1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2024 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 trace_wake_queue(local, queue, reason); 441 442 if (WARN_ON(queue >= hw->queues)) 443 return; 444 445 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 446 return; 447 448 if (!refcounted) { 449 local->q_stop_reasons[queue][reason] = 0; 450 } else { 451 local->q_stop_reasons[queue][reason]--; 452 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 453 local->q_stop_reasons[queue][reason] = 0; 454 } 455 456 if (local->q_stop_reasons[queue][reason] == 0) 457 __clear_bit(reason, &local->queue_stop_reasons[queue]); 458 459 if (local->queue_stop_reasons[queue] != 0) 460 /* someone still has this queue stopped */ 461 return; 462 463 if (!skb_queue_empty(&local->pending[queue])) 464 tasklet_schedule(&local->tx_pending_tasklet); 465 466 /* 467 * Calling _ieee80211_wake_txqs here can be a problem because it may 468 * release queue_stop_reason_lock which has been taken by 469 * __ieee80211_wake_queue's caller. It is certainly not very nice to 470 * release someone's lock, but it is fine because all the callers of 471 * __ieee80211_wake_queue call it right before releasing the lock. 472 */ 473 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 474 tasklet_schedule(&local->wake_txqs_tasklet); 475 else 476 _ieee80211_wake_txqs(local, flags); 477 } 478 479 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 480 enum queue_stop_reason reason, 481 bool refcounted) 482 { 483 struct ieee80211_local *local = hw_to_local(hw); 484 unsigned long flags; 485 486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 487 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 489 } 490 491 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 492 { 493 ieee80211_wake_queue_by_reason(hw, queue, 494 IEEE80211_QUEUE_STOP_REASON_DRIVER, 495 false); 496 } 497 EXPORT_SYMBOL(ieee80211_wake_queue); 498 499 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 500 enum queue_stop_reason reason, 501 bool refcounted) 502 { 503 struct ieee80211_local *local = hw_to_local(hw); 504 505 trace_stop_queue(local, queue, reason); 506 507 if (WARN_ON(queue >= hw->queues)) 508 return; 509 510 if (!refcounted) 511 local->q_stop_reasons[queue][reason] = 1; 512 else 513 local->q_stop_reasons[queue][reason]++; 514 515 set_bit(reason, &local->queue_stop_reasons[queue]); 516 } 517 518 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 519 enum queue_stop_reason reason, 520 bool refcounted) 521 { 522 struct ieee80211_local *local = hw_to_local(hw); 523 unsigned long flags; 524 525 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 526 __ieee80211_stop_queue(hw, queue, reason, refcounted); 527 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 528 } 529 530 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 531 { 532 ieee80211_stop_queue_by_reason(hw, queue, 533 IEEE80211_QUEUE_STOP_REASON_DRIVER, 534 false); 535 } 536 EXPORT_SYMBOL(ieee80211_stop_queue); 537 538 void ieee80211_add_pending_skb(struct ieee80211_local *local, 539 struct sk_buff *skb) 540 { 541 struct ieee80211_hw *hw = &local->hw; 542 unsigned long flags; 543 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 544 int queue = info->hw_queue; 545 546 if (WARN_ON(!info->control.vif)) { 547 ieee80211_free_txskb(&local->hw, skb); 548 return; 549 } 550 551 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 552 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 553 false); 554 __skb_queue_tail(&local->pending[queue], skb); 555 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 556 false, &flags); 557 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 558 } 559 560 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 561 struct sk_buff_head *skbs) 562 { 563 struct ieee80211_hw *hw = &local->hw; 564 struct sk_buff *skb; 565 unsigned long flags; 566 int queue, i; 567 568 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 569 while ((skb = skb_dequeue(skbs))) { 570 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 571 572 if (WARN_ON(!info->control.vif)) { 573 ieee80211_free_txskb(&local->hw, skb); 574 continue; 575 } 576 577 queue = info->hw_queue; 578 579 __ieee80211_stop_queue(hw, queue, 580 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 581 false); 582 583 __skb_queue_tail(&local->pending[queue], skb); 584 } 585 586 for (i = 0; i < hw->queues; i++) 587 __ieee80211_wake_queue(hw, i, 588 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 589 false, &flags); 590 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 591 } 592 593 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 594 unsigned long queues, 595 enum queue_stop_reason reason, 596 bool refcounted) 597 { 598 struct ieee80211_local *local = hw_to_local(hw); 599 unsigned long flags; 600 int i; 601 602 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 603 604 for_each_set_bit(i, &queues, hw->queues) 605 __ieee80211_stop_queue(hw, i, reason, refcounted); 606 607 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 608 } 609 610 void ieee80211_stop_queues(struct ieee80211_hw *hw) 611 { 612 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 613 IEEE80211_QUEUE_STOP_REASON_DRIVER, 614 false); 615 } 616 EXPORT_SYMBOL(ieee80211_stop_queues); 617 618 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 619 { 620 struct ieee80211_local *local = hw_to_local(hw); 621 unsigned long flags; 622 int ret; 623 624 if (WARN_ON(queue >= hw->queues)) 625 return true; 626 627 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 628 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 629 &local->queue_stop_reasons[queue]); 630 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 631 return ret; 632 } 633 EXPORT_SYMBOL(ieee80211_queue_stopped); 634 635 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 636 unsigned long queues, 637 enum queue_stop_reason reason, 638 bool refcounted) 639 { 640 struct ieee80211_local *local = hw_to_local(hw); 641 unsigned long flags; 642 int i; 643 644 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 645 646 for_each_set_bit(i, &queues, hw->queues) 647 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 648 649 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 650 } 651 652 void ieee80211_wake_queues(struct ieee80211_hw *hw) 653 { 654 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 655 IEEE80211_QUEUE_STOP_REASON_DRIVER, 656 false); 657 } 658 EXPORT_SYMBOL(ieee80211_wake_queues); 659 660 static unsigned int 661 ieee80211_get_vif_queues(struct ieee80211_local *local, 662 struct ieee80211_sub_if_data *sdata) 663 { 664 unsigned int queues; 665 666 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 667 int ac; 668 669 queues = 0; 670 671 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 672 queues |= BIT(sdata->vif.hw_queue[ac]); 673 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 674 queues |= BIT(sdata->vif.cab_queue); 675 } else { 676 /* all queues */ 677 queues = BIT(local->hw.queues) - 1; 678 } 679 680 return queues; 681 } 682 683 void __ieee80211_flush_queues(struct ieee80211_local *local, 684 struct ieee80211_sub_if_data *sdata, 685 unsigned int queues, bool drop) 686 { 687 if (!local->ops->flush) 688 return; 689 690 /* 691 * If no queue was set, or if the HW doesn't support 692 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 693 */ 694 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 695 queues = ieee80211_get_vif_queues(local, sdata); 696 697 ieee80211_stop_queues_by_reason(&local->hw, queues, 698 IEEE80211_QUEUE_STOP_REASON_FLUSH, 699 false); 700 701 if (drop) { 702 struct sta_info *sta; 703 704 /* Purge the queues, so the frames on them won't be 705 * sent during __ieee80211_wake_queue() 706 */ 707 list_for_each_entry(sta, &local->sta_list, list) { 708 if (sdata != sta->sdata) 709 continue; 710 ieee80211_purge_sta_txqs(sta); 711 } 712 } 713 714 drv_flush(local, sdata, queues, drop); 715 716 ieee80211_wake_queues_by_reason(&local->hw, queues, 717 IEEE80211_QUEUE_STOP_REASON_FLUSH, 718 false); 719 } 720 721 void ieee80211_flush_queues(struct ieee80211_local *local, 722 struct ieee80211_sub_if_data *sdata, bool drop) 723 { 724 __ieee80211_flush_queues(local, sdata, 0, drop); 725 } 726 727 void ieee80211_stop_vif_queues(struct ieee80211_local *local, 728 struct ieee80211_sub_if_data *sdata, 729 enum queue_stop_reason reason) 730 { 731 ieee80211_stop_queues_by_reason(&local->hw, 732 ieee80211_get_vif_queues(local, sdata), 733 reason, true); 734 } 735 736 void ieee80211_wake_vif_queues(struct ieee80211_local *local, 737 struct ieee80211_sub_if_data *sdata, 738 enum queue_stop_reason reason) 739 { 740 ieee80211_wake_queues_by_reason(&local->hw, 741 ieee80211_get_vif_queues(local, sdata), 742 reason, true); 743 } 744 745 static void __iterate_interfaces(struct ieee80211_local *local, 746 u32 iter_flags, 747 void (*iterator)(void *data, u8 *mac, 748 struct ieee80211_vif *vif), 749 void *data) 750 { 751 struct ieee80211_sub_if_data *sdata; 752 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 753 754 list_for_each_entry_rcu(sdata, &local->interfaces, list, 755 lockdep_is_held(&local->iflist_mtx) || 756 lockdep_is_held(&local->hw.wiphy->mtx)) { 757 switch (sdata->vif.type) { 758 case NL80211_IFTYPE_MONITOR: 759 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE)) 760 continue; 761 break; 762 case NL80211_IFTYPE_AP_VLAN: 763 continue; 764 default: 765 break; 766 } 767 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 768 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 769 continue; 770 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 771 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 772 continue; 773 if (ieee80211_sdata_running(sdata) || !active_only) 774 iterator(data, sdata->vif.addr, 775 &sdata->vif); 776 } 777 778 sdata = rcu_dereference_check(local->monitor_sdata, 779 lockdep_is_held(&local->iflist_mtx) || 780 lockdep_is_held(&local->hw.wiphy->mtx)); 781 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 782 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 783 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 784 iterator(data, sdata->vif.addr, &sdata->vif); 785 } 786 787 void ieee80211_iterate_interfaces( 788 struct ieee80211_hw *hw, u32 iter_flags, 789 void (*iterator)(void *data, u8 *mac, 790 struct ieee80211_vif *vif), 791 void *data) 792 { 793 struct ieee80211_local *local = hw_to_local(hw); 794 795 mutex_lock(&local->iflist_mtx); 796 __iterate_interfaces(local, iter_flags, iterator, data); 797 mutex_unlock(&local->iflist_mtx); 798 } 799 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 800 801 void ieee80211_iterate_active_interfaces_atomic( 802 struct ieee80211_hw *hw, u32 iter_flags, 803 void (*iterator)(void *data, u8 *mac, 804 struct ieee80211_vif *vif), 805 void *data) 806 { 807 struct ieee80211_local *local = hw_to_local(hw); 808 809 rcu_read_lock(); 810 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 811 iterator, data); 812 rcu_read_unlock(); 813 } 814 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 815 816 void ieee80211_iterate_active_interfaces_mtx( 817 struct ieee80211_hw *hw, u32 iter_flags, 818 void (*iterator)(void *data, u8 *mac, 819 struct ieee80211_vif *vif), 820 void *data) 821 { 822 struct ieee80211_local *local = hw_to_local(hw); 823 824 lockdep_assert_wiphy(hw->wiphy); 825 826 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 827 iterator, data); 828 } 829 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 830 831 static void __iterate_stations(struct ieee80211_local *local, 832 void (*iterator)(void *data, 833 struct ieee80211_sta *sta), 834 void *data) 835 { 836 struct sta_info *sta; 837 838 list_for_each_entry_rcu(sta, &local->sta_list, list, 839 lockdep_is_held(&local->hw.wiphy->mtx)) { 840 if (!sta->uploaded) 841 continue; 842 843 iterator(data, &sta->sta); 844 } 845 } 846 847 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 848 void (*iterator)(void *data, 849 struct ieee80211_sta *sta), 850 void *data) 851 { 852 struct ieee80211_local *local = hw_to_local(hw); 853 854 rcu_read_lock(); 855 __iterate_stations(local, iterator, data); 856 rcu_read_unlock(); 857 } 858 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 859 860 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 861 void (*iterator)(void *data, 862 struct ieee80211_sta *sta), 863 void *data) 864 { 865 struct ieee80211_local *local = hw_to_local(hw); 866 867 lockdep_assert_wiphy(local->hw.wiphy); 868 869 __iterate_stations(local, iterator, data); 870 } 871 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 872 873 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 874 { 875 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 876 877 if (!ieee80211_sdata_running(sdata) || 878 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 879 return NULL; 880 return &sdata->vif; 881 } 882 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 883 884 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 885 { 886 if (!vif) 887 return NULL; 888 889 return &vif_to_sdata(vif)->wdev; 890 } 891 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 892 893 /* 894 * Nothing should have been stuffed into the workqueue during 895 * the suspend->resume cycle. Since we can't check each caller 896 * of this function if we are already quiescing / suspended, 897 * check here and don't WARN since this can actually happen when 898 * the rx path (for example) is racing against __ieee80211_suspend 899 * and suspending / quiescing was set after the rx path checked 900 * them. 901 */ 902 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 903 { 904 if (local->quiescing || (local->suspended && !local->resuming)) { 905 pr_warn("queueing ieee80211 work while going to suspend\n"); 906 return false; 907 } 908 909 return true; 910 } 911 912 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 913 { 914 struct ieee80211_local *local = hw_to_local(hw); 915 916 if (!ieee80211_can_queue_work(local)) 917 return; 918 919 queue_work(local->workqueue, work); 920 } 921 EXPORT_SYMBOL(ieee80211_queue_work); 922 923 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 924 struct delayed_work *dwork, 925 unsigned long delay) 926 { 927 struct ieee80211_local *local = hw_to_local(hw); 928 929 if (!ieee80211_can_queue_work(local)) 930 return; 931 932 queue_delayed_work(local->workqueue, dwork, delay); 933 } 934 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 935 936 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 937 struct ieee80211_tx_queue_params 938 *qparam, int ac) 939 { 940 struct ieee80211_chanctx_conf *chanctx_conf; 941 const struct ieee80211_reg_rule *rrule; 942 const struct ieee80211_wmm_ac *wmm_ac; 943 u16 center_freq = 0; 944 945 if (sdata->vif.type != NL80211_IFTYPE_AP && 946 sdata->vif.type != NL80211_IFTYPE_STATION) 947 return; 948 949 rcu_read_lock(); 950 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 951 if (chanctx_conf) 952 center_freq = chanctx_conf->def.chan->center_freq; 953 954 if (!center_freq) { 955 rcu_read_unlock(); 956 return; 957 } 958 959 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 960 961 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 962 rcu_read_unlock(); 963 return; 964 } 965 966 if (sdata->vif.type == NL80211_IFTYPE_AP) 967 wmm_ac = &rrule->wmm_rule.ap[ac]; 968 else 969 wmm_ac = &rrule->wmm_rule.client[ac]; 970 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 971 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 972 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 973 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 974 rcu_read_unlock(); 975 } 976 977 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 978 bool bss_notify, bool enable_qos) 979 { 980 struct ieee80211_sub_if_data *sdata = link->sdata; 981 struct ieee80211_local *local = sdata->local; 982 struct ieee80211_tx_queue_params qparam; 983 struct ieee80211_chanctx_conf *chanctx_conf; 984 int ac; 985 bool use_11b; 986 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 987 int aCWmin, aCWmax; 988 989 if (!local->ops->conf_tx) 990 return; 991 992 if (local->hw.queues < IEEE80211_NUM_ACS) 993 return; 994 995 memset(&qparam, 0, sizeof(qparam)); 996 997 rcu_read_lock(); 998 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 999 use_11b = (chanctx_conf && 1000 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 1001 !link->operating_11g_mode; 1002 rcu_read_unlock(); 1003 1004 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 1005 1006 /* Set defaults according to 802.11-2007 Table 7-37 */ 1007 aCWmax = 1023; 1008 if (use_11b) 1009 aCWmin = 31; 1010 else 1011 aCWmin = 15; 1012 1013 /* Configure old 802.11b/g medium access rules. */ 1014 qparam.cw_max = aCWmax; 1015 qparam.cw_min = aCWmin; 1016 qparam.txop = 0; 1017 qparam.aifs = 2; 1018 1019 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1020 /* Update if QoS is enabled. */ 1021 if (enable_qos) { 1022 switch (ac) { 1023 case IEEE80211_AC_BK: 1024 qparam.cw_max = aCWmax; 1025 qparam.cw_min = aCWmin; 1026 qparam.txop = 0; 1027 if (is_ocb) 1028 qparam.aifs = 9; 1029 else 1030 qparam.aifs = 7; 1031 break; 1032 /* never happens but let's not leave undefined */ 1033 default: 1034 case IEEE80211_AC_BE: 1035 qparam.cw_max = aCWmax; 1036 qparam.cw_min = aCWmin; 1037 qparam.txop = 0; 1038 if (is_ocb) 1039 qparam.aifs = 6; 1040 else 1041 qparam.aifs = 3; 1042 break; 1043 case IEEE80211_AC_VI: 1044 qparam.cw_max = aCWmin; 1045 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1046 if (is_ocb) 1047 qparam.txop = 0; 1048 else if (use_11b) 1049 qparam.txop = 6016/32; 1050 else 1051 qparam.txop = 3008/32; 1052 1053 if (is_ocb) 1054 qparam.aifs = 3; 1055 else 1056 qparam.aifs = 2; 1057 break; 1058 case IEEE80211_AC_VO: 1059 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1060 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1061 if (is_ocb) 1062 qparam.txop = 0; 1063 else if (use_11b) 1064 qparam.txop = 3264/32; 1065 else 1066 qparam.txop = 1504/32; 1067 qparam.aifs = 2; 1068 break; 1069 } 1070 } 1071 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1072 1073 qparam.uapsd = false; 1074 1075 link->tx_conf[ac] = qparam; 1076 drv_conf_tx(local, link, ac, &qparam); 1077 } 1078 1079 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1080 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1081 sdata->vif.type != NL80211_IFTYPE_NAN) { 1082 link->conf->qos = enable_qos; 1083 if (bss_notify) 1084 ieee80211_link_info_change_notify(sdata, link, 1085 BSS_CHANGED_QOS); 1086 } 1087 } 1088 1089 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1090 u16 transaction, u16 auth_alg, u16 status, 1091 const u8 *extra, size_t extra_len, const u8 *da, 1092 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1093 u32 tx_flags) 1094 { 1095 struct ieee80211_local *local = sdata->local; 1096 struct sk_buff *skb; 1097 struct ieee80211_mgmt *mgmt; 1098 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1099 struct { 1100 u8 id; 1101 u8 len; 1102 u8 ext_id; 1103 struct ieee80211_multi_link_elem ml; 1104 struct ieee80211_mle_basic_common_info basic; 1105 } __packed mle = { 1106 .id = WLAN_EID_EXTENSION, 1107 .len = sizeof(mle) - 2, 1108 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1109 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1110 .basic.len = sizeof(mle.basic), 1111 }; 1112 int err; 1113 1114 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1115 1116 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1117 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1118 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1119 multi_link * sizeof(mle)); 1120 if (!skb) 1121 return; 1122 1123 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1124 1125 mgmt = skb_put_zero(skb, 24 + 6); 1126 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1127 IEEE80211_STYPE_AUTH); 1128 memcpy(mgmt->da, da, ETH_ALEN); 1129 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1130 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1131 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1132 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1133 mgmt->u.auth.status_code = cpu_to_le16(status); 1134 if (extra) 1135 skb_put_data(skb, extra, extra_len); 1136 if (multi_link) 1137 skb_put_data(skb, &mle, sizeof(mle)); 1138 1139 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1140 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1141 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1142 if (WARN_ON(err)) { 1143 kfree_skb(skb); 1144 return; 1145 } 1146 } 1147 1148 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1149 tx_flags; 1150 ieee80211_tx_skb(sdata, skb); 1151 } 1152 1153 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1154 const u8 *da, const u8 *bssid, 1155 u16 stype, u16 reason, 1156 bool send_frame, u8 *frame_buf) 1157 { 1158 struct ieee80211_local *local = sdata->local; 1159 struct sk_buff *skb; 1160 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1161 1162 /* build frame */ 1163 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1164 mgmt->duration = 0; /* initialize only */ 1165 mgmt->seq_ctrl = 0; /* initialize only */ 1166 memcpy(mgmt->da, da, ETH_ALEN); 1167 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1168 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1169 /* u.deauth.reason_code == u.disassoc.reason_code */ 1170 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1171 1172 if (send_frame) { 1173 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1174 IEEE80211_DEAUTH_FRAME_LEN); 1175 if (!skb) 1176 return; 1177 1178 skb_reserve(skb, local->hw.extra_tx_headroom); 1179 1180 /* copy in frame */ 1181 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1182 1183 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1184 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1185 IEEE80211_SKB_CB(skb)->flags |= 1186 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1187 1188 ieee80211_tx_skb(sdata, skb); 1189 } 1190 } 1191 1192 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1193 struct ieee80211_sta_s1g_cap *s1g_cap) 1194 { 1195 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1196 return -ENOBUFS; 1197 1198 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1199 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1200 1201 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1202 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1203 1204 return 0; 1205 } 1206 1207 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1208 struct ieee80211_sub_if_data *sdata, 1209 const u8 *ie, size_t ie_len, 1210 size_t *offset, 1211 enum nl80211_band band, 1212 u32 rate_mask, 1213 struct cfg80211_chan_def *chandef, 1214 u32 flags) 1215 { 1216 struct ieee80211_local *local = sdata->local; 1217 struct ieee80211_supported_band *sband; 1218 int i, err; 1219 size_t noffset; 1220 u32 rate_flags; 1221 bool have_80mhz = false; 1222 1223 *offset = 0; 1224 1225 sband = local->hw.wiphy->bands[band]; 1226 if (WARN_ON_ONCE(!sband)) 1227 return 0; 1228 1229 rate_flags = ieee80211_chandef_rate_flags(chandef); 1230 1231 /* For direct scan add S1G IE and consider its override bits */ 1232 if (band == NL80211_BAND_S1GHZ) 1233 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1234 1235 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1236 ~rate_mask, WLAN_EID_SUPP_RATES); 1237 if (err) 1238 return err; 1239 1240 /* insert "request information" if in custom IEs */ 1241 if (ie && ie_len) { 1242 static const u8 before_extrates[] = { 1243 WLAN_EID_SSID, 1244 WLAN_EID_SUPP_RATES, 1245 WLAN_EID_REQUEST, 1246 }; 1247 noffset = ieee80211_ie_split(ie, ie_len, 1248 before_extrates, 1249 ARRAY_SIZE(before_extrates), 1250 *offset); 1251 if (skb_tailroom(skb) < noffset - *offset) 1252 return -ENOBUFS; 1253 skb_put_data(skb, ie + *offset, noffset - *offset); 1254 *offset = noffset; 1255 } 1256 1257 err = ieee80211_put_srates_elem(skb, sband, 0, rate_flags, 1258 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1259 if (err) 1260 return err; 1261 1262 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1263 if (skb_tailroom(skb) < 3) 1264 return -ENOBUFS; 1265 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1266 skb_put_u8(skb, 1); 1267 skb_put_u8(skb, 1268 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1269 } 1270 1271 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1272 return 0; 1273 1274 /* insert custom IEs that go before HT */ 1275 if (ie && ie_len) { 1276 static const u8 before_ht[] = { 1277 /* 1278 * no need to list the ones split off already 1279 * (or generated here) 1280 */ 1281 WLAN_EID_DS_PARAMS, 1282 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1283 }; 1284 noffset = ieee80211_ie_split(ie, ie_len, 1285 before_ht, ARRAY_SIZE(before_ht), 1286 *offset); 1287 if (skb_tailroom(skb) < noffset - *offset) 1288 return -ENOBUFS; 1289 skb_put_data(skb, ie + *offset, noffset - *offset); 1290 *offset = noffset; 1291 } 1292 1293 if (sband->ht_cap.ht_supported) { 1294 u8 *pos; 1295 1296 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1297 return -ENOBUFS; 1298 1299 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1300 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1301 sband->ht_cap.cap); 1302 } 1303 1304 /* insert custom IEs that go before VHT */ 1305 if (ie && ie_len) { 1306 static const u8 before_vht[] = { 1307 /* 1308 * no need to list the ones split off already 1309 * (or generated here) 1310 */ 1311 WLAN_EID_BSS_COEX_2040, 1312 WLAN_EID_EXT_CAPABILITY, 1313 WLAN_EID_SSID_LIST, 1314 WLAN_EID_CHANNEL_USAGE, 1315 WLAN_EID_INTERWORKING, 1316 WLAN_EID_MESH_ID, 1317 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1318 }; 1319 noffset = ieee80211_ie_split(ie, ie_len, 1320 before_vht, ARRAY_SIZE(before_vht), 1321 *offset); 1322 if (skb_tailroom(skb) < noffset - *offset) 1323 return -ENOBUFS; 1324 skb_put_data(skb, ie + *offset, noffset - *offset); 1325 *offset = noffset; 1326 } 1327 1328 /* Check if any channel in this sband supports at least 80 MHz */ 1329 for (i = 0; i < sband->n_channels; i++) { 1330 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1331 IEEE80211_CHAN_NO_80MHZ)) 1332 continue; 1333 1334 have_80mhz = true; 1335 break; 1336 } 1337 1338 if (sband->vht_cap.vht_supported && have_80mhz) { 1339 u8 *pos; 1340 1341 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1342 return -ENOBUFS; 1343 1344 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1345 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1346 sband->vht_cap.cap); 1347 } 1348 1349 /* insert custom IEs that go before HE */ 1350 if (ie && ie_len) { 1351 static const u8 before_he[] = { 1352 /* 1353 * no need to list the ones split off before VHT 1354 * or generated here 1355 */ 1356 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1357 WLAN_EID_AP_CSN, 1358 /* TODO: add 11ah/11aj/11ak elements */ 1359 }; 1360 noffset = ieee80211_ie_split(ie, ie_len, 1361 before_he, ARRAY_SIZE(before_he), 1362 *offset); 1363 if (skb_tailroom(skb) < noffset - *offset) 1364 return -ENOBUFS; 1365 skb_put_data(skb, ie + *offset, noffset - *offset); 1366 *offset = noffset; 1367 } 1368 1369 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1370 IEEE80211_CHAN_NO_HE)) { 1371 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1372 if (err) 1373 return err; 1374 } 1375 1376 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1377 IEEE80211_CHAN_NO_HE | 1378 IEEE80211_CHAN_NO_EHT)) { 1379 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1380 if (err) 1381 return err; 1382 } 1383 1384 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1385 if (err) 1386 return err; 1387 1388 /* 1389 * If adding more here, adjust code in main.c 1390 * that calculates local->scan_ies_len. 1391 */ 1392 1393 return 0; 1394 } 1395 1396 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1397 struct ieee80211_sub_if_data *sdata, 1398 struct ieee80211_scan_ies *ie_desc, 1399 const u8 *ie, size_t ie_len, 1400 u8 bands_used, u32 *rate_masks, 1401 struct cfg80211_chan_def *chandef, 1402 u32 flags) 1403 { 1404 size_t custom_ie_offset = 0; 1405 int i, err; 1406 1407 memset(ie_desc, 0, sizeof(*ie_desc)); 1408 1409 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1410 if (bands_used & BIT(i)) { 1411 ie_desc->ies[i] = skb_tail_pointer(skb); 1412 err = ieee80211_put_preq_ies_band(skb, sdata, 1413 ie, ie_len, 1414 &custom_ie_offset, 1415 i, rate_masks[i], 1416 chandef, flags); 1417 if (err) 1418 return err; 1419 ie_desc->len[i] = skb_tail_pointer(skb) - 1420 ie_desc->ies[i]; 1421 } 1422 } 1423 1424 /* add any remaining custom IEs */ 1425 if (ie && ie_len) { 1426 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1427 "not enough space for preq custom IEs\n")) 1428 return -ENOBUFS; 1429 ie_desc->common_ies = skb_tail_pointer(skb); 1430 skb_put_data(skb, ie + custom_ie_offset, 1431 ie_len - custom_ie_offset); 1432 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1433 ie_desc->common_ies; 1434 } 1435 1436 return 0; 1437 }; 1438 1439 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1440 size_t buffer_len, 1441 struct ieee80211_scan_ies *ie_desc, 1442 const u8 *ie, size_t ie_len, 1443 u8 bands_used, u32 *rate_masks, 1444 struct cfg80211_chan_def *chandef, 1445 u32 flags) 1446 { 1447 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1448 uintptr_t offs; 1449 int ret, i; 1450 u8 *start; 1451 1452 if (!skb) 1453 return -ENOMEM; 1454 1455 start = skb_tail_pointer(skb); 1456 memset(start, 0, skb_tailroom(skb)); 1457 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1458 bands_used, rate_masks, chandef, 1459 flags); 1460 if (ret < 0) { 1461 goto out; 1462 } 1463 1464 if (skb->len > buffer_len) { 1465 ret = -ENOBUFS; 1466 goto out; 1467 } 1468 1469 memcpy(buffer, start, skb->len); 1470 1471 /* adjust ie_desc for copy */ 1472 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1473 offs = ie_desc->ies[i] - start; 1474 ie_desc->ies[i] = buffer + offs; 1475 } 1476 offs = ie_desc->common_ies - start; 1477 ie_desc->common_ies = buffer + offs; 1478 1479 ret = skb->len; 1480 out: 1481 consume_skb(skb); 1482 return ret; 1483 } 1484 1485 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1486 const u8 *src, const u8 *dst, 1487 u32 ratemask, 1488 struct ieee80211_channel *chan, 1489 const u8 *ssid, size_t ssid_len, 1490 const u8 *ie, size_t ie_len, 1491 u32 flags) 1492 { 1493 struct ieee80211_local *local = sdata->local; 1494 struct cfg80211_chan_def chandef; 1495 struct sk_buff *skb; 1496 struct ieee80211_mgmt *mgmt; 1497 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1498 struct ieee80211_scan_ies dummy_ie_desc; 1499 1500 /* 1501 * Do not send DS Channel parameter for directed probe requests 1502 * in order to maximize the chance that we get a response. Some 1503 * badly-behaved APs don't respond when this parameter is included. 1504 */ 1505 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1506 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1507 chandef.chan = NULL; 1508 else 1509 chandef.chan = chan; 1510 1511 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1512 local->scan_ies_len + ie_len); 1513 if (!skb) 1514 return NULL; 1515 1516 rate_masks[chan->band] = ratemask; 1517 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1518 ie, ie_len, BIT(chan->band), 1519 rate_masks, &chandef, flags); 1520 1521 if (dst) { 1522 mgmt = (struct ieee80211_mgmt *) skb->data; 1523 memcpy(mgmt->da, dst, ETH_ALEN); 1524 memcpy(mgmt->bssid, dst, ETH_ALEN); 1525 } 1526 1527 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1528 1529 return skb; 1530 } 1531 1532 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1533 struct ieee802_11_elems *elems, 1534 enum nl80211_band band, u32 *basic_rates) 1535 { 1536 struct ieee80211_supported_band *sband; 1537 size_t num_rates; 1538 u32 supp_rates, rate_flags; 1539 int i, j; 1540 1541 sband = sdata->local->hw.wiphy->bands[band]; 1542 if (WARN_ON(!sband)) 1543 return 1; 1544 1545 rate_flags = 1546 ieee80211_chandef_rate_flags(&sdata->vif.bss_conf.chanreq.oper); 1547 1548 num_rates = sband->n_bitrates; 1549 supp_rates = 0; 1550 for (i = 0; i < elems->supp_rates_len + 1551 elems->ext_supp_rates_len; i++) { 1552 u8 rate = 0; 1553 int own_rate; 1554 bool is_basic; 1555 if (i < elems->supp_rates_len) 1556 rate = elems->supp_rates[i]; 1557 else if (elems->ext_supp_rates) 1558 rate = elems->ext_supp_rates 1559 [i - elems->supp_rates_len]; 1560 own_rate = 5 * (rate & 0x7f); 1561 is_basic = !!(rate & 0x80); 1562 1563 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1564 continue; 1565 1566 for (j = 0; j < num_rates; j++) { 1567 int brate; 1568 if ((rate_flags & sband->bitrates[j].flags) 1569 != rate_flags) 1570 continue; 1571 1572 brate = sband->bitrates[j].bitrate; 1573 1574 if (brate == own_rate) { 1575 supp_rates |= BIT(j); 1576 if (basic_rates && is_basic) 1577 *basic_rates |= BIT(j); 1578 } 1579 } 1580 } 1581 return supp_rates; 1582 } 1583 1584 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1585 { 1586 local_bh_disable(); 1587 ieee80211_handle_queued_frames(local); 1588 local_bh_enable(); 1589 1590 ieee80211_led_radio(local, false); 1591 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1592 1593 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1594 1595 flush_workqueue(local->workqueue); 1596 wiphy_work_flush(local->hw.wiphy, NULL); 1597 drv_stop(local, suspend); 1598 } 1599 1600 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1601 bool aborted) 1602 { 1603 /* It's possible that we don't handle the scan completion in 1604 * time during suspend, so if it's still marked as completed 1605 * here, queue the work and flush it to clean things up. 1606 * Instead of calling the worker function directly here, we 1607 * really queue it to avoid potential races with other flows 1608 * scheduling the same work. 1609 */ 1610 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1611 /* If coming from reconfiguration failure, abort the scan so 1612 * we don't attempt to continue a partial HW scan - which is 1613 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1614 * completed scan, and a 5 GHz portion is still pending. 1615 */ 1616 if (aborted) 1617 set_bit(SCAN_ABORTED, &local->scanning); 1618 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1619 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1620 } 1621 } 1622 1623 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1624 { 1625 struct ieee80211_sub_if_data *sdata; 1626 struct ieee80211_chanctx *ctx; 1627 1628 lockdep_assert_wiphy(local->hw.wiphy); 1629 1630 /* 1631 * We get here if during resume the device can't be restarted properly. 1632 * We might also get here if this happens during HW reset, which is a 1633 * slightly different situation and we need to drop all connections in 1634 * the latter case. 1635 * 1636 * Ask cfg80211 to turn off all interfaces, this will result in more 1637 * warnings but at least we'll then get into a clean stopped state. 1638 */ 1639 1640 local->resuming = false; 1641 local->suspended = false; 1642 local->in_reconfig = false; 1643 local->reconfig_failure = true; 1644 1645 ieee80211_flush_completed_scan(local, true); 1646 1647 /* scheduled scan clearly can't be running any more, but tell 1648 * cfg80211 and clear local state 1649 */ 1650 ieee80211_sched_scan_end(local); 1651 1652 list_for_each_entry(sdata, &local->interfaces, list) 1653 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1654 1655 /* Mark channel contexts as not being in the driver any more to avoid 1656 * removing them from the driver during the shutdown process... 1657 */ 1658 list_for_each_entry(ctx, &local->chanctx_list, list) 1659 ctx->driver_present = false; 1660 } 1661 1662 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1663 struct ieee80211_sub_if_data *sdata, 1664 struct ieee80211_link_data *link) 1665 { 1666 struct ieee80211_chanctx_conf *conf; 1667 struct ieee80211_chanctx *ctx; 1668 1669 lockdep_assert_wiphy(local->hw.wiphy); 1670 1671 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1672 lockdep_is_held(&local->hw.wiphy->mtx)); 1673 if (conf) { 1674 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1675 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1676 } 1677 } 1678 1679 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1680 { 1681 struct ieee80211_local *local = sdata->local; 1682 struct sta_info *sta; 1683 1684 lockdep_assert_wiphy(local->hw.wiphy); 1685 1686 /* add STAs back */ 1687 list_for_each_entry(sta, &local->sta_list, list) { 1688 enum ieee80211_sta_state state; 1689 1690 if (!sta->uploaded || sta->sdata != sdata) 1691 continue; 1692 1693 for (state = IEEE80211_STA_NOTEXIST; 1694 state < sta->sta_state; state++) 1695 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1696 state + 1)); 1697 } 1698 } 1699 1700 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1701 { 1702 struct cfg80211_nan_func *func, **funcs; 1703 int res, id, i = 0; 1704 1705 res = drv_start_nan(sdata->local, sdata, 1706 &sdata->u.nan.conf); 1707 if (WARN_ON(res)) 1708 return res; 1709 1710 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1711 sizeof(*funcs), 1712 GFP_KERNEL); 1713 if (!funcs) 1714 return -ENOMEM; 1715 1716 /* Add all the functions: 1717 * This is a little bit ugly. We need to call a potentially sleeping 1718 * callback for each NAN function, so we can't hold the spinlock. 1719 */ 1720 spin_lock_bh(&sdata->u.nan.func_lock); 1721 1722 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1723 funcs[i++] = func; 1724 1725 spin_unlock_bh(&sdata->u.nan.func_lock); 1726 1727 for (i = 0; funcs[i]; i++) { 1728 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1729 if (WARN_ON(res)) 1730 ieee80211_nan_func_terminated(&sdata->vif, 1731 funcs[i]->instance_id, 1732 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1733 GFP_KERNEL); 1734 } 1735 1736 kfree(funcs); 1737 1738 return 0; 1739 } 1740 1741 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1742 struct ieee80211_sub_if_data *sdata, 1743 u64 changed) 1744 { 1745 int link_id; 1746 1747 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1748 struct ieee80211_link_data *link; 1749 1750 if (!(sdata->vif.active_links & BIT(link_id))) 1751 continue; 1752 1753 link = sdata_dereference(sdata->link[link_id], sdata); 1754 if (!link) 1755 continue; 1756 1757 if (rcu_access_pointer(link->u.ap.beacon)) 1758 drv_start_ap(local, sdata, link->conf); 1759 1760 if (!link->conf->enable_beacon) 1761 continue; 1762 1763 changed |= BSS_CHANGED_BEACON | 1764 BSS_CHANGED_BEACON_ENABLED; 1765 1766 ieee80211_link_info_change_notify(sdata, link, changed); 1767 } 1768 } 1769 1770 int ieee80211_reconfig(struct ieee80211_local *local) 1771 { 1772 struct ieee80211_hw *hw = &local->hw; 1773 struct ieee80211_sub_if_data *sdata; 1774 struct ieee80211_chanctx *ctx; 1775 struct sta_info *sta; 1776 int res, i; 1777 bool reconfig_due_to_wowlan = false; 1778 struct ieee80211_sub_if_data *sched_scan_sdata; 1779 struct cfg80211_sched_scan_request *sched_scan_req; 1780 bool sched_scan_stopped = false; 1781 bool suspended = local->suspended; 1782 bool in_reconfig = false; 1783 1784 lockdep_assert_wiphy(local->hw.wiphy); 1785 1786 /* nothing to do if HW shouldn't run */ 1787 if (!local->open_count) 1788 goto wake_up; 1789 1790 #ifdef CONFIG_PM 1791 if (suspended) 1792 local->resuming = true; 1793 1794 if (local->wowlan) { 1795 /* 1796 * In the wowlan case, both mac80211 and the device 1797 * are functional when the resume op is called, so 1798 * clear local->suspended so the device could operate 1799 * normally (e.g. pass rx frames). 1800 */ 1801 local->suspended = false; 1802 res = drv_resume(local); 1803 local->wowlan = false; 1804 if (res < 0) { 1805 local->resuming = false; 1806 return res; 1807 } 1808 if (res == 0) 1809 goto wake_up; 1810 WARN_ON(res > 1); 1811 /* 1812 * res is 1, which means the driver requested 1813 * to go through a regular reset on wakeup. 1814 * restore local->suspended in this case. 1815 */ 1816 reconfig_due_to_wowlan = true; 1817 local->suspended = true; 1818 } 1819 #endif 1820 1821 /* 1822 * In case of hw_restart during suspend (without wowlan), 1823 * cancel restart work, as we are reconfiguring the device 1824 * anyway. 1825 * Note that restart_work is scheduled on a frozen workqueue, 1826 * so we can't deadlock in this case. 1827 */ 1828 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1829 cancel_work_sync(&local->restart_work); 1830 1831 local->started = false; 1832 1833 /* 1834 * Upon resume hardware can sometimes be goofy due to 1835 * various platform / driver / bus issues, so restarting 1836 * the device may at times not work immediately. Propagate 1837 * the error. 1838 */ 1839 res = drv_start(local); 1840 if (res) { 1841 if (suspended) 1842 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1843 else 1844 WARN(1, "Hardware became unavailable during restart.\n"); 1845 ieee80211_handle_reconfig_failure(local); 1846 return res; 1847 } 1848 1849 /* setup fragmentation threshold */ 1850 drv_set_frag_threshold(local, hw->wiphy->frag_threshold); 1851 1852 /* setup RTS threshold */ 1853 drv_set_rts_threshold(local, hw->wiphy->rts_threshold); 1854 1855 /* reset coverage class */ 1856 drv_set_coverage_class(local, hw->wiphy->coverage_class); 1857 1858 ieee80211_led_radio(local, true); 1859 ieee80211_mod_tpt_led_trig(local, 1860 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1861 1862 /* add interfaces */ 1863 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1864 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1865 /* in HW restart it exists already */ 1866 WARN_ON(local->resuming); 1867 res = drv_add_interface(local, sdata); 1868 if (WARN_ON(res)) { 1869 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1870 synchronize_net(); 1871 kfree(sdata); 1872 } 1873 } 1874 1875 list_for_each_entry(sdata, &local->interfaces, list) { 1876 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1877 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1878 ieee80211_sdata_running(sdata)) { 1879 res = drv_add_interface(local, sdata); 1880 if (WARN_ON(res)) 1881 break; 1882 } 1883 } 1884 1885 /* If adding any of the interfaces failed above, roll back and 1886 * report failure. 1887 */ 1888 if (res) { 1889 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1890 list) 1891 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1892 sdata->vif.type != NL80211_IFTYPE_MONITOR && 1893 ieee80211_sdata_running(sdata)) 1894 drv_remove_interface(local, sdata); 1895 ieee80211_handle_reconfig_failure(local); 1896 return res; 1897 } 1898 1899 /* add channel contexts */ 1900 list_for_each_entry(ctx, &local->chanctx_list, list) 1901 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1902 WARN_ON(drv_add_chanctx(local, ctx)); 1903 1904 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1905 if (sdata && ieee80211_sdata_running(sdata)) 1906 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1907 1908 /* reconfigure hardware */ 1909 ieee80211_hw_config(local, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1910 IEEE80211_CONF_CHANGE_MONITOR | 1911 IEEE80211_CONF_CHANGE_PS | 1912 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1913 IEEE80211_CONF_CHANGE_IDLE); 1914 1915 ieee80211_configure_filter(local); 1916 1917 /* Finally also reconfigure all the BSS information */ 1918 list_for_each_entry(sdata, &local->interfaces, list) { 1919 /* common change flags for all interface types - link only */ 1920 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1921 BSS_CHANGED_ERP_PREAMBLE | 1922 BSS_CHANGED_ERP_SLOT | 1923 BSS_CHANGED_HT | 1924 BSS_CHANGED_BASIC_RATES | 1925 BSS_CHANGED_BEACON_INT | 1926 BSS_CHANGED_BSSID | 1927 BSS_CHANGED_CQM | 1928 BSS_CHANGED_QOS | 1929 BSS_CHANGED_TXPOWER | 1930 BSS_CHANGED_MCAST_RATE; 1931 struct ieee80211_link_data *link = NULL; 1932 unsigned int link_id; 1933 u32 active_links = 0; 1934 1935 if (!ieee80211_sdata_running(sdata)) 1936 continue; 1937 1938 if (ieee80211_vif_is_mld(&sdata->vif)) { 1939 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1940 [0] = &sdata->vif.bss_conf, 1941 }; 1942 1943 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1944 /* start with a single active link */ 1945 active_links = sdata->vif.active_links; 1946 link_id = ffs(active_links) - 1; 1947 sdata->vif.active_links = BIT(link_id); 1948 } 1949 1950 drv_change_vif_links(local, sdata, 0, 1951 sdata->vif.active_links, 1952 old); 1953 } 1954 1955 sdata->restart_active_links = active_links; 1956 1957 for (link_id = 0; 1958 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1959 link_id++) { 1960 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1961 continue; 1962 1963 link = sdata_dereference(sdata->link[link_id], sdata); 1964 if (!link) 1965 continue; 1966 1967 ieee80211_assign_chanctx(local, sdata, link); 1968 } 1969 1970 switch (sdata->vif.type) { 1971 case NL80211_IFTYPE_AP_VLAN: 1972 case NL80211_IFTYPE_MONITOR: 1973 break; 1974 case NL80211_IFTYPE_ADHOC: 1975 if (sdata->vif.cfg.ibss_joined) 1976 WARN_ON(drv_join_ibss(local, sdata)); 1977 fallthrough; 1978 default: 1979 ieee80211_reconfig_stations(sdata); 1980 fallthrough; 1981 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1982 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1983 drv_conf_tx(local, &sdata->deflink, i, 1984 &sdata->deflink.tx_conf[i]); 1985 break; 1986 } 1987 1988 if (sdata->vif.bss_conf.mu_mimo_owner) 1989 changed |= BSS_CHANGED_MU_GROUPS; 1990 1991 if (!ieee80211_vif_is_mld(&sdata->vif)) 1992 changed |= BSS_CHANGED_IDLE; 1993 1994 switch (sdata->vif.type) { 1995 case NL80211_IFTYPE_STATION: 1996 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1997 changed |= BSS_CHANGED_ASSOC | 1998 BSS_CHANGED_ARP_FILTER | 1999 BSS_CHANGED_PS; 2000 2001 /* Re-send beacon info report to the driver */ 2002 if (sdata->deflink.u.mgd.have_beacon) 2003 changed |= BSS_CHANGED_BEACON_INFO; 2004 2005 if (sdata->vif.bss_conf.max_idle_period || 2006 sdata->vif.bss_conf.protected_keep_alive) 2007 changed |= BSS_CHANGED_KEEP_ALIVE; 2008 2009 ieee80211_bss_info_change_notify(sdata, 2010 changed); 2011 } else if (!WARN_ON(!link)) { 2012 ieee80211_link_info_change_notify(sdata, link, 2013 changed); 2014 changed = BSS_CHANGED_ASSOC | 2015 BSS_CHANGED_IDLE | 2016 BSS_CHANGED_PS | 2017 BSS_CHANGED_ARP_FILTER; 2018 ieee80211_vif_cfg_change_notify(sdata, changed); 2019 } 2020 break; 2021 case NL80211_IFTYPE_OCB: 2022 changed |= BSS_CHANGED_OCB; 2023 ieee80211_bss_info_change_notify(sdata, changed); 2024 break; 2025 case NL80211_IFTYPE_ADHOC: 2026 changed |= BSS_CHANGED_IBSS; 2027 fallthrough; 2028 case NL80211_IFTYPE_AP: 2029 changed |= BSS_CHANGED_P2P_PS; 2030 2031 if (ieee80211_vif_is_mld(&sdata->vif)) 2032 ieee80211_vif_cfg_change_notify(sdata, 2033 BSS_CHANGED_SSID); 2034 else 2035 changed |= BSS_CHANGED_SSID; 2036 2037 if (sdata->vif.bss_conf.ftm_responder == 1 && 2038 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2039 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2040 changed |= BSS_CHANGED_FTM_RESPONDER; 2041 2042 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2043 changed |= BSS_CHANGED_AP_PROBE_RESP; 2044 2045 if (ieee80211_vif_is_mld(&sdata->vif)) { 2046 ieee80211_reconfig_ap_links(local, 2047 sdata, 2048 changed); 2049 break; 2050 } 2051 2052 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2053 drv_start_ap(local, sdata, 2054 sdata->deflink.conf); 2055 } 2056 fallthrough; 2057 case NL80211_IFTYPE_MESH_POINT: 2058 if (sdata->vif.bss_conf.enable_beacon) { 2059 changed |= BSS_CHANGED_BEACON | 2060 BSS_CHANGED_BEACON_ENABLED; 2061 ieee80211_bss_info_change_notify(sdata, changed); 2062 } 2063 break; 2064 case NL80211_IFTYPE_NAN: 2065 res = ieee80211_reconfig_nan(sdata); 2066 if (res < 0) { 2067 ieee80211_handle_reconfig_failure(local); 2068 return res; 2069 } 2070 break; 2071 case NL80211_IFTYPE_AP_VLAN: 2072 case NL80211_IFTYPE_MONITOR: 2073 case NL80211_IFTYPE_P2P_DEVICE: 2074 /* nothing to do */ 2075 break; 2076 case NL80211_IFTYPE_UNSPECIFIED: 2077 case NUM_NL80211_IFTYPES: 2078 case NL80211_IFTYPE_P2P_CLIENT: 2079 case NL80211_IFTYPE_P2P_GO: 2080 case NL80211_IFTYPE_WDS: 2081 WARN_ON(1); 2082 break; 2083 } 2084 } 2085 2086 ieee80211_recalc_ps(local); 2087 2088 /* 2089 * The sta might be in psm against the ap (e.g. because 2090 * this was the state before a hw restart), so we 2091 * explicitly send a null packet in order to make sure 2092 * it'll sync against the ap (and get out of psm). 2093 */ 2094 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2095 list_for_each_entry(sdata, &local->interfaces, list) { 2096 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2097 continue; 2098 if (!sdata->u.mgd.associated) 2099 continue; 2100 2101 ieee80211_send_nullfunc(local, sdata, false); 2102 } 2103 } 2104 2105 /* APs are now beaconing, add back stations */ 2106 list_for_each_entry(sdata, &local->interfaces, list) { 2107 if (!ieee80211_sdata_running(sdata)) 2108 continue; 2109 2110 switch (sdata->vif.type) { 2111 case NL80211_IFTYPE_AP_VLAN: 2112 case NL80211_IFTYPE_AP: 2113 ieee80211_reconfig_stations(sdata); 2114 break; 2115 default: 2116 break; 2117 } 2118 } 2119 2120 /* add back keys */ 2121 list_for_each_entry(sdata, &local->interfaces, list) 2122 ieee80211_reenable_keys(sdata); 2123 2124 /* re-enable multi-link for client interfaces */ 2125 list_for_each_entry(sdata, &local->interfaces, list) { 2126 if (sdata->restart_active_links) 2127 ieee80211_set_active_links(&sdata->vif, 2128 sdata->restart_active_links); 2129 /* 2130 * If a link switch was scheduled before the restart, and ran 2131 * before reconfig, it will do nothing, so re-schedule. 2132 */ 2133 if (sdata->desired_active_links) 2134 wiphy_work_queue(sdata->local->hw.wiphy, 2135 &sdata->activate_links_work); 2136 } 2137 2138 /* Reconfigure sched scan if it was interrupted by FW restart */ 2139 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2140 lockdep_is_held(&local->hw.wiphy->mtx)); 2141 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2142 lockdep_is_held(&local->hw.wiphy->mtx)); 2143 if (sched_scan_sdata && sched_scan_req) 2144 /* 2145 * Sched scan stopped, but we don't want to report it. Instead, 2146 * we're trying to reschedule. However, if more than one scan 2147 * plan was set, we cannot reschedule since we don't know which 2148 * scan plan was currently running (and some scan plans may have 2149 * already finished). 2150 */ 2151 if (sched_scan_req->n_scan_plans > 1 || 2152 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2153 sched_scan_req)) { 2154 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2155 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2156 sched_scan_stopped = true; 2157 } 2158 2159 if (sched_scan_stopped) 2160 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2161 2162 wake_up: 2163 2164 if (local->monitors == local->open_count && local->monitors > 0) 2165 ieee80211_add_virtual_monitor(local); 2166 2167 /* 2168 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2169 * sessions can be established after a resume. 2170 * 2171 * Also tear down aggregation sessions since reconfiguring 2172 * them in a hardware restart scenario is not easily done 2173 * right now, and the hardware will have lost information 2174 * about the sessions, but we and the AP still think they 2175 * are active. This is really a workaround though. 2176 */ 2177 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2178 list_for_each_entry(sta, &local->sta_list, list) { 2179 if (!local->resuming) 2180 ieee80211_sta_tear_down_BA_sessions( 2181 sta, AGG_STOP_LOCAL_REQUEST); 2182 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2183 } 2184 } 2185 2186 /* 2187 * If this is for hw restart things are still running. 2188 * We may want to change that later, however. 2189 */ 2190 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2191 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2192 2193 if (local->in_reconfig) { 2194 in_reconfig = local->in_reconfig; 2195 local->in_reconfig = false; 2196 barrier(); 2197 2198 ieee80211_reconfig_roc(local); 2199 2200 /* Requeue all works */ 2201 list_for_each_entry(sdata, &local->interfaces, list) 2202 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2203 } 2204 2205 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2206 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2207 false); 2208 2209 if (in_reconfig) { 2210 list_for_each_entry(sdata, &local->interfaces, list) { 2211 if (!ieee80211_sdata_running(sdata)) 2212 continue; 2213 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2214 ieee80211_sta_restart(sdata); 2215 } 2216 } 2217 2218 if (!suspended) 2219 return 0; 2220 2221 #ifdef CONFIG_PM 2222 /* first set suspended false, then resuming */ 2223 local->suspended = false; 2224 mb(); 2225 local->resuming = false; 2226 2227 ieee80211_flush_completed_scan(local, false); 2228 2229 if (local->open_count && !reconfig_due_to_wowlan) 2230 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2231 2232 list_for_each_entry(sdata, &local->interfaces, list) { 2233 if (!ieee80211_sdata_running(sdata)) 2234 continue; 2235 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2236 ieee80211_sta_restart(sdata); 2237 } 2238 2239 mod_timer(&local->sta_cleanup, jiffies + 1); 2240 #else 2241 WARN_ON(1); 2242 #endif 2243 2244 return 0; 2245 } 2246 2247 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2248 { 2249 struct ieee80211_sub_if_data *sdata; 2250 struct ieee80211_local *local; 2251 struct ieee80211_key *key; 2252 2253 if (WARN_ON(!vif)) 2254 return; 2255 2256 sdata = vif_to_sdata(vif); 2257 local = sdata->local; 2258 2259 lockdep_assert_wiphy(local->hw.wiphy); 2260 2261 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2262 !local->resuming)) 2263 return; 2264 2265 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2266 !local->in_reconfig)) 2267 return; 2268 2269 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2270 return; 2271 2272 sdata->flags |= flag; 2273 2274 list_for_each_entry(key, &sdata->key_list, list) 2275 key->flags |= KEY_FLAG_TAINTED; 2276 } 2277 2278 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2279 { 2280 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2281 } 2282 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2283 2284 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2285 { 2286 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2287 } 2288 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2289 2290 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2291 struct ieee80211_link_data *link) 2292 { 2293 struct ieee80211_local *local = sdata->local; 2294 struct ieee80211_chanctx_conf *chanctx_conf; 2295 struct ieee80211_chanctx *chanctx; 2296 2297 lockdep_assert_wiphy(local->hw.wiphy); 2298 2299 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2300 lockdep_is_held(&local->hw.wiphy->mtx)); 2301 2302 /* 2303 * This function can be called from a work, thus it may be possible 2304 * that the chanctx_conf is removed (due to a disconnection, for 2305 * example). 2306 * So nothing should be done in such case. 2307 */ 2308 if (!chanctx_conf) 2309 return; 2310 2311 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2312 ieee80211_recalc_smps_chanctx(local, chanctx); 2313 } 2314 2315 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2316 int link_id) 2317 { 2318 struct ieee80211_local *local = sdata->local; 2319 struct ieee80211_chanctx_conf *chanctx_conf; 2320 struct ieee80211_chanctx *chanctx; 2321 int i; 2322 2323 lockdep_assert_wiphy(local->hw.wiphy); 2324 2325 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2326 struct ieee80211_bss_conf *bss_conf; 2327 2328 if (link_id >= 0 && link_id != i) 2329 continue; 2330 2331 rcu_read_lock(); 2332 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2333 if (!bss_conf) { 2334 rcu_read_unlock(); 2335 continue; 2336 } 2337 2338 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2339 lockdep_is_held(&local->hw.wiphy->mtx)); 2340 /* 2341 * Since we hold the wiphy mutex (checked above) 2342 * we can take the chanctx_conf pointer out of the 2343 * RCU critical section, it cannot go away without 2344 * the mutex. Just the way we reached it could - in 2345 * theory - go away, but we don't really care and 2346 * it really shouldn't happen anyway. 2347 */ 2348 rcu_read_unlock(); 2349 2350 if (!chanctx_conf) 2351 return; 2352 2353 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2354 conf); 2355 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); 2356 } 2357 } 2358 2359 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2360 { 2361 size_t pos = offset; 2362 2363 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2364 pos += 2 + ies[pos + 1]; 2365 2366 return pos; 2367 } 2368 2369 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2370 u16 cap) 2371 { 2372 __le16 tmp; 2373 2374 *pos++ = WLAN_EID_HT_CAPABILITY; 2375 *pos++ = sizeof(struct ieee80211_ht_cap); 2376 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2377 2378 /* capability flags */ 2379 tmp = cpu_to_le16(cap); 2380 memcpy(pos, &tmp, sizeof(u16)); 2381 pos += sizeof(u16); 2382 2383 /* AMPDU parameters */ 2384 *pos++ = ht_cap->ampdu_factor | 2385 (ht_cap->ampdu_density << 2386 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2387 2388 /* MCS set */ 2389 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2390 pos += sizeof(ht_cap->mcs); 2391 2392 /* extended capabilities */ 2393 pos += sizeof(__le16); 2394 2395 /* BF capabilities */ 2396 pos += sizeof(__le32); 2397 2398 /* antenna selection */ 2399 pos += sizeof(u8); 2400 2401 return pos; 2402 } 2403 2404 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2405 u32 cap) 2406 { 2407 __le32 tmp; 2408 2409 *pos++ = WLAN_EID_VHT_CAPABILITY; 2410 *pos++ = sizeof(struct ieee80211_vht_cap); 2411 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2412 2413 /* capability flags */ 2414 tmp = cpu_to_le32(cap); 2415 memcpy(pos, &tmp, sizeof(u32)); 2416 pos += sizeof(u32); 2417 2418 /* VHT MCS set */ 2419 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2420 pos += sizeof(vht_cap->vht_mcs); 2421 2422 return pos; 2423 } 2424 2425 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2426 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2427 { 2428 const struct ieee80211_sta_he_cap *he_cap; 2429 struct ieee80211_supported_band *sband; 2430 u8 n; 2431 2432 sband = ieee80211_get_sband(sdata); 2433 if (!sband) 2434 return 0; 2435 2436 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2437 if (!he_cap) 2438 return 0; 2439 2440 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2441 return 2 + 1 + 2442 sizeof(he_cap->he_cap_elem) + n + 2443 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2444 he_cap->he_cap_elem.phy_cap_info); 2445 } 2446 2447 static void 2448 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2449 const struct ieee80211_sta_he_cap *he_cap, 2450 struct ieee80211_he_cap_elem *elem) 2451 { 2452 u8 ru_limit, max_ru; 2453 2454 *elem = he_cap->he_cap_elem; 2455 2456 switch (conn->bw_limit) { 2457 case IEEE80211_CONN_BW_LIMIT_20: 2458 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2459 break; 2460 case IEEE80211_CONN_BW_LIMIT_40: 2461 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2462 break; 2463 case IEEE80211_CONN_BW_LIMIT_80: 2464 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2465 break; 2466 default: 2467 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2468 break; 2469 } 2470 2471 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2472 max_ru = min(max_ru, ru_limit); 2473 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2474 elem->phy_cap_info[8] |= max_ru; 2475 2476 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2477 elem->phy_cap_info[0] &= 2478 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2479 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2480 elem->phy_cap_info[9] &= 2481 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2482 } 2483 2484 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2485 elem->phy_cap_info[0] &= 2486 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2487 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2488 elem->phy_cap_info[5] &= 2489 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2490 elem->phy_cap_info[7] &= 2491 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2492 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2493 } 2494 } 2495 2496 int ieee80211_put_he_cap(struct sk_buff *skb, 2497 struct ieee80211_sub_if_data *sdata, 2498 const struct ieee80211_supported_band *sband, 2499 const struct ieee80211_conn_settings *conn) 2500 { 2501 const struct ieee80211_sta_he_cap *he_cap; 2502 struct ieee80211_he_cap_elem elem; 2503 u8 *len; 2504 u8 n; 2505 u8 ie_len; 2506 2507 if (!conn) 2508 conn = &ieee80211_conn_settings_unlimited; 2509 2510 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2511 if (!he_cap) 2512 return 0; 2513 2514 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2515 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2516 2517 n = ieee80211_he_mcs_nss_size(&elem); 2518 ie_len = 2 + 1 + 2519 sizeof(he_cap->he_cap_elem) + n + 2520 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2521 he_cap->he_cap_elem.phy_cap_info); 2522 2523 if (skb_tailroom(skb) < ie_len) 2524 return -ENOBUFS; 2525 2526 skb_put_u8(skb, WLAN_EID_EXTENSION); 2527 len = skb_put(skb, 1); /* We'll set the size later below */ 2528 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2529 2530 /* Fixed data */ 2531 skb_put_data(skb, &elem, sizeof(elem)); 2532 2533 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2534 2535 /* Check if PPE Threshold should be present */ 2536 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2537 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2538 goto end; 2539 2540 /* 2541 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2542 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2543 */ 2544 n = hweight8(he_cap->ppe_thres[0] & 2545 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2546 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2547 IEEE80211_PPE_THRES_NSS_POS)); 2548 2549 /* 2550 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2551 * total size. 2552 */ 2553 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2554 n = DIV_ROUND_UP(n, 8); 2555 2556 /* Copy PPE Thresholds */ 2557 skb_put_data(skb, &he_cap->ppe_thres, n); 2558 2559 end: 2560 *len = skb_tail_pointer(skb) - len - 1; 2561 return 0; 2562 } 2563 2564 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2565 struct ieee80211_sub_if_data *sdata, 2566 enum ieee80211_smps_mode smps_mode) 2567 { 2568 struct ieee80211_supported_band *sband; 2569 const struct ieee80211_sband_iftype_data *iftd; 2570 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2571 __le16 cap; 2572 2573 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2574 BIT(NL80211_BAND_6GHZ), 2575 IEEE80211_CHAN_NO_HE)) 2576 return 0; 2577 2578 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2579 2580 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2581 if (!iftd) 2582 return 0; 2583 2584 /* Check for device HE 6 GHz capability before adding element */ 2585 if (!iftd->he_6ghz_capa.capa) 2586 return 0; 2587 2588 cap = iftd->he_6ghz_capa.capa; 2589 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2590 2591 switch (smps_mode) { 2592 case IEEE80211_SMPS_AUTOMATIC: 2593 case IEEE80211_SMPS_NUM_MODES: 2594 WARN_ON(1); 2595 fallthrough; 2596 case IEEE80211_SMPS_OFF: 2597 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2598 IEEE80211_HE_6GHZ_CAP_SM_PS); 2599 break; 2600 case IEEE80211_SMPS_STATIC: 2601 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2602 IEEE80211_HE_6GHZ_CAP_SM_PS); 2603 break; 2604 case IEEE80211_SMPS_DYNAMIC: 2605 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2606 IEEE80211_HE_6GHZ_CAP_SM_PS); 2607 break; 2608 } 2609 2610 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2611 return -ENOBUFS; 2612 2613 skb_put_u8(skb, WLAN_EID_EXTENSION); 2614 skb_put_u8(skb, 1 + sizeof(cap)); 2615 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2616 skb_put_data(skb, &cap, sizeof(cap)); 2617 return 0; 2618 } 2619 2620 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2621 const struct cfg80211_chan_def *chandef, 2622 u16 prot_mode, bool rifs_mode) 2623 { 2624 struct ieee80211_ht_operation *ht_oper; 2625 /* Build HT Information */ 2626 *pos++ = WLAN_EID_HT_OPERATION; 2627 *pos++ = sizeof(struct ieee80211_ht_operation); 2628 ht_oper = (struct ieee80211_ht_operation *)pos; 2629 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2630 chandef->chan->center_freq); 2631 switch (chandef->width) { 2632 case NL80211_CHAN_WIDTH_160: 2633 case NL80211_CHAN_WIDTH_80P80: 2634 case NL80211_CHAN_WIDTH_80: 2635 case NL80211_CHAN_WIDTH_40: 2636 if (chandef->center_freq1 > chandef->chan->center_freq) 2637 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2638 else 2639 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2640 break; 2641 case NL80211_CHAN_WIDTH_320: 2642 /* HT information element should not be included on 6GHz */ 2643 WARN_ON(1); 2644 return pos; 2645 default: 2646 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2647 break; 2648 } 2649 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2650 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2651 chandef->width != NL80211_CHAN_WIDTH_20) 2652 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2653 2654 if (rifs_mode) 2655 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2656 2657 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2658 ht_oper->stbc_param = 0x0000; 2659 2660 /* It seems that Basic MCS set and Supported MCS set 2661 are identical for the first 10 bytes */ 2662 memset(&ht_oper->basic_set, 0, 16); 2663 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2664 2665 return pos + sizeof(struct ieee80211_ht_operation); 2666 } 2667 2668 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2669 const struct cfg80211_chan_def *chandef) 2670 { 2671 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2672 *pos++ = 3; /* IE length */ 2673 /* New channel width */ 2674 switch (chandef->width) { 2675 case NL80211_CHAN_WIDTH_80: 2676 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2677 break; 2678 case NL80211_CHAN_WIDTH_160: 2679 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2680 break; 2681 case NL80211_CHAN_WIDTH_80P80: 2682 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2683 break; 2684 case NL80211_CHAN_WIDTH_320: 2685 /* The behavior is not defined for 320 MHz channels */ 2686 WARN_ON(1); 2687 fallthrough; 2688 default: 2689 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2690 } 2691 2692 /* new center frequency segment 0 */ 2693 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2694 /* new center frequency segment 1 */ 2695 if (chandef->center_freq2) 2696 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2697 else 2698 *pos++ = 0; 2699 } 2700 2701 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2702 const struct cfg80211_chan_def *chandef) 2703 { 2704 struct ieee80211_vht_operation *vht_oper; 2705 2706 *pos++ = WLAN_EID_VHT_OPERATION; 2707 *pos++ = sizeof(struct ieee80211_vht_operation); 2708 vht_oper = (struct ieee80211_vht_operation *)pos; 2709 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2710 chandef->center_freq1); 2711 if (chandef->center_freq2) 2712 vht_oper->center_freq_seg1_idx = 2713 ieee80211_frequency_to_channel(chandef->center_freq2); 2714 else 2715 vht_oper->center_freq_seg1_idx = 0x00; 2716 2717 switch (chandef->width) { 2718 case NL80211_CHAN_WIDTH_160: 2719 /* 2720 * Convert 160 MHz channel width to new style as interop 2721 * workaround. 2722 */ 2723 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2724 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2725 if (chandef->chan->center_freq < chandef->center_freq1) 2726 vht_oper->center_freq_seg0_idx -= 8; 2727 else 2728 vht_oper->center_freq_seg0_idx += 8; 2729 break; 2730 case NL80211_CHAN_WIDTH_80P80: 2731 /* 2732 * Convert 80+80 MHz channel width to new style as interop 2733 * workaround. 2734 */ 2735 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2736 break; 2737 case NL80211_CHAN_WIDTH_80: 2738 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2739 break; 2740 case NL80211_CHAN_WIDTH_320: 2741 /* VHT information element should not be included on 6GHz */ 2742 WARN_ON(1); 2743 return pos; 2744 default: 2745 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2746 break; 2747 } 2748 2749 /* don't require special VHT peer rates */ 2750 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2751 2752 return pos + sizeof(struct ieee80211_vht_operation); 2753 } 2754 2755 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2756 { 2757 struct ieee80211_he_operation *he_oper; 2758 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2759 u32 he_oper_params; 2760 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2761 2762 if (chandef->chan->band == NL80211_BAND_6GHZ) 2763 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2764 2765 *pos++ = WLAN_EID_EXTENSION; 2766 *pos++ = ie_len; 2767 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2768 2769 he_oper_params = 0; 2770 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2771 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2772 he_oper_params |= u32_encode_bits(1, 2773 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2774 he_oper_params |= u32_encode_bits(1, 2775 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2776 if (chandef->chan->band == NL80211_BAND_6GHZ) 2777 he_oper_params |= u32_encode_bits(1, 2778 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2779 2780 he_oper = (struct ieee80211_he_operation *)pos; 2781 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2782 2783 /* don't require special HE peer rates */ 2784 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2785 pos += sizeof(struct ieee80211_he_operation); 2786 2787 if (chandef->chan->band != NL80211_BAND_6GHZ) 2788 goto out; 2789 2790 /* TODO add VHT operational */ 2791 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2792 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2793 he_6ghz_op->primary = 2794 ieee80211_frequency_to_channel(chandef->chan->center_freq); 2795 he_6ghz_op->ccfs0 = 2796 ieee80211_frequency_to_channel(chandef->center_freq1); 2797 if (chandef->center_freq2) 2798 he_6ghz_op->ccfs1 = 2799 ieee80211_frequency_to_channel(chandef->center_freq2); 2800 else 2801 he_6ghz_op->ccfs1 = 0; 2802 2803 switch (chandef->width) { 2804 case NL80211_CHAN_WIDTH_320: 2805 /* 2806 * TODO: mesh operation is not defined over 6GHz 320 MHz 2807 * channels. 2808 */ 2809 WARN_ON(1); 2810 break; 2811 case NL80211_CHAN_WIDTH_160: 2812 /* Convert 160 MHz channel width to new style as interop 2813 * workaround. 2814 */ 2815 he_6ghz_op->control = 2816 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2817 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2818 if (chandef->chan->center_freq < chandef->center_freq1) 2819 he_6ghz_op->ccfs0 -= 8; 2820 else 2821 he_6ghz_op->ccfs0 += 8; 2822 fallthrough; 2823 case NL80211_CHAN_WIDTH_80P80: 2824 he_6ghz_op->control = 2825 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2826 break; 2827 case NL80211_CHAN_WIDTH_80: 2828 he_6ghz_op->control = 2829 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2830 break; 2831 case NL80211_CHAN_WIDTH_40: 2832 he_6ghz_op->control = 2833 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2834 break; 2835 default: 2836 he_6ghz_op->control = 2837 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2838 break; 2839 } 2840 2841 pos += sizeof(struct ieee80211_he_6ghz_oper); 2842 2843 out: 2844 return pos; 2845 } 2846 2847 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2848 const struct ieee80211_sta_eht_cap *eht_cap) 2849 2850 { 2851 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2852 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2853 struct ieee80211_eht_operation *eht_oper; 2854 struct ieee80211_eht_operation_info *eht_oper_info; 2855 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2856 u8 eht_oper_info_len = 2857 offsetof(struct ieee80211_eht_operation_info, optional); 2858 u8 chan_width = 0; 2859 2860 *pos++ = WLAN_EID_EXTENSION; 2861 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2862 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2863 2864 eht_oper = (struct ieee80211_eht_operation *)pos; 2865 2866 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2867 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2868 pos += eht_oper_len; 2869 2870 eht_oper_info = 2871 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2872 2873 eht_oper_info->ccfs0 = 2874 ieee80211_frequency_to_channel(chandef->center_freq1); 2875 if (chandef->center_freq2) 2876 eht_oper_info->ccfs1 = 2877 ieee80211_frequency_to_channel(chandef->center_freq2); 2878 else 2879 eht_oper_info->ccfs1 = 0; 2880 2881 switch (chandef->width) { 2882 case NL80211_CHAN_WIDTH_320: 2883 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2884 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2885 if (chandef->chan->center_freq < chandef->center_freq1) 2886 eht_oper_info->ccfs0 -= 16; 2887 else 2888 eht_oper_info->ccfs0 += 16; 2889 break; 2890 case NL80211_CHAN_WIDTH_160: 2891 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2892 if (chandef->chan->center_freq < chandef->center_freq1) 2893 eht_oper_info->ccfs0 -= 8; 2894 else 2895 eht_oper_info->ccfs0 += 8; 2896 fallthrough; 2897 case NL80211_CHAN_WIDTH_80P80: 2898 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2899 break; 2900 case NL80211_CHAN_WIDTH_80: 2901 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2902 break; 2903 case NL80211_CHAN_WIDTH_40: 2904 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2905 break; 2906 default: 2907 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2908 break; 2909 } 2910 eht_oper_info->control = chan_width; 2911 pos += eht_oper_info_len; 2912 2913 /* TODO: eht_oper_info->optional */ 2914 2915 return pos; 2916 } 2917 2918 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2919 struct cfg80211_chan_def *chandef) 2920 { 2921 enum nl80211_channel_type channel_type; 2922 2923 if (!ht_oper) 2924 return false; 2925 2926 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2927 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2928 channel_type = NL80211_CHAN_HT20; 2929 break; 2930 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2931 channel_type = NL80211_CHAN_HT40PLUS; 2932 break; 2933 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2934 channel_type = NL80211_CHAN_HT40MINUS; 2935 break; 2936 default: 2937 return false; 2938 } 2939 2940 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2941 return true; 2942 } 2943 2944 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2945 const struct ieee80211_vht_operation *oper, 2946 const struct ieee80211_ht_operation *htop, 2947 struct cfg80211_chan_def *chandef) 2948 { 2949 struct cfg80211_chan_def new = *chandef; 2950 int cf0, cf1; 2951 int ccfs0, ccfs1, ccfs2; 2952 int ccf0, ccf1; 2953 u32 vht_cap; 2954 bool support_80_80 = false; 2955 bool support_160 = false; 2956 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2957 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2958 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2959 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2960 2961 if (!oper || !htop) 2962 return false; 2963 2964 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2965 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2966 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2967 support_80_80 = ((vht_cap & 2968 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2969 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2970 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2971 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2972 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2973 ccfs0 = oper->center_freq_seg0_idx; 2974 ccfs1 = oper->center_freq_seg1_idx; 2975 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2976 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2977 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2978 2979 ccf0 = ccfs0; 2980 2981 /* if not supported, parse as though we didn't understand it */ 2982 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 2983 ext_nss_bw_supp = 0; 2984 2985 /* 2986 * Cf. IEEE 802.11 Table 9-250 2987 * 2988 * We really just consider that because it's inefficient to connect 2989 * at a higher bandwidth than we'll actually be able to use. 2990 */ 2991 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 2992 default: 2993 case 0x00: 2994 ccf1 = 0; 2995 support_160 = false; 2996 support_80_80 = false; 2997 break; 2998 case 0x01: 2999 support_80_80 = false; 3000 fallthrough; 3001 case 0x02: 3002 case 0x03: 3003 ccf1 = ccfs2; 3004 break; 3005 case 0x10: 3006 ccf1 = ccfs1; 3007 break; 3008 case 0x11: 3009 case 0x12: 3010 if (!ccfs1) 3011 ccf1 = ccfs2; 3012 else 3013 ccf1 = ccfs1; 3014 break; 3015 case 0x13: 3016 case 0x20: 3017 case 0x23: 3018 ccf1 = ccfs1; 3019 break; 3020 } 3021 3022 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3023 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3024 3025 switch (oper->chan_width) { 3026 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3027 /* just use HT information directly */ 3028 break; 3029 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3030 new.width = NL80211_CHAN_WIDTH_80; 3031 new.center_freq1 = cf0; 3032 /* If needed, adjust based on the newer interop workaround. */ 3033 if (ccf1) { 3034 unsigned int diff; 3035 3036 diff = abs(ccf1 - ccf0); 3037 if ((diff == 8) && support_160) { 3038 new.width = NL80211_CHAN_WIDTH_160; 3039 new.center_freq1 = cf1; 3040 } else if ((diff > 8) && support_80_80) { 3041 new.width = NL80211_CHAN_WIDTH_80P80; 3042 new.center_freq2 = cf1; 3043 } 3044 } 3045 break; 3046 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3047 /* deprecated encoding */ 3048 new.width = NL80211_CHAN_WIDTH_160; 3049 new.center_freq1 = cf0; 3050 break; 3051 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3052 /* deprecated encoding */ 3053 new.width = NL80211_CHAN_WIDTH_80P80; 3054 new.center_freq1 = cf0; 3055 new.center_freq2 = cf1; 3056 break; 3057 default: 3058 return false; 3059 } 3060 3061 if (!cfg80211_chandef_valid(&new)) 3062 return false; 3063 3064 *chandef = new; 3065 return true; 3066 } 3067 3068 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3069 struct cfg80211_chan_def *chandef) 3070 { 3071 chandef->center_freq1 = 3072 ieee80211_channel_to_frequency(info->ccfs0, 3073 chandef->chan->band); 3074 3075 switch (u8_get_bits(info->control, 3076 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3077 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3078 chandef->width = NL80211_CHAN_WIDTH_20; 3079 break; 3080 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3081 chandef->width = NL80211_CHAN_WIDTH_40; 3082 break; 3083 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3084 chandef->width = NL80211_CHAN_WIDTH_80; 3085 break; 3086 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3087 chandef->width = NL80211_CHAN_WIDTH_160; 3088 chandef->center_freq1 = 3089 ieee80211_channel_to_frequency(info->ccfs1, 3090 chandef->chan->band); 3091 break; 3092 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3093 chandef->width = NL80211_CHAN_WIDTH_320; 3094 chandef->center_freq1 = 3095 ieee80211_channel_to_frequency(info->ccfs1, 3096 chandef->chan->band); 3097 break; 3098 } 3099 } 3100 3101 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3102 const struct ieee80211_he_operation *he_oper, 3103 const struct ieee80211_eht_operation *eht_oper, 3104 struct cfg80211_chan_def *chandef) 3105 { 3106 struct cfg80211_chan_def he_chandef = *chandef; 3107 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3108 u32 freq; 3109 3110 if (chandef->chan->band != NL80211_BAND_6GHZ) 3111 return true; 3112 3113 if (!he_oper) 3114 return false; 3115 3116 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3117 if (!he_6ghz_oper) 3118 return false; 3119 3120 /* 3121 * The EHT operation IE does not contain the primary channel so the 3122 * primary channel frequency should be taken from the 6 GHz operation 3123 * information. 3124 */ 3125 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3126 NL80211_BAND_6GHZ); 3127 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3128 3129 if (!he_chandef.chan) 3130 return false; 3131 3132 if (!eht_oper || 3133 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3134 switch (u8_get_bits(he_6ghz_oper->control, 3135 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3136 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3137 he_chandef.width = NL80211_CHAN_WIDTH_20; 3138 break; 3139 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3140 he_chandef.width = NL80211_CHAN_WIDTH_40; 3141 break; 3142 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3143 he_chandef.width = NL80211_CHAN_WIDTH_80; 3144 break; 3145 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3146 he_chandef.width = NL80211_CHAN_WIDTH_80; 3147 if (!he_6ghz_oper->ccfs1) 3148 break; 3149 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3150 he_chandef.width = NL80211_CHAN_WIDTH_160; 3151 else 3152 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3153 break; 3154 } 3155 3156 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3157 he_chandef.center_freq1 = 3158 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3159 NL80211_BAND_6GHZ); 3160 } else { 3161 he_chandef.center_freq1 = 3162 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3163 NL80211_BAND_6GHZ); 3164 he_chandef.center_freq2 = 3165 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3166 NL80211_BAND_6GHZ); 3167 } 3168 } else { 3169 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3170 &he_chandef); 3171 he_chandef.punctured = 3172 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3173 } 3174 3175 if (!cfg80211_chandef_valid(&he_chandef)) 3176 return false; 3177 3178 *chandef = he_chandef; 3179 3180 return true; 3181 } 3182 3183 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3184 struct cfg80211_chan_def *chandef) 3185 { 3186 u32 oper_freq; 3187 3188 if (!oper) 3189 return false; 3190 3191 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3192 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3193 chandef->width = NL80211_CHAN_WIDTH_1; 3194 break; 3195 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3196 chandef->width = NL80211_CHAN_WIDTH_2; 3197 break; 3198 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3199 chandef->width = NL80211_CHAN_WIDTH_4; 3200 break; 3201 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3202 chandef->width = NL80211_CHAN_WIDTH_8; 3203 break; 3204 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3205 chandef->width = NL80211_CHAN_WIDTH_16; 3206 break; 3207 default: 3208 return false; 3209 } 3210 3211 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3212 NL80211_BAND_S1GHZ); 3213 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3214 chandef->freq1_offset = oper_freq % 1000; 3215 3216 return true; 3217 } 3218 3219 int ieee80211_put_srates_elem(struct sk_buff *skb, 3220 const struct ieee80211_supported_band *sband, 3221 u32 basic_rates, u32 rate_flags, u32 masked_rates, 3222 u8 element_id) 3223 { 3224 u8 i, rates, skip; 3225 3226 rates = 0; 3227 for (i = 0; i < sband->n_bitrates; i++) { 3228 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3229 continue; 3230 if (masked_rates & BIT(i)) 3231 continue; 3232 rates++; 3233 } 3234 3235 if (element_id == WLAN_EID_SUPP_RATES) { 3236 rates = min_t(u8, rates, 8); 3237 skip = 0; 3238 } else { 3239 skip = 8; 3240 if (rates <= skip) 3241 return 0; 3242 rates -= skip; 3243 } 3244 3245 if (skb_tailroom(skb) < rates + 2) 3246 return -ENOBUFS; 3247 3248 skb_put_u8(skb, element_id); 3249 skb_put_u8(skb, rates); 3250 3251 for (i = 0; i < sband->n_bitrates && rates; i++) { 3252 int rate; 3253 u8 basic; 3254 3255 if ((rate_flags & sband->bitrates[i].flags) != rate_flags) 3256 continue; 3257 if (masked_rates & BIT(i)) 3258 continue; 3259 3260 if (skip > 0) { 3261 skip--; 3262 continue; 3263 } 3264 3265 basic = basic_rates & BIT(i) ? 0x80 : 0; 3266 3267 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3268 skb_put_u8(skb, basic | (u8)rate); 3269 rates--; 3270 } 3271 3272 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3273 rates, element_id); 3274 3275 return 0; 3276 } 3277 3278 int ieee80211_ave_rssi(struct ieee80211_vif *vif) 3279 { 3280 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3281 3282 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3283 return 0; 3284 3285 return -ewma_beacon_signal_read(&sdata->deflink.u.mgd.ave_beacon_signal); 3286 } 3287 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3288 3289 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3290 { 3291 if (!mcs) 3292 return 1; 3293 3294 /* TODO: consider rx_highest */ 3295 3296 if (mcs->rx_mask[3]) 3297 return 4; 3298 if (mcs->rx_mask[2]) 3299 return 3; 3300 if (mcs->rx_mask[1]) 3301 return 2; 3302 return 1; 3303 } 3304 3305 /** 3306 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3307 * @local: mac80211 hw info struct 3308 * @status: RX status 3309 * @mpdu_len: total MPDU length (including FCS) 3310 * @mpdu_offset: offset into MPDU to calculate timestamp at 3311 * 3312 * This function calculates the RX timestamp at the given MPDU offset, taking 3313 * into account what the RX timestamp was. An offset of 0 will just normalize 3314 * the timestamp to TSF at beginning of MPDU reception. 3315 * 3316 * Returns: the calculated timestamp 3317 */ 3318 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3319 struct ieee80211_rx_status *status, 3320 unsigned int mpdu_len, 3321 unsigned int mpdu_offset) 3322 { 3323 u64 ts = status->mactime; 3324 bool mactime_plcp_start; 3325 struct rate_info ri; 3326 u16 rate; 3327 u8 n_ltf; 3328 3329 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3330 return 0; 3331 3332 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3333 RX_FLAG_MACTIME_PLCP_START; 3334 3335 memset(&ri, 0, sizeof(ri)); 3336 3337 ri.bw = status->bw; 3338 3339 /* Fill cfg80211 rate info */ 3340 switch (status->encoding) { 3341 case RX_ENC_EHT: 3342 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3343 ri.mcs = status->rate_idx; 3344 ri.nss = status->nss; 3345 ri.eht_ru_alloc = status->eht.ru; 3346 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3347 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3348 /* TODO/FIXME: is this right? handle other PPDUs */ 3349 if (mactime_plcp_start) { 3350 mpdu_offset += 2; 3351 ts += 36; 3352 } 3353 break; 3354 case RX_ENC_HE: 3355 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3356 ri.mcs = status->rate_idx; 3357 ri.nss = status->nss; 3358 ri.he_ru_alloc = status->he_ru; 3359 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3360 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3361 3362 /* 3363 * See P802.11ax_D6.0, section 27.3.4 for 3364 * VHT PPDU format. 3365 */ 3366 if (mactime_plcp_start) { 3367 mpdu_offset += 2; 3368 ts += 36; 3369 3370 /* 3371 * TODO: 3372 * For HE MU PPDU, add the HE-SIG-B. 3373 * For HE ER PPDU, add 8us for the HE-SIG-A. 3374 * For HE TB PPDU, add 4us for the HE-STF. 3375 * Add the HE-LTF durations - variable. 3376 */ 3377 } 3378 3379 break; 3380 case RX_ENC_HT: 3381 ri.mcs = status->rate_idx; 3382 ri.flags |= RATE_INFO_FLAGS_MCS; 3383 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3384 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3385 3386 /* 3387 * See P802.11REVmd_D3.0, section 19.3.2 for 3388 * HT PPDU format. 3389 */ 3390 if (mactime_plcp_start) { 3391 mpdu_offset += 2; 3392 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3393 ts += 24; 3394 else 3395 ts += 32; 3396 3397 /* 3398 * Add Data HT-LTFs per streams 3399 * TODO: add Extension HT-LTFs, 4us per LTF 3400 */ 3401 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3402 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3403 ts += n_ltf * 4; 3404 } 3405 3406 break; 3407 case RX_ENC_VHT: 3408 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3409 ri.mcs = status->rate_idx; 3410 ri.nss = status->nss; 3411 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3412 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3413 3414 /* 3415 * See P802.11REVmd_D3.0, section 21.3.2 for 3416 * VHT PPDU format. 3417 */ 3418 if (mactime_plcp_start) { 3419 mpdu_offset += 2; 3420 ts += 36; 3421 3422 /* 3423 * Add VHT-LTFs per streams 3424 */ 3425 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3426 ri.nss + 1 : ri.nss; 3427 ts += 4 * n_ltf; 3428 } 3429 3430 break; 3431 default: 3432 WARN_ON(1); 3433 fallthrough; 3434 case RX_ENC_LEGACY: { 3435 struct ieee80211_supported_band *sband; 3436 3437 sband = local->hw.wiphy->bands[status->band]; 3438 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3439 3440 if (mactime_plcp_start) { 3441 if (status->band == NL80211_BAND_5GHZ) { 3442 ts += 20; 3443 mpdu_offset += 2; 3444 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3445 ts += 96; 3446 } else { 3447 ts += 192; 3448 } 3449 } 3450 break; 3451 } 3452 } 3453 3454 rate = cfg80211_calculate_bitrate(&ri); 3455 if (WARN_ONCE(!rate, 3456 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3457 (unsigned long long)status->flag, status->rate_idx, 3458 status->nss)) 3459 return 0; 3460 3461 /* rewind from end of MPDU */ 3462 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3463 ts -= mpdu_len * 8 * 10 / rate; 3464 3465 ts += mpdu_offset * 8 * 10 / rate; 3466 3467 return ts; 3468 } 3469 3470 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3471 * also provided, only the interfaces using that ctx will be canceled. 3472 */ 3473 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3474 struct ieee80211_chanctx *ctx) 3475 { 3476 struct ieee80211_sub_if_data *sdata; 3477 struct cfg80211_chan_def chandef; 3478 struct ieee80211_link_data *link; 3479 struct ieee80211_chanctx_conf *chanctx_conf; 3480 unsigned int link_id; 3481 3482 lockdep_assert_wiphy(local->hw.wiphy); 3483 3484 list_for_each_entry(sdata, &local->interfaces, list) { 3485 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3486 link_id++) { 3487 link = sdata_dereference(sdata->link[link_id], 3488 sdata); 3489 if (!link) 3490 continue; 3491 3492 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3493 sdata); 3494 if (ctx && &ctx->conf != chanctx_conf) 3495 continue; 3496 3497 wiphy_delayed_work_cancel(local->hw.wiphy, 3498 &link->dfs_cac_timer_work); 3499 3500 if (!sdata->wdev.links[link_id].cac_started) 3501 continue; 3502 3503 chandef = link->conf->chanreq.oper; 3504 ieee80211_link_release_channel(link); 3505 cfg80211_cac_event(sdata->dev, &chandef, 3506 NL80211_RADAR_CAC_ABORTED, 3507 GFP_KERNEL, link_id); 3508 } 3509 } 3510 } 3511 3512 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3513 struct wiphy_work *work) 3514 { 3515 struct ieee80211_local *local = 3516 container_of(work, struct ieee80211_local, radar_detected_work); 3517 struct cfg80211_chan_def chandef; 3518 struct ieee80211_chanctx *ctx; 3519 3520 lockdep_assert_wiphy(local->hw.wiphy); 3521 3522 list_for_each_entry(ctx, &local->chanctx_list, list) { 3523 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3524 continue; 3525 3526 if (!ctx->radar_detected) 3527 continue; 3528 3529 ctx->radar_detected = false; 3530 3531 chandef = ctx->conf.def; 3532 3533 ieee80211_dfs_cac_cancel(local, ctx); 3534 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3535 } 3536 } 3537 3538 static void 3539 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3540 struct ieee80211_chanctx_conf *chanctx_conf, 3541 void *data) 3542 { 3543 struct ieee80211_chanctx *ctx = 3544 container_of(chanctx_conf, struct ieee80211_chanctx, 3545 conf); 3546 3547 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3548 return; 3549 3550 if (data && data != chanctx_conf) 3551 return; 3552 3553 ctx->radar_detected = true; 3554 } 3555 3556 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3557 struct ieee80211_chanctx_conf *chanctx_conf) 3558 { 3559 struct ieee80211_local *local = hw_to_local(hw); 3560 3561 trace_api_radar_detected(local); 3562 3563 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3564 chanctx_conf); 3565 3566 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3567 } 3568 EXPORT_SYMBOL(ieee80211_radar_detected); 3569 3570 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3571 struct ieee80211_conn_settings *conn) 3572 { 3573 enum nl80211_chan_width new_primary_width; 3574 struct ieee80211_conn_settings _ignored = {}; 3575 3576 /* allow passing NULL if caller doesn't care */ 3577 if (!conn) 3578 conn = &_ignored; 3579 3580 again: 3581 /* no-HT indicates nothing to do */ 3582 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3583 3584 switch (c->width) { 3585 default: 3586 case NL80211_CHAN_WIDTH_20_NOHT: 3587 WARN_ON_ONCE(1); 3588 fallthrough; 3589 case NL80211_CHAN_WIDTH_20: 3590 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3591 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3592 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3593 c->punctured = 0; 3594 break; 3595 case NL80211_CHAN_WIDTH_40: 3596 c->width = NL80211_CHAN_WIDTH_20; 3597 c->center_freq1 = c->chan->center_freq; 3598 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3599 conn->mode = IEEE80211_CONN_MODE_HT; 3600 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3601 c->punctured = 0; 3602 break; 3603 case NL80211_CHAN_WIDTH_80: 3604 new_primary_width = NL80211_CHAN_WIDTH_40; 3605 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3606 conn->mode = IEEE80211_CONN_MODE_HT; 3607 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3608 break; 3609 case NL80211_CHAN_WIDTH_80P80: 3610 c->center_freq2 = 0; 3611 c->width = NL80211_CHAN_WIDTH_80; 3612 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3613 break; 3614 case NL80211_CHAN_WIDTH_160: 3615 new_primary_width = NL80211_CHAN_WIDTH_80; 3616 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3617 break; 3618 case NL80211_CHAN_WIDTH_320: 3619 new_primary_width = NL80211_CHAN_WIDTH_160; 3620 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3621 break; 3622 case NL80211_CHAN_WIDTH_1: 3623 case NL80211_CHAN_WIDTH_2: 3624 case NL80211_CHAN_WIDTH_4: 3625 case NL80211_CHAN_WIDTH_8: 3626 case NL80211_CHAN_WIDTH_16: 3627 WARN_ON_ONCE(1); 3628 /* keep c->width */ 3629 conn->mode = IEEE80211_CONN_MODE_S1G; 3630 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3631 break; 3632 case NL80211_CHAN_WIDTH_5: 3633 case NL80211_CHAN_WIDTH_10: 3634 WARN_ON_ONCE(1); 3635 /* keep c->width */ 3636 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3637 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3638 break; 3639 } 3640 3641 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3642 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3643 &c->punctured); 3644 c->width = new_primary_width; 3645 } 3646 3647 /* 3648 * With an 80 MHz channel, we might have the puncturing in the primary 3649 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3650 * In that case, downgrade again. 3651 */ 3652 if (!cfg80211_chandef_valid(c) && c->punctured) 3653 goto again; 3654 3655 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3656 } 3657 3658 /* 3659 * Returns true if smps_mode_new is strictly more restrictive than 3660 * smps_mode_old. 3661 */ 3662 bool ieee80211_smps_is_restrictive(enum ieee80211_smps_mode smps_mode_old, 3663 enum ieee80211_smps_mode smps_mode_new) 3664 { 3665 if (WARN_ON_ONCE(smps_mode_old == IEEE80211_SMPS_AUTOMATIC || 3666 smps_mode_new == IEEE80211_SMPS_AUTOMATIC)) 3667 return false; 3668 3669 switch (smps_mode_old) { 3670 case IEEE80211_SMPS_STATIC: 3671 return false; 3672 case IEEE80211_SMPS_DYNAMIC: 3673 return smps_mode_new == IEEE80211_SMPS_STATIC; 3674 case IEEE80211_SMPS_OFF: 3675 return smps_mode_new != IEEE80211_SMPS_OFF; 3676 default: 3677 WARN_ON(1); 3678 } 3679 3680 return false; 3681 } 3682 3683 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3684 struct cfg80211_csa_settings *csa_settings) 3685 { 3686 struct sk_buff *skb; 3687 struct ieee80211_mgmt *mgmt; 3688 struct ieee80211_local *local = sdata->local; 3689 int freq; 3690 int hdr_len = offsetofend(struct ieee80211_mgmt, 3691 u.action.u.chan_switch); 3692 u8 *pos; 3693 3694 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3695 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3696 return -EOPNOTSUPP; 3697 3698 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3699 5 + /* channel switch announcement element */ 3700 3 + /* secondary channel offset element */ 3701 5 + /* wide bandwidth channel switch announcement */ 3702 8); /* mesh channel switch parameters element */ 3703 if (!skb) 3704 return -ENOMEM; 3705 3706 skb_reserve(skb, local->tx_headroom); 3707 mgmt = skb_put_zero(skb, hdr_len); 3708 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3709 IEEE80211_STYPE_ACTION); 3710 3711 eth_broadcast_addr(mgmt->da); 3712 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3713 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3714 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3715 } else { 3716 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3717 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3718 } 3719 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3720 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3721 pos = skb_put(skb, 5); 3722 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3723 *pos++ = 3; /* IE length */ 3724 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3725 freq = csa_settings->chandef.chan->center_freq; 3726 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3727 *pos++ = csa_settings->count; /* count */ 3728 3729 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3730 enum nl80211_channel_type ch_type; 3731 3732 skb_put(skb, 3); 3733 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3734 *pos++ = 1; /* IE length */ 3735 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3736 if (ch_type == NL80211_CHAN_HT40PLUS) 3737 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3738 else 3739 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3740 } 3741 3742 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3743 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3744 3745 skb_put(skb, 8); 3746 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3747 *pos++ = 6; /* IE length */ 3748 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3749 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3750 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3751 *pos++ |= csa_settings->block_tx ? 3752 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3753 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3754 pos += 2; 3755 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3756 pos += 2; 3757 } 3758 3759 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3760 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3761 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3762 skb_put(skb, 5); 3763 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3764 } 3765 3766 ieee80211_tx_skb(sdata, skb); 3767 return 0; 3768 } 3769 3770 static bool 3771 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3772 { 3773 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3774 int skip; 3775 3776 if (end > 0) 3777 return false; 3778 3779 /* One shot NOA */ 3780 if (data->count[i] == 1) 3781 return false; 3782 3783 if (data->desc[i].interval == 0) 3784 return false; 3785 3786 /* End time is in the past, check for repetitions */ 3787 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3788 if (data->count[i] < 255) { 3789 if (data->count[i] <= skip) { 3790 data->count[i] = 0; 3791 return false; 3792 } 3793 3794 data->count[i] -= skip; 3795 } 3796 3797 data->desc[i].start += skip * data->desc[i].interval; 3798 3799 return true; 3800 } 3801 3802 static bool 3803 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3804 s32 *offset) 3805 { 3806 bool ret = false; 3807 int i; 3808 3809 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3810 s32 cur; 3811 3812 if (!data->count[i]) 3813 continue; 3814 3815 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3816 ret = true; 3817 3818 cur = data->desc[i].start - tsf; 3819 if (cur > *offset) 3820 continue; 3821 3822 cur = data->desc[i].start + data->desc[i].duration - tsf; 3823 if (cur > *offset) 3824 *offset = cur; 3825 } 3826 3827 return ret; 3828 } 3829 3830 static u32 3831 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3832 { 3833 s32 offset = 0; 3834 int tries = 0; 3835 /* 3836 * arbitrary limit, used to avoid infinite loops when combined NoA 3837 * descriptors cover the full time period. 3838 */ 3839 int max_tries = 5; 3840 3841 ieee80211_extend_absent_time(data, tsf, &offset); 3842 do { 3843 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3844 break; 3845 3846 tries++; 3847 } while (tries < max_tries); 3848 3849 return offset; 3850 } 3851 3852 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3853 { 3854 u32 next_offset = BIT(31) - 1; 3855 int i; 3856 3857 data->absent = 0; 3858 data->has_next_tsf = false; 3859 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3860 s32 start; 3861 3862 if (!data->count[i]) 3863 continue; 3864 3865 ieee80211_extend_noa_desc(data, tsf, i); 3866 start = data->desc[i].start - tsf; 3867 if (start <= 0) 3868 data->absent |= BIT(i); 3869 3870 if (next_offset > start) 3871 next_offset = start; 3872 3873 data->has_next_tsf = true; 3874 } 3875 3876 if (data->absent) 3877 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3878 3879 data->next_tsf = tsf + next_offset; 3880 } 3881 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3882 3883 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3884 struct ieee80211_noa_data *data, u32 tsf) 3885 { 3886 int ret = 0; 3887 int i; 3888 3889 memset(data, 0, sizeof(*data)); 3890 3891 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3892 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3893 3894 if (!desc->count || !desc->duration) 3895 continue; 3896 3897 data->count[i] = desc->count; 3898 data->desc[i].start = le32_to_cpu(desc->start_time); 3899 data->desc[i].duration = le32_to_cpu(desc->duration); 3900 data->desc[i].interval = le32_to_cpu(desc->interval); 3901 3902 if (data->count[i] > 1 && 3903 data->desc[i].interval < data->desc[i].duration) 3904 continue; 3905 3906 ieee80211_extend_noa_desc(data, tsf, i); 3907 ret++; 3908 } 3909 3910 if (ret) 3911 ieee80211_update_p2p_noa(data, tsf); 3912 3913 return ret; 3914 } 3915 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3916 3917 void ieee80211_recalc_dtim(struct ieee80211_local *local, 3918 struct ieee80211_sub_if_data *sdata) 3919 { 3920 u64 tsf = drv_get_tsf(local, sdata); 3921 u64 dtim_count = 0; 3922 u16 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3923 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3924 struct ps_data *ps; 3925 u8 bcns_from_dtim; 3926 3927 if (tsf == -1ULL || !beacon_int || !dtim_period) 3928 return; 3929 3930 if (sdata->vif.type == NL80211_IFTYPE_AP || 3931 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3932 if (!sdata->bss) 3933 return; 3934 3935 ps = &sdata->bss->ps; 3936 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3937 ps = &sdata->u.mesh.ps; 3938 } else { 3939 return; 3940 } 3941 3942 /* 3943 * actually finds last dtim_count, mac80211 will update in 3944 * __beacon_add_tim(). 3945 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3946 */ 3947 do_div(tsf, beacon_int); 3948 bcns_from_dtim = do_div(tsf, dtim_period); 3949 /* just had a DTIM */ 3950 if (!bcns_from_dtim) 3951 dtim_count = 0; 3952 else 3953 dtim_count = dtim_period - bcns_from_dtim; 3954 3955 ps->dtim_count = dtim_count; 3956 } 3957 3958 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3959 struct ieee80211_chanctx *ctx) 3960 { 3961 struct ieee80211_link_data *link; 3962 u8 radar_detect = 0; 3963 3964 lockdep_assert_wiphy(local->hw.wiphy); 3965 3966 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3967 return 0; 3968 3969 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3970 if (link->reserved_radar_required) 3971 radar_detect |= BIT(link->reserved.oper.width); 3972 3973 /* 3974 * An in-place reservation context should not have any assigned vifs 3975 * until it replaces the other context. 3976 */ 3977 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 3978 !list_empty(&ctx->assigned_links)); 3979 3980 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 3981 if (!link->radar_required) 3982 continue; 3983 3984 radar_detect |= 3985 BIT(link->conf->chanreq.oper.width); 3986 } 3987 3988 return radar_detect; 3989 } 3990 3991 static u32 3992 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 3993 { 3994 struct ieee80211_bss_conf *link_conf; 3995 struct ieee80211_chanctx_conf *conf; 3996 unsigned int link_id; 3997 u32 mask = 0; 3998 3999 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 4000 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 4001 if (!conf || conf->radio_idx < 0) 4002 continue; 4003 4004 mask |= BIT(conf->radio_idx); 4005 } 4006 4007 return mask; 4008 } 4009 4010 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4011 { 4012 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4013 4014 return __ieee80211_get_radio_mask(sdata); 4015 } 4016 4017 static bool 4018 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4019 { 4020 if (radio_idx < 0) 4021 return true; 4022 4023 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4024 } 4025 4026 static int 4027 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4028 struct iface_combination_params *params, 4029 const struct cfg80211_chan_def *chandef, 4030 struct ieee80211_sub_if_data *sdata) 4031 { 4032 struct ieee80211_sub_if_data *sdata_iter; 4033 struct ieee80211_chanctx *ctx; 4034 int total = !!sdata; 4035 4036 list_for_each_entry(ctx, &local->chanctx_list, list) { 4037 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4038 continue; 4039 4040 if (params->radio_idx >= 0 && 4041 ctx->conf.radio_idx != params->radio_idx) 4042 continue; 4043 4044 params->radar_detect |= 4045 ieee80211_chanctx_radar_detect(local, ctx); 4046 4047 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4048 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4049 continue; 4050 4051 params->num_different_channels++; 4052 } 4053 4054 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4055 struct wireless_dev *wdev_iter; 4056 4057 wdev_iter = &sdata_iter->wdev; 4058 4059 if (sdata_iter == sdata || 4060 !ieee80211_sdata_running(sdata_iter) || 4061 cfg80211_iftype_allowed(local->hw.wiphy, 4062 wdev_iter->iftype, 0, 1)) 4063 continue; 4064 4065 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4066 continue; 4067 4068 params->iftype_num[wdev_iter->iftype]++; 4069 total++; 4070 } 4071 4072 return total; 4073 } 4074 4075 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4076 const struct cfg80211_chan_def *chandef, 4077 enum ieee80211_chanctx_mode chanmode, 4078 u8 radar_detect, int radio_idx) 4079 { 4080 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4081 struct ieee80211_local *local = sdata->local; 4082 enum nl80211_iftype iftype = sdata->wdev.iftype; 4083 struct iface_combination_params params = { 4084 .radar_detect = radar_detect, 4085 .radio_idx = radio_idx, 4086 }; 4087 int total; 4088 4089 lockdep_assert_wiphy(local->hw.wiphy); 4090 4091 if (WARN_ON(hweight32(radar_detect) > 1)) 4092 return -EINVAL; 4093 4094 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4095 !chandef->chan)) 4096 return -EINVAL; 4097 4098 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4099 return -EINVAL; 4100 4101 if (sdata->vif.type == NL80211_IFTYPE_AP || 4102 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4103 /* 4104 * always passing this is harmless, since it'll be the 4105 * same value that cfg80211 finds if it finds the same 4106 * interface ... and that's always allowed 4107 */ 4108 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4109 } 4110 4111 /* Always allow software iftypes */ 4112 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4113 if (radar_detect) 4114 return -EINVAL; 4115 return 0; 4116 } 4117 4118 if (chandef) 4119 params.num_different_channels = 1; 4120 4121 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4122 params.iftype_num[iftype] = 1; 4123 4124 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4125 shared ? chandef : NULL, 4126 sdata); 4127 if (total == 1 && !params.radar_detect) 4128 return 0; 4129 4130 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4131 } 4132 4133 static void 4134 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4135 void *data) 4136 { 4137 u32 *max_num_different_channels = data; 4138 4139 *max_num_different_channels = max(*max_num_different_channels, 4140 c->num_different_channels); 4141 } 4142 4143 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4144 { 4145 u32 max_num_different_channels = 1; 4146 int err; 4147 struct iface_combination_params params = { 4148 .radio_idx = radio_idx, 4149 }; 4150 4151 lockdep_assert_wiphy(local->hw.wiphy); 4152 4153 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4154 4155 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4156 ieee80211_iter_max_chans, 4157 &max_num_different_channels); 4158 if (err < 0) 4159 return err; 4160 4161 return max_num_different_channels; 4162 } 4163 4164 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4165 struct ieee80211_sta_s1g_cap *caps, 4166 struct sk_buff *skb) 4167 { 4168 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4169 struct ieee80211_s1g_cap s1g_capab; 4170 u8 *pos; 4171 int i; 4172 4173 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4174 return; 4175 4176 if (!caps->s1g) 4177 return; 4178 4179 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4180 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4181 4182 /* override the capability info */ 4183 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4184 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4185 4186 s1g_capab.capab_info[i] &= ~mask; 4187 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4188 } 4189 4190 /* then MCS and NSS set */ 4191 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4192 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4193 4194 s1g_capab.supp_mcs_nss[i] &= ~mask; 4195 s1g_capab.supp_mcs_nss[i] |= 4196 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4197 } 4198 4199 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4200 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4201 *pos++ = sizeof(s1g_capab); 4202 4203 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4204 } 4205 4206 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4207 struct sk_buff *skb) 4208 { 4209 u8 *pos = skb_put(skb, 3); 4210 4211 *pos++ = WLAN_EID_AID_REQUEST; 4212 *pos++ = 1; 4213 *pos++ = 0; 4214 } 4215 4216 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4217 { 4218 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4219 *buf++ = 7; /* len */ 4220 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4221 *buf++ = 0x50; 4222 *buf++ = 0xf2; 4223 *buf++ = 2; /* WME */ 4224 *buf++ = 0; /* WME info */ 4225 *buf++ = 1; /* WME ver */ 4226 *buf++ = qosinfo; /* U-APSD no in use */ 4227 4228 return buf; 4229 } 4230 4231 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4232 unsigned long *frame_cnt, 4233 unsigned long *byte_cnt) 4234 { 4235 struct txq_info *txqi = to_txq_info(txq); 4236 u32 frag_cnt = 0, frag_bytes = 0; 4237 struct sk_buff *skb; 4238 4239 skb_queue_walk(&txqi->frags, skb) { 4240 frag_cnt++; 4241 frag_bytes += skb->len; 4242 } 4243 4244 if (frame_cnt) 4245 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4246 4247 if (byte_cnt) 4248 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4249 } 4250 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4251 4252 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4253 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4254 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4255 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4256 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4257 }; 4258 4259 u16 ieee80211_encode_usf(int listen_interval) 4260 { 4261 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4262 u16 ui, usf = 0; 4263 4264 /* find greatest USF */ 4265 while (usf < IEEE80211_MAX_USF) { 4266 if (listen_interval % listen_int_usf[usf + 1]) 4267 break; 4268 usf += 1; 4269 } 4270 ui = listen_interval / listen_int_usf[usf]; 4271 4272 /* error if there is a remainder. Should've been checked by user */ 4273 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4274 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4275 FIELD_PREP(LISTEN_INT_UI, ui); 4276 4277 return (u16) listen_interval; 4278 } 4279 4280 /* this may return more than ieee80211_put_eht_cap() will need */ 4281 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4282 { 4283 const struct ieee80211_sta_he_cap *he_cap; 4284 const struct ieee80211_sta_eht_cap *eht_cap; 4285 struct ieee80211_supported_band *sband; 4286 bool is_ap; 4287 u8 n; 4288 4289 sband = ieee80211_get_sband(sdata); 4290 if (!sband) 4291 return 0; 4292 4293 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4294 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4295 if (!he_cap || !eht_cap) 4296 return 0; 4297 4298 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4299 4300 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4301 &eht_cap->eht_cap_elem, 4302 is_ap); 4303 return 2 + 1 + 4304 sizeof(eht_cap->eht_cap_elem) + n + 4305 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4306 eht_cap->eht_cap_elem.phy_cap_info); 4307 return 0; 4308 } 4309 4310 int ieee80211_put_eht_cap(struct sk_buff *skb, 4311 struct ieee80211_sub_if_data *sdata, 4312 const struct ieee80211_supported_band *sband, 4313 const struct ieee80211_conn_settings *conn) 4314 { 4315 const struct ieee80211_sta_he_cap *he_cap = 4316 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4317 const struct ieee80211_sta_eht_cap *eht_cap = 4318 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4319 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4320 struct ieee80211_eht_cap_elem_fixed fixed; 4321 struct ieee80211_he_cap_elem he; 4322 u8 mcs_nss_len, ppet_len; 4323 u8 orig_mcs_nss_len; 4324 u8 ie_len; 4325 4326 if (!conn) 4327 conn = &ieee80211_conn_settings_unlimited; 4328 4329 /* Make sure we have place for the IE */ 4330 if (!he_cap || !eht_cap) 4331 return 0; 4332 4333 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4334 &eht_cap->eht_cap_elem, 4335 for_ap); 4336 4337 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4338 4339 fixed = eht_cap->eht_cap_elem; 4340 4341 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4342 fixed.phy_cap_info[6] &= 4343 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4344 4345 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4346 fixed.phy_cap_info[1] &= 4347 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4348 fixed.phy_cap_info[2] &= 4349 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4350 fixed.phy_cap_info[6] &= 4351 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4352 } 4353 4354 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4355 fixed.phy_cap_info[0] &= 4356 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4357 fixed.phy_cap_info[1] &= 4358 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4359 fixed.phy_cap_info[2] &= 4360 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4361 fixed.phy_cap_info[6] &= 4362 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4363 } 4364 4365 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4366 fixed.phy_cap_info[0] &= 4367 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4368 4369 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4370 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4371 fixed.phy_cap_info); 4372 4373 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4374 if (skb_tailroom(skb) < ie_len) 4375 return -ENOBUFS; 4376 4377 skb_put_u8(skb, WLAN_EID_EXTENSION); 4378 skb_put_u8(skb, ie_len - 2); 4379 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4380 skb_put_data(skb, &fixed, sizeof(fixed)); 4381 4382 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4383 /* 4384 * If the (non-AP) STA became 20 MHz only, then convert from 4385 * <=80 to 20-MHz-only format, where MCSes are indicated in 4386 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4387 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4388 */ 4389 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4390 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4391 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4392 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4393 } else { 4394 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4395 } 4396 4397 if (ppet_len) 4398 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4399 4400 return 0; 4401 } 4402 4403 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4404 { 4405 static const char * const modes[] = { 4406 [IEEE80211_CONN_MODE_S1G] = "S1G", 4407 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4408 [IEEE80211_CONN_MODE_HT] = "HT", 4409 [IEEE80211_CONN_MODE_VHT] = "VHT", 4410 [IEEE80211_CONN_MODE_HE] = "HE", 4411 [IEEE80211_CONN_MODE_EHT] = "EHT", 4412 }; 4413 4414 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4415 return "<out of range>"; 4416 4417 return modes[mode] ?: "<missing string>"; 4418 } 4419 4420 enum ieee80211_conn_bw_limit 4421 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4422 { 4423 switch (chandef->width) { 4424 case NL80211_CHAN_WIDTH_20_NOHT: 4425 case NL80211_CHAN_WIDTH_20: 4426 return IEEE80211_CONN_BW_LIMIT_20; 4427 case NL80211_CHAN_WIDTH_40: 4428 return IEEE80211_CONN_BW_LIMIT_40; 4429 case NL80211_CHAN_WIDTH_80: 4430 return IEEE80211_CONN_BW_LIMIT_80; 4431 case NL80211_CHAN_WIDTH_80P80: 4432 case NL80211_CHAN_WIDTH_160: 4433 return IEEE80211_CONN_BW_LIMIT_160; 4434 case NL80211_CHAN_WIDTH_320: 4435 return IEEE80211_CONN_BW_LIMIT_320; 4436 default: 4437 WARN(1, "unhandled chandef width %d\n", chandef->width); 4438 return IEEE80211_CONN_BW_LIMIT_20; 4439 } 4440 } 4441 4442 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4443 { 4444 for (int i = 0; i < 2; i++) { 4445 tpe->max_local[i].valid = false; 4446 memset(tpe->max_local[i].power, 4447 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4448 sizeof(tpe->max_local[i].power)); 4449 4450 tpe->max_reg_client[i].valid = false; 4451 memset(tpe->max_reg_client[i].power, 4452 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4453 sizeof(tpe->max_reg_client[i].power)); 4454 4455 tpe->psd_local[i].valid = false; 4456 memset(tpe->psd_local[i].power, 4457 IEEE80211_TPE_PSD_NO_LIMIT, 4458 sizeof(tpe->psd_local[i].power)); 4459 4460 tpe->psd_reg_client[i].valid = false; 4461 memset(tpe->psd_reg_client[i].power, 4462 IEEE80211_TPE_PSD_NO_LIMIT, 4463 sizeof(tpe->psd_reg_client[i].power)); 4464 } 4465 } 4466