1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 trace_stop_queue(local, queue, reason); 506 507 if (WARN_ON(queue >= hw->queues)) 508 return; 509 510 if (!refcounted) 511 local->q_stop_reasons[queue][reason] = 1; 512 else 513 local->q_stop_reasons[queue][reason]++; 514 515 set_bit(reason, &local->queue_stop_reasons[queue]); 516 } 517 518 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 519 enum queue_stop_reason reason, 520 bool refcounted) 521 { 522 struct ieee80211_local *local = hw_to_local(hw); 523 unsigned long flags; 524 525 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 526 __ieee80211_stop_queue(hw, queue, reason, refcounted); 527 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 528 } 529 530 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 531 { 532 ieee80211_stop_queue_by_reason(hw, queue, 533 IEEE80211_QUEUE_STOP_REASON_DRIVER, 534 false); 535 } 536 EXPORT_SYMBOL(ieee80211_stop_queue); 537 538 void ieee80211_add_pending_skb(struct ieee80211_local *local, 539 struct sk_buff *skb) 540 { 541 struct ieee80211_hw *hw = &local->hw; 542 unsigned long flags; 543 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 544 int queue = info->hw_queue; 545 546 if (WARN_ON(!info->control.vif)) { 547 ieee80211_free_txskb(&local->hw, skb); 548 return; 549 } 550 551 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 552 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 553 false); 554 __skb_queue_tail(&local->pending[queue], skb); 555 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 556 false, &flags); 557 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 558 } 559 560 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 561 struct sk_buff_head *skbs) 562 { 563 struct ieee80211_hw *hw = &local->hw; 564 struct sk_buff *skb; 565 unsigned long flags; 566 int queue, i; 567 568 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 569 while ((skb = skb_dequeue(skbs))) { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 572 if (WARN_ON(!info->control.vif)) { 573 ieee80211_free_txskb(&local->hw, skb); 574 continue; 575 } 576 577 queue = info->hw_queue; 578 579 __ieee80211_stop_queue(hw, queue, 580 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 581 false); 582 583 __skb_queue_tail(&local->pending[queue], skb); 584 } 585 586 for (i = 0; i < hw->queues; i++) 587 __ieee80211_wake_queue(hw, i, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 594 unsigned long queues, 595 enum queue_stop_reason reason, 596 bool refcounted) 597 { 598 struct ieee80211_local *local = hw_to_local(hw); 599 unsigned long flags; 600 int i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 604 for_each_set_bit(i, &queues, hw->queues) 605 __ieee80211_stop_queue(hw, i, reason, refcounted); 606 607 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 608 } 609 610 void ieee80211_stop_queues(struct ieee80211_hw *hw) 611 { 612 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 613 IEEE80211_QUEUE_STOP_REASON_DRIVER, 614 false); 615 } 616 EXPORT_SYMBOL(ieee80211_stop_queues); 617 618 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 619 { 620 struct ieee80211_local *local = hw_to_local(hw); 621 unsigned long flags; 622 int ret; 623 624 if (WARN_ON(queue >= hw->queues)) 625 return true; 626 627 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 628 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 629 &local->queue_stop_reasons[queue]); 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(ieee80211_queue_stopped); 634 635 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 636 unsigned long queues, 637 enum queue_stop_reason reason, 638 bool refcounted) 639 { 640 struct ieee80211_local *local = hw_to_local(hw); 641 unsigned long flags; 642 int i; 643 644 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 645 646 for_each_set_bit(i, &queues, hw->queues) 647 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 648 649 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 650 } 651 652 void ieee80211_wake_queues(struct ieee80211_hw *hw) 653 { 654 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 655 IEEE80211_QUEUE_STOP_REASON_DRIVER, 656 false); 657 } 658 EXPORT_SYMBOL(ieee80211_wake_queues); 659 660 unsigned int 661 ieee80211_get_vif_queues(struct ieee80211_local *local, 662 struct ieee80211_sub_if_data *sdata) 663 { 664 unsigned int queues; 665 666 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 667 int ac; 668 669 queues = 0; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 672 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 673 queues |= BIT(sdata->vif.hw_queue[ac]); 674 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 675 queues |= BIT(sdata->vif.cab_queue); 676 } else { 677 /* all queues */ 678 queues = BIT(local->hw.queues) - 1; 679 } 680 681 return queues; 682 } 683 684 void __ieee80211_flush_queues(struct ieee80211_local *local, 685 struct ieee80211_sub_if_data *sdata, 686 unsigned int queues, bool drop) 687 { 688 if (!local->ops->flush) 689 return; 690 691 /* 692 * If no queue was set, or if the HW doesn't support 693 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 694 */ 695 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 696 queues = ieee80211_get_vif_queues(local, sdata); 697 698 ieee80211_stop_queues_by_reason(&local->hw, queues, 699 IEEE80211_QUEUE_STOP_REASON_FLUSH, 700 false); 701 702 if (drop) { 703 struct sta_info *sta; 704 705 /* Purge the queues, so the frames on them won't be 706 * sent during __ieee80211_wake_queue() 707 */ 708 list_for_each_entry(sta, &local->sta_list, list) { 709 if (sdata != sta->sdata) 710 continue; 711 ieee80211_purge_sta_txqs(sta); 712 } 713 } 714 715 drv_flush(local, sdata, queues, drop); 716 717 ieee80211_wake_queues_by_reason(&local->hw, queues, 718 IEEE80211_QUEUE_STOP_REASON_FLUSH, 719 false); 720 } 721 722 void ieee80211_flush_queues(struct ieee80211_local *local, 723 struct ieee80211_sub_if_data *sdata, bool drop) 724 { 725 __ieee80211_flush_queues(local, sdata, 0, drop); 726 } 727 728 static void __iterate_interfaces(struct ieee80211_local *local, 729 u32 iter_flags, 730 void (*iterator)(void *data, u8 *mac, 731 struct ieee80211_vif *vif), 732 void *data) 733 { 734 struct ieee80211_sub_if_data *sdata; 735 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 736 737 list_for_each_entry_rcu(sdata, &local->interfaces, list, 738 lockdep_is_held(&local->iflist_mtx) || 739 lockdep_is_held(&local->hw.wiphy->mtx)) { 740 switch (sdata->vif.type) { 741 case NL80211_IFTYPE_MONITOR: 742 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 743 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 744 continue; 745 break; 746 case NL80211_IFTYPE_AP_VLAN: 747 continue; 748 default: 749 break; 750 } 751 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 752 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 753 continue; 754 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 755 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 756 continue; 757 if (ieee80211_sdata_running(sdata) || !active_only) 758 iterator(data, sdata->vif.addr, 759 &sdata->vif); 760 } 761 762 sdata = rcu_dereference_check(local->monitor_sdata, 763 lockdep_is_held(&local->iflist_mtx) || 764 lockdep_is_held(&local->hw.wiphy->mtx)); 765 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 766 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 767 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 768 iterator(data, sdata->vif.addr, &sdata->vif); 769 } 770 771 void ieee80211_iterate_interfaces( 772 struct ieee80211_hw *hw, u32 iter_flags, 773 void (*iterator)(void *data, u8 *mac, 774 struct ieee80211_vif *vif), 775 void *data) 776 { 777 struct ieee80211_local *local = hw_to_local(hw); 778 779 mutex_lock(&local->iflist_mtx); 780 __iterate_interfaces(local, iter_flags, iterator, data); 781 mutex_unlock(&local->iflist_mtx); 782 } 783 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 784 785 void ieee80211_iterate_active_interfaces_atomic( 786 struct ieee80211_hw *hw, u32 iter_flags, 787 void (*iterator)(void *data, u8 *mac, 788 struct ieee80211_vif *vif), 789 void *data) 790 { 791 struct ieee80211_local *local = hw_to_local(hw); 792 793 rcu_read_lock(); 794 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 795 iterator, data); 796 rcu_read_unlock(); 797 } 798 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 799 800 void ieee80211_iterate_active_interfaces_mtx( 801 struct ieee80211_hw *hw, u32 iter_flags, 802 void (*iterator)(void *data, u8 *mac, 803 struct ieee80211_vif *vif), 804 void *data) 805 { 806 struct ieee80211_local *local = hw_to_local(hw); 807 808 lockdep_assert_wiphy(hw->wiphy); 809 810 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 811 iterator, data); 812 } 813 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 814 815 static void __iterate_stations(struct ieee80211_local *local, 816 void (*iterator)(void *data, 817 struct ieee80211_sta *sta), 818 void *data) 819 { 820 struct sta_info *sta; 821 822 list_for_each_entry_rcu(sta, &local->sta_list, list, 823 lockdep_is_held(&local->hw.wiphy->mtx)) { 824 if (!sta->uploaded) 825 continue; 826 827 iterator(data, &sta->sta); 828 } 829 } 830 831 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 832 void (*iterator)(void *data, 833 struct ieee80211_sta *sta), 834 void *data) 835 { 836 struct ieee80211_local *local = hw_to_local(hw); 837 838 rcu_read_lock(); 839 __iterate_stations(local, iterator, data); 840 rcu_read_unlock(); 841 } 842 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 843 844 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 845 void (*iterator)(void *data, 846 struct ieee80211_sta *sta), 847 void *data) 848 { 849 struct ieee80211_local *local = hw_to_local(hw); 850 851 lockdep_assert_wiphy(local->hw.wiphy); 852 853 __iterate_stations(local, iterator, data); 854 } 855 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 856 857 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 858 { 859 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 860 861 if (!ieee80211_sdata_running(sdata) || 862 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 863 return NULL; 864 return &sdata->vif; 865 } 866 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 867 868 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 869 { 870 if (!vif) 871 return NULL; 872 873 return &vif_to_sdata(vif)->wdev; 874 } 875 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 876 877 /* 878 * Nothing should have been stuffed into the workqueue during 879 * the suspend->resume cycle. Since we can't check each caller 880 * of this function if we are already quiescing / suspended, 881 * check here and don't WARN since this can actually happen when 882 * the rx path (for example) is racing against __ieee80211_suspend 883 * and suspending / quiescing was set after the rx path checked 884 * them. 885 */ 886 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 887 { 888 if (local->quiescing || (local->suspended && !local->resuming)) { 889 pr_warn("queueing ieee80211 work while going to suspend\n"); 890 return false; 891 } 892 893 return true; 894 } 895 896 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 897 { 898 struct ieee80211_local *local = hw_to_local(hw); 899 900 if (!ieee80211_can_queue_work(local)) 901 return; 902 903 queue_work(local->workqueue, work); 904 } 905 EXPORT_SYMBOL(ieee80211_queue_work); 906 907 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 908 struct delayed_work *dwork, 909 unsigned long delay) 910 { 911 struct ieee80211_local *local = hw_to_local(hw); 912 913 if (!ieee80211_can_queue_work(local)) 914 return; 915 916 queue_delayed_work(local->workqueue, dwork, delay); 917 } 918 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 919 920 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 921 struct ieee80211_tx_queue_params 922 *qparam, int ac) 923 { 924 struct ieee80211_chanctx_conf *chanctx_conf; 925 const struct ieee80211_reg_rule *rrule; 926 const struct ieee80211_wmm_ac *wmm_ac; 927 u16 center_freq = 0; 928 929 if (sdata->vif.type != NL80211_IFTYPE_AP && 930 sdata->vif.type != NL80211_IFTYPE_STATION) 931 return; 932 933 rcu_read_lock(); 934 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 935 if (chanctx_conf) 936 center_freq = chanctx_conf->def.chan->center_freq; 937 938 if (!center_freq) { 939 rcu_read_unlock(); 940 return; 941 } 942 943 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 944 945 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 946 rcu_read_unlock(); 947 return; 948 } 949 950 if (sdata->vif.type == NL80211_IFTYPE_AP) 951 wmm_ac = &rrule->wmm_rule.ap[ac]; 952 else 953 wmm_ac = &rrule->wmm_rule.client[ac]; 954 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 955 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 956 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 957 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 958 rcu_read_unlock(); 959 } 960 961 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 962 bool bss_notify, bool enable_qos) 963 { 964 struct ieee80211_sub_if_data *sdata = link->sdata; 965 struct ieee80211_local *local = sdata->local; 966 struct ieee80211_tx_queue_params qparam; 967 struct ieee80211_chanctx_conf *chanctx_conf; 968 int ac; 969 bool use_11b; 970 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 971 int aCWmin, aCWmax; 972 973 if (!local->ops->conf_tx) 974 return; 975 976 if (local->hw.queues < IEEE80211_NUM_ACS) 977 return; 978 979 memset(&qparam, 0, sizeof(qparam)); 980 981 rcu_read_lock(); 982 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 983 use_11b = (chanctx_conf && 984 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 985 !link->operating_11g_mode; 986 rcu_read_unlock(); 987 988 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 989 990 /* Set defaults according to 802.11-2007 Table 7-37 */ 991 aCWmax = 1023; 992 if (use_11b) 993 aCWmin = 31; 994 else 995 aCWmin = 15; 996 997 /* Configure old 802.11b/g medium access rules. */ 998 qparam.cw_max = aCWmax; 999 qparam.cw_min = aCWmin; 1000 qparam.txop = 0; 1001 qparam.aifs = 2; 1002 1003 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1004 /* Update if QoS is enabled. */ 1005 if (enable_qos) { 1006 switch (ac) { 1007 case IEEE80211_AC_BK: 1008 qparam.cw_max = aCWmax; 1009 qparam.cw_min = aCWmin; 1010 qparam.txop = 0; 1011 if (is_ocb) 1012 qparam.aifs = 9; 1013 else 1014 qparam.aifs = 7; 1015 break; 1016 /* never happens but let's not leave undefined */ 1017 default: 1018 case IEEE80211_AC_BE: 1019 qparam.cw_max = aCWmax; 1020 qparam.cw_min = aCWmin; 1021 qparam.txop = 0; 1022 if (is_ocb) 1023 qparam.aifs = 6; 1024 else 1025 qparam.aifs = 3; 1026 break; 1027 case IEEE80211_AC_VI: 1028 qparam.cw_max = aCWmin; 1029 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1030 if (is_ocb) 1031 qparam.txop = 0; 1032 else if (use_11b) 1033 qparam.txop = 6016/32; 1034 else 1035 qparam.txop = 3008/32; 1036 1037 if (is_ocb) 1038 qparam.aifs = 3; 1039 else 1040 qparam.aifs = 2; 1041 break; 1042 case IEEE80211_AC_VO: 1043 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1044 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1045 if (is_ocb) 1046 qparam.txop = 0; 1047 else if (use_11b) 1048 qparam.txop = 3264/32; 1049 else 1050 qparam.txop = 1504/32; 1051 qparam.aifs = 2; 1052 break; 1053 } 1054 } 1055 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1056 1057 qparam.uapsd = false; 1058 1059 link->tx_conf[ac] = qparam; 1060 drv_conf_tx(local, link, ac, &qparam); 1061 } 1062 1063 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1064 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1065 sdata->vif.type != NL80211_IFTYPE_NAN) { 1066 link->conf->qos = enable_qos; 1067 if (bss_notify) 1068 ieee80211_link_info_change_notify(sdata, link, 1069 BSS_CHANGED_QOS); 1070 } 1071 } 1072 1073 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1074 u16 transaction, u16 auth_alg, u16 status, 1075 const u8 *extra, size_t extra_len, const u8 *da, 1076 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1077 u32 tx_flags) 1078 { 1079 struct ieee80211_local *local = sdata->local; 1080 struct sk_buff *skb; 1081 struct ieee80211_mgmt *mgmt; 1082 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1083 struct { 1084 u8 id; 1085 u8 len; 1086 u8 ext_id; 1087 struct ieee80211_multi_link_elem ml; 1088 struct ieee80211_mle_basic_common_info basic; 1089 } __packed mle = { 1090 .id = WLAN_EID_EXTENSION, 1091 .len = sizeof(mle) - 2, 1092 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1093 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1094 .basic.len = sizeof(mle.basic), 1095 }; 1096 int err; 1097 1098 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1099 1100 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1101 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1102 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1103 multi_link * sizeof(mle)); 1104 if (!skb) 1105 return; 1106 1107 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1108 1109 mgmt = skb_put_zero(skb, 24 + 6); 1110 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1111 IEEE80211_STYPE_AUTH); 1112 memcpy(mgmt->da, da, ETH_ALEN); 1113 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1114 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1115 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1116 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1117 mgmt->u.auth.status_code = cpu_to_le16(status); 1118 if (extra) 1119 skb_put_data(skb, extra, extra_len); 1120 if (multi_link) 1121 skb_put_data(skb, &mle, sizeof(mle)); 1122 1123 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1124 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1125 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1126 if (WARN_ON(err)) { 1127 kfree_skb(skb); 1128 return; 1129 } 1130 } 1131 1132 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1133 tx_flags; 1134 ieee80211_tx_skb(sdata, skb); 1135 } 1136 1137 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1138 const u8 *da, const u8 *bssid, 1139 u16 stype, u16 reason, 1140 bool send_frame, u8 *frame_buf) 1141 { 1142 struct ieee80211_local *local = sdata->local; 1143 struct sk_buff *skb; 1144 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1145 1146 /* build frame */ 1147 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1148 mgmt->duration = 0; /* initialize only */ 1149 mgmt->seq_ctrl = 0; /* initialize only */ 1150 memcpy(mgmt->da, da, ETH_ALEN); 1151 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1152 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1153 /* u.deauth.reason_code == u.disassoc.reason_code */ 1154 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1155 1156 if (send_frame) { 1157 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1158 IEEE80211_DEAUTH_FRAME_LEN); 1159 if (!skb) 1160 return; 1161 1162 skb_reserve(skb, local->hw.extra_tx_headroom); 1163 1164 /* copy in frame */ 1165 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1166 1167 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1168 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1169 IEEE80211_SKB_CB(skb)->flags |= 1170 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1171 1172 ieee80211_tx_skb(sdata, skb); 1173 } 1174 } 1175 1176 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1177 struct ieee80211_sta_s1g_cap *s1g_cap) 1178 { 1179 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1180 return -ENOBUFS; 1181 1182 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1183 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1184 1185 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1186 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1187 1188 return 0; 1189 } 1190 1191 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1192 struct ieee80211_sub_if_data *sdata, 1193 const u8 *ie, size_t ie_len, 1194 size_t *offset, 1195 enum nl80211_band band, 1196 u32 rate_mask, 1197 struct cfg80211_chan_def *chandef, 1198 u32 flags) 1199 { 1200 struct ieee80211_local *local = sdata->local; 1201 struct ieee80211_supported_band *sband; 1202 int i, err; 1203 size_t noffset; 1204 u32 rate_flags; 1205 bool have_80mhz = false; 1206 1207 *offset = 0; 1208 1209 sband = local->hw.wiphy->bands[band]; 1210 if (WARN_ON_ONCE(!sband)) 1211 return 0; 1212 1213 rate_flags = ieee80211_chandef_rate_flags(chandef); 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1220 ~rate_mask, WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1242 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates, rate_flags; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 rate_flags = 1530 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1531 1532 num_rates = sband->n_bitrates; 1533 supp_rates = 0; 1534 for (i = 0; i < elems->supp_rates_len + 1535 elems->ext_supp_rates_len; i++) { 1536 u8 rate = 0; 1537 int own_rate; 1538 bool is_basic; 1539 if (i < elems->supp_rates_len) 1540 rate = elems->supp_rates[i]; 1541 else if (elems->ext_supp_rates) 1542 rate = elems->ext_supp_rates 1543 [i - elems->supp_rates_len]; 1544 own_rate = 5 * (rate & 0x7f); 1545 is_basic = !!(rate & 0x80); 1546 1547 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1548 continue; 1549 1550 for (j = 0; j < num_rates; j++) { 1551 int brate; 1552 if ((rate_flags & sband->bitrates[j].flags) 1553 != rate_flags) 1554 continue; 1555 1556 brate = sband->bitrates[j].bitrate; 1557 1558 if (brate == own_rate) { 1559 supp_rates |= BIT(j); 1560 if (basic_rates && is_basic) 1561 *basic_rates |= BIT(j); 1562 } 1563 } 1564 } 1565 return supp_rates; 1566 } 1567 1568 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1569 { 1570 local_bh_disable(); 1571 ieee80211_handle_queued_frames(local); 1572 local_bh_enable(); 1573 1574 ieee80211_led_radio(local, false); 1575 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1576 1577 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1578 1579 flush_workqueue(local->workqueue); 1580 wiphy_work_flush(local->hw.wiphy, NULL); 1581 drv_stop(local, suspend); 1582 } 1583 1584 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1585 bool aborted) 1586 { 1587 /* It's possible that we don't handle the scan completion in 1588 * time during suspend, so if it's still marked as completed 1589 * here, queue the work and flush it to clean things up. 1590 * Instead of calling the worker function directly here, we 1591 * really queue it to avoid potential races with other flows 1592 * scheduling the same work. 1593 */ 1594 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1595 /* If coming from reconfiguration failure, abort the scan so 1596 * we don't attempt to continue a partial HW scan - which is 1597 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1598 * completed scan, and a 5 GHz portion is still pending. 1599 */ 1600 if (aborted) 1601 set_bit(SCAN_ABORTED, &local->scanning); 1602 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1603 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1604 } 1605 } 1606 1607 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1608 { 1609 struct ieee80211_sub_if_data *sdata; 1610 struct ieee80211_chanctx *ctx; 1611 1612 lockdep_assert_wiphy(local->hw.wiphy); 1613 1614 /* 1615 * We get here if during resume the device can't be restarted properly. 1616 * We might also get here if this happens during HW reset, which is a 1617 * slightly different situation and we need to drop all connections in 1618 * the latter case. 1619 * 1620 * Ask cfg80211 to turn off all interfaces, this will result in more 1621 * warnings but at least we'll then get into a clean stopped state. 1622 */ 1623 1624 local->resuming = false; 1625 local->suspended = false; 1626 local->in_reconfig = false; 1627 local->reconfig_failure = true; 1628 1629 ieee80211_flush_completed_scan(local, true); 1630 1631 /* scheduled scan clearly can't be running any more, but tell 1632 * cfg80211 and clear local state 1633 */ 1634 ieee80211_sched_scan_end(local); 1635 1636 list_for_each_entry(sdata, &local->interfaces, list) 1637 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1638 1639 /* Mark channel contexts as not being in the driver any more to avoid 1640 * removing them from the driver during the shutdown process... 1641 */ 1642 list_for_each_entry(ctx, &local->chanctx_list, list) 1643 ctx->driver_present = false; 1644 } 1645 1646 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1647 struct ieee80211_sub_if_data *sdata, 1648 struct ieee80211_link_data *link) 1649 { 1650 struct ieee80211_chanctx_conf *conf; 1651 struct ieee80211_chanctx *ctx; 1652 1653 lockdep_assert_wiphy(local->hw.wiphy); 1654 1655 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1656 lockdep_is_held(&local->hw.wiphy->mtx)); 1657 if (conf) { 1658 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1659 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1660 } 1661 } 1662 1663 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1664 { 1665 struct ieee80211_local *local = sdata->local; 1666 struct sta_info *sta; 1667 1668 lockdep_assert_wiphy(local->hw.wiphy); 1669 1670 /* add STAs back */ 1671 list_for_each_entry(sta, &local->sta_list, list) { 1672 enum ieee80211_sta_state state; 1673 1674 if (!sta->uploaded || sta->sdata != sdata) 1675 continue; 1676 1677 for (state = IEEE80211_STA_NOTEXIST; 1678 state < sta->sta_state; state++) 1679 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1680 state + 1)); 1681 } 1682 } 1683 1684 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1685 { 1686 struct cfg80211_nan_func *func, **funcs; 1687 int res, id, i = 0; 1688 1689 res = drv_start_nan(sdata->local, sdata, 1690 &sdata->u.nan.conf); 1691 if (WARN_ON(res)) 1692 return res; 1693 1694 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1695 sizeof(*funcs), 1696 GFP_KERNEL); 1697 if (!funcs) 1698 return -ENOMEM; 1699 1700 /* Add all the functions: 1701 * This is a little bit ugly. We need to call a potentially sleeping 1702 * callback for each NAN function, so we can't hold the spinlock. 1703 */ 1704 spin_lock_bh(&sdata->u.nan.func_lock); 1705 1706 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1707 funcs[i++] = func; 1708 1709 spin_unlock_bh(&sdata->u.nan.func_lock); 1710 1711 for (i = 0; funcs[i]; i++) { 1712 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1713 if (WARN_ON(res)) 1714 ieee80211_nan_func_terminated(&sdata->vif, 1715 funcs[i]->instance_id, 1716 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1717 GFP_KERNEL); 1718 } 1719 1720 kfree(funcs); 1721 1722 return 0; 1723 } 1724 1725 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1726 struct ieee80211_sub_if_data *sdata, 1727 u64 changed) 1728 { 1729 int link_id; 1730 1731 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1732 struct ieee80211_link_data *link; 1733 1734 if (!(sdata->vif.active_links & BIT(link_id))) 1735 continue; 1736 1737 link = sdata_dereference(sdata->link[link_id], sdata); 1738 if (!link) 1739 continue; 1740 1741 if (rcu_access_pointer(link->u.ap.beacon)) 1742 drv_start_ap(local, sdata, link->conf); 1743 1744 if (!link->conf->enable_beacon) 1745 continue; 1746 1747 changed |= BSS_CHANGED_BEACON | 1748 BSS_CHANGED_BEACON_ENABLED; 1749 1750 ieee80211_link_info_change_notify(sdata, link, changed); 1751 } 1752 } 1753 1754 int ieee80211_reconfig(struct ieee80211_local *local) 1755 { 1756 struct ieee80211_hw *hw = &local->hw; 1757 struct ieee80211_sub_if_data *sdata; 1758 struct ieee80211_chanctx *ctx; 1759 struct sta_info *sta; 1760 int res, i; 1761 bool reconfig_due_to_wowlan = false; 1762 struct ieee80211_sub_if_data *sched_scan_sdata; 1763 struct cfg80211_sched_scan_request *sched_scan_req; 1764 bool sched_scan_stopped = false; 1765 bool suspended = local->suspended; 1766 bool in_reconfig = false; 1767 1768 lockdep_assert_wiphy(local->hw.wiphy); 1769 1770 /* nothing to do if HW shouldn't run */ 1771 if (!local->open_count) 1772 goto wake_up; 1773 1774 #ifdef CONFIG_PM 1775 if (suspended) 1776 local->resuming = true; 1777 1778 if (local->wowlan) { 1779 /* 1780 * In the wowlan case, both mac80211 and the device 1781 * are functional when the resume op is called, so 1782 * clear local->suspended so the device could operate 1783 * normally (e.g. pass rx frames). 1784 */ 1785 local->suspended = false; 1786 res = drv_resume(local); 1787 local->wowlan = false; 1788 if (res < 0) { 1789 local->resuming = false; 1790 return res; 1791 } 1792 if (res == 0) 1793 goto wake_up; 1794 WARN_ON(res > 1); 1795 /* 1796 * res is 1, which means the driver requested 1797 * to go through a regular reset on wakeup. 1798 * restore local->suspended in this case. 1799 */ 1800 reconfig_due_to_wowlan = true; 1801 local->suspended = true; 1802 } 1803 #endif 1804 1805 /* 1806 * In case of hw_restart during suspend (without wowlan), 1807 * cancel restart work, as we are reconfiguring the device 1808 * anyway. 1809 * Note that restart_work is scheduled on a frozen workqueue, 1810 * so we can't deadlock in this case. 1811 */ 1812 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1813 cancel_work_sync(&local->restart_work); 1814 1815 local->started = false; 1816 1817 /* 1818 * Upon resume hardware can sometimes be goofy due to 1819 * various platform / driver / bus issues, so restarting 1820 * the device may at times not work immediately. Propagate 1821 * the error. 1822 */ 1823 res = drv_start(local); 1824 if (res) { 1825 if (suspended) 1826 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1827 else 1828 WARN(1, "Hardware became unavailable during restart.\n"); 1829 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1830 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1831 false); 1832 ieee80211_handle_reconfig_failure(local); 1833 return res; 1834 } 1835 1836 /* setup fragmentation threshold */ 1837 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1838 1839 /* setup RTS threshold */ 1840 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1841 1842 /* reset coverage class */ 1843 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1844 1845 ieee80211_led_radio(local, true); 1846 ieee80211_mod_tpt_led_trig(local, 1847 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1848 1849 /* add interfaces */ 1850 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1851 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1852 /* in HW restart it exists already */ 1853 WARN_ON(local->resuming); 1854 res = drv_add_interface(local, sdata); 1855 if (WARN_ON(res)) { 1856 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1857 synchronize_net(); 1858 kfree(sdata); 1859 } 1860 } 1861 1862 list_for_each_entry(sdata, &local->interfaces, list) { 1863 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1864 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1865 continue; 1866 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1867 ieee80211_sdata_running(sdata)) { 1868 res = drv_add_interface(local, sdata); 1869 if (WARN_ON(res)) 1870 break; 1871 } 1872 } 1873 1874 /* If adding any of the interfaces failed above, roll back and 1875 * report failure. 1876 */ 1877 if (res) { 1878 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1879 list) { 1880 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1881 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1882 continue; 1883 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1884 ieee80211_sdata_running(sdata)) 1885 drv_remove_interface(local, sdata); 1886 } 1887 ieee80211_handle_reconfig_failure(local); 1888 return res; 1889 } 1890 1891 /* add channel contexts */ 1892 list_for_each_entry(ctx, &local->chanctx_list, list) 1893 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1894 WARN_ON(drv_add_chanctx(local, ctx)); 1895 1896 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1897 if (sdata && ieee80211_sdata_running(sdata)) 1898 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1899 1900 /* reconfigure hardware */ 1901 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1902 IEEE80211_CONF_CHANGE_MONITOR | 1903 IEEE80211_CONF_CHANGE_PS | 1904 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1905 IEEE80211_CONF_CHANGE_IDLE); 1906 1907 ieee80211_configure_filter(local); 1908 1909 /* Finally also reconfigure all the BSS information */ 1910 list_for_each_entry(sdata, &local->interfaces, list) { 1911 /* common change flags for all interface types - link only */ 1912 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1913 BSS_CHANGED_ERP_PREAMBLE | 1914 BSS_CHANGED_ERP_SLOT | 1915 BSS_CHANGED_HT | 1916 BSS_CHANGED_BASIC_RATES | 1917 BSS_CHANGED_BEACON_INT | 1918 BSS_CHANGED_BSSID | 1919 BSS_CHANGED_CQM | 1920 BSS_CHANGED_QOS | 1921 BSS_CHANGED_TXPOWER | 1922 BSS_CHANGED_MCAST_RATE; 1923 struct ieee80211_link_data *link = NULL; 1924 unsigned int link_id; 1925 u32 active_links = 0; 1926 1927 if (!ieee80211_sdata_running(sdata)) 1928 continue; 1929 1930 if (ieee80211_vif_is_mld(&sdata->vif)) { 1931 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1932 [0] = &sdata->vif.bss_conf, 1933 }; 1934 1935 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1936 /* start with a single active link */ 1937 active_links = sdata->vif.active_links; 1938 link_id = ffs(active_links) - 1; 1939 sdata->vif.active_links = BIT(link_id); 1940 } 1941 1942 drv_change_vif_links(local, sdata, 0, 1943 sdata->vif.active_links, 1944 old); 1945 } 1946 1947 sdata->restart_active_links = active_links; 1948 1949 for (link_id = 0; 1950 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1951 link_id++) { 1952 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1953 continue; 1954 1955 link = sdata_dereference(sdata->link[link_id], sdata); 1956 if (!link) 1957 continue; 1958 1959 ieee80211_assign_chanctx(local, sdata, link); 1960 } 1961 1962 switch (sdata->vif.type) { 1963 case NL80211_IFTYPE_AP_VLAN: 1964 case NL80211_IFTYPE_MONITOR: 1965 break; 1966 case NL80211_IFTYPE_ADHOC: 1967 if (sdata->vif.cfg.ibss_joined) 1968 WARN_ON(drv_join_ibss(local, sdata)); 1969 fallthrough; 1970 default: 1971 ieee80211_reconfig_stations(sdata); 1972 fallthrough; 1973 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1974 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1975 drv_conf_tx(local, &sdata->deflink, i, 1976 &sdata->deflink.tx_conf[i]); 1977 break; 1978 } 1979 1980 if (sdata->vif.bss_conf.mu_mimo_owner) 1981 changed |= BSS_CHANGED_MU_GROUPS; 1982 1983 if (!ieee80211_vif_is_mld(&sdata->vif)) 1984 changed |= BSS_CHANGED_IDLE; 1985 1986 switch (sdata->vif.type) { 1987 case NL80211_IFTYPE_STATION: 1988 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1989 changed |= BSS_CHANGED_ASSOC | 1990 BSS_CHANGED_ARP_FILTER | 1991 BSS_CHANGED_PS; 1992 1993 /* Re-send beacon info report to the driver */ 1994 if (sdata->deflink.u.mgd.have_beacon) 1995 changed |= BSS_CHANGED_BEACON_INFO; 1996 1997 if (sdata->vif.bss_conf.max_idle_period || 1998 sdata->vif.bss_conf.protected_keep_alive) 1999 changed |= BSS_CHANGED_KEEP_ALIVE; 2000 2001 ieee80211_bss_info_change_notify(sdata, 2002 changed); 2003 } else if (!WARN_ON(!link)) { 2004 ieee80211_link_info_change_notify(sdata, link, 2005 changed); 2006 changed = BSS_CHANGED_ASSOC | 2007 BSS_CHANGED_IDLE | 2008 BSS_CHANGED_PS | 2009 BSS_CHANGED_ARP_FILTER; 2010 ieee80211_vif_cfg_change_notify(sdata, changed); 2011 } 2012 break; 2013 case NL80211_IFTYPE_OCB: 2014 changed |= BSS_CHANGED_OCB; 2015 ieee80211_bss_info_change_notify(sdata, changed); 2016 break; 2017 case NL80211_IFTYPE_ADHOC: 2018 changed |= BSS_CHANGED_IBSS; 2019 fallthrough; 2020 case NL80211_IFTYPE_AP: 2021 changed |= BSS_CHANGED_P2P_PS; 2022 2023 if (ieee80211_vif_is_mld(&sdata->vif)) 2024 ieee80211_vif_cfg_change_notify(sdata, 2025 BSS_CHANGED_SSID); 2026 else 2027 changed |= BSS_CHANGED_SSID; 2028 2029 if (sdata->vif.bss_conf.ftm_responder == 1 && 2030 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2031 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2032 changed |= BSS_CHANGED_FTM_RESPONDER; 2033 2034 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2035 changed |= BSS_CHANGED_AP_PROBE_RESP; 2036 2037 if (ieee80211_vif_is_mld(&sdata->vif)) { 2038 ieee80211_reconfig_ap_links(local, 2039 sdata, 2040 changed); 2041 break; 2042 } 2043 2044 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2045 drv_start_ap(local, sdata, 2046 sdata->deflink.conf); 2047 } 2048 fallthrough; 2049 case NL80211_IFTYPE_MESH_POINT: 2050 if (sdata->vif.bss_conf.enable_beacon) { 2051 changed |= BSS_CHANGED_BEACON | 2052 BSS_CHANGED_BEACON_ENABLED; 2053 ieee80211_bss_info_change_notify(sdata, changed); 2054 } 2055 break; 2056 case NL80211_IFTYPE_NAN: 2057 res = ieee80211_reconfig_nan(sdata); 2058 if (res < 0) { 2059 ieee80211_handle_reconfig_failure(local); 2060 return res; 2061 } 2062 break; 2063 case NL80211_IFTYPE_AP_VLAN: 2064 case NL80211_IFTYPE_MONITOR: 2065 case NL80211_IFTYPE_P2P_DEVICE: 2066 /* nothing to do */ 2067 break; 2068 case NL80211_IFTYPE_UNSPECIFIED: 2069 case NUM_NL80211_IFTYPES: 2070 case NL80211_IFTYPE_P2P_CLIENT: 2071 case NL80211_IFTYPE_P2P_GO: 2072 case NL80211_IFTYPE_WDS: 2073 WARN_ON(1); 2074 break; 2075 } 2076 } 2077 2078 ieee80211_recalc_ps(local); 2079 2080 /* 2081 * The sta might be in psm against the ap (e.g. because 2082 * this was the state before a hw restart), so we 2083 * explicitly send a null packet in order to make sure 2084 * it'll sync against the ap (and get out of psm). 2085 */ 2086 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2087 list_for_each_entry(sdata, &local->interfaces, list) { 2088 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2089 continue; 2090 if (!sdata->u.mgd.associated) 2091 continue; 2092 2093 ieee80211_send_nullfunc(local, sdata, false); 2094 } 2095 } 2096 2097 /* APs are now beaconing, add back stations */ 2098 list_for_each_entry(sdata, &local->interfaces, list) { 2099 if (!ieee80211_sdata_running(sdata)) 2100 continue; 2101 2102 switch (sdata->vif.type) { 2103 case NL80211_IFTYPE_AP_VLAN: 2104 case NL80211_IFTYPE_AP: 2105 ieee80211_reconfig_stations(sdata); 2106 break; 2107 default: 2108 break; 2109 } 2110 } 2111 2112 /* add back keys */ 2113 list_for_each_entry(sdata, &local->interfaces, list) 2114 ieee80211_reenable_keys(sdata); 2115 2116 /* re-enable multi-link for client interfaces */ 2117 list_for_each_entry(sdata, &local->interfaces, list) { 2118 if (sdata->restart_active_links) 2119 ieee80211_set_active_links(&sdata->vif, 2120 sdata->restart_active_links); 2121 /* 2122 * If a link switch was scheduled before the restart, and ran 2123 * before reconfig, it will do nothing, so re-schedule. 2124 */ 2125 if (sdata->desired_active_links) 2126 wiphy_work_queue(sdata->local->hw.wiphy, 2127 &sdata->activate_links_work); 2128 } 2129 2130 /* Reconfigure sched scan if it was interrupted by FW restart */ 2131 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2132 lockdep_is_held(&local->hw.wiphy->mtx)); 2133 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2134 lockdep_is_held(&local->hw.wiphy->mtx)); 2135 if (sched_scan_sdata && sched_scan_req) 2136 /* 2137 * Sched scan stopped, but we don't want to report it. Instead, 2138 * we're trying to reschedule. However, if more than one scan 2139 * plan was set, we cannot reschedule since we don't know which 2140 * scan plan was currently running (and some scan plans may have 2141 * already finished). 2142 */ 2143 if (sched_scan_req->n_scan_plans > 1 || 2144 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2145 sched_scan_req)) { 2146 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2147 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2148 sched_scan_stopped = true; 2149 } 2150 2151 if (sched_scan_stopped) 2152 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2153 2154 wake_up: 2155 2156 if (local->monitors == local->open_count && local->monitors > 0) 2157 ieee80211_add_virtual_monitor(local); 2158 2159 /* 2160 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2161 * sessions can be established after a resume. 2162 * 2163 * Also tear down aggregation sessions since reconfiguring 2164 * them in a hardware restart scenario is not easily done 2165 * right now, and the hardware will have lost information 2166 * about the sessions, but we and the AP still think they 2167 * are active. This is really a workaround though. 2168 */ 2169 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2170 list_for_each_entry(sta, &local->sta_list, list) { 2171 if (!local->resuming) 2172 ieee80211_sta_tear_down_BA_sessions( 2173 sta, AGG_STOP_LOCAL_REQUEST); 2174 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2175 } 2176 } 2177 2178 /* 2179 * If this is for hw restart things are still running. 2180 * We may want to change that later, however. 2181 */ 2182 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2183 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2184 2185 if (local->in_reconfig) { 2186 in_reconfig = local->in_reconfig; 2187 local->in_reconfig = false; 2188 barrier(); 2189 2190 ieee80211_reconfig_roc(local); 2191 2192 /* Requeue all works */ 2193 list_for_each_entry(sdata, &local->interfaces, list) 2194 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2195 } 2196 2197 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2198 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2199 false); 2200 2201 if (in_reconfig) { 2202 list_for_each_entry(sdata, &local->interfaces, list) { 2203 if (!ieee80211_sdata_running(sdata)) 2204 continue; 2205 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2206 ieee80211_sta_restart(sdata); 2207 } 2208 } 2209 2210 if (!suspended) 2211 return 0; 2212 2213 #ifdef CONFIG_PM 2214 /* first set suspended false, then resuming */ 2215 local->suspended = false; 2216 mb(); 2217 local->resuming = false; 2218 2219 ieee80211_flush_completed_scan(local, false); 2220 2221 if (local->open_count && !reconfig_due_to_wowlan) 2222 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2223 2224 list_for_each_entry(sdata, &local->interfaces, list) { 2225 if (!ieee80211_sdata_running(sdata)) 2226 continue; 2227 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2228 ieee80211_sta_restart(sdata); 2229 } 2230 2231 mod_timer(&local->sta_cleanup, jiffies + 1); 2232 #else 2233 WARN_ON(1); 2234 #endif 2235 2236 return 0; 2237 } 2238 2239 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2240 { 2241 struct ieee80211_sub_if_data *sdata; 2242 struct ieee80211_local *local; 2243 struct ieee80211_key *key; 2244 2245 if (WARN_ON(!vif)) 2246 return; 2247 2248 sdata = vif_to_sdata(vif); 2249 local = sdata->local; 2250 2251 lockdep_assert_wiphy(local->hw.wiphy); 2252 2253 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2254 !local->resuming)) 2255 return; 2256 2257 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2258 !local->in_reconfig)) 2259 return; 2260 2261 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2262 return; 2263 2264 sdata->flags |= flag; 2265 2266 list_for_each_entry(key, &sdata->key_list, list) 2267 key->flags |= KEY_FLAG_TAINTED; 2268 } 2269 2270 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2271 { 2272 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2273 } 2274 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2275 2276 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2277 { 2278 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2279 } 2280 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2281 2282 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2283 struct ieee80211_link_data *link) 2284 { 2285 struct ieee80211_local *local = sdata->local; 2286 struct ieee80211_chanctx_conf *chanctx_conf; 2287 struct ieee80211_chanctx *chanctx; 2288 2289 lockdep_assert_wiphy(local->hw.wiphy); 2290 2291 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2292 lockdep_is_held(&local->hw.wiphy->mtx)); 2293 2294 /* 2295 * This function can be called from a work, thus it may be possible 2296 * that the chanctx_conf is removed (due to a disconnection, for 2297 * example). 2298 * So nothing should be done in such case. 2299 */ 2300 if (!chanctx_conf) 2301 return; 2302 2303 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2304 ieee80211_recalc_smps_chanctx(local, chanctx); 2305 } 2306 2307 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2308 int link_id) 2309 { 2310 struct ieee80211_local *local = sdata->local; 2311 struct ieee80211_chanctx_conf *chanctx_conf; 2312 struct ieee80211_chanctx *chanctx; 2313 int i; 2314 2315 lockdep_assert_wiphy(local->hw.wiphy); 2316 2317 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2318 struct ieee80211_bss_conf *bss_conf; 2319 2320 if (link_id >= 0 && link_id != i) 2321 continue; 2322 2323 rcu_read_lock(); 2324 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2325 if (!bss_conf) { 2326 rcu_read_unlock(); 2327 continue; 2328 } 2329 2330 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2331 lockdep_is_held(&local->hw.wiphy->mtx)); 2332 /* 2333 * Since we hold the wiphy mutex (checked above) 2334 * we can take the chanctx_conf pointer out of the 2335 * RCU critical section, it cannot go away without 2336 * the mutex. Just the way we reached it could - in 2337 * theory - go away, but we don't really care and 2338 * it really shouldn't happen anyway. 2339 */ 2340 rcu_read_unlock(); 2341 2342 if (!chanctx_conf) 2343 return; 2344 2345 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2346 conf); 2347 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); 2348 } 2349 } 2350 2351 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2352 { 2353 size_t pos = offset; 2354 2355 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2356 pos += 2 + ies[pos + 1]; 2357 2358 return pos; 2359 } 2360 2361 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2362 u16 cap) 2363 { 2364 __le16 tmp; 2365 2366 *pos++ = WLAN_EID_HT_CAPABILITY; 2367 *pos++ = sizeof(struct ieee80211_ht_cap); 2368 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2369 2370 /* capability flags */ 2371 tmp = cpu_to_le16(cap); 2372 memcpy(pos, &tmp, sizeof(u16)); 2373 pos += sizeof(u16); 2374 2375 /* AMPDU parameters */ 2376 *pos++ = ht_cap->ampdu_factor | 2377 (ht_cap->ampdu_density << 2378 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2379 2380 /* MCS set */ 2381 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2382 pos += sizeof(ht_cap->mcs); 2383 2384 /* extended capabilities */ 2385 pos += sizeof(__le16); 2386 2387 /* BF capabilities */ 2388 pos += sizeof(__le32); 2389 2390 /* antenna selection */ 2391 pos += sizeof(u8); 2392 2393 return pos; 2394 } 2395 2396 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2397 u32 cap) 2398 { 2399 __le32 tmp; 2400 2401 *pos++ = WLAN_EID_VHT_CAPABILITY; 2402 *pos++ = sizeof(struct ieee80211_vht_cap); 2403 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2404 2405 /* capability flags */ 2406 tmp = cpu_to_le32(cap); 2407 memcpy(pos, &tmp, sizeof(u32)); 2408 pos += sizeof(u32); 2409 2410 /* VHT MCS set */ 2411 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2412 pos += sizeof(vht_cap->vht_mcs); 2413 2414 return pos; 2415 } 2416 2417 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2418 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2419 { 2420 const struct ieee80211_sta_he_cap *he_cap; 2421 struct ieee80211_supported_band *sband; 2422 u8 n; 2423 2424 sband = ieee80211_get_sband(sdata); 2425 if (!sband) 2426 return 0; 2427 2428 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2429 if (!he_cap) 2430 return 0; 2431 2432 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2433 return 2 + 1 + 2434 sizeof(he_cap->he_cap_elem) + n + 2435 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2436 he_cap->he_cap_elem.phy_cap_info); 2437 } 2438 2439 static void 2440 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2441 const struct ieee80211_sta_he_cap *he_cap, 2442 struct ieee80211_he_cap_elem *elem) 2443 { 2444 u8 ru_limit, max_ru; 2445 2446 *elem = he_cap->he_cap_elem; 2447 2448 switch (conn->bw_limit) { 2449 case IEEE80211_CONN_BW_LIMIT_20: 2450 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2451 break; 2452 case IEEE80211_CONN_BW_LIMIT_40: 2453 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2454 break; 2455 case IEEE80211_CONN_BW_LIMIT_80: 2456 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2457 break; 2458 default: 2459 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2460 break; 2461 } 2462 2463 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2464 max_ru = min(max_ru, ru_limit); 2465 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2466 elem->phy_cap_info[8] |= max_ru; 2467 2468 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2469 elem->phy_cap_info[0] &= 2470 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2471 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2472 elem->phy_cap_info[9] &= 2473 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2474 } 2475 2476 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2477 elem->phy_cap_info[0] &= 2478 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2479 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2480 elem->phy_cap_info[5] &= 2481 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2482 elem->phy_cap_info[7] &= 2483 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2484 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2485 } 2486 } 2487 2488 int ieee80211_put_he_cap(struct sk_buff *skb, 2489 struct ieee80211_sub_if_data *sdata, 2490 const struct ieee80211_supported_band *sband, 2491 const struct ieee80211_conn_settings *conn) 2492 { 2493 const struct ieee80211_sta_he_cap *he_cap; 2494 struct ieee80211_he_cap_elem elem; 2495 u8 *len; 2496 u8 n; 2497 u8 ie_len; 2498 2499 if (!conn) 2500 conn = &ieee80211_conn_settings_unlimited; 2501 2502 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2503 if (!he_cap) 2504 return 0; 2505 2506 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2507 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2508 2509 n = ieee80211_he_mcs_nss_size(&elem); 2510 ie_len = 2 + 1 + 2511 sizeof(he_cap->he_cap_elem) + n + 2512 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2513 he_cap->he_cap_elem.phy_cap_info); 2514 2515 if (skb_tailroom(skb) < ie_len) 2516 return -ENOBUFS; 2517 2518 skb_put_u8(skb, WLAN_EID_EXTENSION); 2519 len = skb_put(skb, 1); /* We'll set the size later below */ 2520 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2521 2522 /* Fixed data */ 2523 skb_put_data(skb, &elem, sizeof(elem)); 2524 2525 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2526 2527 /* Check if PPE Threshold should be present */ 2528 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2529 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2530 goto end; 2531 2532 /* 2533 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2534 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2535 */ 2536 n = hweight8(he_cap->ppe_thres[0] & 2537 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2538 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2539 IEEE80211_PPE_THRES_NSS_POS)); 2540 2541 /* 2542 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2543 * total size. 2544 */ 2545 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2546 n = DIV_ROUND_UP(n, 8); 2547 2548 /* Copy PPE Thresholds */ 2549 skb_put_data(skb, &he_cap->ppe_thres, n); 2550 2551 end: 2552 *len = skb_tail_pointer(skb) - len - 1; 2553 return 0; 2554 } 2555 2556 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2557 struct ieee80211_sub_if_data *sdata, 2558 enum ieee80211_smps_mode smps_mode) 2559 { 2560 struct ieee80211_supported_band *sband; 2561 const struct ieee80211_sband_iftype_data *iftd; 2562 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2563 __le16 cap; 2564 2565 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2566 BIT(NL80211_BAND_6GHZ), 2567 IEEE80211_CHAN_NO_HE)) 2568 return 0; 2569 2570 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2571 2572 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2573 if (!iftd) 2574 return 0; 2575 2576 /* Check for device HE 6 GHz capability before adding element */ 2577 if (!iftd->he_6ghz_capa.capa) 2578 return 0; 2579 2580 cap = iftd->he_6ghz_capa.capa; 2581 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2582 2583 switch (smps_mode) { 2584 case IEEE80211_SMPS_AUTOMATIC: 2585 case IEEE80211_SMPS_NUM_MODES: 2586 WARN_ON(1); 2587 fallthrough; 2588 case IEEE80211_SMPS_OFF: 2589 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2590 IEEE80211_HE_6GHZ_CAP_SM_PS); 2591 break; 2592 case IEEE80211_SMPS_STATIC: 2593 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2594 IEEE80211_HE_6GHZ_CAP_SM_PS); 2595 break; 2596 case IEEE80211_SMPS_DYNAMIC: 2597 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2598 IEEE80211_HE_6GHZ_CAP_SM_PS); 2599 break; 2600 } 2601 2602 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2603 return -ENOBUFS; 2604 2605 skb_put_u8(skb, WLAN_EID_EXTENSION); 2606 skb_put_u8(skb, 1 + sizeof(cap)); 2607 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2608 skb_put_data(skb, &cap, sizeof(cap)); 2609 return 0; 2610 } 2611 2612 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2613 const struct cfg80211_chan_def *chandef, 2614 u16 prot_mode, bool rifs_mode) 2615 { 2616 struct ieee80211_ht_operation *ht_oper; 2617 /* Build HT Information */ 2618 *pos++ = WLAN_EID_HT_OPERATION; 2619 *pos++ = sizeof(struct ieee80211_ht_operation); 2620 ht_oper = (struct ieee80211_ht_operation *)pos; 2621 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2622 chandef->chan->center_freq); 2623 switch (chandef->width) { 2624 case NL80211_CHAN_WIDTH_160: 2625 case NL80211_CHAN_WIDTH_80P80: 2626 case NL80211_CHAN_WIDTH_80: 2627 case NL80211_CHAN_WIDTH_40: 2628 if (chandef->center_freq1 > chandef->chan->center_freq) 2629 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2630 else 2631 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2632 break; 2633 case NL80211_CHAN_WIDTH_320: 2634 /* HT information element should not be included on 6GHz */ 2635 WARN_ON(1); 2636 return pos; 2637 default: 2638 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2639 break; 2640 } 2641 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2642 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2643 chandef->width != NL80211_CHAN_WIDTH_20) 2644 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2645 2646 if (rifs_mode) 2647 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2648 2649 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2650 ht_oper->stbc_param = 0x0000; 2651 2652 /* It seems that Basic MCS set and Supported MCS set 2653 are identical for the first 10 bytes */ 2654 memset(&ht_oper->basic_set, 0, 16); 2655 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2656 2657 return pos + sizeof(struct ieee80211_ht_operation); 2658 } 2659 2660 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2661 const struct cfg80211_chan_def *chandef) 2662 { 2663 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2664 *pos++ = 3; /* IE length */ 2665 /* New channel width */ 2666 switch (chandef->width) { 2667 case NL80211_CHAN_WIDTH_80: 2668 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2669 break; 2670 case NL80211_CHAN_WIDTH_160: 2671 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2672 break; 2673 case NL80211_CHAN_WIDTH_80P80: 2674 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2675 break; 2676 case NL80211_CHAN_WIDTH_320: 2677 /* The behavior is not defined for 320 MHz channels */ 2678 WARN_ON(1); 2679 fallthrough; 2680 default: 2681 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2682 } 2683 2684 /* new center frequency segment 0 */ 2685 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2686 /* new center frequency segment 1 */ 2687 if (chandef->center_freq2) 2688 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2689 else 2690 *pos++ = 0; 2691 } 2692 2693 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2694 const struct cfg80211_chan_def *chandef) 2695 { 2696 struct ieee80211_vht_operation *vht_oper; 2697 2698 *pos++ = WLAN_EID_VHT_OPERATION; 2699 *pos++ = sizeof(struct ieee80211_vht_operation); 2700 vht_oper = (struct ieee80211_vht_operation *)pos; 2701 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2702 chandef->center_freq1); 2703 if (chandef->center_freq2) 2704 vht_oper->center_freq_seg1_idx = 2705 ieee80211_frequency_to_channel(chandef->center_freq2); 2706 else 2707 vht_oper->center_freq_seg1_idx = 0x00; 2708 2709 switch (chandef->width) { 2710 case NL80211_CHAN_WIDTH_160: 2711 /* 2712 * Convert 160 MHz channel width to new style as interop 2713 * workaround. 2714 */ 2715 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2716 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2717 if (chandef->chan->center_freq < chandef->center_freq1) 2718 vht_oper->center_freq_seg0_idx -= 8; 2719 else 2720 vht_oper->center_freq_seg0_idx += 8; 2721 break; 2722 case NL80211_CHAN_WIDTH_80P80: 2723 /* 2724 * Convert 80+80 MHz channel width to new style as interop 2725 * workaround. 2726 */ 2727 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2728 break; 2729 case NL80211_CHAN_WIDTH_80: 2730 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2731 break; 2732 case NL80211_CHAN_WIDTH_320: 2733 /* VHT information element should not be included on 6GHz */ 2734 WARN_ON(1); 2735 return pos; 2736 default: 2737 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2738 break; 2739 } 2740 2741 /* don't require special VHT peer rates */ 2742 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2743 2744 return pos + sizeof(struct ieee80211_vht_operation); 2745 } 2746 2747 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2748 { 2749 struct ieee80211_he_operation *he_oper; 2750 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2751 u32 he_oper_params; 2752 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2753 2754 if (chandef->chan->band == NL80211_BAND_6GHZ) 2755 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2756 2757 *pos++ = WLAN_EID_EXTENSION; 2758 *pos++ = ie_len; 2759 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2760 2761 he_oper_params = 0; 2762 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2763 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2764 he_oper_params |= u32_encode_bits(1, 2765 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2766 he_oper_params |= u32_encode_bits(1, 2767 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2768 if (chandef->chan->band == NL80211_BAND_6GHZ) 2769 he_oper_params |= u32_encode_bits(1, 2770 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2771 2772 he_oper = (struct ieee80211_he_operation *)pos; 2773 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2774 2775 /* don't require special HE peer rates */ 2776 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2777 pos += sizeof(struct ieee80211_he_operation); 2778 2779 if (chandef->chan->band != NL80211_BAND_6GHZ) 2780 goto out; 2781 2782 /* TODO add VHT operational */ 2783 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2784 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2785 he_6ghz_op->primary = 2786 ieee80211_frequency_to_channel(chandef->chan->center_freq); 2787 he_6ghz_op->ccfs0 = 2788 ieee80211_frequency_to_channel(chandef->center_freq1); 2789 if (chandef->center_freq2) 2790 he_6ghz_op->ccfs1 = 2791 ieee80211_frequency_to_channel(chandef->center_freq2); 2792 else 2793 he_6ghz_op->ccfs1 = 0; 2794 2795 switch (chandef->width) { 2796 case NL80211_CHAN_WIDTH_320: 2797 /* 2798 * TODO: mesh operation is not defined over 6GHz 320 MHz 2799 * channels. 2800 */ 2801 WARN_ON(1); 2802 break; 2803 case NL80211_CHAN_WIDTH_160: 2804 /* Convert 160 MHz channel width to new style as interop 2805 * workaround. 2806 */ 2807 he_6ghz_op->control = 2808 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2809 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2810 if (chandef->chan->center_freq < chandef->center_freq1) 2811 he_6ghz_op->ccfs0 -= 8; 2812 else 2813 he_6ghz_op->ccfs0 += 8; 2814 fallthrough; 2815 case NL80211_CHAN_WIDTH_80P80: 2816 he_6ghz_op->control = 2817 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2818 break; 2819 case NL80211_CHAN_WIDTH_80: 2820 he_6ghz_op->control = 2821 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2822 break; 2823 case NL80211_CHAN_WIDTH_40: 2824 he_6ghz_op->control = 2825 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2826 break; 2827 default: 2828 he_6ghz_op->control = 2829 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2830 break; 2831 } 2832 2833 pos += sizeof(struct ieee80211_he_6ghz_oper); 2834 2835 out: 2836 return pos; 2837 } 2838 2839 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2840 const struct ieee80211_sta_eht_cap *eht_cap) 2841 2842 { 2843 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2844 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2845 struct ieee80211_eht_operation *eht_oper; 2846 struct ieee80211_eht_operation_info *eht_oper_info; 2847 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2848 u8 eht_oper_info_len = 2849 offsetof(struct ieee80211_eht_operation_info, optional); 2850 u8 chan_width = 0; 2851 2852 *pos++ = WLAN_EID_EXTENSION; 2853 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2854 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2855 2856 eht_oper = (struct ieee80211_eht_operation *)pos; 2857 2858 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2859 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2860 pos += eht_oper_len; 2861 2862 eht_oper_info = 2863 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2864 2865 eht_oper_info->ccfs0 = 2866 ieee80211_frequency_to_channel(chandef->center_freq1); 2867 if (chandef->center_freq2) 2868 eht_oper_info->ccfs1 = 2869 ieee80211_frequency_to_channel(chandef->center_freq2); 2870 else 2871 eht_oper_info->ccfs1 = 0; 2872 2873 switch (chandef->width) { 2874 case NL80211_CHAN_WIDTH_320: 2875 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2876 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2877 if (chandef->chan->center_freq < chandef->center_freq1) 2878 eht_oper_info->ccfs0 -= 16; 2879 else 2880 eht_oper_info->ccfs0 += 16; 2881 break; 2882 case NL80211_CHAN_WIDTH_160: 2883 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2884 if (chandef->chan->center_freq < chandef->center_freq1) 2885 eht_oper_info->ccfs0 -= 8; 2886 else 2887 eht_oper_info->ccfs0 += 8; 2888 fallthrough; 2889 case NL80211_CHAN_WIDTH_80P80: 2890 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2891 break; 2892 case NL80211_CHAN_WIDTH_80: 2893 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2894 break; 2895 case NL80211_CHAN_WIDTH_40: 2896 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2897 break; 2898 default: 2899 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2900 break; 2901 } 2902 eht_oper_info->control = chan_width; 2903 pos += eht_oper_info_len; 2904 2905 /* TODO: eht_oper_info->optional */ 2906 2907 return pos; 2908 } 2909 2910 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2911 struct cfg80211_chan_def *chandef) 2912 { 2913 enum nl80211_channel_type channel_type; 2914 2915 if (!ht_oper) 2916 return false; 2917 2918 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2919 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2920 channel_type = NL80211_CHAN_HT20; 2921 break; 2922 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2923 channel_type = NL80211_CHAN_HT40PLUS; 2924 break; 2925 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2926 channel_type = NL80211_CHAN_HT40MINUS; 2927 break; 2928 default: 2929 return false; 2930 } 2931 2932 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2933 return true; 2934 } 2935 2936 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2937 const struct ieee80211_vht_operation *oper, 2938 const struct ieee80211_ht_operation *htop, 2939 struct cfg80211_chan_def *chandef) 2940 { 2941 struct cfg80211_chan_def new = *chandef; 2942 int cf0, cf1; 2943 int ccfs0, ccfs1, ccfs2; 2944 int ccf0, ccf1; 2945 u32 vht_cap; 2946 bool support_80_80 = false; 2947 bool support_160 = false; 2948 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2949 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2950 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2951 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2952 2953 if (!oper || !htop) 2954 return false; 2955 2956 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2957 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2958 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2959 support_80_80 = ((vht_cap & 2960 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2961 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2962 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2963 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2964 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2965 ccfs0 = oper->center_freq_seg0_idx; 2966 ccfs1 = oper->center_freq_seg1_idx; 2967 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2968 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2969 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2970 2971 ccf0 = ccfs0; 2972 2973 /* if not supported, parse as though we didn't understand it */ 2974 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2975 ext_nss_bw_supp = 0; 2976 2977 /* 2978 * Cf. IEEE 802.11 Table 9-250 2979 * 2980 * We really just consider that because it's inefficient to connect 2981 * at a higher bandwidth than we'll actually be able to use. 2982 */ 2983 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2984 default: 2985 case 0x00: 2986 ccf1 = 0; 2987 support_160 = false; 2988 support_80_80 = false; 2989 break; 2990 case 0x01: 2991 support_80_80 = false; 2992 fallthrough; 2993 case 0x02: 2994 case 0x03: 2995 ccf1 = ccfs2; 2996 break; 2997 case 0x10: 2998 ccf1 = ccfs1; 2999 break; 3000 case 0x11: 3001 case 0x12: 3002 if (!ccfs1) 3003 ccf1 = ccfs2; 3004 else 3005 ccf1 = ccfs1; 3006 break; 3007 case 0x13: 3008 case 0x20: 3009 case 0x23: 3010 ccf1 = ccfs1; 3011 break; 3012 } 3013 3014 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3015 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3016 3017 switch (oper->chan_width) { 3018 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3019 /* just use HT information directly */ 3020 break; 3021 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3022 new.width = NL80211_CHAN_WIDTH_80; 3023 new.center_freq1 = cf0; 3024 /* If needed, adjust based on the newer interop workaround. */ 3025 if (ccf1) { 3026 unsigned int diff; 3027 3028 diff = abs(ccf1 - ccf0); 3029 if ((diff == 8) && support_160) { 3030 new.width = NL80211_CHAN_WIDTH_160; 3031 new.center_freq1 = cf1; 3032 } else if ((diff > 8) && support_80_80) { 3033 new.width = NL80211_CHAN_WIDTH_80P80; 3034 new.center_freq2 = cf1; 3035 } 3036 } 3037 break; 3038 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3039 /* deprecated encoding */ 3040 new.width = NL80211_CHAN_WIDTH_160; 3041 new.center_freq1 = cf0; 3042 break; 3043 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3044 /* deprecated encoding */ 3045 new.width = NL80211_CHAN_WIDTH_80P80; 3046 new.center_freq1 = cf0; 3047 new.center_freq2 = cf1; 3048 break; 3049 default: 3050 return false; 3051 } 3052 3053 if (!cfg80211_chandef_valid(&new)) 3054 return false; 3055 3056 *chandef = new; 3057 return true; 3058 } 3059 3060 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3061 struct cfg80211_chan_def *chandef) 3062 { 3063 chandef->center_freq1 = 3064 ieee80211_channel_to_frequency(info->ccfs0, 3065 chandef->chan->band); 3066 3067 switch (u8_get_bits(info->control, 3068 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3069 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3070 chandef->width = NL80211_CHAN_WIDTH_20; 3071 break; 3072 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3073 chandef->width = NL80211_CHAN_WIDTH_40; 3074 break; 3075 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3076 chandef->width = NL80211_CHAN_WIDTH_80; 3077 break; 3078 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3079 chandef->width = NL80211_CHAN_WIDTH_160; 3080 chandef->center_freq1 = 3081 ieee80211_channel_to_frequency(info->ccfs1, 3082 chandef->chan->band); 3083 break; 3084 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3085 chandef->width = NL80211_CHAN_WIDTH_320; 3086 chandef->center_freq1 = 3087 ieee80211_channel_to_frequency(info->ccfs1, 3088 chandef->chan->band); 3089 break; 3090 } 3091 } 3092 3093 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3094 const struct ieee80211_he_operation *he_oper, 3095 const struct ieee80211_eht_operation *eht_oper, 3096 struct cfg80211_chan_def *chandef) 3097 { 3098 struct cfg80211_chan_def he_chandef = *chandef; 3099 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3100 u32 freq; 3101 3102 if (chandef->chan->band != NL80211_BAND_6GHZ) 3103 return true; 3104 3105 if (!he_oper) 3106 return false; 3107 3108 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3109 if (!he_6ghz_oper) 3110 return false; 3111 3112 /* 3113 * The EHT operation IE does not contain the primary channel so the 3114 * primary channel frequency should be taken from the 6 GHz operation 3115 * information. 3116 */ 3117 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3118 NL80211_BAND_6GHZ); 3119 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3120 3121 if (!he_chandef.chan) 3122 return false; 3123 3124 if (!eht_oper || 3125 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3126 switch (u8_get_bits(he_6ghz_oper->control, 3127 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3128 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3129 he_chandef.width = NL80211_CHAN_WIDTH_20; 3130 break; 3131 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3132 he_chandef.width = NL80211_CHAN_WIDTH_40; 3133 break; 3134 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3135 he_chandef.width = NL80211_CHAN_WIDTH_80; 3136 break; 3137 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3138 he_chandef.width = NL80211_CHAN_WIDTH_80; 3139 if (!he_6ghz_oper->ccfs1) 3140 break; 3141 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3142 he_chandef.width = NL80211_CHAN_WIDTH_160; 3143 else 3144 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3145 break; 3146 } 3147 3148 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3149 he_chandef.center_freq1 = 3150 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3151 NL80211_BAND_6GHZ); 3152 } else { 3153 he_chandef.center_freq1 = 3154 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3155 NL80211_BAND_6GHZ); 3156 he_chandef.center_freq2 = 3157 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3158 NL80211_BAND_6GHZ); 3159 } 3160 } else { 3161 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3162 &he_chandef); 3163 he_chandef.punctured = 3164 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3165 } 3166 3167 if (!cfg80211_chandef_valid(&he_chandef)) 3168 return false; 3169 3170 *chandef = he_chandef; 3171 3172 return true; 3173 } 3174 3175 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3176 struct cfg80211_chan_def *chandef) 3177 { 3178 u32 oper_freq; 3179 3180 if (!oper) 3181 return false; 3182 3183 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3184 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3185 chandef->width = NL80211_CHAN_WIDTH_1; 3186 break; 3187 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3188 chandef->width = NL80211_CHAN_WIDTH_2; 3189 break; 3190 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3191 chandef->width = NL80211_CHAN_WIDTH_4; 3192 break; 3193 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3194 chandef->width = NL80211_CHAN_WIDTH_8; 3195 break; 3196 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3197 chandef->width = NL80211_CHAN_WIDTH_16; 3198 break; 3199 default: 3200 return false; 3201 } 3202 3203 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3204 NL80211_BAND_S1GHZ); 3205 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3206 chandef->freq1_offset = oper_freq % 1000; 3207 3208 return true; 3209 } 3210 3211 int ieee80211_put_srates_elem(struct sk_buff *skb, 3212 const struct ieee80211_supported_band *sband, 3213 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3214 u8 element_id) 3215 { 3216 u8 i, rates, skip; 3217 3218 rates = 0; 3219 for (i = 0; i < sband->n_bitrates; i++) { 3220 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3221 continue; 3222 if (masked_rates & BIT(i)) 3223 continue; 3224 rates++; 3225 } 3226 3227 if (element_id == WLAN_EID_SUPP_RATES) { 3228 rates = min_t(u8, rates, 8); 3229 skip = 0; 3230 } else { 3231 skip = 8; 3232 if (rates <= skip) 3233 return 0; 3234 rates -= skip; 3235 } 3236 3237 if (skb_tailroom(skb) < rates + 2) 3238 return -ENOBUFS; 3239 3240 skb_put_u8(skb, element_id); 3241 skb_put_u8(skb, rates); 3242 3243 for (i = 0; i < sband->n_bitrates && rates; i++) { 3244 int rate; 3245 u8 basic; 3246 3247 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3248 continue; 3249 if (masked_rates & BIT(i)) 3250 continue; 3251 3252 if (skip > 0) { 3253 skip--; 3254 continue; 3255 } 3256 3257 basic = basic_rates & BIT(i) ? 0x80 : 0; 3258 3259 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3260 skb_put_u8(skb, basic | (u8)rate); 3261 rates--; 3262 } 3263 3264 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3265 rates, element_id); 3266 3267 return 0; 3268 } 3269 3270 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3271 { 3272 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3273 3274 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3275 return 0; 3276 3277 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3278 } 3279 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3280 3281 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3282 { 3283 if (!mcs) 3284 return 1; 3285 3286 /* TODO: consider rx_highest */ 3287 3288 if (mcs->rx_mask[3]) 3289 return 4; 3290 if (mcs->rx_mask[2]) 3291 return 3; 3292 if (mcs->rx_mask[1]) 3293 return 2; 3294 return 1; 3295 } 3296 3297 /** 3298 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3299 * @local: mac80211 hw info struct 3300 * @status: RX status 3301 * @mpdu_len: total MPDU length (including FCS) 3302 * @mpdu_offset: offset into MPDU to calculate timestamp at 3303 * 3304 * This function calculates the RX timestamp at the given MPDU offset, taking 3305 * into account what the RX timestamp was. An offset of 0 will just normalize 3306 * the timestamp to TSF at beginning of MPDU reception. 3307 * 3308 * Returns: the calculated timestamp 3309 */ 3310 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3311 struct ieee80211_rx_status *status, 3312 unsigned int mpdu_len, 3313 unsigned int mpdu_offset) 3314 { 3315 u64 ts = status->mactime; 3316 bool mactime_plcp_start; 3317 struct rate_info ri; 3318 u16 rate; 3319 u8 n_ltf; 3320 3321 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3322 return 0; 3323 3324 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3325 RX_FLAG_MACTIME_PLCP_START; 3326 3327 memset(&ri, 0, sizeof(ri)); 3328 3329 ri.bw = status->bw; 3330 3331 /* Fill cfg80211 rate info */ 3332 switch (status->encoding) { 3333 case RX_ENC_EHT: 3334 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3335 ri.mcs = status->rate_idx; 3336 ri.nss = status->nss; 3337 ri.eht_ru_alloc = status->eht.ru; 3338 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3339 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3340 /* TODO/FIXME: is this right? handle other PPDUs */ 3341 if (mactime_plcp_start) { 3342 mpdu_offset += 2; 3343 ts += 36; 3344 } 3345 break; 3346 case RX_ENC_HE: 3347 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3348 ri.mcs = status->rate_idx; 3349 ri.nss = status->nss; 3350 ri.he_ru_alloc = status->he_ru; 3351 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3352 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3353 3354 /* 3355 * See P802.11ax_D6.0, section 27.3.4 for 3356 * VHT PPDU format. 3357 */ 3358 if (mactime_plcp_start) { 3359 mpdu_offset += 2; 3360 ts += 36; 3361 3362 /* 3363 * TODO: 3364 * For HE MU PPDU, add the HE-SIG-B. 3365 * For HE ER PPDU, add 8us for the HE-SIG-A. 3366 * For HE TB PPDU, add 4us for the HE-STF. 3367 * Add the HE-LTF durations - variable. 3368 */ 3369 } 3370 3371 break; 3372 case RX_ENC_HT: 3373 ri.mcs = status->rate_idx; 3374 ri.flags |= RATE_INFO_FLAGS_MCS; 3375 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3376 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3377 3378 /* 3379 * See P802.11REVmd_D3.0, section 19.3.2 for 3380 * HT PPDU format. 3381 */ 3382 if (mactime_plcp_start) { 3383 mpdu_offset += 2; 3384 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3385 ts += 24; 3386 else 3387 ts += 32; 3388 3389 /* 3390 * Add Data HT-LTFs per streams 3391 * TODO: add Extension HT-LTFs, 4us per LTF 3392 */ 3393 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3394 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3395 ts += n_ltf * 4; 3396 } 3397 3398 break; 3399 case RX_ENC_VHT: 3400 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3401 ri.mcs = status->rate_idx; 3402 ri.nss = status->nss; 3403 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3404 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3405 3406 /* 3407 * See P802.11REVmd_D3.0, section 21.3.2 for 3408 * VHT PPDU format. 3409 */ 3410 if (mactime_plcp_start) { 3411 mpdu_offset += 2; 3412 ts += 36; 3413 3414 /* 3415 * Add VHT-LTFs per streams 3416 */ 3417 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3418 ri.nss + 1 : ri.nss; 3419 ts += 4 * n_ltf; 3420 } 3421 3422 break; 3423 default: 3424 WARN_ON(1); 3425 fallthrough; 3426 case RX_ENC_LEGACY: { 3427 struct ieee80211_supported_band *sband; 3428 3429 sband = local->hw.wiphy->bands[status->band]; 3430 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3431 3432 if (mactime_plcp_start) { 3433 if (status->band == NL80211_BAND_5GHZ) { 3434 ts += 20; 3435 mpdu_offset += 2; 3436 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3437 ts += 96; 3438 } else { 3439 ts += 192; 3440 } 3441 } 3442 break; 3443 } 3444 } 3445 3446 rate = cfg80211_calculate_bitrate(&ri); 3447 if (WARN_ONCE(!rate, 3448 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3449 (unsigned long long)status->flag, status->rate_idx, 3450 status->nss)) 3451 return 0; 3452 3453 /* rewind from end of MPDU */ 3454 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3455 ts -= mpdu_len * 8 * 10 / rate; 3456 3457 ts += mpdu_offset * 8 * 10 / rate; 3458 3459 return ts; 3460 } 3461 3462 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3463 * also provided, only the interfaces using that ctx will be canceled. 3464 */ 3465 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3466 struct ieee80211_chanctx *ctx) 3467 { 3468 struct ieee80211_sub_if_data *sdata; 3469 struct cfg80211_chan_def chandef; 3470 struct ieee80211_link_data *link; 3471 struct ieee80211_chanctx_conf *chanctx_conf; 3472 unsigned int link_id; 3473 3474 lockdep_assert_wiphy(local->hw.wiphy); 3475 3476 list_for_each_entry(sdata, &local->interfaces, list) { 3477 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3478 link_id++) { 3479 link = sdata_dereference(sdata->link[link_id], 3480 sdata); 3481 if (!link) 3482 continue; 3483 3484 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3485 sdata); 3486 if (ctx && &ctx->conf != chanctx_conf) 3487 continue; 3488 3489 wiphy_delayed_work_cancel(local->hw.wiphy, 3490 &link->dfs_cac_timer_work); 3491 3492 if (!sdata->wdev.links[link_id].cac_started) 3493 continue; 3494 3495 chandef = link->conf->chanreq.oper; 3496 ieee80211_link_release_channel(link); 3497 cfg80211_cac_event(sdata->dev, &chandef, 3498 NL80211_RADAR_CAC_ABORTED, 3499 GFP_KERNEL, link_id); 3500 } 3501 } 3502 } 3503 3504 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3505 struct wiphy_work *work) 3506 { 3507 struct ieee80211_local *local = 3508 container_of(work, struct ieee80211_local, radar_detected_work); 3509 struct cfg80211_chan_def chandef; 3510 struct ieee80211_chanctx *ctx; 3511 3512 lockdep_assert_wiphy(local->hw.wiphy); 3513 3514 list_for_each_entry(ctx, &local->chanctx_list, list) { 3515 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3516 continue; 3517 3518 if (!ctx->radar_detected) 3519 continue; 3520 3521 ctx->radar_detected = false; 3522 3523 chandef = ctx->conf.def; 3524 3525 ieee80211_dfs_cac_cancel(local, ctx); 3526 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3527 } 3528 } 3529 3530 static void 3531 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3532 struct ieee80211_chanctx_conf *chanctx_conf, 3533 void *data) 3534 { 3535 struct ieee80211_chanctx *ctx = 3536 container_of(chanctx_conf, struct ieee80211_chanctx, 3537 conf); 3538 3539 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3540 return; 3541 3542 if (data && data != chanctx_conf) 3543 return; 3544 3545 ctx->radar_detected = true; 3546 } 3547 3548 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3549 struct ieee80211_chanctx_conf *chanctx_conf) 3550 { 3551 struct ieee80211_local *local = hw_to_local(hw); 3552 3553 trace_api_radar_detected(local); 3554 3555 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3556 chanctx_conf); 3557 3558 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3559 } 3560 EXPORT_SYMBOL(ieee80211_radar_detected); 3561 3562 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3563 struct ieee80211_conn_settings *conn) 3564 { 3565 enum nl80211_chan_width new_primary_width; 3566 struct ieee80211_conn_settings _ignored = {}; 3567 3568 /* allow passing NULL if caller doesn't care */ 3569 if (!conn) 3570 conn = &_ignored; 3571 3572 again: 3573 /* no-HT indicates nothing to do */ 3574 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3575 3576 switch (c->width) { 3577 default: 3578 case NL80211_CHAN_WIDTH_20_NOHT: 3579 WARN_ON_ONCE(1); 3580 fallthrough; 3581 case NL80211_CHAN_WIDTH_20: 3582 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3583 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3584 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3585 c->punctured = 0; 3586 break; 3587 case NL80211_CHAN_WIDTH_40: 3588 c->width = NL80211_CHAN_WIDTH_20; 3589 c->center_freq1 = c->chan->center_freq; 3590 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3591 conn->mode = IEEE80211_CONN_MODE_HT; 3592 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3593 c->punctured = 0; 3594 break; 3595 case NL80211_CHAN_WIDTH_80: 3596 new_primary_width = NL80211_CHAN_WIDTH_40; 3597 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3598 conn->mode = IEEE80211_CONN_MODE_HT; 3599 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3600 break; 3601 case NL80211_CHAN_WIDTH_80P80: 3602 c->center_freq2 = 0; 3603 c->width = NL80211_CHAN_WIDTH_80; 3604 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3605 break; 3606 case NL80211_CHAN_WIDTH_160: 3607 new_primary_width = NL80211_CHAN_WIDTH_80; 3608 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3609 break; 3610 case NL80211_CHAN_WIDTH_320: 3611 new_primary_width = NL80211_CHAN_WIDTH_160; 3612 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3613 break; 3614 case NL80211_CHAN_WIDTH_1: 3615 case NL80211_CHAN_WIDTH_2: 3616 case NL80211_CHAN_WIDTH_4: 3617 case NL80211_CHAN_WIDTH_8: 3618 case NL80211_CHAN_WIDTH_16: 3619 WARN_ON_ONCE(1); 3620 /* keep c->width */ 3621 conn->mode = IEEE80211_CONN_MODE_S1G; 3622 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3623 break; 3624 case NL80211_CHAN_WIDTH_5: 3625 case NL80211_CHAN_WIDTH_10: 3626 WARN_ON_ONCE(1); 3627 /* keep c->width */ 3628 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3629 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3630 break; 3631 } 3632 3633 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3634 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3635 &c->punctured); 3636 c->width = new_primary_width; 3637 } 3638 3639 /* 3640 * With an 80 MHz channel, we might have the puncturing in the primary 3641 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3642 * In that case, downgrade again. 3643 */ 3644 if (!cfg80211_chandef_valid(c) && c->punctured) 3645 goto again; 3646 3647 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3648 } 3649 3650 /* 3651 * Returns true if smps_mode_new is strictly more restrictive than 3652 * smps_mode_old. 3653 */ 3654 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3655 enum ieee80211_smps_mode smps_mode_new) 3656 { 3657 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3658 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3659 return false; 3660 3661 switch (smps_mode_old) { 3662 case IEEE80211_SMPS_STATIC: 3663 return false; 3664 case IEEE80211_SMPS_DYNAMIC: 3665 return smps_mode_new == IEEE80211_SMPS_STATIC; 3666 case IEEE80211_SMPS_OFF: 3667 return smps_mode_new != IEEE80211_SMPS_OFF; 3668 default: 3669 WARN_ON(1); 3670 } 3671 3672 return false; 3673 } 3674 3675 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3676 struct cfg80211_csa_settings *csa_settings) 3677 { 3678 struct sk_buff *skb; 3679 struct ieee80211_mgmt *mgmt; 3680 struct ieee80211_local *local = sdata->local; 3681 int freq; 3682 int hdr_len = offsetofend(struct ieee80211_mgmt, 3683 u.action.u.chan_switch); 3684 u8 *pos; 3685 3686 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3687 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3688 return -EOPNOTSUPP; 3689 3690 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3691 5 + /* channel switch announcement element */ 3692 3 + /* secondary channel offset element */ 3693 5 + /* wide bandwidth channel switch announcement */ 3694 8); /* mesh channel switch parameters element */ 3695 if (!skb) 3696 return -ENOMEM; 3697 3698 skb_reserve(skb, local->tx_headroom); 3699 mgmt = skb_put_zero(skb, hdr_len); 3700 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3701 IEEE80211_STYPE_ACTION); 3702 3703 eth_broadcast_addr(mgmt->da); 3704 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3705 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3706 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3707 } else { 3708 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3709 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3710 } 3711 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3712 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3713 pos = skb_put(skb, 5); 3714 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3715 *pos++ = 3; /* IE length */ 3716 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3717 freq = csa_settings->chandef.chan->center_freq; 3718 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3719 *pos++ = csa_settings->count; /* count */ 3720 3721 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3722 enum nl80211_channel_type ch_type; 3723 3724 skb_put(skb, 3); 3725 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3726 *pos++ = 1; /* IE length */ 3727 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3728 if (ch_type == NL80211_CHAN_HT40PLUS) 3729 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3730 else 3731 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3732 } 3733 3734 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3735 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3736 3737 skb_put(skb, 8); 3738 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3739 *pos++ = 6; /* IE length */ 3740 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3741 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3742 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3743 *pos++ |= csa_settings->block_tx ? 3744 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3745 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3746 pos += 2; 3747 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3748 pos += 2; 3749 } 3750 3751 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3752 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3753 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3754 skb_put(skb, 5); 3755 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3756 } 3757 3758 ieee80211_tx_skb(sdata, skb); 3759 return 0; 3760 } 3761 3762 static bool 3763 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3764 { 3765 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3766 int skip; 3767 3768 if (end > 0) 3769 return false; 3770 3771 /* One shot NOA */ 3772 if (data->count[i] == 1) 3773 return false; 3774 3775 if (data->desc[i].interval == 0) 3776 return false; 3777 3778 /* End time is in the past, check for repetitions */ 3779 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3780 if (data->count[i] < 255) { 3781 if (data->count[i] <= skip) { 3782 data->count[i] = 0; 3783 return false; 3784 } 3785 3786 data->count[i] -= skip; 3787 } 3788 3789 data->desc[i].start += skip * data->desc[i].interval; 3790 3791 return true; 3792 } 3793 3794 static bool 3795 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3796 s32 *offset) 3797 { 3798 bool ret = false; 3799 int i; 3800 3801 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3802 s32 cur; 3803 3804 if (!data->count[i]) 3805 continue; 3806 3807 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3808 ret = true; 3809 3810 cur = data->desc[i].start - tsf; 3811 if (cur > *offset) 3812 continue; 3813 3814 cur = data->desc[i].start + data->desc[i].duration - tsf; 3815 if (cur > *offset) 3816 *offset = cur; 3817 } 3818 3819 return ret; 3820 } 3821 3822 static u32 3823 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3824 { 3825 s32 offset = 0; 3826 int tries = 0; 3827 /* 3828 * arbitrary limit, used to avoid infinite loops when combined NoA 3829 * descriptors cover the full time period. 3830 */ 3831 int max_tries = 5; 3832 3833 ieee80211_extend_absent_time(data, tsf, &offset); 3834 do { 3835 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3836 break; 3837 3838 tries++; 3839 } while (tries < max_tries); 3840 3841 return offset; 3842 } 3843 3844 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3845 { 3846 u32 next_offset = BIT(31) - 1; 3847 int i; 3848 3849 data->absent = 0; 3850 data->has_next_tsf = false; 3851 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3852 s32 start; 3853 3854 if (!data->count[i]) 3855 continue; 3856 3857 ieee80211_extend_noa_desc(data, tsf, i); 3858 start = data->desc[i].start - tsf; 3859 if (start <= 0) 3860 data->absent |= BIT(i); 3861 3862 if (next_offset > start) 3863 next_offset = start; 3864 3865 data->has_next_tsf = true; 3866 } 3867 3868 if (data->absent) 3869 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3870 3871 data->next_tsf = tsf + next_offset; 3872 } 3873 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3874 3875 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3876 struct ieee80211_noa_data *data, u32 tsf) 3877 { 3878 int ret = 0; 3879 int i; 3880 3881 memset(data, 0, sizeof(*data)); 3882 3883 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3884 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3885 3886 if (!desc->count || !desc->duration) 3887 continue; 3888 3889 data->count[i] = desc->count; 3890 data->desc[i].start = le32_to_cpu(desc->start_time); 3891 data->desc[i].duration = le32_to_cpu(desc->duration); 3892 data->desc[i].interval = le32_to_cpu(desc->interval); 3893 3894 if (data->count[i] > 1 && 3895 data->desc[i].interval < data->desc[i].duration) 3896 continue; 3897 3898 ieee80211_extend_noa_desc(data, tsf, i); 3899 ret++; 3900 } 3901 3902 if (ret) 3903 ieee80211_update_p2p_noa(data, tsf); 3904 3905 return ret; 3906 } 3907 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3908 3909 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3910 struct ieee80211_sub_if_data *sdata) 3911 { 3912 u64 tsf = drv_get_tsf(local, sdata); 3913 u64 dtim_count = 0; 3914 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3915 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3916 struct ps_data *ps; 3917 u8 bcns_from_dtim; 3918 3919 if (tsf == -1ULL || !beacon_int || !dtim_period) 3920 return; 3921 3922 if (sdata->vif.type == NL80211_IFTYPE_AP || 3923 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3924 if (!sdata->bss) 3925 return; 3926 3927 ps = &sdata->bss->ps; 3928 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3929 ps = &sdata->u.mesh.ps; 3930 } else { 3931 return; 3932 } 3933 3934 /* 3935 * actually finds last dtim_count, mac80211 will update in 3936 * __beacon_add_tim(). 3937 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3938 */ 3939 do_div(tsf, beacon_int); 3940 bcns_from_dtim = do_div(tsf, dtim_period); 3941 /* just had a DTIM */ 3942 if (!bcns_from_dtim) 3943 dtim_count = 0; 3944 else 3945 dtim_count = dtim_period - bcns_from_dtim; 3946 3947 ps->dtim_count = dtim_count; 3948 } 3949 3950 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3951 struct ieee80211_chanctx *ctx) 3952 { 3953 struct ieee80211_link_data *link; 3954 u8 radar_detect = 0; 3955 3956 lockdep_assert_wiphy(local->hw.wiphy); 3957 3958 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3959 return 0; 3960 3961 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3962 if (link->reserved_radar_required) 3963 radar_detect |= BIT(link->reserved.oper.width); 3964 3965 /* 3966 * An in-place reservation context should not have any assigned vifs 3967 * until it replaces the other context. 3968 */ 3969 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3970 !list_empty(&ctx->assigned_links)); 3971 3972 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3973 if (!link->radar_required) 3974 continue; 3975 3976 radar_detect |= 3977 BIT(link->conf->chanreq.oper.width); 3978 } 3979 3980 return radar_detect; 3981 } 3982 3983 static u32 3984 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 3985 { 3986 struct ieee80211_bss_conf *link_conf; 3987 struct ieee80211_chanctx_conf *conf; 3988 unsigned int link_id; 3989 u32 mask = 0; 3990 3991 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 3992 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 3993 if (!conf || conf->radio_idx < 0) 3994 continue; 3995 3996 mask |= BIT(conf->radio_idx); 3997 } 3998 3999 return mask; 4000 } 4001 4002 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4003 { 4004 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4005 4006 return __ieee80211_get_radio_mask(sdata); 4007 } 4008 4009 static bool 4010 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4011 { 4012 if (radio_idx < 0) 4013 return true; 4014 4015 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4016 } 4017 4018 static int 4019 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4020 struct iface_combination_params *params, 4021 const struct cfg80211_chan_def *chandef, 4022 struct ieee80211_sub_if_data *sdata) 4023 { 4024 struct ieee80211_sub_if_data *sdata_iter; 4025 struct ieee80211_chanctx *ctx; 4026 int total = !!sdata; 4027 4028 list_for_each_entry(ctx, &local->chanctx_list, list) { 4029 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4030 continue; 4031 4032 if (params->radio_idx >= 0 && 4033 ctx->conf.radio_idx != params->radio_idx) 4034 continue; 4035 4036 params->radar_detect |= 4037 ieee80211_chanctx_radar_detect(local, ctx); 4038 4039 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4040 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4041 continue; 4042 4043 params->num_different_channels++; 4044 } 4045 4046 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4047 struct wireless_dev *wdev_iter; 4048 4049 wdev_iter = &sdata_iter->wdev; 4050 4051 if (sdata_iter == sdata || 4052 !ieee80211_sdata_running(sdata_iter) || 4053 cfg80211_iftype_allowed(local->hw.wiphy, 4054 wdev_iter->iftype, 0, 1)) 4055 continue; 4056 4057 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4058 continue; 4059 4060 params->iftype_num[wdev_iter->iftype]++; 4061 total++; 4062 } 4063 4064 return total; 4065 } 4066 4067 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4068 const struct cfg80211_chan_def *chandef, 4069 enum ieee80211_chanctx_mode chanmode, 4070 u8 radar_detect, int radio_idx) 4071 { 4072 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4073 struct ieee80211_local *local = sdata->local; 4074 enum nl80211_iftype iftype = sdata->wdev.iftype; 4075 struct iface_combination_params params = { 4076 .radar_detect = radar_detect, 4077 .radio_idx = radio_idx, 4078 }; 4079 int total; 4080 4081 lockdep_assert_wiphy(local->hw.wiphy); 4082 4083 if (WARN_ON(hweight32(radar_detect) > 1)) 4084 return -EINVAL; 4085 4086 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4087 !chandef->chan)) 4088 return -EINVAL; 4089 4090 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4091 return -EINVAL; 4092 4093 if (sdata->vif.type == NL80211_IFTYPE_AP || 4094 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4095 /* 4096 * always passing this is harmless, since it'll be the 4097 * same value that cfg80211 finds if it finds the same 4098 * interface ... and that's always allowed 4099 */ 4100 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4101 } 4102 4103 /* Always allow software iftypes */ 4104 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4105 if (radar_detect) 4106 return -EINVAL; 4107 return 0; 4108 } 4109 4110 if (chandef) 4111 params.num_different_channels = 1; 4112 4113 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4114 params.iftype_num[iftype] = 1; 4115 4116 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4117 shared ? chandef : NULL, 4118 sdata); 4119 if (total == 1 && !params.radar_detect) 4120 return 0; 4121 4122 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4123 } 4124 4125 static void 4126 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4127 void *data) 4128 { 4129 u32 *max_num_different_channels = data; 4130 4131 *max_num_different_channels = max(*max_num_different_channels, 4132 c->num_different_channels); 4133 } 4134 4135 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4136 { 4137 u32 max_num_different_channels = 1; 4138 int err; 4139 struct iface_combination_params params = { 4140 .radio_idx = radio_idx, 4141 }; 4142 4143 lockdep_assert_wiphy(local->hw.wiphy); 4144 4145 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4146 4147 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4148 ieee80211_iter_max_chans, 4149 &max_num_different_channels); 4150 if (err < 0) 4151 return err; 4152 4153 return max_num_different_channels; 4154 } 4155 4156 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4157 struct ieee80211_sta_s1g_cap *caps, 4158 struct sk_buff *skb) 4159 { 4160 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4161 struct ieee80211_s1g_cap s1g_capab; 4162 u8 *pos; 4163 int i; 4164 4165 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4166 return; 4167 4168 if (!caps->s1g) 4169 return; 4170 4171 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4172 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4173 4174 /* override the capability info */ 4175 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4176 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4177 4178 s1g_capab.capab_info[i] &= ~mask; 4179 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4180 } 4181 4182 /* then MCS and NSS set */ 4183 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4184 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4185 4186 s1g_capab.supp_mcs_nss[i] &= ~mask; 4187 s1g_capab.supp_mcs_nss[i] |= 4188 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4189 } 4190 4191 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4192 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4193 *pos++ = sizeof(s1g_capab); 4194 4195 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4196 } 4197 4198 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4199 struct sk_buff *skb) 4200 { 4201 u8 *pos = skb_put(skb, 3); 4202 4203 *pos++ = WLAN_EID_AID_REQUEST; 4204 *pos++ = 1; 4205 *pos++ = 0; 4206 } 4207 4208 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4209 { 4210 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4211 *buf++ = 7; /* len */ 4212 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4213 *buf++ = 0x50; 4214 *buf++ = 0xf2; 4215 *buf++ = 2; /* WME */ 4216 *buf++ = 0; /* WME info */ 4217 *buf++ = 1; /* WME ver */ 4218 *buf++ = qosinfo; /* U-APSD no in use */ 4219 4220 return buf; 4221 } 4222 4223 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4224 unsigned long *frame_cnt, 4225 unsigned long *byte_cnt) 4226 { 4227 struct txq_info *txqi = to_txq_info(txq); 4228 u32 frag_cnt = 0, frag_bytes = 0; 4229 struct sk_buff *skb; 4230 4231 skb_queue_walk(&txqi->frags, skb) { 4232 frag_cnt++; 4233 frag_bytes += skb->len; 4234 } 4235 4236 if (frame_cnt) 4237 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4238 4239 if (byte_cnt) 4240 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4241 } 4242 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4243 4244 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4245 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4246 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4247 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4248 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4249 }; 4250 4251 u16 ieee80211_encode_usf(int listen_interval) 4252 { 4253 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4254 u16 ui, usf = 0; 4255 4256 /* find greatest USF */ 4257 while (usf < IEEE80211_MAX_USF) { 4258 if (listen_interval % listen_int_usf[usf + 1]) 4259 break; 4260 usf += 1; 4261 } 4262 ui = listen_interval / listen_int_usf[usf]; 4263 4264 /* error if there is a remainder. Should've been checked by user */ 4265 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4266 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4267 FIELD_PREP(LISTEN_INT_UI, ui); 4268 4269 return (u16) listen_interval; 4270 } 4271 4272 /* this may return more than ieee80211_put_eht_cap() will need */ 4273 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4274 { 4275 const struct ieee80211_sta_he_cap *he_cap; 4276 const struct ieee80211_sta_eht_cap *eht_cap; 4277 struct ieee80211_supported_band *sband; 4278 bool is_ap; 4279 u8 n; 4280 4281 sband = ieee80211_get_sband(sdata); 4282 if (!sband) 4283 return 0; 4284 4285 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4286 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4287 if (!he_cap || !eht_cap) 4288 return 0; 4289 4290 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4291 4292 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4293 &eht_cap->eht_cap_elem, 4294 is_ap); 4295 return 2 + 1 + 4296 sizeof(eht_cap->eht_cap_elem) + n + 4297 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4298 eht_cap->eht_cap_elem.phy_cap_info); 4299 return 0; 4300 } 4301 4302 int ieee80211_put_eht_cap(struct sk_buff *skb, 4303 struct ieee80211_sub_if_data *sdata, 4304 const struct ieee80211_supported_band *sband, 4305 const struct ieee80211_conn_settings *conn) 4306 { 4307 const struct ieee80211_sta_he_cap *he_cap = 4308 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4309 const struct ieee80211_sta_eht_cap *eht_cap = 4310 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4311 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4312 struct ieee80211_eht_cap_elem_fixed fixed; 4313 struct ieee80211_he_cap_elem he; 4314 u8 mcs_nss_len, ppet_len; 4315 u8 orig_mcs_nss_len; 4316 u8 ie_len; 4317 4318 if (!conn) 4319 conn = &ieee80211_conn_settings_unlimited; 4320 4321 /* Make sure we have place for the IE */ 4322 if (!he_cap || !eht_cap) 4323 return 0; 4324 4325 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4326 &eht_cap->eht_cap_elem, 4327 for_ap); 4328 4329 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4330 4331 fixed = eht_cap->eht_cap_elem; 4332 4333 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4334 fixed.phy_cap_info[6] &= 4335 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4336 4337 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4338 fixed.phy_cap_info[1] &= 4339 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4340 fixed.phy_cap_info[2] &= 4341 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4342 fixed.phy_cap_info[6] &= 4343 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4344 } 4345 4346 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4347 fixed.phy_cap_info[0] &= 4348 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4349 fixed.phy_cap_info[1] &= 4350 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4351 fixed.phy_cap_info[2] &= 4352 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4353 fixed.phy_cap_info[6] &= 4354 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4355 } 4356 4357 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4358 fixed.phy_cap_info[0] &= 4359 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4360 4361 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4362 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4363 fixed.phy_cap_info); 4364 4365 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4366 if (skb_tailroom(skb) < ie_len) 4367 return -ENOBUFS; 4368 4369 skb_put_u8(skb, WLAN_EID_EXTENSION); 4370 skb_put_u8(skb, ie_len - 2); 4371 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4372 skb_put_data(skb, &fixed, sizeof(fixed)); 4373 4374 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4375 /* 4376 * If the (non-AP) STA became 20 MHz only, then convert from 4377 * <=80 to 20-MHz-only format, where MCSes are indicated in 4378 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4379 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4380 */ 4381 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4382 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4383 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4384 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4385 } else { 4386 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4387 } 4388 4389 if (ppet_len) 4390 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4391 4392 return 0; 4393 } 4394 4395 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4396 { 4397 static const char * const modes[] = { 4398 [IEEE80211_CONN_MODE_S1G] = "S1G", 4399 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4400 [IEEE80211_CONN_MODE_HT] = "HT", 4401 [IEEE80211_CONN_MODE_VHT] = "VHT", 4402 [IEEE80211_CONN_MODE_HE] = "HE", 4403 [IEEE80211_CONN_MODE_EHT] = "EHT", 4404 }; 4405 4406 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4407 return "<out of range>"; 4408 4409 return modes[mode] ?: "<missing string>"; 4410 } 4411 4412 enum ieee80211_conn_bw_limit 4413 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4414 { 4415 switch (chandef->width) { 4416 case NL80211_CHAN_WIDTH_20_NOHT: 4417 case NL80211_CHAN_WIDTH_20: 4418 return IEEE80211_CONN_BW_LIMIT_20; 4419 case NL80211_CHAN_WIDTH_40: 4420 return IEEE80211_CONN_BW_LIMIT_40; 4421 case NL80211_CHAN_WIDTH_80: 4422 return IEEE80211_CONN_BW_LIMIT_80; 4423 case NL80211_CHAN_WIDTH_80P80: 4424 case NL80211_CHAN_WIDTH_160: 4425 return IEEE80211_CONN_BW_LIMIT_160; 4426 case NL80211_CHAN_WIDTH_320: 4427 return IEEE80211_CONN_BW_LIMIT_320; 4428 default: 4429 WARN(1, "unhandled chandef width %d\n", chandef->width); 4430 return IEEE80211_CONN_BW_LIMIT_20; 4431 } 4432 } 4433 4434 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4435 { 4436 for (int i = 0; i < 2; i++) { 4437 tpe->max_local[i].valid = false; 4438 memset(tpe->max_local[i].power, 4439 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4440 sizeof(tpe->max_local[i].power)); 4441 4442 tpe->max_reg_client[i].valid = false; 4443 memset(tpe->max_reg_client[i].power, 4444 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4445 sizeof(tpe->max_reg_client[i].power)); 4446 4447 tpe->psd_local[i].valid = false; 4448 memset(tpe->psd_local[i].power, 4449 IEEE80211_TPE_PSD_NO_LIMIT, 4450 sizeof(tpe->psd_local[i].power)); 4451 4452 tpe->psd_reg_client[i].valid = false; 4453 memset(tpe->psd_reg_client[i].power, 4454 IEEE80211_TPE_PSD_NO_LIMIT, 4455 sizeof(tpe->psd_reg_client[i].power)); 4456 } 4457 } 4458