONN_BW_LIMIT_40: 2457 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2458 break; 2459 case IEEE80211_CONN_BW_LIMIT_80: 2460 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2461 break; 2462 default: 2463 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2464 break; 2465 } 2466 2467 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2468 max_ru = min(max_ru, ru_limit); 2469 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2470 elem->phy_cap_info[8] |= max_ru; 2471 2472 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2473 elem->phy_cap_info[0] &= 2474 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2475 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2476 elem->phy_cap_info[9] &= 2477 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2478 } 2479 2480 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2481 elem->phy_cap_info[0] &= 2482 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2483 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2484 elem->phy_cap_info[5] &= 2485 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2486 elem->phy_cap_info[7] &= 2487 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2488 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2489 } 2490 } 2491 2492 int ieee80211_put_he_cap(struct sk_buff *skb, 2493 struct ieee80211_sub_if_data *sdata, 2494 const struct ieee80211_supported_band *sband, 2495 const struct ieee80211_conn_settings *conn) 2496 { 2497 const struct ieee80211_sta_he_cap *he_cap; 2498 struct ieee80211_he_cap_elem elem; 2499 u8 *len; 2500 u8 n; 2501 u8 ie_len; 2502 2503 if (!conn) 2504 conn = &ieee80211_conn_settings_unlimited; 2505 2506 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2507 if (!he_cap) 2508 return 0; 2509 2510 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2511 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2512 2513 n = ieee80211_he_mcs_nss_size(&elem); 2514 ie_len = 2 + 1 + 2515 sizeof(he_cap->he_cap_elem) + n + 2516 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2517 he_cap->he_cap_elem.phy_cap_info); 2518 2519 if (skb_tailroom(skb) < ie_len) 2520 return -ENOBUFS; 2521 2522 skb_put_u8(skb, WLAN_EID_EXTENSION); 2523 len = skb_put(skb, 1); /* We'll set the size later below */ 2524 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2525 2526 /* Fixed data */ 2527 skb_put_data(skb, &elem, sizeof(elem)); 2528 2529 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2530 2531 /* Check if PPE Threshold should be present */ 2532 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2533 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2534 goto end; 2535 2536 /* 2537 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2538 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2539 */ 2540 n = hweight8(he_cap->ppe_thres[0] & 2541 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2542 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2543 IEEE80211_PPE_THRES_NSS_POS)); 2544 2545 /* 2546 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2547 * total size. 2548 */ 2549 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2550 n = DIV_ROUND_UP(n, 8); 2551 2552 /* Copy PPE Thresholds */ 2553 skb_put_data(skb, &he_cap->ppe_thres, n); 2554 2555 end: 2556 *len = skb_tail_pointer(skb) - len - 1; 2557 return 0; 2558 } 2559 2560 int ieee80211_put_reg_conn(struct sk_buff *skb, 2561 enum ieee80211_channel_flags flags) 2562 { 2563 u8 reg_conn = IEEE80211_REG_CONN_LPI_VALID | 2564 IEEE80211_REG_CONN_LPI_VALUE | 2565 IEEE80211_REG_CONN_SP_VALID; 2566 2567 if (!(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)) 2568 reg_conn |= IEEE80211_REG_CONN_SP_VALUE; 2569 2570 skb_put_u8(skb, WLAN_EID_EXTENSION); 2571 skb_put_u8(skb, 1 + sizeof(reg_conn)); 2572 skb_put_u8(skb, WLAN_EID_EXT_NON_AP_STA_REG_CON); 2573 skb_put_u8(skb, reg_conn); 2574 return 0; 2575 } 2576 2577 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2578 struct ieee80211_sub_if_data *sdata, 2579 enum ieee80211_smps_mode smps_mode) 2580 { 2581 struct ieee80211_supported_band *sband; 2582 const struct ieee80211_sband_iftype_data *iftd; 2583 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2584 __le16 cap; 2585 2586 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2587 BIT(NL80211_BAND_6GHZ), 2588 IEEE80211_CHAN_NO_HE)) 2589 return 0; 2590 2591 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2592 2593 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2594 if (!iftd) 2595 return 0; 2596 2597 /* Check for device HE 6 GHz capability before adding element */ 2598 if (!iftd->he_6ghz_capa.capa) 2599 return 0; 2600 2601 cap = iftd->he_6ghz_capa.capa; 2602 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2603 2604 switch (smps_mode) { 2605 case IEEE80211_SMPS_AUTOMATIC: 2606 case IEEE80211_SMPS_NUM_MODES: 2607 WARN_ON(1); 2608 fallthrough; 2609 case IEEE80211_SMPS_OFF: 2610 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2611 IEEE80211_HE_6GHZ_CAP_SM_PS); 2612 break; 2613 case IEEE80211_SMPS_STATIC: 2614 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2615 IEEE80211_HE_6GHZ_CAP_SM_PS); 2616 break; 2617 case IEEE80211_SMPS_DYNAMIC: 2618 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2619 IEEE80211_HE_6GHZ_CAP_SM_PS); 2620 break; 2621 } 2622 2623 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2624 return -ENOBUFS; 2625 2626 skb_put_u8(skb, WLAN_EID_EXTENSION); 2627 skb_put_u8(skb, 1 + sizeof(cap)); 2628 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2629 skb_put_data(skb, &cap, sizeof(cap)); 2630 return 0; 2631 } 2632 2633 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2634 const struct cfg80211_chan_def *chandef, 2635 u16 prot_mode, bool rifs_mode) 2636 { 2637 struct ieee80211_ht_operation *ht_oper; 2638 /* Build HT Information */ 2639 *pos++ = WLAN_EID_HT_OPERATION; 2640 *pos++ = sizeof(struct ieee80211_ht_operation); 2641 ht_oper = (struct ieee80211_ht_operation *)pos; 2642 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2643 chandef->chan->center_freq); 2644 switch (chandef->width) { 2645 case NL80211_CHAN_WIDTH_160: 2646 case NL80211_CHAN_WIDTH_80P80: 2647 case NL80211_CHAN_WIDTH_80: 2648 case NL80211_CHAN_WIDTH_40: 2649 if (chandef->center_freq1 > chandef->chan->center_freq) 2650 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2651 else 2652 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2653 break; 2654 case NL80211_CHAN_WIDTH_320: 2655 /* HT information element should not be included on 6GHz */ 2656 WARN_ON(1); 2657 return pos; 2658 default: 2659 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2660 break; 2661 } 2662 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2663 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2664 chandef->width != NL80211_CHAN_WIDTH_20) 2665 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2666 2667 if (rifs_mode) 2668 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2669 2670 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2671 ht_oper->stbc_param = 0x0000; 2672 2673 /* It seems that Basic MCS set and Supported MCS set 2674 are identical for the first 10 bytes */ 2675 memset(&ht_oper->basic_set, 0, 16); 2676 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2677 2678 return pos + sizeof(struct ieee80211_ht_operation); 2679 } 2680 2681 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2682 const struct cfg80211_chan_def *chandef) 2683 { 2684 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2685 *pos++ = 3; /* IE length */ 2686 /* New channel width */ 2687 switch (chandef->width) { 2688 case NL80211_CHAN_WIDTH_80: 2689 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2690 break; 2691 case NL80211_CHAN_WIDTH_160: 2692 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2693 break; 2694 case NL80211_CHAN_WIDTH_80P80: 2695 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2696 break; 2697 case NL80211_CHAN_WIDTH_320: 2698 /* The behavior is not defined for 320 MHz channels */ 2699 WARN_ON(1); 2700 fallthrough; 2701 default: 2702 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2703 } 2704 2705 /* new center frequency segment 0 */ 2706 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2707 /* new center frequency segment 1 */ 2708 if (chandef->center_freq2) 2709 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2710 else 2711 *pos++ = 0; 2712 } 2713 2714 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2715 const struct cfg80211_chan_def *chandef) 2716 { 2717 struct ieee80211_vht_operation *vht_oper; 2718 2719 *pos++ = WLAN_EID_VHT_OPERATION; 2720 *pos++ = sizeof(struct ieee80211_vht_operation); 2721 vht_oper = (struct ieee80211_vht_operation *)pos; 2722 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2723 chandef->center_freq1); 2724 if (chandef->center_freq2) 2725 vht_oper->center_freq_seg1_idx = 2726 ieee80211_frequency_to_channel(chandef->center_freq2); 2727 else 2728 vht_oper->center_freq_seg1_idx = 0x00; 2729 2730 switch (chandef->width) { 2731 case NL80211_CHAN_WIDTH_160: 2732 /* 2733 * Convert 160 MHz channel width to new style as interop 2734 * workaround. 2735 */ 2736 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2737 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2738 if (chandef->chan->center_freq < chandef->center_freq1) 2739 vht_oper->center_freq_seg0_idx -= 8; 2740 else 2741 vht_oper->center_freq_seg0_idx += 8; 2742 break; 2743 case NL80211_CHAN_WIDTH_80P80: 2744 /* 2745 * Convert 80+80 MHz channel width to new style as interop 2746 * workaround. 2747 */ 2748 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2749 break; 2750 case NL80211_CHAN_WIDTH_80: 2751 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2752 break; 2753 case NL80211_CHAN_WIDTH_320: 2754 /* VHT information element should not be included on 6GHz */ 2755 WARN_ON(1); 2756 return pos; 2757 default: 2758 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2759 break; 2760 } 2761 2762 /* don't require special VHT peer rates */ 2763 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2764 2765 return pos + sizeof(struct ieee80211_vht_operation); 2766 } 2767 2768 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2769 { 2770 struct ieee80211_he_operation *he_oper; 2771 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2772 struct cfg80211_chan_def he_chandef; 2773 u32 he_oper_params; 2774 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2775 2776 if (chandef->chan->band == NL80211_BAND_6GHZ) 2777 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2778 2779 *pos++ = WLAN_EID_EXTENSION; 2780 *pos++ = ie_len; 2781 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2782 2783 he_oper_params = 0; 2784 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2785 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2786 he_oper_params |= u32_encode_bits(1, 2787 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2788 he_oper_params |= u32_encode_bits(1, 2789 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2790 if (chandef->chan->band == NL80211_BAND_6GHZ) 2791 he_oper_params |= u32_encode_bits(1, 2792 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2793 2794 he_oper = (struct ieee80211_he_operation *)pos; 2795 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2796 2797 /* don't require special HE peer rates */ 2798 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2799 pos += sizeof(struct ieee80211_he_operation); 2800 2801 if (chandef->chan->band != NL80211_BAND_6GHZ) 2802 goto out; 2803 2804 cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); 2805 he_chandef.center_freq1 = chandef->center_freq1; 2806 he_chandef.center_freq2 = chandef->center_freq2; 2807 he_chandef.width = chandef->width; 2808 2809 /* TODO add VHT operational */ 2810 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2811 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2812 he_6ghz_op->primary = 2813 ieee80211_frequency_to_channel(he_chandef.chan->center_freq); 2814 he_6ghz_op->ccfs0 = 2815 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2816 if (he_chandef.center_freq2) 2817 he_6ghz_op->ccfs1 = 2818 ieee80211_frequency_to_channel(he_chandef.center_freq2); 2819 else 2820 he_6ghz_op->ccfs1 = 0; 2821 2822 switch (he_chandef.width) { 2823 case NL80211_CHAN_WIDTH_320: 2824 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new 2825 * center_freq1 2826 */ 2827 ieee80211_chandef_downgrade(&he_chandef, NULL); 2828 he_6ghz_op->ccfs0 = 2829 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2830 fallthrough; 2831 case NL80211_CHAN_WIDTH_160: 2832 /* Convert 160 MHz channel width to new style as interop 2833 * workaround. 2834 */ 2835 he_6ghz_op->control = 2836 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2837 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2838 if (he_chandef.chan->center_freq < he_chandef.center_freq1) 2839 he_6ghz_op->ccfs0 -= 8; 2840 else 2841 he_6ghz_op->ccfs0 += 8; 2842 fallthrough; 2843 case NL80211_CHAN_WIDTH_80P80: 2844 he_6ghz_op->control = 2845 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2846 break; 2847 case NL80211_CHAN_WIDTH_80: 2848 he_6ghz_op->control = 2849 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2850 break; 2851 case NL80211_CHAN_WIDTH_40: 2852 he_6ghz_op->control = 2853 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2854 break; 2855 default: 2856 he_6ghz_op->control = 2857 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2858 break; 2859 } 2860 2861 pos += sizeof(struct ieee80211_he_6ghz_oper); 2862 2863 out: 2864 return pos; 2865 } 2866 2867 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2868 const struct ieee80211_sta_eht_cap *eht_cap) 2869 2870 { 2871 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2872 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2873 struct ieee80211_eht_operation *eht_oper; 2874 struct ieee80211_eht_operation_info *eht_oper_info; 2875 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2876 u8 eht_oper_info_len = 2877 offsetof(struct ieee80211_eht_operation_info, optional); 2878 u8 chan_width = 0; 2879 2880 *pos++ = WLAN_EID_EXTENSION; 2881 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2882 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2883 2884 eht_oper = (struct ieee80211_eht_operation *)pos; 2885 2886 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2887 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2888 pos += eht_oper_len; 2889 2890 eht_oper_info = 2891 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2892 2893 eht_oper_info->ccfs0 = 2894 ieee80211_frequency_to_channel(chandef->center_freq1); 2895 if (chandef->center_freq2) 2896 eht_oper_info->ccfs1 = 2897 ieee80211_frequency_to_channel(chandef->center_freq2); 2898 else 2899 eht_oper_info->ccfs1 = 0; 2900 2901 switch (chandef->width) { 2902 case NL80211_CHAN_WIDTH_320: 2903 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2904 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2905 if (chandef->chan->center_freq < chandef->center_freq1) 2906 eht_oper_info->ccfs0 -= 16; 2907 else 2908 eht_oper_info->ccfs0 += 16; 2909 break; 2910 case NL80211_CHAN_WIDTH_160: 2911 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2912 if (chandef->chan->center_freq < chandef->center_freq1) 2913 eht_oper_info->ccfs0 -= 8; 2914 else 2915 eht_oper_info->ccfs0 += 8; 2916 fallthrough; 2917 case NL80211_CHAN_WIDTH_80P80: 2918 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2919 break; 2920 case NL80211_CHAN_WIDTH_80: 2921 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2922 break; 2923 case NL80211_CHAN_WIDTH_40: 2924 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2925 break; 2926 default: 2927 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2928 break; 2929 } 2930 eht_oper_info->control = chan_width; 2931 pos += eht_oper_info_len; 2932 2933 /* TODO: eht_oper_info->optional */ 2934 2935 return pos; 2936 } 2937 2938 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2939 struct cfg80211_chan_def *chandef) 2940 { 2941 enum nl80211_channel_type channel_type; 2942 2943 if (!ht_oper) 2944 return false; 2945 2946 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2947 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2948 channel_type = NL80211_CHAN_HT20; 2949 break; 2950 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2951 channel_type = NL80211_CHAN_HT40PLUS; 2952 break; 2953 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2954 channel_type = NL80211_CHAN_HT40MINUS; 2955 break; 2956 default: 2957 return false; 2958 } 2959 2960 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2961 return true; 2962 } 2963 2964 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2965 const struct ieee80211_vht_operation *oper, 2966 const struct ieee80211_ht_operation *htop, 2967 struct cfg80211_chan_def *chandef) 2968 { 2969 struct cfg80211_chan_def new = *chandef; 2970 int cf0, cf1; 2971 int ccfs0, ccfs1, ccfs2; 2972 int ccf0, ccf1; 2973 u32 vht_cap; 2974 bool support_80_80 = false; 2975 bool support_160 = false; 2976 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2977 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2978 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2979 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2980 2981 if (!oper || !htop) 2982 return false; 2983 2984 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2985 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2986 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2987 support_80_80 = ((vht_cap & 2988 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2989 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2990 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2991 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2992 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2993 ccfs0 = oper->center_freq_seg0_idx; 2994 ccfs1 = oper->center_freq_seg1_idx; 2995 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2996 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2997 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2998 2999 ccf0 = ccfs0; 3000 3001 /* if not supported, parse as though we didn't understand it */ 3002 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3003 ext_nss_bw_supp = 0; 3004 3005 /* 3006 * Cf. IEEE 802.11 Table 9-250 3007 * 3008 * We really just consider that because it's inefficient to connect 3009 * at a higher bandwidth than we'll actually be able to use. 3010 */ 3011 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3012 default: 3013 case 0x00: 3014 ccf1 = 0; 3015 support_160 = false; 3016 support_80_80 = false; 3017 break; 3018 case 0x01: 3019 support_80_80 = false; 3020 fallthrough; 3021 case 0x02: 3022 case 0x03: 3023 ccf1 = ccfs2; 3024 break; 3025 case 0x10: 3026 ccf1 = ccfs1; 3027 break; 3028 case 0x11: 3029 case 0x12: 3030 if (!ccfs1) 3031 ccf1 = ccfs2; 3032 else 3033 ccf1 = ccfs1; 3034 break; 3035 case 0x13: 3036 case 0x20: 3037 case 0x23: 3038 ccf1 = ccfs1; 3039 break; 3040 } 3041 3042 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3043 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3044 3045 switch (oper->chan_width) { 3046 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3047 /* just use HT information directly */ 3048 break; 3049 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3050 new.width = NL80211_CHAN_WIDTH_80; 3051 new.center_freq1 = cf0; 3052 /* If needed, adjust based on the newer interop workaround. */ 3053 if (ccf1) { 3054 unsigned int diff; 3055 3056 diff = abs(ccf1 - ccf0); 3057 if ((diff == 8) && support_160) { 3058 new.width = NL80211_CHAN_WIDTH_160; 3059 new.center_freq1 = cf1; 3060 } else if ((diff > 8) && support_80_80) { 3061 new.width = NL80211_CHAN_WIDTH_80P80; 3062 new.center_freq2 = cf1; 3063 } 3064 } 3065 break; 3066 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3067 /* deprecated encoding */ 3068 new.width = NL80211_CHAN_WIDTH_160; 3069 new.center_freq1 = cf0; 3070 break; 3071 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3072 /* deprecated encoding */ 3073 new.width = NL80211_CHAN_WIDTH_80P80; 3074 new.center_freq1 = cf0; 3075 new.center_freq2 = cf1; 3076 break; 3077 default: 3078 return false; 3079 } 3080 3081 if (!cfg80211_chandef_valid(&new)) 3082 return false; 3083 3084 *chandef = new; 3085 return true; 3086 } 3087 3088 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3089 struct cfg80211_chan_def *chandef) 3090 { 3091 chandef->center_freq1 = 3092 ieee80211_channel_to_frequency(info->ccfs0, 3093 chandef->chan->band); 3094 3095 switch (u8_get_bits(info->control, 3096 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3097 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3098 chandef->width = NL80211_CHAN_WIDTH_20; 3099 break; 3100 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3101 chandef->width = NL80211_CHAN_WIDTH_40; 3102 break; 3103 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3104 chandef->width = NL80211_CHAN_WIDTH_80; 3105 break; 3106 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3107 chandef->width = NL80211_CHAN_WIDTH_160; 3108 chandef->center_freq1 = 3109 ieee80211_channel_to_frequency(info->ccfs1, 3110 chandef->chan->band); 3111 break; 3112 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3113 chandef->width = NL80211_CHAN_WIDTH_320; 3114 chandef->center_freq1 = 3115 ieee80211_channel_to_frequency(info->ccfs1, 3116 chandef->chan->band); 3117 break; 3118 } 3119 } 3120 3121 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3122 const struct ieee80211_he_operation *he_oper, 3123 const struct ieee80211_eht_operation *eht_oper, 3124 struct cfg80211_chan_def *chandef) 3125 { 3126 struct cfg80211_chan_def he_chandef = *chandef; 3127 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3128 u32 freq; 3129 3130 if (chandef->chan->band != NL80211_BAND_6GHZ) 3131 return true; 3132 3133 if (!he_oper) 3134 return false; 3135 3136 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3137 if (!he_6ghz_oper) 3138 return false; 3139 3140 /* 3141 * The EHT operation IE does not contain the primary channel so the 3142 * primary channel frequency should be taken from the 6 GHz operation 3143 * information. 3144 */ 3145 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3146 NL80211_BAND_6GHZ); 3147 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3148 3149 if (!he_chandef.chan) 3150 return false; 3151 3152 if (!eht_oper || 3153 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3154 switch (u8_get_bits(he_6ghz_oper->control, 3155 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3156 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3157 he_chandef.width = NL80211_CHAN_WIDTH_20; 3158 break; 3159 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3160 he_chandef.width = NL80211_CHAN_WIDTH_40; 3161 break; 3162 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3163 he_chandef.width = NL80211_CHAN_WIDTH_80; 3164 break; 3165 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3166 he_chandef.width = NL80211_CHAN_WIDTH_80; 3167 if (!he_6ghz_oper->ccfs1) 3168 break; 3169 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3170 he_chandef.width = NL80211_CHAN_WIDTH_160; 3171 else 3172 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3173 break; 3174 } 3175 3176 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3177 he_chandef.center_freq1 = 3178 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3179 NL80211_BAND_6GHZ); 3180 } else { 3181 he_chandef.center_freq1 = 3182 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3183 NL80211_BAND_6GHZ); 3184 he_chandef.center_freq2 = 3185 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3186 NL80211_BAND_6GHZ); 3187 } 3188 } else { 3189 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3190 &he_chandef); 3191 he_chandef.punctured = 3192 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3193 } 3194 3195 if (!cfg80211_chandef_valid(&he_chandef)) 3196 return false; 3197 3198 *chandef = he_chandef; 3199 3200 return true; 3201 } 3202 3203 bool ieee80211_chandef_s1g_oper(struct ieee80211_local *local, 3204 const struct ieee80211_s1g_oper_ie *oper, 3205 struct cfg80211_chan_def *chandef) 3206 { 3207 u32 oper_khz, pri_1mhz_khz, pri_2mhz_khz; 3208 3209 if (!oper) 3210 return false; 3211 3212 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3213 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3214 chandef->width = NL80211_CHAN_WIDTH_1; 3215 break; 3216 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3217 chandef->width = NL80211_CHAN_WIDTH_2; 3218 break; 3219 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3220 chandef->width = NL80211_CHAN_WIDTH_4; 3221 break; 3222 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3223 chandef->width = NL80211_CHAN_WIDTH_8; 3224 break; 3225 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3226 chandef->width = NL80211_CHAN_WIDTH_16; 3227 break; 3228 default: 3229 return false; 3230 } 3231 3232 chandef->s1g_primary_2mhz = false; 3233 3234 switch (u8_get_bits(oper->ch_width, S1G_OPER_CH_WIDTH_PRIMARY)) { 3235 case IEEE80211_S1G_PRI_CHANWIDTH_1MHZ: 3236 pri_1mhz_khz = ieee80211_channel_to_freq_khz( 3237 oper->primary_ch, NL80211_BAND_S1GHZ); 3238 break; 3239 case IEEE80211_S1G_PRI_CHANWIDTH_2MHZ: 3240 chandef->s1g_primary_2mhz = true; 3241 pri_2mhz_khz = ieee80211_channel_to_freq_khz( 3242 oper->primary_ch, NL80211_BAND_S1GHZ); 3243 3244 if (u8_get_bits(oper->ch_width, S1G_OPER_CH_PRIMARY_LOCATION) == 3245 S1G_2M_PRIMARY_LOCATION_LOWER) 3246 pri_1mhz_khz = pri_2mhz_khz - 500; 3247 else 3248 pri_1mhz_khz = pri_2mhz_khz + 500; 3249 break; 3250 default: 3251 return false; 3252 } 3253 3254 oper_khz = ieee80211_channel_to_freq_khz(oper->oper_ch, 3255 NL80211_BAND_S1GHZ); 3256 chandef->center_freq1 = KHZ_TO_MHZ(oper_khz); 3257 chandef->freq1_offset = oper_khz % 1000; 3258 chandef->chan = 3259 ieee80211_get_channel_khz(local->hw.wiphy, pri_1mhz_khz); 3260 3261 return chandef->chan; 3262 } 3263 3264 int ieee80211_put_srates_elem(struct sk_buff *skb, 3265 const struct ieee80211_supported_band *sband, 3266 u32 basic_rates, u32 masked_rates, 3267 u8 element_id) 3268 { 3269 u8 i, rates, skip; 3270 3271 rates = 0; 3272 for (i = 0; i < sband->n_bitrates; i++) { 3273 if (masked_rates & BIT(i)) 3274 continue; 3275 rates++; 3276 } 3277 3278 if (element_id == WLAN_EID_SUPP_RATES) { 3279 rates = min_t(u8, rates, 8); 3280 skip = 0; 3281 } else { 3282 skip = 8; 3283 if (rates <= skip) 3284 return 0; 3285 rates -= skip; 3286 } 3287 3288 if (skb_tailroom(skb) < rates + 2) 3289 return -ENOBUFS; 3290 3291 skb_put_u8(skb, element_id); 3292 skb_put_u8(skb, rates); 3293 3294 for (i = 0; i < sband->n_bitrates && rates; i++) { 3295 int rate; 3296 u8 basic; 3297 3298 if (masked_rates & BIT(i)) 3299 continue; 3300 3301 if (skip > 0) { 3302 skip--; 3303 continue; 3304 } 3305 3306 basic = basic_rates & BIT(i) ? 0x80 : 0; 3307 3308 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3309 skb_put_u8(skb, basic | (u8)rate); 3310 rates--; 3311 } 3312 3313 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3314 rates, element_id); 3315 3316 return 0; 3317 } 3318 3319 int ieee80211_ave_rssi(struct ieee80211_vif *vif, int link_id) 3320 { 3321 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3322 struct ieee80211_link_data *link_data; 3323 3324 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3325 return 0; 3326 3327 if (link_id < 0) 3328 link_data = &sdata->deflink; 3329 else 3330 link_data = wiphy_dereference(sdata->local->hw.wiphy, 3331 sdata->link[link_id]); 3332 3333 if (WARN_ON_ONCE(!link_data)) 3334 return -99; 3335 3336 return -ewma_beacon_signal_read(&link_data->u.mgd.ave_beacon_signal); 3337 } 3338 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3339 3340 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3341 { 3342 if (!mcs) 3343 return 1; 3344 3345 /* TODO: consider rx_highest */ 3346 3347 if (mcs->rx_mask[3]) 3348 return 4; 3349 if (mcs->rx_mask[2]) 3350 return 3; 3351 if (mcs->rx_mask[1]) 3352 return 2; 3353 return 1; 3354 } 3355 3356 /** 3357 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3358 * @local: mac80211 hw info struct 3359 * @status: RX status 3360 * @mpdu_len: total MPDU length (including FCS) 3361 * @mpdu_offset: offset into MPDU to calculate timestamp at 3362 * 3363 * This function calculates the RX timestamp at the given MPDU offset, taking 3364 * into account what the RX timestamp was. An offset of 0 will just normalize 3365 * the timestamp to TSF at beginning of MPDU reception. 3366 * 3367 * Returns: the calculated timestamp 3368 */ 3369 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3370 struct ieee80211_rx_status *status, 3371 unsigned int mpdu_len, 3372 unsigned int mpdu_offset) 3373 { 3374 u64 ts = status->mactime; 3375 bool mactime_plcp_start; 3376 struct rate_info ri; 3377 u16 rate; 3378 u8 n_ltf; 3379 3380 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3381 return 0; 3382 3383 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3384 RX_FLAG_MACTIME_PLCP_START; 3385 3386 memset(&ri, 0, sizeof(ri)); 3387 3388 ri.bw = status->bw; 3389 3390 /* Fill cfg80211 rate info */ 3391 switch (status->encoding) { 3392 case RX_ENC_EHT: 3393 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3394 ri.mcs = status->rate_idx; 3395 ri.nss = status->nss; 3396 ri.eht_ru_alloc = status->eht.ru; 3397 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3398 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3399 /* TODO/FIXME: is this right? handle other PPDUs */ 3400 if (mactime_plcp_start) { 3401 mpdu_offset += 2; 3402 ts += 36; 3403 } 3404 break; 3405 case RX_ENC_HE: 3406 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3407 ri.mcs = status->rate_idx; 3408 ri.nss = status->nss; 3409 ri.he_ru_alloc = status->he_ru; 3410 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3411 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3412 3413 /* 3414 * See P802.11ax_D6.0, section 27.3.4 for 3415 * VHT PPDU format. 3416 */ 3417 if (mactime_plcp_start) { 3418 mpdu_offset += 2; 3419 ts += 36; 3420 3421 /* 3422 * TODO: 3423 * For HE MU PPDU, add the HE-SIG-B. 3424 * For HE ER PPDU, add 8us for the HE-SIG-A. 3425 * For HE TB PPDU, add 4us for the HE-STF. 3426 * Add the HE-LTF durations - variable. 3427 */ 3428 } 3429 3430 break; 3431 case RX_ENC_HT: 3432 ri.mcs = status->rate_idx; 3433 ri.flags |= RATE_INFO_FLAGS_MCS; 3434 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3435 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3436 3437 /* 3438 * See P802.11REVmd_D3.0, section 19.3.2 for 3439 * HT PPDU format. 3440 */ 3441 if (mactime_plcp_start) { 3442 mpdu_offset += 2; 3443 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3444 ts += 24; 3445 else 3446 ts += 32; 3447 3448 /* 3449 * Add Data HT-LTFs per streams 3450 * TODO: add Extension HT-LTFs, 4us per LTF 3451 */ 3452 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3453 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3454 ts += n_ltf * 4; 3455 } 3456 3457 break; 3458 case RX_ENC_VHT: 3459 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3460 ri.mcs = status->rate_idx; 3461 ri.nss = status->nss; 3462 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3463 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3464 3465 /* 3466 * See P802.11REVmd_D3.0, section 21.3.2 for 3467 * VHT PPDU format. 3468 */ 3469 if (mactime_plcp_start) { 3470 mpdu_offset += 2; 3471 ts += 36; 3472 3473 /* 3474 * Add VHT-LTFs per streams 3475 */ 3476 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3477 ri.nss + 1 : ri.nss; 3478 ts += 4 * n_ltf; 3479 } 3480 3481 break; 3482 default: 3483 WARN_ON(1); 3484 fallthrough; 3485 case RX_ENC_LEGACY: { 3486 struct ieee80211_supported_band *sband; 3487 3488 sband = local->hw.wiphy->bands[status->band]; 3489 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3490 3491 if (mactime_plcp_start) { 3492 if (status->band == NL80211_BAND_5GHZ) { 3493 ts += 20; 3494 mpdu_offset += 2; 3495 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3496 ts += 96; 3497 } else { 3498 ts += 192; 3499 } 3500 } 3501 break; 3502 } 3503 } 3504 3505 rate = cfg80211_calculate_bitrate(&ri); 3506 if (WARN_ONCE(!rate, 3507 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3508 (unsigned long long)status->flag, status->rate_idx, 3509 status->nss)) 3510 return 0; 3511 3512 /* rewind from end of MPDU */ 3513 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3514 ts -= mpdu_len * 8 * 10 / rate; 3515 3516 ts += mpdu_offset * 8 * 10 / rate; 3517 3518 return ts; 3519 } 3520 3521 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3522 * also provided, only the interfaces using that ctx will be canceled. 3523 */ 3524 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3525 struct ieee80211_chanctx *ctx) 3526 { 3527 struct ieee80211_sub_if_data *sdata; 3528 struct cfg80211_chan_def chandef; 3529 struct ieee80211_link_data *link; 3530 struct ieee80211_chanctx_conf *chanctx_conf; 3531 unsigned int link_id; 3532 3533 lockdep_assert_wiphy(local->hw.wiphy); 3534 3535 list_for_each_entry(sdata, &local->interfaces, list) { 3536 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3537 link_id++) { 3538 link = sdata_dereference(sdata->link[link_id], 3539 sdata); 3540 if (!link) 3541 continue; 3542 3543 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3544 sdata); 3545 if (ctx && &ctx->conf != chanctx_conf) 3546 continue; 3547 3548 wiphy_delayed_work_cancel(local->hw.wiphy, 3549 &link->dfs_cac_timer_work); 3550 3551 if (!sdata->wdev.links[link_id].cac_started) 3552 continue; 3553 3554 chandef = link->conf->chanreq.oper; 3555 ieee80211_link_release_channel(link); 3556 cfg80211_cac_event(sdata->dev, &chandef, 3557 NL80211_RADAR_CAC_ABORTED, 3558 GFP_KERNEL, link_id); 3559 } 3560 } 3561 } 3562 3563 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3564 struct wiphy_work *work) 3565 { 3566 struct ieee80211_local *local = 3567 container_of(work, struct ieee80211_local, radar_detected_work); 3568 struct cfg80211_chan_def chandef; 3569 struct ieee80211_chanctx *ctx; 3570 3571 lockdep_assert_wiphy(local->hw.wiphy); 3572 3573 list_for_each_entry(ctx, &local->chanctx_list, list) { 3574 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3575 continue; 3576 3577 if (!ctx->radar_detected) 3578 continue; 3579 3580 ctx->radar_detected = false; 3581 3582 chandef = ctx->conf.def; 3583 3584 ieee80211_dfs_cac_cancel(local, ctx); 3585 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3586 } 3587 } 3588 3589 static void 3590 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3591 struct ieee80211_chanctx_conf *chanctx_conf, 3592 void *data) 3593 { 3594 struct ieee80211_chanctx *ctx = 3595 container_of(chanctx_conf, struct ieee80211_chanctx, 3596 conf); 3597 3598 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3599 return; 3600 3601 if (data && data != chanctx_conf) 3602 return; 3603 3604 ctx->radar_detected = true; 3605 } 3606 3607 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3608 struct ieee80211_chanctx_conf *chanctx_conf) 3609 { 3610 struct ieee80211_local *local = hw_to_local(hw); 3611 3612 trace_api_radar_detected(local); 3613 3614 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3615 chanctx_conf); 3616 3617 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3618 } 3619 EXPORT_SYMBOL(ieee80211_radar_detected); 3620 3621 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3622 struct ieee80211_conn_settings *conn) 3623 { 3624 enum nl80211_chan_width new_primary_width; 3625 struct ieee80211_conn_settings _ignored = {}; 3626 3627 /* allow passing NULL if caller doesn't care */ 3628 if (!conn) 3629 conn = &_ignored; 3630 3631 again: 3632 /* no-HT indicates nothing to do */ 3633 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3634 3635 switch (c->width) { 3636 default: 3637 case NL80211_CHAN_WIDTH_20_NOHT: 3638 WARN_ON_ONCE(1); 3639 fallthrough; 3640 case NL80211_CHAN_WIDTH_20: 3641 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3642 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3643 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3644 c->punctured = 0; 3645 break; 3646 case NL80211_CHAN_WIDTH_40: 3647 c->width = NL80211_CHAN_WIDTH_20; 3648 c->center_freq1 = c->chan->center_freq; 3649 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3650 conn->mode = IEEE80211_CONN_MODE_HT; 3651 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3652 c->punctured = 0; 3653 break; 3654 case NL80211_CHAN_WIDTH_80: 3655 new_primary_width = NL80211_CHAN_WIDTH_40; 3656 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3657 conn->mode = IEEE80211_CONN_MODE_HT; 3658 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3659 break; 3660 case NL80211_CHAN_WIDTH_80P80: 3661 c->center_freq2 = 0; 3662 c->width = NL80211_CHAN_WIDTH_80; 3663 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3664 break; 3665 case NL80211_CHAN_WIDTH_160: 3666 new_primary_width = NL80211_CHAN_WIDTH_80; 3667 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3668 break; 3669 case NL80211_CHAN_WIDTH_320: 3670 new_primary_width = NL80211_CHAN_WIDTH_160; 3671 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3672 break; 3673 case NL80211_CHAN_WIDTH_1: 3674 case NL80211_CHAN_WIDTH_2: 3675 case NL80211_CHAN_WIDTH_4: 3676 case NL80211_CHAN_WIDTH_8: 3677 case NL80211_CHAN_WIDTH_16: 3678 WARN_ON_ONCE(1); 3679 /* keep c->width */ 3680 conn->mode = IEEE80211_CONN_MODE_S1G; 3681 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3682 break; 3683 case NL80211_CHAN_WIDTH_5: 3684 case NL80211_CHAN_WIDTH_10: 3685 WARN_ON_ONCE(1); 3686 /* keep c->width */ 3687 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3688 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3689 break; 3690 } 3691 3692 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3693 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3694 &c->punctured); 3695 c->width = new_primary_width; 3696 } 3697 3698 /* 3699 * With an 80 MHz channel, we might have the puncturing in the primary 3700 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3701 * In that case, downgrade again. 3702 */ 3703 if (!cfg80211_chandef_valid(c) && c->punctured) 3704 goto again; 3705 3706 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3707 } 3708 3709 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3710 struct cfg80211_csa_settings *csa_settings) 3711 { 3712 struct sk_buff *skb; 3713 struct ieee80211_mgmt *mgmt; 3714 struct ieee80211_local *local = sdata->local; 3715 int freq; 3716 int hdr_len = offsetofend(struct ieee80211_mgmt, 3717 u.action.u.chan_switch); 3718 u8 *pos; 3719 3720 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3721 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3722 return -EOPNOTSUPP; 3723 3724 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3725 5 + /* channel switch announcement element */ 3726 3 + /* secondary channel offset element */ 3727 5 + /* wide bandwidth channel switch announcement */ 3728 8); /* mesh channel switch parameters element */ 3729 if (!skb) 3730 return -ENOMEM; 3731 3732 skb_reserve(skb, local->tx_headroom); 3733 mgmt = skb_put_zero(skb, hdr_len); 3734 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3735 IEEE80211_STYPE_ACTION); 3736 3737 eth_broadcast_addr(mgmt->da); 3738 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3739 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3740 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3741 } else { 3742 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3743 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3744 } 3745 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3746 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3747 pos = skb_put(skb, 5); 3748 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3749 *pos++ = 3; /* IE length */ 3750 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3751 freq = csa_settings->chandef.chan->center_freq; 3752 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3753 *pos++ = csa_settings->count; /* count */ 3754 3755 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3756 enum nl80211_channel_type ch_type; 3757 3758 skb_put(skb, 3); 3759 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3760 *pos++ = 1; /* IE length */ 3761 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3762 if (ch_type == NL80211_CHAN_HT40PLUS) 3763 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3764 else 3765 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3766 } 3767 3768 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3769 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3770 3771 skb_put(skb, 8); 3772 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3773 *pos++ = 6; /* IE length */ 3774 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3775 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3776 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3777 *pos++ |= csa_settings->block_tx ? 3778 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3779 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3780 pos += 2; 3781 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3782 pos += 2; 3783 } 3784 3785 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3786 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3787 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3788 skb_put(skb, 5); 3789 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3790 } 3791 3792 ieee80211_tx_skb(sdata, skb); 3793 return 0; 3794 } 3795 3796 static bool 3797 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3798 { 3799 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3800 int skip; 3801 3802 if (end > 0) 3803 return false; 3804 3805 /* One shot NOA */ 3806 if (data->count[i] == 1) 3807 return false; 3808 3809 if (data->desc[i].interval == 0) 3810 return false; 3811 3812 /* End time is in the past, check for repetitions */ 3813 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3814 if (data->count[i] < 255) { 3815 if (data->count[i] <= skip) { 3816 data->count[i] = 0; 3817 return false; 3818 } 3819 3820 data->count[i] -= skip; 3821 } 3822 3823 data->desc[i].start += skip * data->desc[i].interval; 3824 3825 return true; 3826 } 3827 3828 static bool 3829 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3830 s32 *offset) 3831 { 3832 bool ret = false; 3833 int i; 3834 3835 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3836 s32 cur; 3837 3838 if (!data->count[i]) 3839 continue; 3840 3841 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3842 ret = true; 3843 3844 cur = data->desc[i].start - tsf; 3845 if (cur > *offset) 3846 continue; 3847 3848 cur = data->desc[i].start + data->desc[i].duration - tsf; 3849 if (cur > *offset) 3850 *offset = cur; 3851 } 3852 3853 return ret; 3854 } 3855 3856 static u32 3857 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3858 { 3859 s32 offset = 0; 3860 int tries = 0; 3861 /* 3862 * arbitrary limit, used to avoid infinite loops when combined NoA 3863 * descriptors cover the full time period. 3864 */ 3865 int max_tries = 5; 3866 3867 ieee80211_extend_absent_time(data, tsf, &offset); 3868 do { 3869 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3870 break; 3871 3872 tries++; 3873 } while (tries < max_tries); 3874 3875 return offset; 3876 } 3877 3878 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3879 { 3880 u32 next_offset = BIT(31) - 1; 3881 int i; 3882 3883 data->absent = 0; 3884 data->has_next_tsf = false; 3885 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3886 s32 start; 3887 3888 if (!data->count[i]) 3889 continue; 3890 3891 ieee80211_extend_noa_desc(data, tsf, i); 3892 start = data->desc[i].start - tsf; 3893 if (start <= 0) 3894 data->absent |= BIT(i); 3895 3896 if (next_offset > start) 3897 next_offset = start; 3898 3899 data->has_next_tsf = true; 3900 } 3901 3902 if (data->absent) 3903 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3904 3905 data->next_tsf = tsf + next_offset; 3906 } 3907 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3908 3909 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3910 struct ieee80211_noa_data *data, u32 tsf) 3911 { 3912 int ret = 0; 3913 int i; 3914 3915 memset(data, 0, sizeof(*data)); 3916 3917 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3918 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3919 3920 if (!desc->count || !desc->duration) 3921 continue; 3922 3923 data->count[i] = desc->count; 3924 data->desc[i].start = le32_to_cpu(desc->start_time); 3925 data->desc[i].duration = le32_to_cpu(desc->duration); 3926 data->desc[i].interval = le32_to_cpu(desc->interval); 3927 3928 if (data->count[i] > 1 && 3929 data->desc[i].interval < data->desc[i].duration) 3930 continue; 3931 3932 ieee80211_extend_noa_desc(data, tsf, i); 3933 ret++; 3934 } 3935 3936 if (ret) 3937 ieee80211_update_p2p_noa(data, tsf); 3938 3939 return ret; 3940 } 3941 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3942 3943 void ieee80211_recalc_dtim(struct ieee80211_sub_if_data *sdata, u64 tsf) 3944 { 3945 u64 dtim_count = 0; 3946 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3947 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3948 struct ps_data *ps; 3949 u8 bcns_from_dtim; 3950 3951 if (tsf == -1ULL || !beacon_int || !dtim_period) 3952 return; 3953 3954 if (sdata->vif.type == NL80211_IFTYPE_AP || 3955 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3956 if (!sdata->bss) 3957 return; 3958 3959 ps = &sdata->bss->ps; 3960 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3961 ps = &sdata->u.mesh.ps; 3962 } else { 3963 return; 3964 } 3965 3966 /* 3967 * actually finds last dtim_count, mac80211 will update in 3968 * __beacon_add_tim(). 3969 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3970 */ 3971 do_div(tsf, beacon_int); 3972 bcns_from_dtim = do_div(tsf, dtim_period); 3973 /* just had a DTIM */ 3974 if (!bcns_from_dtim) 3975 dtim_count = 0; 3976 else 3977 dtim_count = dtim_period - bcns_from_dtim; 3978 3979 ps->dtim_count = dtim_count; 3980 } 3981 3982 /* 3983 * Given a long beacon period, calculate the current index into 3984 * that period to determine the number of TSBTTs until the next TBTT. 3985 * It is completely valid to have a short beacon period that differs 3986 * from the dtim period (i.e a TBTT thats not a DTIM). 3987 */ 3988 void ieee80211_recalc_sb_count(struct ieee80211_sub_if_data *sdata, u64 tsf) 3989 { 3990 u32 sb_idx; 3991 struct ps_data *ps = &sdata->bss->ps; 3992 u8 lb_period = sdata->vif.bss_conf.s1g_long_beacon_period; 3993 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3994 3995 /* No mesh / IBSS support for short beaconing */ 3996 if (tsf == -1ULL || !lb_period || 3997 (sdata->vif.type != NL80211_IFTYPE_AP && 3998 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 3999 return; 4000 4001 /* find the current TSBTT index in our lb_period */ 4002 do_div(tsf, beacon_int); 4003 sb_idx = do_div(tsf, lb_period); 4004 4005 /* num TSBTTs until the next TBTT */ 4006 ps->sb_count = sb_idx ? lb_period - sb_idx : 0; 4007 } 4008 4009 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4010 struct ieee80211_chanctx *ctx) 4011 { 4012 struct ieee80211_link_data *link; 4013 u8 radar_detect = 0; 4014 4015 lockdep_assert_wiphy(local->hw.wiphy); 4016 4017 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4018 return 0; 4019 4020 for_each_sdata_link(local, link) { 4021 if (rcu_access_pointer(link->conf->chanctx_conf) == &ctx->conf) { 4022 /* 4023 * An in-place reservation context should not have any 4024 * assigned links until it replaces the other context. 4025 */ 4026 WARN_ON(ctx->replace_state == 4027 IEEE80211_CHANCTX_REPLACES_OTHER); 4028 4029 if (link->radar_required) 4030 radar_detect |= 4031 BIT(link->conf->chanreq.oper.width); 4032 } 4033 4034 if (link->reserved_chanctx == ctx && 4035 link->reserved_radar_required) 4036 radar_detect |= BIT(link->reserved.oper.width); 4037 } 4038 4039 return radar_detect; 4040 } 4041 4042 bool ieee80211_is_radio_idx_in_scan_req(struct wiphy *wiphy, 4043 struct cfg80211_scan_request *scan_req, 4044 int radio_idx) 4045 { 4046 struct ieee80211_channel *chan; 4047 int i, chan_radio_idx; 4048 4049 for (i = 0; i < scan_req->n_channels; i++) { 4050 chan = scan_req->channels[i]; 4051 chan_radio_idx = cfg80211_get_radio_idx_by_chan(wiphy, chan); 4052 4053 /* The radio index either matched successfully, or an error 4054 * occurred. For example, if radio-level information is 4055 * missing, the same error value is returned. This 4056 * typically implies a single-radio setup, in which case 4057 * the operation should not be allowed. 4058 */ 4059 if (chan_radio_idx == radio_idx) 4060 return true; 4061 } 4062 4063 return false; 4064 } 4065 4066 static u32 4067 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 4068 { 4069 struct ieee80211_bss_conf *link_conf; 4070 struct ieee80211_chanctx_conf *conf; 4071 unsigned int link_id; 4072 u32 mask = 0; 4073 4074 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 4075 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 4076 if (!conf || conf->radio_idx < 0) 4077 continue; 4078 4079 mask |= BIT(conf->radio_idx); 4080 } 4081 4082 return mask; 4083 } 4084 4085 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4086 { 4087 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4088 4089 return __ieee80211_get_radio_mask(sdata); 4090 } 4091 4092 static bool 4093 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4094 { 4095 if (radio_idx < 0) 4096 return true; 4097 4098 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4099 } 4100 4101 static int 4102 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4103 struct iface_combination_params *params, 4104 const struct cfg80211_chan_def *chandef, 4105 struct ieee80211_sub_if_data *sdata) 4106 { 4107 struct ieee80211_sub_if_data *sdata_iter; 4108 struct ieee80211_chanctx *ctx; 4109 int total = !!sdata; 4110 4111 list_for_each_entry(ctx, &local->chanctx_list, list) { 4112 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4113 continue; 4114 4115 if (params->radio_idx >= 0 && 4116 ctx->conf.radio_idx != params->radio_idx) 4117 continue; 4118 4119 params->radar_detect |= 4120 ieee80211_chanctx_radar_detect(local, ctx); 4121 4122 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4123 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4124 continue; 4125 4126 params->num_different_channels++; 4127 } 4128 4129 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4130 struct wireless_dev *wdev_iter; 4131 4132 wdev_iter = &sdata_iter->wdev; 4133 4134 if (sdata_iter == sdata || 4135 !ieee80211_sdata_running(sdata_iter) || 4136 cfg80211_iftype_allowed(local->hw.wiphy, 4137 wdev_iter->iftype, 0, 1)) 4138 continue; 4139 4140 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4141 continue; 4142 4143 params->iftype_num[wdev_iter->iftype]++; 4144 total++; 4145 } 4146 4147 return total; 4148 } 4149 4150 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4151 const struct cfg80211_chan_def *chandef, 4152 enum ieee80211_chanctx_mode chanmode, 4153 u8 radar_detect, int radio_idx) 4154 { 4155 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4156 struct ieee80211_local *local = sdata->local; 4157 enum nl80211_iftype iftype = sdata->wdev.iftype; 4158 struct iface_combination_params params = { 4159 .radar_detect = radar_detect, 4160 .radio_idx = radio_idx, 4161 }; 4162 int total; 4163 4164 lockdep_assert_wiphy(local->hw.wiphy); 4165 4166 if (WARN_ON(hweight32(radar_detect) > 1)) 4167 return -EINVAL; 4168 4169 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4170 !chandef->chan)) 4171 return -EINVAL; 4172 4173 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4174 return -EINVAL; 4175 4176 if (sdata->vif.type == NL80211_IFTYPE_AP || 4177 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4178 /* 4179 * always passing this is harmless, since it'll be the 4180 * same value that cfg80211 finds if it finds the same 4181 * interface ... and that's always allowed 4182 */ 4183 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4184 } 4185 4186 /* Always allow software iftypes */ 4187 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4188 if (radar_detect) 4189 return -EINVAL; 4190 return 0; 4191 } 4192 4193 if (chandef) 4194 params.num_different_channels = 1; 4195 4196 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4197 params.iftype_num[iftype] = 1; 4198 4199 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4200 shared ? chandef : NULL, 4201 sdata); 4202 if (total == 1 && !params.radar_detect) 4203 return 0; 4204 4205 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4206 } 4207 4208 static void 4209 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4210 void *data) 4211 { 4212 u32 *max_num_different_channels = data; 4213 4214 *max_num_different_channels = max(*max_num_different_channels, 4215 c->num_different_channels); 4216 } 4217 4218 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4219 { 4220 u32 max_num_different_channels = 1; 4221 int err; 4222 struct iface_combination_params params = { 4223 .radio_idx = radio_idx, 4224 }; 4225 4226 lockdep_assert_wiphy(local->hw.wiphy); 4227 4228 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4229 4230 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4231 ieee80211_iter_max_chans, 4232 &max_num_different_channels); 4233 if (err < 0) 4234 return err; 4235 4236 return max_num_different_channels; 4237 } 4238 4239 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4240 struct ieee80211_sta_s1g_cap *caps, 4241 struct sk_buff *skb) 4242 { 4243 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4244 struct ieee80211_s1g_cap s1g_capab; 4245 u8 *pos; 4246 int i; 4247 4248 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4249 return; 4250 4251 if (!caps->s1g) 4252 return; 4253 4254 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4255 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4256 4257 /* override the capability info */ 4258 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4259 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4260 4261 s1g_capab.capab_info[i] &= ~mask; 4262 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4263 } 4264 4265 /* then MCS and NSS set */ 4266 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4267 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4268 4269 s1g_capab.supp_mcs_nss[i] &= ~mask; 4270 s1g_capab.supp_mcs_nss[i] |= 4271 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4272 } 4273 4274 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4275 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4276 *pos++ = sizeof(s1g_capab); 4277 4278 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4279 } 4280 4281 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4282 struct sk_buff *skb) 4283 { 4284 u8 *pos = skb_put(skb, 3); 4285 4286 *pos++ = WLAN_EID_AID_REQUEST; 4287 *pos++ = 1; 4288 *pos++ = 0; 4289 } 4290 4291 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4292 { 4293 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4294 *buf++ = 7; /* len */ 4295 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4296 *buf++ = 0x50; 4297 *buf++ = 0xf2; 4298 *buf++ = 2; /* WME */ 4299 *buf++ = 0; /* WME info */ 4300 *buf++ = 1; /* WME ver */ 4301 *buf++ = qosinfo; /* U-APSD no in use */ 4302 4303 return buf; 4304 } 4305 4306 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4307 unsigned long *frame_cnt, 4308 unsigned long *byte_cnt) 4309 { 4310 struct txq_info *txqi = to_txq_info(txq); 4311 u32 frag_cnt = 0, frag_bytes = 0; 4312 struct sk_buff *skb; 4313 4314 skb_queue_walk(&txqi->frags, skb) { 4315 frag_cnt++; 4316 frag_bytes += skb->len; 4317 } 4318 4319 if (frame_cnt) 4320 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4321 4322 if (byte_cnt) 4323 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4324 } 4325 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4326 4327 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4328 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4329 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4330 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4331 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4332 }; 4333 4334 u16 ieee80211_encode_usf(int listen_interval) 4335 { 4336 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4337 u16 ui, usf = 0; 4338 4339 /* find greatest USF */ 4340 while (usf < IEEE80211_MAX_USF) { 4341 if (listen_interval % listen_int_usf[usf + 1]) 4342 break; 4343 usf += 1; 4344 } 4345 ui = listen_interval / listen_int_usf[usf]; 4346 4347 /* error if there is a remainder. Should've been checked by user */ 4348 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4349 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4350 FIELD_PREP(LISTEN_INT_UI, ui); 4351 4352 return (u16) listen_interval; 4353 } 4354 4355 /* this may return more than ieee80211_put_eht_cap() will need */ 4356 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4357 { 4358 const struct ieee80211_sta_he_cap *he_cap; 4359 const struct ieee80211_sta_eht_cap *eht_cap; 4360 struct ieee80211_supported_band *sband; 4361 bool is_ap; 4362 u8 n; 4363 4364 sband = ieee80211_get_sband(sdata); 4365 if (!sband) 4366 return 0; 4367 4368 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4369 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4370 if (!he_cap || !eht_cap) 4371 return 0; 4372 4373 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4374 4375 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4376 &eht_cap->eht_cap_elem, 4377 is_ap); 4378 return 2 + 1 + 4379 sizeof(eht_cap->eht_cap_elem) + n + 4380 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4381 eht_cap->eht_cap_elem.phy_cap_info); 4382 return 0; 4383 } 4384 4385 int ieee80211_put_eht_cap(struct sk_buff *skb, 4386 struct ieee80211_sub_if_data *sdata, 4387 const struct ieee80211_supported_band *sband, 4388 const struct ieee80211_conn_settings *conn) 4389 { 4390 const struct ieee80211_sta_he_cap *he_cap = 4391 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4392 const struct ieee80211_sta_eht_cap *eht_cap = 4393 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4394 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4395 struct ieee80211_eht_cap_elem_fixed fixed; 4396 struct ieee80211_he_cap_elem he; 4397 u8 mcs_nss_len, ppet_len; 4398 u8 orig_mcs_nss_len; 4399 u8 ie_len; 4400 4401 if (!conn) 4402 conn = &ieee80211_conn_settings_unlimited; 4403 4404 /* Make sure we have place for the IE */ 4405 if (!he_cap || !eht_cap) 4406 return 0; 4407 4408 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4409 &eht_cap->eht_cap_elem, 4410 for_ap); 4411 4412 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4413 4414 fixed = eht_cap->eht_cap_elem; 4415 4416 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4417 fixed.phy_cap_info[6] &= 4418 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4419 4420 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4421 fixed.phy_cap_info[1] &= 4422 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4423 fixed.phy_cap_info[2] &= 4424 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4425 fixed.phy_cap_info[6] &= 4426 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4427 } 4428 4429 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4430 fixed.phy_cap_info[0] &= 4431 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4432 fixed.phy_cap_info[1] &= 4433 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4434 fixed.phy_cap_info[2] &= 4435 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4436 fixed.phy_cap_info[6] &= 4437 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4438 } 4439 4440 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4441 fixed.phy_cap_info[0] &= 4442 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4443 4444 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4445 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4446 fixed.phy_cap_info); 4447 4448 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4449 if (skb_tailroom(skb) < ie_len) 4450 return -ENOBUFS; 4451 4452 skb_put_u8(skb, WLAN_EID_EXTENSION); 4453 skb_put_u8(skb, ie_len - 2); 4454 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4455 skb_put_data(skb, &fixed, sizeof(fixed)); 4456 4457 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4458 /* 4459 * If the (non-AP) STA became 20 MHz only, then convert from 4460 * <=80 to 20-MHz-only format, where MCSes are indicated in 4461 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4462 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4463 */ 4464 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4465 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4466 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4467 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4468 } else { 4469 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4470 } 4471 4472 if (ppet_len) 4473 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4474 4475 return 0; 4476 } 4477 4478 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4479 { 4480 static const char * const modes[] = { 4481 [IEEE80211_CONN_MODE_S1G] = "S1G", 4482 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4483 [IEEE80211_CONN_MODE_HT] = "HT", 4484 [IEEE80211_CONN_MODE_VHT] = "VHT", 4485 [IEEE80211_CONN_MODE_HE] = "HE", 4486 [IEEE80211_CONN_MODE_EHT] = "EHT", 4487 }; 4488 4489 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4490 return "<out of range>"; 4491 4492 return modes[mode] ?: "<missing string>"; 4493 } 4494 4495 enum ieee80211_conn_bw_limit 4496 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4497 { 4498 switch (chandef->width) { 4499 case NL80211_CHAN_WIDTH_20_NOHT: 4500 case NL80211_CHAN_WIDTH_20: 4501 return IEEE80211_CONN_BW_LIMIT_20; 4502 case NL80211_CHAN_WIDTH_40: 4503 return IEEE80211_CONN_BW_LIMIT_40; 4504 case NL80211_CHAN_WIDTH_80: 4505 return IEEE80211_CONN_BW_LIMIT_80; 4506 case NL80211_CHAN_WIDTH_80P80: 4507 case NL80211_CHAN_WIDTH_160: 4508 return IEEE80211_CONN_BW_LIMIT_160; 4509 case NL80211_CHAN_WIDTH_320: 4510 return IEEE80211_CONN_BW_LIMIT_320; 4511 default: 4512 WARN(1, "unhandled chandef width %d\n", chandef->width); 4513 return IEEE80211_CONN_BW_LIMIT_20; 4514 } 4515 } 4516 4517 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4518 { 4519 for (int i = 0; i < 2; i++) { 4520 tpe->max_local[i].valid = false; 4521 memset(tpe->max_local[i].power, 4522 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4523 sizeof(tpe->max_local[i].power)); 4524 4525 tpe->max_reg_client[i].valid = false; 4526 memset(tpe->max_reg_client[i].power, 4527 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4528 sizeof(tpe->max_reg_client[i].power)); 4529 4530 tpe->psd_local[i].valid = false; 4531 memset(tpe->psd_local[i].power, 4532 IEEE80211_TPE_PSD_NO_LIMIT, 4533 sizeof(tpe->psd_local[i].power)); 4534 4535 tpe->psd_reg_client[i].valid = false; 4536 memset(tpe->psd_reg_client[i].power, 4537 IEEE80211_TPE_PSD_NO_LIMIT, 4538 sizeof(tpe->psd_reg_client[i].power)); 4539 } 4540 } 4541 4542 bool ieee80211_vif_nan_started(struct ieee80211_vif *vif) 4543 { 4544 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 4545 4546 return vif->type == NL80211_IFTYPE_NAN && sdata->u.nan.started; 4547 } 4548 EXPORT_SYMBOL_GPL(ieee80211_vif_nan_started); 4549