1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2021 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "rate.h" 31 #include "mesh.h" 32 #include "wme.h" 33 #include "led.h" 34 #include "wep.h" 35 36 /* privid for wiphys to determine whether they belong to us or not */ 37 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 38 39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 40 { 41 struct ieee80211_local *local; 42 43 local = wiphy_priv(wiphy); 44 return &local->hw; 45 } 46 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 47 48 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_s1g_beacon(fc)) { 68 struct ieee80211_ext *ext = (void *) hdr; 69 70 return ext->u.s1g_beacon.sa; 71 } 72 73 if (ieee80211_is_mgmt(fc)) { 74 if (len < 24) /* drop incorrect hdr len (mgmt) */ 75 return NULL; 76 return hdr->addr3; 77 } 78 79 if (ieee80211_is_ctl(fc)) { 80 if (ieee80211_is_pspoll(fc)) 81 return hdr->addr1; 82 83 if (ieee80211_is_back_req(fc)) { 84 switch (type) { 85 case NL80211_IFTYPE_STATION: 86 return hdr->addr2; 87 case NL80211_IFTYPE_AP: 88 case NL80211_IFTYPE_AP_VLAN: 89 return hdr->addr1; 90 default: 91 break; /* fall through to the return */ 92 } 93 } 94 } 95 96 return NULL; 97 } 98 EXPORT_SYMBOL(ieee80211_get_bssid); 99 100 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 101 { 102 struct sk_buff *skb; 103 struct ieee80211_hdr *hdr; 104 105 skb_queue_walk(&tx->skbs, skb) { 106 hdr = (struct ieee80211_hdr *) skb->data; 107 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 108 } 109 } 110 111 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 112 int rate, int erp, int short_preamble, 113 int shift) 114 { 115 int dur; 116 117 /* calculate duration (in microseconds, rounded up to next higher 118 * integer if it includes a fractional microsecond) to send frame of 119 * len bytes (does not include FCS) at the given rate. Duration will 120 * also include SIFS. 121 * 122 * rate is in 100 kbps, so divident is multiplied by 10 in the 123 * DIV_ROUND_UP() operations. 124 * 125 * shift may be 2 for 5 MHz channels or 1 for 10 MHz channels, and 126 * is assumed to be 0 otherwise. 127 */ 128 129 if (band == NL80211_BAND_5GHZ || erp) { 130 /* 131 * OFDM: 132 * 133 * N_DBPS = DATARATE x 4 134 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 135 * (16 = SIGNAL time, 6 = tail bits) 136 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 137 * 138 * T_SYM = 4 usec 139 * 802.11a - 18.5.2: aSIFSTime = 16 usec 140 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 141 * signal ext = 6 usec 142 */ 143 dur = 16; /* SIFS + signal ext */ 144 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 145 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 146 147 /* IEEE 802.11-2012 18.3.2.4: all values above are: 148 * * times 4 for 5 MHz 149 * * times 2 for 10 MHz 150 */ 151 dur *= 1 << shift; 152 153 /* rates should already consider the channel bandwidth, 154 * don't apply divisor again. 155 */ 156 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 157 4 * rate); /* T_SYM x N_SYM */ 158 } else { 159 /* 160 * 802.11b or 802.11g with 802.11b compatibility: 161 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 162 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 163 * 164 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 165 * aSIFSTime = 10 usec 166 * aPreambleLength = 144 usec or 72 usec with short preamble 167 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 168 */ 169 dur = 10; /* aSIFSTime = 10 usec */ 170 dur += short_preamble ? (72 + 24) : (144 + 48); 171 172 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 173 } 174 175 return dur; 176 } 177 178 /* Exported duration function for driver use */ 179 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 180 struct ieee80211_vif *vif, 181 enum nl80211_band band, 182 size_t frame_len, 183 struct ieee80211_rate *rate) 184 { 185 struct ieee80211_sub_if_data *sdata; 186 u16 dur; 187 int erp, shift = 0; 188 bool short_preamble = false; 189 190 erp = 0; 191 if (vif) { 192 sdata = vif_to_sdata(vif); 193 short_preamble = sdata->vif.bss_conf.use_short_preamble; 194 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 195 erp = rate->flags & IEEE80211_RATE_ERP_G; 196 shift = ieee80211_vif_get_shift(vif); 197 } 198 199 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 200 short_preamble, shift); 201 202 return cpu_to_le16(dur); 203 } 204 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 205 206 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 207 struct ieee80211_vif *vif, size_t frame_len, 208 const struct ieee80211_tx_info *frame_txctl) 209 { 210 struct ieee80211_local *local = hw_to_local(hw); 211 struct ieee80211_rate *rate; 212 struct ieee80211_sub_if_data *sdata; 213 bool short_preamble; 214 int erp, shift = 0, bitrate; 215 u16 dur; 216 struct ieee80211_supported_band *sband; 217 218 sband = local->hw.wiphy->bands[frame_txctl->band]; 219 220 short_preamble = false; 221 222 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 223 224 erp = 0; 225 if (vif) { 226 sdata = vif_to_sdata(vif); 227 short_preamble = sdata->vif.bss_conf.use_short_preamble; 228 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 229 erp = rate->flags & IEEE80211_RATE_ERP_G; 230 shift = ieee80211_vif_get_shift(vif); 231 } 232 233 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 234 235 /* CTS duration */ 236 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble, shift); 238 /* Data frame duration */ 239 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 240 erp, short_preamble, shift); 241 /* ACK duration */ 242 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 243 erp, short_preamble, shift); 244 245 return cpu_to_le16(dur); 246 } 247 EXPORT_SYMBOL(ieee80211_rts_duration); 248 249 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 250 struct ieee80211_vif *vif, 251 size_t frame_len, 252 const struct ieee80211_tx_info *frame_txctl) 253 { 254 struct ieee80211_local *local = hw_to_local(hw); 255 struct ieee80211_rate *rate; 256 struct ieee80211_sub_if_data *sdata; 257 bool short_preamble; 258 int erp, shift = 0, bitrate; 259 u16 dur; 260 struct ieee80211_supported_band *sband; 261 262 sband = local->hw.wiphy->bands[frame_txctl->band]; 263 264 short_preamble = false; 265 266 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 267 erp = 0; 268 if (vif) { 269 sdata = vif_to_sdata(vif); 270 short_preamble = sdata->vif.bss_conf.use_short_preamble; 271 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 272 erp = rate->flags & IEEE80211_RATE_ERP_G; 273 shift = ieee80211_vif_get_shift(vif); 274 } 275 276 bitrate = DIV_ROUND_UP(rate->bitrate, 1 << shift); 277 278 /* Data frame duration */ 279 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 280 erp, short_preamble, shift); 281 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 282 /* ACK duration */ 283 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 284 erp, short_preamble, shift); 285 } 286 287 return cpu_to_le16(dur); 288 } 289 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 290 291 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 292 { 293 struct ieee80211_local *local = sdata->local; 294 struct ieee80211_vif *vif = &sdata->vif; 295 struct fq *fq = &local->fq; 296 struct ps_data *ps = NULL; 297 struct txq_info *txqi; 298 struct sta_info *sta; 299 int i; 300 301 local_bh_disable(); 302 spin_lock(&fq->lock); 303 304 if (sdata->vif.type == NL80211_IFTYPE_AP) 305 ps = &sdata->bss->ps; 306 307 sdata->vif.txqs_stopped[ac] = false; 308 309 list_for_each_entry_rcu(sta, &local->sta_list, list) { 310 if (sdata != sta->sdata) 311 continue; 312 313 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 314 struct ieee80211_txq *txq = sta->sta.txq[i]; 315 316 if (!txq) 317 continue; 318 319 txqi = to_txq_info(txq); 320 321 if (ac != txq->ac) 322 continue; 323 324 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, 325 &txqi->flags)) 326 continue; 327 328 spin_unlock(&fq->lock); 329 drv_wake_tx_queue(local, txqi); 330 spin_lock(&fq->lock); 331 } 332 } 333 334 if (!vif->txq) 335 goto out; 336 337 txqi = to_txq_info(vif->txq); 338 339 if (!test_and_clear_bit(IEEE80211_TXQ_STOP_NETIF_TX, &txqi->flags) || 340 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 341 goto out; 342 343 spin_unlock(&fq->lock); 344 345 drv_wake_tx_queue(local, txqi); 346 local_bh_enable(); 347 return; 348 out: 349 spin_unlock(&fq->lock); 350 local_bh_enable(); 351 } 352 353 static void 354 __releases(&local->queue_stop_reason_lock) 355 __acquires(&local->queue_stop_reason_lock) 356 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 357 { 358 struct ieee80211_sub_if_data *sdata; 359 int n_acs = IEEE80211_NUM_ACS; 360 int i; 361 362 rcu_read_lock(); 363 364 if (local->hw.queues < IEEE80211_NUM_ACS) 365 n_acs = 1; 366 367 for (i = 0; i < local->hw.queues; i++) { 368 if (local->queue_stop_reasons[i]) 369 continue; 370 371 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 372 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 373 int ac; 374 375 for (ac = 0; ac < n_acs; ac++) { 376 int ac_queue = sdata->vif.hw_queue[ac]; 377 378 if (ac_queue == i || 379 sdata->vif.cab_queue == i) 380 __ieee80211_wake_txqs(sdata, ac); 381 } 382 } 383 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 384 } 385 386 rcu_read_unlock(); 387 } 388 389 void ieee80211_wake_txqs(struct tasklet_struct *t) 390 { 391 struct ieee80211_local *local = from_tasklet(local, t, 392 wake_txqs_tasklet); 393 unsigned long flags; 394 395 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 396 _ieee80211_wake_txqs(local, &flags); 397 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 398 } 399 400 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue) 401 { 402 struct ieee80211_sub_if_data *sdata; 403 int n_acs = IEEE80211_NUM_ACS; 404 405 if (local->ops->wake_tx_queue) 406 return; 407 408 if (local->hw.queues < IEEE80211_NUM_ACS) 409 n_acs = 1; 410 411 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 412 int ac; 413 414 if (!sdata->dev) 415 continue; 416 417 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE && 418 local->queue_stop_reasons[sdata->vif.cab_queue] != 0) 419 continue; 420 421 for (ac = 0; ac < n_acs; ac++) { 422 int ac_queue = sdata->vif.hw_queue[ac]; 423 424 if (ac_queue == queue || 425 (sdata->vif.cab_queue == queue && 426 local->queue_stop_reasons[ac_queue] == 0 && 427 skb_queue_empty(&local->pending[ac_queue]))) 428 netif_wake_subqueue(sdata->dev, ac); 429 } 430 } 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (skb_queue_empty(&local->pending[queue])) { 464 rcu_read_lock(); 465 ieee80211_propagate_queue_wake(local, queue); 466 rcu_read_unlock(); 467 } else 468 tasklet_schedule(&local->tx_pending_tasklet); 469 470 /* 471 * Calling _ieee80211_wake_txqs here can be a problem because it may 472 * release queue_stop_reason_lock which has been taken by 473 * __ieee80211_wake_queue's caller. It is certainly not very nice to 474 * release someone's lock, but it is fine because all the callers of 475 * __ieee80211_wake_queue call it right before releasing the lock. 476 */ 477 if (local->ops->wake_tx_queue) { 478 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 479 tasklet_schedule(&local->wake_txqs_tasklet); 480 else 481 _ieee80211_wake_txqs(local, flags); 482 } 483 } 484 485 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 486 enum queue_stop_reason reason, 487 bool refcounted) 488 { 489 struct ieee80211_local *local = hw_to_local(hw); 490 unsigned long flags; 491 492 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 493 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 494 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 495 } 496 497 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 498 { 499 ieee80211_wake_queue_by_reason(hw, queue, 500 IEEE80211_QUEUE_STOP_REASON_DRIVER, 501 false); 502 } 503 EXPORT_SYMBOL(ieee80211_wake_queue); 504 505 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 506 enum queue_stop_reason reason, 507 bool refcounted) 508 { 509 struct ieee80211_local *local = hw_to_local(hw); 510 struct ieee80211_sub_if_data *sdata; 511 int n_acs = IEEE80211_NUM_ACS; 512 513 trace_stop_queue(local, queue, reason); 514 515 if (WARN_ON(queue >= hw->queues)) 516 return; 517 518 if (!refcounted) 519 local->q_stop_reasons[queue][reason] = 1; 520 else 521 local->q_stop_reasons[queue][reason]++; 522 523 if (__test_and_set_bit(reason, &local->queue_stop_reasons[queue])) 524 return; 525 526 if (local->hw.queues < IEEE80211_NUM_ACS) 527 n_acs = 1; 528 529 rcu_read_lock(); 530 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 531 int ac; 532 533 if (!sdata->dev) 534 continue; 535 536 for (ac = 0; ac < n_acs; ac++) { 537 if (sdata->vif.hw_queue[ac] == queue || 538 sdata->vif.cab_queue == queue) { 539 if (!local->ops->wake_tx_queue) { 540 netif_stop_subqueue(sdata->dev, ac); 541 continue; 542 } 543 spin_lock(&local->fq.lock); 544 sdata->vif.txqs_stopped[ac] = true; 545 spin_unlock(&local->fq.lock); 546 } 547 } 548 } 549 rcu_read_unlock(); 550 } 551 552 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 553 enum queue_stop_reason reason, 554 bool refcounted) 555 { 556 struct ieee80211_local *local = hw_to_local(hw); 557 unsigned long flags; 558 559 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 560 __ieee80211_stop_queue(hw, queue, reason, refcounted); 561 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 562 } 563 564 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 565 { 566 ieee80211_stop_queue_by_reason(hw, queue, 567 IEEE80211_QUEUE_STOP_REASON_DRIVER, 568 false); 569 } 570 EXPORT_SYMBOL(ieee80211_stop_queue); 571 572 void ieee80211_add_pending_skb(struct ieee80211_local *local, 573 struct sk_buff *skb) 574 { 575 struct ieee80211_hw *hw = &local->hw; 576 unsigned long flags; 577 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 578 int queue = info->hw_queue; 579 580 if (WARN_ON(!info->control.vif)) { 581 ieee80211_free_txskb(&local->hw, skb); 582 return; 583 } 584 585 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 586 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 587 false); 588 __skb_queue_tail(&local->pending[queue], skb); 589 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 590 false, &flags); 591 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 592 } 593 594 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 595 struct sk_buff_head *skbs) 596 { 597 struct ieee80211_hw *hw = &local->hw; 598 struct sk_buff *skb; 599 unsigned long flags; 600 int queue, i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 while ((skb = skb_dequeue(skbs))) { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 605 606 if (WARN_ON(!info->control.vif)) { 607 ieee80211_free_txskb(&local->hw, skb); 608 continue; 609 } 610 611 queue = info->hw_queue; 612 613 __ieee80211_stop_queue(hw, queue, 614 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 615 false); 616 617 __skb_queue_tail(&local->pending[queue], skb); 618 } 619 620 for (i = 0; i < hw->queues; i++) 621 __ieee80211_wake_queue(hw, i, 622 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 623 false, &flags); 624 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 625 } 626 627 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 628 unsigned long queues, 629 enum queue_stop_reason reason, 630 bool refcounted) 631 { 632 struct ieee80211_local *local = hw_to_local(hw); 633 unsigned long flags; 634 int i; 635 636 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 637 638 for_each_set_bit(i, &queues, hw->queues) 639 __ieee80211_stop_queue(hw, i, reason, refcounted); 640 641 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 642 } 643 644 void ieee80211_stop_queues(struct ieee80211_hw *hw) 645 { 646 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 647 IEEE80211_QUEUE_STOP_REASON_DRIVER, 648 false); 649 } 650 EXPORT_SYMBOL(ieee80211_stop_queues); 651 652 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 653 { 654 struct ieee80211_local *local = hw_to_local(hw); 655 unsigned long flags; 656 int ret; 657 658 if (WARN_ON(queue >= hw->queues)) 659 return true; 660 661 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 662 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 663 &local->queue_stop_reasons[queue]); 664 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 665 return ret; 666 } 667 EXPORT_SYMBOL(ieee80211_queue_stopped); 668 669 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 670 unsigned long queues, 671 enum queue_stop_reason reason, 672 bool refcounted) 673 { 674 struct ieee80211_local *local = hw_to_local(hw); 675 unsigned long flags; 676 int i; 677 678 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 679 680 for_each_set_bit(i, &queues, hw->queues) 681 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 682 683 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 684 } 685 686 void ieee80211_wake_queues(struct ieee80211_hw *hw) 687 { 688 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 689 IEEE80211_QUEUE_STOP_REASON_DRIVER, 690 false); 691 } 692 EXPORT_SYMBOL(ieee80211_wake_queues); 693 694 static unsigned int 695 ieee80211_get_vif_queues(struct ieee80211_local *local, 696 struct ieee80211_sub_if_data *sdata) 697 { 698 unsigned int queues; 699 700 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 701 int ac; 702 703 queues = 0; 704 705 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 706 queues |= BIT(sdata->vif.hw_queue[ac]); 707 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 708 queues |= BIT(sdata->vif.cab_queue); 709 } else { 710 /* all queues */ 711 queues = BIT(local->hw.queues) - 1; 712 } 713 714 return queues; 715 } 716 717 void __ieee80211_flush_queues(struct ieee80211_local *local, 718 struct ieee80211_sub_if_data *sdata, 719 unsigned int queues, bool drop) 720 { 721 if (!local->ops->flush) 722 return; 723 724 /* 725 * If no queue was set, or if the HW doesn't support 726 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 727 */ 728 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 729 queues = ieee80211_get_vif_queues(local, sdata); 730 731 ieee80211_stop_queues_by_reason(&local->hw, queues, 732 IEEE80211_QUEUE_STOP_REASON_FLUSH, 733 false); 734 735 drv_flush(local, sdata, queues, drop); 736 737 ieee80211_wake_queues_by_reason(&local->hw, queues, 738 IEEE80211_QUEUE_STOP_REASON_FLUSH, 739 false); 740 } 741 742 void ieee80211_flush_queues(struct ieee80211_local *local, 743 struct ieee80211_sub_if_data *sdata, bool drop) 744 { 745 __ieee80211_flush_queues(local, sdata, 0, drop); 746 } 747 748 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 749 struct ieee80211_sub_if_data *sdata, 750 enum queue_stop_reason reason) 751 { 752 ieee80211_stop_queues_by_reason(&local->hw, 753 ieee80211_get_vif_queues(local, sdata), 754 reason, true); 755 } 756 757 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 758 struct ieee80211_sub_if_data *sdata, 759 enum queue_stop_reason reason) 760 { 761 ieee80211_wake_queues_by_reason(&local->hw, 762 ieee80211_get_vif_queues(local, sdata), 763 reason, true); 764 } 765 766 static void __iterate_interfaces(struct ieee80211_local *local, 767 u32 iter_flags, 768 void (*iterator)(void *data, u8 *mac, 769 struct ieee80211_vif *vif), 770 void *data) 771 { 772 struct ieee80211_sub_if_data *sdata; 773 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 774 775 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 776 switch (sdata->vif.type) { 777 case NL80211_IFTYPE_MONITOR: 778 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 779 continue; 780 break; 781 case NL80211_IFTYPE_AP_VLAN: 782 continue; 783 default: 784 break; 785 } 786 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 787 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 788 continue; 789 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 790 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 791 continue; 792 if (ieee80211_sdata_running(sdata) || !active_only) 793 iterator(data, sdata->vif.addr, 794 &sdata->vif); 795 } 796 797 sdata = rcu_dereference_check(local->monitor_sdata, 798 lockdep_is_held(&local->iflist_mtx) || 799 lockdep_is_held(&local->hw.wiphy->mtx)); 800 if (sdata && 801 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 802 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 803 iterator(data, sdata->vif.addr, &sdata->vif); 804 } 805 806 void ieee80211_iterate_interfaces( 807 struct ieee80211_hw *hw, u32 iter_flags, 808 void (*iterator)(void *data, u8 *mac, 809 struct ieee80211_vif *vif), 810 void *data) 811 { 812 struct ieee80211_local *local = hw_to_local(hw); 813 814 mutex_lock(&local->iflist_mtx); 815 __iterate_interfaces(local, iter_flags, iterator, data); 816 mutex_unlock(&local->iflist_mtx); 817 } 818 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 819 820 void ieee80211_iterate_active_interfaces_atomic( 821 struct ieee80211_hw *hw, u32 iter_flags, 822 void (*iterator)(void *data, u8 *mac, 823 struct ieee80211_vif *vif), 824 void *data) 825 { 826 struct ieee80211_local *local = hw_to_local(hw); 827 828 rcu_read_lock(); 829 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 830 iterator, data); 831 rcu_read_unlock(); 832 } 833 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 834 835 void ieee80211_iterate_active_interfaces_mtx( 836 struct ieee80211_hw *hw, u32 iter_flags, 837 void (*iterator)(void *data, u8 *mac, 838 struct ieee80211_vif *vif), 839 void *data) 840 { 841 struct ieee80211_local *local = hw_to_local(hw); 842 843 lockdep_assert_wiphy(hw->wiphy); 844 845 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 846 iterator, data); 847 } 848 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 849 850 static void __iterate_stations(struct ieee80211_local *local, 851 void (*iterator)(void *data, 852 struct ieee80211_sta *sta), 853 void *data) 854 { 855 struct sta_info *sta; 856 857 list_for_each_entry_rcu(sta, &local->sta_list, list) { 858 if (!sta->uploaded) 859 continue; 860 861 iterator(data, &sta->sta); 862 } 863 } 864 865 void ieee80211_iterate_stations(struct ieee80211_hw *hw, 866 void (*iterator)(void *data, 867 struct ieee80211_sta *sta), 868 void *data) 869 { 870 struct ieee80211_local *local = hw_to_local(hw); 871 872 mutex_lock(&local->sta_mtx); 873 __iterate_stations(local, iterator, data); 874 mutex_unlock(&local->sta_mtx); 875 } 876 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations); 877 878 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 879 void (*iterator)(void *data, 880 struct ieee80211_sta *sta), 881 void *data) 882 { 883 struct ieee80211_local *local = hw_to_local(hw); 884 885 rcu_read_lock(); 886 __iterate_stations(local, iterator, data); 887 rcu_read_unlock(); 888 } 889 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 890 891 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 892 { 893 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 894 895 if (!ieee80211_sdata_running(sdata) || 896 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 897 return NULL; 898 return &sdata->vif; 899 } 900 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 901 902 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 903 { 904 if (!vif) 905 return NULL; 906 907 return &vif_to_sdata(vif)->wdev; 908 } 909 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 910 911 /* 912 * Nothing should have been stuffed into the workqueue during 913 * the suspend->resume cycle. Since we can't check each caller 914 * of this function if we are already quiescing / suspended, 915 * check here and don't WARN since this can actually happen when 916 * the rx path (for example) is racing against __ieee80211_suspend 917 * and suspending / quiescing was set after the rx path checked 918 * them. 919 */ 920 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 921 { 922 if (local->quiescing || (local->suspended && !local->resuming)) { 923 pr_warn("queueing ieee80211 work while going to suspend\n"); 924 return false; 925 } 926 927 return true; 928 } 929 930 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 931 { 932 struct ieee80211_local *local = hw_to_local(hw); 933 934 if (!ieee80211_can_queue_work(local)) 935 return; 936 937 queue_work(local->workqueue, work); 938 } 939 EXPORT_SYMBOL(ieee80211_queue_work); 940 941 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 942 struct delayed_work *dwork, 943 unsigned long delay) 944 { 945 struct ieee80211_local *local = hw_to_local(hw); 946 947 if (!ieee80211_can_queue_work(local)) 948 return; 949 950 queue_delayed_work(local->workqueue, dwork, delay); 951 } 952 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 953 954 static void ieee80211_parse_extension_element(u32 *crc, 955 const struct element *elem, 956 struct ieee802_11_elems *elems) 957 { 958 const void *data = elem->data + 1; 959 u8 len; 960 961 if (!elem->datalen) 962 return; 963 964 len = elem->datalen - 1; 965 966 switch (elem->data[0]) { 967 case WLAN_EID_EXT_HE_MU_EDCA: 968 if (len >= sizeof(*elems->mu_edca_param_set)) { 969 elems->mu_edca_param_set = data; 970 if (crc) 971 *crc = crc32_be(*crc, (void *)elem, 972 elem->datalen + 2); 973 } 974 break; 975 case WLAN_EID_EXT_HE_CAPABILITY: 976 if (ieee80211_he_capa_size_ok(data, len)) { 977 elems->he_cap = data; 978 elems->he_cap_len = len; 979 } 980 break; 981 case WLAN_EID_EXT_HE_OPERATION: 982 if (len >= sizeof(*elems->he_operation) && 983 len >= ieee80211_he_oper_size(data) - 1) { 984 if (crc) 985 *crc = crc32_be(*crc, (void *)elem, 986 elem->datalen + 2); 987 elems->he_operation = data; 988 } 989 break; 990 case WLAN_EID_EXT_UORA: 991 if (len >= 1) 992 elems->uora_element = data; 993 break; 994 case WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME: 995 if (len == 3) 996 elems->max_channel_switch_time = data; 997 break; 998 case WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION: 999 if (len >= sizeof(*elems->mbssid_config_ie)) 1000 elems->mbssid_config_ie = data; 1001 break; 1002 case WLAN_EID_EXT_HE_SPR: 1003 if (len >= sizeof(*elems->he_spr) && 1004 len >= ieee80211_he_spr_size(data)) 1005 elems->he_spr = data; 1006 break; 1007 case WLAN_EID_EXT_HE_6GHZ_CAPA: 1008 if (len >= sizeof(*elems->he_6ghz_capa)) 1009 elems->he_6ghz_capa = data; 1010 break; 1011 case WLAN_EID_EXT_EHT_CAPABILITY: 1012 if (ieee80211_eht_capa_size_ok(elems->he_cap, 1013 data, len)) { 1014 elems->eht_cap = data; 1015 elems->eht_cap_len = len; 1016 } 1017 break; 1018 case WLAN_EID_EXT_EHT_OPERATION: 1019 if (ieee80211_eht_oper_size_ok(data, len)) 1020 elems->eht_operation = data; 1021 break; 1022 } 1023 } 1024 1025 static u32 1026 _ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action, 1027 struct ieee802_11_elems *elems, 1028 u64 filter, u32 crc, 1029 const struct element *check_inherit) 1030 { 1031 const struct element *elem; 1032 bool calc_crc = filter != 0; 1033 DECLARE_BITMAP(seen_elems, 256); 1034 const u8 *ie; 1035 1036 bitmap_zero(seen_elems, 256); 1037 1038 for_each_element(elem, start, len) { 1039 bool elem_parse_failed; 1040 u8 id = elem->id; 1041 u8 elen = elem->datalen; 1042 const u8 *pos = elem->data; 1043 1044 if (check_inherit && 1045 !cfg80211_is_element_inherited(elem, 1046 check_inherit)) 1047 continue; 1048 1049 switch (id) { 1050 case WLAN_EID_SSID: 1051 case WLAN_EID_SUPP_RATES: 1052 case WLAN_EID_FH_PARAMS: 1053 case WLAN_EID_DS_PARAMS: 1054 case WLAN_EID_CF_PARAMS: 1055 case WLAN_EID_TIM: 1056 case WLAN_EID_IBSS_PARAMS: 1057 case WLAN_EID_CHALLENGE: 1058 case WLAN_EID_RSN: 1059 case WLAN_EID_ERP_INFO: 1060 case WLAN_EID_EXT_SUPP_RATES: 1061 case WLAN_EID_HT_CAPABILITY: 1062 case WLAN_EID_HT_OPERATION: 1063 case WLAN_EID_VHT_CAPABILITY: 1064 case WLAN_EID_VHT_OPERATION: 1065 case WLAN_EID_MESH_ID: 1066 case WLAN_EID_MESH_CONFIG: 1067 case WLAN_EID_PEER_MGMT: 1068 case WLAN_EID_PREQ: 1069 case WLAN_EID_PREP: 1070 case WLAN_EID_PERR: 1071 case WLAN_EID_RANN: 1072 case WLAN_EID_CHANNEL_SWITCH: 1073 case WLAN_EID_EXT_CHANSWITCH_ANN: 1074 case WLAN_EID_COUNTRY: 1075 case WLAN_EID_PWR_CONSTRAINT: 1076 case WLAN_EID_TIMEOUT_INTERVAL: 1077 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1078 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1079 case WLAN_EID_CHAN_SWITCH_PARAM: 1080 case WLAN_EID_EXT_CAPABILITY: 1081 case WLAN_EID_CHAN_SWITCH_TIMING: 1082 case WLAN_EID_LINK_ID: 1083 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1084 case WLAN_EID_RSNX: 1085 case WLAN_EID_S1G_BCN_COMPAT: 1086 case WLAN_EID_S1G_CAPABILITIES: 1087 case WLAN_EID_S1G_OPERATION: 1088 case WLAN_EID_AID_RESPONSE: 1089 case WLAN_EID_S1G_SHORT_BCN_INTERVAL: 1090 /* 1091 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible 1092 * that if the content gets bigger it might be needed more than once 1093 */ 1094 if (test_bit(id, seen_elems)) { 1095 elems->parse_error = true; 1096 continue; 1097 } 1098 break; 1099 } 1100 1101 if (calc_crc && id < 64 && (filter & (1ULL << id))) 1102 crc = crc32_be(crc, pos - 2, elen + 2); 1103 1104 elem_parse_failed = false; 1105 1106 switch (id) { 1107 case WLAN_EID_LINK_ID: 1108 if (elen + 2 < sizeof(struct ieee80211_tdls_lnkie)) { 1109 elem_parse_failed = true; 1110 break; 1111 } 1112 elems->lnk_id = (void *)(pos - 2); 1113 break; 1114 case WLAN_EID_CHAN_SWITCH_TIMING: 1115 if (elen < sizeof(struct ieee80211_ch_switch_timing)) { 1116 elem_parse_failed = true; 1117 break; 1118 } 1119 elems->ch_sw_timing = (void *)pos; 1120 break; 1121 case WLAN_EID_EXT_CAPABILITY: 1122 elems->ext_capab = pos; 1123 elems->ext_capab_len = elen; 1124 break; 1125 case WLAN_EID_SSID: 1126 elems->ssid = pos; 1127 elems->ssid_len = elen; 1128 break; 1129 case WLAN_EID_SUPP_RATES: 1130 elems->supp_rates = pos; 1131 elems->supp_rates_len = elen; 1132 break; 1133 case WLAN_EID_DS_PARAMS: 1134 if (elen >= 1) 1135 elems->ds_params = pos; 1136 else 1137 elem_parse_failed = true; 1138 break; 1139 case WLAN_EID_TIM: 1140 if (elen >= sizeof(struct ieee80211_tim_ie)) { 1141 elems->tim = (void *)pos; 1142 elems->tim_len = elen; 1143 } else 1144 elem_parse_failed = true; 1145 break; 1146 case WLAN_EID_VENDOR_SPECIFIC: 1147 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 && 1148 pos[2] == 0xf2) { 1149 /* Microsoft OUI (00:50:F2) */ 1150 1151 if (calc_crc) 1152 crc = crc32_be(crc, pos - 2, elen + 2); 1153 1154 if (elen >= 5 && pos[3] == 2) { 1155 /* OUI Type 2 - WMM IE */ 1156 if (pos[4] == 0) { 1157 elems->wmm_info = pos; 1158 elems->wmm_info_len = elen; 1159 } else if (pos[4] == 1) { 1160 elems->wmm_param = pos; 1161 elems->wmm_param_len = elen; 1162 } 1163 } 1164 } 1165 break; 1166 case WLAN_EID_RSN: 1167 elems->rsn = pos; 1168 elems->rsn_len = elen; 1169 break; 1170 case WLAN_EID_ERP_INFO: 1171 if (elen >= 1) 1172 elems->erp_info = pos; 1173 else 1174 elem_parse_failed = true; 1175 break; 1176 case WLAN_EID_EXT_SUPP_RATES: 1177 elems->ext_supp_rates = pos; 1178 elems->ext_supp_rates_len = elen; 1179 break; 1180 case WLAN_EID_HT_CAPABILITY: 1181 if (elen >= sizeof(struct ieee80211_ht_cap)) 1182 elems->ht_cap_elem = (void *)pos; 1183 else 1184 elem_parse_failed = true; 1185 break; 1186 case WLAN_EID_HT_OPERATION: 1187 if (elen >= sizeof(struct ieee80211_ht_operation)) 1188 elems->ht_operation = (void *)pos; 1189 else 1190 elem_parse_failed = true; 1191 break; 1192 case WLAN_EID_VHT_CAPABILITY: 1193 if (elen >= sizeof(struct ieee80211_vht_cap)) 1194 elems->vht_cap_elem = (void *)pos; 1195 else 1196 elem_parse_failed = true; 1197 break; 1198 case WLAN_EID_VHT_OPERATION: 1199 if (elen >= sizeof(struct ieee80211_vht_operation)) { 1200 elems->vht_operation = (void *)pos; 1201 if (calc_crc) 1202 crc = crc32_be(crc, pos - 2, elen + 2); 1203 break; 1204 } 1205 elem_parse_failed = true; 1206 break; 1207 case WLAN_EID_OPMODE_NOTIF: 1208 if (elen > 0) { 1209 elems->opmode_notif = pos; 1210 if (calc_crc) 1211 crc = crc32_be(crc, pos - 2, elen + 2); 1212 break; 1213 } 1214 elem_parse_failed = true; 1215 break; 1216 case WLAN_EID_MESH_ID: 1217 elems->mesh_id = pos; 1218 elems->mesh_id_len = elen; 1219 break; 1220 case WLAN_EID_MESH_CONFIG: 1221 if (elen >= sizeof(struct ieee80211_meshconf_ie)) 1222 elems->mesh_config = (void *)pos; 1223 else 1224 elem_parse_failed = true; 1225 break; 1226 case WLAN_EID_PEER_MGMT: 1227 elems->peering = pos; 1228 elems->peering_len = elen; 1229 break; 1230 case WLAN_EID_MESH_AWAKE_WINDOW: 1231 if (elen >= 2) 1232 elems->awake_window = (void *)pos; 1233 break; 1234 case WLAN_EID_PREQ: 1235 elems->preq = pos; 1236 elems->preq_len = elen; 1237 break; 1238 case WLAN_EID_PREP: 1239 elems->prep = pos; 1240 elems->prep_len = elen; 1241 break; 1242 case WLAN_EID_PERR: 1243 elems->perr = pos; 1244 elems->perr_len = elen; 1245 break; 1246 case WLAN_EID_RANN: 1247 if (elen >= sizeof(struct ieee80211_rann_ie)) 1248 elems->rann = (void *)pos; 1249 else 1250 elem_parse_failed = true; 1251 break; 1252 case WLAN_EID_CHANNEL_SWITCH: 1253 if (elen != sizeof(struct ieee80211_channel_sw_ie)) { 1254 elem_parse_failed = true; 1255 break; 1256 } 1257 elems->ch_switch_ie = (void *)pos; 1258 break; 1259 case WLAN_EID_EXT_CHANSWITCH_ANN: 1260 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) { 1261 elem_parse_failed = true; 1262 break; 1263 } 1264 elems->ext_chansw_ie = (void *)pos; 1265 break; 1266 case WLAN_EID_SECONDARY_CHANNEL_OFFSET: 1267 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) { 1268 elem_parse_failed = true; 1269 break; 1270 } 1271 elems->sec_chan_offs = (void *)pos; 1272 break; 1273 case WLAN_EID_CHAN_SWITCH_PARAM: 1274 if (elen < 1275 sizeof(*elems->mesh_chansw_params_ie)) { 1276 elem_parse_failed = true; 1277 break; 1278 } 1279 elems->mesh_chansw_params_ie = (void *)pos; 1280 break; 1281 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH: 1282 if (!action || 1283 elen < sizeof(*elems->wide_bw_chansw_ie)) { 1284 elem_parse_failed = true; 1285 break; 1286 } 1287 elems->wide_bw_chansw_ie = (void *)pos; 1288 break; 1289 case WLAN_EID_CHANNEL_SWITCH_WRAPPER: 1290 if (action) { 1291 elem_parse_failed = true; 1292 break; 1293 } 1294 /* 1295 * This is a bit tricky, but as we only care about 1296 * the wide bandwidth channel switch element, so 1297 * just parse it out manually. 1298 */ 1299 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH, 1300 pos, elen); 1301 if (ie) { 1302 if (ie[1] >= sizeof(*elems->wide_bw_chansw_ie)) 1303 elems->wide_bw_chansw_ie = 1304 (void *)(ie + 2); 1305 else 1306 elem_parse_failed = true; 1307 } 1308 break; 1309 case WLAN_EID_COUNTRY: 1310 elems->country_elem = pos; 1311 elems->country_elem_len = elen; 1312 break; 1313 case WLAN_EID_PWR_CONSTRAINT: 1314 if (elen != 1) { 1315 elem_parse_failed = true; 1316 break; 1317 } 1318 elems->pwr_constr_elem = pos; 1319 break; 1320 case WLAN_EID_CISCO_VENDOR_SPECIFIC: 1321 /* Lots of different options exist, but we only care 1322 * about the Dynamic Transmit Power Control element. 1323 * First check for the Cisco OUI, then for the DTPC 1324 * tag (0x00). 1325 */ 1326 if (elen < 4) { 1327 elem_parse_failed = true; 1328 break; 1329 } 1330 1331 if (pos[0] != 0x00 || pos[1] != 0x40 || 1332 pos[2] != 0x96 || pos[3] != 0x00) 1333 break; 1334 1335 if (elen != 6) { 1336 elem_parse_failed = true; 1337 break; 1338 } 1339 1340 if (calc_crc) 1341 crc = crc32_be(crc, pos - 2, elen + 2); 1342 1343 elems->cisco_dtpc_elem = pos; 1344 break; 1345 case WLAN_EID_ADDBA_EXT: 1346 if (elen < sizeof(struct ieee80211_addba_ext_ie)) { 1347 elem_parse_failed = true; 1348 break; 1349 } 1350 elems->addba_ext_ie = (void *)pos; 1351 break; 1352 case WLAN_EID_TIMEOUT_INTERVAL: 1353 if (elen >= sizeof(struct ieee80211_timeout_interval_ie)) 1354 elems->timeout_int = (void *)pos; 1355 else 1356 elem_parse_failed = true; 1357 break; 1358 case WLAN_EID_BSS_MAX_IDLE_PERIOD: 1359 if (elen >= sizeof(*elems->max_idle_period_ie)) 1360 elems->max_idle_period_ie = (void *)pos; 1361 break; 1362 case WLAN_EID_RSNX: 1363 elems->rsnx = pos; 1364 elems->rsnx_len = elen; 1365 break; 1366 case WLAN_EID_TX_POWER_ENVELOPE: 1367 if (elen < 1 || 1368 elen > sizeof(struct ieee80211_tx_pwr_env)) 1369 break; 1370 1371 if (elems->tx_pwr_env_num >= ARRAY_SIZE(elems->tx_pwr_env)) 1372 break; 1373 1374 elems->tx_pwr_env[elems->tx_pwr_env_num] = (void *)pos; 1375 elems->tx_pwr_env_len[elems->tx_pwr_env_num] = elen; 1376 elems->tx_pwr_env_num++; 1377 break; 1378 case WLAN_EID_EXTENSION: 1379 ieee80211_parse_extension_element(calc_crc ? 1380 &crc : NULL, 1381 elem, elems); 1382 break; 1383 case WLAN_EID_S1G_CAPABILITIES: 1384 if (elen >= sizeof(*elems->s1g_capab)) 1385 elems->s1g_capab = (void *)pos; 1386 else 1387 elem_parse_failed = true; 1388 break; 1389 case WLAN_EID_S1G_OPERATION: 1390 if (elen == sizeof(*elems->s1g_oper)) 1391 elems->s1g_oper = (void *)pos; 1392 else 1393 elem_parse_failed = true; 1394 break; 1395 case WLAN_EID_S1G_BCN_COMPAT: 1396 if (elen == sizeof(*elems->s1g_bcn_compat)) 1397 elems->s1g_bcn_compat = (void *)pos; 1398 else 1399 elem_parse_failed = true; 1400 break; 1401 case WLAN_EID_AID_RESPONSE: 1402 if (elen == sizeof(struct ieee80211_aid_response_ie)) 1403 elems->aid_resp = (void *)pos; 1404 else 1405 elem_parse_failed = true; 1406 break; 1407 default: 1408 break; 1409 } 1410 1411 if (elem_parse_failed) 1412 elems->parse_error = true; 1413 else 1414 __set_bit(id, seen_elems); 1415 } 1416 1417 if (!for_each_element_completed(elem, start, len)) 1418 elems->parse_error = true; 1419 1420 return crc; 1421 } 1422 1423 static size_t ieee802_11_find_bssid_profile(const u8 *start, size_t len, 1424 struct ieee802_11_elems *elems, 1425 const u8 *transmitter_bssid, 1426 const u8 *bss_bssid, 1427 u8 *nontransmitted_profile) 1428 { 1429 const struct element *elem, *sub; 1430 size_t profile_len = 0; 1431 bool found = false; 1432 1433 if (!bss_bssid || !transmitter_bssid) 1434 return profile_len; 1435 1436 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, start, len) { 1437 if (elem->datalen < 2) 1438 continue; 1439 1440 for_each_element(sub, elem->data + 1, elem->datalen - 1) { 1441 u8 new_bssid[ETH_ALEN]; 1442 const u8 *index; 1443 1444 if (sub->id != 0 || sub->datalen < 4) { 1445 /* not a valid BSS profile */ 1446 continue; 1447 } 1448 1449 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP || 1450 sub->data[1] != 2) { 1451 /* The first element of the 1452 * Nontransmitted BSSID Profile is not 1453 * the Nontransmitted BSSID Capability 1454 * element. 1455 */ 1456 continue; 1457 } 1458 1459 memset(nontransmitted_profile, 0, len); 1460 profile_len = cfg80211_merge_profile(start, len, 1461 elem, 1462 sub, 1463 nontransmitted_profile, 1464 len); 1465 1466 /* found a Nontransmitted BSSID Profile */ 1467 index = cfg80211_find_ie(WLAN_EID_MULTI_BSSID_IDX, 1468 nontransmitted_profile, 1469 profile_len); 1470 if (!index || index[1] < 1 || index[2] == 0) { 1471 /* Invalid MBSSID Index element */ 1472 continue; 1473 } 1474 1475 cfg80211_gen_new_bssid(transmitter_bssid, 1476 elem->data[0], 1477 index[2], 1478 new_bssid); 1479 if (ether_addr_equal(new_bssid, bss_bssid)) { 1480 found = true; 1481 elems->bssid_index_len = index[1]; 1482 elems->bssid_index = (void *)&index[2]; 1483 break; 1484 } 1485 } 1486 } 1487 1488 return found ? profile_len : 0; 1489 } 1490 1491 struct ieee802_11_elems *ieee802_11_parse_elems_crc(const u8 *start, size_t len, 1492 bool action, u64 filter, 1493 u32 crc, 1494 const u8 *transmitter_bssid, 1495 const u8 *bss_bssid) 1496 { 1497 struct ieee802_11_elems *elems; 1498 const struct element *non_inherit = NULL; 1499 u8 *nontransmitted_profile; 1500 int nontransmitted_profile_len = 0; 1501 1502 elems = kzalloc(sizeof(*elems), GFP_ATOMIC); 1503 if (!elems) 1504 return NULL; 1505 elems->ie_start = start; 1506 elems->total_len = len; 1507 1508 nontransmitted_profile = kmalloc(len, GFP_ATOMIC); 1509 if (nontransmitted_profile) { 1510 nontransmitted_profile_len = 1511 ieee802_11_find_bssid_profile(start, len, elems, 1512 transmitter_bssid, 1513 bss_bssid, 1514 nontransmitted_profile); 1515 non_inherit = 1516 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE, 1517 nontransmitted_profile, 1518 nontransmitted_profile_len); 1519 } 1520 1521 crc = _ieee802_11_parse_elems_crc(start, len, action, elems, filter, 1522 crc, non_inherit); 1523 1524 /* Override with nontransmitted profile, if found */ 1525 if (nontransmitted_profile_len) 1526 _ieee802_11_parse_elems_crc(nontransmitted_profile, 1527 nontransmitted_profile_len, 1528 action, elems, 0, 0, NULL); 1529 1530 if (elems->tim && !elems->parse_error) { 1531 const struct ieee80211_tim_ie *tim_ie = elems->tim; 1532 1533 elems->dtim_period = tim_ie->dtim_period; 1534 elems->dtim_count = tim_ie->dtim_count; 1535 } 1536 1537 /* Override DTIM period and count if needed */ 1538 if (elems->bssid_index && 1539 elems->bssid_index_len >= 1540 offsetofend(struct ieee80211_bssid_index, dtim_period)) 1541 elems->dtim_period = elems->bssid_index->dtim_period; 1542 1543 if (elems->bssid_index && 1544 elems->bssid_index_len >= 1545 offsetofend(struct ieee80211_bssid_index, dtim_count)) 1546 elems->dtim_count = elems->bssid_index->dtim_count; 1547 1548 kfree(nontransmitted_profile); 1549 1550 elems->crc = crc; 1551 1552 return elems; 1553 } 1554 1555 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 1556 struct ieee80211_tx_queue_params 1557 *qparam, int ac) 1558 { 1559 struct ieee80211_chanctx_conf *chanctx_conf; 1560 const struct ieee80211_reg_rule *rrule; 1561 const struct ieee80211_wmm_ac *wmm_ac; 1562 u16 center_freq = 0; 1563 1564 if (sdata->vif.type != NL80211_IFTYPE_AP && 1565 sdata->vif.type != NL80211_IFTYPE_STATION) 1566 return; 1567 1568 rcu_read_lock(); 1569 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1570 if (chanctx_conf) 1571 center_freq = chanctx_conf->def.chan->center_freq; 1572 1573 if (!center_freq) { 1574 rcu_read_unlock(); 1575 return; 1576 } 1577 1578 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 1579 1580 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 1581 rcu_read_unlock(); 1582 return; 1583 } 1584 1585 if (sdata->vif.type == NL80211_IFTYPE_AP) 1586 wmm_ac = &rrule->wmm_rule.ap[ac]; 1587 else 1588 wmm_ac = &rrule->wmm_rule.client[ac]; 1589 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 1590 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 1591 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 1592 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 1593 rcu_read_unlock(); 1594 } 1595 1596 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata, 1597 bool bss_notify, bool enable_qos) 1598 { 1599 struct ieee80211_local *local = sdata->local; 1600 struct ieee80211_tx_queue_params qparam; 1601 struct ieee80211_chanctx_conf *chanctx_conf; 1602 int ac; 1603 bool use_11b; 1604 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 1605 int aCWmin, aCWmax; 1606 1607 if (!local->ops->conf_tx) 1608 return; 1609 1610 if (local->hw.queues < IEEE80211_NUM_ACS) 1611 return; 1612 1613 memset(&qparam, 0, sizeof(qparam)); 1614 1615 rcu_read_lock(); 1616 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1617 use_11b = (chanctx_conf && 1618 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1619 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE); 1620 rcu_read_unlock(); 1621 1622 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1623 1624 /* Set defaults according to 802.11-2007 Table 7-37 */ 1625 aCWmax = 1023; 1626 if (use_11b) 1627 aCWmin = 31; 1628 else 1629 aCWmin = 15; 1630 1631 /* Confiure old 802.11b/g medium access rules. */ 1632 qparam.cw_max = aCWmax; 1633 qparam.cw_min = aCWmin; 1634 qparam.txop = 0; 1635 qparam.aifs = 2; 1636 1637 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1638 /* Update if QoS is enabled. */ 1639 if (enable_qos) { 1640 switch (ac) { 1641 case IEEE80211_AC_BK: 1642 qparam.cw_max = aCWmax; 1643 qparam.cw_min = aCWmin; 1644 qparam.txop = 0; 1645 if (is_ocb) 1646 qparam.aifs = 9; 1647 else 1648 qparam.aifs = 7; 1649 break; 1650 /* never happens but let's not leave undefined */ 1651 default: 1652 case IEEE80211_AC_BE: 1653 qparam.cw_max = aCWmax; 1654 qparam.cw_min = aCWmin; 1655 qparam.txop = 0; 1656 if (is_ocb) 1657 qparam.aifs = 6; 1658 else 1659 qparam.aifs = 3; 1660 break; 1661 case IEEE80211_AC_VI: 1662 qparam.cw_max = aCWmin; 1663 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1664 if (is_ocb) 1665 qparam.txop = 0; 1666 else if (use_11b) 1667 qparam.txop = 6016/32; 1668 else 1669 qparam.txop = 3008/32; 1670 1671 if (is_ocb) 1672 qparam.aifs = 3; 1673 else 1674 qparam.aifs = 2; 1675 break; 1676 case IEEE80211_AC_VO: 1677 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1678 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1679 if (is_ocb) 1680 qparam.txop = 0; 1681 else if (use_11b) 1682 qparam.txop = 3264/32; 1683 else 1684 qparam.txop = 1504/32; 1685 qparam.aifs = 2; 1686 break; 1687 } 1688 } 1689 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1690 1691 qparam.uapsd = false; 1692 1693 sdata->tx_conf[ac] = qparam; 1694 drv_conf_tx(local, sdata, ac, &qparam); 1695 } 1696 1697 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1698 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1699 sdata->vif.type != NL80211_IFTYPE_NAN) { 1700 sdata->vif.bss_conf.qos = enable_qos; 1701 if (bss_notify) 1702 ieee80211_bss_info_change_notify(sdata, 1703 BSS_CHANGED_QOS); 1704 } 1705 } 1706 1707 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1708 u16 transaction, u16 auth_alg, u16 status, 1709 const u8 *extra, size_t extra_len, const u8 *da, 1710 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1711 u32 tx_flags) 1712 { 1713 struct ieee80211_local *local = sdata->local; 1714 struct sk_buff *skb; 1715 struct ieee80211_mgmt *mgmt; 1716 int err; 1717 1718 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1719 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1720 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN); 1721 if (!skb) 1722 return; 1723 1724 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1725 1726 mgmt = skb_put_zero(skb, 24 + 6); 1727 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1728 IEEE80211_STYPE_AUTH); 1729 memcpy(mgmt->da, da, ETH_ALEN); 1730 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1731 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1732 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1733 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1734 mgmt->u.auth.status_code = cpu_to_le16(status); 1735 if (extra) 1736 skb_put_data(skb, extra, extra_len); 1737 1738 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1739 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1740 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1741 if (WARN_ON(err)) { 1742 kfree_skb(skb); 1743 return; 1744 } 1745 } 1746 1747 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1748 tx_flags; 1749 ieee80211_tx_skb(sdata, skb); 1750 } 1751 1752 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1753 const u8 *da, const u8 *bssid, 1754 u16 stype, u16 reason, 1755 bool send_frame, u8 *frame_buf) 1756 { 1757 struct ieee80211_local *local = sdata->local; 1758 struct sk_buff *skb; 1759 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1760 1761 /* build frame */ 1762 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1763 mgmt->duration = 0; /* initialize only */ 1764 mgmt->seq_ctrl = 0; /* initialize only */ 1765 memcpy(mgmt->da, da, ETH_ALEN); 1766 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1767 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1768 /* u.deauth.reason_code == u.disassoc.reason_code */ 1769 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1770 1771 if (send_frame) { 1772 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1773 IEEE80211_DEAUTH_FRAME_LEN); 1774 if (!skb) 1775 return; 1776 1777 skb_reserve(skb, local->hw.extra_tx_headroom); 1778 1779 /* copy in frame */ 1780 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1781 1782 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1783 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1784 IEEE80211_SKB_CB(skb)->flags |= 1785 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1786 1787 ieee80211_tx_skb(sdata, skb); 1788 } 1789 } 1790 1791 static u8 *ieee80211_write_he_6ghz_cap(u8 *pos, __le16 cap, u8 *end) 1792 { 1793 if ((end - pos) < 5) 1794 return pos; 1795 1796 *pos++ = WLAN_EID_EXTENSION; 1797 *pos++ = 1 + sizeof(cap); 1798 *pos++ = WLAN_EID_EXT_HE_6GHZ_CAPA; 1799 memcpy(pos, &cap, sizeof(cap)); 1800 1801 return pos + 2; 1802 } 1803 1804 static int ieee80211_build_preq_ies_band(struct ieee80211_sub_if_data *sdata, 1805 u8 *buffer, size_t buffer_len, 1806 const u8 *ie, size_t ie_len, 1807 enum nl80211_band band, 1808 u32 rate_mask, 1809 struct cfg80211_chan_def *chandef, 1810 size_t *offset, u32 flags) 1811 { 1812 struct ieee80211_local *local = sdata->local; 1813 struct ieee80211_supported_band *sband; 1814 const struct ieee80211_sta_he_cap *he_cap; 1815 const struct ieee80211_sta_eht_cap *eht_cap; 1816 u8 *pos = buffer, *end = buffer + buffer_len; 1817 size_t noffset; 1818 int supp_rates_len, i; 1819 u8 rates[32]; 1820 int num_rates; 1821 int ext_rates_len; 1822 int shift; 1823 u32 rate_flags; 1824 bool have_80mhz = false; 1825 1826 *offset = 0; 1827 1828 sband = local->hw.wiphy->bands[band]; 1829 if (WARN_ON_ONCE(!sband)) 1830 return 0; 1831 1832 rate_flags = ieee80211_chandef_rate_flags(chandef); 1833 shift = ieee80211_chandef_get_shift(chandef); 1834 1835 num_rates = 0; 1836 for (i = 0; i < sband->n_bitrates; i++) { 1837 if ((BIT(i) & rate_mask) == 0) 1838 continue; /* skip rate */ 1839 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 1840 continue; 1841 1842 rates[num_rates++] = 1843 (u8) DIV_ROUND_UP(sband->bitrates[i].bitrate, 1844 (1 << shift) * 5); 1845 } 1846 1847 supp_rates_len = min_t(int, num_rates, 8); 1848 1849 if (end - pos < 2 + supp_rates_len) 1850 goto out_err; 1851 *pos++ = WLAN_EID_SUPP_RATES; 1852 *pos++ = supp_rates_len; 1853 memcpy(pos, rates, supp_rates_len); 1854 pos += supp_rates_len; 1855 1856 /* insert "request information" if in custom IEs */ 1857 if (ie && ie_len) { 1858 static const u8 before_extrates[] = { 1859 WLAN_EID_SSID, 1860 WLAN_EID_SUPP_RATES, 1861 WLAN_EID_REQUEST, 1862 }; 1863 noffset = ieee80211_ie_split(ie, ie_len, 1864 before_extrates, 1865 ARRAY_SIZE(before_extrates), 1866 *offset); 1867 if (end - pos < noffset - *offset) 1868 goto out_err; 1869 memcpy(pos, ie + *offset, noffset - *offset); 1870 pos += noffset - *offset; 1871 *offset = noffset; 1872 } 1873 1874 ext_rates_len = num_rates - supp_rates_len; 1875 if (ext_rates_len > 0) { 1876 if (end - pos < 2 + ext_rates_len) 1877 goto out_err; 1878 *pos++ = WLAN_EID_EXT_SUPP_RATES; 1879 *pos++ = ext_rates_len; 1880 memcpy(pos, rates + supp_rates_len, ext_rates_len); 1881 pos += ext_rates_len; 1882 } 1883 1884 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1885 if (end - pos < 3) 1886 goto out_err; 1887 *pos++ = WLAN_EID_DS_PARAMS; 1888 *pos++ = 1; 1889 *pos++ = ieee80211_frequency_to_channel( 1890 chandef->chan->center_freq); 1891 } 1892 1893 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1894 goto done; 1895 1896 /* insert custom IEs that go before HT */ 1897 if (ie && ie_len) { 1898 static const u8 before_ht[] = { 1899 /* 1900 * no need to list the ones split off already 1901 * (or generated here) 1902 */ 1903 WLAN_EID_DS_PARAMS, 1904 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1905 }; 1906 noffset = ieee80211_ie_split(ie, ie_len, 1907 before_ht, ARRAY_SIZE(before_ht), 1908 *offset); 1909 if (end - pos < noffset - *offset) 1910 goto out_err; 1911 memcpy(pos, ie + *offset, noffset - *offset); 1912 pos += noffset - *offset; 1913 *offset = noffset; 1914 } 1915 1916 if (sband->ht_cap.ht_supported) { 1917 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap)) 1918 goto out_err; 1919 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1920 sband->ht_cap.cap); 1921 } 1922 1923 /* insert custom IEs that go before VHT */ 1924 if (ie && ie_len) { 1925 static const u8 before_vht[] = { 1926 /* 1927 * no need to list the ones split off already 1928 * (or generated here) 1929 */ 1930 WLAN_EID_BSS_COEX_2040, 1931 WLAN_EID_EXT_CAPABILITY, 1932 WLAN_EID_SSID_LIST, 1933 WLAN_EID_CHANNEL_USAGE, 1934 WLAN_EID_INTERWORKING, 1935 WLAN_EID_MESH_ID, 1936 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1937 }; 1938 noffset = ieee80211_ie_split(ie, ie_len, 1939 before_vht, ARRAY_SIZE(before_vht), 1940 *offset); 1941 if (end - pos < noffset - *offset) 1942 goto out_err; 1943 memcpy(pos, ie + *offset, noffset - *offset); 1944 pos += noffset - *offset; 1945 *offset = noffset; 1946 } 1947 1948 /* Check if any channel in this sband supports at least 80 MHz */ 1949 for (i = 0; i < sband->n_channels; i++) { 1950 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1951 IEEE80211_CHAN_NO_80MHZ)) 1952 continue; 1953 1954 have_80mhz = true; 1955 break; 1956 } 1957 1958 if (sband->vht_cap.vht_supported && have_80mhz) { 1959 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap)) 1960 goto out_err; 1961 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1962 sband->vht_cap.cap); 1963 } 1964 1965 /* insert custom IEs that go before HE */ 1966 if (ie && ie_len) { 1967 static const u8 before_he[] = { 1968 /* 1969 * no need to list the ones split off before VHT 1970 * or generated here 1971 */ 1972 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1973 WLAN_EID_AP_CSN, 1974 /* TODO: add 11ah/11aj/11ak elements */ 1975 }; 1976 noffset = ieee80211_ie_split(ie, ie_len, 1977 before_he, ARRAY_SIZE(before_he), 1978 *offset); 1979 if (end - pos < noffset - *offset) 1980 goto out_err; 1981 memcpy(pos, ie + *offset, noffset - *offset); 1982 pos += noffset - *offset; 1983 *offset = noffset; 1984 } 1985 1986 he_cap = ieee80211_get_he_iftype_cap(sband, 1987 ieee80211_vif_type_p2p(&sdata->vif)); 1988 if (he_cap && 1989 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1990 IEEE80211_CHAN_NO_HE)) { 1991 pos = ieee80211_ie_build_he_cap(0, pos, he_cap, end); 1992 if (!pos) 1993 goto out_err; 1994 } 1995 1996 eht_cap = ieee80211_get_eht_iftype_cap(sband, 1997 ieee80211_vif_type_p2p(&sdata->vif)); 1998 1999 if (eht_cap && 2000 cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 2001 IEEE80211_CHAN_NO_HE | 2002 IEEE80211_CHAN_NO_EHT)) { 2003 pos = ieee80211_ie_build_eht_cap(pos, he_cap, eht_cap, end); 2004 if (!pos) 2005 goto out_err; 2006 } 2007 2008 if (cfg80211_any_usable_channels(local->hw.wiphy, 2009 BIT(NL80211_BAND_6GHZ), 2010 IEEE80211_CHAN_NO_HE)) { 2011 struct ieee80211_supported_band *sband6; 2012 2013 sband6 = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2014 he_cap = ieee80211_get_he_iftype_cap(sband6, 2015 ieee80211_vif_type_p2p(&sdata->vif)); 2016 2017 if (he_cap) { 2018 enum nl80211_iftype iftype = 2019 ieee80211_vif_type_p2p(&sdata->vif); 2020 __le16 cap = ieee80211_get_he_6ghz_capa(sband, iftype); 2021 2022 pos = ieee80211_write_he_6ghz_cap(pos, cap, end); 2023 } 2024 } 2025 2026 /* 2027 * If adding more here, adjust code in main.c 2028 * that calculates local->scan_ies_len. 2029 */ 2030 2031 return pos - buffer; 2032 out_err: 2033 WARN_ONCE(1, "not enough space for preq IEs\n"); 2034 done: 2035 return pos - buffer; 2036 } 2037 2038 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 2039 size_t buffer_len, 2040 struct ieee80211_scan_ies *ie_desc, 2041 const u8 *ie, size_t ie_len, 2042 u8 bands_used, u32 *rate_masks, 2043 struct cfg80211_chan_def *chandef, 2044 u32 flags) 2045 { 2046 size_t pos = 0, old_pos = 0, custom_ie_offset = 0; 2047 int i; 2048 2049 memset(ie_desc, 0, sizeof(*ie_desc)); 2050 2051 for (i = 0; i < NUM_NL80211_BANDS; i++) { 2052 if (bands_used & BIT(i)) { 2053 pos += ieee80211_build_preq_ies_band(sdata, 2054 buffer + pos, 2055 buffer_len - pos, 2056 ie, ie_len, i, 2057 rate_masks[i], 2058 chandef, 2059 &custom_ie_offset, 2060 flags); 2061 ie_desc->ies[i] = buffer + old_pos; 2062 ie_desc->len[i] = pos - old_pos; 2063 old_pos = pos; 2064 } 2065 } 2066 2067 /* add any remaining custom IEs */ 2068 if (ie && ie_len) { 2069 if (WARN_ONCE(buffer_len - pos < ie_len - custom_ie_offset, 2070 "not enough space for preq custom IEs\n")) 2071 return pos; 2072 memcpy(buffer + pos, ie + custom_ie_offset, 2073 ie_len - custom_ie_offset); 2074 ie_desc->common_ies = buffer + pos; 2075 ie_desc->common_ie_len = ie_len - custom_ie_offset; 2076 pos += ie_len - custom_ie_offset; 2077 } 2078 2079 return pos; 2080 }; 2081 2082 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 2083 const u8 *src, const u8 *dst, 2084 u32 ratemask, 2085 struct ieee80211_channel *chan, 2086 const u8 *ssid, size_t ssid_len, 2087 const u8 *ie, size_t ie_len, 2088 u32 flags) 2089 { 2090 struct ieee80211_local *local = sdata->local; 2091 struct cfg80211_chan_def chandef; 2092 struct sk_buff *skb; 2093 struct ieee80211_mgmt *mgmt; 2094 int ies_len; 2095 u32 rate_masks[NUM_NL80211_BANDS] = {}; 2096 struct ieee80211_scan_ies dummy_ie_desc; 2097 2098 /* 2099 * Do not send DS Channel parameter for directed probe requests 2100 * in order to maximize the chance that we get a response. Some 2101 * badly-behaved APs don't respond when this parameter is included. 2102 */ 2103 chandef.width = sdata->vif.bss_conf.chandef.width; 2104 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 2105 chandef.chan = NULL; 2106 else 2107 chandef.chan = chan; 2108 2109 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 2110 local->scan_ies_len + ie_len); 2111 if (!skb) 2112 return NULL; 2113 2114 rate_masks[chan->band] = ratemask; 2115 ies_len = ieee80211_build_preq_ies(sdata, skb_tail_pointer(skb), 2116 skb_tailroom(skb), &dummy_ie_desc, 2117 ie, ie_len, BIT(chan->band), 2118 rate_masks, &chandef, flags); 2119 skb_put(skb, ies_len); 2120 2121 if (dst) { 2122 mgmt = (struct ieee80211_mgmt *) skb->data; 2123 memcpy(mgmt->da, dst, ETH_ALEN); 2124 memcpy(mgmt->bssid, dst, ETH_ALEN); 2125 } 2126 2127 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2128 2129 return skb; 2130 } 2131 2132 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 2133 struct ieee802_11_elems *elems, 2134 enum nl80211_band band, u32 *basic_rates) 2135 { 2136 struct ieee80211_supported_band *sband; 2137 size_t num_rates; 2138 u32 supp_rates, rate_flags; 2139 int i, j, shift; 2140 2141 sband = sdata->local->hw.wiphy->bands[band]; 2142 if (WARN_ON(!sband)) 2143 return 1; 2144 2145 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 2146 shift = ieee80211_vif_get_shift(&sdata->vif); 2147 2148 num_rates = sband->n_bitrates; 2149 supp_rates = 0; 2150 for (i = 0; i < elems->supp_rates_len + 2151 elems->ext_supp_rates_len; i++) { 2152 u8 rate = 0; 2153 int own_rate; 2154 bool is_basic; 2155 if (i < elems->supp_rates_len) 2156 rate = elems->supp_rates[i]; 2157 else if (elems->ext_supp_rates) 2158 rate = elems->ext_supp_rates 2159 [i - elems->supp_rates_len]; 2160 own_rate = 5 * (rate & 0x7f); 2161 is_basic = !!(rate & 0x80); 2162 2163 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 2164 continue; 2165 2166 for (j = 0; j < num_rates; j++) { 2167 int brate; 2168 if ((rate_flags & sband->bitrates[j].flags) 2169 != rate_flags) 2170 continue; 2171 2172 brate = DIV_ROUND_UP(sband->bitrates[j].bitrate, 2173 1 << shift); 2174 2175 if (brate == own_rate) { 2176 supp_rates |= BIT(j); 2177 if (basic_rates && is_basic) 2178 *basic_rates |= BIT(j); 2179 } 2180 } 2181 } 2182 return supp_rates; 2183 } 2184 2185 void ieee80211_stop_device(struct ieee80211_local *local) 2186 { 2187 ieee80211_led_radio(local, false); 2188 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 2189 2190 cancel_work_sync(&local->reconfig_filter); 2191 2192 flush_workqueue(local->workqueue); 2193 drv_stop(local); 2194 } 2195 2196 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 2197 bool aborted) 2198 { 2199 /* It's possible that we don't handle the scan completion in 2200 * time during suspend, so if it's still marked as completed 2201 * here, queue the work and flush it to clean things up. 2202 * Instead of calling the worker function directly here, we 2203 * really queue it to avoid potential races with other flows 2204 * scheduling the same work. 2205 */ 2206 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 2207 /* If coming from reconfiguration failure, abort the scan so 2208 * we don't attempt to continue a partial HW scan - which is 2209 * possible otherwise if (e.g.) the 2.4 GHz portion was the 2210 * completed scan, and a 5 GHz portion is still pending. 2211 */ 2212 if (aborted) 2213 set_bit(SCAN_ABORTED, &local->scanning); 2214 ieee80211_queue_delayed_work(&local->hw, &local->scan_work, 0); 2215 flush_delayed_work(&local->scan_work); 2216 } 2217 } 2218 2219 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 2220 { 2221 struct ieee80211_sub_if_data *sdata; 2222 struct ieee80211_chanctx *ctx; 2223 2224 /* 2225 * We get here if during resume the device can't be restarted properly. 2226 * We might also get here if this happens during HW reset, which is a 2227 * slightly different situation and we need to drop all connections in 2228 * the latter case. 2229 * 2230 * Ask cfg80211 to turn off all interfaces, this will result in more 2231 * warnings but at least we'll then get into a clean stopped state. 2232 */ 2233 2234 local->resuming = false; 2235 local->suspended = false; 2236 local->in_reconfig = false; 2237 2238 ieee80211_flush_completed_scan(local, true); 2239 2240 /* scheduled scan clearly can't be running any more, but tell 2241 * cfg80211 and clear local state 2242 */ 2243 ieee80211_sched_scan_end(local); 2244 2245 list_for_each_entry(sdata, &local->interfaces, list) 2246 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 2247 2248 /* Mark channel contexts as not being in the driver any more to avoid 2249 * removing them from the driver during the shutdown process... 2250 */ 2251 mutex_lock(&local->chanctx_mtx); 2252 list_for_each_entry(ctx, &local->chanctx_list, list) 2253 ctx->driver_present = false; 2254 mutex_unlock(&local->chanctx_mtx); 2255 } 2256 2257 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 2258 struct ieee80211_sub_if_data *sdata) 2259 { 2260 struct ieee80211_chanctx_conf *conf; 2261 struct ieee80211_chanctx *ctx; 2262 2263 if (!local->use_chanctx) 2264 return; 2265 2266 mutex_lock(&local->chanctx_mtx); 2267 conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2268 lockdep_is_held(&local->chanctx_mtx)); 2269 if (conf) { 2270 ctx = container_of(conf, struct ieee80211_chanctx, conf); 2271 drv_assign_vif_chanctx(local, sdata, ctx); 2272 } 2273 mutex_unlock(&local->chanctx_mtx); 2274 } 2275 2276 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 2277 { 2278 struct ieee80211_local *local = sdata->local; 2279 struct sta_info *sta; 2280 2281 /* add STAs back */ 2282 mutex_lock(&local->sta_mtx); 2283 list_for_each_entry(sta, &local->sta_list, list) { 2284 enum ieee80211_sta_state state; 2285 2286 if (!sta->uploaded || sta->sdata != sdata) 2287 continue; 2288 2289 for (state = IEEE80211_STA_NOTEXIST; 2290 state < sta->sta_state; state++) 2291 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2292 state + 1)); 2293 } 2294 mutex_unlock(&local->sta_mtx); 2295 } 2296 2297 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 2298 { 2299 struct cfg80211_nan_func *func, **funcs; 2300 int res, id, i = 0; 2301 2302 res = drv_start_nan(sdata->local, sdata, 2303 &sdata->u.nan.conf); 2304 if (WARN_ON(res)) 2305 return res; 2306 2307 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 2308 sizeof(*funcs), 2309 GFP_KERNEL); 2310 if (!funcs) 2311 return -ENOMEM; 2312 2313 /* Add all the functions: 2314 * This is a little bit ugly. We need to call a potentially sleeping 2315 * callback for each NAN function, so we can't hold the spinlock. 2316 */ 2317 spin_lock_bh(&sdata->u.nan.func_lock); 2318 2319 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 2320 funcs[i++] = func; 2321 2322 spin_unlock_bh(&sdata->u.nan.func_lock); 2323 2324 for (i = 0; funcs[i]; i++) { 2325 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 2326 if (WARN_ON(res)) 2327 ieee80211_nan_func_terminated(&sdata->vif, 2328 funcs[i]->instance_id, 2329 NL80211_NAN_FUNC_TERM_REASON_ERROR, 2330 GFP_KERNEL); 2331 } 2332 2333 kfree(funcs); 2334 2335 return 0; 2336 } 2337 2338 int ieee80211_reconfig(struct ieee80211_local *local) 2339 { 2340 struct ieee80211_hw *hw = &local->hw; 2341 struct ieee80211_sub_if_data *sdata; 2342 struct ieee80211_chanctx *ctx; 2343 struct sta_info *sta; 2344 int res, i; 2345 bool reconfig_due_to_wowlan = false; 2346 struct ieee80211_sub_if_data *sched_scan_sdata; 2347 struct cfg80211_sched_scan_request *sched_scan_req; 2348 bool sched_scan_stopped = false; 2349 bool suspended = local->suspended; 2350 bool in_reconfig = false; 2351 2352 /* nothing to do if HW shouldn't run */ 2353 if (!local->open_count) 2354 goto wake_up; 2355 2356 #ifdef CONFIG_PM 2357 if (suspended) 2358 local->resuming = true; 2359 2360 if (local->wowlan) { 2361 /* 2362 * In the wowlan case, both mac80211 and the device 2363 * are functional when the resume op is called, so 2364 * clear local->suspended so the device could operate 2365 * normally (e.g. pass rx frames). 2366 */ 2367 local->suspended = false; 2368 res = drv_resume(local); 2369 local->wowlan = false; 2370 if (res < 0) { 2371 local->resuming = false; 2372 return res; 2373 } 2374 if (res == 0) 2375 goto wake_up; 2376 WARN_ON(res > 1); 2377 /* 2378 * res is 1, which means the driver requested 2379 * to go through a regular reset on wakeup. 2380 * restore local->suspended in this case. 2381 */ 2382 reconfig_due_to_wowlan = true; 2383 local->suspended = true; 2384 } 2385 #endif 2386 2387 /* 2388 * In case of hw_restart during suspend (without wowlan), 2389 * cancel restart work, as we are reconfiguring the device 2390 * anyway. 2391 * Note that restart_work is scheduled on a frozen workqueue, 2392 * so we can't deadlock in this case. 2393 */ 2394 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 2395 cancel_work_sync(&local->restart_work); 2396 2397 local->started = false; 2398 2399 /* 2400 * Upon resume hardware can sometimes be goofy due to 2401 * various platform / driver / bus issues, so restarting 2402 * the device may at times not work immediately. Propagate 2403 * the error. 2404 */ 2405 res = drv_start(local); 2406 if (res) { 2407 if (suspended) 2408 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 2409 else 2410 WARN(1, "Hardware became unavailable during restart.\n"); 2411 ieee80211_handle_reconfig_failure(local); 2412 return res; 2413 } 2414 2415 /* setup fragmentation threshold */ 2416 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 2417 2418 /* setup RTS threshold */ 2419 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 2420 2421 /* reset coverage class */ 2422 drv_set_coverage_class(local, hw->wiphy->coverage_class); 2423 2424 ieee80211_led_radio(local, true); 2425 ieee80211_mod_tpt_led_trig(local, 2426 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 2427 2428 /* add interfaces */ 2429 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 2430 if (sdata) { 2431 /* in HW restart it exists already */ 2432 WARN_ON(local->resuming); 2433 res = drv_add_interface(local, sdata); 2434 if (WARN_ON(res)) { 2435 RCU_INIT_POINTER(local->monitor_sdata, NULL); 2436 synchronize_net(); 2437 kfree(sdata); 2438 } 2439 } 2440 2441 list_for_each_entry(sdata, &local->interfaces, list) { 2442 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2443 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2444 ieee80211_sdata_running(sdata)) { 2445 res = drv_add_interface(local, sdata); 2446 if (WARN_ON(res)) 2447 break; 2448 } 2449 } 2450 2451 /* If adding any of the interfaces failed above, roll back and 2452 * report failure. 2453 */ 2454 if (res) { 2455 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 2456 list) 2457 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2458 sdata->vif.type != NL80211_IFTYPE_MONITOR && 2459 ieee80211_sdata_running(sdata)) 2460 drv_remove_interface(local, sdata); 2461 ieee80211_handle_reconfig_failure(local); 2462 return res; 2463 } 2464 2465 /* add channel contexts */ 2466 if (local->use_chanctx) { 2467 mutex_lock(&local->chanctx_mtx); 2468 list_for_each_entry(ctx, &local->chanctx_list, list) 2469 if (ctx->replace_state != 2470 IEEE80211_CHANCTX_REPLACES_OTHER) 2471 WARN_ON(drv_add_chanctx(local, ctx)); 2472 mutex_unlock(&local->chanctx_mtx); 2473 2474 sdata = wiphy_dereference(local->hw.wiphy, 2475 local->monitor_sdata); 2476 if (sdata && ieee80211_sdata_running(sdata)) 2477 ieee80211_assign_chanctx(local, sdata); 2478 } 2479 2480 /* reconfigure hardware */ 2481 ieee80211_hw_config(local, ~0); 2482 2483 ieee80211_configure_filter(local); 2484 2485 /* Finally also reconfigure all the BSS information */ 2486 list_for_each_entry(sdata, &local->interfaces, list) { 2487 u32 changed; 2488 2489 if (!ieee80211_sdata_running(sdata)) 2490 continue; 2491 2492 ieee80211_assign_chanctx(local, sdata); 2493 2494 switch (sdata->vif.type) { 2495 case NL80211_IFTYPE_AP_VLAN: 2496 case NL80211_IFTYPE_MONITOR: 2497 break; 2498 case NL80211_IFTYPE_ADHOC: 2499 if (sdata->vif.bss_conf.ibss_joined) 2500 WARN_ON(drv_join_ibss(local, sdata)); 2501 fallthrough; 2502 default: 2503 ieee80211_reconfig_stations(sdata); 2504 fallthrough; 2505 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 2506 for (i = 0; i < IEEE80211_NUM_ACS; i++) 2507 drv_conf_tx(local, sdata, i, 2508 &sdata->tx_conf[i]); 2509 break; 2510 } 2511 2512 /* common change flags for all interface types */ 2513 changed = BSS_CHANGED_ERP_CTS_PROT | 2514 BSS_CHANGED_ERP_PREAMBLE | 2515 BSS_CHANGED_ERP_SLOT | 2516 BSS_CHANGED_HT | 2517 BSS_CHANGED_BASIC_RATES | 2518 BSS_CHANGED_BEACON_INT | 2519 BSS_CHANGED_BSSID | 2520 BSS_CHANGED_CQM | 2521 BSS_CHANGED_QOS | 2522 BSS_CHANGED_IDLE | 2523 BSS_CHANGED_TXPOWER | 2524 BSS_CHANGED_MCAST_RATE; 2525 2526 if (sdata->vif.mu_mimo_owner) 2527 changed |= BSS_CHANGED_MU_GROUPS; 2528 2529 switch (sdata->vif.type) { 2530 case NL80211_IFTYPE_STATION: 2531 changed |= BSS_CHANGED_ASSOC | 2532 BSS_CHANGED_ARP_FILTER | 2533 BSS_CHANGED_PS; 2534 2535 /* Re-send beacon info report to the driver */ 2536 if (sdata->u.mgd.have_beacon) 2537 changed |= BSS_CHANGED_BEACON_INFO; 2538 2539 if (sdata->vif.bss_conf.max_idle_period || 2540 sdata->vif.bss_conf.protected_keep_alive) 2541 changed |= BSS_CHANGED_KEEP_ALIVE; 2542 2543 sdata_lock(sdata); 2544 ieee80211_bss_info_change_notify(sdata, changed); 2545 sdata_unlock(sdata); 2546 break; 2547 case NL80211_IFTYPE_OCB: 2548 changed |= BSS_CHANGED_OCB; 2549 ieee80211_bss_info_change_notify(sdata, changed); 2550 break; 2551 case NL80211_IFTYPE_ADHOC: 2552 changed |= BSS_CHANGED_IBSS; 2553 fallthrough; 2554 case NL80211_IFTYPE_AP: 2555 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS; 2556 2557 if (sdata->vif.bss_conf.ftm_responder == 1 && 2558 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2559 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2560 changed |= BSS_CHANGED_FTM_RESPONDER; 2561 2562 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2563 changed |= BSS_CHANGED_AP_PROBE_RESP; 2564 2565 if (rcu_access_pointer(sdata->u.ap.beacon)) 2566 drv_start_ap(local, sdata); 2567 } 2568 fallthrough; 2569 case NL80211_IFTYPE_MESH_POINT: 2570 if (sdata->vif.bss_conf.enable_beacon) { 2571 changed |= BSS_CHANGED_BEACON | 2572 BSS_CHANGED_BEACON_ENABLED; 2573 ieee80211_bss_info_change_notify(sdata, changed); 2574 } 2575 break; 2576 case NL80211_IFTYPE_NAN: 2577 res = ieee80211_reconfig_nan(sdata); 2578 if (res < 0) { 2579 ieee80211_handle_reconfig_failure(local); 2580 return res; 2581 } 2582 break; 2583 case NL80211_IFTYPE_AP_VLAN: 2584 case NL80211_IFTYPE_MONITOR: 2585 case NL80211_IFTYPE_P2P_DEVICE: 2586 /* nothing to do */ 2587 break; 2588 case NL80211_IFTYPE_UNSPECIFIED: 2589 case NUM_NL80211_IFTYPES: 2590 case NL80211_IFTYPE_P2P_CLIENT: 2591 case NL80211_IFTYPE_P2P_GO: 2592 case NL80211_IFTYPE_WDS: 2593 WARN_ON(1); 2594 break; 2595 } 2596 } 2597 2598 ieee80211_recalc_ps(local); 2599 2600 /* 2601 * The sta might be in psm against the ap (e.g. because 2602 * this was the state before a hw restart), so we 2603 * explicitly send a null packet in order to make sure 2604 * it'll sync against the ap (and get out of psm). 2605 */ 2606 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2607 list_for_each_entry(sdata, &local->interfaces, list) { 2608 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2609 continue; 2610 if (!sdata->u.mgd.associated) 2611 continue; 2612 2613 ieee80211_send_nullfunc(local, sdata, false); 2614 } 2615 } 2616 2617 /* APs are now beaconing, add back stations */ 2618 mutex_lock(&local->sta_mtx); 2619 list_for_each_entry(sta, &local->sta_list, list) { 2620 enum ieee80211_sta_state state; 2621 2622 if (!sta->uploaded) 2623 continue; 2624 2625 if (sta->sdata->vif.type != NL80211_IFTYPE_AP && 2626 sta->sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 2627 continue; 2628 2629 for (state = IEEE80211_STA_NOTEXIST; 2630 state < sta->sta_state; state++) 2631 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 2632 state + 1)); 2633 } 2634 mutex_unlock(&local->sta_mtx); 2635 2636 /* add back keys */ 2637 list_for_each_entry(sdata, &local->interfaces, list) 2638 ieee80211_reenable_keys(sdata); 2639 2640 /* Reconfigure sched scan if it was interrupted by FW restart */ 2641 mutex_lock(&local->mtx); 2642 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2643 lockdep_is_held(&local->mtx)); 2644 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2645 lockdep_is_held(&local->mtx)); 2646 if (sched_scan_sdata && sched_scan_req) 2647 /* 2648 * Sched scan stopped, but we don't want to report it. Instead, 2649 * we're trying to reschedule. However, if more than one scan 2650 * plan was set, we cannot reschedule since we don't know which 2651 * scan plan was currently running (and some scan plans may have 2652 * already finished). 2653 */ 2654 if (sched_scan_req->n_scan_plans > 1 || 2655 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2656 sched_scan_req)) { 2657 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2658 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2659 sched_scan_stopped = true; 2660 } 2661 mutex_unlock(&local->mtx); 2662 2663 if (sched_scan_stopped) 2664 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2665 2666 wake_up: 2667 2668 if (local->monitors == local->open_count && local->monitors > 0) 2669 ieee80211_add_virtual_monitor(local); 2670 2671 /* 2672 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2673 * sessions can be established after a resume. 2674 * 2675 * Also tear down aggregation sessions since reconfiguring 2676 * them in a hardware restart scenario is not easily done 2677 * right now, and the hardware will have lost information 2678 * about the sessions, but we and the AP still think they 2679 * are active. This is really a workaround though. 2680 */ 2681 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2682 mutex_lock(&local->sta_mtx); 2683 2684 list_for_each_entry(sta, &local->sta_list, list) { 2685 if (!local->resuming) 2686 ieee80211_sta_tear_down_BA_sessions( 2687 sta, AGG_STOP_LOCAL_REQUEST); 2688 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2689 } 2690 2691 mutex_unlock(&local->sta_mtx); 2692 } 2693 2694 /* 2695 * If this is for hw restart things are still running. 2696 * We may want to change that later, however. 2697 */ 2698 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2699 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2700 2701 if (local->in_reconfig) { 2702 in_reconfig = local->in_reconfig; 2703 local->in_reconfig = false; 2704 barrier(); 2705 2706 /* Restart deferred ROCs */ 2707 mutex_lock(&local->mtx); 2708 ieee80211_start_next_roc(local); 2709 mutex_unlock(&local->mtx); 2710 2711 /* Requeue all works */ 2712 list_for_each_entry(sdata, &local->interfaces, list) 2713 ieee80211_queue_work(&local->hw, &sdata->work); 2714 } 2715 2716 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2717 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2718 false); 2719 2720 if (in_reconfig) { 2721 list_for_each_entry(sdata, &local->interfaces, list) { 2722 if (!ieee80211_sdata_running(sdata)) 2723 continue; 2724 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2725 ieee80211_sta_restart(sdata); 2726 } 2727 } 2728 2729 if (!suspended) 2730 return 0; 2731 2732 #ifdef CONFIG_PM 2733 /* first set suspended false, then resuming */ 2734 local->suspended = false; 2735 mb(); 2736 local->resuming = false; 2737 2738 ieee80211_flush_completed_scan(local, false); 2739 2740 if (local->open_count && !reconfig_due_to_wowlan) 2741 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2742 2743 list_for_each_entry(sdata, &local->interfaces, list) { 2744 if (!ieee80211_sdata_running(sdata)) 2745 continue; 2746 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2747 ieee80211_sta_restart(sdata); 2748 } 2749 2750 mod_timer(&local->sta_cleanup, jiffies + 1); 2751 #else 2752 WARN_ON(1); 2753 #endif 2754 2755 return 0; 2756 } 2757 2758 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2759 { 2760 struct ieee80211_sub_if_data *sdata; 2761 struct ieee80211_local *local; 2762 struct ieee80211_key *key; 2763 2764 if (WARN_ON(!vif)) 2765 return; 2766 2767 sdata = vif_to_sdata(vif); 2768 local = sdata->local; 2769 2770 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2771 !local->resuming)) 2772 return; 2773 2774 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2775 !local->in_reconfig)) 2776 return; 2777 2778 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2779 return; 2780 2781 sdata->flags |= flag; 2782 2783 mutex_lock(&local->key_mtx); 2784 list_for_each_entry(key, &sdata->key_list, list) 2785 key->flags |= KEY_FLAG_TAINTED; 2786 mutex_unlock(&local->key_mtx); 2787 } 2788 2789 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2790 { 2791 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2792 } 2793 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2794 2795 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2796 { 2797 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2798 } 2799 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2800 2801 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata) 2802 { 2803 struct ieee80211_local *local = sdata->local; 2804 struct ieee80211_chanctx_conf *chanctx_conf; 2805 struct ieee80211_chanctx *chanctx; 2806 2807 mutex_lock(&local->chanctx_mtx); 2808 2809 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2810 lockdep_is_held(&local->chanctx_mtx)); 2811 2812 /* 2813 * This function can be called from a work, thus it may be possible 2814 * that the chanctx_conf is removed (due to a disconnection, for 2815 * example). 2816 * So nothing should be done in such case. 2817 */ 2818 if (!chanctx_conf) 2819 goto unlock; 2820 2821 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2822 ieee80211_recalc_smps_chanctx(local, chanctx); 2823 unlock: 2824 mutex_unlock(&local->chanctx_mtx); 2825 } 2826 2827 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata) 2828 { 2829 struct ieee80211_local *local = sdata->local; 2830 struct ieee80211_chanctx_conf *chanctx_conf; 2831 struct ieee80211_chanctx *chanctx; 2832 2833 mutex_lock(&local->chanctx_mtx); 2834 2835 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf, 2836 lockdep_is_held(&local->chanctx_mtx)); 2837 2838 if (WARN_ON_ONCE(!chanctx_conf)) 2839 goto unlock; 2840 2841 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2842 ieee80211_recalc_chanctx_min_def(local, chanctx); 2843 unlock: 2844 mutex_unlock(&local->chanctx_mtx); 2845 } 2846 2847 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2848 { 2849 size_t pos = offset; 2850 2851 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2852 pos += 2 + ies[pos + 1]; 2853 2854 return pos; 2855 } 2856 2857 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata, 2858 int rssi_min_thold, 2859 int rssi_max_thold) 2860 { 2861 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold); 2862 2863 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 2864 return; 2865 2866 /* 2867 * Scale up threshold values before storing it, as the RSSI averaging 2868 * algorithm uses a scaled up value as well. Change this scaling 2869 * factor if the RSSI averaging algorithm changes. 2870 */ 2871 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16; 2872 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16; 2873 } 2874 2875 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif, 2876 int rssi_min_thold, 2877 int rssi_max_thold) 2878 { 2879 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2880 2881 WARN_ON(rssi_min_thold == rssi_max_thold || 2882 rssi_min_thold > rssi_max_thold); 2883 2884 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold, 2885 rssi_max_thold); 2886 } 2887 EXPORT_SYMBOL(ieee80211_enable_rssi_reports); 2888 2889 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif) 2890 { 2891 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2892 2893 _ieee80211_enable_rssi_reports(sdata, 0, 0); 2894 } 2895 EXPORT_SYMBOL(ieee80211_disable_rssi_reports); 2896 2897 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2898 u16 cap) 2899 { 2900 __le16 tmp; 2901 2902 *pos++ = WLAN_EID_HT_CAPABILITY; 2903 *pos++ = sizeof(struct ieee80211_ht_cap); 2904 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2905 2906 /* capability flags */ 2907 tmp = cpu_to_le16(cap); 2908 memcpy(pos, &tmp, sizeof(u16)); 2909 pos += sizeof(u16); 2910 2911 /* AMPDU parameters */ 2912 *pos++ = ht_cap->ampdu_factor | 2913 (ht_cap->ampdu_density << 2914 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2915 2916 /* MCS set */ 2917 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2918 pos += sizeof(ht_cap->mcs); 2919 2920 /* extended capabilities */ 2921 pos += sizeof(__le16); 2922 2923 /* BF capabilities */ 2924 pos += sizeof(__le32); 2925 2926 /* antenna selection */ 2927 pos += sizeof(u8); 2928 2929 return pos; 2930 } 2931 2932 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2933 u32 cap) 2934 { 2935 __le32 tmp; 2936 2937 *pos++ = WLAN_EID_VHT_CAPABILITY; 2938 *pos++ = sizeof(struct ieee80211_vht_cap); 2939 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2940 2941 /* capability flags */ 2942 tmp = cpu_to_le32(cap); 2943 memcpy(pos, &tmp, sizeof(u32)); 2944 pos += sizeof(u32); 2945 2946 /* VHT MCS set */ 2947 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2948 pos += sizeof(vht_cap->vht_mcs); 2949 2950 return pos; 2951 } 2952 2953 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 2954 { 2955 const struct ieee80211_sta_he_cap *he_cap; 2956 struct ieee80211_supported_band *sband; 2957 u8 n; 2958 2959 sband = ieee80211_get_sband(sdata); 2960 if (!sband) 2961 return 0; 2962 2963 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 2964 if (!he_cap) 2965 return 0; 2966 2967 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2968 return 2 + 1 + 2969 sizeof(he_cap->he_cap_elem) + n + 2970 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2971 he_cap->he_cap_elem.phy_cap_info); 2972 } 2973 2974 u8 *ieee80211_ie_build_he_cap(u32 disable_flags, u8 *pos, 2975 const struct ieee80211_sta_he_cap *he_cap, 2976 u8 *end) 2977 { 2978 struct ieee80211_he_cap_elem elem; 2979 u8 n; 2980 u8 ie_len; 2981 u8 *orig_pos = pos; 2982 2983 /* Make sure we have place for the IE */ 2984 /* 2985 * TODO: the 1 added is because this temporarily is under the EXTENSION 2986 * IE. Get rid of it when it moves. 2987 */ 2988 if (!he_cap) 2989 return orig_pos; 2990 2991 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2992 elem = he_cap->he_cap_elem; 2993 2994 if (disable_flags & IEEE80211_STA_DISABLE_40MHZ) 2995 elem.phy_cap_info[0] &= 2996 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2997 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2998 2999 if (disable_flags & IEEE80211_STA_DISABLE_160MHZ) 3000 elem.phy_cap_info[0] &= 3001 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3002 3003 if (disable_flags & IEEE80211_STA_DISABLE_80P80MHZ) 3004 elem.phy_cap_info[0] &= 3005 ~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3006 3007 n = ieee80211_he_mcs_nss_size(&elem); 3008 ie_len = 2 + 1 + 3009 sizeof(he_cap->he_cap_elem) + n + 3010 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 3011 he_cap->he_cap_elem.phy_cap_info); 3012 3013 if ((end - pos) < ie_len) 3014 return orig_pos; 3015 3016 *pos++ = WLAN_EID_EXTENSION; 3017 pos++; /* We'll set the size later below */ 3018 *pos++ = WLAN_EID_EXT_HE_CAPABILITY; 3019 3020 /* Fixed data */ 3021 memcpy(pos, &elem, sizeof(elem)); 3022 pos += sizeof(elem); 3023 3024 memcpy(pos, &he_cap->he_mcs_nss_supp, n); 3025 pos += n; 3026 3027 /* Check if PPE Threshold should be present */ 3028 if ((he_cap->he_cap_elem.phy_cap_info[6] & 3029 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 3030 goto end; 3031 3032 /* 3033 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 3034 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 3035 */ 3036 n = hweight8(he_cap->ppe_thres[0] & 3037 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 3038 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 3039 IEEE80211_PPE_THRES_NSS_POS)); 3040 3041 /* 3042 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 3043 * total size. 3044 */ 3045 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 3046 n = DIV_ROUND_UP(n, 8); 3047 3048 /* Copy PPE Thresholds */ 3049 memcpy(pos, &he_cap->ppe_thres, n); 3050 pos += n; 3051 3052 end: 3053 orig_pos[1] = (pos - orig_pos) - 2; 3054 return pos; 3055 } 3056 3057 void ieee80211_ie_build_he_6ghz_cap(struct ieee80211_sub_if_data *sdata, 3058 struct sk_buff *skb) 3059 { 3060 struct ieee80211_supported_band *sband; 3061 const struct ieee80211_sband_iftype_data *iftd; 3062 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3063 u8 *pos; 3064 u16 cap; 3065 3066 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 3067 BIT(NL80211_BAND_6GHZ), 3068 IEEE80211_CHAN_NO_HE)) 3069 return; 3070 3071 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3072 3073 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 3074 if (!iftd) 3075 return; 3076 3077 /* Check for device HE 6 GHz capability before adding element */ 3078 if (!iftd->he_6ghz_capa.capa) 3079 return; 3080 3081 cap = le16_to_cpu(iftd->he_6ghz_capa.capa); 3082 cap &= ~IEEE80211_HE_6GHZ_CAP_SM_PS; 3083 3084 switch (sdata->smps_mode) { 3085 case IEEE80211_SMPS_AUTOMATIC: 3086 case IEEE80211_SMPS_NUM_MODES: 3087 WARN_ON(1); 3088 fallthrough; 3089 case IEEE80211_SMPS_OFF: 3090 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 3091 IEEE80211_HE_6GHZ_CAP_SM_PS); 3092 break; 3093 case IEEE80211_SMPS_STATIC: 3094 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 3095 IEEE80211_HE_6GHZ_CAP_SM_PS); 3096 break; 3097 case IEEE80211_SMPS_DYNAMIC: 3098 cap |= u16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 3099 IEEE80211_HE_6GHZ_CAP_SM_PS); 3100 break; 3101 } 3102 3103 pos = skb_put(skb, 2 + 1 + sizeof(cap)); 3104 ieee80211_write_he_6ghz_cap(pos, cpu_to_le16(cap), 3105 pos + 2 + 1 + sizeof(cap)); 3106 } 3107 3108 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 3109 const struct cfg80211_chan_def *chandef, 3110 u16 prot_mode, bool rifs_mode) 3111 { 3112 struct ieee80211_ht_operation *ht_oper; 3113 /* Build HT Information */ 3114 *pos++ = WLAN_EID_HT_OPERATION; 3115 *pos++ = sizeof(struct ieee80211_ht_operation); 3116 ht_oper = (struct ieee80211_ht_operation *)pos; 3117 ht_oper->primary_chan = ieee80211_frequency_to_channel( 3118 chandef->chan->center_freq); 3119 switch (chandef->width) { 3120 case NL80211_CHAN_WIDTH_160: 3121 case NL80211_CHAN_WIDTH_80P80: 3122 case NL80211_CHAN_WIDTH_80: 3123 case NL80211_CHAN_WIDTH_40: 3124 if (chandef->center_freq1 > chandef->chan->center_freq) 3125 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3126 else 3127 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3128 break; 3129 case NL80211_CHAN_WIDTH_320: 3130 /* HT information element should not be included on 6GHz */ 3131 WARN_ON(1); 3132 return pos; 3133 default: 3134 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 3135 break; 3136 } 3137 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 3138 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 3139 chandef->width != NL80211_CHAN_WIDTH_20) 3140 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 3141 3142 if (rifs_mode) 3143 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 3144 3145 ht_oper->operation_mode = cpu_to_le16(prot_mode); 3146 ht_oper->stbc_param = 0x0000; 3147 3148 /* It seems that Basic MCS set and Supported MCS set 3149 are identical for the first 10 bytes */ 3150 memset(&ht_oper->basic_set, 0, 16); 3151 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 3152 3153 return pos + sizeof(struct ieee80211_ht_operation); 3154 } 3155 3156 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 3157 const struct cfg80211_chan_def *chandef) 3158 { 3159 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 3160 *pos++ = 3; /* IE length */ 3161 /* New channel width */ 3162 switch (chandef->width) { 3163 case NL80211_CHAN_WIDTH_80: 3164 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 3165 break; 3166 case NL80211_CHAN_WIDTH_160: 3167 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 3168 break; 3169 case NL80211_CHAN_WIDTH_80P80: 3170 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 3171 break; 3172 case NL80211_CHAN_WIDTH_320: 3173 /* The behavior is not defined for 320 MHz channels */ 3174 WARN_ON(1); 3175 fallthrough; 3176 default: 3177 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 3178 } 3179 3180 /* new center frequency segment 0 */ 3181 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 3182 /* new center frequency segment 1 */ 3183 if (chandef->center_freq2) 3184 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 3185 else 3186 *pos++ = 0; 3187 } 3188 3189 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 3190 const struct cfg80211_chan_def *chandef) 3191 { 3192 struct ieee80211_vht_operation *vht_oper; 3193 3194 *pos++ = WLAN_EID_VHT_OPERATION; 3195 *pos++ = sizeof(struct ieee80211_vht_operation); 3196 vht_oper = (struct ieee80211_vht_operation *)pos; 3197 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 3198 chandef->center_freq1); 3199 if (chandef->center_freq2) 3200 vht_oper->center_freq_seg1_idx = 3201 ieee80211_frequency_to_channel(chandef->center_freq2); 3202 else 3203 vht_oper->center_freq_seg1_idx = 0x00; 3204 3205 switch (chandef->width) { 3206 case NL80211_CHAN_WIDTH_160: 3207 /* 3208 * Convert 160 MHz channel width to new style as interop 3209 * workaround. 3210 */ 3211 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3212 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 3213 if (chandef->chan->center_freq < chandef->center_freq1) 3214 vht_oper->center_freq_seg0_idx -= 8; 3215 else 3216 vht_oper->center_freq_seg0_idx += 8; 3217 break; 3218 case NL80211_CHAN_WIDTH_80P80: 3219 /* 3220 * Convert 80+80 MHz channel width to new style as interop 3221 * workaround. 3222 */ 3223 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3224 break; 3225 case NL80211_CHAN_WIDTH_80: 3226 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 3227 break; 3228 case NL80211_CHAN_WIDTH_320: 3229 /* VHT information element should not be included on 6GHz */ 3230 WARN_ON(1); 3231 return pos; 3232 default: 3233 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 3234 break; 3235 } 3236 3237 /* don't require special VHT peer rates */ 3238 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 3239 3240 return pos + sizeof(struct ieee80211_vht_operation); 3241 } 3242 3243 u8 *ieee80211_ie_build_he_oper(u8 *pos, struct cfg80211_chan_def *chandef) 3244 { 3245 struct ieee80211_he_operation *he_oper; 3246 struct ieee80211_he_6ghz_oper *he_6ghz_op; 3247 u32 he_oper_params; 3248 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 3249 3250 if (chandef->chan->band == NL80211_BAND_6GHZ) 3251 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 3252 3253 *pos++ = WLAN_EID_EXTENSION; 3254 *pos++ = ie_len; 3255 *pos++ = WLAN_EID_EXT_HE_OPERATION; 3256 3257 he_oper_params = 0; 3258 he_oper_params |= u32_encode_bits(1023, /* disabled */ 3259 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 3260 he_oper_params |= u32_encode_bits(1, 3261 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 3262 he_oper_params |= u32_encode_bits(1, 3263 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 3264 if (chandef->chan->band == NL80211_BAND_6GHZ) 3265 he_oper_params |= u32_encode_bits(1, 3266 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 3267 3268 he_oper = (struct ieee80211_he_operation *)pos; 3269 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 3270 3271 /* don't require special HE peer rates */ 3272 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 3273 pos += sizeof(struct ieee80211_he_operation); 3274 3275 if (chandef->chan->band != NL80211_BAND_6GHZ) 3276 goto out; 3277 3278 /* TODO add VHT operational */ 3279 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 3280 he_6ghz_op->minrate = 6; /* 6 Mbps */ 3281 he_6ghz_op->primary = 3282 ieee80211_frequency_to_channel(chandef->chan->center_freq); 3283 he_6ghz_op->ccfs0 = 3284 ieee80211_frequency_to_channel(chandef->center_freq1); 3285 if (chandef->center_freq2) 3286 he_6ghz_op->ccfs1 = 3287 ieee80211_frequency_to_channel(chandef->center_freq2); 3288 else 3289 he_6ghz_op->ccfs1 = 0; 3290 3291 switch (chandef->width) { 3292 case NL80211_CHAN_WIDTH_320: 3293 /* 3294 * TODO: mesh operation is not defined over 6GHz 320 MHz 3295 * channels. 3296 */ 3297 WARN_ON(1); 3298 break; 3299 case NL80211_CHAN_WIDTH_160: 3300 /* Convert 160 MHz channel width to new style as interop 3301 * workaround. 3302 */ 3303 he_6ghz_op->control = 3304 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3305 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 3306 if (chandef->chan->center_freq < chandef->center_freq1) 3307 he_6ghz_op->ccfs0 -= 8; 3308 else 3309 he_6ghz_op->ccfs0 += 8; 3310 fallthrough; 3311 case NL80211_CHAN_WIDTH_80P80: 3312 he_6ghz_op->control = 3313 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 3314 break; 3315 case NL80211_CHAN_WIDTH_80: 3316 he_6ghz_op->control = 3317 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 3318 break; 3319 case NL80211_CHAN_WIDTH_40: 3320 he_6ghz_op->control = 3321 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 3322 break; 3323 default: 3324 he_6ghz_op->control = 3325 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 3326 break; 3327 } 3328 3329 pos += sizeof(struct ieee80211_he_6ghz_oper); 3330 3331 out: 3332 return pos; 3333 } 3334 3335 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 3336 struct cfg80211_chan_def *chandef) 3337 { 3338 enum nl80211_channel_type channel_type; 3339 3340 if (!ht_oper) 3341 return false; 3342 3343 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 3344 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 3345 channel_type = NL80211_CHAN_HT20; 3346 break; 3347 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 3348 channel_type = NL80211_CHAN_HT40PLUS; 3349 break; 3350 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 3351 channel_type = NL80211_CHAN_HT40MINUS; 3352 break; 3353 default: 3354 return false; 3355 } 3356 3357 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 3358 return true; 3359 } 3360 3361 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 3362 const struct ieee80211_vht_operation *oper, 3363 const struct ieee80211_ht_operation *htop, 3364 struct cfg80211_chan_def *chandef) 3365 { 3366 struct cfg80211_chan_def new = *chandef; 3367 int cf0, cf1; 3368 int ccfs0, ccfs1, ccfs2; 3369 int ccf0, ccf1; 3370 u32 vht_cap; 3371 bool support_80_80 = false; 3372 bool support_160 = false; 3373 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 3374 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 3375 u8 supp_chwidth = u32_get_bits(vht_cap_info, 3376 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 3377 3378 if (!oper || !htop) 3379 return false; 3380 3381 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 3382 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 3383 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 3384 support_80_80 = ((vht_cap & 3385 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 3386 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 3387 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 3388 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 3389 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 3390 ccfs0 = oper->center_freq_seg0_idx; 3391 ccfs1 = oper->center_freq_seg1_idx; 3392 ccfs2 = (le16_to_cpu(htop->operation_mode) & 3393 IEEE80211_HT_OP_MODE_CCFS2_MASK) 3394 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 3395 3396 ccf0 = ccfs0; 3397 3398 /* if not supported, parse as though we didn't understand it */ 3399 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3400 ext_nss_bw_supp = 0; 3401 3402 /* 3403 * Cf. IEEE 802.11 Table 9-250 3404 * 3405 * We really just consider that because it's inefficient to connect 3406 * at a higher bandwidth than we'll actually be able to use. 3407 */ 3408 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3409 default: 3410 case 0x00: 3411 ccf1 = 0; 3412 support_160 = false; 3413 support_80_80 = false; 3414 break; 3415 case 0x01: 3416 support_80_80 = false; 3417 fallthrough; 3418 case 0x02: 3419 case 0x03: 3420 ccf1 = ccfs2; 3421 break; 3422 case 0x10: 3423 ccf1 = ccfs1; 3424 break; 3425 case 0x11: 3426 case 0x12: 3427 if (!ccfs1) 3428 ccf1 = ccfs2; 3429 else 3430 ccf1 = ccfs1; 3431 break; 3432 case 0x13: 3433 case 0x20: 3434 case 0x23: 3435 ccf1 = ccfs1; 3436 break; 3437 } 3438 3439 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3440 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3441 3442 switch (oper->chan_width) { 3443 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3444 /* just use HT information directly */ 3445 break; 3446 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3447 new.width = NL80211_CHAN_WIDTH_80; 3448 new.center_freq1 = cf0; 3449 /* If needed, adjust based on the newer interop workaround. */ 3450 if (ccf1) { 3451 unsigned int diff; 3452 3453 diff = abs(ccf1 - ccf0); 3454 if ((diff == 8) && support_160) { 3455 new.width = NL80211_CHAN_WIDTH_160; 3456 new.center_freq1 = cf1; 3457 } else if ((diff > 8) && support_80_80) { 3458 new.width = NL80211_CHAN_WIDTH_80P80; 3459 new.center_freq2 = cf1; 3460 } 3461 } 3462 break; 3463 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3464 /* deprecated encoding */ 3465 new.width = NL80211_CHAN_WIDTH_160; 3466 new.center_freq1 = cf0; 3467 break; 3468 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3469 /* deprecated encoding */ 3470 new.width = NL80211_CHAN_WIDTH_80P80; 3471 new.center_freq1 = cf0; 3472 new.center_freq2 = cf1; 3473 break; 3474 default: 3475 return false; 3476 } 3477 3478 if (!cfg80211_chandef_valid(&new)) 3479 return false; 3480 3481 *chandef = new; 3482 return true; 3483 } 3484 3485 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_sub_if_data *sdata, 3486 const struct ieee80211_he_operation *he_oper, 3487 const struct ieee80211_eht_operation *eht_oper, 3488 struct cfg80211_chan_def *chandef) 3489 { 3490 struct ieee80211_local *local = sdata->local; 3491 struct ieee80211_supported_band *sband; 3492 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 3493 const struct ieee80211_sta_he_cap *he_cap; 3494 const struct ieee80211_sta_eht_cap *eht_cap; 3495 struct cfg80211_chan_def he_chandef = *chandef; 3496 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3497 struct ieee80211_bss_conf *bss_conf = &sdata->vif.bss_conf; 3498 bool support_80_80, support_160, support_320; 3499 u8 he_phy_cap, eht_phy_cap; 3500 u32 freq; 3501 3502 if (chandef->chan->band != NL80211_BAND_6GHZ) 3503 return true; 3504 3505 sband = local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 3506 3507 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 3508 if (!he_cap) { 3509 sdata_info(sdata, "Missing iftype sband data/HE cap"); 3510 return false; 3511 } 3512 3513 he_phy_cap = he_cap->he_cap_elem.phy_cap_info[0]; 3514 support_160 = 3515 he_phy_cap & 3516 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G; 3517 support_80_80 = 3518 he_phy_cap & 3519 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G; 3520 3521 if (!he_oper) { 3522 sdata_info(sdata, 3523 "HE is not advertised on (on %d MHz), expect issues\n", 3524 chandef->chan->center_freq); 3525 return false; 3526 } 3527 3528 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 3529 if (!eht_cap) { 3530 sdata_info(sdata, "Missing iftype sband data/EHT cap"); 3531 eht_oper = NULL; 3532 } 3533 3534 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3535 3536 if (!he_6ghz_oper) { 3537 sdata_info(sdata, 3538 "HE 6GHz operation missing (on %d MHz), expect issues\n", 3539 chandef->chan->center_freq); 3540 return false; 3541 } 3542 3543 /* 3544 * The EHT operation IE does not contain the primary channel so the 3545 * primary channel frequency should be taken from the 6 GHz operation 3546 * information. 3547 */ 3548 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3549 NL80211_BAND_6GHZ); 3550 he_chandef.chan = ieee80211_get_channel(sdata->local->hw.wiphy, freq); 3551 3552 switch (u8_get_bits(he_6ghz_oper->control, 3553 IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO)) { 3554 case IEEE80211_6GHZ_CTRL_REG_LPI_AP: 3555 bss_conf->power_type = IEEE80211_REG_LPI_AP; 3556 break; 3557 case IEEE80211_6GHZ_CTRL_REG_SP_AP: 3558 bss_conf->power_type = IEEE80211_REG_SP_AP; 3559 break; 3560 default: 3561 bss_conf->power_type = IEEE80211_REG_UNSET_AP; 3562 break; 3563 } 3564 3565 if (!eht_oper) { 3566 switch (u8_get_bits(he_6ghz_oper->control, 3567 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3568 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3569 he_chandef.width = NL80211_CHAN_WIDTH_20; 3570 break; 3571 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3572 he_chandef.width = NL80211_CHAN_WIDTH_40; 3573 break; 3574 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3575 he_chandef.width = NL80211_CHAN_WIDTH_80; 3576 break; 3577 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3578 he_chandef.width = NL80211_CHAN_WIDTH_80; 3579 if (!he_6ghz_oper->ccfs1) 3580 break; 3581 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) { 3582 if (support_160) 3583 he_chandef.width = NL80211_CHAN_WIDTH_160; 3584 } else { 3585 if (support_80_80) 3586 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3587 } 3588 break; 3589 } 3590 3591 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3592 he_chandef.center_freq1 = 3593 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3594 NL80211_BAND_6GHZ); 3595 } else { 3596 he_chandef.center_freq1 = 3597 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3598 NL80211_BAND_6GHZ); 3599 if (support_80_80 || support_160) 3600 he_chandef.center_freq2 = 3601 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3602 NL80211_BAND_6GHZ); 3603 } 3604 } else { 3605 eht_phy_cap = eht_cap->eht_cap_elem.phy_cap_info[0]; 3606 support_320 = 3607 eht_phy_cap & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 3608 3609 switch (u8_get_bits(eht_oper->chan_width, 3610 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3611 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3612 he_chandef.width = NL80211_CHAN_WIDTH_20; 3613 break; 3614 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3615 he_chandef.width = NL80211_CHAN_WIDTH_40; 3616 break; 3617 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3618 he_chandef.width = NL80211_CHAN_WIDTH_80; 3619 break; 3620 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3621 if (support_160) 3622 he_chandef.width = NL80211_CHAN_WIDTH_160; 3623 else 3624 he_chandef.width = NL80211_CHAN_WIDTH_80; 3625 break; 3626 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3627 if (support_320) 3628 he_chandef.width = NL80211_CHAN_WIDTH_320; 3629 else if (support_160) 3630 he_chandef.width = NL80211_CHAN_WIDTH_160; 3631 else 3632 he_chandef.width = NL80211_CHAN_WIDTH_80; 3633 break; 3634 } 3635 3636 he_chandef.center_freq1 = 3637 ieee80211_channel_to_frequency(eht_oper->ccfs, 3638 NL80211_BAND_6GHZ); 3639 } 3640 3641 if (!cfg80211_chandef_valid(&he_chandef)) { 3642 sdata_info(sdata, 3643 "HE 6GHz operation resulted in invalid chandef: %d MHz/%d/%d MHz/%d MHz\n", 3644 he_chandef.chan ? he_chandef.chan->center_freq : 0, 3645 he_chandef.width, 3646 he_chandef.center_freq1, 3647 he_chandef.center_freq2); 3648 return false; 3649 } 3650 3651 *chandef = he_chandef; 3652 3653 return true; 3654 } 3655 3656 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3657 struct cfg80211_chan_def *chandef) 3658 { 3659 u32 oper_freq; 3660 3661 if (!oper) 3662 return false; 3663 3664 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3665 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3666 chandef->width = NL80211_CHAN_WIDTH_1; 3667 break; 3668 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3669 chandef->width = NL80211_CHAN_WIDTH_2; 3670 break; 3671 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3672 chandef->width = NL80211_CHAN_WIDTH_4; 3673 break; 3674 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3675 chandef->width = NL80211_CHAN_WIDTH_8; 3676 break; 3677 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3678 chandef->width = NL80211_CHAN_WIDTH_16; 3679 break; 3680 default: 3681 return false; 3682 } 3683 3684 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3685 NL80211_BAND_S1GHZ); 3686 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3687 chandef->freq1_offset = oper_freq % 1000; 3688 3689 return true; 3690 } 3691 3692 int ieee80211_parse_bitrates(struct cfg80211_chan_def *chandef, 3693 const struct ieee80211_supported_band *sband, 3694 const u8 *srates, int srates_len, u32 *rates) 3695 { 3696 u32 rate_flags = ieee80211_chandef_rate_flags(chandef); 3697 int shift = ieee80211_chandef_get_shift(chandef); 3698 struct ieee80211_rate *br; 3699 int brate, rate, i, j, count = 0; 3700 3701 *rates = 0; 3702 3703 for (i = 0; i < srates_len; i++) { 3704 rate = srates[i] & 0x7f; 3705 3706 for (j = 0; j < sband->n_bitrates; j++) { 3707 br = &sband->bitrates[j]; 3708 if ((rate_flags & br->flags) != rate_flags) 3709 continue; 3710 3711 brate = DIV_ROUND_UP(br->bitrate, (1 << shift) * 5); 3712 if (brate == rate) { 3713 *rates |= BIT(j); 3714 count++; 3715 break; 3716 } 3717 } 3718 } 3719 return count; 3720 } 3721 3722 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata, 3723 struct sk_buff *skb, bool need_basic, 3724 enum nl80211_band band) 3725 { 3726 struct ieee80211_local *local = sdata->local; 3727 struct ieee80211_supported_band *sband; 3728 int rate, shift; 3729 u8 i, rates, *pos; 3730 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3731 u32 rate_flags; 3732 3733 shift = ieee80211_vif_get_shift(&sdata->vif); 3734 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3735 sband = local->hw.wiphy->bands[band]; 3736 rates = 0; 3737 for (i = 0; i < sband->n_bitrates; i++) { 3738 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3739 continue; 3740 rates++; 3741 } 3742 if (rates > 8) 3743 rates = 8; 3744 3745 if (skb_tailroom(skb) < rates + 2) 3746 return -ENOMEM; 3747 3748 pos = skb_put(skb, rates + 2); 3749 *pos++ = WLAN_EID_SUPP_RATES; 3750 *pos++ = rates; 3751 for (i = 0; i < rates; i++) { 3752 u8 basic = 0; 3753 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3754 continue; 3755 3756 if (need_basic && basic_rates & BIT(i)) 3757 basic = 0x80; 3758 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3759 5 * (1 << shift)); 3760 *pos++ = basic | (u8) rate; 3761 } 3762 3763 return 0; 3764 } 3765 3766 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata, 3767 struct sk_buff *skb, bool need_basic, 3768 enum nl80211_band band) 3769 { 3770 struct ieee80211_local *local = sdata->local; 3771 struct ieee80211_supported_band *sband; 3772 int rate, shift; 3773 u8 i, exrates, *pos; 3774 u32 basic_rates = sdata->vif.bss_conf.basic_rates; 3775 u32 rate_flags; 3776 3777 rate_flags = ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chandef); 3778 shift = ieee80211_vif_get_shift(&sdata->vif); 3779 3780 sband = local->hw.wiphy->bands[band]; 3781 exrates = 0; 3782 for (i = 0; i < sband->n_bitrates; i++) { 3783 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3784 continue; 3785 exrates++; 3786 } 3787 3788 if (exrates > 8) 3789 exrates -= 8; 3790 else 3791 exrates = 0; 3792 3793 if (skb_tailroom(skb) < exrates + 2) 3794 return -ENOMEM; 3795 3796 if (exrates) { 3797 pos = skb_put(skb, exrates + 2); 3798 *pos++ = WLAN_EID_EXT_SUPP_RATES; 3799 *pos++ = exrates; 3800 for (i = 8; i < sband->n_bitrates; i++) { 3801 u8 basic = 0; 3802 if ((rate_flags & sband->bitrates[i].flags) 3803 != rate_flags) 3804 continue; 3805 if (need_basic && basic_rates & BIT(i)) 3806 basic = 0x80; 3807 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 3808 5 * (1 << shift)); 3809 *pos++ = basic | (u8) rate; 3810 } 3811 } 3812 return 0; 3813 } 3814 3815 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3816 { 3817 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3818 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 3819 3820 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) { 3821 /* non-managed type inferfaces */ 3822 return 0; 3823 } 3824 return -ewma_beacon_signal_read(&ifmgd->ave_beacon_signal); 3825 } 3826 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3827 3828 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3829 { 3830 if (!mcs) 3831 return 1; 3832 3833 /* TODO: consider rx_highest */ 3834 3835 if (mcs->rx_mask[3]) 3836 return 4; 3837 if (mcs->rx_mask[2]) 3838 return 3; 3839 if (mcs->rx_mask[1]) 3840 return 2; 3841 return 1; 3842 } 3843 3844 /** 3845 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3846 * @local: mac80211 hw info struct 3847 * @status: RX status 3848 * @mpdu_len: total MPDU length (including FCS) 3849 * @mpdu_offset: offset into MPDU to calculate timestamp at 3850 * 3851 * This function calculates the RX timestamp at the given MPDU offset, taking 3852 * into account what the RX timestamp was. An offset of 0 will just normalize 3853 * the timestamp to TSF at beginning of MPDU reception. 3854 */ 3855 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3856 struct ieee80211_rx_status *status, 3857 unsigned int mpdu_len, 3858 unsigned int mpdu_offset) 3859 { 3860 u64 ts = status->mactime; 3861 struct rate_info ri; 3862 u16 rate; 3863 u8 n_ltf; 3864 3865 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3866 return 0; 3867 3868 memset(&ri, 0, sizeof(ri)); 3869 3870 ri.bw = status->bw; 3871 3872 /* Fill cfg80211 rate info */ 3873 switch (status->encoding) { 3874 case RX_ENC_HE: 3875 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3876 ri.mcs = status->rate_idx; 3877 ri.nss = status->nss; 3878 ri.he_ru_alloc = status->he_ru; 3879 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3880 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3881 3882 /* 3883 * See P802.11ax_D6.0, section 27.3.4 for 3884 * VHT PPDU format. 3885 */ 3886 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3887 mpdu_offset += 2; 3888 ts += 36; 3889 3890 /* 3891 * TODO: 3892 * For HE MU PPDU, add the HE-SIG-B. 3893 * For HE ER PPDU, add 8us for the HE-SIG-A. 3894 * For HE TB PPDU, add 4us for the HE-STF. 3895 * Add the HE-LTF durations - variable. 3896 */ 3897 } 3898 3899 break; 3900 case RX_ENC_HT: 3901 ri.mcs = status->rate_idx; 3902 ri.flags |= RATE_INFO_FLAGS_MCS; 3903 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3904 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3905 3906 /* 3907 * See P802.11REVmd_D3.0, section 19.3.2 for 3908 * HT PPDU format. 3909 */ 3910 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3911 mpdu_offset += 2; 3912 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3913 ts += 24; 3914 else 3915 ts += 32; 3916 3917 /* 3918 * Add Data HT-LTFs per streams 3919 * TODO: add Extension HT-LTFs, 4us per LTF 3920 */ 3921 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3922 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3923 ts += n_ltf * 4; 3924 } 3925 3926 break; 3927 case RX_ENC_VHT: 3928 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3929 ri.mcs = status->rate_idx; 3930 ri.nss = status->nss; 3931 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3932 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3933 3934 /* 3935 * See P802.11REVmd_D3.0, section 21.3.2 for 3936 * VHT PPDU format. 3937 */ 3938 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3939 mpdu_offset += 2; 3940 ts += 36; 3941 3942 /* 3943 * Add VHT-LTFs per streams 3944 */ 3945 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3946 ri.nss + 1 : ri.nss; 3947 ts += 4 * n_ltf; 3948 } 3949 3950 break; 3951 default: 3952 WARN_ON(1); 3953 fallthrough; 3954 case RX_ENC_LEGACY: { 3955 struct ieee80211_supported_band *sband; 3956 int shift = 0; 3957 int bitrate; 3958 3959 switch (status->bw) { 3960 case RATE_INFO_BW_10: 3961 shift = 1; 3962 break; 3963 case RATE_INFO_BW_5: 3964 shift = 2; 3965 break; 3966 } 3967 3968 sband = local->hw.wiphy->bands[status->band]; 3969 bitrate = sband->bitrates[status->rate_idx].bitrate; 3970 ri.legacy = DIV_ROUND_UP(bitrate, (1 << shift)); 3971 3972 if (status->flag & RX_FLAG_MACTIME_PLCP_START) { 3973 if (status->band == NL80211_BAND_5GHZ) { 3974 ts += 20 << shift; 3975 mpdu_offset += 2; 3976 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3977 ts += 96; 3978 } else { 3979 ts += 192; 3980 } 3981 } 3982 break; 3983 } 3984 } 3985 3986 rate = cfg80211_calculate_bitrate(&ri); 3987 if (WARN_ONCE(!rate, 3988 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3989 (unsigned long long)status->flag, status->rate_idx, 3990 status->nss)) 3991 return 0; 3992 3993 /* rewind from end of MPDU */ 3994 if (status->flag & RX_FLAG_MACTIME_END) 3995 ts -= mpdu_len * 8 * 10 / rate; 3996 3997 ts += mpdu_offset * 8 * 10 / rate; 3998 3999 return ts; 4000 } 4001 4002 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local) 4003 { 4004 struct ieee80211_sub_if_data *sdata; 4005 struct cfg80211_chan_def chandef; 4006 4007 /* for interface list, to avoid linking iflist_mtx and chanctx_mtx */ 4008 lockdep_assert_wiphy(local->hw.wiphy); 4009 4010 mutex_lock(&local->mtx); 4011 list_for_each_entry(sdata, &local->interfaces, list) { 4012 /* it might be waiting for the local->mtx, but then 4013 * by the time it gets it, sdata->wdev.cac_started 4014 * will no longer be true 4015 */ 4016 cancel_delayed_work(&sdata->dfs_cac_timer_work); 4017 4018 if (sdata->wdev.cac_started) { 4019 chandef = sdata->vif.bss_conf.chandef; 4020 ieee80211_vif_release_channel(sdata); 4021 cfg80211_cac_event(sdata->dev, 4022 &chandef, 4023 NL80211_RADAR_CAC_ABORTED, 4024 GFP_KERNEL); 4025 } 4026 } 4027 mutex_unlock(&local->mtx); 4028 } 4029 4030 void ieee80211_dfs_radar_detected_work(struct work_struct *work) 4031 { 4032 struct ieee80211_local *local = 4033 container_of(work, struct ieee80211_local, radar_detected_work); 4034 struct cfg80211_chan_def chandef = local->hw.conf.chandef; 4035 struct ieee80211_chanctx *ctx; 4036 int num_chanctx = 0; 4037 4038 mutex_lock(&local->chanctx_mtx); 4039 list_for_each_entry(ctx, &local->chanctx_list, list) { 4040 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 4041 continue; 4042 4043 num_chanctx++; 4044 chandef = ctx->conf.def; 4045 } 4046 mutex_unlock(&local->chanctx_mtx); 4047 4048 wiphy_lock(local->hw.wiphy); 4049 ieee80211_dfs_cac_cancel(local); 4050 wiphy_unlock(local->hw.wiphy); 4051 4052 if (num_chanctx > 1) 4053 /* XXX: multi-channel is not supported yet */ 4054 WARN_ON(1); 4055 else 4056 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 4057 } 4058 4059 void ieee80211_radar_detected(struct ieee80211_hw *hw) 4060 { 4061 struct ieee80211_local *local = hw_to_local(hw); 4062 4063 trace_api_radar_detected(local); 4064 4065 schedule_work(&local->radar_detected_work); 4066 } 4067 EXPORT_SYMBOL(ieee80211_radar_detected); 4068 4069 u32 ieee80211_chandef_downgrade(struct cfg80211_chan_def *c) 4070 { 4071 u32 ret; 4072 int tmp; 4073 4074 switch (c->width) { 4075 case NL80211_CHAN_WIDTH_20: 4076 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4077 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4078 break; 4079 case NL80211_CHAN_WIDTH_40: 4080 c->width = NL80211_CHAN_WIDTH_20; 4081 c->center_freq1 = c->chan->center_freq; 4082 ret = IEEE80211_STA_DISABLE_40MHZ | 4083 IEEE80211_STA_DISABLE_VHT; 4084 break; 4085 case NL80211_CHAN_WIDTH_80: 4086 tmp = (30 + c->chan->center_freq - c->center_freq1)/20; 4087 /* n_P40 */ 4088 tmp /= 2; 4089 /* freq_P40 */ 4090 c->center_freq1 = c->center_freq1 - 20 + 40 * tmp; 4091 c->width = NL80211_CHAN_WIDTH_40; 4092 ret = IEEE80211_STA_DISABLE_VHT; 4093 break; 4094 case NL80211_CHAN_WIDTH_80P80: 4095 c->center_freq2 = 0; 4096 c->width = NL80211_CHAN_WIDTH_80; 4097 ret = IEEE80211_STA_DISABLE_80P80MHZ | 4098 IEEE80211_STA_DISABLE_160MHZ; 4099 break; 4100 case NL80211_CHAN_WIDTH_160: 4101 /* n_P20 */ 4102 tmp = (70 + c->chan->center_freq - c->center_freq1)/20; 4103 /* n_P80 */ 4104 tmp /= 4; 4105 c->center_freq1 = c->center_freq1 - 40 + 80 * tmp; 4106 c->width = NL80211_CHAN_WIDTH_80; 4107 ret = IEEE80211_STA_DISABLE_80P80MHZ | 4108 IEEE80211_STA_DISABLE_160MHZ; 4109 break; 4110 case NL80211_CHAN_WIDTH_320: 4111 /* n_P20 */ 4112 tmp = (150 + c->chan->center_freq - c->center_freq1) / 20; 4113 /* n_P160 */ 4114 tmp /= 80; 4115 c->center_freq1 = c->center_freq1 - 80 + 160 * tmp; 4116 c->width = NL80211_CHAN_WIDTH_160; 4117 ret = IEEE80211_STA_DISABLE_320MHZ; 4118 break; 4119 default: 4120 case NL80211_CHAN_WIDTH_20_NOHT: 4121 WARN_ON_ONCE(1); 4122 c->width = NL80211_CHAN_WIDTH_20_NOHT; 4123 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4124 break; 4125 case NL80211_CHAN_WIDTH_1: 4126 case NL80211_CHAN_WIDTH_2: 4127 case NL80211_CHAN_WIDTH_4: 4128 case NL80211_CHAN_WIDTH_8: 4129 case NL80211_CHAN_WIDTH_16: 4130 case NL80211_CHAN_WIDTH_5: 4131 case NL80211_CHAN_WIDTH_10: 4132 WARN_ON_ONCE(1); 4133 /* keep c->width */ 4134 ret = IEEE80211_STA_DISABLE_HT | IEEE80211_STA_DISABLE_VHT; 4135 break; 4136 } 4137 4138 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 4139 4140 return ret; 4141 } 4142 4143 /* 4144 * Returns true if smps_mode_new is strictly more restrictive than 4145 * smps_mode_old. 4146 */ 4147 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 4148 enum ieee80211_smps_mode smps_mode_new) 4149 { 4150 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 4151 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 4152 return false; 4153 4154 switch (smps_mode_old) { 4155 case IEEE80211_SMPS_STATIC: 4156 return false; 4157 case IEEE80211_SMPS_DYNAMIC: 4158 return smps_mode_new == IEEE80211_SMPS_STATIC; 4159 case IEEE80211_SMPS_OFF: 4160 return smps_mode_new != IEEE80211_SMPS_OFF; 4161 default: 4162 WARN_ON(1); 4163 } 4164 4165 return false; 4166 } 4167 4168 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 4169 struct cfg80211_csa_settings *csa_settings) 4170 { 4171 struct sk_buff *skb; 4172 struct ieee80211_mgmt *mgmt; 4173 struct ieee80211_local *local = sdata->local; 4174 int freq; 4175 int hdr_len = offsetofend(struct ieee80211_mgmt, 4176 u.action.u.chan_switch); 4177 u8 *pos; 4178 4179 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 4180 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 4181 return -EOPNOTSUPP; 4182 4183 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 4184 5 + /* channel switch announcement element */ 4185 3 + /* secondary channel offset element */ 4186 5 + /* wide bandwidth channel switch announcement */ 4187 8); /* mesh channel switch parameters element */ 4188 if (!skb) 4189 return -ENOMEM; 4190 4191 skb_reserve(skb, local->tx_headroom); 4192 mgmt = skb_put_zero(skb, hdr_len); 4193 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 4194 IEEE80211_STYPE_ACTION); 4195 4196 eth_broadcast_addr(mgmt->da); 4197 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 4198 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4199 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 4200 } else { 4201 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 4202 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 4203 } 4204 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 4205 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 4206 pos = skb_put(skb, 5); 4207 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 4208 *pos++ = 3; /* IE length */ 4209 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 4210 freq = csa_settings->chandef.chan->center_freq; 4211 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 4212 *pos++ = csa_settings->count; /* count */ 4213 4214 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 4215 enum nl80211_channel_type ch_type; 4216 4217 skb_put(skb, 3); 4218 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 4219 *pos++ = 1; /* IE length */ 4220 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 4221 if (ch_type == NL80211_CHAN_HT40PLUS) 4222 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 4223 else 4224 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 4225 } 4226 4227 if (ieee80211_vif_is_mesh(&sdata->vif)) { 4228 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 4229 4230 skb_put(skb, 8); 4231 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 4232 *pos++ = 6; /* IE length */ 4233 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 4234 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 4235 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 4236 *pos++ |= csa_settings->block_tx ? 4237 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 4238 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 4239 pos += 2; 4240 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 4241 pos += 2; 4242 } 4243 4244 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 4245 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 4246 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 4247 skb_put(skb, 5); 4248 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 4249 } 4250 4251 ieee80211_tx_skb(sdata, skb); 4252 return 0; 4253 } 4254 4255 bool ieee80211_cs_valid(const struct ieee80211_cipher_scheme *cs) 4256 { 4257 return !(cs == NULL || cs->cipher == 0 || 4258 cs->hdr_len < cs->pn_len + cs->pn_off || 4259 cs->hdr_len <= cs->key_idx_off || 4260 cs->key_idx_shift > 7 || 4261 cs->key_idx_mask == 0); 4262 } 4263 4264 bool ieee80211_cs_list_valid(const struct ieee80211_cipher_scheme *cs, int n) 4265 { 4266 int i; 4267 4268 /* Ensure we have enough iftype bitmap space for all iftype values */ 4269 WARN_ON((NUM_NL80211_IFTYPES / 8 + 1) > sizeof(cs[0].iftype)); 4270 4271 for (i = 0; i < n; i++) 4272 if (!ieee80211_cs_valid(&cs[i])) 4273 return false; 4274 4275 return true; 4276 } 4277 4278 const struct ieee80211_cipher_scheme * 4279 ieee80211_cs_get(struct ieee80211_local *local, u32 cipher, 4280 enum nl80211_iftype iftype) 4281 { 4282 const struct ieee80211_cipher_scheme *l = local->hw.cipher_schemes; 4283 int n = local->hw.n_cipher_schemes; 4284 int i; 4285 const struct ieee80211_cipher_scheme *cs = NULL; 4286 4287 for (i = 0; i < n; i++) { 4288 if (l[i].cipher == cipher) { 4289 cs = &l[i]; 4290 break; 4291 } 4292 } 4293 4294 if (!cs || !(cs->iftype & BIT(iftype))) 4295 return NULL; 4296 4297 return cs; 4298 } 4299 4300 int ieee80211_cs_headroom(struct ieee80211_local *local, 4301 struct cfg80211_crypto_settings *crypto, 4302 enum nl80211_iftype iftype) 4303 { 4304 const struct ieee80211_cipher_scheme *cs; 4305 int headroom = IEEE80211_ENCRYPT_HEADROOM; 4306 int i; 4307 4308 for (i = 0; i < crypto->n_ciphers_pairwise; i++) { 4309 cs = ieee80211_cs_get(local, crypto->ciphers_pairwise[i], 4310 iftype); 4311 4312 if (cs && headroom < cs->hdr_len) 4313 headroom = cs->hdr_len; 4314 } 4315 4316 cs = ieee80211_cs_get(local, crypto->cipher_group, iftype); 4317 if (cs && headroom < cs->hdr_len) 4318 headroom = cs->hdr_len; 4319 4320 return headroom; 4321 } 4322 4323 static bool 4324 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 4325 { 4326 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 4327 int skip; 4328 4329 if (end > 0) 4330 return false; 4331 4332 /* One shot NOA */ 4333 if (data->count[i] == 1) 4334 return false; 4335 4336 if (data->desc[i].interval == 0) 4337 return false; 4338 4339 /* End time is in the past, check for repetitions */ 4340 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 4341 if (data->count[i] < 255) { 4342 if (data->count[i] <= skip) { 4343 data->count[i] = 0; 4344 return false; 4345 } 4346 4347 data->count[i] -= skip; 4348 } 4349 4350 data->desc[i].start += skip * data->desc[i].interval; 4351 4352 return true; 4353 } 4354 4355 static bool 4356 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 4357 s32 *offset) 4358 { 4359 bool ret = false; 4360 int i; 4361 4362 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4363 s32 cur; 4364 4365 if (!data->count[i]) 4366 continue; 4367 4368 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 4369 ret = true; 4370 4371 cur = data->desc[i].start - tsf; 4372 if (cur > *offset) 4373 continue; 4374 4375 cur = data->desc[i].start + data->desc[i].duration - tsf; 4376 if (cur > *offset) 4377 *offset = cur; 4378 } 4379 4380 return ret; 4381 } 4382 4383 static u32 4384 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 4385 { 4386 s32 offset = 0; 4387 int tries = 0; 4388 /* 4389 * arbitrary limit, used to avoid infinite loops when combined NoA 4390 * descriptors cover the full time period. 4391 */ 4392 int max_tries = 5; 4393 4394 ieee80211_extend_absent_time(data, tsf, &offset); 4395 do { 4396 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 4397 break; 4398 4399 tries++; 4400 } while (tries < max_tries); 4401 4402 return offset; 4403 } 4404 4405 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 4406 { 4407 u32 next_offset = BIT(31) - 1; 4408 int i; 4409 4410 data->absent = 0; 4411 data->has_next_tsf = false; 4412 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4413 s32 start; 4414 4415 if (!data->count[i]) 4416 continue; 4417 4418 ieee80211_extend_noa_desc(data, tsf, i); 4419 start = data->desc[i].start - tsf; 4420 if (start <= 0) 4421 data->absent |= BIT(i); 4422 4423 if (next_offset > start) 4424 next_offset = start; 4425 4426 data->has_next_tsf = true; 4427 } 4428 4429 if (data->absent) 4430 next_offset = ieee80211_get_noa_absent_time(data, tsf); 4431 4432 data->next_tsf = tsf + next_offset; 4433 } 4434 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 4435 4436 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 4437 struct ieee80211_noa_data *data, u32 tsf) 4438 { 4439 int ret = 0; 4440 int i; 4441 4442 memset(data, 0, sizeof(*data)); 4443 4444 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 4445 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 4446 4447 if (!desc->count || !desc->duration) 4448 continue; 4449 4450 data->count[i] = desc->count; 4451 data->desc[i].start = le32_to_cpu(desc->start_time); 4452 data->desc[i].duration = le32_to_cpu(desc->duration); 4453 data->desc[i].interval = le32_to_cpu(desc->interval); 4454 4455 if (data->count[i] > 1 && 4456 data->desc[i].interval < data->desc[i].duration) 4457 continue; 4458 4459 ieee80211_extend_noa_desc(data, tsf, i); 4460 ret++; 4461 } 4462 4463 if (ret) 4464 ieee80211_update_p2p_noa(data, tsf); 4465 4466 return ret; 4467 } 4468 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 4469 4470 void ieee80211_recalc_dtim(struct ieee80211_local *local, 4471 struct ieee80211_sub_if_data *sdata) 4472 { 4473 u64 tsf = drv_get_tsf(local, sdata); 4474 u64 dtim_count = 0; 4475 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 4476 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 4477 struct ps_data *ps; 4478 u8 bcns_from_dtim; 4479 4480 if (tsf == -1ULL || !beacon_int || !dtim_period) 4481 return; 4482 4483 if (sdata->vif.type == NL80211_IFTYPE_AP || 4484 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 4485 if (!sdata->bss) 4486 return; 4487 4488 ps = &sdata->bss->ps; 4489 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 4490 ps = &sdata->u.mesh.ps; 4491 } else { 4492 return; 4493 } 4494 4495 /* 4496 * actually finds last dtim_count, mac80211 will update in 4497 * __beacon_add_tim(). 4498 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 4499 */ 4500 do_div(tsf, beacon_int); 4501 bcns_from_dtim = do_div(tsf, dtim_period); 4502 /* just had a DTIM */ 4503 if (!bcns_from_dtim) 4504 dtim_count = 0; 4505 else 4506 dtim_count = dtim_period - bcns_from_dtim; 4507 4508 ps->dtim_count = dtim_count; 4509 } 4510 4511 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 4512 struct ieee80211_chanctx *ctx) 4513 { 4514 struct ieee80211_sub_if_data *sdata; 4515 u8 radar_detect = 0; 4516 4517 lockdep_assert_held(&local->chanctx_mtx); 4518 4519 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 4520 return 0; 4521 4522 list_for_each_entry(sdata, &ctx->reserved_vifs, reserved_chanctx_list) 4523 if (sdata->reserved_radar_required) 4524 radar_detect |= BIT(sdata->reserved_chandef.width); 4525 4526 /* 4527 * An in-place reservation context should not have any assigned vifs 4528 * until it replaces the other context. 4529 */ 4530 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4531 !list_empty(&ctx->assigned_vifs)); 4532 4533 list_for_each_entry(sdata, &ctx->assigned_vifs, assigned_chanctx_list) 4534 if (sdata->radar_required) 4535 radar_detect |= BIT(sdata->vif.bss_conf.chandef.width); 4536 4537 return radar_detect; 4538 } 4539 4540 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4541 const struct cfg80211_chan_def *chandef, 4542 enum ieee80211_chanctx_mode chanmode, 4543 u8 radar_detect) 4544 { 4545 struct ieee80211_local *local = sdata->local; 4546 struct ieee80211_sub_if_data *sdata_iter; 4547 enum nl80211_iftype iftype = sdata->wdev.iftype; 4548 struct ieee80211_chanctx *ctx; 4549 int total = 1; 4550 struct iface_combination_params params = { 4551 .radar_detect = radar_detect, 4552 }; 4553 4554 lockdep_assert_held(&local->chanctx_mtx); 4555 4556 if (WARN_ON(hweight32(radar_detect) > 1)) 4557 return -EINVAL; 4558 4559 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4560 !chandef->chan)) 4561 return -EINVAL; 4562 4563 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4564 return -EINVAL; 4565 4566 if (sdata->vif.type == NL80211_IFTYPE_AP || 4567 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4568 /* 4569 * always passing this is harmless, since it'll be the 4570 * same value that cfg80211 finds if it finds the same 4571 * interface ... and that's always allowed 4572 */ 4573 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4574 } 4575 4576 /* Always allow software iftypes */ 4577 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4578 if (radar_detect) 4579 return -EINVAL; 4580 return 0; 4581 } 4582 4583 if (chandef) 4584 params.num_different_channels = 1; 4585 4586 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4587 params.iftype_num[iftype] = 1; 4588 4589 list_for_each_entry(ctx, &local->chanctx_list, list) { 4590 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4591 continue; 4592 params.radar_detect |= 4593 ieee80211_chanctx_radar_detect(local, ctx); 4594 if (ctx->mode == IEEE80211_CHANCTX_EXCLUSIVE) { 4595 params.num_different_channels++; 4596 continue; 4597 } 4598 if (chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4599 cfg80211_chandef_compatible(chandef, 4600 &ctx->conf.def)) 4601 continue; 4602 params.num_different_channels++; 4603 } 4604 4605 list_for_each_entry_rcu(sdata_iter, &local->interfaces, list) { 4606 struct wireless_dev *wdev_iter; 4607 4608 wdev_iter = &sdata_iter->wdev; 4609 4610 if (sdata_iter == sdata || 4611 !ieee80211_sdata_running(sdata_iter) || 4612 cfg80211_iftype_allowed(local->hw.wiphy, 4613 wdev_iter->iftype, 0, 1)) 4614 continue; 4615 4616 params.iftype_num[wdev_iter->iftype]++; 4617 total++; 4618 } 4619 4620 if (total == 1 && !params.radar_detect) 4621 return 0; 4622 4623 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4624 } 4625 4626 static void 4627 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4628 void *data) 4629 { 4630 u32 *max_num_different_channels = data; 4631 4632 *max_num_different_channels = max(*max_num_different_channels, 4633 c->num_different_channels); 4634 } 4635 4636 int ieee80211_max_num_channels(struct ieee80211_local *local) 4637 { 4638 struct ieee80211_sub_if_data *sdata; 4639 struct ieee80211_chanctx *ctx; 4640 u32 max_num_different_channels = 1; 4641 int err; 4642 struct iface_combination_params params = {0}; 4643 4644 lockdep_assert_held(&local->chanctx_mtx); 4645 4646 list_for_each_entry(ctx, &local->chanctx_list, list) { 4647 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4648 continue; 4649 4650 params.num_different_channels++; 4651 4652 params.radar_detect |= 4653 ieee80211_chanctx_radar_detect(local, ctx); 4654 } 4655 4656 list_for_each_entry_rcu(sdata, &local->interfaces, list) 4657 params.iftype_num[sdata->wdev.iftype]++; 4658 4659 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4660 ieee80211_iter_max_chans, 4661 &max_num_different_channels); 4662 if (err < 0) 4663 return err; 4664 4665 return max_num_different_channels; 4666 } 4667 4668 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4669 struct ieee80211_sta_s1g_cap *caps, 4670 struct sk_buff *skb) 4671 { 4672 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4673 struct ieee80211_s1g_cap s1g_capab; 4674 u8 *pos; 4675 int i; 4676 4677 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4678 return; 4679 4680 if (!caps->s1g) 4681 return; 4682 4683 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4684 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4685 4686 /* override the capability info */ 4687 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4688 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4689 4690 s1g_capab.capab_info[i] &= ~mask; 4691 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4692 } 4693 4694 /* then MCS and NSS set */ 4695 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4696 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4697 4698 s1g_capab.supp_mcs_nss[i] &= ~mask; 4699 s1g_capab.supp_mcs_nss[i] |= 4700 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4701 } 4702 4703 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4704 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4705 *pos++ = sizeof(s1g_capab); 4706 4707 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4708 } 4709 4710 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4711 struct sk_buff *skb) 4712 { 4713 u8 *pos = skb_put(skb, 3); 4714 4715 *pos++ = WLAN_EID_AID_REQUEST; 4716 *pos++ = 1; 4717 *pos++ = 0; 4718 } 4719 4720 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4721 { 4722 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4723 *buf++ = 7; /* len */ 4724 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4725 *buf++ = 0x50; 4726 *buf++ = 0xf2; 4727 *buf++ = 2; /* WME */ 4728 *buf++ = 0; /* WME info */ 4729 *buf++ = 1; /* WME ver */ 4730 *buf++ = qosinfo; /* U-APSD no in use */ 4731 4732 return buf; 4733 } 4734 4735 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4736 unsigned long *frame_cnt, 4737 unsigned long *byte_cnt) 4738 { 4739 struct txq_info *txqi = to_txq_info(txq); 4740 u32 frag_cnt = 0, frag_bytes = 0; 4741 struct sk_buff *skb; 4742 4743 skb_queue_walk(&txqi->frags, skb) { 4744 frag_cnt++; 4745 frag_bytes += skb->len; 4746 } 4747 4748 if (frame_cnt) 4749 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4750 4751 if (byte_cnt) 4752 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4753 } 4754 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4755 4756 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4757 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4758 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4759 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4760 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4761 }; 4762 4763 u16 ieee80211_encode_usf(int listen_interval) 4764 { 4765 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4766 u16 ui, usf = 0; 4767 4768 /* find greatest USF */ 4769 while (usf < IEEE80211_MAX_USF) { 4770 if (listen_interval % listen_int_usf[usf + 1]) 4771 break; 4772 usf += 1; 4773 } 4774 ui = listen_interval / listen_int_usf[usf]; 4775 4776 /* error if there is a remainder. Should've been checked by user */ 4777 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4778 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4779 FIELD_PREP(LISTEN_INT_UI, ui); 4780 4781 return (u16) listen_interval; 4782 } 4783 4784 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata, u8 iftype) 4785 { 4786 const struct ieee80211_sta_he_cap *he_cap; 4787 const struct ieee80211_sta_eht_cap *eht_cap; 4788 struct ieee80211_supported_band *sband; 4789 u8 n; 4790 4791 sband = ieee80211_get_sband(sdata); 4792 if (!sband) 4793 return 0; 4794 4795 he_cap = ieee80211_get_he_iftype_cap(sband, iftype); 4796 eht_cap = ieee80211_get_eht_iftype_cap(sband, iftype); 4797 if (!he_cap || !eht_cap) 4798 return 0; 4799 4800 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4801 &eht_cap->eht_cap_elem); 4802 return 2 + 1 + 4803 sizeof(he_cap->he_cap_elem) + n + 4804 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4805 eht_cap->eht_cap_elem.phy_cap_info); 4806 return 0; 4807 } 4808 4809 u8 *ieee80211_ie_build_eht_cap(u8 *pos, 4810 const struct ieee80211_sta_he_cap *he_cap, 4811 const struct ieee80211_sta_eht_cap *eht_cap, 4812 u8 *end) 4813 { 4814 u8 mcs_nss_len, ppet_len; 4815 u8 ie_len; 4816 u8 *orig_pos = pos; 4817 4818 /* Make sure we have place for the IE */ 4819 if (!he_cap || !eht_cap) 4820 return orig_pos; 4821 4822 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4823 &eht_cap->eht_cap_elem); 4824 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4825 eht_cap->eht_cap_elem.phy_cap_info); 4826 4827 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4828 if ((end - pos) < ie_len) 4829 return orig_pos; 4830 4831 *pos++ = WLAN_EID_EXTENSION; 4832 *pos++ = ie_len - 2; 4833 *pos++ = WLAN_EID_EXT_EHT_CAPABILITY; 4834 4835 /* Fixed data */ 4836 memcpy(pos, &eht_cap->eht_cap_elem, sizeof(eht_cap->eht_cap_elem)); 4837 pos += sizeof(eht_cap->eht_cap_elem); 4838 4839 memcpy(pos, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4840 pos += mcs_nss_len; 4841 4842 if (ppet_len) { 4843 memcpy(pos, &eht_cap->eht_ppe_thres, ppet_len); 4844 pos += ppet_len; 4845 } 4846 4847 return pos; 4848 } 4849