1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 trace_stop_queue(local, queue, reason); 506 507 if (WARN_ON(queue >= hw->queues)) 508 return; 509 510 if (!refcounted) 511 local->q_stop_reasons[queue][reason] = 1; 512 else 513 local->q_stop_reasons[queue][reason]++; 514 515 set_bit(reason, &local->queue_stop_reasons[queue]); 516 } 517 518 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 519 enum queue_stop_reason reason, 520 bool refcounted) 521 { 522 struct ieee80211_local *local = hw_to_local(hw); 523 unsigned long flags; 524 525 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 526 __ieee80211_stop_queue(hw, queue, reason, refcounted); 527 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 528 } 529 530 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 531 { 532 ieee80211_stop_queue_by_reason(hw, queue, 533 IEEE80211_QUEUE_STOP_REASON_DRIVER, 534 false); 535 } 536 EXPORT_SYMBOL(ieee80211_stop_queue); 537 538 void ieee80211_add_pending_skb(struct ieee80211_local *local, 539 struct sk_buff *skb) 540 { 541 struct ieee80211_hw *hw = &local->hw; 542 unsigned long flags; 543 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 544 int queue = info->hw_queue; 545 546 if (WARN_ON(!info->control.vif)) { 547 ieee80211_free_txskb(&local->hw, skb); 548 return; 549 } 550 551 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 552 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 553 false); 554 __skb_queue_tail(&local->pending[queue], skb); 555 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 556 false, &flags); 557 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 558 } 559 560 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 561 struct sk_buff_head *skbs) 562 { 563 struct ieee80211_hw *hw = &local->hw; 564 struct sk_buff *skb; 565 unsigned long flags; 566 int queue, i; 567 568 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 569 while ((skb = skb_dequeue(skbs))) { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 572 if (WARN_ON(!info->control.vif)) { 573 ieee80211_free_txskb(&local->hw, skb); 574 continue; 575 } 576 577 queue = info->hw_queue; 578 579 __ieee80211_stop_queue(hw, queue, 580 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 581 false); 582 583 __skb_queue_tail(&local->pending[queue], skb); 584 } 585 586 for (i = 0; i < hw->queues; i++) 587 __ieee80211_wake_queue(hw, i, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 594 unsigned long queues, 595 enum queue_stop_reason reason, 596 bool refcounted) 597 { 598 struct ieee80211_local *local = hw_to_local(hw); 599 unsigned long flags; 600 int i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 604 for_each_set_bit(i, &queues, hw->queues) 605 __ieee80211_stop_queue(hw, i, reason, refcounted); 606 607 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 608 } 609 610 void ieee80211_stop_queues(struct ieee80211_hw *hw) 611 { 612 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 613 IEEE80211_QUEUE_STOP_REASON_DRIVER, 614 false); 615 } 616 EXPORT_SYMBOL(ieee80211_stop_queues); 617 618 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 619 { 620 struct ieee80211_local *local = hw_to_local(hw); 621 unsigned long flags; 622 int ret; 623 624 if (WARN_ON(queue >= hw->queues)) 625 return true; 626 627 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 628 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 629 &local->queue_stop_reasons[queue]); 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(ieee80211_queue_stopped); 634 635 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 636 unsigned long queues, 637 enum queue_stop_reason reason, 638 bool refcounted) 639 { 640 struct ieee80211_local *local = hw_to_local(hw); 641 unsigned long flags; 642 int i; 643 644 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 645 646 for_each_set_bit(i, &queues, hw->queues) 647 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 648 649 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 650 } 651 652 void ieee80211_wake_queues(struct ieee80211_hw *hw) 653 { 654 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 655 IEEE80211_QUEUE_STOP_REASON_DRIVER, 656 false); 657 } 658 EXPORT_SYMBOL(ieee80211_wake_queues); 659 660 static unsigned int 661 ieee80211_get_vif_queues(struct ieee80211_local *local, 662 struct ieee80211_sub_if_data *sdata) 663 { 664 unsigned int queues; 665 666 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 667 int ac; 668 669 queues = 0; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 672 queues |= BIT(sdata->vif.hw_queue[ac]); 673 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 674 queues |= BIT(sdata->vif.cab_queue); 675 } else { 676 /* all queues */ 677 queues = BIT(local->hw.queues) - 1; 678 } 679 680 return queues; 681 } 682 683 void __ieee80211_flush_queues(struct ieee80211_local *local, 684 struct ieee80211_sub_if_data *sdata, 685 unsigned int queues, bool drop) 686 { 687 if (!local->ops->flush) 688 return; 689 690 /* 691 * If no queue was set, or if the HW doesn't support 692 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 693 */ 694 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 695 queues = ieee80211_get_vif_queues(local, sdata); 696 697 ieee80211_stop_queues_by_reason(&local->hw, queues, 698 IEEE80211_QUEUE_STOP_REASON_FLUSH, 699 false); 700 701 if (drop) { 702 struct sta_info *sta; 703 704 /* Purge the queues, so the frames on them won't be 705 * sent during __ieee80211_wake_queue() 706 */ 707 list_for_each_entry(sta, &local->sta_list, list) { 708 if (sdata != sta->sdata) 709 continue; 710 ieee80211_purge_sta_txqs(sta); 711 } 712 } 713 714 drv_flush(local, sdata, queues, drop); 715 716 ieee80211_wake_queues_by_reason(&local->hw, queues, 717 IEEE80211_QUEUE_STOP_REASON_FLUSH, 718 false); 719 } 720 721 void ieee80211_flush_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, bool drop) 723 { 724 __ieee80211_flush_queues(local, sdata, 0, drop); 725 } 726 727 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 728 struct ieee80211_sub_if_data *sdata, 729 enum queue_stop_reason reason) 730 { 731 ieee80211_stop_queues_by_reason(&local->hw, 732 ieee80211_get_vif_queues(local, sdata), 733 reason, true); 734 } 735 736 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 737 struct ieee80211_sub_if_data *sdata, 738 enum queue_stop_reason reason) 739 { 740 ieee80211_wake_queues_by_reason(&local->hw, 741 ieee80211_get_vif_queues(local, sdata), 742 reason, true); 743 } 744 745 static void __iterate_interfaces(struct ieee80211_local *local, 746 u32 iter_flags, 747 void (*iterator)(void *data, u8 *mac, 748 struct ieee80211_vif *vif), 749 void *data) 750 { 751 struct ieee80211_sub_if_data *sdata; 752 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 753 754 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 755 switch (sdata->vif.type) { 756 case NL80211_IFTYPE_MONITOR: 757 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 758 continue; 759 break; 760 case NL80211_IFTYPE_AP_VLAN: 761 continue; 762 default: 763 break; 764 } 765 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 766 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 767 continue; 768 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 769 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 770 continue; 771 if (ieee80211_sdata_running(sdata) || !active_only) 772 iterator(data, sdata->vif.addr, 773 &sdata->vif); 774 } 775 776 sdata = rcu_dereference_check(local->monitor_sdata, 777 lockdep_is_held(&local->iflist_mtx) || 778 lockdep_is_held(&local->hw.wiphy->mtx)); 779 if (sdata && 780 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 781 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 782 iterator(data, sdata->vif.addr, &sdata->vif); 783 } 784 785 void ieee80211_iterate_interfaces( 786 struct ieee80211_hw *hw, u32 iter_flags, 787 void (*iterator)(void *data, u8 *mac, 788 struct ieee80211_vif *vif), 789 void *data) 790 { 791 struct ieee80211_local *local = hw_to_local(hw); 792 793 mutex_lock(&local->iflist_mtx); 794 __iterate_interfaces(local, iter_flags, iterator, data); 795 mutex_unlock(&local->iflist_mtx); 796 } 797 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 798 799 void ieee80211_iterate_active_interfaces_atomic( 800 struct ieee80211_hw *hw, u32 iter_flags, 801 void (*iterator)(void *data, u8 *mac, 802 struct ieee80211_vif *vif), 803 void *data) 804 { 805 struct ieee80211_local *local = hw_to_local(hw); 806 807 rcu_read_lock(); 808 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 809 iterator, data); 810 rcu_read_unlock(); 811 } 812 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 813 814 void ieee80211_iterate_active_interfaces_mtx( 815 struct ieee80211_hw *hw, u32 iter_flags, 816 void (*iterator)(void *data, u8 *mac, 817 struct ieee80211_vif *vif), 818 void *data) 819 { 820 struct ieee80211_local *local = hw_to_local(hw); 821 822 lockdep_assert_wiphy(hw->wiphy); 823 824 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 825 iterator, data); 826 } 827 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 828 829 static void __iterate_stations(struct ieee80211_local *local, 830 void (*iterator)(void *data, 831 struct ieee80211_sta *sta), 832 void *data) 833 { 834 struct sta_info *sta; 835 836 list_for_each_entry_rcu(sta, &local->sta_list, list) { 837 if (!sta->uploaded) 838 continue; 839 840 iterator(data, &sta->sta); 841 } 842 } 843 844 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 845 void (*iterator)(void *data, 846 struct ieee80211_sta *sta), 847 void *data) 848 { 849 struct ieee80211_local *local = hw_to_local(hw); 850 851 rcu_read_lock(); 852 __iterate_stations(local, iterator, data); 853 rcu_read_unlock(); 854 } 855 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 856 857 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 858 { 859 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 860 861 if (!ieee80211_sdata_running(sdata) || 862 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 863 return NULL; 864 return &sdata->vif; 865 } 866 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 867 868 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 869 { 870 if (!vif) 871 return NULL; 872 873 return &vif_to_sdata(vif)->wdev; 874 } 875 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 876 877 /* 878 * Nothing should have been stuffed into the workqueue during 879 * the suspend->resume cycle. Since we can't check each caller 880 * of this function if we are already quiescing / suspended, 881 * check here and don't WARN since this can actually happen when 882 * the rx path (for example) is racing against __ieee80211_suspend 883 * and suspending / quiescing was set after the rx path checked 884 * them. 885 */ 886 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 887 { 888 if (local->quiescing || (local->suspended && !local->resuming)) { 889 pr_warn("queueing ieee80211 work while going to suspend\n"); 890 return false; 891 } 892 893 return true; 894 } 895 896 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 897 { 898 struct ieee80211_local *local = hw_to_local(hw); 899 900 if (!ieee80211_can_queue_work(local)) 901 return; 902 903 queue_work(local->workqueue, work); 904 } 905 EXPORT_SYMBOL(ieee80211_queue_work); 906 907 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 908 struct delayed_work *dwork, 909 unsigned long delay) 910 { 911 struct ieee80211_local *local = hw_to_local(hw); 912 913 if (!ieee80211_can_queue_work(local)) 914 return; 915 916 queue_delayed_work(local->workqueue, dwork, delay); 917 } 918 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 919 920 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 921 struct ieee80211_tx_queue_params 922 *qparam, int ac) 923 { 924 struct ieee80211_chanctx_conf *chanctx_conf; 925 const struct ieee80211_reg_rule *rrule; 926 const struct ieee80211_wmm_ac *wmm_ac; 927 u16 center_freq = 0; 928 929 if (sdata->vif.type != NL80211_IFTYPE_AP && 930 sdata->vif.type != NL80211_IFTYPE_STATION) 931 return; 932 933 rcu_read_lock(); 934 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 935 if (chanctx_conf) 936 center_freq = chanctx_conf->def.chan->center_freq; 937 938 if (!center_freq) { 939 rcu_read_unlock(); 940 return; 941 } 942 943 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 944 945 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 946 rcu_read_unlock(); 947 return; 948 } 949 950 if (sdata->vif.type == NL80211_IFTYPE_AP) 951 wmm_ac = &rrule->wmm_rule.ap[ac]; 952 else 953 wmm_ac = &rrule->wmm_rule.client[ac]; 954 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 955 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 956 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 957 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 958 rcu_read_unlock(); 959 } 960 961 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 962 bool bss_notify, bool enable_qos) 963 { 964 struct ieee80211_sub_if_data *sdata = link->sdata; 965 struct ieee80211_local *local = sdata->local; 966 struct ieee80211_tx_queue_params qparam; 967 struct ieee80211_chanctx_conf *chanctx_conf; 968 int ac; 969 bool use_11b; 970 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 971 int aCWmin, aCWmax; 972 973 if (!local->ops->conf_tx) 974 return; 975 976 if (local->hw.queues < IEEE80211_NUM_ACS) 977 return; 978 979 memset(&qparam, 0, sizeof(qparam)); 980 981 rcu_read_lock(); 982 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 983 use_11b = (chanctx_conf && 984 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 985 !link->operating_11g_mode; 986 rcu_read_unlock(); 987 988 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 989 990 /* Set defaults according to 802.11-2007 Table 7-37 */ 991 aCWmax = 1023; 992 if (use_11b) 993 aCWmin = 31; 994 else 995 aCWmin = 15; 996 997 /* Confiure old 802.11b/g medium access rules. */ 998 qparam.cw_max = aCWmax; 999 qparam.cw_min = aCWmin; 1000 qparam.txop = 0; 1001 qparam.aifs = 2; 1002 1003 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1004 /* Update if QoS is enabled. */ 1005 if (enable_qos) { 1006 switch (ac) { 1007 case IEEE80211_AC_BK: 1008 qparam.cw_max = aCWmax; 1009 qparam.cw_min = aCWmin; 1010 qparam.txop = 0; 1011 if (is_ocb) 1012 qparam.aifs = 9; 1013 else 1014 qparam.aifs = 7; 1015 break; 1016 /* never happens but let's not leave undefined */ 1017 default: 1018 case IEEE80211_AC_BE: 1019 qparam.cw_max = aCWmax; 1020 qparam.cw_min = aCWmin; 1021 qparam.txop = 0; 1022 if (is_ocb) 1023 qparam.aifs = 6; 1024 else 1025 qparam.aifs = 3; 1026 break; 1027 case IEEE80211_AC_VI: 1028 qparam.cw_max = aCWmin; 1029 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1030 if (is_ocb) 1031 qparam.txop = 0; 1032 else if (use_11b) 1033 qparam.txop = 6016/32; 1034 else 1035 qparam.txop = 3008/32; 1036 1037 if (is_ocb) 1038 qparam.aifs = 3; 1039 else 1040 qparam.aifs = 2; 1041 break; 1042 case IEEE80211_AC_VO: 1043 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1044 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1045 if (is_ocb) 1046 qparam.txop = 0; 1047 else if (use_11b) 1048 qparam.txop = 3264/32; 1049 else 1050 qparam.txop = 1504/32; 1051 qparam.aifs = 2; 1052 break; 1053 } 1054 } 1055 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1056 1057 qparam.uapsd = false; 1058 1059 link->tx_conf[ac] = qparam; 1060 drv_conf_tx(local, link, ac, &qparam); 1061 } 1062 1063 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1064 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1065 sdata->vif.type != NL80211_IFTYPE_NAN) { 1066 link->conf->qos = enable_qos; 1067 if (bss_notify) 1068 ieee80211_link_info_change_notify(sdata, link, 1069 BSS_CHANGED_QOS); 1070 } 1071 } 1072 1073 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1074 u16 transaction, u16 auth_alg, u16 status, 1075 const u8 *extra, size_t extra_len, const u8 *da, 1076 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1077 u32 tx_flags) 1078 { 1079 struct ieee80211_local *local = sdata->local; 1080 struct sk_buff *skb; 1081 struct ieee80211_mgmt *mgmt; 1082 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1083 struct { 1084 u8 id; 1085 u8 len; 1086 u8 ext_id; 1087 struct ieee80211_multi_link_elem ml; 1088 struct ieee80211_mle_basic_common_info basic; 1089 } __packed mle = { 1090 .id = WLAN_EID_EXTENSION, 1091 .len = sizeof(mle) - 2, 1092 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1093 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1094 .basic.len = sizeof(mle.basic), 1095 }; 1096 int err; 1097 1098 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1099 1100 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1101 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1102 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1103 multi_link * sizeof(mle)); 1104 if (!skb) 1105 return; 1106 1107 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1108 1109 mgmt = skb_put_zero(skb, 24 + 6); 1110 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1111 IEEE80211_STYPE_AUTH); 1112 memcpy(mgmt->da, da, ETH_ALEN); 1113 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1114 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1115 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1116 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1117 mgmt->u.auth.status_code = cpu_to_le16(status); 1118 if (extra) 1119 skb_put_data(skb, extra, extra_len); 1120 if (multi_link) 1121 skb_put_data(skb, &mle, sizeof(mle)); 1122 1123 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1124 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1125 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1126 if (WARN_ON(err)) { 1127 kfree_skb(skb); 1128 return; 1129 } 1130 } 1131 1132 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1133 tx_flags; 1134 ieee80211_tx_skb(sdata, skb); 1135 } 1136 1137 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1138 const u8 *da, const u8 *bssid, 1139 u16 stype, u16 reason, 1140 bool send_frame, u8 *frame_buf) 1141 { 1142 struct ieee80211_local *local = sdata->local; 1143 struct sk_buff *skb; 1144 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1145 1146 /* build frame */ 1147 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1148 mgmt->duration = 0; /* initialize only */ 1149 mgmt->seq_ctrl = 0; /* initialize only */ 1150 memcpy(mgmt->da, da, ETH_ALEN); 1151 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1152 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1153 /* u.deauth.reason_code == u.disassoc.reason_code */ 1154 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1155 1156 if (send_frame) { 1157 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1158 IEEE80211_DEAUTH_FRAME_LEN); 1159 if (!skb) 1160 return; 1161 1162 skb_reserve(skb, local->hw.extra_tx_headroom); 1163 1164 /* copy in frame */ 1165 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1166 1167 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1168 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1169 IEEE80211_SKB_CB(skb)->flags |= 1170 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1171 1172 ieee80211_tx_skb(sdata, skb); 1173 } 1174 } 1175 1176 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1177 struct ieee80211_sta_s1g_cap *s1g_cap) 1178 { 1179 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1180 return -ENOBUFS; 1181 1182 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1183 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1184 1185 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1186 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1187 1188 return 0; 1189 } 1190 1191 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1192 struct ieee80211_sub_if_data *sdata, 1193 const u8 *ie, size_t ie_len, 1194 size_t *offset, 1195 enum nl80211_band band, 1196 u32 rate_mask, 1197 struct cfg80211_chan_def *chandef, 1198 u32 flags) 1199 { 1200 struct ieee80211_local *local = sdata->local; 1201 struct ieee80211_supported_band *sband; 1202 int i, err; 1203 size_t noffset; 1204 u32 rate_flags; 1205 bool have_80mhz = false; 1206 1207 *offset = 0; 1208 1209 sband = local->hw.wiphy->bands[band]; 1210 if (WARN_ON_ONCE(!sband)) 1211 return 0; 1212 1213 rate_flags = ieee80211_chandef_rate_flags(chandef); 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 0, 1220 WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 0, 1242 WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates, rate_flags; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 rate_flags = 1530 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1531 1532 num_rates = sband->n_bitrates; 1533 supp_rates = 0; 1534 for (i = 0; i < elems->supp_rates_len + 1535 elems->ext_supp_rates_len; i++) { 1536 u8 rate = 0; 1537 int own_rate; 1538 bool is_basic; 1539 if (i < elems->supp_rates_len) 1540 rate = elems->supp_rates[i]; 1541 else if (elems->ext_supp_rates) 1542 rate = elems->ext_supp_rates 1543 [i - elems->supp_rates_len]; 1544 own_rate = 5 * (rate & 0x7f); 1545 is_basic = !!(rate & 0x80); 1546 1547 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1548 continue; 1549 1550 for (j = 0; j < num_rates; j++) { 1551 int brate; 1552 if ((rate_flags & sband->bitrates[j].flags) 1553 != rate_flags) 1554 continue; 1555 1556 brate = sband->bitrates[j].bitrate; 1557 1558 if (brate == own_rate) { 1559 supp_rates |= BIT(j); 1560 if (basic_rates && is_basic) 1561 *basic_rates |= BIT(j); 1562 } 1563 } 1564 } 1565 return supp_rates; 1566 } 1567 1568 void ieee80211_stop_device(struct ieee80211_local *local) 1569 { 1570 ieee80211_led_radio(local, false); 1571 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1572 1573 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1574 1575 flush_workqueue(local->workqueue); 1576 wiphy_work_flush(local->hw.wiphy, NULL); 1577 drv_stop(local); 1578 } 1579 1580 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1581 bool aborted) 1582 { 1583 /* It's possible that we don't handle the scan completion in 1584 * time during suspend, so if it's still marked as completed 1585 * here, queue the work and flush it to clean things up. 1586 * Instead of calling the worker function directly here, we 1587 * really queue it to avoid potential races with other flows 1588 * scheduling the same work. 1589 */ 1590 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1591 /* If coming from reconfiguration failure, abort the scan so 1592 * we don't attempt to continue a partial HW scan - which is 1593 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1594 * completed scan, and a 5 GHz portion is still pending. 1595 */ 1596 if (aborted) 1597 set_bit(SCAN_ABORTED, &local->scanning); 1598 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1599 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1600 } 1601 } 1602 1603 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1604 { 1605 struct ieee80211_sub_if_data *sdata; 1606 struct ieee80211_chanctx *ctx; 1607 1608 lockdep_assert_wiphy(local->hw.wiphy); 1609 1610 /* 1611 * We get here if during resume the device can't be restarted properly. 1612 * We might also get here if this happens during HW reset, which is a 1613 * slightly different situation and we need to drop all connections in 1614 * the latter case. 1615 * 1616 * Ask cfg80211 to turn off all interfaces, this will result in more 1617 * warnings but at least we'll then get into a clean stopped state. 1618 */ 1619 1620 local->resuming = false; 1621 local->suspended = false; 1622 local->in_reconfig = false; 1623 local->reconfig_failure = true; 1624 1625 ieee80211_flush_completed_scan(local, true); 1626 1627 /* scheduled scan clearly can't be running any more, but tell 1628 * cfg80211 and clear local state 1629 */ 1630 ieee80211_sched_scan_end(local); 1631 1632 list_for_each_entry(sdata, &local->interfaces, list) 1633 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1634 1635 /* Mark channel contexts as not being in the driver any more to avoid 1636 * removing them from the driver during the shutdown process... 1637 */ 1638 list_for_each_entry(ctx, &local->chanctx_list, list) 1639 ctx->driver_present = false; 1640 } 1641 1642 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1643 struct ieee80211_sub_if_data *sdata, 1644 struct ieee80211_link_data *link) 1645 { 1646 struct ieee80211_chanctx_conf *conf; 1647 struct ieee80211_chanctx *ctx; 1648 1649 lockdep_assert_wiphy(local->hw.wiphy); 1650 1651 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1652 lockdep_is_held(&local->hw.wiphy->mtx)); 1653 if (conf) { 1654 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1655 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1656 } 1657 } 1658 1659 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1660 { 1661 struct ieee80211_local *local = sdata->local; 1662 struct sta_info *sta; 1663 1664 lockdep_assert_wiphy(local->hw.wiphy); 1665 1666 /* add STAs back */ 1667 list_for_each_entry(sta, &local->sta_list, list) { 1668 enum ieee80211_sta_state state; 1669 1670 if (!sta->uploaded || sta->sdata != sdata) 1671 continue; 1672 1673 for (state = IEEE80211_STA_NOTEXIST; 1674 state < sta->sta_state; state++) 1675 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1676 state + 1)); 1677 } 1678 } 1679 1680 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1681 { 1682 struct cfg80211_nan_func *func, **funcs; 1683 int res, id, i = 0; 1684 1685 res = drv_start_nan(sdata->local, sdata, 1686 &sdata->u.nan.conf); 1687 if (WARN_ON(res)) 1688 return res; 1689 1690 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1691 sizeof(*funcs), 1692 GFP_KERNEL); 1693 if (!funcs) 1694 return -ENOMEM; 1695 1696 /* Add all the functions: 1697 * This is a little bit ugly. We need to call a potentially sleeping 1698 * callback for each NAN function, so we can't hold the spinlock. 1699 */ 1700 spin_lock_bh(&sdata->u.nan.func_lock); 1701 1702 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1703 funcs[i++] = func; 1704 1705 spin_unlock_bh(&sdata->u.nan.func_lock); 1706 1707 for (i = 0; funcs[i]; i++) { 1708 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1709 if (WARN_ON(res)) 1710 ieee80211_nan_func_terminated(&sdata->vif, 1711 funcs[i]->instance_id, 1712 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1713 GFP_KERNEL); 1714 } 1715 1716 kfree(funcs); 1717 1718 return 0; 1719 } 1720 1721 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1722 struct ieee80211_sub_if_data *sdata, 1723 u64 changed) 1724 { 1725 int link_id; 1726 1727 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1728 struct ieee80211_link_data *link; 1729 1730 if (!(sdata->vif.active_links & BIT(link_id))) 1731 continue; 1732 1733 link = sdata_dereference(sdata->link[link_id], sdata); 1734 if (!link) 1735 continue; 1736 1737 if (rcu_access_pointer(link->u.ap.beacon)) 1738 drv_start_ap(local, sdata, link->conf); 1739 1740 if (!link->conf->enable_beacon) 1741 continue; 1742 1743 changed |= BSS_CHANGED_BEACON | 1744 BSS_CHANGED_BEACON_ENABLED; 1745 1746 ieee80211_link_info_change_notify(sdata, link, changed); 1747 } 1748 } 1749 1750 int ieee80211_reconfig(struct ieee80211_local *local) 1751 { 1752 struct ieee80211_hw *hw = &local->hw; 1753 struct ieee80211_sub_if_data *sdata; 1754 struct ieee80211_chanctx *ctx; 1755 struct sta_info *sta; 1756 int res, i; 1757 bool reconfig_due_to_wowlan = false; 1758 struct ieee80211_sub_if_data *sched_scan_sdata; 1759 struct cfg80211_sched_scan_request *sched_scan_req; 1760 bool sched_scan_stopped = false; 1761 bool suspended = local->suspended; 1762 bool in_reconfig = false; 1763 1764 lockdep_assert_wiphy(local->hw.wiphy); 1765 1766 /* nothing to do if HW shouldn't run */ 1767 if (!local->open_count) 1768 goto wake_up; 1769 1770 #ifdef CONFIG_PM 1771 if (suspended) 1772 local->resuming = true; 1773 1774 if (local->wowlan) { 1775 /* 1776 * In the wowlan case, both mac80211 and the device 1777 * are functional when the resume op is called, so 1778 * clear local->suspended so the device could operate 1779 * normally (e.g. pass rx frames). 1780 */ 1781 local->suspended = false; 1782 res = drv_resume(local); 1783 local->wowlan = false; 1784 if (res < 0) { 1785 local->resuming = false; 1786 return res; 1787 } 1788 if (res == 0) 1789 goto wake_up; 1790 WARN_ON(res > 1); 1791 /* 1792 * res is 1, which means the driver requested 1793 * to go through a regular reset on wakeup. 1794 * restore local->suspended in this case. 1795 */ 1796 reconfig_due_to_wowlan = true; 1797 local->suspended = true; 1798 } 1799 #endif 1800 1801 /* 1802 * In case of hw_restart during suspend (without wowlan), 1803 * cancel restart work, as we are reconfiguring the device 1804 * anyway. 1805 * Note that restart_work is scheduled on a frozen workqueue, 1806 * so we can't deadlock in this case. 1807 */ 1808 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1809 cancel_work_sync(&local->restart_work); 1810 1811 local->started = false; 1812 1813 /* 1814 * Upon resume hardware can sometimes be goofy due to 1815 * various platform / driver / bus issues, so restarting 1816 * the device may at times not work immediately. Propagate 1817 * the error. 1818 */ 1819 res = drv_start(local); 1820 if (res) { 1821 if (suspended) 1822 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1823 else 1824 WARN(1, "Hardware became unavailable during restart.\n"); 1825 ieee80211_handle_reconfig_failure(local); 1826 return res; 1827 } 1828 1829 /* setup fragmentation threshold */ 1830 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1831 1832 /* setup RTS threshold */ 1833 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1834 1835 /* reset coverage class */ 1836 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1837 1838 ieee80211_led_radio(local, true); 1839 ieee80211_mod_tpt_led_trig(local, 1840 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1841 1842 /* add interfaces */ 1843 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1844 if (sdata) { 1845 /* in HW restart it exists already */ 1846 WARN_ON(local->resuming); 1847 res = drv_add_interface(local, sdata); 1848 if (WARN_ON(res)) { 1849 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1850 synchronize_net(); 1851 kfree(sdata); 1852 } 1853 } 1854 1855 list_for_each_entry(sdata, &local->interfaces, list) { 1856 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1857 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1858 ieee80211_sdata_running(sdata)) { 1859 res = drv_add_interface(local, sdata); 1860 if (WARN_ON(res)) 1861 break; 1862 } 1863 } 1864 1865 /* If adding any of the interfaces failed above, roll back and 1866 * report failure. 1867 */ 1868 if (res) { 1869 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1870 list) 1871 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1872 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1873 ieee80211_sdata_running(sdata)) 1874 drv_remove_interface(local, sdata); 1875 ieee80211_handle_reconfig_failure(local); 1876 return res; 1877 } 1878 1879 /* add channel contexts */ 1880 list_for_each_entry(ctx, &local->chanctx_list, list) 1881 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1882 WARN_ON(drv_add_chanctx(local, ctx)); 1883 1884 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1885 if (sdata && ieee80211_sdata_running(sdata)) 1886 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1887 1888 /* reconfigure hardware */ 1889 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1890 IEEE80211_CONF_CHANGE_MONITOR | 1891 IEEE80211_CONF_CHANGE_PS | 1892 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1893 IEEE80211_CONF_CHANGE_IDLE); 1894 1895 ieee80211_configure_filter(local); 1896 1897 /* Finally also reconfigure all the BSS information */ 1898 list_for_each_entry(sdata, &local->interfaces, list) { 1899 /* common change flags for all interface types - link only */ 1900 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1901 BSS_CHANGED_ERP_PREAMBLE | 1902 BSS_CHANGED_ERP_SLOT | 1903 BSS_CHANGED_HT | 1904 BSS_CHANGED_BASIC_RATES | 1905 BSS_CHANGED_BEACON_INT | 1906 BSS_CHANGED_BSSID | 1907 BSS_CHANGED_CQM | 1908 BSS_CHANGED_QOS | 1909 BSS_CHANGED_TXPOWER | 1910 BSS_CHANGED_MCAST_RATE; 1911 struct ieee80211_link_data *link = NULL; 1912 unsigned int link_id; 1913 u32 active_links = 0; 1914 1915 if (!ieee80211_sdata_running(sdata)) 1916 continue; 1917 1918 if (ieee80211_vif_is_mld(&sdata->vif)) { 1919 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1920 [0] = &sdata->vif.bss_conf, 1921 }; 1922 1923 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1924 /* start with a single active link */ 1925 active_links = sdata->vif.active_links; 1926 link_id = ffs(active_links) - 1; 1927 sdata->vif.active_links = BIT(link_id); 1928 } 1929 1930 drv_change_vif_links(local, sdata, 0, 1931 sdata->vif.active_links, 1932 old); 1933 } 1934 1935 for (link_id = 0; 1936 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1937 link_id++) { 1938 if (ieee80211_vif_is_mld(&sdata->vif) && 1939 !(sdata->vif.active_links & BIT(link_id))) 1940 continue; 1941 1942 link = sdata_dereference(sdata->link[link_id], sdata); 1943 if (!link) 1944 continue; 1945 1946 ieee80211_assign_chanctx(local, sdata, link); 1947 } 1948 1949 switch (sdata->vif.type) { 1950 case NL80211_IFTYPE_AP_VLAN: 1951 case NL80211_IFTYPE_MONITOR: 1952 break; 1953 case NL80211_IFTYPE_ADHOC: 1954 if (sdata->vif.cfg.ibss_joined) 1955 WARN_ON(drv_join_ibss(local, sdata)); 1956 fallthrough; 1957 default: 1958 ieee80211_reconfig_stations(sdata); 1959 fallthrough; 1960 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1961 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1962 drv_conf_tx(local, &sdata->deflink, i, 1963 &sdata->deflink.tx_conf[i]); 1964 break; 1965 } 1966 1967 if (sdata->vif.bss_conf.mu_mimo_owner) 1968 changed |= BSS_CHANGED_MU_GROUPS; 1969 1970 if (!ieee80211_vif_is_mld(&sdata->vif)) 1971 changed |= BSS_CHANGED_IDLE; 1972 1973 switch (sdata->vif.type) { 1974 case NL80211_IFTYPE_STATION: 1975 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1976 changed |= BSS_CHANGED_ASSOC | 1977 BSS_CHANGED_ARP_FILTER | 1978 BSS_CHANGED_PS; 1979 1980 /* Re-send beacon info report to the driver */ 1981 if (sdata->deflink.u.mgd.have_beacon) 1982 changed |= BSS_CHANGED_BEACON_INFO; 1983 1984 if (sdata->vif.bss_conf.max_idle_period || 1985 sdata->vif.bss_conf.protected_keep_alive) 1986 changed |= BSS_CHANGED_KEEP_ALIVE; 1987 1988 ieee80211_bss_info_change_notify(sdata, 1989 changed); 1990 } else if (!WARN_ON(!link)) { 1991 ieee80211_link_info_change_notify(sdata, link, 1992 changed); 1993 changed = BSS_CHANGED_ASSOC | 1994 BSS_CHANGED_IDLE | 1995 BSS_CHANGED_PS | 1996 BSS_CHANGED_ARP_FILTER; 1997 ieee80211_vif_cfg_change_notify(sdata, changed); 1998 } 1999 break; 2000 case NL80211_IFTYPE_OCB: 2001 changed |= BSS_CHANGED_OCB; 2002 ieee80211_bss_info_change_notify(sdata, changed); 2003 break; 2004 case NL80211_IFTYPE_ADHOC: 2005 changed |= BSS_CHANGED_IBSS; 2006 fallthrough; 2007 case NL80211_IFTYPE_AP: 2008 changed |= BSS_CHANGED_P2P_PS; 2009 2010 if (ieee80211_vif_is_mld(&sdata->vif)) 2011 ieee80211_vif_cfg_change_notify(sdata, 2012 BSS_CHANGED_SSID); 2013 else 2014 changed |= BSS_CHANGED_SSID; 2015 2016 if (sdata->vif.bss_conf.ftm_responder == 1 && 2017 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2018 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2019 changed |= BSS_CHANGED_FTM_RESPONDER; 2020 2021 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2022 changed |= BSS_CHANGED_AP_PROBE_RESP; 2023 2024 if (ieee80211_vif_is_mld(&sdata->vif)) { 2025 ieee80211_reconfig_ap_links(local, 2026 sdata, 2027 changed); 2028 break; 2029 } 2030 2031 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2032 drv_start_ap(local, sdata, 2033 sdata->deflink.conf); 2034 } 2035 fallthrough; 2036 case NL80211_IFTYPE_MESH_POINT: 2037 if (sdata->vif.bss_conf.enable_beacon) { 2038 changed |= BSS_CHANGED_BEACON | 2039 BSS_CHANGED_BEACON_ENABLED; 2040 ieee80211_bss_info_change_notify(sdata, changed); 2041 } 2042 break; 2043 case NL80211_IFTYPE_NAN: 2044 res = ieee80211_reconfig_nan(sdata); 2045 if (res < 0) { 2046 ieee80211_handle_reconfig_failure(local); 2047 return res; 2048 } 2049 break; 2050 case NL80211_IFTYPE_AP_VLAN: 2051 case NL80211_IFTYPE_MONITOR: 2052 case NL80211_IFTYPE_P2P_DEVICE: 2053 /* nothing to do */ 2054 break; 2055 case NL80211_IFTYPE_UNSPECIFIED: 2056 case NUM_NL80211_IFTYPES: 2057 case NL80211_IFTYPE_P2P_CLIENT: 2058 case NL80211_IFTYPE_P2P_GO: 2059 case NL80211_IFTYPE_WDS: 2060 WARN_ON(1); 2061 break; 2062 } 2063 2064 if (active_links) 2065 ieee80211_set_active_links(&sdata->vif, active_links); 2066 } 2067 2068 ieee80211_recalc_ps(local); 2069 2070 /* 2071 * The sta might be in psm against the ap (e.g. because 2072 * this was the state before a hw restart), so we 2073 * explicitly send a null packet in order to make sure 2074 * it'll sync against the ap (and get out of psm). 2075 */ 2076 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2077 list_for_each_entry(sdata, &local->interfaces, list) { 2078 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2079 continue; 2080 if (!sdata->u.mgd.associated) 2081 continue; 2082 2083 ieee80211_send_nullfunc(local, sdata, false); 2084 } 2085 } 2086 2087 /* APs are now beaconing, add back stations */ 2088 list_for_each_entry(sdata, &local->interfaces, list) { 2089 if (!ieee80211_sdata_running(sdata)) 2090 continue; 2091 2092 switch (sdata->vif.type) { 2093 case NL80211_IFTYPE_AP_VLAN: 2094 case NL80211_IFTYPE_AP: 2095 ieee80211_reconfig_stations(sdata); 2096 break; 2097 default: 2098 break; 2099 } 2100 } 2101 2102 /* add back keys */ 2103 list_for_each_entry(sdata, &local->interfaces, list) 2104 ieee80211_reenable_keys(sdata); 2105 2106 /* Reconfigure sched scan if it was interrupted by FW restart */ 2107 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2108 lockdep_is_held(&local->hw.wiphy->mtx)); 2109 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2110 lockdep_is_held(&local->hw.wiphy->mtx)); 2111 if (sched_scan_sdata && sched_scan_req) 2112 /* 2113 * Sched scan stopped, but we don't want to report it. Instead, 2114 * we're trying to reschedule. However, if more than one scan 2115 * plan was set, we cannot reschedule since we don't know which 2116 * scan plan was currently running (and some scan plans may have 2117 * already finished). 2118 */ 2119 if (sched_scan_req->n_scan_plans > 1 || 2120 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2121 sched_scan_req)) { 2122 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2123 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2124 sched_scan_stopped = true; 2125 } 2126 2127 if (sched_scan_stopped) 2128 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2129 2130 wake_up: 2131 2132 if (local->monitors == local->open_count && local->monitors > 0) 2133 ieee80211_add_virtual_monitor(local); 2134 2135 /* 2136 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2137 * sessions can be established after a resume. 2138 * 2139 * Also tear down aggregation sessions since reconfiguring 2140 * them in a hardware restart scenario is not easily done 2141 * right now, and the hardware will have lost information 2142 * about the sessions, but we and the AP still think they 2143 * are active. This is really a workaround though. 2144 */ 2145 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2146 list_for_each_entry(sta, &local->sta_list, list) { 2147 if (!local->resuming) 2148 ieee80211_sta_tear_down_BA_sessions( 2149 sta, AGG_STOP_LOCAL_REQUEST); 2150 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2151 } 2152 } 2153 2154 /* 2155 * If this is for hw restart things are still running. 2156 * We may want to change that later, however. 2157 */ 2158 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2159 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2160 2161 if (local->in_reconfig) { 2162 in_reconfig = local->in_reconfig; 2163 local->in_reconfig = false; 2164 barrier(); 2165 2166 /* Restart deferred ROCs */ 2167 ieee80211_start_next_roc(local); 2168 2169 /* Requeue all works */ 2170 list_for_each_entry(sdata, &local->interfaces, list) 2171 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2172 } 2173 2174 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2175 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2176 false); 2177 2178 if (in_reconfig) { 2179 list_for_each_entry(sdata, &local->interfaces, list) { 2180 if (!ieee80211_sdata_running(sdata)) 2181 continue; 2182 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2183 ieee80211_sta_restart(sdata); 2184 } 2185 } 2186 2187 if (!suspended) 2188 return 0; 2189 2190 #ifdef CONFIG_PM 2191 /* first set suspended false, then resuming */ 2192 local->suspended = false; 2193 mb(); 2194 local->resuming = false; 2195 2196 ieee80211_flush_completed_scan(local, false); 2197 2198 if (local->open_count && !reconfig_due_to_wowlan) 2199 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2200 2201 list_for_each_entry(sdata, &local->interfaces, list) { 2202 if (!ieee80211_sdata_running(sdata)) 2203 continue; 2204 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2205 ieee80211_sta_restart(sdata); 2206 } 2207 2208 mod_timer(&local->sta_cleanup, jiffies + 1); 2209 #else 2210 WARN_ON(1); 2211 #endif 2212 2213 return 0; 2214 } 2215 2216 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2217 { 2218 struct ieee80211_sub_if_data *sdata; 2219 struct ieee80211_local *local; 2220 struct ieee80211_key *key; 2221 2222 if (WARN_ON(!vif)) 2223 return; 2224 2225 sdata = vif_to_sdata(vif); 2226 local = sdata->local; 2227 2228 lockdep_assert_wiphy(local->hw.wiphy); 2229 2230 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2231 !local->resuming)) 2232 return; 2233 2234 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2235 !local->in_reconfig)) 2236 return; 2237 2238 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2239 return; 2240 2241 sdata->flags |= flag; 2242 2243 list_for_each_entry(key, &sdata->key_list, list) 2244 key->flags |= KEY_FLAG_TAINTED; 2245 } 2246 2247 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2248 { 2249 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2250 } 2251 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2252 2253 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2254 { 2255 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2256 } 2257 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2258 2259 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2260 struct ieee80211_link_data *link) 2261 { 2262 struct ieee80211_local *local = sdata->local; 2263 struct ieee80211_chanctx_conf *chanctx_conf; 2264 struct ieee80211_chanctx *chanctx; 2265 2266 lockdep_assert_wiphy(local->hw.wiphy); 2267 2268 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2269 lockdep_is_held(&local->hw.wiphy->mtx)); 2270 2271 /* 2272 * This function can be called from a work, thus it may be possible 2273 * that the chanctx_conf is removed (due to a disconnection, for 2274 * example). 2275 * So nothing should be done in such case. 2276 */ 2277 if (!chanctx_conf) 2278 return; 2279 2280 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2281 ieee80211_recalc_smps_chanctx(local, chanctx); 2282 } 2283 2284 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2285 int link_id) 2286 { 2287 struct ieee80211_local *local = sdata->local; 2288 struct ieee80211_chanctx_conf *chanctx_conf; 2289 struct ieee80211_chanctx *chanctx; 2290 int i; 2291 2292 lockdep_assert_wiphy(local->hw.wiphy); 2293 2294 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2295 struct ieee80211_bss_conf *bss_conf; 2296 2297 if (link_id >= 0 && link_id != i) 2298 continue; 2299 2300 rcu_read_lock(); 2301 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2302 if (!bss_conf) { 2303 rcu_read_unlock(); 2304 continue; 2305 } 2306 2307 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2308 lockdep_is_held(&local->hw.wiphy->mtx)); 2309 /* 2310 * Since we hold the wiphy mutex (checked above) 2311 * we can take the chanctx_conf pointer out of the 2312 * RCU critical section, it cannot go away without 2313 * the mutex. Just the way we reached it could - in 2314 * theory - go away, but we don't really care and 2315 * it really shouldn't happen anyway. 2316 */ 2317 rcu_read_unlock(); 2318 2319 if (!chanctx_conf) 2320 return; 2321 2322 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2323 conf); 2324 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL); 2325 } 2326 } 2327 2328 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2329 { 2330 size_t pos = offset; 2331 2332 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2333 pos += 2 + ies[pos + 1]; 2334 2335 return pos; 2336 } 2337 2338 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2339 u16 cap) 2340 { 2341 __le16 tmp; 2342 2343 *pos++ = WLAN_EID_HT_CAPABILITY; 2344 *pos++ = sizeof(struct ieee80211_ht_cap); 2345 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2346 2347 /* capability flags */ 2348 tmp = cpu_to_le16(cap); 2349 memcpy(pos, &tmp, sizeof(u16)); 2350 pos += sizeof(u16); 2351 2352 /* AMPDU parameters */ 2353 *pos++ = ht_cap->ampdu_factor | 2354 (ht_cap->ampdu_density << 2355 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2356 2357 /* MCS set */ 2358 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2359 pos += sizeof(ht_cap->mcs); 2360 2361 /* extended capabilities */ 2362 pos += sizeof(__le16); 2363 2364 /* BF capabilities */ 2365 pos += sizeof(__le32); 2366 2367 /* antenna selection */ 2368 pos += sizeof(u8); 2369 2370 return pos; 2371 } 2372 2373 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2374 u32 cap) 2375 { 2376 __le32 tmp; 2377 2378 *pos++ = WLAN_EID_VHT_CAPABILITY; 2379 *pos++ = sizeof(struct ieee80211_vht_cap); 2380 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2381 2382 /* capability flags */ 2383 tmp = cpu_to_le32(cap); 2384 memcpy(pos, &tmp, sizeof(u32)); 2385 pos += sizeof(u32); 2386 2387 /* VHT MCS set */ 2388 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2389 pos += sizeof(vht_cap->vht_mcs); 2390 2391 return pos; 2392 } 2393 2394 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2395 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2396 { 2397 const struct ieee80211_sta_he_cap *he_cap; 2398 struct ieee80211_supported_band *sband; 2399 u8 n; 2400 2401 sband = ieee80211_get_sband(sdata); 2402 if (!sband) 2403 return 0; 2404 2405 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2406 if (!he_cap) 2407 return 0; 2408 2409 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2410 return 2 + 1 + 2411 sizeof(he_cap->he_cap_elem) + n + 2412 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2413 he_cap->he_cap_elem.phy_cap_info); 2414 } 2415 2416 static void 2417 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2418 const struct ieee80211_sta_he_cap *he_cap, 2419 struct ieee80211_he_cap_elem *elem) 2420 { 2421 u8 ru_limit, max_ru; 2422 2423 *elem = he_cap->he_cap_elem; 2424 2425 switch (conn->bw_limit) { 2426 case IEEE80211_CONN_BW_LIMIT_20: 2427 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2428 break; 2429 case IEEE80211_CONN_BW_LIMIT_40: 2430 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2431 break; 2432 case IEEE80211_CONN_BW_LIMIT_80: 2433 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2434 break; 2435 default: 2436 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2437 break; 2438 } 2439 2440 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2441 max_ru = min(max_ru, ru_limit); 2442 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2443 elem->phy_cap_info[8] |= max_ru; 2444 2445 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2446 elem->phy_cap_info[0] &= 2447 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2448 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2449 elem->phy_cap_info[9] &= 2450 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2451 } 2452 2453 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2454 elem->phy_cap_info[0] &= 2455 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2456 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2457 elem->phy_cap_info[5] &= 2458 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2459 elem->phy_cap_info[7] &= 2460 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2461 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2462 } 2463 } 2464 2465 int ieee80211_put_he_cap(struct sk_buff *skb, 2466 struct ieee80211_sub_if_data *sdata, 2467 const struct ieee80211_supported_band *sband, 2468 const struct ieee80211_conn_settings *conn) 2469 { 2470 const struct ieee80211_sta_he_cap *he_cap; 2471 struct ieee80211_he_cap_elem elem; 2472 u8 *len; 2473 u8 n; 2474 u8 ie_len; 2475 2476 if (!conn) 2477 conn = &ieee80211_conn_settings_unlimited; 2478 2479 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2480 if (!he_cap) 2481 return 0; 2482 2483 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2484 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2485 2486 n = ieee80211_he_mcs_nss_size(&elem); 2487 ie_len = 2 + 1 + 2488 sizeof(he_cap->he_cap_elem) + n + 2489 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2490 he_cap->he_cap_elem.phy_cap_info); 2491 2492 if (skb_tailroom(skb) < ie_len) 2493 return -ENOBUFS; 2494 2495 skb_put_u8(skb, WLAN_EID_EXTENSION); 2496 len = skb_put(skb, 1); /* We'll set the size later below */ 2497 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2498 2499 /* Fixed data */ 2500 skb_put_data(skb, &elem, sizeof(elem)); 2501 2502 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2503 2504 /* Check if PPE Threshold should be present */ 2505 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2506 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2507 goto end; 2508 2509 /* 2510 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2511 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2512 */ 2513 n = hweight8(he_cap->ppe_thres[0] & 2514 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2515 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2516 IEEE80211_PPE_THRES_NSS_POS)); 2517 2518 /* 2519 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2520 * total size. 2521 */ 2522 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2523 n = DIV_ROUND_UP(n, 8); 2524 2525 /* Copy PPE Thresholds */ 2526 skb_put_data(skb, &he_cap->ppe_thres, n); 2527 2528 end: 2529 *len = skb_tail_pointer(skb) - len - 1; 2530 return 0; 2531 } 2532 2533 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2534 struct ieee80211_sub_if_data *sdata, 2535 enum ieee80211_smps_mode smps_mode) 2536 { 2537 struct ieee80211_supported_band *sband; 2538 const struct ieee80211_sband_iftype_data *iftd; 2539 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2540 __le16 cap; 2541 2542 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2543 BIT(NL80211_BAND_6GHZ), 2544 IEEE80211_CHAN_NO_HE)) 2545 return 0; 2546 2547 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2548 2549 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2550 if (!iftd) 2551 return 0; 2552 2553 /* Check for device HE 6 GHz capability before adding element */ 2554 if (!iftd->he_6ghz_capa.capa) 2555 return 0; 2556 2557 cap = iftd->he_6ghz_capa.capa; 2558 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2559 2560 switch (smps_mode) { 2561 case IEEE80211_SMPS_AUTOMATIC: 2562 case IEEE80211_SMPS_NUM_MODES: 2563 WARN_ON(1); 2564 fallthrough; 2565 case IEEE80211_SMPS_OFF: 2566 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2567 IEEE80211_HE_6GHZ_CAP_SM_PS); 2568 break; 2569 case IEEE80211_SMPS_STATIC: 2570 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2571 IEEE80211_HE_6GHZ_CAP_SM_PS); 2572 break; 2573 case IEEE80211_SMPS_DYNAMIC: 2574 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2575 IEEE80211_HE_6GHZ_CAP_SM_PS); 2576 break; 2577 } 2578 2579 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2580 return -ENOBUFS; 2581 2582 skb_put_u8(skb, WLAN_EID_EXTENSION); 2583 skb_put_u8(skb, 1 + sizeof(cap)); 2584 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2585 skb_put_data(skb, &cap, sizeof(cap)); 2586 return 0; 2587 } 2588 2589 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2590 const struct cfg80211_chan_def *chandef, 2591 u16 prot_mode, bool rifs_mode) 2592 { 2593 struct ieee80211_ht_operation *ht_oper; 2594 /* Build HT Information */ 2595 *pos++ = WLAN_EID_HT_OPERATION; 2596 *pos++ = sizeof(struct ieee80211_ht_operation); 2597 ht_oper = (struct ieee80211_ht_operation *)pos; 2598 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2599 chandef->chan->center_freq); 2600 switch (chandef->width) { 2601 case NL80211_CHAN_WIDTH_160: 2602 case NL80211_CHAN_WIDTH_80P80: 2603 case NL80211_CHAN_WIDTH_80: 2604 case NL80211_CHAN_WIDTH_40: 2605 if (chandef->center_freq1 > chandef->chan->center_freq) 2606 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2607 else 2608 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2609 break; 2610 case NL80211_CHAN_WIDTH_320: 2611 /* HT information element should not be included on 6GHz */ 2612 WARN_ON(1); 2613 return pos; 2614 default: 2615 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2616 break; 2617 } 2618 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2619 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2620 chandef->width != NL80211_CHAN_WIDTH_20) 2621 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2622 2623 if (rifs_mode) 2624 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2625 2626 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2627 ht_oper->stbc_param = 0x0000; 2628 2629 /* It seems that Basic MCS set and Supported MCS set 2630 are identical for the first 10 bytes */ 2631 memset(&ht_oper->basic_set, 0, 16); 2632 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2633 2634 return pos + sizeof(struct ieee80211_ht_operation); 2635 } 2636 2637 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2638 const struct cfg80211_chan_def *chandef) 2639 { 2640 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2641 *pos++ = 3; /* IE length */ 2642 /* New channel width */ 2643 switch (chandef->width) { 2644 case NL80211_CHAN_WIDTH_80: 2645 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2646 break; 2647 case NL80211_CHAN_WIDTH_160: 2648 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2649 break; 2650 case NL80211_CHAN_WIDTH_80P80: 2651 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2652 break; 2653 case NL80211_CHAN_WIDTH_320: 2654 /* The behavior is not defined for 320 MHz channels */ 2655 WARN_ON(1); 2656 fallthrough; 2657 default: 2658 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2659 } 2660 2661 /* new center frequency segment 0 */ 2662 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2663 /* new center frequency segment 1 */ 2664 if (chandef->center_freq2) 2665 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2666 else 2667 *pos++ = 0; 2668 } 2669 2670 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2671 const struct cfg80211_chan_def *chandef) 2672 { 2673 struct ieee80211_vht_operation *vht_oper; 2674 2675 *pos++ = WLAN_EID_VHT_OPERATION; 2676 *pos++ = sizeof(struct ieee80211_vht_operation); 2677 vht_oper = (struct ieee80211_vht_operation *)pos; 2678 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2679 chandef->center_freq1); 2680 if (chandef->center_freq2) 2681 vht_oper->center_freq_seg1_idx = 2682 ieee80211_frequency_to_channel(chandef->center_freq2); 2683 else 2684 vht_oper->center_freq_seg1_idx = 0x00; 2685 2686 switch (chandef->width) { 2687 case NL80211_CHAN_WIDTH_160: 2688 /* 2689 * Convert 160 MHz channel width to new style as interop 2690 * workaround. 2691 */ 2692 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2693 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2694 if (chandef->chan->center_freq < chandef->center_freq1) 2695 vht_oper->center_freq_seg0_idx -= 8; 2696 else 2697 vht_oper->center_freq_seg0_idx += 8; 2698 break; 2699 case NL80211_CHAN_WIDTH_80P80: 2700 /* 2701 * Convert 80+80 MHz channel width to new style as interop 2702 * workaround. 2703 */ 2704 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2705 break; 2706 case NL80211_CHAN_WIDTH_80: 2707 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2708 break; 2709 case NL80211_CHAN_WIDTH_320: 2710 /* VHT information element should not be included on 6GHz */ 2711 WARN_ON(1); 2712 return pos; 2713 default: 2714 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2715 break; 2716 } 2717 2718 /* don't require special VHT peer rates */ 2719 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2720 2721 return pos + sizeof(struct ieee80211_vht_operation); 2722 } 2723 2724 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 2725 { 2726 struct ieee80211_he_operation *he_oper; 2727 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2728 u32 he_oper_params; 2729 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2730 2731 if (chandef->chan->band == NL80211_BAND_6GHZ) 2732 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2733 2734 *pos++ = WLAN_EID_EXTENSION; 2735 *pos++ = ie_len; 2736 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2737 2738 he_oper_params = 0; 2739 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2740 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2741 he_oper_params |= u32_encode_bits(1, 2742 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2743 he_oper_params |= u32_encode_bits(1, 2744 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2745 if (chandef->chan->band == NL80211_BAND_6GHZ) 2746 he_oper_params |= u32_encode_bits(1, 2747 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2748 2749 he_oper = (struct ieee80211_he_operation *)pos; 2750 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2751 2752 /* don't require special HE peer rates */ 2753 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2754 pos += sizeof(struct ieee80211_he_operation); 2755 2756 if (chandef->chan->band != NL80211_BAND_6GHZ) 2757 goto out; 2758 2759 /* TODO add VHT operational */ 2760 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2761 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2762 he_6ghz_op->primary = 2763 ieee80211_frequency_to_channel(chandef->chan->center_freq); 2764 he_6ghz_op->ccfs0 = 2765 ieee80211_frequency_to_channel(chandef->center_freq1); 2766 if (chandef->center_freq2) 2767 he_6ghz_op->ccfs1 = 2768 ieee80211_frequency_to_channel(chandef->center_freq2); 2769 else 2770 he_6ghz_op->ccfs1 = 0; 2771 2772 switch (chandef->width) { 2773 case NL80211_CHAN_WIDTH_320: 2774 /* 2775 * TODO: mesh operation is not defined over 6GHz 320 MHz 2776 * channels. 2777 */ 2778 WARN_ON(1); 2779 break; 2780 case NL80211_CHAN_WIDTH_160: 2781 /* Convert 160 MHz channel width to new style as interop 2782 * workaround. 2783 */ 2784 he_6ghz_op->control = 2785 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2786 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2787 if (chandef->chan->center_freq < chandef->center_freq1) 2788 he_6ghz_op->ccfs0 -= 8; 2789 else 2790 he_6ghz_op->ccfs0 += 8; 2791 fallthrough; 2792 case NL80211_CHAN_WIDTH_80P80: 2793 he_6ghz_op->control = 2794 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2795 break; 2796 case NL80211_CHAN_WIDTH_80: 2797 he_6ghz_op->control = 2798 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2799 break; 2800 case NL80211_CHAN_WIDTH_40: 2801 he_6ghz_op->control = 2802 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2803 break; 2804 default: 2805 he_6ghz_op->control = 2806 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2807 break; 2808 } 2809 2810 pos += sizeof(struct ieee80211_he_6ghz_oper); 2811 2812 out: 2813 return pos; 2814 } 2815 2816 u8 *ieee80211_ie_build_eht_oper(u8 *pos, struct cfg80211_chan_def *chandef, 2817 const struct ieee80211_sta_eht_cap *eht_cap) 2818 2819 { 2820 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2821 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2822 struct ieee80211_eht_operation *eht_oper; 2823 struct ieee80211_eht_operation_info *eht_oper_info; 2824 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2825 u8 eht_oper_info_len = 2826 offsetof(struct ieee80211_eht_operation_info, optional); 2827 u8 chan_width = 0; 2828 2829 *pos++ = WLAN_EID_EXTENSION; 2830 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2831 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2832 2833 eht_oper = (struct ieee80211_eht_operation *)pos; 2834 2835 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2836 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2837 pos += eht_oper_len; 2838 2839 eht_oper_info = 2840 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2841 2842 eht_oper_info->ccfs0 = 2843 ieee80211_frequency_to_channel(chandef->center_freq1); 2844 if (chandef->center_freq2) 2845 eht_oper_info->ccfs1 = 2846 ieee80211_frequency_to_channel(chandef->center_freq2); 2847 else 2848 eht_oper_info->ccfs1 = 0; 2849 2850 switch (chandef->width) { 2851 case NL80211_CHAN_WIDTH_320: 2852 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2853 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2854 if (chandef->chan->center_freq < chandef->center_freq1) 2855 eht_oper_info->ccfs0 -= 16; 2856 else 2857 eht_oper_info->ccfs0 += 16; 2858 break; 2859 case NL80211_CHAN_WIDTH_160: 2860 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2861 if (chandef->chan->center_freq < chandef->center_freq1) 2862 eht_oper_info->ccfs0 -= 8; 2863 else 2864 eht_oper_info->ccfs0 += 8; 2865 fallthrough; 2866 case NL80211_CHAN_WIDTH_80P80: 2867 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2868 break; 2869 case NL80211_CHAN_WIDTH_80: 2870 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2871 break; 2872 case NL80211_CHAN_WIDTH_40: 2873 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2874 break; 2875 default: 2876 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2877 break; 2878 } 2879 eht_oper_info->control = chan_width; 2880 pos += eht_oper_info_len; 2881 2882 /* TODO: eht_oper_info->optional */ 2883 2884 return pos; 2885 } 2886 2887 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2888 struct cfg80211_chan_def *chandef) 2889 { 2890 enum nl80211_channel_type channel_type; 2891 2892 if (!ht_oper) 2893 return false; 2894 2895 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2896 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2897 channel_type = NL80211_CHAN_HT20; 2898 break; 2899 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2900 channel_type = NL80211_CHAN_HT40PLUS; 2901 break; 2902 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2903 channel_type = NL80211_CHAN_HT40MINUS; 2904 break; 2905 default: 2906 return false; 2907 } 2908 2909 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2910 return true; 2911 } 2912 2913 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2914 const struct ieee80211_vht_operation *oper, 2915 const struct ieee80211_ht_operation *htop, 2916 struct cfg80211_chan_def *chandef) 2917 { 2918 struct cfg80211_chan_def new = *chandef; 2919 int cf0, cf1; 2920 int ccfs0, ccfs1, ccfs2; 2921 int ccf0, ccf1; 2922 u32 vht_cap; 2923 bool support_80_80 = false; 2924 bool support_160 = false; 2925 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2926 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2927 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2928 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2929 2930 if (!oper || !htop) 2931 return false; 2932 2933 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2934 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2935 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2936 support_80_80 = ((vht_cap & 2937 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2938 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2939 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2940 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2941 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2942 ccfs0 = oper->center_freq_seg0_idx; 2943 ccfs1 = oper->center_freq_seg1_idx; 2944 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2945 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2946 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2947 2948 ccf0 = ccfs0; 2949 2950 /* if not supported, parse as though we didn't understand it */ 2951 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2952 ext_nss_bw_supp = 0; 2953 2954 /* 2955 * Cf. IEEE 802.11 Table 9-250 2956 * 2957 * We really just consider that because it's inefficient to connect 2958 * at a higher bandwidth than we'll actually be able to use. 2959 */ 2960 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2961 default: 2962 case 0x00: 2963 ccf1 = 0; 2964 support_160 = false; 2965 support_80_80 = false; 2966 break; 2967 case 0x01: 2968 support_80_80 = false; 2969 fallthrough; 2970 case 0x02: 2971 case 0x03: 2972 ccf1 = ccfs2; 2973 break; 2974 case 0x10: 2975 ccf1 = ccfs1; 2976 break; 2977 case 0x11: 2978 case 0x12: 2979 if (!ccfs1) 2980 ccf1 = ccfs2; 2981 else 2982 ccf1 = ccfs1; 2983 break; 2984 case 0x13: 2985 case 0x20: 2986 case 0x23: 2987 ccf1 = ccfs1; 2988 break; 2989 } 2990 2991 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 2992 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 2993 2994 switch (oper->chan_width) { 2995 case IEEE80211_VHT_CHANWIDTH_USE_HT: 2996 /* just use HT information directly */ 2997 break; 2998 case IEEE80211_VHT_CHANWIDTH_80MHZ: 2999 new.width = NL80211_CHAN_WIDTH_80; 3000 new.center_freq1 = cf0; 3001 /* If needed, adjust based on the newer interop workaround. */ 3002 if (ccf1) { 3003 unsigned int diff; 3004 3005 diff = abs(ccf1 - ccf0); 3006 if ((diff == 8) && support_160) { 3007 new.width = NL80211_CHAN_WIDTH_160; 3008 new.center_freq1 = cf1; 3009 } else if ((diff > 8) && support_80_80) { 3010 new.width = NL80211_CHAN_WIDTH_80P80; 3011 new.center_freq2 = cf1; 3012 } 3013 } 3014 break; 3015 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3016 /* deprecated encoding */ 3017 new.width = NL80211_CHAN_WIDTH_160; 3018 new.center_freq1 = cf0; 3019 break; 3020 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3021 /* deprecated encoding */ 3022 new.width = NL80211_CHAN_WIDTH_80P80; 3023 new.center_freq1 = cf0; 3024 new.center_freq2 = cf1; 3025 break; 3026 default: 3027 return false; 3028 } 3029 3030 if (!cfg80211_chandef_valid(&new)) 3031 return false; 3032 3033 *chandef = new; 3034 return true; 3035 } 3036 3037 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3038 struct cfg80211_chan_def *chandef) 3039 { 3040 chandef->center_freq1 = 3041 ieee80211_channel_to_frequency(info->ccfs0, 3042 chandef->chan->band); 3043 3044 switch (u8_get_bits(info->control, 3045 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3046 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3047 chandef->width = NL80211_CHAN_WIDTH_20; 3048 break; 3049 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3050 chandef->width = NL80211_CHAN_WIDTH_40; 3051 break; 3052 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3053 chandef->width = NL80211_CHAN_WIDTH_80; 3054 break; 3055 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3056 chandef->width = NL80211_CHAN_WIDTH_160; 3057 chandef->center_freq1 = 3058 ieee80211_channel_to_frequency(info->ccfs1, 3059 chandef->chan->band); 3060 break; 3061 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3062 chandef->width = NL80211_CHAN_WIDTH_320; 3063 chandef->center_freq1 = 3064 ieee80211_channel_to_frequency(info->ccfs1, 3065 chandef->chan->band); 3066 break; 3067 } 3068 } 3069 3070 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3071 const struct ieee80211_he_operation *he_oper, 3072 const struct ieee80211_eht_operation *eht_oper, 3073 struct cfg80211_chan_def *chandef) 3074 { 3075 struct cfg80211_chan_def he_chandef = *chandef; 3076 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3077 u32 freq; 3078 3079 if (chandef->chan->band != NL80211_BAND_6GHZ) 3080 return true; 3081 3082 if (!he_oper) 3083 return false; 3084 3085 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3086 if (!he_6ghz_oper) 3087 return false; 3088 3089 /* 3090 * The EHT operation IE does not contain the primary channel so the 3091 * primary channel frequency should be taken from the 6 GHz operation 3092 * information. 3093 */ 3094 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3095 NL80211_BAND_6GHZ); 3096 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3097 3098 if (!he_chandef.chan) 3099 return false; 3100 3101 if (!eht_oper || 3102 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3103 switch (u8_get_bits(he_6ghz_oper->control, 3104 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3105 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3106 he_chandef.width = NL80211_CHAN_WIDTH_20; 3107 break; 3108 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3109 he_chandef.width = NL80211_CHAN_WIDTH_40; 3110 break; 3111 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3112 he_chandef.width = NL80211_CHAN_WIDTH_80; 3113 break; 3114 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3115 he_chandef.width = NL80211_CHAN_WIDTH_80; 3116 if (!he_6ghz_oper->ccfs1) 3117 break; 3118 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3119 he_chandef.width = NL80211_CHAN_WIDTH_160; 3120 else 3121 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3122 break; 3123 } 3124 3125 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3126 he_chandef.center_freq1 = 3127 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3128 NL80211_BAND_6GHZ); 3129 } else { 3130 he_chandef.center_freq1 = 3131 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3132 NL80211_BAND_6GHZ); 3133 he_chandef.center_freq2 = 3134 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3135 NL80211_BAND_6GHZ); 3136 } 3137 } else { 3138 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3139 &he_chandef); 3140 } 3141 3142 if (!cfg80211_chandef_valid(&he_chandef)) 3143 return false; 3144 3145 *chandef = he_chandef; 3146 3147 return true; 3148 } 3149 3150 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3151 struct cfg80211_chan_def *chandef) 3152 { 3153 u32 oper_freq; 3154 3155 if (!oper) 3156 return false; 3157 3158 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3159 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3160 chandef->width = NL80211_CHAN_WIDTH_1; 3161 break; 3162 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3163 chandef->width = NL80211_CHAN_WIDTH_2; 3164 break; 3165 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3166 chandef->width = NL80211_CHAN_WIDTH_4; 3167 break; 3168 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3169 chandef->width = NL80211_CHAN_WIDTH_8; 3170 break; 3171 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3172 chandef->width = NL80211_CHAN_WIDTH_16; 3173 break; 3174 default: 3175 return false; 3176 } 3177 3178 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3179 NL80211_BAND_S1GHZ); 3180 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3181 chandef->freq1_offset = oper_freq % 1000; 3182 3183 return true; 3184 } 3185 3186 int ieee80211_put_srates_elem(struct sk_buff *skb, 3187 const struct ieee80211_supported_band *sband, 3188 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3189 u8 element_id) 3190 { 3191 u8 i, rates, skip; 3192 3193 rates = 0; 3194 for (i = 0; i < sband->n_bitrates; i++) { 3195 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3196 continue; 3197 if (masked_rates & BIT(i)) 3198 continue; 3199 rates++; 3200 } 3201 3202 if (element_id == WLAN_EID_SUPP_RATES) { 3203 rates = min_t(u8, rates, 8); 3204 skip = 0; 3205 } else { 3206 skip = 8; 3207 if (rates <= skip) 3208 return 0; 3209 rates -= skip; 3210 } 3211 3212 if (skb_tailroom(skb) < rates + 2) 3213 return -ENOBUFS; 3214 3215 skb_put_u8(skb, element_id); 3216 skb_put_u8(skb, rates); 3217 3218 for (i = 0; i < sband->n_bitrates && rates; i++) { 3219 int rate; 3220 u8 basic; 3221 3222 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3223 continue; 3224 if (masked_rates & BIT(i)) 3225 continue; 3226 3227 if (skip > 0) { 3228 skip--; 3229 continue; 3230 } 3231 3232 basic = basic_rates & BIT(i) ? 0x80 : 0; 3233 3234 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3235 skb_put_u8(skb, basic | (u8)rate); 3236 rates--; 3237 } 3238 3239 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3240 rates, element_id); 3241 3242 return 0; 3243 } 3244 3245 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3246 { 3247 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3248 3249 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3250 return 0; 3251 3252 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3253 } 3254 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3255 3256 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3257 { 3258 if (!mcs) 3259 return 1; 3260 3261 /* TODO: consider rx_highest */ 3262 3263 if (mcs->rx_mask[3]) 3264 return 4; 3265 if (mcs->rx_mask[2]) 3266 return 3; 3267 if (mcs->rx_mask[1]) 3268 return 2; 3269 return 1; 3270 } 3271 3272 /** 3273 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3274 * @local: mac80211 hw info struct 3275 * @status: RX status 3276 * @mpdu_len: total MPDU length (including FCS) 3277 * @mpdu_offset: offset into MPDU to calculate timestamp at 3278 * 3279 * This function calculates the RX timestamp at the given MPDU offset, taking 3280 * into account what the RX timestamp was. An offset of 0 will just normalize 3281 * the timestamp to TSF at beginning of MPDU reception. 3282 * 3283 * Returns: the calculated timestamp 3284 */ 3285 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3286 struct ieee80211_rx_status *status, 3287 unsigned int mpdu_len, 3288 unsigned int mpdu_offset) 3289 { 3290 u64 ts = status->mactime; 3291 bool mactime_plcp_start; 3292 struct rate_info ri; 3293 u16 rate; 3294 u8 n_ltf; 3295 3296 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3297 return 0; 3298 3299 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3300 RX_FLAG_MACTIME_PLCP_START; 3301 3302 memset(&ri, 0, sizeof(ri)); 3303 3304 ri.bw = status->bw; 3305 3306 /* Fill cfg80211 rate info */ 3307 switch (status->encoding) { 3308 case RX_ENC_EHT: 3309 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3310 ri.mcs = status->rate_idx; 3311 ri.nss = status->nss; 3312 ri.eht_ru_alloc = status->eht.ru; 3313 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3314 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3315 /* TODO/FIXME: is this right? handle other PPDUs */ 3316 if (mactime_plcp_start) { 3317 mpdu_offset += 2; 3318 ts += 36; 3319 } 3320 break; 3321 case RX_ENC_HE: 3322 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3323 ri.mcs = status->rate_idx; 3324 ri.nss = status->nss; 3325 ri.he_ru_alloc = status->he_ru; 3326 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3327 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3328 3329 /* 3330 * See P802.11ax_D6.0, section 27.3.4 for 3331 * VHT PPDU format. 3332 */ 3333 if (mactime_plcp_start) { 3334 mpdu_offset += 2; 3335 ts += 36; 3336 3337 /* 3338 * TODO: 3339 * For HE MU PPDU, add the HE-SIG-B. 3340 * For HE ER PPDU, add 8us for the HE-SIG-A. 3341 * For HE TB PPDU, add 4us for the HE-STF. 3342 * Add the HE-LTF durations - variable. 3343 */ 3344 } 3345 3346 break; 3347 case RX_ENC_HT: 3348 ri.mcs = status->rate_idx; 3349 ri.flags |= RATE_INFO_FLAGS_MCS; 3350 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3351 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3352 3353 /* 3354 * See P802.11REVmd_D3.0, section 19.3.2 for 3355 * HT PPDU format. 3356 */ 3357 if (mactime_plcp_start) { 3358 mpdu_offset += 2; 3359 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3360 ts += 24; 3361 else 3362 ts += 32; 3363 3364 /* 3365 * Add Data HT-LTFs per streams 3366 * TODO: add Extension HT-LTFs, 4us per LTF 3367 */ 3368 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3369 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3370 ts += n_ltf * 4; 3371 } 3372 3373 break; 3374 case RX_ENC_VHT: 3375 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3376 ri.mcs = status->rate_idx; 3377 ri.nss = status->nss; 3378 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3379 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3380 3381 /* 3382 * See P802.11REVmd_D3.0, section 21.3.2 for 3383 * VHT PPDU format. 3384 */ 3385 if (mactime_plcp_start) { 3386 mpdu_offset += 2; 3387 ts += 36; 3388 3389 /* 3390 * Add VHT-LTFs per streams 3391 */ 3392 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3393 ri.nss + 1 : ri.nss; 3394 ts += 4 * n_ltf; 3395 } 3396 3397 break; 3398 default: 3399 WARN_ON(1); 3400 fallthrough; 3401 case RX_ENC_LEGACY: { 3402 struct ieee80211_supported_band *sband; 3403 3404 sband = local->hw.wiphy->bands[status->band]; 3405 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3406 3407 if (mactime_plcp_start) { 3408 if (status->band == NL80211_BAND_5GHZ) { 3409 ts += 20; 3410 mpdu_offset += 2; 3411 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3412 ts += 96; 3413 } else { 3414 ts += 192; 3415 } 3416 } 3417 break; 3418 } 3419 } 3420 3421 rate = cfg80211_calculate_bitrate(&ri); 3422 if (WARN_ONCE(!rate, 3423 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3424 (unsigned long long)status->flag, status->rate_idx, 3425 status->nss)) 3426 return 0; 3427 3428 /* rewind from end of MPDU */ 3429 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3430 ts -= mpdu_len * 8 * 10 / rate; 3431 3432 ts += mpdu_offset * 8 * 10 / rate; 3433 3434 return ts; 3435 } 3436 3437 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 3438 { 3439 struct ieee80211_sub_if_data *sdata; 3440 struct cfg80211_chan_def chandef; 3441 3442 lockdep_assert_wiphy(local->hw.wiphy); 3443 3444 list_for_each_entry(sdata, &local->interfaces, list) { 3445 /* it might be waiting for the local->mtx, but then 3446 * by the time it gets it, sdata->wdev.cac_started 3447 * will no longer be true 3448 */ 3449 wiphy_delayed_work_cancel(local->hw.wiphy, 3450 &sdata->deflink.dfs_cac_timer_work); 3451 3452 if (sdata->wdev.cac_started) { 3453 chandef = sdata->vif.bss_conf.chanreq.oper; 3454 ieee80211_link_release_channel(&sdata->deflink); 3455 cfg80211_cac_event(sdata->dev, 3456 &chandef, 3457 NL80211_RADAR_CAC_ABORTED, 3458 GFP_KERNEL); 3459 } 3460 } 3461 } 3462 3463 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3464 struct wiphy_work *work) 3465 { 3466 struct ieee80211_local *local = 3467 container_of(work, struct ieee80211_local, radar_detected_work); 3468 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 3469 struct ieee80211_chanctx *ctx; 3470 int num_chanctx = 0; 3471 3472 lockdep_assert_wiphy(local->hw.wiphy); 3473 3474 list_for_each_entry(ctx, &local->chanctx_list, list) { 3475 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3476 continue; 3477 3478 num_chanctx++; 3479 chandef = ctx->conf.def; 3480 } 3481 3482 ieee80211_dfs_cac_cancel(local); 3483 3484 if (num_chanctx > 1) 3485 /* XXX: multi-channel is not supported yet */ 3486 WARN_ON(1); 3487 else 3488 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3489 } 3490 3491 void ieee80211_radar_detected(struct ieee80211_hw *hw) 3492 { 3493 struct ieee80211_local *local = hw_to_local(hw); 3494 3495 trace_api_radar_detected(local); 3496 3497 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3498 } 3499 EXPORT_SYMBOL(ieee80211_radar_detected); 3500 3501 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3502 struct ieee80211_conn_settings *conn) 3503 { 3504 enum nl80211_chan_width new_primary_width; 3505 struct ieee80211_conn_settings _ignored = {}; 3506 3507 /* allow passing NULL if caller doesn't care */ 3508 if (!conn) 3509 conn = &_ignored; 3510 3511 again: 3512 /* no-HT indicates nothing to do */ 3513 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3514 3515 switch (c->width) { 3516 default: 3517 case NL80211_CHAN_WIDTH_20_NOHT: 3518 WARN_ON_ONCE(1); 3519 fallthrough; 3520 case NL80211_CHAN_WIDTH_20: 3521 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3522 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3523 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3524 c->punctured = 0; 3525 break; 3526 case NL80211_CHAN_WIDTH_40: 3527 c->width = NL80211_CHAN_WIDTH_20; 3528 c->center_freq1 = c->chan->center_freq; 3529 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3530 conn->mode = IEEE80211_CONN_MODE_HT; 3531 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3532 c->punctured = 0; 3533 break; 3534 case NL80211_CHAN_WIDTH_80: 3535 new_primary_width = NL80211_CHAN_WIDTH_40; 3536 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3537 conn->mode = IEEE80211_CONN_MODE_HT; 3538 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3539 break; 3540 case NL80211_CHAN_WIDTH_80P80: 3541 c->center_freq2 = 0; 3542 c->width = NL80211_CHAN_WIDTH_80; 3543 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3544 break; 3545 case NL80211_CHAN_WIDTH_160: 3546 new_primary_width = NL80211_CHAN_WIDTH_80; 3547 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3548 break; 3549 case NL80211_CHAN_WIDTH_320: 3550 new_primary_width = NL80211_CHAN_WIDTH_160; 3551 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3552 break; 3553 case NL80211_CHAN_WIDTH_1: 3554 case NL80211_CHAN_WIDTH_2: 3555 case NL80211_CHAN_WIDTH_4: 3556 case NL80211_CHAN_WIDTH_8: 3557 case NL80211_CHAN_WIDTH_16: 3558 WARN_ON_ONCE(1); 3559 /* keep c->width */ 3560 conn->mode = IEEE80211_CONN_MODE_S1G; 3561 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3562 break; 3563 case NL80211_CHAN_WIDTH_5: 3564 case NL80211_CHAN_WIDTH_10: 3565 WARN_ON_ONCE(1); 3566 /* keep c->width */ 3567 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3568 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3569 break; 3570 } 3571 3572 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3573 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3574 &c->punctured); 3575 c->width = new_primary_width; 3576 } 3577 3578 /* 3579 * With an 80 MHz channel, we might have the puncturing in the primary 3580 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3581 * In that case, downgrade again. 3582 */ 3583 if (!cfg80211_chandef_valid(c) && c->punctured) 3584 goto again; 3585 3586 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3587 } 3588 3589 /* 3590 * Returns true if smps_mode_new is strictly more restrictive than 3591 * smps_mode_old. 3592 */ 3593 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3594 enum ieee80211_smps_mode smps_mode_new) 3595 { 3596 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3597 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3598 return false; 3599 3600 switch (smps_mode_old) { 3601 case IEEE80211_SMPS_STATIC: 3602 return false; 3603 case IEEE80211_SMPS_DYNAMIC: 3604 return smps_mode_new == IEEE80211_SMPS_STATIC; 3605 case IEEE80211_SMPS_OFF: 3606 return smps_mode_new != IEEE80211_SMPS_OFF; 3607 default: 3608 WARN_ON(1); 3609 } 3610 3611 return false; 3612 } 3613 3614 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3615 struct cfg80211_csa_settings *csa_settings) 3616 { 3617 struct sk_buff *skb; 3618 struct ieee80211_mgmt *mgmt; 3619 struct ieee80211_local *local = sdata->local; 3620 int freq; 3621 int hdr_len = offsetofend(struct ieee80211_mgmt, 3622 u.action.u.chan_switch); 3623 u8 *pos; 3624 3625 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3626 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3627 return -EOPNOTSUPP; 3628 3629 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3630 5 + /* channel switch announcement element */ 3631 3 + /* secondary channel offset element */ 3632 5 + /* wide bandwidth channel switch announcement */ 3633 8); /* mesh channel switch parameters element */ 3634 if (!skb) 3635 return -ENOMEM; 3636 3637 skb_reserve(skb, local->tx_headroom); 3638 mgmt = skb_put_zero(skb, hdr_len); 3639 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3640 IEEE80211_STYPE_ACTION); 3641 3642 eth_broadcast_addr(mgmt->da); 3643 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3644 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3645 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3646 } else { 3647 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3648 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3649 } 3650 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3651 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3652 pos = skb_put(skb, 5); 3653 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3654 *pos++ = 3; /* IE length */ 3655 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3656 freq = csa_settings->chandef.chan->center_freq; 3657 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3658 *pos++ = csa_settings->count; /* count */ 3659 3660 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3661 enum nl80211_channel_type ch_type; 3662 3663 skb_put(skb, 3); 3664 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3665 *pos++ = 1; /* IE length */ 3666 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3667 if (ch_type == NL80211_CHAN_HT40PLUS) 3668 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3669 else 3670 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3671 } 3672 3673 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3674 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3675 3676 skb_put(skb, 8); 3677 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3678 *pos++ = 6; /* IE length */ 3679 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3680 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3681 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3682 *pos++ |= csa_settings->block_tx ? 3683 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3684 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3685 pos += 2; 3686 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3687 pos += 2; 3688 } 3689 3690 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3691 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3692 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3693 skb_put(skb, 5); 3694 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3695 } 3696 3697 ieee80211_tx_skb(sdata, skb); 3698 return 0; 3699 } 3700 3701 static bool 3702 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3703 { 3704 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3705 int skip; 3706 3707 if (end > 0) 3708 return false; 3709 3710 /* One shot NOA */ 3711 if (data->count[i] == 1) 3712 return false; 3713 3714 if (data->desc[i].interval == 0) 3715 return false; 3716 3717 /* End time is in the past, check for repetitions */ 3718 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3719 if (data->count[i] < 255) { 3720 if (data->count[i] <= skip) { 3721 data->count[i] = 0; 3722 return false; 3723 } 3724 3725 data->count[i] -= skip; 3726 } 3727 3728 data->desc[i].start += skip * data->desc[i].interval; 3729 3730 return true; 3731 } 3732 3733 static bool 3734 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3735 s32 *offset) 3736 { 3737 bool ret = false; 3738 int i; 3739 3740 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3741 s32 cur; 3742 3743 if (!data->count[i]) 3744 continue; 3745 3746 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3747 ret = true; 3748 3749 cur = data->desc[i].start - tsf; 3750 if (cur > *offset) 3751 continue; 3752 3753 cur = data->desc[i].start + data->desc[i].duration - tsf; 3754 if (cur > *offset) 3755 *offset = cur; 3756 } 3757 3758 return ret; 3759 } 3760 3761 static u32 3762 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3763 { 3764 s32 offset = 0; 3765 int tries = 0; 3766 /* 3767 * arbitrary limit, used to avoid infinite loops when combined NoA 3768 * descriptors cover the full time period. 3769 */ 3770 int max_tries = 5; 3771 3772 ieee80211_extend_absent_time(data, tsf, &offset); 3773 do { 3774 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3775 break; 3776 3777 tries++; 3778 } while (tries < max_tries); 3779 3780 return offset; 3781 } 3782 3783 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3784 { 3785 u32 next_offset = BIT(31) - 1; 3786 int i; 3787 3788 data->absent = 0; 3789 data->has_next_tsf = false; 3790 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3791 s32 start; 3792 3793 if (!data->count[i]) 3794 continue; 3795 3796 ieee80211_extend_noa_desc(data, tsf, i); 3797 start = data->desc[i].start - tsf; 3798 if (start <= 0) 3799 data->absent |= BIT(i); 3800 3801 if (next_offset > start) 3802 next_offset = start; 3803 3804 data->has_next_tsf = true; 3805 } 3806 3807 if (data->absent) 3808 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3809 3810 data->next_tsf = tsf + next_offset; 3811 } 3812 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3813 3814 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3815 struct ieee80211_noa_data *data, u32 tsf) 3816 { 3817 int ret = 0; 3818 int i; 3819 3820 memset(data, 0, sizeof(*data)); 3821 3822 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3823 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3824 3825 if (!desc->count || !desc->duration) 3826 continue; 3827 3828 data->count[i] = desc->count; 3829 data->desc[i].start = le32_to_cpu(desc->start_time); 3830 data->desc[i].duration = le32_to_cpu(desc->duration); 3831 data->desc[i].interval = le32_to_cpu(desc->interval); 3832 3833 if (data->count[i] > 1 && 3834 data->desc[i].interval < data->desc[i].duration) 3835 continue; 3836 3837 ieee80211_extend_noa_desc(data, tsf, i); 3838 ret++; 3839 } 3840 3841 if (ret) 3842 ieee80211_update_p2p_noa(data, tsf); 3843 3844 return ret; 3845 } 3846 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3847 3848 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3849 struct ieee80211_sub_if_data *sdata) 3850 { 3851 u64 tsf = drv_get_tsf(local, sdata); 3852 u64 dtim_count = 0; 3853 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3854 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3855 struct ps_data *ps; 3856 u8 bcns_from_dtim; 3857 3858 if (tsf == -1ULL || !beacon_int || !dtim_period) 3859 return; 3860 3861 if (sdata->vif.type == NL80211_IFTYPE_AP || 3862 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3863 if (!sdata->bss) 3864 return; 3865 3866 ps = &sdata->bss->ps; 3867 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3868 ps = &sdata->u.mesh.ps; 3869 } else { 3870 return; 3871 } 3872 3873 /* 3874 * actually finds last dtim_count, mac80211 will update in 3875 * __beacon_add_tim(). 3876 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3877 */ 3878 do_div(tsf, beacon_int); 3879 bcns_from_dtim = do_div(tsf, dtim_period); 3880 /* just had a DTIM */ 3881 if (!bcns_from_dtim) 3882 dtim_count = 0; 3883 else 3884 dtim_count = dtim_period - bcns_from_dtim; 3885 3886 ps->dtim_count = dtim_count; 3887 } 3888 3889 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3890 struct ieee80211_chanctx *ctx) 3891 { 3892 struct ieee80211_link_data *link; 3893 u8 radar_detect = 0; 3894 3895 lockdep_assert_wiphy(local->hw.wiphy); 3896 3897 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3898 return 0; 3899 3900 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3901 if (link->reserved_radar_required) 3902 radar_detect |= BIT(link->reserved.oper.width); 3903 3904 /* 3905 * An in-place reservation context should not have any assigned vifs 3906 * until it replaces the other context. 3907 */ 3908 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3909 !list_empty(&ctx->assigned_links)); 3910 3911 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3912 if (!link->radar_required) 3913 continue; 3914 3915 radar_detect |= 3916 BIT(link->conf->chanreq.oper.width); 3917 } 3918 3919 return radar_detect; 3920 } 3921 3922 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 3923 const struct cfg80211_chan_def *chandef, 3924 enum ieee80211_chanctx_mode chanmode, 3925 u8 radar_detect) 3926 { 3927 struct ieee80211_local *local = sdata->local; 3928 struct ieee80211_sub_if_data *sdata_iter; 3929 enum nl80211_iftype iftype = sdata->wdev.iftype; 3930 struct ieee80211_chanctx *ctx; 3931 int total = 1; 3932 struct iface_combination_params params = { 3933 .radar_detect = radar_detect, 3934 }; 3935 3936 lockdep_assert_wiphy(local->hw.wiphy); 3937 3938 if (WARN_ON(hweight32(radar_detect) > 1)) 3939 return -EINVAL; 3940 3941 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3942 !chandef->chan)) 3943 return -EINVAL; 3944 3945 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 3946 return -EINVAL; 3947 3948 if (sdata->vif.type == NL80211_IFTYPE_AP || 3949 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 3950 /* 3951 * always passing this is harmless, since it'll be the 3952 * same value that cfg80211 finds if it finds the same 3953 * interface ... and that's always allowed 3954 */ 3955 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 3956 } 3957 3958 /* Always allow software iftypes */ 3959 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 3960 if (radar_detect) 3961 return -EINVAL; 3962 return 0; 3963 } 3964 3965 if (chandef) 3966 params.num_different_channels = 1; 3967 3968 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 3969 params.iftype_num[iftype] = 1; 3970 3971 list_for_each_entry(ctx, &local->chanctx_list, list) { 3972 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 3973 continue; 3974 params.radar_detect |= 3975 ieee80211_chanctx_radar_detect(local, ctx); 3976 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 3977 params.num_different_channels++; 3978 continue; 3979 } 3980 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 3981 cfg80211_chandef_compatible(chandef, 3982 &ctx->conf.def)) 3983 continue; 3984 params.num_different_channels++; 3985 } 3986 3987 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 3988 struct wireless_dev *wdev_iter; 3989 3990 wdev_iter = &sdata_iter->wdev; 3991 3992 if (sdata_iter == sdata || 3993 !ieee80211_sdata_running(sdata_iter) || 3994 cfg80211_iftype_allowed(local->hw.wiphy, 3995 wdev_iter->iftype, 0, 1)) 3996 continue; 3997 3998 params.iftype_num[wdev_iter->iftype]++; 3999 total++; 4000 } 4001 4002 if (total == 1 && !params.radar_detect) 4003 return 0; 4004 4005 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4006 } 4007 4008 static void 4009 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4010 void *data) 4011 { 4012 u32 *max_num_different_channels = data; 4013 4014 *max_num_different_channels = max(*max_num_different_channels, 4015 c->num_different_channels); 4016 } 4017 4018 int ieee80211_max_num_channels(struct ieee80211_local *local) 4019 { 4020 struct ieee80211_sub_if_data *sdata; 4021 struct ieee80211_chanctx *ctx; 4022 u32 max_num_different_channels = 1; 4023 int err; 4024 struct iface_combination_params params = {0}; 4025 4026 lockdep_assert_wiphy(local->hw.wiphy); 4027 4028 list_for_each_entry(ctx, &local->chanctx_list, list) { 4029 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4030 continue; 4031 4032 params.num_different_channels++; 4033 4034 params.radar_detect |= 4035 ieee80211_chanctx_radar_detect(local, ctx); 4036 } 4037 4038 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4039 params.iftype_num[sdata->wdev.iftype]++; 4040 4041 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4042 ieee80211_iter_max_chans, 4043 &max_num_different_channels); 4044 if (err < 0) 4045 return err; 4046 4047 return max_num_different_channels; 4048 } 4049 4050 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4051 struct ieee80211_sta_s1g_cap *caps, 4052 struct sk_buff *skb) 4053 { 4054 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4055 struct ieee80211_s1g_cap s1g_capab; 4056 u8 *pos; 4057 int i; 4058 4059 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4060 return; 4061 4062 if (!caps->s1g) 4063 return; 4064 4065 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4066 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4067 4068 /* override the capability info */ 4069 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4070 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4071 4072 s1g_capab.capab_info[i] &= ~mask; 4073 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4074 } 4075 4076 /* then MCS and NSS set */ 4077 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4078 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4079 4080 s1g_capab.supp_mcs_nss[i] &= ~mask; 4081 s1g_capab.supp_mcs_nss[i] |= 4082 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4083 } 4084 4085 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4086 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4087 *pos++ = sizeof(s1g_capab); 4088 4089 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4090 } 4091 4092 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4093 struct sk_buff *skb) 4094 { 4095 u8 *pos = skb_put(skb, 3); 4096 4097 *pos++ = WLAN_EID_AID_REQUEST; 4098 *pos++ = 1; 4099 *pos++ = 0; 4100 } 4101 4102 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4103 { 4104 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4105 *buf++ = 7; /* len */ 4106 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4107 *buf++ = 0x50; 4108 *buf++ = 0xf2; 4109 *buf++ = 2; /* WME */ 4110 *buf++ = 0; /* WME info */ 4111 *buf++ = 1; /* WME ver */ 4112 *buf++ = qosinfo; /* U-APSD no in use */ 4113 4114 return buf; 4115 } 4116 4117 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4118 unsigned long *frame_cnt, 4119 unsigned long *byte_cnt) 4120 { 4121 struct txq_info *txqi = to_txq_info(txq); 4122 u32 frag_cnt = 0, frag_bytes = 0; 4123 struct sk_buff *skb; 4124 4125 skb_queue_walk(&txqi->frags, skb) { 4126 frag_cnt++; 4127 frag_bytes += skb->len; 4128 } 4129 4130 if (frame_cnt) 4131 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4132 4133 if (byte_cnt) 4134 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4135 } 4136 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4137 4138 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4139 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4140 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4141 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4142 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4143 }; 4144 4145 u16 ieee80211_encode_usf(int listen_interval) 4146 { 4147 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4148 u16 ui, usf = 0; 4149 4150 /* find greatest USF */ 4151 while (usf < IEEE80211_MAX_USF) { 4152 if (listen_interval % listen_int_usf[usf + 1]) 4153 break; 4154 usf += 1; 4155 } 4156 ui = listen_interval / listen_int_usf[usf]; 4157 4158 /* error if there is a remainder. Should've been checked by user */ 4159 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4160 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4161 FIELD_PREP(LISTEN_INT_UI, ui); 4162 4163 return (u16) listen_interval; 4164 } 4165 4166 /* this may return more than ieee80211_put_eht_cap() will need */ 4167 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4168 { 4169 const struct ieee80211_sta_he_cap *he_cap; 4170 const struct ieee80211_sta_eht_cap *eht_cap; 4171 struct ieee80211_supported_band *sband; 4172 bool is_ap; 4173 u8 n; 4174 4175 sband = ieee80211_get_sband(sdata); 4176 if (!sband) 4177 return 0; 4178 4179 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4180 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4181 if (!he_cap || !eht_cap) 4182 return 0; 4183 4184 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4185 4186 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4187 &eht_cap->eht_cap_elem, 4188 is_ap); 4189 return 2 + 1 + 4190 sizeof(eht_cap->eht_cap_elem) + n + 4191 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4192 eht_cap->eht_cap_elem.phy_cap_info); 4193 return 0; 4194 } 4195 4196 int ieee80211_put_eht_cap(struct sk_buff *skb, 4197 struct ieee80211_sub_if_data *sdata, 4198 const struct ieee80211_supported_band *sband, 4199 const struct ieee80211_conn_settings *conn) 4200 { 4201 const struct ieee80211_sta_he_cap *he_cap = 4202 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4203 const struct ieee80211_sta_eht_cap *eht_cap = 4204 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4205 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4206 struct ieee80211_eht_cap_elem_fixed fixed; 4207 struct ieee80211_he_cap_elem he; 4208 u8 mcs_nss_len, ppet_len; 4209 u8 orig_mcs_nss_len; 4210 u8 ie_len; 4211 4212 if (!conn) 4213 conn = &ieee80211_conn_settings_unlimited; 4214 4215 /* Make sure we have place for the IE */ 4216 if (!he_cap || !eht_cap) 4217 return 0; 4218 4219 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4220 &eht_cap->eht_cap_elem, 4221 for_ap); 4222 4223 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4224 4225 fixed = eht_cap->eht_cap_elem; 4226 4227 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4228 fixed.phy_cap_info[6] &= 4229 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4230 4231 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4232 fixed.phy_cap_info[1] &= 4233 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4234 fixed.phy_cap_info[2] &= 4235 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4236 fixed.phy_cap_info[6] &= 4237 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4238 } 4239 4240 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4241 fixed.phy_cap_info[0] &= 4242 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4243 fixed.phy_cap_info[1] &= 4244 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4245 fixed.phy_cap_info[2] &= 4246 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4247 fixed.phy_cap_info[6] &= 4248 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4249 } 4250 4251 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4252 fixed.phy_cap_info[0] &= 4253 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4254 4255 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4256 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4257 fixed.phy_cap_info); 4258 4259 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4260 if (skb_tailroom(skb) < ie_len) 4261 return -ENOBUFS; 4262 4263 skb_put_u8(skb, WLAN_EID_EXTENSION); 4264 skb_put_u8(skb, ie_len - 2); 4265 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4266 skb_put_data(skb, &fixed, sizeof(fixed)); 4267 4268 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4269 /* 4270 * If the (non-AP) STA became 20 MHz only, then convert from 4271 * <=80 to 20-MHz-only format, where MCSes are indicated in 4272 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4273 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4274 */ 4275 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4276 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4277 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4278 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4279 } else { 4280 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4281 } 4282 4283 if (ppet_len) 4284 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4285 4286 return 0; 4287 } 4288 4289 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4290 { 4291 static const char * const modes[] = { 4292 [IEEE80211_CONN_MODE_S1G] = "S1G", 4293 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4294 [IEEE80211_CONN_MODE_HT] = "HT", 4295 [IEEE80211_CONN_MODE_VHT] = "VHT", 4296 [IEEE80211_CONN_MODE_HE] = "HE", 4297 [IEEE80211_CONN_MODE_EHT] = "EHT", 4298 }; 4299 4300 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4301 return "<out of range>"; 4302 4303 return modes[mode] ?: "<missing string>"; 4304 } 4305 4306 enum ieee80211_conn_bw_limit 4307 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4308 { 4309 switch (chandef->width) { 4310 case NL80211_CHAN_WIDTH_20_NOHT: 4311 case NL80211_CHAN_WIDTH_20: 4312 return IEEE80211_CONN_BW_LIMIT_20; 4313 case NL80211_CHAN_WIDTH_40: 4314 return IEEE80211_CONN_BW_LIMIT_40; 4315 case NL80211_CHAN_WIDTH_80: 4316 return IEEE80211_CONN_BW_LIMIT_80; 4317 case NL80211_CHAN_WIDTH_80P80: 4318 case NL80211_CHAN_WIDTH_160: 4319 return IEEE80211_CONN_BW_LIMIT_160; 4320 case NL80211_CHAN_WIDTH_320: 4321 return IEEE80211_CONN_BW_LIMIT_320; 4322 default: 4323 WARN(1, "unhandled chandef width %d\n", chandef->width); 4324 return IEEE80211_CONN_BW_LIMIT_20; 4325 } 4326 } 4327