1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 trace_stop_queue(local, queue, reason); 506 507 if (WARN_ON(queue >= hw->queues)) 508 return; 509 510 if (!refcounted) 511 local->q_stop_reasons[queue][reason] = 1; 512 else 513 local->q_stop_reasons[queue][reason]++; 514 515 set_bit(reason, &local->queue_stop_reasons[queue]); 516 } 517 518 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 519 enum queue_stop_reason reason, 520 bool refcounted) 521 { 522 struct ieee80211_local *local = hw_to_local(hw); 523 unsigned long flags; 524 525 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 526 __ieee80211_stop_queue(hw, queue, reason, refcounted); 527 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 528 } 529 530 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 531 { 532 ieee80211_stop_queue_by_reason(hw, queue, 533 IEEE80211_QUEUE_STOP_REASON_DRIVER, 534 false); 535 } 536 EXPORT_SYMBOL(ieee80211_stop_queue); 537 538 void ieee80211_add_pending_skb(struct ieee80211_local *local, 539 struct sk_buff *skb) 540 { 541 struct ieee80211_hw *hw = &local->hw; 542 unsigned long flags; 543 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 544 int queue = info->hw_queue; 545 546 if (WARN_ON(!info->control.vif)) { 547 ieee80211_free_txskb(&local->hw, skb); 548 return; 549 } 550 551 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 552 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 553 false); 554 __skb_queue_tail(&local->pending[queue], skb); 555 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 556 false, &flags); 557 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 558 } 559 560 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 561 struct sk_buff_head *skbs) 562 { 563 struct ieee80211_hw *hw = &local->hw; 564 struct sk_buff *skb; 565 unsigned long flags; 566 int queue, i; 567 568 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 569 while ((skb = skb_dequeue(skbs))) { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 572 if (WARN_ON(!info->control.vif)) { 573 ieee80211_free_txskb(&local->hw, skb); 574 continue; 575 } 576 577 queue = info->hw_queue; 578 579 __ieee80211_stop_queue(hw, queue, 580 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 581 false); 582 583 __skb_queue_tail(&local->pending[queue], skb); 584 } 585 586 for (i = 0; i < hw->queues; i++) 587 __ieee80211_wake_queue(hw, i, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 594 unsigned long queues, 595 enum queue_stop_reason reason, 596 bool refcounted) 597 { 598 struct ieee80211_local *local = hw_to_local(hw); 599 unsigned long flags; 600 int i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 604 for_each_set_bit(i, &queues, hw->queues) 605 __ieee80211_stop_queue(hw, i, reason, refcounted); 606 607 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 608 } 609 610 void ieee80211_stop_queues(struct ieee80211_hw *hw) 611 { 612 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 613 IEEE80211_QUEUE_STOP_REASON_DRIVER, 614 false); 615 } 616 EXPORT_SYMBOL(ieee80211_stop_queues); 617 618 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 619 { 620 struct ieee80211_local *local = hw_to_local(hw); 621 unsigned long flags; 622 int ret; 623 624 if (WARN_ON(queue >= hw->queues)) 625 return true; 626 627 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 628 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 629 &local->queue_stop_reasons[queue]); 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(ieee80211_queue_stopped); 634 635 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 636 unsigned long queues, 637 enum queue_stop_reason reason, 638 bool refcounted) 639 { 640 struct ieee80211_local *local = hw_to_local(hw); 641 unsigned long flags; 642 int i; 643 644 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 645 646 for_each_set_bit(i, &queues, hw->queues) 647 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 648 649 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 650 } 651 652 void ieee80211_wake_queues(struct ieee80211_hw *hw) 653 { 654 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 655 IEEE80211_QUEUE_STOP_REASON_DRIVER, 656 false); 657 } 658 EXPORT_SYMBOL(ieee80211_wake_queues); 659 660 static unsigned int 661 ieee80211_get_vif_queues(struct ieee80211_local *local, 662 struct ieee80211_sub_if_data *sdata) 663 { 664 unsigned int queues; 665 666 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 667 int ac; 668 669 queues = 0; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 672 queues |= BIT(sdata->vif.hw_queue[ac]); 673 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 674 queues |= BIT(sdata->vif.cab_queue); 675 } else { 676 /* all queues */ 677 queues = BIT(local->hw.queues) - 1; 678 } 679 680 return queues; 681 } 682 683 void __ieee80211_flush_queues(struct ieee80211_local *local, 684 struct ieee80211_sub_if_data *sdata, 685 unsigned int queues, bool drop) 686 { 687 if (!local->ops->flush) 688 return; 689 690 /* 691 * If no queue was set, or if the HW doesn't support 692 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 693 */ 694 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 695 queues = ieee80211_get_vif_queues(local, sdata); 696 697 ieee80211_stop_queues_by_reason(&local->hw, queues, 698 IEEE80211_QUEUE_STOP_REASON_FLUSH, 699 false); 700 701 if (drop) { 702 struct sta_info *sta; 703 704 /* Purge the queues, so the frames on them won't be 705 * sent during __ieee80211_wake_queue() 706 */ 707 list_for_each_entry(sta, &local->sta_list, list) { 708 if (sdata != sta->sdata) 709 continue; 710 ieee80211_purge_sta_txqs(sta); 711 } 712 } 713 714 drv_flush(local, sdata, queues, drop); 715 716 ieee80211_wake_queues_by_reason(&local->hw, queues, 717 IEEE80211_QUEUE_STOP_REASON_FLUSH, 718 false); 719 } 720 721 void ieee80211_flush_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, bool drop) 723 { 724 __ieee80211_flush_queues(local, sdata, 0, drop); 725 } 726 727 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 728 struct ieee80211_sub_if_data *sdata, 729 enum queue_stop_reason reason) 730 { 731 ieee80211_stop_queues_by_reason(&local->hw, 732 ieee80211_get_vif_queues(local, sdata), 733 reason, true); 734 } 735 736 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 737 struct ieee80211_sub_if_data *sdata, 738 enum queue_stop_reason reason) 739 { 740 ieee80211_wake_queues_by_reason(&local->hw, 741 ieee80211_get_vif_queues(local, sdata), 742 reason, true); 743 } 744 745 static void __iterate_interfaces(struct ieee80211_local *local, 746 u32 iter_flags, 747 void (*iterator)(void *data, u8 *mac, 748 struct ieee80211_vif *vif), 749 void *data) 750 { 751 struct ieee80211_sub_if_data *sdata; 752 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 753 754 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 755 switch (sdata->vif.type) { 756 case NL80211_IFTYPE_MONITOR: 757 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 758 continue; 759 break; 760 case NL80211_IFTYPE_AP_VLAN: 761 continue; 762 default: 763 break; 764 } 765 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 766 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 767 continue; 768 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 769 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 770 continue; 771 if (ieee80211_sdata_running(sdata) || !active_only) 772 iterator(data, sdata->vif.addr, 773 &sdata->vif); 774 } 775 776 sdata = rcu_dereference_check(local->monitor_sdata, 777 lockdep_is_held(&local->iflist_mtx) || 778 lockdep_is_held(&local->hw.wiphy->mtx)); 779 if (sdata && 780 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 781 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 782 iterator(data, sdata->vif.addr, &sdata->vif); 783 } 784 785 void ieee80211_iterate_interfaces( 786 struct ieee80211_hw *hw, u32 iter_flags, 787 void (*iterator)(void *data, u8 *mac, 788 struct ieee80211_vif *vif), 789 void *data) 790 { 791 struct ieee80211_local *local = hw_to_local(hw); 792 793 mutex_lock(&local->iflist_mtx); 794 __iterate_interfaces(local, iter_flags, iterator, data); 795 mutex_unlock(&local->iflist_mtx); 796 } 797 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 798 799 void ieee80211_iterate_active_interfaces_atomic( 800 struct ieee80211_hw *hw, u32 iter_flags, 801 void (*iterator)(void *data, u8 *mac, 802 struct ieee80211_vif *vif), 803 void *data) 804 { 805 struct ieee80211_local *local = hw_to_local(hw); 806 807 rcu_read_lock(); 808 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 809 iterator, data); 810 rcu_read_unlock(); 811 } 812 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 813 814 void ieee80211_iterate_active_interfaces_mtx( 815 struct ieee80211_hw *hw, u32 iter_flags, 816 void (*iterator)(void *data, u8 *mac, 817 struct ieee80211_vif *vif), 818 void *data) 819 { 820 struct ieee80211_local *local = hw_to_local(hw); 821 822 lockdep_assert_wiphy(hw->wiphy); 823 824 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 825 iterator, data); 826 } 827 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 828 829 static void __iterate_stations(struct ieee80211_local *local, 830 void (*iterator)(void *data, 831 struct ieee80211_sta *sta), 832 void *data) 833 { 834 struct sta_info *sta; 835 836 list_for_each_entry_rcu(sta, &local->sta_list, list) { 837 if (!sta->uploaded) 838 continue; 839 840 iterator(data, &sta->sta); 841 } 842 } 843 844 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 845 void (*iterator)(void *data, 846 struct ieee80211_sta *sta), 847 void *data) 848 { 849 struct ieee80211_local *local = hw_to_local(hw); 850 851 rcu_read_lock(); 852 __iterate_stations(local, iterator, data); 853 rcu_read_unlock(); 854 } 855 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 856 857 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 858 { 859 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 860 861 if (!ieee80211_sdata_running(sdata) || 862 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 863 return NULL; 864 return &sdata->vif; 865 } 866 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 867 868 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 869 { 870 if (!vif) 871 return NULL; 872 873 return &vif_to_sdata(vif)->wdev; 874 } 875 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 876 877 /* 878 * Nothing should have been stuffed into the workqueue during 879 * the suspend->resume cycle. Since we can't check each caller 880 * of this function if we are already quiescing / suspended, 881 * check here and don't WARN since this can actually happen when 882 * the rx path (for example) is racing against __ieee80211_suspend 883 * and suspending / quiescing was set after the rx path checked 884 * them. 885 */ 886 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 887 { 888 if (local->quiescing || (local->suspended && !local->resuming)) { 889 pr_warn("queueing ieee80211 work while going to suspend\n"); 890 return false; 891 } 892 893 return true; 894 } 895 896 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 897 { 898 struct ieee80211_local *local = hw_to_local(hw); 899 900 if (!ieee80211_can_queue_work(local)) 901 return; 902 903 queue_work(local->workqueue, work); 904 } 905 EXPORT_SYMBOL(ieee80211_queue_work); 906 907 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 908 struct delayed_work *dwork, 909 unsigned long delay) 910 { 911 struct ieee80211_local *local = hw_to_local(hw); 912 913 if (!ieee80211_can_queue_work(local)) 914 return; 915 916 queue_delayed_work(local->workqueue, dwork, delay); 917 } 918 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 919 920 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 921 struct ieee80211_tx_queue_params 922 *qparam, int ac) 923 { 924 struct ieee80211_chanctx_conf *chanctx_conf; 925 const struct ieee80211_reg_rule *rrule; 926 const struct ieee80211_wmm_ac *wmm_ac; 927 u16 center_freq = 0; 928 929 if (sdata->vif.type != NL80211_IFTYPE_AP && 930 sdata->vif.type != NL80211_IFTYPE_STATION) 931 return; 932 933 rcu_read_lock(); 934 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 935 if (chanctx_conf) 936 center_freq = chanctx_conf->def.chan->center_freq; 937 938 if (!center_freq) { 939 rcu_read_unlock(); 940 return; 941 } 942 943 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 944 945 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 946 rcu_read_unlock(); 947 return; 948 } 949 950 if (sdata->vif.type == NL80211_IFTYPE_AP) 951 wmm_ac = &rrule->wmm_rule.ap[ac]; 952 else 953 wmm_ac = &rrule->wmm_rule.client[ac]; 954 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 955 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 956 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 957 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 958 rcu_read_unlock(); 959 } 960 961 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 962 bool bss_notify, bool enable_qos) 963 { 964 struct ieee80211_sub_if_data *sdata = link->sdata; 965 struct ieee80211_local *local = sdata->local; 966 struct ieee80211_tx_queue_params qparam; 967 struct ieee80211_chanctx_conf *chanctx_conf; 968 int ac; 969 bool use_11b; 970 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 971 int aCWmin, aCWmax; 972 973 if (!local->ops->conf_tx) 974 return; 975 976 if (local->hw.queues < IEEE80211_NUM_ACS) 977 return; 978 979 memset(&qparam, 0, sizeof(qparam)); 980 981 rcu_read_lock(); 982 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 983 use_11b = (chanctx_conf && 984 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 985 !link->operating_11g_mode; 986 rcu_read_unlock(); 987 988 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 989 990 /* Set defaults according to 802.11-2007 Table 7-37 */ 991 aCWmax = 1023; 992 if (use_11b) 993 aCWmin = 31; 994 else 995 aCWmin = 15; 996 997 /* Confiure old 802.11b/g medium access rules. */ 998 qparam.cw_max = aCWmax; 999 qparam.cw_min = aCWmin; 1000 qparam.txop = 0; 1001 qparam.aifs = 2; 1002 1003 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1004 /* Update if QoS is enabled. */ 1005 if (enable_qos) { 1006 switch (ac) { 1007 case IEEE80211_AC_BK: 1008 qparam.cw_max = aCWmax; 1009 qparam.cw_min = aCWmin; 1010 qparam.txop = 0; 1011 if (is_ocb) 1012 qparam.aifs = 9; 1013 else 1014 qparam.aifs = 7; 1015 break; 1016 /* never happens but let's not leave undefined */ 1017 default: 1018 case IEEE80211_AC_BE: 1019 qparam.cw_max = aCWmax; 1020 qparam.cw_min = aCWmin; 1021 qparam.txop = 0; 1022 if (is_ocb) 1023 qparam.aifs = 6; 1024 else 1025 qparam.aifs = 3; 1026 break; 1027 case IEEE80211_AC_VI: 1028 qparam.cw_max = aCWmin; 1029 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1030 if (is_ocb) 1031 qparam.txop = 0; 1032 else if (use_11b) 1033 qparam.txop = 6016/32; 1034 else 1035 qparam.txop = 3008/32; 1036 1037 if (is_ocb) 1038 qparam.aifs = 3; 1039 else 1040 qparam.aifs = 2; 1041 break; 1042 case IEEE80211_AC_VO: 1043 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1044 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1045 if (is_ocb) 1046 qparam.txop = 0; 1047 else if (use_11b) 1048 qparam.txop = 3264/32; 1049 else 1050 qparam.txop = 1504/32; 1051 qparam.aifs = 2; 1052 break; 1053 } 1054 } 1055 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1056 1057 qparam.uapsd = false; 1058 1059 link->tx_conf[ac] = qparam; 1060 drv_conf_tx(local, link, ac, &qparam); 1061 } 1062 1063 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1064 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1065 sdata->vif.type != NL80211_IFTYPE_NAN) { 1066 link->conf->qos = enable_qos; 1067 if (bss_notify) 1068 ieee80211_link_info_change_notify(sdata, link, 1069 BSS_CHANGED_QOS); 1070 } 1071 } 1072 1073 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1074 u16 transaction, u16 auth_alg, u16 status, 1075 const u8 *extra, size_t extra_len, const u8 *da, 1076 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1077 u32 tx_flags) 1078 { 1079 struct ieee80211_local *local = sdata->local; 1080 struct sk_buff *skb; 1081 struct ieee80211_mgmt *mgmt; 1082 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1083 struct { 1084 u8 id; 1085 u8 len; 1086 u8 ext_id; 1087 struct ieee80211_multi_link_elem ml; 1088 struct ieee80211_mle_basic_common_info basic; 1089 } __packed mle = { 1090 .id = WLAN_EID_EXTENSION, 1091 .len = sizeof(mle) - 2, 1092 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1093 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1094 .basic.len = sizeof(mle.basic), 1095 }; 1096 int err; 1097 1098 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1099 1100 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1101 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1102 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1103 multi_link * sizeof(mle)); 1104 if (!skb) 1105 return; 1106 1107 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1108 1109 mgmt = skb_put_zero(skb, 24 + 6); 1110 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1111 IEEE80211_STYPE_AUTH); 1112 memcpy(mgmt->da, da, ETH_ALEN); 1113 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1114 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1115 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1116 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1117 mgmt->u.auth.status_code = cpu_to_le16(status); 1118 if (extra) 1119 skb_put_data(skb, extra, extra_len); 1120 if (multi_link) 1121 skb_put_data(skb, &mle, sizeof(mle)); 1122 1123 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1124 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1125 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1126 if (WARN_ON(err)) { 1127 kfree_skb(skb); 1128 return; 1129 } 1130 } 1131 1132 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1133 tx_flags; 1134 ieee80211_tx_skb(sdata, skb); 1135 } 1136 1137 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1138 const u8 *da, const u8 *bssid, 1139 u16 stype, u16 reason, 1140 bool send_frame, u8 *frame_buf) 1141 { 1142 struct ieee80211_local *local = sdata->local; 1143 struct sk_buff *skb; 1144 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1145 1146 /* build frame */ 1147 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1148 mgmt->duration = 0; /* initialize only */ 1149 mgmt->seq_ctrl = 0; /* initialize only */ 1150 memcpy(mgmt->da, da, ETH_ALEN); 1151 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1152 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1153 /* u.deauth.reason_code == u.disassoc.reason_code */ 1154 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1155 1156 if (send_frame) { 1157 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1158 IEEE80211_DEAUTH_FRAME_LEN); 1159 if (!skb) 1160 return; 1161 1162 skb_reserve(skb, local->hw.extra_tx_headroom); 1163 1164 /* copy in frame */ 1165 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1166 1167 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1168 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1169 IEEE80211_SKB_CB(skb)->flags |= 1170 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1171 1172 ieee80211_tx_skb(sdata, skb); 1173 } 1174 } 1175 1176 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1177 struct ieee80211_sta_s1g_cap *s1g_cap) 1178 { 1179 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1180 return -ENOBUFS; 1181 1182 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1183 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1184 1185 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1186 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1187 1188 return 0; 1189 } 1190 1191 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1192 struct ieee80211_sub_if_data *sdata, 1193 const u8 *ie, size_t ie_len, 1194 size_t *offset, 1195 enum nl80211_band band, 1196 u32 rate_mask, 1197 struct cfg80211_chan_def *chandef, 1198 u32 flags) 1199 { 1200 struct ieee80211_local *local = sdata->local; 1201 struct ieee80211_supported_band *sband; 1202 int i, err; 1203 size_t noffset; 1204 u32 rate_flags; 1205 bool have_80mhz = false; 1206 1207 *offset = 0; 1208 1209 sband = local->hw.wiphy->bands[band]; 1210 if (WARN_ON_ONCE(!sband)) 1211 return 0; 1212 1213 rate_flags = ieee80211_chandef_rate_flags(chandef); 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1220 ~rate_mask, WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1242 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates, rate_flags; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 rate_flags = 1530 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1531 1532 num_rates = sband->n_bitrates; 1533 supp_rates = 0; 1534 for (i = 0; i < elems->supp_rates_len + 1535 elems->ext_supp_rates_len; i++) { 1536 u8 rate = 0; 1537 int own_rate; 1538 bool is_basic; 1539 if (i < elems->supp_rates_len) 1540 rate = elems->supp_rates[i]; 1541 else if (elems->ext_supp_rates) 1542 rate = elems->ext_supp_rates 1543 [i - elems->supp_rates_len]; 1544 own_rate = 5 * (rate & 0x7f); 1545 is_basic = !!(rate & 0x80); 1546 1547 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1548 continue; 1549 1550 for (j = 0; j < num_rates; j++) { 1551 int brate; 1552 if ((rate_flags & sband->bitrates[j].flags) 1553 != rate_flags) 1554 continue; 1555 1556 brate = sband->bitrates[j].bitrate; 1557 1558 if (brate == own_rate) { 1559 supp_rates |= BIT(j); 1560 if (basic_rates && is_basic) 1561 *basic_rates |= BIT(j); 1562 } 1563 } 1564 } 1565 return supp_rates; 1566 } 1567 1568 void ieee80211_stop_device(struct ieee80211_local *local) 1569 { 1570 ieee80211_handle_queued_frames(local); 1571 1572 ieee80211_led_radio(local, false); 1573 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1574 1575 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1576 1577 flush_workqueue(local->workqueue); 1578 wiphy_work_flush(local->hw.wiphy, NULL); 1579 drv_stop(local); 1580 } 1581 1582 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1583 bool aborted) 1584 { 1585 /* It's possible that we don't handle the scan completion in 1586 * time during suspend, so if it's still marked as completed 1587 * here, queue the work and flush it to clean things up. 1588 * Instead of calling the worker function directly here, we 1589 * really queue it to avoid potential races with other flows 1590 * scheduling the same work. 1591 */ 1592 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1593 /* If coming from reconfiguration failure, abort the scan so 1594 * we don't attempt to continue a partial HW scan - which is 1595 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1596 * completed scan, and a 5 GHz portion is still pending. 1597 */ 1598 if (aborted) 1599 set_bit(SCAN_ABORTED, &local->scanning); 1600 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1601 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1602 } 1603 } 1604 1605 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1606 { 1607 struct ieee80211_sub_if_data *sdata; 1608 struct ieee80211_chanctx *ctx; 1609 1610 lockdep_assert_wiphy(local->hw.wiphy); 1611 1612 /* 1613 * We get here if during resume the device can't be restarted properly. 1614 * We might also get here if this happens during HW reset, which is a 1615 * slightly different situation and we need to drop all connections in 1616 * the latter case. 1617 * 1618 * Ask cfg80211 to turn off all interfaces, this will result in more 1619 * warnings but at least we'll then get into a clean stopped state. 1620 */ 1621 1622 local->resuming = false; 1623 local->suspended = false; 1624 local->in_reconfig = false; 1625 local->reconfig_failure = true; 1626 1627 ieee80211_flush_completed_scan(local, true); 1628 1629 /* scheduled scan clearly can't be running any more, but tell 1630 * cfg80211 and clear local state 1631 */ 1632 ieee80211_sched_scan_end(local); 1633 1634 list_for_each_entry(sdata, &local->interfaces, list) 1635 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1636 1637 /* Mark channel contexts as not being in the driver any more to avoid 1638 * removing them from the driver during the shutdown process... 1639 */ 1640 list_for_each_entry(ctx, &local->chanctx_list, list) 1641 ctx->driver_present = false; 1642 } 1643 1644 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1645 struct ieee80211_sub_if_data *sdata, 1646 struct ieee80211_link_data *link) 1647 { 1648 struct ieee80211_chanctx_conf *conf; 1649 struct ieee80211_chanctx *ctx; 1650 1651 lockdep_assert_wiphy(local->hw.wiphy); 1652 1653 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1654 lockdep_is_held(&local->hw.wiphy->mtx)); 1655 if (conf) { 1656 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1657 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1658 } 1659 } 1660 1661 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1662 { 1663 struct ieee80211_local *local = sdata->local; 1664 struct sta_info *sta; 1665 1666 lockdep_assert_wiphy(local->hw.wiphy); 1667 1668 /* add STAs back */ 1669 list_for_each_entry(sta, &local->sta_list, list) { 1670 enum ieee80211_sta_state state; 1671 1672 if (!sta->uploaded || sta->sdata != sdata) 1673 continue; 1674 1675 for (state = IEEE80211_STA_NOTEXIST; 1676 state < sta->sta_state; state++) 1677 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1678 state + 1)); 1679 } 1680 } 1681 1682 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1683 { 1684 struct cfg80211_nan_func *func, **funcs; 1685 int res, id, i = 0; 1686 1687 res = drv_start_nan(sdata->local, sdata, 1688 &sdata->u.nan.conf); 1689 if (WARN_ON(res)) 1690 return res; 1691 1692 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1693 sizeof(*funcs), 1694 GFP_KERNEL); 1695 if (!funcs) 1696 return -ENOMEM; 1697 1698 /* Add all the functions: 1699 * This is a little bit ugly. We need to call a potentially sleeping 1700 * callback for each NAN function, so we can't hold the spinlock. 1701 */ 1702 spin_lock_bh(&sdata->u.nan.func_lock); 1703 1704 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1705 funcs[i++] = func; 1706 1707 spin_unlock_bh(&sdata->u.nan.func_lock); 1708 1709 for (i = 0; funcs[i]; i++) { 1710 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1711 if (WARN_ON(res)) 1712 ieee80211_nan_func_terminated(&sdata->vif, 1713 funcs[i]->instance_id, 1714 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1715 GFP_KERNEL); 1716 } 1717 1718 kfree(funcs); 1719 1720 return 0; 1721 } 1722 1723 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1724 struct ieee80211_sub_if_data *sdata, 1725 u64 changed) 1726 { 1727 int link_id; 1728 1729 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1730 struct ieee80211_link_data *link; 1731 1732 if (!(sdata->vif.active_links & BIT(link_id))) 1733 continue; 1734 1735 link = sdata_dereference(sdata->link[link_id], sdata); 1736 if (!link) 1737 continue; 1738 1739 if (rcu_access_pointer(link->u.ap.beacon)) 1740 drv_start_ap(local, sdata, link->conf); 1741 1742 if (!link->conf->enable_beacon) 1743 continue; 1744 1745 changed |= BSS_CHANGED_BEACON | 1746 BSS_CHANGED_BEACON_ENABLED; 1747 1748 ieee80211_link_info_change_notify(sdata, link, changed); 1749 } 1750 } 1751 1752 int ieee80211_reconfig(struct ieee80211_local *local) 1753 { 1754 struct ieee80211_hw *hw = &local->hw; 1755 struct ieee80211_sub_if_data *sdata; 1756 struct ieee80211_chanctx *ctx; 1757 struct sta_info *sta; 1758 int res, i; 1759 bool reconfig_due_to_wowlan = false; 1760 struct ieee80211_sub_if_data *sched_scan_sdata; 1761 struct cfg80211_sched_scan_request *sched_scan_req; 1762 bool sched_scan_stopped = false; 1763 bool suspended = local->suspended; 1764 bool in_reconfig = false; 1765 1766 lockdep_assert_wiphy(local->hw.wiphy); 1767 1768 /* nothing to do if HW shouldn't run */ 1769 if (!local->open_count) 1770 goto wake_up; 1771 1772 #ifdef CONFIG_PM 1773 if (suspended) 1774 local->resuming = true; 1775 1776 if (local->wowlan) { 1777 /* 1778 * In the wowlan case, both mac80211 and the device 1779 * are functional when the resume op is called, so 1780 * clear local->suspended so the device could operate 1781 * normally (e.g. pass rx frames). 1782 */ 1783 local->suspended = false; 1784 res = drv_resume(local); 1785 local->wowlan = false; 1786 if (res < 0) { 1787 local->resuming = false; 1788 return res; 1789 } 1790 if (res == 0) 1791 goto wake_up; 1792 WARN_ON(res > 1); 1793 /* 1794 * res is 1, which means the driver requested 1795 * to go through a regular reset on wakeup. 1796 * restore local->suspended in this case. 1797 */ 1798 reconfig_due_to_wowlan = true; 1799 local->suspended = true; 1800 } 1801 #endif 1802 1803 /* 1804 * In case of hw_restart during suspend (without wowlan), 1805 * cancel restart work, as we are reconfiguring the device 1806 * anyway. 1807 * Note that restart_work is scheduled on a frozen workqueue, 1808 * so we can't deadlock in this case. 1809 */ 1810 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1811 cancel_work_sync(&local->restart_work); 1812 1813 local->started = false; 1814 1815 /* 1816 * Upon resume hardware can sometimes be goofy due to 1817 * various platform / driver / bus issues, so restarting 1818 * the device may at times not work immediately. Propagate 1819 * the error. 1820 */ 1821 res = drv_start(local); 1822 if (res) { 1823 if (suspended) 1824 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1825 else 1826 WARN(1, "Hardware became unavailable during restart.\n"); 1827 ieee80211_handle_reconfig_failure(local); 1828 return res; 1829 } 1830 1831 /* setup fragmentation threshold */ 1832 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1833 1834 /* setup RTS threshold */ 1835 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1836 1837 /* reset coverage class */ 1838 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1839 1840 ieee80211_led_radio(local, true); 1841 ieee80211_mod_tpt_led_trig(local, 1842 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1843 1844 /* add interfaces */ 1845 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1846 if (sdata) { 1847 /* in HW restart it exists already */ 1848 WARN_ON(local->resuming); 1849 res = drv_add_interface(local, sdata); 1850 if (WARN_ON(res)) { 1851 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1852 synchronize_net(); 1853 kfree(sdata); 1854 } 1855 } 1856 1857 list_for_each_entry(sdata, &local->interfaces, list) { 1858 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1859 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1860 ieee80211_sdata_running(sdata)) { 1861 res = drv_add_interface(local, sdata); 1862 if (WARN_ON(res)) 1863 break; 1864 } 1865 } 1866 1867 /* If adding any of the interfaces failed above, roll back and 1868 * report failure. 1869 */ 1870 if (res) { 1871 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1872 list) 1873 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1874 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1875 ieee80211_sdata_running(sdata)) 1876 drv_remove_interface(local, sdata); 1877 ieee80211_handle_reconfig_failure(local); 1878 return res; 1879 } 1880 1881 /* add channel contexts */ 1882 list_for_each_entry(ctx, &local->chanctx_list, list) 1883 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1884 WARN_ON(drv_add_chanctx(local, ctx)); 1885 1886 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1887 if (sdata && ieee80211_sdata_running(sdata)) 1888 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1889 1890 /* reconfigure hardware */ 1891 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1892 IEEE80211_CONF_CHANGE_MONITOR | 1893 IEEE80211_CONF_CHANGE_PS | 1894 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1895 IEEE80211_CONF_CHANGE_IDLE); 1896 1897 ieee80211_configure_filter(local); 1898 1899 /* Finally also reconfigure all the BSS information */ 1900 list_for_each_entry(sdata, &local->interfaces, list) { 1901 /* common change flags for all interface types - link only */ 1902 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1903 BSS_CHANGED_ERP_PREAMBLE | 1904 BSS_CHANGED_ERP_SLOT | 1905 BSS_CHANGED_HT | 1906 BSS_CHANGED_BASIC_RATES | 1907 BSS_CHANGED_BEACON_INT | 1908 BSS_CHANGED_BSSID | 1909 BSS_CHANGED_CQM | 1910 BSS_CHANGED_QOS | 1911 BSS_CHANGED_TXPOWER | 1912 BSS_CHANGED_MCAST_RATE; 1913 struct ieee80211_link_data *link = NULL; 1914 unsigned int link_id; 1915 u32 active_links = 0; 1916 1917 if (!ieee80211_sdata_running(sdata)) 1918 continue; 1919 1920 if (ieee80211_vif_is_mld(&sdata->vif)) { 1921 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1922 [0] = &sdata->vif.bss_conf, 1923 }; 1924 1925 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1926 /* start with a single active link */ 1927 active_links = sdata->vif.active_links; 1928 link_id = ffs(active_links) - 1; 1929 sdata->vif.active_links = BIT(link_id); 1930 } 1931 1932 drv_change_vif_links(local, sdata, 0, 1933 sdata->vif.active_links, 1934 old); 1935 } 1936 1937 sdata->restart_active_links = active_links; 1938 1939 for (link_id = 0; 1940 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1941 link_id++) { 1942 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1943 continue; 1944 1945 link = sdata_dereference(sdata->link[link_id], sdata); 1946 if (!link) 1947 continue; 1948 1949 ieee80211_assign_chanctx(local, sdata, link); 1950 } 1951 1952 switch (sdata->vif.type) { 1953 case NL80211_IFTYPE_AP_VLAN: 1954 case NL80211_IFTYPE_MONITOR: 1955 break; 1956 case NL80211_IFTYPE_ADHOC: 1957 if (sdata->vif.cfg.ibss_joined) 1958 WARN_ON(drv_join_ibss(local, sdata)); 1959 fallthrough; 1960 default: 1961 ieee80211_reconfig_stations(sdata); 1962 fallthrough; 1963 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1964 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1965 drv_conf_tx(local, &sdata->deflink, i, 1966 &sdata->deflink.tx_conf[i]); 1967 break; 1968 } 1969 1970 if (sdata->vif.bss_conf.mu_mimo_owner) 1971 changed |= BSS_CHANGED_MU_GROUPS; 1972 1973 if (!ieee80211_vif_is_mld(&sdata->vif)) 1974 changed |= BSS_CHANGED_IDLE; 1975 1976 switch (sdata->vif.type) { 1977 case NL80211_IFTYPE_STATION: 1978 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1979 changed |= BSS_CHANGED_ASSOC | 1980 BSS_CHANGED_ARP_FILTER | 1981 BSS_CHANGED_PS; 1982 1983 /* Re-send beacon info report to the driver */ 1984 if (sdata->deflink.u.mgd.have_beacon) 1985 changed |= BSS_CHANGED_BEACON_INFO; 1986 1987 if (sdata->vif.bss_conf.max_idle_period || 1988 sdata->vif.bss_conf.protected_keep_alive) 1989 changed |= BSS_CHANGED_KEEP_ALIVE; 1990 1991 ieee80211_bss_info_change_notify(sdata, 1992 changed); 1993 } else if (!WARN_ON(!link)) { 1994 ieee80211_link_info_change_notify(sdata, link, 1995 changed); 1996 changed = BSS_CHANGED_ASSOC | 1997 BSS_CHANGED_IDLE | 1998 BSS_CHANGED_PS | 1999 BSS_CHANGED_ARP_FILTER; 2000 ieee80211_vif_cfg_change_notify(sdata, changed); 2001 } 2002 break; 2003 case NL80211_IFTYPE_OCB: 2004 changed |= BSS_CHANGED_OCB; 2005 ieee80211_bss_info_change_notify(sdata, changed); 2006 break; 2007 case NL80211_IFTYPE_ADHOC: 2008 changed |= BSS_CHANGED_IBSS; 2009 fallthrough; 2010 case NL80211_IFTYPE_AP: 2011 changed |= BSS_CHANGED_P2P_PS; 2012 2013 if (ieee80211_vif_is_mld(&sdata->vif)) 2014 ieee80211_vif_cfg_change_notify(sdata, 2015 BSS_CHANGED_SSID); 2016 else 2017 changed |= BSS_CHANGED_SSID; 2018 2019 if (sdata->vif.bss_conf.ftm_responder == 1 && 2020 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2021 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2022 changed |= BSS_CHANGED_FTM_RESPONDER; 2023 2024 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2025 changed |= BSS_CHANGED_AP_PROBE_RESP; 2026 2027 if (ieee80211_vif_is_mld(&sdata->vif)) { 2028 ieee80211_reconfig_ap_links(local, 2029 sdata, 2030 changed); 2031 break; 2032 } 2033 2034 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2035 drv_start_ap(local, sdata, 2036 sdata->deflink.conf); 2037 } 2038 fallthrough; 2039 case NL80211_IFTYPE_MESH_POINT: 2040 if (sdata->vif.bss_conf.enable_beacon) { 2041 changed |= BSS_CHANGED_BEACON | 2042 BSS_CHANGED_BEACON_ENABLED; 2043 ieee80211_bss_info_change_notify(sdata, changed); 2044 } 2045 break; 2046 case NL80211_IFTYPE_NAN: 2047 res = ieee80211_reconfig_nan(sdata); 2048 if (res < 0) { 2049 ieee80211_handle_reconfig_failure(local); 2050 return res; 2051 } 2052 break; 2053 case NL80211_IFTYPE_AP_VLAN: 2054 case NL80211_IFTYPE_MONITOR: 2055 case NL80211_IFTYPE_P2P_DEVICE: 2056 /* nothing to do */ 2057 break; 2058 case NL80211_IFTYPE_UNSPECIFIED: 2059 case NUM_NL80211_IFTYPES: 2060 case NL80211_IFTYPE_P2P_CLIENT: 2061 case NL80211_IFTYPE_P2P_GO: 2062 case NL80211_IFTYPE_WDS: 2063 WARN_ON(1); 2064 break; 2065 } 2066 } 2067 2068 ieee80211_recalc_ps(local); 2069 2070 /* 2071 * The sta might be in psm against the ap (e.g. because 2072 * this was the state before a hw restart), so we 2073 * explicitly send a null packet in order to make sure 2074 * it'll sync against the ap (and get out of psm). 2075 */ 2076 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2077 list_for_each_entry(sdata, &local->interfaces, list) { 2078 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2079 continue; 2080 if (!sdata->u.mgd.associated) 2081 continue; 2082 2083 ieee80211_send_nullfunc(local, sdata, false); 2084 } 2085 } 2086 2087 /* APs are now beaconing, add back stations */ 2088 list_for_each_entry(sdata, &local->interfaces, list) { 2089 if (!ieee80211_sdata_running(sdata)) 2090 continue; 2091 2092 switch (sdata->vif.type) { 2093 case NL80211_IFTYPE_AP_VLAN: 2094 case NL80211_IFTYPE_AP: 2095 ieee80211_reconfig_stations(sdata); 2096 break; 2097 default: 2098 break; 2099 } 2100 } 2101 2102 /* add back keys */ 2103 list_for_each_entry(sdata, &local->interfaces, list) 2104 ieee80211_reenable_keys(sdata); 2105 2106 /* re-enable multi-link for client interfaces */ 2107 list_for_each_entry(sdata, &local->interfaces, list) { 2108 if (sdata->restart_active_links) 2109 ieee80211_set_active_links(&sdata->vif, 2110 sdata->restart_active_links); 2111 /* 2112 * If a link switch was scheduled before the restart, and ran 2113 * before reconfig, it will do nothing, so re-schedule. 2114 */ 2115 if (sdata->desired_active_links) 2116 wiphy_work_queue(sdata->local->hw.wiphy, 2117 &sdata->activate_links_work); 2118 } 2119 2120 /* Reconfigure sched scan if it was interrupted by FW restart */ 2121 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2122 lockdep_is_held(&local->hw.wiphy->mtx)); 2123 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2124 lockdep_is_held(&local->hw.wiphy->mtx)); 2125 if (sched_scan_sdata && sched_scan_req) 2126 /* 2127 * Sched scan stopped, but we don't want to report it. Instead, 2128 * we're trying to reschedule. However, if more than one scan 2129 * plan was set, we cannot reschedule since we don't know which 2130 * scan plan was currently running (and some scan plans may have 2131 * already finished). 2132 */ 2133 if (sched_scan_req->n_scan_plans > 1 || 2134 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2135 sched_scan_req)) { 2136 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2137 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2138 sched_scan_stopped = true; 2139 } 2140 2141 if (sched_scan_stopped) 2142 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2143 2144 wake_up: 2145 2146 if (local->monitors == local->open_count && local->monitors > 0) 2147 ieee80211_add_virtual_monitor(local); 2148 2149 /* 2150 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2151 * sessions can be established after a resume. 2152 * 2153 * Also tear down aggregation sessions since reconfiguring 2154 * them in a hardware restart scenario is not easily done 2155 * right now, and the hardware will have lost information 2156 * about the sessions, but we and the AP still think they 2157 * are active. This is really a workaround though. 2158 */ 2159 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2160 list_for_each_entry(sta, &local->sta_list, list) { 2161 if (!local->resuming) 2162 ieee80211_sta_tear_down_BA_sessions( 2163 sta, AGG_STOP_LOCAL_REQUEST); 2164 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2165 } 2166 } 2167 2168 /* 2169 * If this is for hw restart things are still running. 2170 * We may want to change that later, however. 2171 */ 2172 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2173 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2174 2175 if (local->in_reconfig) { 2176 in_reconfig = local->in_reconfig; 2177 local->in_reconfig = false; 2178 barrier(); 2179 2180 /* Restart deferred ROCs */ 2181 ieee80211_start_next_roc(local); 2182 2183 /* Requeue all works */ 2184 list_for_each_entry(sdata, &local->interfaces, list) 2185 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2186 } 2187 2188 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2189 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2190 false); 2191 2192 if (in_reconfig) { 2193 list_for_each_entry(sdata, &local->interfaces, list) { 2194 if (!ieee80211_sdata_running(sdata)) 2195 continue; 2196 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2197 ieee80211_sta_restart(sdata); 2198 } 2199 } 2200 2201 if (!suspended) 2202 return 0; 2203 2204 #ifdef CONFIG_PM 2205 /* first set suspended false, then resuming */ 2206 local->suspended = false; 2207 mb(); 2208 local->resuming = false; 2209 2210 ieee80211_flush_completed_scan(local, false); 2211 2212 if (local->open_count && !reconfig_due_to_wowlan) 2213 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2214 2215 list_for_each_entry(sdata, &local->interfaces, list) { 2216 if (!ieee80211_sdata_running(sdata)) 2217 continue; 2218 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2219 ieee80211_sta_restart(sdata); 2220 } 2221 2222 mod_timer(&local->sta_cleanup, jiffies + 1); 2223 #else 2224 WARN_ON(1); 2225 #endif 2226 2227 return 0; 2228 } 2229 2230 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2231 { 2232 struct ieee80211_sub_if_data *sdata; 2233 struct ieee80211_local *local; 2234 struct ieee80211_key *key; 2235 2236 if (WARN_ON(!vif)) 2237 return; 2238 2239 sdata = vif_to_sdata(vif); 2240 local = sdata->local; 2241 2242 lockdep_assert_wiphy(local->hw.wiphy); 2243 2244 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2245 !local->resuming)) 2246 return; 2247 2248 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2249 !local->in_reconfig)) 2250 return; 2251 2252 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2253 return; 2254 2255 sdata->flags |= flag; 2256 2257 list_for_each_entry(key, &sdata->key_list, list) 2258 key->flags |= KEY_FLAG_TAINTED; 2259 } 2260 2261 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2262 { 2263 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2264 } 2265 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2266 2267 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2268 { 2269 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2270 } 2271 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2272 2273 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2274 struct ieee80211_link_data *link) 2275 { 2276 struct ieee80211_local *local = sdata->local; 2277 struct ieee80211_chanctx_conf *chanctx_conf; 2278 struct ieee80211_chanctx *chanctx; 2279 2280 lockdep_assert_wiphy(local->hw.wiphy); 2281 2282 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2283 lockdep_is_held(&local->hw.wiphy->mtx)); 2284 2285 /* 2286 * This function can be called from a work, thus it may be possible 2287 * that the chanctx_conf is removed (due to a disconnection, for 2288 * example). 2289 * So nothing should be done in such case. 2290 */ 2291 if (!chanctx_conf) 2292 return; 2293 2294 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2295 ieee80211_recalc_smps_chanctx(local, chanctx); 2296 } 2297 2298 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2299 int link_id) 2300 { 2301 struct ieee80211_local *local = sdata->local; 2302 struct ieee80211_chanctx_conf *chanctx_conf; 2303 struct ieee80211_chanctx *chanctx; 2304 int i; 2305 2306 lockdep_assert_wiphy(local->hw.wiphy); 2307 2308 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2309 struct ieee80211_bss_conf *bss_conf; 2310 2311 if (link_id >= 0 && link_id != i) 2312 continue; 2313 2314 rcu_read_lock(); 2315 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2316 if (!bss_conf) { 2317 rcu_read_unlock(); 2318 continue; 2319 } 2320 2321 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2322 lockdep_is_held(&local->hw.wiphy->mtx)); 2323 /* 2324 * Since we hold the wiphy mutex (checked above) 2325 * we can take the chanctx_conf pointer out of the 2326 * RCU critical section, it cannot go away without 2327 * the mutex. Just the way we reached it could - in 2328 * theory - go away, but we don't really care and 2329 * it really shouldn't happen anyway. 2330 */ 2331 rcu_read_unlock(); 2332 2333 if (!chanctx_conf) 2334 return; 2335 2336 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2337 conf); 2338 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 2339 } 2340 } 2341 2342 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2343 { 2344 size_t pos = offset; 2345 2346 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2347 pos += 2 + ies[pos + 1]; 2348 2349 return pos; 2350 } 2351 2352 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2353 u16 cap) 2354 { 2355 __le16 tmp; 2356 2357 *pos++ = WLAN_EID_HT_CAPABILITY; 2358 *pos++ = sizeof(struct ieee80211_ht_cap); 2359 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2360 2361 /* capability flags */ 2362 tmp = cpu_to_le16(cap); 2363 memcpy(pos, &tmp, sizeof(u16)); 2364 pos += sizeof(u16); 2365 2366 /* AMPDU parameters */ 2367 *pos++ = ht_cap->ampdu_factor | 2368 (ht_cap->ampdu_density << 2369 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2370 2371 /* MCS set */ 2372 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2373 pos += sizeof(ht_cap->mcs); 2374 2375 /* extended capabilities */ 2376 pos += sizeof(__le16); 2377 2378 /* BF capabilities */ 2379 pos += sizeof(__le32); 2380 2381 /* antenna selection */ 2382 pos += sizeof(u8); 2383 2384 return pos; 2385 } 2386 2387 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2388 u32 cap) 2389 { 2390 __le32 tmp; 2391 2392 *pos++ = WLAN_EID_VHT_CAPABILITY; 2393 *pos++ = sizeof(struct ieee80211_vht_cap); 2394 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2395 2396 /* capability flags */ 2397 tmp = cpu_to_le32(cap); 2398 memcpy(pos, &tmp, sizeof(u32)); 2399 pos += sizeof(u32); 2400 2401 /* VHT MCS set */ 2402 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2403 pos += sizeof(vht_cap->vht_mcs); 2404 2405 return pos; 2406 } 2407 2408 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2409 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2410 { 2411 const struct ieee80211_sta_he_cap *he_cap; 2412 struct ieee80211_supported_band *sband; 2413 u8 n; 2414 2415 sband = ieee80211_get_sband(sdata); 2416 if (!sband) 2417 return 0; 2418 2419 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2420 if (!he_cap) 2421 return 0; 2422 2423 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2424 return 2 + 1 + 2425 sizeof(he_cap->he_cap_elem) + n + 2426 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2427 he_cap->he_cap_elem.phy_cap_info); 2428 } 2429 2430 static void 2431 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2432 const struct ieee80211_sta_he_cap *he_cap, 2433 struct ieee80211_he_cap_elem *elem) 2434 { 2435 u8 ru_limit, max_ru; 2436 2437 *elem = he_cap->he_cap_elem; 2438 2439 switch (conn->bw_limit) { 2440 case IEEE80211_CONN_BW_LIMIT_20: 2441 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2442 break; 2443 case IEEE80211_CONN_BW_LIMIT_40: 2444 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2445 break; 2446 case IEEE80211_CONN_BW_LIMIT_80: 2447 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2448 break; 2449 default: 2450 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2451 break; 2452 } 2453 2454 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2455 max_ru = min(max_ru, ru_limit); 2456 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2457 elem->phy_cap_info[8] |= max_ru; 2458 2459 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2460 elem->phy_cap_info[0] &= 2461 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2462 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2463 elem->phy_cap_info[9] &= 2464 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2465 } 2466 2467 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2468 elem->phy_cap_info[0] &= 2469 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2470 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2471 elem->phy_cap_info[5] &= 2472 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2473 elem->phy_cap_info[7] &= 2474 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2475 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2476 } 2477 } 2478 2479 int ieee80211_put_he_cap(struct sk_buff *skb, 2480 struct ieee80211_sub_if_data *sdata, 2481 const struct ieee80211_supported_band *sband, 2482 const struct ieee80211_conn_settings *conn) 2483 { 2484 const struct ieee80211_sta_he_cap *he_cap; 2485 struct ieee80211_he_cap_elem elem; 2486 u8 *len; 2487 u8 n; 2488 u8 ie_len; 2489 2490 if (!conn) 2491 conn = &ieee80211_conn_settings_unlimited; 2492 2493 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2494 if (!he_cap) 2495 return 0; 2496 2497 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2498 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2499 2500 n = ieee80211_he_mcs_nss_size(&elem); 2501 ie_len = 2 + 1 + 2502 sizeof(he_cap->he_cap_elem) + n + 2503 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2504 he_cap->he_cap_elem.phy_cap_info); 2505 2506 if (skb_tailroom(skb) < ie_len) 2507 return -ENOBUFS; 2508 2509 skb_put_u8(skb, WLAN_EID_EXTENSION); 2510 len = skb_put(skb, 1); /* We'll set the size later below */ 2511 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2512 2513 /* Fixed data */ 2514 skb_put_data(skb, &elem, sizeof(elem)); 2515 2516 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2517 2518 /* Check if PPE Threshold should be present */ 2519 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2520 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2521 goto end; 2522 2523 /* 2524 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2525 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2526 */ 2527 n = hweight8(he_cap->ppe_thres[0] & 2528 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2529 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2530 IEEE80211_PPE_THRES_NSS_POS)); 2531 2532 /* 2533 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2534 * total size. 2535 */ 2536 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2537 n = DIV_ROUND_UP(n, 8); 2538 2539 /* Copy PPE Thresholds */ 2540 skb_put_data(skb, &he_cap->ppe_thres, n); 2541 2542 end: 2543 *len = skb_tail_pointer(skb) - len - 1; 2544 return 0; 2545 } 2546 2547 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2548 struct ieee80211_sub_if_data *sdata, 2549 enum ieee80211_smps_mode smps_mode) 2550 { 2551 struct ieee80211_supported_band *sband; 2552 const struct ieee80211_sband_iftype_data *iftd; 2553 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2554 __le16 cap; 2555 2556 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2557 BIT(NL80211_BAND_6GHZ), 2558 IEEE80211_CHAN_NO_HE)) 2559 return 0; 2560 2561 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2562 2563 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2564 if (!iftd) 2565 return 0; 2566 2567 /* Check for device HE 6 GHz capability before adding element */ 2568 if (!iftd->he_6ghz_capa.capa) 2569 return 0; 2570 2571 cap = iftd->he_6ghz_capa.capa; 2572 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2573 2574 switch (smps_mode) { 2575 case IEEE80211_SMPS_AUTOMATIC: 2576 case IEEE80211_SMPS_NUM_MODES: 2577 WARN_ON(1); 2578 fallthrough; 2579 case IEEE80211_SMPS_OFF: 2580 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2581 IEEE80211_HE_6GHZ_CAP_SM_PS); 2582 break; 2583 case IEEE80211_SMPS_STATIC: 2584 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2585 IEEE80211_HE_6GHZ_CAP_SM_PS); 2586 break; 2587 case IEEE80211_SMPS_DYNAMIC: 2588 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2589 IEEE80211_HE_6GHZ_CAP_SM_PS); 2590 break; 2591 } 2592 2593 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2594 return -ENOBUFS; 2595 2596 skb_put_u8(skb, WLAN_EID_EXTENSION); 2597 skb_put_u8(skb, 1 + sizeof(cap)); 2598 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2599 skb_put_data(skb, &cap, sizeof(cap)); 2600 return 0; 2601 } 2602 2603 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2604 const struct cfg80211_chan_def *chandef, 2605 u16 prot_mode, bool rifs_mode) 2606 { 2607 struct ieee80211_ht_operation *ht_oper; 2608 /* Build HT Information */ 2609 *pos++ = WLAN_EID_HT_OPERATION; 2610 *pos++ = sizeof(struct ieee80211_ht_operation); 2611 ht_oper = (struct ieee80211_ht_operation *)pos; 2612 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2613 chandef->chan->center_freq); 2614 switch (chandef->width) { 2615 case NL80211_CHAN_WIDTH_160: 2616 case NL80211_CHAN_WIDTH_80P80: 2617 case NL80211_CHAN_WIDTH_80: 2618 case NL80211_CHAN_WIDTH_40: 2619 if (chandef->center_freq1 > chandef->chan->center_freq) 2620 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2621 else 2622 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2623 break; 2624 case NL80211_CHAN_WIDTH_320: 2625 /* HT information element should not be included on 6GHz */ 2626 WARN_ON(1); 2627 return pos; 2628 default: 2629 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2630 break; 2631 } 2632 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2633 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2634 chandef->width != NL80211_CHAN_WIDTH_20) 2635 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2636 2637 if (rifs_mode) 2638 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2639 2640 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2641 ht_oper->stbc_param = 0x0000; 2642 2643 /* It seems that Basic MCS set and Supported MCS set 2644 are identical for the first 10 bytes */ 2645 memset(&ht_oper->basic_set, 0, 16); 2646 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2647 2648 return pos + sizeof(struct ieee80211_ht_operation); 2649 } 2650 2651 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2652 const struct cfg80211_chan_def *chandef) 2653 { 2654 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2655 *pos++ = 3; /* IE length */ 2656 /* New channel width */ 2657 switch (chandef->width) { 2658 case NL80211_CHAN_WIDTH_80: 2659 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2660 break; 2661 case NL80211_CHAN_WIDTH_160: 2662 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2663 break; 2664 case NL80211_CHAN_WIDTH_80P80: 2665 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2666 break; 2667 case NL80211_CHAN_WIDTH_320: 2668 /* The behavior is not defined for 320 MHz channels */ 2669 WARN_ON(1); 2670 fallthrough; 2671 default: 2672 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2673 } 2674 2675 /* new center frequency segment 0 */ 2676 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2677 /* new center frequency segment 1 */ 2678 if (chandef->center_freq2) 2679 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2680 else 2681 *pos++ = 0; 2682 } 2683 2684 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2685 const struct cfg80211_chan_def *chandef) 2686 { 2687 struct ieee80211_vht_operation *vht_oper; 2688 2689 *pos++ = WLAN_EID_VHT_OPERATION; 2690 *pos++ = sizeof(struct ieee80211_vht_operation); 2691 vht_oper = (struct ieee80211_vht_operation *)pos; 2692 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2693 chandef->center_freq1); 2694 if (chandef->center_freq2) 2695 vht_oper->center_freq_seg1_idx = 2696 ieee80211_frequency_to_channel(chandef->center_freq2); 2697 else 2698 vht_oper->center_freq_seg1_idx = 0x00; 2699 2700 switch (chandef->width) { 2701 case NL80211_CHAN_WIDTH_160: 2702 /* 2703 * Convert 160 MHz channel width to new style as interop 2704 * workaround. 2705 */ 2706 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2707 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2708 if (chandef->chan->center_freq < chandef->center_freq1) 2709 vht_oper->center_freq_seg0_idx -= 8; 2710 else 2711 vht_oper->center_freq_seg0_idx += 8; 2712 break; 2713 case NL80211_CHAN_WIDTH_80P80: 2714 /* 2715 * Convert 80+80 MHz channel width to new style as interop 2716 * workaround. 2717 */ 2718 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2719 break; 2720 case NL80211_CHAN_WIDTH_80: 2721 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2722 break; 2723 case NL80211_CHAN_WIDTH_320: 2724 /* VHT information element should not be included on 6GHz */ 2725 WARN_ON(1); 2726 return pos; 2727 default: 2728 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2729 break; 2730 } 2731 2732 /* don't require special VHT peer rates */ 2733 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2734 2735 return pos + sizeof(struct ieee80211_vht_operation); 2736 } 2737 2738 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 2739 { 2740 struct ieee80211_he_operation *he_oper; 2741 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2742 u32 he_oper_params; 2743 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2744 2745 if (chandef->chan->band == NL80211_BAND_6GHZ) 2746 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2747 2748 *pos++ = WLAN_EID_EXTENSION; 2749 *pos++ = ie_len; 2750 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2751 2752 he_oper_params = 0; 2753 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2754 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2755 he_oper_params |= u32_encode_bits(1, 2756 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2757 he_oper_params |= u32_encode_bits(1, 2758 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2759 if (chandef->chan->band == NL80211_BAND_6GHZ) 2760 he_oper_params |= u32_encode_bits(1, 2761 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2762 2763 he_oper = (struct ieee80211_he_operation *)pos; 2764 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2765 2766 /* don't require special HE peer rates */ 2767 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2768 pos += sizeof(struct ieee80211_he_operation); 2769 2770 if (chandef->chan->band != NL80211_BAND_6GHZ) 2771 goto out; 2772 2773 /* TODO add VHT operational */ 2774 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2775 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2776 he_6ghz_op->primary = 2777 ieee80211_frequency_to_channel(chandef->chan->center_freq); 2778 he_6ghz_op->ccfs0 = 2779 ieee80211_frequency_to_channel(chandef->center_freq1); 2780 if (chandef->center_freq2) 2781 he_6ghz_op->ccfs1 = 2782 ieee80211_frequency_to_channel(chandef->center_freq2); 2783 else 2784 he_6ghz_op->ccfs1 = 0; 2785 2786 switch (chandef->width) { 2787 case NL80211_CHAN_WIDTH_320: 2788 /* 2789 * TODO: mesh operation is not defined over 6GHz 320 MHz 2790 * channels. 2791 */ 2792 WARN_ON(1); 2793 break; 2794 case NL80211_CHAN_WIDTH_160: 2795 /* Convert 160 MHz channel width to new style as interop 2796 * workaround. 2797 */ 2798 he_6ghz_op->control = 2799 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2800 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2801 if (chandef->chan->center_freq < chandef->center_freq1) 2802 he_6ghz_op->ccfs0 -= 8; 2803 else 2804 he_6ghz_op->ccfs0 += 8; 2805 fallthrough; 2806 case NL80211_CHAN_WIDTH_80P80: 2807 he_6ghz_op->control = 2808 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2809 break; 2810 case NL80211_CHAN_WIDTH_80: 2811 he_6ghz_op->control = 2812 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2813 break; 2814 case NL80211_CHAN_WIDTH_40: 2815 he_6ghz_op->control = 2816 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2817 break; 2818 default: 2819 he_6ghz_op->control = 2820 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2821 break; 2822 } 2823 2824 pos += sizeof(struct ieee80211_he_6ghz_oper); 2825 2826 out: 2827 return pos; 2828 } 2829 2830 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 2831 const struct ieee80211_sta_eht_cap *eht_cap) 2832 2833 { 2834 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2835 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2836 struct ieee80211_eht_operation *eht_oper; 2837 struct ieee80211_eht_operation_info *eht_oper_info; 2838 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2839 u8 eht_oper_info_len = 2840 offsetof(struct ieee80211_eht_operation_info, optional); 2841 u8 chan_width = 0; 2842 2843 *pos++ = WLAN_EID_EXTENSION; 2844 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2845 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2846 2847 eht_oper = (struct ieee80211_eht_operation *)pos; 2848 2849 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2850 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2851 pos += eht_oper_len; 2852 2853 eht_oper_info = 2854 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2855 2856 eht_oper_info->ccfs0 = 2857 ieee80211_frequency_to_channel(chandef->center_freq1); 2858 if (chandef->center_freq2) 2859 eht_oper_info->ccfs1 = 2860 ieee80211_frequency_to_channel(chandef->center_freq2); 2861 else 2862 eht_oper_info->ccfs1 = 0; 2863 2864 switch (chandef->width) { 2865 case NL80211_CHAN_WIDTH_320: 2866 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2867 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2868 if (chandef->chan->center_freq < chandef->center_freq1) 2869 eht_oper_info->ccfs0 -= 16; 2870 else 2871 eht_oper_info->ccfs0 += 16; 2872 break; 2873 case NL80211_CHAN_WIDTH_160: 2874 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2875 if (chandef->chan->center_freq < chandef->center_freq1) 2876 eht_oper_info->ccfs0 -= 8; 2877 else 2878 eht_oper_info->ccfs0 += 8; 2879 fallthrough; 2880 case NL80211_CHAN_WIDTH_80P80: 2881 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2882 break; 2883 case NL80211_CHAN_WIDTH_80: 2884 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2885 break; 2886 case NL80211_CHAN_WIDTH_40: 2887 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2888 break; 2889 default: 2890 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2891 break; 2892 } 2893 eht_oper_info->control = chan_width; 2894 pos += eht_oper_info_len; 2895 2896 /* TODO: eht_oper_info->optional */ 2897 2898 return pos; 2899 } 2900 2901 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2902 struct cfg80211_chan_def *chandef) 2903 { 2904 enum nl80211_channel_type channel_type; 2905 2906 if (!ht_oper) 2907 return false; 2908 2909 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2910 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2911 channel_type = NL80211_CHAN_HT20; 2912 break; 2913 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2914 channel_type = NL80211_CHAN_HT40PLUS; 2915 break; 2916 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2917 channel_type = NL80211_CHAN_HT40MINUS; 2918 break; 2919 default: 2920 return false; 2921 } 2922 2923 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2924 return true; 2925 } 2926 2927 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2928 const struct ieee80211_vht_operation *oper, 2929 const struct ieee80211_ht_operation *htop, 2930 struct cfg80211_chan_def *chandef) 2931 { 2932 struct cfg80211_chan_def new = *chandef; 2933 int cf0, cf1; 2934 int ccfs0, ccfs1, ccfs2; 2935 int ccf0, ccf1; 2936 u32 vht_cap; 2937 bool support_80_80 = false; 2938 bool support_160 = false; 2939 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2940 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2941 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2942 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2943 2944 if (!oper || !htop) 2945 return false; 2946 2947 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2948 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2949 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2950 support_80_80 = ((vht_cap & 2951 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2952 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2953 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2954 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2955 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2956 ccfs0 = oper->center_freq_seg0_idx; 2957 ccfs1 = oper->center_freq_seg1_idx; 2958 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2959 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2960 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2961 2962 ccf0 = ccfs0; 2963 2964 /* if not supported, parse as though we didn't understand it */ 2965 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2966 ext_nss_bw_supp = 0; 2967 2968 /* 2969 * Cf. IEEE 802.11 Table 9-250 2970 * 2971 * We really just consider that because it's inefficient to connect 2972 * at a higher bandwidth than we'll actually be able to use. 2973 */ 2974 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2975 default: 2976 case 0x00: 2977 ccf1 = 0; 2978 support_160 = false; 2979 support_80_80 = false; 2980 break; 2981 case 0x01: 2982 support_80_80 = false; 2983 fallthrough; 2984 case 0x02: 2985 case 0x03: 2986 ccf1 = ccfs2; 2987 break; 2988 case 0x10: 2989 ccf1 = ccfs1; 2990 break; 2991 case 0x11: 2992 case 0x12: 2993 if (!ccfs1) 2994 ccf1 = ccfs2; 2995 else 2996 ccf1 = ccfs1; 2997 break; 2998 case 0x13: 2999 case 0x20: 3000 case 0x23: 3001 ccf1 = ccfs1; 3002 break; 3003 } 3004 3005 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3006 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3007 3008 switch (oper->chan_width) { 3009 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3010 /* just use HT information directly */ 3011 break; 3012 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3013 new.width = NL80211_CHAN_WIDTH_80; 3014 new.center_freq1 = cf0; 3015 /* If needed, adjust based on the newer interop workaround. */ 3016 if (ccf1) { 3017 unsigned int diff; 3018 3019 diff = abs(ccf1 - ccf0); 3020 if ((diff == 8) && support_160) { 3021 new.width = NL80211_CHAN_WIDTH_160; 3022 new.center_freq1 = cf1; 3023 } else if ((diff > 8) && support_80_80) { 3024 new.width = NL80211_CHAN_WIDTH_80P80; 3025 new.center_freq2 = cf1; 3026 } 3027 } 3028 break; 3029 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3030 /* deprecated encoding */ 3031 new.width = NL80211_CHAN_WIDTH_160; 3032 new.center_freq1 = cf0; 3033 break; 3034 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3035 /* deprecated encoding */ 3036 new.width = NL80211_CHAN_WIDTH_80P80; 3037 new.center_freq1 = cf0; 3038 new.center_freq2 = cf1; 3039 break; 3040 default: 3041 return false; 3042 } 3043 3044 if (!cfg80211_chandef_valid(&new)) 3045 return false; 3046 3047 *chandef = new; 3048 return true; 3049 } 3050 3051 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3052 struct cfg80211_chan_def *chandef) 3053 { 3054 chandef->center_freq1 = 3055 ieee80211_channel_to_frequency(info->ccfs0, 3056 chandef->chan->band); 3057 3058 switch (u8_get_bits(info->control, 3059 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3060 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3061 chandef->width = NL80211_CHAN_WIDTH_20; 3062 break; 3063 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3064 chandef->width = NL80211_CHAN_WIDTH_40; 3065 break; 3066 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3067 chandef->width = NL80211_CHAN_WIDTH_80; 3068 break; 3069 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3070 chandef->width = NL80211_CHAN_WIDTH_160; 3071 chandef->center_freq1 = 3072 ieee80211_channel_to_frequency(info->ccfs1, 3073 chandef->chan->band); 3074 break; 3075 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3076 chandef->width = NL80211_CHAN_WIDTH_320; 3077 chandef->center_freq1 = 3078 ieee80211_channel_to_frequency(info->ccfs1, 3079 chandef->chan->band); 3080 break; 3081 } 3082 } 3083 3084 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3085 const struct ieee80211_he_operation *he_oper, 3086 const struct ieee80211_eht_operation *eht_oper, 3087 struct cfg80211_chan_def *chandef) 3088 { 3089 struct cfg80211_chan_def he_chandef = *chandef; 3090 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3091 u32 freq; 3092 3093 if (chandef->chan->band != NL80211_BAND_6GHZ) 3094 return true; 3095 3096 if (!he_oper) 3097 return false; 3098 3099 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3100 if (!he_6ghz_oper) 3101 return false; 3102 3103 /* 3104 * The EHT operation IE does not contain the primary channel so the 3105 * primary channel frequency should be taken from the 6 GHz operation 3106 * information. 3107 */ 3108 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3109 NL80211_BAND_6GHZ); 3110 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3111 3112 if (!he_chandef.chan) 3113 return false; 3114 3115 if (!eht_oper || 3116 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3117 switch (u8_get_bits(he_6ghz_oper->control, 3118 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3119 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3120 he_chandef.width = NL80211_CHAN_WIDTH_20; 3121 break; 3122 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3123 he_chandef.width = NL80211_CHAN_WIDTH_40; 3124 break; 3125 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3126 he_chandef.width = NL80211_CHAN_WIDTH_80; 3127 break; 3128 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3129 he_chandef.width = NL80211_CHAN_WIDTH_80; 3130 if (!he_6ghz_oper->ccfs1) 3131 break; 3132 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3133 he_chandef.width = NL80211_CHAN_WIDTH_160; 3134 else 3135 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3136 break; 3137 } 3138 3139 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3140 he_chandef.center_freq1 = 3141 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3142 NL80211_BAND_6GHZ); 3143 } else { 3144 he_chandef.center_freq1 = 3145 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3146 NL80211_BAND_6GHZ); 3147 he_chandef.center_freq2 = 3148 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3149 NL80211_BAND_6GHZ); 3150 } 3151 } else { 3152 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3153 &he_chandef); 3154 he_chandef.punctured = 3155 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3156 } 3157 3158 if (!cfg80211_chandef_valid(&he_chandef)) 3159 return false; 3160 3161 *chandef = he_chandef; 3162 3163 return true; 3164 } 3165 3166 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3167 struct cfg80211_chan_def *chandef) 3168 { 3169 u32 oper_freq; 3170 3171 if (!oper) 3172 return false; 3173 3174 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3175 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3176 chandef->width = NL80211_CHAN_WIDTH_1; 3177 break; 3178 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3179 chandef->width = NL80211_CHAN_WIDTH_2; 3180 break; 3181 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3182 chandef->width = NL80211_CHAN_WIDTH_4; 3183 break; 3184 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3185 chandef->width = NL80211_CHAN_WIDTH_8; 3186 break; 3187 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3188 chandef->width = NL80211_CHAN_WIDTH_16; 3189 break; 3190 default: 3191 return false; 3192 } 3193 3194 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3195 NL80211_BAND_S1GHZ); 3196 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3197 chandef->freq1_offset = oper_freq % 1000; 3198 3199 return true; 3200 } 3201 3202 int ieee80211_put_srates_elem(struct sk_buff *skb, 3203 const struct ieee80211_supported_band *sband, 3204 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3205 u8 element_id) 3206 { 3207 u8 i, rates, skip; 3208 3209 rates = 0; 3210 for (i = 0; i < sband->n_bitrates; i++) { 3211 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3212 continue; 3213 if (masked_rates & BIT(i)) 3214 continue; 3215 rates++; 3216 } 3217 3218 if (element_id == WLAN_EID_SUPP_RATES) { 3219 rates = min_t(u8, rates, 8); 3220 skip = 0; 3221 } else { 3222 skip = 8; 3223 if (rates <= skip) 3224 return 0; 3225 rates -= skip; 3226 } 3227 3228 if (skb_tailroom(skb) < rates + 2) 3229 return -ENOBUFS; 3230 3231 skb_put_u8(skb, element_id); 3232 skb_put_u8(skb, rates); 3233 3234 for (i = 0; i < sband->n_bitrates && rates; i++) { 3235 int rate; 3236 u8 basic; 3237 3238 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3239 continue; 3240 if (masked_rates & BIT(i)) 3241 continue; 3242 3243 if (skip > 0) { 3244 skip--; 3245 continue; 3246 } 3247 3248 basic = basic_rates & BIT(i) ? 0x80 : 0; 3249 3250 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3251 skb_put_u8(skb, basic | (u8)rate); 3252 rates--; 3253 } 3254 3255 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3256 rates, element_id); 3257 3258 return 0; 3259 } 3260 3261 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3262 { 3263 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3264 3265 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3266 return 0; 3267 3268 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3269 } 3270 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3271 3272 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3273 { 3274 if (!mcs) 3275 return 1; 3276 3277 /* TODO: consider rx_highest */ 3278 3279 if (mcs->rx_mask[3]) 3280 return 4; 3281 if (mcs->rx_mask[2]) 3282 return 3; 3283 if (mcs->rx_mask[1]) 3284 return 2; 3285 return 1; 3286 } 3287 3288 /** 3289 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3290 * @local: mac80211 hw info struct 3291 * @status: RX status 3292 * @mpdu_len: total MPDU length (including FCS) 3293 * @mpdu_offset: offset into MPDU to calculate timestamp at 3294 * 3295 * This function calculates the RX timestamp at the given MPDU offset, taking 3296 * into account what the RX timestamp was. An offset of 0 will just normalize 3297 * the timestamp to TSF at beginning of MPDU reception. 3298 * 3299 * Returns: the calculated timestamp 3300 */ 3301 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3302 struct ieee80211_rx_status *status, 3303 unsigned int mpdu_len, 3304 unsigned int mpdu_offset) 3305 { 3306 u64 ts = status->mactime; 3307 bool mactime_plcp_start; 3308 struct rate_info ri; 3309 u16 rate; 3310 u8 n_ltf; 3311 3312 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3313 return 0; 3314 3315 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3316 RX_FLAG_MACTIME_PLCP_START; 3317 3318 memset(&ri, 0, sizeof(ri)); 3319 3320 ri.bw = status->bw; 3321 3322 /* Fill cfg80211 rate info */ 3323 switch (status->encoding) { 3324 case RX_ENC_EHT: 3325 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3326 ri.mcs = status->rate_idx; 3327 ri.nss = status->nss; 3328 ri.eht_ru_alloc = status->eht.ru; 3329 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3330 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3331 /* TODO/FIXME: is this right? handle other PPDUs */ 3332 if (mactime_plcp_start) { 3333 mpdu_offset += 2; 3334 ts += 36; 3335 } 3336 break; 3337 case RX_ENC_HE: 3338 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3339 ri.mcs = status->rate_idx; 3340 ri.nss = status->nss; 3341 ri.he_ru_alloc = status->he_ru; 3342 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3343 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3344 3345 /* 3346 * See P802.11ax_D6.0, section 27.3.4 for 3347 * VHT PPDU format. 3348 */ 3349 if (mactime_plcp_start) { 3350 mpdu_offset += 2; 3351 ts += 36; 3352 3353 /* 3354 * TODO: 3355 * For HE MU PPDU, add the HE-SIG-B. 3356 * For HE ER PPDU, add 8us for the HE-SIG-A. 3357 * For HE TB PPDU, add 4us for the HE-STF. 3358 * Add the HE-LTF durations - variable. 3359 */ 3360 } 3361 3362 break; 3363 case RX_ENC_HT: 3364 ri.mcs = status->rate_idx; 3365 ri.flags |= RATE_INFO_FLAGS_MCS; 3366 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3367 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3368 3369 /* 3370 * See P802.11REVmd_D3.0, section 19.3.2 for 3371 * HT PPDU format. 3372 */ 3373 if (mactime_plcp_start) { 3374 mpdu_offset += 2; 3375 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3376 ts += 24; 3377 else 3378 ts += 32; 3379 3380 /* 3381 * Add Data HT-LTFs per streams 3382 * TODO: add Extension HT-LTFs, 4us per LTF 3383 */ 3384 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3385 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3386 ts += n_ltf * 4; 3387 } 3388 3389 break; 3390 case RX_ENC_VHT: 3391 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3392 ri.mcs = status->rate_idx; 3393 ri.nss = status->nss; 3394 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3395 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3396 3397 /* 3398 * See P802.11REVmd_D3.0, section 21.3.2 for 3399 * VHT PPDU format. 3400 */ 3401 if (mactime_plcp_start) { 3402 mpdu_offset += 2; 3403 ts += 36; 3404 3405 /* 3406 * Add VHT-LTFs per streams 3407 */ 3408 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3409 ri.nss + 1 : ri.nss; 3410 ts += 4 * n_ltf; 3411 } 3412 3413 break; 3414 default: 3415 WARN_ON(1); 3416 fallthrough; 3417 case RX_ENC_LEGACY: { 3418 struct ieee80211_supported_band *sband; 3419 3420 sband = local->hw.wiphy->bands[status->band]; 3421 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3422 3423 if (mactime_plcp_start) { 3424 if (status->band == NL80211_BAND_5GHZ) { 3425 ts += 20; 3426 mpdu_offset += 2; 3427 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3428 ts += 96; 3429 } else { 3430 ts += 192; 3431 } 3432 } 3433 break; 3434 } 3435 } 3436 3437 rate = cfg80211_calculate_bitrate(&ri); 3438 if (WARN_ONCE(!rate, 3439 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3440 (unsigned long long)status->flag, status->rate_idx, 3441 status->nss)) 3442 return 0; 3443 3444 /* rewind from end of MPDU */ 3445 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3446 ts -= mpdu_len * 8 * 10 / rate; 3447 3448 ts += mpdu_offset * 8 * 10 / rate; 3449 3450 return ts; 3451 } 3452 3453 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3454 { 3455 struct ieee80211_sub_if_data *sdata; 3456 struct cfg80211_chan_def chandef; 3457 3458 lockdep_assert_wiphy(local->hw.wiphy); 3459 3460 list_for_each_entry(sdata, &local->interfaces, list) { 3461 /* it might be waiting for the local->mtx, but then 3462 * by the time it gets it, sdata->wdev.cac_started 3463 * will no longer be true 3464 */ 3465 wiphy_delayed_work_cancel(local->hw.wiphy, 3466 &sdata->deflink.dfs_cac_timer_work); 3467 3468 if (sdata->wdev.cac_started) { 3469 chandef = sdata->vif.bss_conf.chanreq.oper; 3470 ieee80211_link_release_channel(&sdata->deflink); 3471 cfg80211_cac_event(sdata->dev, 3472 &chandef, 3473 NL80211_RADAR_CAC_ABORTED, 3474 GFP_KERNEL); 3475 } 3476 } 3477 } 3478 3479 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3480 struct wiphy_work *work) 3481 { 3482 struct ieee80211_local *local = 3483 container_of(work, struct ieee80211_local, radar_detected_work); 3484 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3485 struct ieee80211_chanctx *ctx; 3486 int num_chanctx = 0; 3487 3488 lockdep_assert_wiphy(local->hw.wiphy); 3489 3490 list_for_each_entry(ctx, &local->chanctx_list, list) { 3491 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3492 continue; 3493 3494 num_chanctx++; 3495 chandef = ctx->conf.def; 3496 } 3497 3498 ieee80211_dfs_cac_cancel(local); 3499 3500 if (num_chanctx > 1) 3501 /* XXX: multi-channel is not supported yet */ 3502 WARN_ON(1); 3503 else 3504 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3505 } 3506 3507 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3508 { 3509 struct ieee80211_local *local = hw_to_local(hw); 3510 3511 trace_api_radar_detected(local); 3512 3513 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3514 } 3515 EXPORT_SYMBOL(ieee80211_radar_detected); 3516 3517 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3518 struct ieee80211_conn_settings *conn) 3519 { 3520 enum nl80211_chan_width new_primary_width; 3521 struct ieee80211_conn_settings _ignored = {}; 3522 3523 /* allow passing NULL if caller doesn't care */ 3524 if (!conn) 3525 conn = &_ignored; 3526 3527 again: 3528 /* no-HT indicates nothing to do */ 3529 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3530 3531 switch (c->width) { 3532 default: 3533 case NL80211_CHAN_WIDTH_20_NOHT: 3534 WARN_ON_ONCE(1); 3535 fallthrough; 3536 case NL80211_CHAN_WIDTH_20: 3537 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3538 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3539 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3540 c->punctured = 0; 3541 break; 3542 case NL80211_CHAN_WIDTH_40: 3543 c->width = NL80211_CHAN_WIDTH_20; 3544 c->center_freq1 = c->chan->center_freq; 3545 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3546 conn->mode = IEEE80211_CONN_MODE_HT; 3547 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3548 c->punctured = 0; 3549 break; 3550 case NL80211_CHAN_WIDTH_80: 3551 new_primary_width = NL80211_CHAN_WIDTH_40; 3552 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3553 conn->mode = IEEE80211_CONN_MODE_HT; 3554 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3555 break; 3556 case NL80211_CHAN_WIDTH_80P80: 3557 c->center_freq2 = 0; 3558 c->width = NL80211_CHAN_WIDTH_80; 3559 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3560 break; 3561 case NL80211_CHAN_WIDTH_160: 3562 new_primary_width = NL80211_CHAN_WIDTH_80; 3563 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3564 break; 3565 case NL80211_CHAN_WIDTH_320: 3566 new_primary_width = NL80211_CHAN_WIDTH_160; 3567 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3568 break; 3569 case NL80211_CHAN_WIDTH_1: 3570 case NL80211_CHAN_WIDTH_2: 3571 case NL80211_CHAN_WIDTH_4: 3572 case NL80211_CHAN_WIDTH_8: 3573 case NL80211_CHAN_WIDTH_16: 3574 WARN_ON_ONCE(1); 3575 /* keep c->width */ 3576 conn->mode = IEEE80211_CONN_MODE_S1G; 3577 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3578 break; 3579 case NL80211_CHAN_WIDTH_5: 3580 case NL80211_CHAN_WIDTH_10: 3581 WARN_ON_ONCE(1); 3582 /* keep c->width */ 3583 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3584 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3585 break; 3586 } 3587 3588 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3589 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3590 &c->punctured); 3591 c->width = new_primary_width; 3592 } 3593 3594 /* 3595 * With an 80 MHz channel, we might have the puncturing in the primary 3596 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3597 * In that case, downgrade again. 3598 */ 3599 if (!cfg80211_chandef_valid(c) && c->punctured) 3600 goto again; 3601 3602 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3603 } 3604 3605 /* 3606 * Returns true if smps_mode_new is strictly more restrictive than 3607 * smps_mode_old. 3608 */ 3609 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3610 enum ieee80211_smps_mode smps_mode_new) 3611 { 3612 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3613 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3614 return false; 3615 3616 switch (smps_mode_old) { 3617 case IEEE80211_SMPS_STATIC: 3618 return false; 3619 case IEEE80211_SMPS_DYNAMIC: 3620 return smps_mode_new == IEEE80211_SMPS_STATIC; 3621 case IEEE80211_SMPS_OFF: 3622 return smps_mode_new != IEEE80211_SMPS_OFF; 3623 default: 3624 WARN_ON(1); 3625 } 3626 3627 return false; 3628 } 3629 3630 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3631 struct cfg80211_csa_settings *csa_settings) 3632 { 3633 struct sk_buff *skb; 3634 struct ieee80211_mgmt *mgmt; 3635 struct ieee80211_local *local = sdata->local; 3636 int freq; 3637 int hdr_len = offsetofend(struct ieee80211_mgmt, 3638 u.action.u.chan_switch); 3639 u8 *pos; 3640 3641 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3642 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3643 return -EOPNOTSUPP; 3644 3645 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3646 5 + /* channel switch announcement element */ 3647 3 + /* secondary channel offset element */ 3648 5 + /* wide bandwidth channel switch announcement */ 3649 8); /* mesh channel switch parameters element */ 3650 if (!skb) 3651 return -ENOMEM; 3652 3653 skb_reserve(skb, local->tx_headroom); 3654 mgmt = skb_put_zero(skb, hdr_len); 3655 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3656 IEEE80211_STYPE_ACTION); 3657 3658 eth_broadcast_addr(mgmt->da); 3659 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3660 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3661 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3662 } else { 3663 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3664 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3665 } 3666 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3667 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3668 pos = skb_put(skb, 5); 3669 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3670 *pos++ = 3; /* IE length */ 3671 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3672 freq = csa_settings->chandef.chan->center_freq; 3673 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3674 *pos++ = csa_settings->count; /* count */ 3675 3676 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3677 enum nl80211_channel_type ch_type; 3678 3679 skb_put(skb, 3); 3680 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3681 *pos++ = 1; /* IE length */ 3682 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3683 if (ch_type == NL80211_CHAN_HT40PLUS) 3684 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3685 else 3686 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3687 } 3688 3689 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3690 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3691 3692 skb_put(skb, 8); 3693 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3694 *pos++ = 6; /* IE length */ 3695 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3696 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3697 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3698 *pos++ |= csa_settings->block_tx ? 3699 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3700 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3701 pos += 2; 3702 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3703 pos += 2; 3704 } 3705 3706 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3707 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3708 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3709 skb_put(skb, 5); 3710 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3711 } 3712 3713 ieee80211_tx_skb(sdata, skb); 3714 return 0; 3715 } 3716 3717 static bool 3718 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3719 { 3720 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3721 int skip; 3722 3723 if (end > 0) 3724 return false; 3725 3726 /* One shot NOA */ 3727 if (data->count[i] == 1) 3728 return false; 3729 3730 if (data->desc[i].interval == 0) 3731 return false; 3732 3733 /* End time is in the past, check for repetitions */ 3734 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3735 if (data->count[i] < 255) { 3736 if (data->count[i] <= skip) { 3737 data->count[i] = 0; 3738 return false; 3739 } 3740 3741 data->count[i] -= skip; 3742 } 3743 3744 data->desc[i].start += skip * data->desc[i].interval; 3745 3746 return true; 3747 } 3748 3749 static bool 3750 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3751 s32 *offset) 3752 { 3753 bool ret = false; 3754 int i; 3755 3756 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3757 s32 cur; 3758 3759 if (!data->count[i]) 3760 continue; 3761 3762 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3763 ret = true; 3764 3765 cur = data->desc[i].start - tsf; 3766 if (cur > *offset) 3767 continue; 3768 3769 cur = data->desc[i].start + data->desc[i].duration - tsf; 3770 if (cur > *offset) 3771 *offset = cur; 3772 } 3773 3774 return ret; 3775 } 3776 3777 static u32 3778 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3779 { 3780 s32 offset = 0; 3781 int tries = 0; 3782 /* 3783 * arbitrary limit, used to avoid infinite loops when combined NoA 3784 * descriptors cover the full time period. 3785 */ 3786 int max_tries = 5; 3787 3788 ieee80211_extend_absent_time(data, tsf, &offset); 3789 do { 3790 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3791 break; 3792 3793 tries++; 3794 } while (tries < max_tries); 3795 3796 return offset; 3797 } 3798 3799 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3800 { 3801 u32 next_offset = BIT(31) - 1; 3802 int i; 3803 3804 data->absent = 0; 3805 data->has_next_tsf = false; 3806 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3807 s32 start; 3808 3809 if (!data->count[i]) 3810 continue; 3811 3812 ieee80211_extend_noa_desc(data, tsf, i); 3813 start = data->desc[i].start - tsf; 3814 if (start <= 0) 3815 data->absent |= BIT(i); 3816 3817 if (next_offset > start) 3818 next_offset = start; 3819 3820 data->has_next_tsf = true; 3821 } 3822 3823 if (data->absent) 3824 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3825 3826 data->next_tsf = tsf + next_offset; 3827 } 3828 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3829 3830 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3831 struct ieee80211_noa_data *data, u32 tsf) 3832 { 3833 int ret = 0; 3834 int i; 3835 3836 memset(data, 0, sizeof(*data)); 3837 3838 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3839 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3840 3841 if (!desc->count || !desc->duration) 3842 continue; 3843 3844 data->count[i] = desc->count; 3845 data->desc[i].start = le32_to_cpu(desc->start_time); 3846 data->desc[i].duration = le32_to_cpu(desc->duration); 3847 data->desc[i].interval = le32_to_cpu(desc->interval); 3848 3849 if (data->count[i] > 1 && 3850 data->desc[i].interval < data->desc[i].duration) 3851 continue; 3852 3853 ieee80211_extend_noa_desc(data, tsf, i); 3854 ret++; 3855 } 3856 3857 if (ret) 3858 ieee80211_update_p2p_noa(data, tsf); 3859 3860 return ret; 3861 } 3862 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3863 3864 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3865 struct ieee80211_sub_if_data *sdata) 3866 { 3867 u64 tsf = drv_get_tsf(local, sdata); 3868 u64 dtim_count = 0; 3869 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3870 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3871 struct ps_data *ps; 3872 u8 bcns_from_dtim; 3873 3874 if (tsf == -1ULL || !beacon_int || !dtim_period) 3875 return; 3876 3877 if (sdata->vif.type == NL80211_IFTYPE_AP || 3878 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3879 if (!sdata->bss) 3880 return; 3881 3882 ps = &sdata->bss->ps; 3883 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3884 ps = &sdata->u.mesh.ps; 3885 } else { 3886 return; 3887 } 3888 3889 /* 3890 * actually finds last dtim_count, mac80211 will update in 3891 * __beacon_add_tim(). 3892 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3893 */ 3894 do_div(tsf, beacon_int); 3895 bcns_from_dtim = do_div(tsf, dtim_period); 3896 /* just had a DTIM */ 3897 if (!bcns_from_dtim) 3898 dtim_count = 0; 3899 else 3900 dtim_count = dtim_period - bcns_from_dtim; 3901 3902 ps->dtim_count = dtim_count; 3903 } 3904 3905 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3906 struct ieee80211_chanctx *ctx) 3907 { 3908 struct ieee80211_link_data *link; 3909 u8 radar_detect = 0; 3910 3911 lockdep_assert_wiphy(local->hw.wiphy); 3912 3913 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3914 return 0; 3915 3916 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3917 if (link->reserved_radar_required) 3918 radar_detect |= BIT(link->reserved.oper.width); 3919 3920 /* 3921 * An in-place reservation context should not have any assigned vifs 3922 * until it replaces the other context. 3923 */ 3924 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3925 !list_empty(&ctx->assigned_links)); 3926 3927 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3928 if (!link->radar_required) 3929 continue; 3930 3931 radar_detect |= 3932 BIT(link->conf->chanreq.oper.width); 3933 } 3934 3935 return radar_detect; 3936 } 3937 3938 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3939 const struct cfg80211_chan_def *chandef, 3940 enum ieee80211_chanctx_mode chanmode, 3941 u8 radar_detect) 3942 { 3943 struct ieee80211_local *local = sdata->local; 3944 struct ieee80211_sub_if_data *sdata_iter; 3945 enum nl80211_iftype iftype = sdata->wdev.iftype; 3946 struct ieee80211_chanctx *ctx; 3947 int total = 1; 3948 struct iface_combination_params params = { 3949 .radar_detect = radar_detect, 3950 }; 3951 3952 lockdep_assert_wiphy(local->hw.wiphy); 3953 3954 if (WARN_ON(hweight32(radar_detect) > 1)) 3955 return -EINVAL; 3956 3957 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3958 !chandef->chan)) 3959 return -EINVAL; 3960 3961 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3962 return -EINVAL; 3963 3964 if (sdata->vif.type == NL80211_IFTYPE_AP || 3965 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 3966 /* 3967 * always passing this is harmless, since it'll be the 3968 * same value that cfg80211 finds if it finds the same 3969 * interface ... and that's always allowed 3970 */ 3971 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 3972 } 3973 3974 /* Always allow software iftypes */ 3975 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 3976 if (radar_detect) 3977 return -EINVAL; 3978 return 0; 3979 } 3980 3981 if (chandef) 3982 params.num_different_channels = 1; 3983 3984 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3985 params.iftype_num[iftype] = 1; 3986 3987 list_for_each_entry(ctx, &local->chanctx_list, list) { 3988 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3989 continue; 3990 params.radar_detect |= 3991 ieee80211_chanctx_radar_detect(local, ctx); 3992 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3993 params.num_different_channels++; 3994 continue; 3995 } 3996 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3997 cfg80211_chandef_compatible(chandef, 3998 &ctx->conf.def)) 3999 continue; 4000 params.num_different_channels++; 4001 } 4002 4003 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4004 struct wireless_dev *wdev_iter; 4005 4006 wdev_iter = &sdata_iter->wdev; 4007 4008 if (sdata_iter == sdata || 4009 !ieee80211_sdata_running(sdata_iter) || 4010 cfg80211_iftype_allowed(local->hw.wiphy, 4011 wdev_iter->iftype, 0, 1)) 4012 continue; 4013 4014 params.iftype_num[wdev_iter->iftype]++; 4015 total++; 4016 } 4017 4018 if (total == 1 && !params.radar_detect) 4019 return 0; 4020 4021 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4022 } 4023 4024 static void 4025 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4026 void *data) 4027 { 4028 u32 *max_num_different_channels = data; 4029 4030 *max_num_different_channels = max(*max_num_different_channels, 4031 c->num_different_channels); 4032 } 4033 4034 int ieee80211_max_num_channels(struct ieee80211_local *local) 4035 { 4036 struct ieee80211_sub_if_data *sdata; 4037 struct ieee80211_chanctx *ctx; 4038 u32 max_num_different_channels = 1; 4039 int err; 4040 struct iface_combination_params params = {0}; 4041 4042 lockdep_assert_wiphy(local->hw.wiphy); 4043 4044 list_for_each_entry(ctx, &local->chanctx_list, list) { 4045 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4046 continue; 4047 4048 params.num_different_channels++; 4049 4050 params.radar_detect |= 4051 ieee80211_chanctx_radar_detect(local, ctx); 4052 } 4053 4054 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4055 params.iftype_num[sdata->wdev.iftype]++; 4056 4057 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4058 ieee80211_iter_max_chans, 4059 &max_num_different_channels); 4060 if (err < 0) 4061 return err; 4062 4063 return max_num_different_channels; 4064 } 4065 4066 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4067 struct ieee80211_sta_s1g_cap *caps, 4068 struct sk_buff *skb) 4069 { 4070 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4071 struct ieee80211_s1g_cap s1g_capab; 4072 u8 *pos; 4073 int i; 4074 4075 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4076 return; 4077 4078 if (!caps->s1g) 4079 return; 4080 4081 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4082 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4083 4084 /* override the capability info */ 4085 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4086 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4087 4088 s1g_capab.capab_info[i] &= ~mask; 4089 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4090 } 4091 4092 /* then MCS and NSS set */ 4093 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4094 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4095 4096 s1g_capab.supp_mcs_nss[i] &= ~mask; 4097 s1g_capab.supp_mcs_nss[i] |= 4098 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4099 } 4100 4101 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4102 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4103 *pos++ = sizeof(s1g_capab); 4104 4105 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4106 } 4107 4108 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4109 struct sk_buff *skb) 4110 { 4111 u8 *pos = skb_put(skb, 3); 4112 4113 *pos++ = WLAN_EID_AID_REQUEST; 4114 *pos++ = 1; 4115 *pos++ = 0; 4116 } 4117 4118 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4119 { 4120 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4121 *buf++ = 7; /* len */ 4122 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4123 *buf++ = 0x50; 4124 *buf++ = 0xf2; 4125 *buf++ = 2; /* WME */ 4126 *buf++ = 0; /* WME info */ 4127 *buf++ = 1; /* WME ver */ 4128 *buf++ = qosinfo; /* U-APSD no in use */ 4129 4130 return buf; 4131 } 4132 4133 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4134 unsigned long *frame_cnt, 4135 unsigned long *byte_cnt) 4136 { 4137 struct txq_info *txqi = to_txq_info(txq); 4138 u32 frag_cnt = 0, frag_bytes = 0; 4139 struct sk_buff *skb; 4140 4141 skb_queue_walk(&txqi->frags, skb) { 4142 frag_cnt++; 4143 frag_bytes += skb->len; 4144 } 4145 4146 if (frame_cnt) 4147 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4148 4149 if (byte_cnt) 4150 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4151 } 4152 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4153 4154 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4155 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4156 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4157 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4158 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4159 }; 4160 4161 u16 ieee80211_encode_usf(int listen_interval) 4162 { 4163 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4164 u16 ui, usf = 0; 4165 4166 /* find greatest USF */ 4167 while (usf < IEEE80211_MAX_USF) { 4168 if (listen_interval % listen_int_usf[usf + 1]) 4169 break; 4170 usf += 1; 4171 } 4172 ui = listen_interval / listen_int_usf[usf]; 4173 4174 /* error if there is a remainder. Should've been checked by user */ 4175 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4176 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4177 FIELD_PREP(LISTEN_INT_UI, ui); 4178 4179 return (u16) listen_interval; 4180 } 4181 4182 /* this may return more than ieee80211_put_eht_cap() will need */ 4183 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4184 { 4185 const struct ieee80211_sta_he_cap *he_cap; 4186 const struct ieee80211_sta_eht_cap *eht_cap; 4187 struct ieee80211_supported_band *sband; 4188 bool is_ap; 4189 u8 n; 4190 4191 sband = ieee80211_get_sband(sdata); 4192 if (!sband) 4193 return 0; 4194 4195 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4196 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4197 if (!he_cap || !eht_cap) 4198 return 0; 4199 4200 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4201 4202 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4203 &eht_cap->eht_cap_elem, 4204 is_ap); 4205 return 2 + 1 + 4206 sizeof(eht_cap->eht_cap_elem) + n + 4207 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4208 eht_cap->eht_cap_elem.phy_cap_info); 4209 return 0; 4210 } 4211 4212 int ieee80211_put_eht_cap(struct sk_buff *skb, 4213 struct ieee80211_sub_if_data *sdata, 4214 const struct ieee80211_supported_band *sband, 4215 const struct ieee80211_conn_settings *conn) 4216 { 4217 const struct ieee80211_sta_he_cap *he_cap = 4218 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4219 const struct ieee80211_sta_eht_cap *eht_cap = 4220 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4221 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4222 struct ieee80211_eht_cap_elem_fixed fixed; 4223 struct ieee80211_he_cap_elem he; 4224 u8 mcs_nss_len, ppet_len; 4225 u8 orig_mcs_nss_len; 4226 u8 ie_len; 4227 4228 if (!conn) 4229 conn = &ieee80211_conn_settings_unlimited; 4230 4231 /* Make sure we have place for the IE */ 4232 if (!he_cap || !eht_cap) 4233 return 0; 4234 4235 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4236 &eht_cap->eht_cap_elem, 4237 for_ap); 4238 4239 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4240 4241 fixed = eht_cap->eht_cap_elem; 4242 4243 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4244 fixed.phy_cap_info[6] &= 4245 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4246 4247 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4248 fixed.phy_cap_info[1] &= 4249 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4250 fixed.phy_cap_info[2] &= 4251 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4252 fixed.phy_cap_info[6] &= 4253 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4254 } 4255 4256 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4257 fixed.phy_cap_info[0] &= 4258 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4259 fixed.phy_cap_info[1] &= 4260 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4261 fixed.phy_cap_info[2] &= 4262 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4263 fixed.phy_cap_info[6] &= 4264 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4265 } 4266 4267 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4268 fixed.phy_cap_info[0] &= 4269 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4270 4271 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4272 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4273 fixed.phy_cap_info); 4274 4275 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4276 if (skb_tailroom(skb) < ie_len) 4277 return -ENOBUFS; 4278 4279 skb_put_u8(skb, WLAN_EID_EXTENSION); 4280 skb_put_u8(skb, ie_len - 2); 4281 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4282 skb_put_data(skb, &fixed, sizeof(fixed)); 4283 4284 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4285 /* 4286 * If the (non-AP) STA became 20 MHz only, then convert from 4287 * <=80 to 20-MHz-only format, where MCSes are indicated in 4288 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4289 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4290 */ 4291 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4292 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4293 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4294 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4295 } else { 4296 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4297 } 4298 4299 if (ppet_len) 4300 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4301 4302 return 0; 4303 } 4304 4305 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4306 { 4307 static const char * const modes[] = { 4308 [IEEE80211_CONN_MODE_S1G] = "S1G", 4309 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4310 [IEEE80211_CONN_MODE_HT] = "HT", 4311 [IEEE80211_CONN_MODE_VHT] = "VHT", 4312 [IEEE80211_CONN_MODE_HE] = "HE", 4313 [IEEE80211_CONN_MODE_EHT] = "EHT", 4314 }; 4315 4316 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4317 return "<out of range>"; 4318 4319 return modes[mode] ?: "<missing string>"; 4320 } 4321 4322 enum ieee80211_conn_bw_limit 4323 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4324 { 4325 switch (chandef->width) { 4326 case NL80211_CHAN_WIDTH_20_NOHT: 4327 case NL80211_CHAN_WIDTH_20: 4328 return IEEE80211_CONN_BW_LIMIT_20; 4329 case NL80211_CHAN_WIDTH_40: 4330 return IEEE80211_CONN_BW_LIMIT_40; 4331 case NL80211_CHAN_WIDTH_80: 4332 return IEEE80211_CONN_BW_LIMIT_80; 4333 case NL80211_CHAN_WIDTH_80P80: 4334 case NL80211_CHAN_WIDTH_160: 4335 return IEEE80211_CONN_BW_LIMIT_160; 4336 case NL80211_CHAN_WIDTH_320: 4337 return IEEE80211_CONN_BW_LIMIT_320; 4338 default: 4339 WARN(1, "unhandled chandef width %d\n", chandef->width); 4340 return IEEE80211_CONN_BW_LIMIT_20; 4341 } 4342 } 4343