1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright (C) 2015-2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2025 Intel Corporation 10 * 11 * utilities for mac80211 12 */ 13 14 #include <net/mac80211.h> 15 #include <linux/netdevice.h> 16 #include <linux/export.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/skbuff.h> 20 #include <linux/etherdevice.h> 21 #include <linux/if_arp.h> 22 #include <linux/bitmap.h> 23 #include <linux/crc32.h> 24 #include <net/net_namespace.h> 25 #include <net/cfg80211.h> 26 #include <net/rtnetlink.h> 27 #include <kunit/visibility.h> 28 29 #include "ieee80211_i.h" 30 #include "driver-ops.h" 31 #include "rate.h" 32 #include "mesh.h" 33 #include "wme.h" 34 #include "led.h" 35 #include "wep.h" 36 37 /* privid for wiphys to determine whether they belong to us or not */ 38 const void *const mac80211_wiphy_privid = &mac80211_wiphy_privid; 39 40 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy) 41 { 42 struct ieee80211_local *local; 43 44 local = wiphy_priv(wiphy); 45 return &local->hw; 46 } 47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw); 48 49 const struct ieee80211_conn_settings ieee80211_conn_settings_unlimited = { 50 .mode = IEEE80211_CONN_MODE_EHT, 51 .bw_limit = IEEE80211_CONN_BW_LIMIT_320, 52 }; 53 54 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 55 enum nl80211_iftype type) 56 { 57 __le16 fc = hdr->frame_control; 58 59 if (ieee80211_is_data(fc)) { 60 if (len < 24) /* drop incorrect hdr len (data) */ 61 return NULL; 62 63 if (ieee80211_has_a4(fc)) 64 return NULL; 65 if (ieee80211_has_tods(fc)) 66 return hdr->addr1; 67 if (ieee80211_has_fromds(fc)) 68 return hdr->addr2; 69 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_s1g_beacon(fc)) { 74 struct ieee80211_ext *ext = (void *) hdr; 75 76 return ext->u.s1g_beacon.sa; 77 } 78 79 if (ieee80211_is_mgmt(fc)) { 80 if (len < 24) /* drop incorrect hdr len (mgmt) */ 81 return NULL; 82 return hdr->addr3; 83 } 84 85 if (ieee80211_is_ctl(fc)) { 86 if (ieee80211_is_pspoll(fc)) 87 return hdr->addr1; 88 89 if (ieee80211_is_back_req(fc)) { 90 switch (type) { 91 case NL80211_IFTYPE_STATION: 92 return hdr->addr2; 93 case NL80211_IFTYPE_AP: 94 case NL80211_IFTYPE_AP_VLAN: 95 return hdr->addr1; 96 default: 97 break; /* fall through to the return */ 98 } 99 } 100 } 101 102 return NULL; 103 } 104 EXPORT_SYMBOL(ieee80211_get_bssid); 105 106 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx) 107 { 108 struct sk_buff *skb; 109 struct ieee80211_hdr *hdr; 110 111 skb_queue_walk(&tx->skbs, skb) { 112 hdr = (struct ieee80211_hdr *) skb->data; 113 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 114 } 115 } 116 117 int ieee80211_frame_duration(enum nl80211_band band, size_t len, 118 int rate, int erp, int short_preamble) 119 { 120 int dur; 121 122 /* calculate duration (in microseconds, rounded up to next higher 123 * integer if it includes a fractional microsecond) to send frame of 124 * len bytes (does not include FCS) at the given rate. Duration will 125 * also include SIFS. 126 * 127 * rate is in 100 kbps, so divident is multiplied by 10 in the 128 * DIV_ROUND_UP() operations. 129 */ 130 131 if (band == NL80211_BAND_5GHZ || erp) { 132 /* 133 * OFDM: 134 * 135 * N_DBPS = DATARATE x 4 136 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS) 137 * (16 = SIGNAL time, 6 = tail bits) 138 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext 139 * 140 * T_SYM = 4 usec 141 * 802.11a - 18.5.2: aSIFSTime = 16 usec 142 * 802.11g - 19.8.4: aSIFSTime = 10 usec + 143 * signal ext = 6 usec 144 */ 145 dur = 16; /* SIFS + signal ext */ 146 dur += 16; /* IEEE 802.11-2012 18.3.2.4: T_PREAMBLE = 16 usec */ 147 dur += 4; /* IEEE 802.11-2012 18.3.2.4: T_SIGNAL = 4 usec */ 148 149 /* rates should already consider the channel bandwidth, 150 * don't apply divisor again. 151 */ 152 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10, 153 4 * rate); /* T_SYM x N_SYM */ 154 } else { 155 /* 156 * 802.11b or 802.11g with 802.11b compatibility: 157 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime + 158 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0. 159 * 160 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4 161 * aSIFSTime = 10 usec 162 * aPreambleLength = 144 usec or 72 usec with short preamble 163 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble 164 */ 165 dur = 10; /* aSIFSTime = 10 usec */ 166 dur += short_preamble ? (72 + 24) : (144 + 48); 167 168 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate); 169 } 170 171 return dur; 172 } 173 174 /* Exported duration function for driver use */ 175 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw, 176 struct ieee80211_vif *vif, 177 enum nl80211_band band, 178 size_t frame_len, 179 struct ieee80211_rate *rate) 180 { 181 struct ieee80211_sub_if_data *sdata; 182 u16 dur; 183 int erp; 184 bool short_preamble = false; 185 186 erp = 0; 187 if (vif) { 188 sdata = vif_to_sdata(vif); 189 short_preamble = sdata->vif.bss_conf.use_short_preamble; 190 if (sdata->deflink.operating_11g_mode) 191 erp = rate->flags & IEEE80211_RATE_ERP_G; 192 } 193 194 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp, 195 short_preamble); 196 197 return cpu_to_le16(dur); 198 } 199 EXPORT_SYMBOL(ieee80211_generic_frame_duration); 200 201 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw, 202 struct ieee80211_vif *vif, size_t frame_len, 203 const struct ieee80211_tx_info *frame_txctl) 204 { 205 struct ieee80211_local *local = hw_to_local(hw); 206 struct ieee80211_rate *rate; 207 struct ieee80211_sub_if_data *sdata; 208 bool short_preamble; 209 int erp, bitrate; 210 u16 dur; 211 struct ieee80211_supported_band *sband; 212 213 sband = local->hw.wiphy->bands[frame_txctl->band]; 214 215 short_preamble = false; 216 217 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 218 219 erp = 0; 220 if (vif) { 221 sdata = vif_to_sdata(vif); 222 short_preamble = sdata->vif.bss_conf.use_short_preamble; 223 if (sdata->deflink.operating_11g_mode) 224 erp = rate->flags & IEEE80211_RATE_ERP_G; 225 } 226 227 bitrate = rate->bitrate; 228 229 /* CTS duration */ 230 dur = ieee80211_frame_duration(sband->band, 10, bitrate, 231 erp, short_preamble); 232 /* Data frame duration */ 233 dur += ieee80211_frame_duration(sband->band, frame_len, bitrate, 234 erp, short_preamble); 235 /* ACK duration */ 236 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 237 erp, short_preamble); 238 239 return cpu_to_le16(dur); 240 } 241 EXPORT_SYMBOL(ieee80211_rts_duration); 242 243 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw, 244 struct ieee80211_vif *vif, 245 size_t frame_len, 246 const struct ieee80211_tx_info *frame_txctl) 247 { 248 struct ieee80211_local *local = hw_to_local(hw); 249 struct ieee80211_rate *rate; 250 struct ieee80211_sub_if_data *sdata; 251 bool short_preamble; 252 int erp, bitrate; 253 u16 dur; 254 struct ieee80211_supported_band *sband; 255 256 sband = local->hw.wiphy->bands[frame_txctl->band]; 257 258 short_preamble = false; 259 260 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx]; 261 erp = 0; 262 if (vif) { 263 sdata = vif_to_sdata(vif); 264 short_preamble = sdata->vif.bss_conf.use_short_preamble; 265 if (sdata->deflink.operating_11g_mode) 266 erp = rate->flags & IEEE80211_RATE_ERP_G; 267 } 268 269 bitrate = rate->bitrate; 270 271 /* Data frame duration */ 272 dur = ieee80211_frame_duration(sband->band, frame_len, bitrate, 273 erp, short_preamble); 274 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) { 275 /* ACK duration */ 276 dur += ieee80211_frame_duration(sband->band, 10, bitrate, 277 erp, short_preamble); 278 } 279 280 return cpu_to_le16(dur); 281 } 282 EXPORT_SYMBOL(ieee80211_ctstoself_duration); 283 284 static void wake_tx_push_queue(struct ieee80211_local *local, 285 struct ieee80211_sub_if_data *sdata, 286 struct ieee80211_txq *queue) 287 { 288 struct ieee80211_tx_control control = { 289 .sta = queue->sta, 290 }; 291 struct sk_buff *skb; 292 293 while (1) { 294 skb = ieee80211_tx_dequeue(&local->hw, queue); 295 if (!skb) 296 break; 297 298 drv_tx(local, &control, skb); 299 } 300 } 301 302 /* wake_tx_queue handler for driver not implementing a custom one*/ 303 void ieee80211_handle_wake_tx_queue(struct ieee80211_hw *hw, 304 struct ieee80211_txq *txq) 305 { 306 struct ieee80211_local *local = hw_to_local(hw); 307 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 308 struct ieee80211_txq *queue; 309 310 spin_lock(&local->handle_wake_tx_queue_lock); 311 312 /* Use ieee80211_next_txq() for airtime fairness accounting */ 313 ieee80211_txq_schedule_start(hw, txq->ac); 314 while ((queue = ieee80211_next_txq(hw, txq->ac))) { 315 wake_tx_push_queue(local, sdata, queue); 316 ieee80211_return_txq(hw, queue, false); 317 } 318 ieee80211_txq_schedule_end(hw, txq->ac); 319 spin_unlock(&local->handle_wake_tx_queue_lock); 320 } 321 EXPORT_SYMBOL(ieee80211_handle_wake_tx_queue); 322 323 static void __ieee80211_wake_txqs(struct ieee80211_sub_if_data *sdata, int ac) 324 { 325 struct ieee80211_local *local = sdata->local; 326 struct ieee80211_vif *vif = &sdata->vif; 327 struct fq *fq = &local->fq; 328 struct ps_data *ps = NULL; 329 struct txq_info *txqi; 330 struct sta_info *sta; 331 int i; 332 333 local_bh_disable(); 334 spin_lock(&fq->lock); 335 336 if (!test_bit(SDATA_STATE_RUNNING, &sdata->state)) 337 goto out; 338 339 if (sdata->vif.type == NL80211_IFTYPE_AP) 340 ps = &sdata->bss->ps; 341 342 list_for_each_entry_rcu(sta, &local->sta_list, list) { 343 if (sdata != sta->sdata) 344 continue; 345 346 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 347 struct ieee80211_txq *txq = sta->sta.txq[i]; 348 349 if (!txq) 350 continue; 351 352 txqi = to_txq_info(txq); 353 354 if (ac != txq->ac) 355 continue; 356 357 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, 358 &txqi->flags)) 359 continue; 360 361 spin_unlock(&fq->lock); 362 drv_wake_tx_queue(local, txqi); 363 spin_lock(&fq->lock); 364 } 365 } 366 367 if (!vif->txq) 368 goto out; 369 370 txqi = to_txq_info(vif->txq); 371 372 if (!test_and_clear_bit(IEEE80211_TXQ_DIRTY, &txqi->flags) || 373 (ps && atomic_read(&ps->num_sta_ps)) || ac != vif->txq->ac) 374 goto out; 375 376 spin_unlock(&fq->lock); 377 378 drv_wake_tx_queue(local, txqi); 379 local_bh_enable(); 380 return; 381 out: 382 spin_unlock(&fq->lock); 383 local_bh_enable(); 384 } 385 386 static void 387 __releases(&local->queue_stop_reason_lock) 388 __acquires(&local->queue_stop_reason_lock) 389 _ieee80211_wake_txqs(struct ieee80211_local *local, unsigned long *flags) 390 { 391 struct ieee80211_sub_if_data *sdata; 392 int n_acs = IEEE80211_NUM_ACS; 393 int i; 394 395 rcu_read_lock(); 396 397 if (local->hw.queues < IEEE80211_NUM_ACS) 398 n_acs = 1; 399 400 for (i = 0; i < local->hw.queues; i++) { 401 if (local->queue_stop_reasons[i]) 402 continue; 403 404 spin_unlock_irqrestore(&local->queue_stop_reason_lock, *flags); 405 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 406 int ac; 407 408 for (ac = 0; ac < n_acs; ac++) { 409 int ac_queue = sdata->vif.hw_queue[ac]; 410 411 if (ac_queue == i || 412 sdata->vif.cab_queue == i) 413 __ieee80211_wake_txqs(sdata, ac); 414 } 415 } 416 spin_lock_irqsave(&local->queue_stop_reason_lock, *flags); 417 } 418 419 rcu_read_unlock(); 420 } 421 422 void ieee80211_wake_txqs(struct tasklet_struct *t) 423 { 424 struct ieee80211_local *local = from_tasklet(local, t, 425 wake_txqs_tasklet); 426 unsigned long flags; 427 428 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 429 _ieee80211_wake_txqs(local, &flags); 430 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 431 } 432 433 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue, 434 enum queue_stop_reason reason, 435 bool refcounted, 436 unsigned long *flags) 437 { 438 struct ieee80211_local *local = hw_to_local(hw); 439 440 if (WARN_ON(queue >= hw->queues)) 441 return; 442 443 if (!test_bit(reason, &local->queue_stop_reasons[queue])) 444 return; 445 446 if (!refcounted) { 447 local->q_stop_reasons[queue][reason] = 0; 448 } else { 449 local->q_stop_reasons[queue][reason]--; 450 if (WARN_ON(local->q_stop_reasons[queue][reason] < 0)) 451 local->q_stop_reasons[queue][reason] = 0; 452 } 453 454 if (local->q_stop_reasons[queue][reason] == 0) 455 __clear_bit(reason, &local->queue_stop_reasons[queue]); 456 457 trace_wake_queue(local, queue, reason, 458 local->q_stop_reasons[queue][reason]); 459 460 if (local->queue_stop_reasons[queue] != 0) 461 /* someone still has this queue stopped */ 462 return; 463 464 if (!skb_queue_empty(&local->pending[queue])) 465 tasklet_schedule(&local->tx_pending_tasklet); 466 467 /* 468 * Calling _ieee80211_wake_txqs here can be a problem because it may 469 * release queue_stop_reason_lock which has been taken by 470 * __ieee80211_wake_queue's caller. It is certainly not very nice to 471 * release someone's lock, but it is fine because all the callers of 472 * __ieee80211_wake_queue call it right before releasing the lock. 473 */ 474 if (reason == IEEE80211_QUEUE_STOP_REASON_DRIVER) 475 tasklet_schedule(&local->wake_txqs_tasklet); 476 else 477 _ieee80211_wake_txqs(local, flags); 478 } 479 480 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue, 481 enum queue_stop_reason reason, 482 bool refcounted) 483 { 484 struct ieee80211_local *local = hw_to_local(hw); 485 unsigned long flags; 486 487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 488 __ieee80211_wake_queue(hw, queue, reason, refcounted, &flags); 489 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 490 } 491 492 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue) 493 { 494 ieee80211_wake_queue_by_reason(hw, queue, 495 IEEE80211_QUEUE_STOP_REASON_DRIVER, 496 false); 497 } 498 EXPORT_SYMBOL(ieee80211_wake_queue); 499 500 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue, 501 enum queue_stop_reason reason, 502 bool refcounted) 503 { 504 struct ieee80211_local *local = hw_to_local(hw); 505 506 if (WARN_ON(queue >= hw->queues)) 507 return; 508 509 if (!refcounted) 510 local->q_stop_reasons[queue][reason] = 1; 511 else 512 local->q_stop_reasons[queue][reason]++; 513 514 trace_stop_queue(local, queue, reason, 515 local->q_stop_reasons[queue][reason]); 516 517 set_bit(reason, &local->queue_stop_reasons[queue]); 518 } 519 520 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue, 521 enum queue_stop_reason reason, 522 bool refcounted) 523 { 524 struct ieee80211_local *local = hw_to_local(hw); 525 unsigned long flags; 526 527 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 528 __ieee80211_stop_queue(hw, queue, reason, refcounted); 529 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 530 } 531 532 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue) 533 { 534 ieee80211_stop_queue_by_reason(hw, queue, 535 IEEE80211_QUEUE_STOP_REASON_DRIVER, 536 false); 537 } 538 EXPORT_SYMBOL(ieee80211_stop_queue); 539 540 void ieee80211_add_pending_skb(struct ieee80211_local *local, 541 struct sk_buff *skb) 542 { 543 struct ieee80211_hw *hw = &local->hw; 544 unsigned long flags; 545 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 546 int queue = info->hw_queue; 547 548 if (WARN_ON(!info->control.vif)) { 549 ieee80211_free_txskb(&local->hw, skb); 550 return; 551 } 552 553 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 554 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 555 false); 556 __skb_queue_tail(&local->pending[queue], skb); 557 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 558 false, &flags); 559 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 560 } 561 562 void ieee80211_add_pending_skbs(struct ieee80211_local *local, 563 struct sk_buff_head *skbs) 564 { 565 struct ieee80211_hw *hw = &local->hw; 566 struct sk_buff *skb; 567 unsigned long flags; 568 int queue, i; 569 570 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 571 while ((skb = skb_dequeue(skbs))) { 572 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 573 574 if (WARN_ON(!info->control.vif)) { 575 ieee80211_free_txskb(&local->hw, skb); 576 continue; 577 } 578 579 queue = info->hw_queue; 580 581 __ieee80211_stop_queue(hw, queue, 582 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 583 false); 584 585 __skb_queue_tail(&local->pending[queue], skb); 586 } 587 588 for (i = 0; i < hw->queues; i++) 589 __ieee80211_wake_queue(hw, i, 590 IEEE80211_QUEUE_STOP_REASON_SKB_ADD, 591 false, &flags); 592 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 593 } 594 595 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw, 596 unsigned long queues, 597 enum queue_stop_reason reason, 598 bool refcounted) 599 { 600 struct ieee80211_local *local = hw_to_local(hw); 601 unsigned long flags; 602 int i; 603 604 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 605 606 for_each_set_bit(i, &queues, hw->queues) 607 __ieee80211_stop_queue(hw, i, reason, refcounted); 608 609 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 610 } 611 612 void ieee80211_stop_queues(struct ieee80211_hw *hw) 613 { 614 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 615 IEEE80211_QUEUE_STOP_REASON_DRIVER, 616 false); 617 } 618 EXPORT_SYMBOL(ieee80211_stop_queues); 619 620 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue) 621 { 622 struct ieee80211_local *local = hw_to_local(hw); 623 unsigned long flags; 624 int ret; 625 626 if (WARN_ON(queue >= hw->queues)) 627 return true; 628 629 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 630 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER, 631 &local->queue_stop_reasons[queue]); 632 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 633 return ret; 634 } 635 EXPORT_SYMBOL(ieee80211_queue_stopped); 636 637 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw, 638 unsigned long queues, 639 enum queue_stop_reason reason, 640 bool refcounted) 641 { 642 struct ieee80211_local *local = hw_to_local(hw); 643 unsigned long flags; 644 int i; 645 646 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 647 648 for_each_set_bit(i, &queues, hw->queues) 649 __ieee80211_wake_queue(hw, i, reason, refcounted, &flags); 650 651 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 652 } 653 654 void ieee80211_wake_queues(struct ieee80211_hw *hw) 655 { 656 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 657 IEEE80211_QUEUE_STOP_REASON_DRIVER, 658 false); 659 } 660 EXPORT_SYMBOL(ieee80211_wake_queues); 661 662 unsigned int 663 ieee80211_get_vif_queues(struct ieee80211_local *local, 664 struct ieee80211_sub_if_data *sdata) 665 { 666 unsigned int queues; 667 668 if (sdata && ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { 669 int ac; 670 671 queues = 0; 672 673 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 674 if (sdata->vif.hw_queue[ac] != IEEE80211_INVAL_HW_QUEUE) 675 queues |= BIT(sdata->vif.hw_queue[ac]); 676 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE) 677 queues |= BIT(sdata->vif.cab_queue); 678 } else { 679 /* all queues */ 680 queues = BIT(local->hw.queues) - 1; 681 } 682 683 return queues; 684 } 685 686 void __ieee80211_flush_queues(struct ieee80211_local *local, 687 struct ieee80211_sub_if_data *sdata, 688 unsigned int queues, bool drop) 689 { 690 if (!local->ops->flush && !drop) 691 return; 692 693 /* 694 * If no queue was set, or if the HW doesn't support 695 * IEEE80211_HW_QUEUE_CONTROL - flush all queues 696 */ 697 if (!queues || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 698 queues = ieee80211_get_vif_queues(local, sdata); 699 700 ieee80211_stop_queues_by_reason(&local->hw, queues, 701 IEEE80211_QUEUE_STOP_REASON_FLUSH, 702 false); 703 704 if (drop) { 705 struct sta_info *sta; 706 707 /* Purge the queues, so the frames on them won't be 708 * sent during __ieee80211_wake_queue() 709 */ 710 list_for_each_entry(sta, &local->sta_list, list) { 711 if (sdata != sta->sdata) 712 continue; 713 ieee80211_purge_sta_txqs(sta); 714 } 715 } 716 717 if (local->ops->flush) 718 drv_flush(local, sdata, queues, drop); 719 720 ieee80211_wake_queues_by_reason(&local->hw, queues, 721 IEEE80211_QUEUE_STOP_REASON_FLUSH, 722 false); 723 } 724 725 void ieee80211_flush_queues(struct ieee80211_local *local, 726 struct ieee80211_sub_if_data *sdata, bool drop) 727 { 728 __ieee80211_flush_queues(local, sdata, 0, drop); 729 } 730 731 static void __iterate_interfaces(struct ieee80211_local *local, 732 u32 iter_flags, 733 void (*iterator)(void *data, u8 *mac, 734 struct ieee80211_vif *vif), 735 void *data) 736 { 737 struct ieee80211_sub_if_data *sdata; 738 bool active_only = iter_flags & IEEE80211_IFACE_ITER_ACTIVE; 739 740 list_for_each_entry_rcu(sdata, &local->interfaces, list, 741 lockdep_is_held(&local->iflist_mtx) || 742 lockdep_is_held(&local->hw.wiphy->mtx)) { 743 switch (sdata->vif.type) { 744 case NL80211_IFTYPE_MONITOR: 745 if (!(sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) && 746 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 747 continue; 748 break; 749 case NL80211_IFTYPE_AP_VLAN: 750 continue; 751 default: 752 break; 753 } 754 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) && 755 active_only && !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 756 continue; 757 if ((iter_flags & IEEE80211_IFACE_SKIP_SDATA_NOT_IN_DRIVER) && 758 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 759 continue; 760 if (ieee80211_sdata_running(sdata) || !active_only) 761 iterator(data, sdata->vif.addr, 762 &sdata->vif); 763 } 764 765 sdata = rcu_dereference_check(local->monitor_sdata, 766 lockdep_is_held(&local->iflist_mtx) || 767 lockdep_is_held(&local->hw.wiphy->mtx)); 768 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF) && 769 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL || !active_only || 770 sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 771 iterator(data, sdata->vif.addr, &sdata->vif); 772 } 773 774 void ieee80211_iterate_interfaces( 775 struct ieee80211_hw *hw, u32 iter_flags, 776 void (*iterator)(void *data, u8 *mac, 777 struct ieee80211_vif *vif), 778 void *data) 779 { 780 struct ieee80211_local *local = hw_to_local(hw); 781 782 mutex_lock(&local->iflist_mtx); 783 __iterate_interfaces(local, iter_flags, iterator, data); 784 mutex_unlock(&local->iflist_mtx); 785 } 786 EXPORT_SYMBOL_GPL(ieee80211_iterate_interfaces); 787 788 void ieee80211_iterate_active_interfaces_atomic( 789 struct ieee80211_hw *hw, u32 iter_flags, 790 void (*iterator)(void *data, u8 *mac, 791 struct ieee80211_vif *vif), 792 void *data) 793 { 794 struct ieee80211_local *local = hw_to_local(hw); 795 796 rcu_read_lock(); 797 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 798 iterator, data); 799 rcu_read_unlock(); 800 } 801 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic); 802 803 void ieee80211_iterate_active_interfaces_mtx( 804 struct ieee80211_hw *hw, u32 iter_flags, 805 void (*iterator)(void *data, u8 *mac, 806 struct ieee80211_vif *vif), 807 void *data) 808 { 809 struct ieee80211_local *local = hw_to_local(hw); 810 811 lockdep_assert_wiphy(hw->wiphy); 812 813 __iterate_interfaces(local, iter_flags | IEEE80211_IFACE_ITER_ACTIVE, 814 iterator, data); 815 } 816 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_mtx); 817 818 static void __iterate_stations(struct ieee80211_local *local, 819 void (*iterator)(void *data, 820 struct ieee80211_sta *sta), 821 void *data) 822 { 823 struct sta_info *sta; 824 825 list_for_each_entry_rcu(sta, &local->sta_list, list, 826 lockdep_is_held(&local->hw.wiphy->mtx)) { 827 if (!sta->uploaded) 828 continue; 829 830 iterator(data, &sta->sta); 831 } 832 } 833 834 void ieee80211_iterate_stations_atomic(struct ieee80211_hw *hw, 835 void (*iterator)(void *data, 836 struct ieee80211_sta *sta), 837 void *data) 838 { 839 struct ieee80211_local *local = hw_to_local(hw); 840 841 rcu_read_lock(); 842 __iterate_stations(local, iterator, data); 843 rcu_read_unlock(); 844 } 845 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_atomic); 846 847 void ieee80211_iterate_stations_mtx(struct ieee80211_hw *hw, 848 void (*iterator)(void *data, 849 struct ieee80211_sta *sta), 850 void *data) 851 { 852 struct ieee80211_local *local = hw_to_local(hw); 853 854 lockdep_assert_wiphy(local->hw.wiphy); 855 856 __iterate_stations(local, iterator, data); 857 } 858 EXPORT_SYMBOL_GPL(ieee80211_iterate_stations_mtx); 859 860 struct ieee80211_vif *wdev_to_ieee80211_vif(struct wireless_dev *wdev) 861 { 862 struct ieee80211_sub_if_data *sdata = IEEE80211_WDEV_TO_SUB_IF(wdev); 863 864 if (!ieee80211_sdata_running(sdata) || 865 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER)) 866 return NULL; 867 return &sdata->vif; 868 } 869 EXPORT_SYMBOL_GPL(wdev_to_ieee80211_vif); 870 871 struct wireless_dev *ieee80211_vif_to_wdev(struct ieee80211_vif *vif) 872 { 873 if (!vif) 874 return NULL; 875 876 return &vif_to_sdata(vif)->wdev; 877 } 878 EXPORT_SYMBOL_GPL(ieee80211_vif_to_wdev); 879 880 /* 881 * Nothing should have been stuffed into the workqueue during 882 * the suspend->resume cycle. Since we can't check each caller 883 * of this function if we are already quiescing / suspended, 884 * check here and don't WARN since this can actually happen when 885 * the rx path (for example) is racing against __ieee80211_suspend 886 * and suspending / quiescing was set after the rx path checked 887 * them. 888 */ 889 static bool ieee80211_can_queue_work(struct ieee80211_local *local) 890 { 891 if (local->quiescing || (local->suspended && !local->resuming)) { 892 pr_warn("queueing ieee80211 work while going to suspend\n"); 893 return false; 894 } 895 896 return true; 897 } 898 899 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work) 900 { 901 struct ieee80211_local *local = hw_to_local(hw); 902 903 if (!ieee80211_can_queue_work(local)) 904 return; 905 906 queue_work(local->workqueue, work); 907 } 908 EXPORT_SYMBOL(ieee80211_queue_work); 909 910 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw, 911 struct delayed_work *dwork, 912 unsigned long delay) 913 { 914 struct ieee80211_local *local = hw_to_local(hw); 915 916 if (!ieee80211_can_queue_work(local)) 917 return; 918 919 queue_delayed_work(local->workqueue, dwork, delay); 920 } 921 EXPORT_SYMBOL(ieee80211_queue_delayed_work); 922 923 void ieee80211_regulatory_limit_wmm_params(struct ieee80211_sub_if_data *sdata, 924 struct ieee80211_tx_queue_params 925 *qparam, int ac) 926 { 927 struct ieee80211_chanctx_conf *chanctx_conf; 928 const struct ieee80211_reg_rule *rrule; 929 const struct ieee80211_wmm_ac *wmm_ac; 930 u16 center_freq = 0; 931 932 if (sdata->vif.type != NL80211_IFTYPE_AP && 933 sdata->vif.type != NL80211_IFTYPE_STATION) 934 return; 935 936 rcu_read_lock(); 937 chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf); 938 if (chanctx_conf) 939 center_freq = chanctx_conf->def.chan->center_freq; 940 941 if (!center_freq) { 942 rcu_read_unlock(); 943 return; 944 } 945 946 rrule = freq_reg_info(sdata->wdev.wiphy, MHZ_TO_KHZ(center_freq)); 947 948 if (IS_ERR_OR_NULL(rrule) || !rrule->has_wmm) { 949 rcu_read_unlock(); 950 return; 951 } 952 953 if (sdata->vif.type == NL80211_IFTYPE_AP) 954 wmm_ac = &rrule->wmm_rule.ap[ac]; 955 else 956 wmm_ac = &rrule->wmm_rule.client[ac]; 957 qparam->cw_min = max_t(u16, qparam->cw_min, wmm_ac->cw_min); 958 qparam->cw_max = max_t(u16, qparam->cw_max, wmm_ac->cw_max); 959 qparam->aifs = max_t(u8, qparam->aifs, wmm_ac->aifsn); 960 qparam->txop = min_t(u16, qparam->txop, wmm_ac->cot / 32); 961 rcu_read_unlock(); 962 } 963 964 void ieee80211_set_wmm_default(struct ieee80211_link_data *link, 965 bool bss_notify, bool enable_qos) 966 { 967 struct ieee80211_sub_if_data *sdata = link->sdata; 968 struct ieee80211_local *local = sdata->local; 969 struct ieee80211_tx_queue_params qparam; 970 struct ieee80211_chanctx_conf *chanctx_conf; 971 int ac; 972 bool use_11b; 973 bool is_ocb; /* Use another EDCA parameters if dot11OCBActivated=true */ 974 int aCWmin, aCWmax; 975 976 if (!local->ops->conf_tx) 977 return; 978 979 if (local->hw.queues < IEEE80211_NUM_ACS) 980 return; 981 982 memset(&qparam, 0, sizeof(qparam)); 983 984 rcu_read_lock(); 985 chanctx_conf = rcu_dereference(link->conf->chanctx_conf); 986 use_11b = (chanctx_conf && 987 chanctx_conf->def.chan->band == NL80211_BAND_2GHZ) && 988 !link->operating_11g_mode; 989 rcu_read_unlock(); 990 991 is_ocb = (sdata->vif.type == NL80211_IFTYPE_OCB); 992 993 /* Set defaults according to 802.11-2007 Table 7-37 */ 994 aCWmax = 1023; 995 if (use_11b) 996 aCWmin = 31; 997 else 998 aCWmin = 15; 999 1000 /* Configure old 802.11b/g medium access rules. */ 1001 qparam.cw_max = aCWmax; 1002 qparam.cw_min = aCWmin; 1003 qparam.txop = 0; 1004 qparam.aifs = 2; 1005 1006 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1007 /* Update if QoS is enabled. */ 1008 if (enable_qos) { 1009 switch (ac) { 1010 case IEEE80211_AC_BK: 1011 qparam.cw_max = aCWmax; 1012 qparam.cw_min = aCWmin; 1013 qparam.txop = 0; 1014 if (is_ocb) 1015 qparam.aifs = 9; 1016 else 1017 qparam.aifs = 7; 1018 break; 1019 /* never happens but let's not leave undefined */ 1020 default: 1021 case IEEE80211_AC_BE: 1022 qparam.cw_max = aCWmax; 1023 qparam.cw_min = aCWmin; 1024 qparam.txop = 0; 1025 if (is_ocb) 1026 qparam.aifs = 6; 1027 else 1028 qparam.aifs = 3; 1029 break; 1030 case IEEE80211_AC_VI: 1031 qparam.cw_max = aCWmin; 1032 qparam.cw_min = (aCWmin + 1) / 2 - 1; 1033 if (is_ocb) 1034 qparam.txop = 0; 1035 else if (use_11b) 1036 qparam.txop = 6016/32; 1037 else 1038 qparam.txop = 3008/32; 1039 1040 if (is_ocb) 1041 qparam.aifs = 3; 1042 else 1043 qparam.aifs = 2; 1044 break; 1045 case IEEE80211_AC_VO: 1046 qparam.cw_max = (aCWmin + 1) / 2 - 1; 1047 qparam.cw_min = (aCWmin + 1) / 4 - 1; 1048 if (is_ocb) 1049 qparam.txop = 0; 1050 else if (use_11b) 1051 qparam.txop = 3264/32; 1052 else 1053 qparam.txop = 1504/32; 1054 qparam.aifs = 2; 1055 break; 1056 } 1057 } 1058 ieee80211_regulatory_limit_wmm_params(sdata, &qparam, ac); 1059 1060 qparam.uapsd = false; 1061 1062 link->tx_conf[ac] = qparam; 1063 drv_conf_tx(local, link, ac, &qparam); 1064 } 1065 1066 if (sdata->vif.type != NL80211_IFTYPE_MONITOR && 1067 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE && 1068 sdata->vif.type != NL80211_IFTYPE_NAN) { 1069 link->conf->qos = enable_qos; 1070 if (bss_notify) 1071 ieee80211_link_info_change_notify(sdata, link, 1072 BSS_CHANGED_QOS); 1073 } 1074 } 1075 1076 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata, 1077 u16 transaction, u16 auth_alg, u16 status, 1078 const u8 *extra, size_t extra_len, const u8 *da, 1079 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx, 1080 u32 tx_flags) 1081 { 1082 struct ieee80211_local *local = sdata->local; 1083 struct sk_buff *skb; 1084 struct ieee80211_mgmt *mgmt; 1085 bool multi_link = ieee80211_vif_is_mld(&sdata->vif); 1086 struct { 1087 u8 id; 1088 u8 len; 1089 u8 ext_id; 1090 struct ieee80211_multi_link_elem ml; 1091 struct ieee80211_mle_basic_common_info basic; 1092 } __packed mle = { 1093 .id = WLAN_EID_EXTENSION, 1094 .len = sizeof(mle) - 2, 1095 .ext_id = WLAN_EID_EXT_EHT_MULTI_LINK, 1096 .ml.control = cpu_to_le16(IEEE80211_ML_CONTROL_TYPE_BASIC), 1097 .basic.len = sizeof(mle.basic), 1098 }; 1099 int err; 1100 1101 memcpy(mle.basic.mld_mac_addr, sdata->vif.addr, ETH_ALEN); 1102 1103 /* 24 + 6 = header + auth_algo + auth_transaction + status_code */ 1104 skb = dev_alloc_skb(local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN + 1105 24 + 6 + extra_len + IEEE80211_WEP_ICV_LEN + 1106 multi_link * sizeof(mle)); 1107 if (!skb) 1108 return; 1109 1110 skb_reserve(skb, local->hw.extra_tx_headroom + IEEE80211_WEP_IV_LEN); 1111 1112 mgmt = skb_put_zero(skb, 24 + 6); 1113 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1114 IEEE80211_STYPE_AUTH); 1115 memcpy(mgmt->da, da, ETH_ALEN); 1116 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1117 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1118 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg); 1119 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction); 1120 mgmt->u.auth.status_code = cpu_to_le16(status); 1121 if (extra) 1122 skb_put_data(skb, extra, extra_len); 1123 if (multi_link) 1124 skb_put_data(skb, &mle, sizeof(mle)); 1125 1126 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) { 1127 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); 1128 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx); 1129 if (WARN_ON(err)) { 1130 kfree_skb(skb); 1131 return; 1132 } 1133 } 1134 1135 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1136 tx_flags; 1137 ieee80211_tx_skb(sdata, skb); 1138 } 1139 1140 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata, 1141 const u8 *da, const u8 *bssid, 1142 u16 stype, u16 reason, 1143 bool send_frame, u8 *frame_buf) 1144 { 1145 struct ieee80211_local *local = sdata->local; 1146 struct sk_buff *skb; 1147 struct ieee80211_mgmt *mgmt = (void *)frame_buf; 1148 1149 /* build frame */ 1150 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); 1151 mgmt->duration = 0; /* initialize only */ 1152 mgmt->seq_ctrl = 0; /* initialize only */ 1153 memcpy(mgmt->da, da, ETH_ALEN); 1154 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 1155 memcpy(mgmt->bssid, bssid, ETH_ALEN); 1156 /* u.deauth.reason_code == u.disassoc.reason_code */ 1157 mgmt->u.deauth.reason_code = cpu_to_le16(reason); 1158 1159 if (send_frame) { 1160 skb = dev_alloc_skb(local->hw.extra_tx_headroom + 1161 IEEE80211_DEAUTH_FRAME_LEN); 1162 if (!skb) 1163 return; 1164 1165 skb_reserve(skb, local->hw.extra_tx_headroom); 1166 1167 /* copy in frame */ 1168 skb_put_data(skb, mgmt, IEEE80211_DEAUTH_FRAME_LEN); 1169 1170 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1171 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED)) 1172 IEEE80211_SKB_CB(skb)->flags |= 1173 IEEE80211_TX_INTFL_DONT_ENCRYPT; 1174 1175 ieee80211_tx_skb(sdata, skb); 1176 } 1177 } 1178 1179 static int ieee80211_put_s1g_cap(struct sk_buff *skb, 1180 struct ieee80211_sta_s1g_cap *s1g_cap) 1181 { 1182 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_s1g_cap)) 1183 return -ENOBUFS; 1184 1185 skb_put_u8(skb, WLAN_EID_S1G_CAPABILITIES); 1186 skb_put_u8(skb, sizeof(struct ieee80211_s1g_cap)); 1187 1188 skb_put_data(skb, &s1g_cap->cap, sizeof(s1g_cap->cap)); 1189 skb_put_data(skb, &s1g_cap->nss_mcs, sizeof(s1g_cap->nss_mcs)); 1190 1191 return 0; 1192 } 1193 1194 static int ieee80211_put_preq_ies_band(struct sk_buff *skb, 1195 struct ieee80211_sub_if_data *sdata, 1196 const u8 *ie, size_t ie_len, 1197 size_t *offset, 1198 enum nl80211_band band, 1199 u32 rate_mask, 1200 struct cfg80211_chan_def *chandef, 1201 u32 flags) 1202 { 1203 struct ieee80211_local *local = sdata->local; 1204 struct ieee80211_supported_band *sband; 1205 int i, err; 1206 size_t noffset; 1207 bool have_80mhz = false; 1208 1209 *offset = 0; 1210 1211 sband = local->hw.wiphy->bands[band]; 1212 if (WARN_ON_ONCE(!sband)) 1213 return 0; 1214 1215 /* For direct scan add S1G IE and consider its override bits */ 1216 if (band == NL80211_BAND_S1GHZ) 1217 return ieee80211_put_s1g_cap(skb, &sband->s1g_cap); 1218 1219 err = ieee80211_put_srates_elem(skb, sband, 0, 1220 ~rate_mask, WLAN_EID_SUPP_RATES); 1221 if (err) 1222 return err; 1223 1224 /* insert "request information" if in custom IEs */ 1225 if (ie && ie_len) { 1226 static const u8 before_extrates[] = { 1227 WLAN_EID_SSID, 1228 WLAN_EID_SUPP_RATES, 1229 WLAN_EID_REQUEST, 1230 }; 1231 noffset = ieee80211_ie_split(ie, ie_len, 1232 before_extrates, 1233 ARRAY_SIZE(before_extrates), 1234 *offset); 1235 if (skb_tailroom(skb) < noffset - *offset) 1236 return -ENOBUFS; 1237 skb_put_data(skb, ie + *offset, noffset - *offset); 1238 *offset = noffset; 1239 } 1240 1241 err = ieee80211_put_srates_elem(skb, sband, 0, 1242 ~rate_mask, WLAN_EID_EXT_SUPP_RATES); 1243 if (err) 1244 return err; 1245 1246 if (chandef->chan && sband->band == NL80211_BAND_2GHZ) { 1247 if (skb_tailroom(skb) < 3) 1248 return -ENOBUFS; 1249 skb_put_u8(skb, WLAN_EID_DS_PARAMS); 1250 skb_put_u8(skb, 1); 1251 skb_put_u8(skb, 1252 ieee80211_frequency_to_channel(chandef->chan->center_freq)); 1253 } 1254 1255 if (flags & IEEE80211_PROBE_FLAG_MIN_CONTENT) 1256 return 0; 1257 1258 /* insert custom IEs that go before HT */ 1259 if (ie && ie_len) { 1260 static const u8 before_ht[] = { 1261 /* 1262 * no need to list the ones split off already 1263 * (or generated here) 1264 */ 1265 WLAN_EID_DS_PARAMS, 1266 WLAN_EID_SUPPORTED_REGULATORY_CLASSES, 1267 }; 1268 noffset = ieee80211_ie_split(ie, ie_len, 1269 before_ht, ARRAY_SIZE(before_ht), 1270 *offset); 1271 if (skb_tailroom(skb) < noffset - *offset) 1272 return -ENOBUFS; 1273 skb_put_data(skb, ie + *offset, noffset - *offset); 1274 *offset = noffset; 1275 } 1276 1277 if (sband->ht_cap.ht_supported) { 1278 u8 *pos; 1279 1280 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_ht_cap)) 1281 return -ENOBUFS; 1282 1283 pos = skb_put(skb, 2 + sizeof(struct ieee80211_ht_cap)); 1284 ieee80211_ie_build_ht_cap(pos, &sband->ht_cap, 1285 sband->ht_cap.cap); 1286 } 1287 1288 /* insert custom IEs that go before VHT */ 1289 if (ie && ie_len) { 1290 static const u8 before_vht[] = { 1291 /* 1292 * no need to list the ones split off already 1293 * (or generated here) 1294 */ 1295 WLAN_EID_BSS_COEX_2040, 1296 WLAN_EID_EXT_CAPABILITY, 1297 WLAN_EID_SSID_LIST, 1298 WLAN_EID_CHANNEL_USAGE, 1299 WLAN_EID_INTERWORKING, 1300 WLAN_EID_MESH_ID, 1301 /* 60 GHz (Multi-band, DMG, MMS) can't happen */ 1302 }; 1303 noffset = ieee80211_ie_split(ie, ie_len, 1304 before_vht, ARRAY_SIZE(before_vht), 1305 *offset); 1306 if (skb_tailroom(skb) < noffset - *offset) 1307 return -ENOBUFS; 1308 skb_put_data(skb, ie + *offset, noffset - *offset); 1309 *offset = noffset; 1310 } 1311 1312 /* Check if any channel in this sband supports at least 80 MHz */ 1313 for (i = 0; i < sband->n_channels; i++) { 1314 if (sband->channels[i].flags & (IEEE80211_CHAN_DISABLED | 1315 IEEE80211_CHAN_NO_80MHZ)) 1316 continue; 1317 1318 have_80mhz = true; 1319 break; 1320 } 1321 1322 if (sband->vht_cap.vht_supported && have_80mhz) { 1323 u8 *pos; 1324 1325 if (skb_tailroom(skb) < 2 + sizeof(struct ieee80211_vht_cap)) 1326 return -ENOBUFS; 1327 1328 pos = skb_put(skb, 2 + sizeof(struct ieee80211_vht_cap)); 1329 ieee80211_ie_build_vht_cap(pos, &sband->vht_cap, 1330 sband->vht_cap.cap); 1331 } 1332 1333 /* insert custom IEs that go before HE */ 1334 if (ie && ie_len) { 1335 static const u8 before_he[] = { 1336 /* 1337 * no need to list the ones split off before VHT 1338 * or generated here 1339 */ 1340 WLAN_EID_EXTENSION, WLAN_EID_EXT_FILS_REQ_PARAMS, 1341 WLAN_EID_AP_CSN, 1342 /* TODO: add 11ah/11aj/11ak elements */ 1343 }; 1344 noffset = ieee80211_ie_split(ie, ie_len, 1345 before_he, ARRAY_SIZE(before_he), 1346 *offset); 1347 if (skb_tailroom(skb) < noffset - *offset) 1348 return -ENOBUFS; 1349 skb_put_data(skb, ie + *offset, noffset - *offset); 1350 *offset = noffset; 1351 } 1352 1353 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1354 IEEE80211_CHAN_NO_HE)) { 1355 err = ieee80211_put_he_cap(skb, sdata, sband, NULL); 1356 if (err) 1357 return err; 1358 } 1359 1360 if (cfg80211_any_usable_channels(local->hw.wiphy, BIT(sband->band), 1361 IEEE80211_CHAN_NO_HE | 1362 IEEE80211_CHAN_NO_EHT)) { 1363 err = ieee80211_put_eht_cap(skb, sdata, sband, NULL); 1364 if (err) 1365 return err; 1366 } 1367 1368 err = ieee80211_put_he_6ghz_cap(skb, sdata, IEEE80211_SMPS_OFF); 1369 if (err) 1370 return err; 1371 1372 /* 1373 * If adding more here, adjust code in main.c 1374 * that calculates local->scan_ies_len. 1375 */ 1376 1377 return 0; 1378 } 1379 1380 static int ieee80211_put_preq_ies(struct sk_buff *skb, 1381 struct ieee80211_sub_if_data *sdata, 1382 struct ieee80211_scan_ies *ie_desc, 1383 const u8 *ie, size_t ie_len, 1384 u8 bands_used, u32 *rate_masks, 1385 struct cfg80211_chan_def *chandef, 1386 u32 flags) 1387 { 1388 size_t custom_ie_offset = 0; 1389 int i, err; 1390 1391 memset(ie_desc, 0, sizeof(*ie_desc)); 1392 1393 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1394 if (bands_used & BIT(i)) { 1395 ie_desc->ies[i] = skb_tail_pointer(skb); 1396 err = ieee80211_put_preq_ies_band(skb, sdata, 1397 ie, ie_len, 1398 &custom_ie_offset, 1399 i, rate_masks[i], 1400 chandef, flags); 1401 if (err) 1402 return err; 1403 ie_desc->len[i] = skb_tail_pointer(skb) - 1404 ie_desc->ies[i]; 1405 } 1406 } 1407 1408 /* add any remaining custom IEs */ 1409 if (ie && ie_len) { 1410 if (WARN_ONCE(skb_tailroom(skb) < ie_len - custom_ie_offset, 1411 "not enough space for preq custom IEs\n")) 1412 return -ENOBUFS; 1413 ie_desc->common_ies = skb_tail_pointer(skb); 1414 skb_put_data(skb, ie + custom_ie_offset, 1415 ie_len - custom_ie_offset); 1416 ie_desc->common_ie_len = skb_tail_pointer(skb) - 1417 ie_desc->common_ies; 1418 } 1419 1420 return 0; 1421 }; 1422 1423 int ieee80211_build_preq_ies(struct ieee80211_sub_if_data *sdata, u8 *buffer, 1424 size_t buffer_len, 1425 struct ieee80211_scan_ies *ie_desc, 1426 const u8 *ie, size_t ie_len, 1427 u8 bands_used, u32 *rate_masks, 1428 struct cfg80211_chan_def *chandef, 1429 u32 flags) 1430 { 1431 struct sk_buff *skb = alloc_skb(buffer_len, GFP_KERNEL); 1432 uintptr_t offs; 1433 int ret, i; 1434 u8 *start; 1435 1436 if (!skb) 1437 return -ENOMEM; 1438 1439 start = skb_tail_pointer(skb); 1440 memset(start, 0, skb_tailroom(skb)); 1441 ret = ieee80211_put_preq_ies(skb, sdata, ie_desc, ie, ie_len, 1442 bands_used, rate_masks, chandef, 1443 flags); 1444 if (ret < 0) { 1445 goto out; 1446 } 1447 1448 if (skb->len > buffer_len) { 1449 ret = -ENOBUFS; 1450 goto out; 1451 } 1452 1453 memcpy(buffer, start, skb->len); 1454 1455 /* adjust ie_desc for copy */ 1456 for (i = 0; i < NUM_NL80211_BANDS; i++) { 1457 offs = ie_desc->ies[i] - start; 1458 ie_desc->ies[i] = buffer + offs; 1459 } 1460 offs = ie_desc->common_ies - start; 1461 ie_desc->common_ies = buffer + offs; 1462 1463 ret = skb->len; 1464 out: 1465 consume_skb(skb); 1466 return ret; 1467 } 1468 1469 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata, 1470 const u8 *src, const u8 *dst, 1471 u32 ratemask, 1472 struct ieee80211_channel *chan, 1473 const u8 *ssid, size_t ssid_len, 1474 const u8 *ie, size_t ie_len, 1475 u32 flags) 1476 { 1477 struct ieee80211_local *local = sdata->local; 1478 struct cfg80211_chan_def chandef; 1479 struct sk_buff *skb; 1480 struct ieee80211_mgmt *mgmt; 1481 u32 rate_masks[NUM_NL80211_BANDS] = {}; 1482 struct ieee80211_scan_ies dummy_ie_desc; 1483 1484 /* 1485 * Do not send DS Channel parameter for directed probe requests 1486 * in order to maximize the chance that we get a response. Some 1487 * badly-behaved APs don't respond when this parameter is included. 1488 */ 1489 chandef.width = sdata->vif.bss_conf.chanreq.oper.width; 1490 if (flags & IEEE80211_PROBE_FLAG_DIRECTED) 1491 chandef.chan = NULL; 1492 else 1493 chandef.chan = chan; 1494 1495 skb = ieee80211_probereq_get(&local->hw, src, ssid, ssid_len, 1496 local->scan_ies_len + ie_len); 1497 if (!skb) 1498 return NULL; 1499 1500 rate_masks[chan->band] = ratemask; 1501 ieee80211_put_preq_ies(skb, sdata, &dummy_ie_desc, 1502 ie, ie_len, BIT(chan->band), 1503 rate_masks, &chandef, flags); 1504 1505 if (dst) { 1506 mgmt = (struct ieee80211_mgmt *) skb->data; 1507 memcpy(mgmt->da, dst, ETH_ALEN); 1508 memcpy(mgmt->bssid, dst, ETH_ALEN); 1509 } 1510 1511 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1512 1513 return skb; 1514 } 1515 1516 u32 ieee80211_sta_get_rates(struct ieee80211_sub_if_data *sdata, 1517 struct ieee802_11_elems *elems, 1518 enum nl80211_band band, u32 *basic_rates) 1519 { 1520 struct ieee80211_supported_band *sband; 1521 size_t num_rates; 1522 u32 supp_rates; 1523 int i, j; 1524 1525 sband = sdata->local->hw.wiphy->bands[band]; 1526 if (WARN_ON(!sband)) 1527 return 1; 1528 1529 num_rates = sband->n_bitrates; 1530 supp_rates = 0; 1531 for (i = 0; i < elems->supp_rates_len + 1532 elems->ext_supp_rates_len; i++) { 1533 u8 rate = 0; 1534 int own_rate; 1535 bool is_basic; 1536 if (i < elems->supp_rates_len) 1537 rate = elems->supp_rates[i]; 1538 else if (elems->ext_supp_rates) 1539 rate = elems->ext_supp_rates 1540 [i - elems->supp_rates_len]; 1541 own_rate = 5 * (rate & 0x7f); 1542 is_basic = !!(rate & 0x80); 1543 1544 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY) 1545 continue; 1546 1547 for (j = 0; j < num_rates; j++) { 1548 int brate = sband->bitrates[j].bitrate; 1549 1550 if (brate == own_rate) { 1551 supp_rates |= BIT(j); 1552 if (basic_rates && is_basic) 1553 *basic_rates |= BIT(j); 1554 } 1555 } 1556 } 1557 return supp_rates; 1558 } 1559 1560 void ieee80211_stop_device(struct ieee80211_local *local, bool suspend) 1561 { 1562 local_bh_disable(); 1563 ieee80211_handle_queued_frames(local); 1564 local_bh_enable(); 1565 1566 ieee80211_led_radio(local, false); 1567 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO); 1568 1569 wiphy_work_cancel(local->hw.wiphy, &local->reconfig_filter); 1570 1571 flush_workqueue(local->workqueue); 1572 wiphy_work_flush(local->hw.wiphy, NULL); 1573 drv_stop(local, suspend); 1574 } 1575 1576 static void ieee80211_flush_completed_scan(struct ieee80211_local *local, 1577 bool aborted) 1578 { 1579 /* It's possible that we don't handle the scan completion in 1580 * time during suspend, so if it's still marked as completed 1581 * here, queue the work and flush it to clean things up. 1582 * Instead of calling the worker function directly here, we 1583 * really queue it to avoid potential races with other flows 1584 * scheduling the same work. 1585 */ 1586 if (test_bit(SCAN_COMPLETED, &local->scanning)) { 1587 /* If coming from reconfiguration failure, abort the scan so 1588 * we don't attempt to continue a partial HW scan - which is 1589 * possible otherwise if (e.g.) the 2.4 GHz portion was the 1590 * completed scan, and a 5 GHz portion is still pending. 1591 */ 1592 if (aborted) 1593 set_bit(SCAN_ABORTED, &local->scanning); 1594 wiphy_delayed_work_queue(local->hw.wiphy, &local->scan_work, 0); 1595 wiphy_delayed_work_flush(local->hw.wiphy, &local->scan_work); 1596 } 1597 } 1598 1599 static void ieee80211_handle_reconfig_failure(struct ieee80211_local *local) 1600 { 1601 struct ieee80211_sub_if_data *sdata; 1602 struct ieee80211_chanctx *ctx; 1603 1604 lockdep_assert_wiphy(local->hw.wiphy); 1605 1606 /* 1607 * We get here if during resume the device can't be restarted properly. 1608 * We might also get here if this happens during HW reset, which is a 1609 * slightly different situation and we need to drop all connections in 1610 * the latter case. 1611 * 1612 * Ask cfg80211 to turn off all interfaces, this will result in more 1613 * warnings but at least we'll then get into a clean stopped state. 1614 */ 1615 1616 local->resuming = false; 1617 local->suspended = false; 1618 local->in_reconfig = false; 1619 local->reconfig_failure = true; 1620 1621 ieee80211_flush_completed_scan(local, true); 1622 1623 /* scheduled scan clearly can't be running any more, but tell 1624 * cfg80211 and clear local state 1625 */ 1626 ieee80211_sched_scan_end(local); 1627 1628 list_for_each_entry(sdata, &local->interfaces, list) 1629 sdata->flags &= ~IEEE80211_SDATA_IN_DRIVER; 1630 1631 /* Mark channel contexts as not being in the driver any more to avoid 1632 * removing them from the driver during the shutdown process... 1633 */ 1634 list_for_each_entry(ctx, &local->chanctx_list, list) 1635 ctx->driver_present = false; 1636 } 1637 1638 static void ieee80211_assign_chanctx(struct ieee80211_local *local, 1639 struct ieee80211_sub_if_data *sdata, 1640 struct ieee80211_link_data *link) 1641 { 1642 struct ieee80211_chanctx_conf *conf; 1643 struct ieee80211_chanctx *ctx; 1644 1645 lockdep_assert_wiphy(local->hw.wiphy); 1646 1647 conf = rcu_dereference_protected(link->conf->chanctx_conf, 1648 lockdep_is_held(&local->hw.wiphy->mtx)); 1649 if (conf) { 1650 ctx = container_of(conf, struct ieee80211_chanctx, conf); 1651 drv_assign_vif_chanctx(local, sdata, link->conf, ctx); 1652 } 1653 } 1654 1655 static void ieee80211_reconfig_stations(struct ieee80211_sub_if_data *sdata) 1656 { 1657 struct ieee80211_local *local = sdata->local; 1658 struct sta_info *sta; 1659 1660 lockdep_assert_wiphy(local->hw.wiphy); 1661 1662 /* add STAs back */ 1663 list_for_each_entry(sta, &local->sta_list, list) { 1664 enum ieee80211_sta_state state; 1665 1666 if (!sta->uploaded || sta->sdata != sdata) 1667 continue; 1668 1669 for (state = IEEE80211_STA_NOTEXIST; 1670 state < sta->sta_state; state++) 1671 WARN_ON(drv_sta_state(local, sta->sdata, sta, state, 1672 state + 1)); 1673 } 1674 } 1675 1676 static int ieee80211_reconfig_nan(struct ieee80211_sub_if_data *sdata) 1677 { 1678 struct cfg80211_nan_func *func, **funcs; 1679 int res, id, i = 0; 1680 1681 res = drv_start_nan(sdata->local, sdata, 1682 &sdata->u.nan.conf); 1683 if (WARN_ON(res)) 1684 return res; 1685 1686 funcs = kcalloc(sdata->local->hw.max_nan_de_entries + 1, 1687 sizeof(*funcs), 1688 GFP_KERNEL); 1689 if (!funcs) 1690 return -ENOMEM; 1691 1692 /* Add all the functions: 1693 * This is a little bit ugly. We need to call a potentially sleeping 1694 * callback for each NAN function, so we can't hold the spinlock. 1695 */ 1696 spin_lock_bh(&sdata->u.nan.func_lock); 1697 1698 idr_for_each_entry(&sdata->u.nan.function_inst_ids, func, id) 1699 funcs[i++] = func; 1700 1701 spin_unlock_bh(&sdata->u.nan.func_lock); 1702 1703 for (i = 0; funcs[i]; i++) { 1704 res = drv_add_nan_func(sdata->local, sdata, funcs[i]); 1705 if (WARN_ON(res)) 1706 ieee80211_nan_func_terminated(&sdata->vif, 1707 funcs[i]->instance_id, 1708 NL80211_NAN_FUNC_TERM_REASON_ERROR, 1709 GFP_KERNEL); 1710 } 1711 1712 kfree(funcs); 1713 1714 return 0; 1715 } 1716 1717 static void ieee80211_reconfig_ap_links(struct ieee80211_local *local, 1718 struct ieee80211_sub_if_data *sdata, 1719 u64 changed) 1720 { 1721 int link_id; 1722 1723 for (link_id = 0; link_id < ARRAY_SIZE(sdata->link); link_id++) { 1724 struct ieee80211_link_data *link; 1725 1726 if (!(sdata->vif.active_links & BIT(link_id))) 1727 continue; 1728 1729 link = sdata_dereference(sdata->link[link_id], sdata); 1730 if (!link) 1731 continue; 1732 1733 if (rcu_access_pointer(link->u.ap.beacon)) 1734 drv_start_ap(local, sdata, link->conf); 1735 1736 if (!link->conf->enable_beacon) 1737 continue; 1738 1739 changed |= BSS_CHANGED_BEACON | 1740 BSS_CHANGED_BEACON_ENABLED; 1741 1742 ieee80211_link_info_change_notify(sdata, link, changed); 1743 } 1744 } 1745 1746 int ieee80211_reconfig(struct ieee80211_local *local) 1747 { 1748 struct ieee80211_hw *hw = &local->hw; 1749 struct ieee80211_sub_if_data *sdata; 1750 struct ieee80211_chanctx *ctx; 1751 struct sta_info *sta; 1752 int res, i; 1753 bool reconfig_due_to_wowlan = false; 1754 struct ieee80211_sub_if_data *sched_scan_sdata; 1755 struct cfg80211_sched_scan_request *sched_scan_req; 1756 bool sched_scan_stopped = false; 1757 bool suspended = local->suspended; 1758 bool in_reconfig = false; 1759 u32 rts_threshold; 1760 1761 lockdep_assert_wiphy(local->hw.wiphy); 1762 1763 /* nothing to do if HW shouldn't run */ 1764 if (!local->open_count) 1765 goto wake_up; 1766 1767 #ifdef CONFIG_PM 1768 if (suspended) 1769 local->resuming = true; 1770 1771 if (local->wowlan) { 1772 /* 1773 * In the wowlan case, both mac80211 and the device 1774 * are functional when the resume op is called, so 1775 * clear local->suspended so the device could operate 1776 * normally (e.g. pass rx frames). 1777 */ 1778 local->suspended = false; 1779 res = drv_resume(local); 1780 local->wowlan = false; 1781 if (res < 0) { 1782 local->resuming = false; 1783 return res; 1784 } 1785 if (res == 0) 1786 goto wake_up; 1787 WARN_ON(res > 1); 1788 /* 1789 * res is 1, which means the driver requested 1790 * to go through a regular reset on wakeup. 1791 * restore local->suspended in this case. 1792 */ 1793 reconfig_due_to_wowlan = true; 1794 local->suspended = true; 1795 } 1796 #endif 1797 1798 /* 1799 * In case of hw_restart during suspend (without wowlan), 1800 * cancel restart work, as we are reconfiguring the device 1801 * anyway. 1802 * Note that restart_work is scheduled on a frozen workqueue, 1803 * so we can't deadlock in this case. 1804 */ 1805 if (suspended && local->in_reconfig && !reconfig_due_to_wowlan) 1806 cancel_work_sync(&local->restart_work); 1807 1808 local->started = false; 1809 1810 /* 1811 * Upon resume hardware can sometimes be goofy due to 1812 * various platform / driver / bus issues, so restarting 1813 * the device may at times not work immediately. Propagate 1814 * the error. 1815 */ 1816 res = drv_start(local); 1817 if (res) { 1818 if (suspended) 1819 WARN(1, "Hardware became unavailable upon resume. This could be a software issue prior to suspend or a hardware issue.\n"); 1820 else 1821 WARN(1, "Hardware became unavailable during restart.\n"); 1822 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 1823 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 1824 false); 1825 ieee80211_handle_reconfig_failure(local); 1826 return res; 1827 } 1828 1829 /* setup fragmentation threshold */ 1830 drv_set_frag_threshold(local, -1, hw->wiphy->frag_threshold); 1831 1832 /* setup RTS threshold */ 1833 if (hw->wiphy->n_radio > 0) { 1834 for (i = 0; i < hw->wiphy->n_radio; i++) { 1835 rts_threshold = hw->wiphy->radio_cfg[i].rts_threshold; 1836 drv_set_rts_threshold(local, i, rts_threshold); 1837 } 1838 } else { 1839 drv_set_rts_threshold(local, -1, hw->wiphy->rts_threshold); 1840 } 1841 1842 /* reset coverage class */ 1843 drv_set_coverage_class(local, -1, hw->wiphy->coverage_class); 1844 1845 ieee80211_led_radio(local, true); 1846 ieee80211_mod_tpt_led_trig(local, 1847 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0); 1848 1849 /* add interfaces */ 1850 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1851 if (sdata && ieee80211_hw_check(&local->hw, WANT_MONITOR_VIF)) { 1852 /* in HW restart it exists already */ 1853 WARN_ON(local->resuming); 1854 res = drv_add_interface(local, sdata); 1855 if (WARN_ON(res)) { 1856 RCU_INIT_POINTER(local->monitor_sdata, NULL); 1857 synchronize_net(); 1858 kfree(sdata); 1859 } 1860 } 1861 1862 list_for_each_entry(sdata, &local->interfaces, list) { 1863 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1864 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1865 continue; 1866 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1867 ieee80211_sdata_running(sdata)) { 1868 res = drv_add_interface(local, sdata); 1869 if (WARN_ON(res)) 1870 break; 1871 } 1872 } 1873 1874 /* If adding any of the interfaces failed above, roll back and 1875 * report failure. 1876 */ 1877 if (res) { 1878 list_for_each_entry_continue_reverse(sdata, &local->interfaces, 1879 list) { 1880 if (sdata->vif.type == NL80211_IFTYPE_MONITOR && 1881 !ieee80211_hw_check(&local->hw, NO_VIRTUAL_MONITOR)) 1882 continue; 1883 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 1884 ieee80211_sdata_running(sdata)) 1885 drv_remove_interface(local, sdata); 1886 } 1887 ieee80211_handle_reconfig_failure(local); 1888 return res; 1889 } 1890 1891 /* add channel contexts */ 1892 list_for_each_entry(ctx, &local->chanctx_list, list) 1893 if (ctx->replace_state != IEEE80211_CHANCTX_REPLACES_OTHER) 1894 WARN_ON(drv_add_chanctx(local, ctx)); 1895 1896 sdata = wiphy_dereference(local->hw.wiphy, local->monitor_sdata); 1897 if (sdata && ieee80211_sdata_running(sdata)) 1898 ieee80211_assign_chanctx(local, sdata, &sdata->deflink); 1899 1900 /* reconfigure hardware */ 1901 ieee80211_hw_config(local, -1, IEEE80211_CONF_CHANGE_LISTEN_INTERVAL | 1902 IEEE80211_CONF_CHANGE_MONITOR | 1903 IEEE80211_CONF_CHANGE_PS | 1904 IEEE80211_CONF_CHANGE_RETRY_LIMITS | 1905 IEEE80211_CONF_CHANGE_IDLE); 1906 1907 ieee80211_configure_filter(local); 1908 1909 /* Finally also reconfigure all the BSS information */ 1910 list_for_each_entry(sdata, &local->interfaces, list) { 1911 /* common change flags for all interface types - link only */ 1912 u64 changed = BSS_CHANGED_ERP_CTS_PROT | 1913 BSS_CHANGED_ERP_PREAMBLE | 1914 BSS_CHANGED_ERP_SLOT | 1915 BSS_CHANGED_HT | 1916 BSS_CHANGED_BASIC_RATES | 1917 BSS_CHANGED_BEACON_INT | 1918 BSS_CHANGED_BSSID | 1919 BSS_CHANGED_CQM | 1920 BSS_CHANGED_QOS | 1921 BSS_CHANGED_TXPOWER | 1922 BSS_CHANGED_MCAST_RATE; 1923 struct ieee80211_link_data *link = NULL; 1924 unsigned int link_id; 1925 u32 active_links = 0; 1926 1927 if (!ieee80211_sdata_running(sdata)) 1928 continue; 1929 1930 if (ieee80211_vif_is_mld(&sdata->vif)) { 1931 struct ieee80211_bss_conf *old[IEEE80211_MLD_MAX_NUM_LINKS] = { 1932 [0] = &sdata->vif.bss_conf, 1933 }; 1934 1935 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1936 /* start with a single active link */ 1937 active_links = sdata->vif.active_links; 1938 link_id = ffs(active_links) - 1; 1939 sdata->vif.active_links = BIT(link_id); 1940 } 1941 1942 drv_change_vif_links(local, sdata, 0, 1943 sdata->vif.active_links, 1944 old); 1945 } 1946 1947 sdata->restart_active_links = active_links; 1948 1949 for (link_id = 0; 1950 link_id < ARRAY_SIZE(sdata->vif.link_conf); 1951 link_id++) { 1952 if (!ieee80211_vif_link_active(&sdata->vif, link_id)) 1953 continue; 1954 1955 link = sdata_dereference(sdata->link[link_id], sdata); 1956 if (!link) 1957 continue; 1958 1959 ieee80211_assign_chanctx(local, sdata, link); 1960 } 1961 1962 switch (sdata->vif.type) { 1963 case NL80211_IFTYPE_AP_VLAN: 1964 case NL80211_IFTYPE_MONITOR: 1965 break; 1966 case NL80211_IFTYPE_ADHOC: 1967 if (sdata->vif.cfg.ibss_joined) 1968 WARN_ON(drv_join_ibss(local, sdata)); 1969 fallthrough; 1970 default: 1971 ieee80211_reconfig_stations(sdata); 1972 fallthrough; 1973 case NL80211_IFTYPE_AP: /* AP stations are handled later */ 1974 for (i = 0; i < IEEE80211_NUM_ACS; i++) 1975 drv_conf_tx(local, &sdata->deflink, i, 1976 &sdata->deflink.tx_conf[i]); 1977 break; 1978 } 1979 1980 if (sdata->vif.bss_conf.mu_mimo_owner) 1981 changed |= BSS_CHANGED_MU_GROUPS; 1982 1983 if (!ieee80211_vif_is_mld(&sdata->vif)) 1984 changed |= BSS_CHANGED_IDLE; 1985 1986 switch (sdata->vif.type) { 1987 case NL80211_IFTYPE_STATION: 1988 if (!ieee80211_vif_is_mld(&sdata->vif)) { 1989 changed |= BSS_CHANGED_ASSOC | 1990 BSS_CHANGED_ARP_FILTER | 1991 BSS_CHANGED_PS; 1992 1993 /* Re-send beacon info report to the driver */ 1994 if (sdata->deflink.u.mgd.have_beacon) 1995 changed |= BSS_CHANGED_BEACON_INFO; 1996 1997 if (sdata->vif.bss_conf.max_idle_period || 1998 sdata->vif.bss_conf.protected_keep_alive) 1999 changed |= BSS_CHANGED_KEEP_ALIVE; 2000 2001 ieee80211_bss_info_change_notify(sdata, 2002 changed); 2003 } else if (!WARN_ON(!link)) { 2004 ieee80211_link_info_change_notify(sdata, link, 2005 changed); 2006 changed = BSS_CHANGED_ASSOC | 2007 BSS_CHANGED_IDLE | 2008 BSS_CHANGED_PS | 2009 BSS_CHANGED_ARP_FILTER; 2010 ieee80211_vif_cfg_change_notify(sdata, changed); 2011 } 2012 break; 2013 case NL80211_IFTYPE_OCB: 2014 changed |= BSS_CHANGED_OCB; 2015 ieee80211_bss_info_change_notify(sdata, changed); 2016 break; 2017 case NL80211_IFTYPE_ADHOC: 2018 changed |= BSS_CHANGED_IBSS; 2019 fallthrough; 2020 case NL80211_IFTYPE_AP: 2021 changed |= BSS_CHANGED_P2P_PS; 2022 2023 if (ieee80211_vif_is_mld(&sdata->vif)) 2024 ieee80211_vif_cfg_change_notify(sdata, 2025 BSS_CHANGED_SSID); 2026 else 2027 changed |= BSS_CHANGED_SSID; 2028 2029 if (sdata->vif.bss_conf.ftm_responder == 1 && 2030 wiphy_ext_feature_isset(sdata->local->hw.wiphy, 2031 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER)) 2032 changed |= BSS_CHANGED_FTM_RESPONDER; 2033 2034 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2035 changed |= BSS_CHANGED_AP_PROBE_RESP; 2036 2037 if (ieee80211_vif_is_mld(&sdata->vif)) { 2038 ieee80211_reconfig_ap_links(local, 2039 sdata, 2040 changed); 2041 break; 2042 } 2043 2044 if (rcu_access_pointer(sdata->deflink.u.ap.beacon)) 2045 drv_start_ap(local, sdata, 2046 sdata->deflink.conf); 2047 } 2048 fallthrough; 2049 case NL80211_IFTYPE_MESH_POINT: 2050 if (sdata->vif.bss_conf.enable_beacon) { 2051 changed |= BSS_CHANGED_BEACON | 2052 BSS_CHANGED_BEACON_ENABLED; 2053 ieee80211_bss_info_change_notify(sdata, changed); 2054 } 2055 break; 2056 case NL80211_IFTYPE_NAN: 2057 res = ieee80211_reconfig_nan(sdata); 2058 if (res < 0) { 2059 ieee80211_handle_reconfig_failure(local); 2060 return res; 2061 } 2062 break; 2063 case NL80211_IFTYPE_AP_VLAN: 2064 case NL80211_IFTYPE_MONITOR: 2065 case NL80211_IFTYPE_P2P_DEVICE: 2066 /* nothing to do */ 2067 break; 2068 case NL80211_IFTYPE_UNSPECIFIED: 2069 case NUM_NL80211_IFTYPES: 2070 case NL80211_IFTYPE_P2P_CLIENT: 2071 case NL80211_IFTYPE_P2P_GO: 2072 case NL80211_IFTYPE_WDS: 2073 WARN_ON(1); 2074 break; 2075 } 2076 } 2077 2078 ieee80211_recalc_ps(local); 2079 2080 /* 2081 * The sta might be in psm against the ap (e.g. because 2082 * this was the state before a hw restart), so we 2083 * explicitly send a null packet in order to make sure 2084 * it'll sync against the ap (and get out of psm). 2085 */ 2086 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) { 2087 list_for_each_entry(sdata, &local->interfaces, list) { 2088 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2089 continue; 2090 if (!sdata->u.mgd.associated) 2091 continue; 2092 2093 ieee80211_send_nullfunc(local, sdata, false); 2094 } 2095 } 2096 2097 /* APs are now beaconing, add back stations */ 2098 list_for_each_entry(sdata, &local->interfaces, list) { 2099 if (!ieee80211_sdata_running(sdata)) 2100 continue; 2101 2102 switch (sdata->vif.type) { 2103 case NL80211_IFTYPE_AP_VLAN: 2104 case NL80211_IFTYPE_AP: 2105 ieee80211_reconfig_stations(sdata); 2106 break; 2107 default: 2108 break; 2109 } 2110 } 2111 2112 /* add back keys */ 2113 list_for_each_entry(sdata, &local->interfaces, list) 2114 ieee80211_reenable_keys(sdata); 2115 2116 /* re-enable multi-link for client interfaces */ 2117 list_for_each_entry(sdata, &local->interfaces, list) { 2118 if (sdata->restart_active_links) 2119 ieee80211_set_active_links(&sdata->vif, 2120 sdata->restart_active_links); 2121 /* 2122 * If a link switch was scheduled before the restart, and ran 2123 * before reconfig, it will do nothing, so re-schedule. 2124 */ 2125 if (sdata->desired_active_links) 2126 wiphy_work_queue(sdata->local->hw.wiphy, 2127 &sdata->activate_links_work); 2128 } 2129 2130 /* Reconfigure sched scan if it was interrupted by FW restart */ 2131 sched_scan_sdata = rcu_dereference_protected(local->sched_scan_sdata, 2132 lockdep_is_held(&local->hw.wiphy->mtx)); 2133 sched_scan_req = rcu_dereference_protected(local->sched_scan_req, 2134 lockdep_is_held(&local->hw.wiphy->mtx)); 2135 if (sched_scan_sdata && sched_scan_req) 2136 /* 2137 * Sched scan stopped, but we don't want to report it. Instead, 2138 * we're trying to reschedule. However, if more than one scan 2139 * plan was set, we cannot reschedule since we don't know which 2140 * scan plan was currently running (and some scan plans may have 2141 * already finished). 2142 */ 2143 if (sched_scan_req->n_scan_plans > 1 || 2144 __ieee80211_request_sched_scan_start(sched_scan_sdata, 2145 sched_scan_req)) { 2146 RCU_INIT_POINTER(local->sched_scan_sdata, NULL); 2147 RCU_INIT_POINTER(local->sched_scan_req, NULL); 2148 sched_scan_stopped = true; 2149 } 2150 2151 if (sched_scan_stopped) 2152 cfg80211_sched_scan_stopped_locked(local->hw.wiphy, 0); 2153 2154 wake_up: 2155 /* 2156 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation 2157 * sessions can be established after a resume. 2158 * 2159 * Also tear down aggregation sessions since reconfiguring 2160 * them in a hardware restart scenario is not easily done 2161 * right now, and the hardware will have lost information 2162 * about the sessions, but we and the AP still think they 2163 * are active. This is really a workaround though. 2164 */ 2165 if (ieee80211_hw_check(hw, AMPDU_AGGREGATION)) { 2166 list_for_each_entry(sta, &local->sta_list, list) { 2167 if (!local->resuming) 2168 ieee80211_sta_tear_down_BA_sessions( 2169 sta, AGG_STOP_LOCAL_REQUEST); 2170 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 2171 } 2172 } 2173 2174 /* 2175 * If this is for hw restart things are still running. 2176 * We may want to change that later, however. 2177 */ 2178 if (local->open_count && (!suspended || reconfig_due_to_wowlan)) 2179 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_RESTART); 2180 2181 if (local->in_reconfig) { 2182 in_reconfig = local->in_reconfig; 2183 local->in_reconfig = false; 2184 barrier(); 2185 2186 ieee80211_reconfig_roc(local); 2187 2188 /* Requeue all works */ 2189 list_for_each_entry(sdata, &local->interfaces, list) { 2190 if (ieee80211_sdata_running(sdata)) 2191 wiphy_work_queue(local->hw.wiphy, &sdata->work); 2192 } 2193 } 2194 2195 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP, 2196 IEEE80211_QUEUE_STOP_REASON_SUSPEND, 2197 false); 2198 2199 if (in_reconfig) { 2200 list_for_each_entry(sdata, &local->interfaces, list) { 2201 if (!ieee80211_sdata_running(sdata)) 2202 continue; 2203 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2204 ieee80211_sta_restart(sdata); 2205 } 2206 } 2207 2208 if (local->virt_monitors > 0 && 2209 local->virt_monitors == local->open_count) 2210 ieee80211_add_virtual_monitor(local); 2211 2212 if (!suspended) 2213 return 0; 2214 2215 #ifdef CONFIG_PM 2216 /* first set suspended false, then resuming */ 2217 local->suspended = false; 2218 mb(); 2219 local->resuming = false; 2220 2221 ieee80211_flush_completed_scan(local, false); 2222 2223 if (local->open_count && !reconfig_due_to_wowlan) 2224 drv_reconfig_complete(local, IEEE80211_RECONFIG_TYPE_SUSPEND); 2225 2226 list_for_each_entry(sdata, &local->interfaces, list) { 2227 if (!ieee80211_sdata_running(sdata)) 2228 continue; 2229 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2230 ieee80211_sta_restart(sdata); 2231 } 2232 2233 mod_timer(&local->sta_cleanup, jiffies + 1); 2234 #else 2235 WARN_ON(1); 2236 #endif 2237 2238 return 0; 2239 } 2240 2241 static void ieee80211_reconfig_disconnect(struct ieee80211_vif *vif, u8 flag) 2242 { 2243 struct ieee80211_sub_if_data *sdata; 2244 struct ieee80211_local *local; 2245 struct ieee80211_key *key; 2246 2247 if (WARN_ON(!vif)) 2248 return; 2249 2250 sdata = vif_to_sdata(vif); 2251 local = sdata->local; 2252 2253 lockdep_assert_wiphy(local->hw.wiphy); 2254 2255 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_RESUME && 2256 !local->resuming)) 2257 return; 2258 2259 if (WARN_ON(flag & IEEE80211_SDATA_DISCONNECT_HW_RESTART && 2260 !local->in_reconfig)) 2261 return; 2262 2263 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2264 return; 2265 2266 sdata->flags |= flag; 2267 2268 list_for_each_entry(key, &sdata->key_list, list) 2269 key->flags |= KEY_FLAG_TAINTED; 2270 } 2271 2272 void ieee80211_hw_restart_disconnect(struct ieee80211_vif *vif) 2273 { 2274 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_HW_RESTART); 2275 } 2276 EXPORT_SYMBOL_GPL(ieee80211_hw_restart_disconnect); 2277 2278 void ieee80211_resume_disconnect(struct ieee80211_vif *vif) 2279 { 2280 ieee80211_reconfig_disconnect(vif, IEEE80211_SDATA_DISCONNECT_RESUME); 2281 } 2282 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect); 2283 2284 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata, 2285 struct ieee80211_link_data *link) 2286 { 2287 struct ieee80211_local *local = sdata->local; 2288 struct ieee80211_chanctx_conf *chanctx_conf; 2289 struct ieee80211_chanctx *chanctx; 2290 2291 lockdep_assert_wiphy(local->hw.wiphy); 2292 2293 chanctx_conf = rcu_dereference_protected(link->conf->chanctx_conf, 2294 lockdep_is_held(&local->hw.wiphy->mtx)); 2295 2296 /* 2297 * This function can be called from a work, thus it may be possible 2298 * that the chanctx_conf is removed (due to a disconnection, for 2299 * example). 2300 * So nothing should be done in such case. 2301 */ 2302 if (!chanctx_conf) 2303 return; 2304 2305 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf); 2306 ieee80211_recalc_smps_chanctx(local, chanctx); 2307 } 2308 2309 void ieee80211_recalc_min_chandef(struct ieee80211_sub_if_data *sdata, 2310 int link_id) 2311 { 2312 struct ieee80211_local *local = sdata->local; 2313 struct ieee80211_chanctx_conf *chanctx_conf; 2314 struct ieee80211_chanctx *chanctx; 2315 int i; 2316 2317 lockdep_assert_wiphy(local->hw.wiphy); 2318 2319 for (i = 0; i < ARRAY_SIZE(sdata->vif.link_conf); i++) { 2320 struct ieee80211_bss_conf *bss_conf; 2321 2322 if (link_id >= 0 && link_id != i) 2323 continue; 2324 2325 rcu_read_lock(); 2326 bss_conf = rcu_dereference(sdata->vif.link_conf[i]); 2327 if (!bss_conf) { 2328 rcu_read_unlock(); 2329 continue; 2330 } 2331 2332 chanctx_conf = rcu_dereference_protected(bss_conf->chanctx_conf, 2333 lockdep_is_held(&local->hw.wiphy->mtx)); 2334 /* 2335 * Since we hold the wiphy mutex (checked above) 2336 * we can take the chanctx_conf pointer out of the 2337 * RCU critical section, it cannot go away without 2338 * the mutex. Just the way we reached it could - in 2339 * theory - go away, but we don't really care and 2340 * it really shouldn't happen anyway. 2341 */ 2342 rcu_read_unlock(); 2343 2344 if (!chanctx_conf) 2345 return; 2346 2347 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, 2348 conf); 2349 ieee80211_recalc_chanctx_min_def(local, chanctx, NULL, false); 2350 } 2351 } 2352 2353 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset) 2354 { 2355 size_t pos = offset; 2356 2357 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC) 2358 pos += 2 + ies[pos + 1]; 2359 2360 return pos; 2361 } 2362 2363 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2364 u16 cap) 2365 { 2366 __le16 tmp; 2367 2368 *pos++ = WLAN_EID_HT_CAPABILITY; 2369 *pos++ = sizeof(struct ieee80211_ht_cap); 2370 memset(pos, 0, sizeof(struct ieee80211_ht_cap)); 2371 2372 /* capability flags */ 2373 tmp = cpu_to_le16(cap); 2374 memcpy(pos, &tmp, sizeof(u16)); 2375 pos += sizeof(u16); 2376 2377 /* AMPDU parameters */ 2378 *pos++ = ht_cap->ampdu_factor | 2379 (ht_cap->ampdu_density << 2380 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT); 2381 2382 /* MCS set */ 2383 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs)); 2384 pos += sizeof(ht_cap->mcs); 2385 2386 /* extended capabilities */ 2387 pos += sizeof(__le16); 2388 2389 /* BF capabilities */ 2390 pos += sizeof(__le32); 2391 2392 /* antenna selection */ 2393 pos += sizeof(u8); 2394 2395 return pos; 2396 } 2397 2398 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2399 u32 cap) 2400 { 2401 __le32 tmp; 2402 2403 *pos++ = WLAN_EID_VHT_CAPABILITY; 2404 *pos++ = sizeof(struct ieee80211_vht_cap); 2405 memset(pos, 0, sizeof(struct ieee80211_vht_cap)); 2406 2407 /* capability flags */ 2408 tmp = cpu_to_le32(cap); 2409 memcpy(pos, &tmp, sizeof(u32)); 2410 pos += sizeof(u32); 2411 2412 /* VHT MCS set */ 2413 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs)); 2414 pos += sizeof(vht_cap->vht_mcs); 2415 2416 return pos; 2417 } 2418 2419 /* this may return more than ieee80211_put_he_6ghz_cap() will need */ 2420 u8 ieee80211_ie_len_he_cap(struct ieee80211_sub_if_data *sdata) 2421 { 2422 const struct ieee80211_sta_he_cap *he_cap; 2423 struct ieee80211_supported_band *sband; 2424 u8 n; 2425 2426 sband = ieee80211_get_sband(sdata); 2427 if (!sband) 2428 return 0; 2429 2430 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2431 if (!he_cap) 2432 return 0; 2433 2434 n = ieee80211_he_mcs_nss_size(&he_cap->he_cap_elem); 2435 return 2 + 1 + 2436 sizeof(he_cap->he_cap_elem) + n + 2437 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2438 he_cap->he_cap_elem.phy_cap_info); 2439 } 2440 2441 static void 2442 ieee80211_get_adjusted_he_cap(const struct ieee80211_conn_settings *conn, 2443 const struct ieee80211_sta_he_cap *he_cap, 2444 struct ieee80211_he_cap_elem *elem) 2445 { 2446 u8 ru_limit, max_ru; 2447 2448 *elem = he_cap->he_cap_elem; 2449 2450 switch (conn->bw_limit) { 2451 case IEEE80211_CONN_BW_LIMIT_20: 2452 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242; 2453 break; 2454 case IEEE80211_CONN_BW_LIMIT_40: 2455 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484; 2456 break; 2457 case IEEE80211_CONN_BW_LIMIT_80: 2458 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996; 2459 break; 2460 default: 2461 ru_limit = IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996; 2462 break; 2463 } 2464 2465 max_ru = elem->phy_cap_info[8] & IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2466 max_ru = min(max_ru, ru_limit); 2467 elem->phy_cap_info[8] &= ~IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK; 2468 elem->phy_cap_info[8] |= max_ru; 2469 2470 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_40) { 2471 elem->phy_cap_info[0] &= 2472 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G | 2473 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G); 2474 elem->phy_cap_info[9] &= 2475 ~IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM; 2476 } 2477 2478 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 2479 elem->phy_cap_info[0] &= 2480 ~(IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G | 2481 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G); 2482 elem->phy_cap_info[5] &= 2483 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK; 2484 elem->phy_cap_info[7] &= 2485 ~(IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 2486 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ); 2487 } 2488 } 2489 2490 int ieee80211_put_he_cap(struct sk_buff *skb, 2491 struct ieee80211_sub_if_data *sdata, 2492 const struct ieee80211_supported_band *sband, 2493 const struct ieee80211_conn_settings *conn) 2494 { 2495 const struct ieee80211_sta_he_cap *he_cap; 2496 struct ieee80211_he_cap_elem elem; 2497 u8 *len; 2498 u8 n; 2499 u8 ie_len; 2500 2501 if (!conn) 2502 conn = &ieee80211_conn_settings_unlimited; 2503 2504 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 2505 if (!he_cap) 2506 return 0; 2507 2508 /* modify on stack first to calculate 'n' and 'ie_len' correctly */ 2509 ieee80211_get_adjusted_he_cap(conn, he_cap, &elem); 2510 2511 n = ieee80211_he_mcs_nss_size(&elem); 2512 ie_len = 2 + 1 + 2513 sizeof(he_cap->he_cap_elem) + n + 2514 ieee80211_he_ppe_size(he_cap->ppe_thres[0], 2515 he_cap->he_cap_elem.phy_cap_info); 2516 2517 if (skb_tailroom(skb) < ie_len) 2518 return -ENOBUFS; 2519 2520 skb_put_u8(skb, WLAN_EID_EXTENSION); 2521 len = skb_put(skb, 1); /* We'll set the size later below */ 2522 skb_put_u8(skb, WLAN_EID_EXT_HE_CAPABILITY); 2523 2524 /* Fixed data */ 2525 skb_put_data(skb, &elem, sizeof(elem)); 2526 2527 skb_put_data(skb, &he_cap->he_mcs_nss_supp, n); 2528 2529 /* Check if PPE Threshold should be present */ 2530 if ((he_cap->he_cap_elem.phy_cap_info[6] & 2531 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) 2532 goto end; 2533 2534 /* 2535 * Calculate how many PPET16/PPET8 pairs are to come. Algorithm: 2536 * (NSS_M1 + 1) x (num of 1 bits in RU_INDEX_BITMASK) 2537 */ 2538 n = hweight8(he_cap->ppe_thres[0] & 2539 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); 2540 n *= (1 + ((he_cap->ppe_thres[0] & IEEE80211_PPE_THRES_NSS_MASK) >> 2541 IEEE80211_PPE_THRES_NSS_POS)); 2542 2543 /* 2544 * Each pair is 6 bits, and we need to add the 7 "header" bits to the 2545 * total size. 2546 */ 2547 n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; 2548 n = DIV_ROUND_UP(n, 8); 2549 2550 /* Copy PPE Thresholds */ 2551 skb_put_data(skb, &he_cap->ppe_thres, n); 2552 2553 end: 2554 *len = skb_tail_pointer(skb) - len - 1; 2555 return 0; 2556 } 2557 2558 int ieee80211_put_reg_conn(struct sk_buff *skb, 2559 enum ieee80211_channel_flags flags) 2560 { 2561 u8 reg_conn = IEEE80211_REG_CONN_LPI_VALID | 2562 IEEE80211_REG_CONN_LPI_VALUE | 2563 IEEE80211_REG_CONN_SP_VALID; 2564 2565 if (!(flags & IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT)) 2566 reg_conn |= IEEE80211_REG_CONN_SP_VALUE; 2567 2568 skb_put_u8(skb, WLAN_EID_EXTENSION); 2569 skb_put_u8(skb, 1 + sizeof(reg_conn)); 2570 skb_put_u8(skb, WLAN_EID_EXT_NON_AP_STA_REG_CON); 2571 skb_put_u8(skb, reg_conn); 2572 return 0; 2573 } 2574 2575 int ieee80211_put_he_6ghz_cap(struct sk_buff *skb, 2576 struct ieee80211_sub_if_data *sdata, 2577 enum ieee80211_smps_mode smps_mode) 2578 { 2579 struct ieee80211_supported_band *sband; 2580 const struct ieee80211_sband_iftype_data *iftd; 2581 enum nl80211_iftype iftype = ieee80211_vif_type_p2p(&sdata->vif); 2582 __le16 cap; 2583 2584 if (!cfg80211_any_usable_channels(sdata->local->hw.wiphy, 2585 BIT(NL80211_BAND_6GHZ), 2586 IEEE80211_CHAN_NO_HE)) 2587 return 0; 2588 2589 sband = sdata->local->hw.wiphy->bands[NL80211_BAND_6GHZ]; 2590 2591 iftd = ieee80211_get_sband_iftype_data(sband, iftype); 2592 if (!iftd) 2593 return 0; 2594 2595 /* Check for device HE 6 GHz capability before adding element */ 2596 if (!iftd->he_6ghz_capa.capa) 2597 return 0; 2598 2599 cap = iftd->he_6ghz_capa.capa; 2600 cap &= cpu_to_le16(~IEEE80211_HE_6GHZ_CAP_SM_PS); 2601 2602 switch (smps_mode) { 2603 case IEEE80211_SMPS_AUTOMATIC: 2604 case IEEE80211_SMPS_NUM_MODES: 2605 WARN_ON(1); 2606 fallthrough; 2607 case IEEE80211_SMPS_OFF: 2608 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DISABLED, 2609 IEEE80211_HE_6GHZ_CAP_SM_PS); 2610 break; 2611 case IEEE80211_SMPS_STATIC: 2612 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_STATIC, 2613 IEEE80211_HE_6GHZ_CAP_SM_PS); 2614 break; 2615 case IEEE80211_SMPS_DYNAMIC: 2616 cap |= le16_encode_bits(WLAN_HT_CAP_SM_PS_DYNAMIC, 2617 IEEE80211_HE_6GHZ_CAP_SM_PS); 2618 break; 2619 } 2620 2621 if (skb_tailroom(skb) < 2 + 1 + sizeof(cap)) 2622 return -ENOBUFS; 2623 2624 skb_put_u8(skb, WLAN_EID_EXTENSION); 2625 skb_put_u8(skb, 1 + sizeof(cap)); 2626 skb_put_u8(skb, WLAN_EID_EXT_HE_6GHZ_CAPA); 2627 skb_put_data(skb, &cap, sizeof(cap)); 2628 return 0; 2629 } 2630 2631 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap, 2632 const struct cfg80211_chan_def *chandef, 2633 u16 prot_mode, bool rifs_mode) 2634 { 2635 struct ieee80211_ht_operation *ht_oper; 2636 /* Build HT Information */ 2637 *pos++ = WLAN_EID_HT_OPERATION; 2638 *pos++ = sizeof(struct ieee80211_ht_operation); 2639 ht_oper = (struct ieee80211_ht_operation *)pos; 2640 ht_oper->primary_chan = ieee80211_frequency_to_channel( 2641 chandef->chan->center_freq); 2642 switch (chandef->width) { 2643 case NL80211_CHAN_WIDTH_160: 2644 case NL80211_CHAN_WIDTH_80P80: 2645 case NL80211_CHAN_WIDTH_80: 2646 case NL80211_CHAN_WIDTH_40: 2647 if (chandef->center_freq1 > chandef->chan->center_freq) 2648 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 2649 else 2650 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 2651 break; 2652 case NL80211_CHAN_WIDTH_320: 2653 /* HT information element should not be included on 6GHz */ 2654 WARN_ON(1); 2655 return pos; 2656 default: 2657 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE; 2658 break; 2659 } 2660 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 && 2661 chandef->width != NL80211_CHAN_WIDTH_20_NOHT && 2662 chandef->width != NL80211_CHAN_WIDTH_20) 2663 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY; 2664 2665 if (rifs_mode) 2666 ht_oper->ht_param |= IEEE80211_HT_PARAM_RIFS_MODE; 2667 2668 ht_oper->operation_mode = cpu_to_le16(prot_mode); 2669 ht_oper->stbc_param = 0x0000; 2670 2671 /* It seems that Basic MCS set and Supported MCS set 2672 are identical for the first 10 bytes */ 2673 memset(&ht_oper->basic_set, 0, 16); 2674 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10); 2675 2676 return pos + sizeof(struct ieee80211_ht_operation); 2677 } 2678 2679 void ieee80211_ie_build_wide_bw_cs(u8 *pos, 2680 const struct cfg80211_chan_def *chandef) 2681 { 2682 *pos++ = WLAN_EID_WIDE_BW_CHANNEL_SWITCH; /* EID */ 2683 *pos++ = 3; /* IE length */ 2684 /* New channel width */ 2685 switch (chandef->width) { 2686 case NL80211_CHAN_WIDTH_80: 2687 *pos++ = IEEE80211_VHT_CHANWIDTH_80MHZ; 2688 break; 2689 case NL80211_CHAN_WIDTH_160: 2690 *pos++ = IEEE80211_VHT_CHANWIDTH_160MHZ; 2691 break; 2692 case NL80211_CHAN_WIDTH_80P80: 2693 *pos++ = IEEE80211_VHT_CHANWIDTH_80P80MHZ; 2694 break; 2695 case NL80211_CHAN_WIDTH_320: 2696 /* The behavior is not defined for 320 MHz channels */ 2697 WARN_ON(1); 2698 fallthrough; 2699 default: 2700 *pos++ = IEEE80211_VHT_CHANWIDTH_USE_HT; 2701 } 2702 2703 /* new center frequency segment 0 */ 2704 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq1); 2705 /* new center frequency segment 1 */ 2706 if (chandef->center_freq2) 2707 *pos++ = ieee80211_frequency_to_channel(chandef->center_freq2); 2708 else 2709 *pos++ = 0; 2710 } 2711 2712 u8 *ieee80211_ie_build_vht_oper(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap, 2713 const struct cfg80211_chan_def *chandef) 2714 { 2715 struct ieee80211_vht_operation *vht_oper; 2716 2717 *pos++ = WLAN_EID_VHT_OPERATION; 2718 *pos++ = sizeof(struct ieee80211_vht_operation); 2719 vht_oper = (struct ieee80211_vht_operation *)pos; 2720 vht_oper->center_freq_seg0_idx = ieee80211_frequency_to_channel( 2721 chandef->center_freq1); 2722 if (chandef->center_freq2) 2723 vht_oper->center_freq_seg1_idx = 2724 ieee80211_frequency_to_channel(chandef->center_freq2); 2725 else 2726 vht_oper->center_freq_seg1_idx = 0x00; 2727 2728 switch (chandef->width) { 2729 case NL80211_CHAN_WIDTH_160: 2730 /* 2731 * Convert 160 MHz channel width to new style as interop 2732 * workaround. 2733 */ 2734 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2735 vht_oper->center_freq_seg1_idx = vht_oper->center_freq_seg0_idx; 2736 if (chandef->chan->center_freq < chandef->center_freq1) 2737 vht_oper->center_freq_seg0_idx -= 8; 2738 else 2739 vht_oper->center_freq_seg0_idx += 8; 2740 break; 2741 case NL80211_CHAN_WIDTH_80P80: 2742 /* 2743 * Convert 80+80 MHz channel width to new style as interop 2744 * workaround. 2745 */ 2746 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2747 break; 2748 case NL80211_CHAN_WIDTH_80: 2749 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_80MHZ; 2750 break; 2751 case NL80211_CHAN_WIDTH_320: 2752 /* VHT information element should not be included on 6GHz */ 2753 WARN_ON(1); 2754 return pos; 2755 default: 2756 vht_oper->chan_width = IEEE80211_VHT_CHANWIDTH_USE_HT; 2757 break; 2758 } 2759 2760 /* don't require special VHT peer rates */ 2761 vht_oper->basic_mcs_set = cpu_to_le16(0xffff); 2762 2763 return pos + sizeof(struct ieee80211_vht_operation); 2764 } 2765 2766 u8 *ieee80211_ie_build_he_oper(u8 *pos, const struct cfg80211_chan_def *chandef) 2767 { 2768 struct ieee80211_he_operation *he_oper; 2769 struct ieee80211_he_6ghz_oper *he_6ghz_op; 2770 struct cfg80211_chan_def he_chandef; 2771 u32 he_oper_params; 2772 u8 ie_len = 1 + sizeof(struct ieee80211_he_operation); 2773 2774 if (chandef->chan->band == NL80211_BAND_6GHZ) 2775 ie_len += sizeof(struct ieee80211_he_6ghz_oper); 2776 2777 *pos++ = WLAN_EID_EXTENSION; 2778 *pos++ = ie_len; 2779 *pos++ = WLAN_EID_EXT_HE_OPERATION; 2780 2781 he_oper_params = 0; 2782 he_oper_params |= u32_encode_bits(1023, /* disabled */ 2783 IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK); 2784 he_oper_params |= u32_encode_bits(1, 2785 IEEE80211_HE_OPERATION_ER_SU_DISABLE); 2786 he_oper_params |= u32_encode_bits(1, 2787 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED); 2788 if (chandef->chan->band == NL80211_BAND_6GHZ) 2789 he_oper_params |= u32_encode_bits(1, 2790 IEEE80211_HE_OPERATION_6GHZ_OP_INFO); 2791 2792 he_oper = (struct ieee80211_he_operation *)pos; 2793 he_oper->he_oper_params = cpu_to_le32(he_oper_params); 2794 2795 /* don't require special HE peer rates */ 2796 he_oper->he_mcs_nss_set = cpu_to_le16(0xffff); 2797 pos += sizeof(struct ieee80211_he_operation); 2798 2799 if (chandef->chan->band != NL80211_BAND_6GHZ) 2800 goto out; 2801 2802 cfg80211_chandef_create(&he_chandef, chandef->chan, NL80211_CHAN_NO_HT); 2803 he_chandef.center_freq1 = chandef->center_freq1; 2804 he_chandef.center_freq2 = chandef->center_freq2; 2805 he_chandef.width = chandef->width; 2806 2807 /* TODO add VHT operational */ 2808 he_6ghz_op = (struct ieee80211_he_6ghz_oper *)pos; 2809 he_6ghz_op->minrate = 6; /* 6 Mbps */ 2810 he_6ghz_op->primary = 2811 ieee80211_frequency_to_channel(he_chandef.chan->center_freq); 2812 he_6ghz_op->ccfs0 = 2813 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2814 if (he_chandef.center_freq2) 2815 he_6ghz_op->ccfs1 = 2816 ieee80211_frequency_to_channel(he_chandef.center_freq2); 2817 else 2818 he_6ghz_op->ccfs1 = 0; 2819 2820 switch (he_chandef.width) { 2821 case NL80211_CHAN_WIDTH_320: 2822 /* Downgrade EHT 320 MHz BW to 160 MHz for HE and set new 2823 * center_freq1 2824 */ 2825 ieee80211_chandef_downgrade(&he_chandef, NULL); 2826 he_6ghz_op->ccfs0 = 2827 ieee80211_frequency_to_channel(he_chandef.center_freq1); 2828 fallthrough; 2829 case NL80211_CHAN_WIDTH_160: 2830 /* Convert 160 MHz channel width to new style as interop 2831 * workaround. 2832 */ 2833 he_6ghz_op->control = 2834 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2835 he_6ghz_op->ccfs1 = he_6ghz_op->ccfs0; 2836 if (he_chandef.chan->center_freq < he_chandef.center_freq1) 2837 he_6ghz_op->ccfs0 -= 8; 2838 else 2839 he_6ghz_op->ccfs0 += 8; 2840 fallthrough; 2841 case NL80211_CHAN_WIDTH_80P80: 2842 he_6ghz_op->control = 2843 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ; 2844 break; 2845 case NL80211_CHAN_WIDTH_80: 2846 he_6ghz_op->control = 2847 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ; 2848 break; 2849 case NL80211_CHAN_WIDTH_40: 2850 he_6ghz_op->control = 2851 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ; 2852 break; 2853 default: 2854 he_6ghz_op->control = 2855 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ; 2856 break; 2857 } 2858 2859 pos += sizeof(struct ieee80211_he_6ghz_oper); 2860 2861 out: 2862 return pos; 2863 } 2864 2865 u8 *ieee80211_ie_build_eht_oper(u8 *pos, const struct cfg80211_chan_def *chandef, 2866 const struct ieee80211_sta_eht_cap *eht_cap) 2867 2868 { 2869 const struct ieee80211_eht_mcs_nss_supp_20mhz_only *eht_mcs_nss = 2870 &eht_cap->eht_mcs_nss_supp.only_20mhz; 2871 struct ieee80211_eht_operation *eht_oper; 2872 struct ieee80211_eht_operation_info *eht_oper_info; 2873 u8 eht_oper_len = offsetof(struct ieee80211_eht_operation, optional); 2874 u8 eht_oper_info_len = 2875 offsetof(struct ieee80211_eht_operation_info, optional); 2876 u8 chan_width = 0; 2877 2878 *pos++ = WLAN_EID_EXTENSION; 2879 *pos++ = 1 + eht_oper_len + eht_oper_info_len; 2880 *pos++ = WLAN_EID_EXT_EHT_OPERATION; 2881 2882 eht_oper = (struct ieee80211_eht_operation *)pos; 2883 2884 memcpy(&eht_oper->basic_mcs_nss, eht_mcs_nss, sizeof(*eht_mcs_nss)); 2885 eht_oper->params |= IEEE80211_EHT_OPER_INFO_PRESENT; 2886 pos += eht_oper_len; 2887 2888 eht_oper_info = 2889 (struct ieee80211_eht_operation_info *)eht_oper->optional; 2890 2891 eht_oper_info->ccfs0 = 2892 ieee80211_frequency_to_channel(chandef->center_freq1); 2893 if (chandef->center_freq2) 2894 eht_oper_info->ccfs1 = 2895 ieee80211_frequency_to_channel(chandef->center_freq2); 2896 else 2897 eht_oper_info->ccfs1 = 0; 2898 2899 switch (chandef->width) { 2900 case NL80211_CHAN_WIDTH_320: 2901 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ; 2902 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2903 if (chandef->chan->center_freq < chandef->center_freq1) 2904 eht_oper_info->ccfs0 -= 16; 2905 else 2906 eht_oper_info->ccfs0 += 16; 2907 break; 2908 case NL80211_CHAN_WIDTH_160: 2909 eht_oper_info->ccfs1 = eht_oper_info->ccfs0; 2910 if (chandef->chan->center_freq < chandef->center_freq1) 2911 eht_oper_info->ccfs0 -= 8; 2912 else 2913 eht_oper_info->ccfs0 += 8; 2914 fallthrough; 2915 case NL80211_CHAN_WIDTH_80P80: 2916 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ; 2917 break; 2918 case NL80211_CHAN_WIDTH_80: 2919 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ; 2920 break; 2921 case NL80211_CHAN_WIDTH_40: 2922 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ; 2923 break; 2924 default: 2925 chan_width = IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ; 2926 break; 2927 } 2928 eht_oper_info->control = chan_width; 2929 pos += eht_oper_info_len; 2930 2931 /* TODO: eht_oper_info->optional */ 2932 2933 return pos; 2934 } 2935 2936 bool ieee80211_chandef_ht_oper(const struct ieee80211_ht_operation *ht_oper, 2937 struct cfg80211_chan_def *chandef) 2938 { 2939 enum nl80211_channel_type channel_type; 2940 2941 if (!ht_oper) 2942 return false; 2943 2944 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) { 2945 case IEEE80211_HT_PARAM_CHA_SEC_NONE: 2946 channel_type = NL80211_CHAN_HT20; 2947 break; 2948 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE: 2949 channel_type = NL80211_CHAN_HT40PLUS; 2950 break; 2951 case IEEE80211_HT_PARAM_CHA_SEC_BELOW: 2952 channel_type = NL80211_CHAN_HT40MINUS; 2953 break; 2954 default: 2955 return false; 2956 } 2957 2958 cfg80211_chandef_create(chandef, chandef->chan, channel_type); 2959 return true; 2960 } 2961 2962 bool ieee80211_chandef_vht_oper(struct ieee80211_hw *hw, u32 vht_cap_info, 2963 const struct ieee80211_vht_operation *oper, 2964 const struct ieee80211_ht_operation *htop, 2965 struct cfg80211_chan_def *chandef) 2966 { 2967 struct cfg80211_chan_def new = *chandef; 2968 int cf0, cf1; 2969 int ccfs0, ccfs1, ccfs2; 2970 int ccf0, ccf1; 2971 u32 vht_cap; 2972 bool support_80_80 = false; 2973 bool support_160 = false; 2974 u8 ext_nss_bw_supp = u32_get_bits(vht_cap_info, 2975 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK); 2976 u8 supp_chwidth = u32_get_bits(vht_cap_info, 2977 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK); 2978 2979 if (!oper || !htop) 2980 return false; 2981 2982 vht_cap = hw->wiphy->bands[chandef->chan->band]->vht_cap.cap; 2983 support_160 = (vht_cap & (IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK | 2984 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)); 2985 support_80_80 = ((vht_cap & 2986 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) || 2987 (vht_cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ && 2988 vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) || 2989 ((vht_cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) >> 2990 IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT > 1)); 2991 ccfs0 = oper->center_freq_seg0_idx; 2992 ccfs1 = oper->center_freq_seg1_idx; 2993 ccfs2 = (le16_to_cpu(htop->operation_mode) & 2994 IEEE80211_HT_OP_MODE_CCFS2_MASK) 2995 >> IEEE80211_HT_OP_MODE_CCFS2_SHIFT; 2996 2997 ccf0 = ccfs0; 2998 2999 /* if not supported, parse as though we didn't understand it */ 3000 if (!ieee80211_hw_check(hw, SUPPORTS_VHT_EXT_NSS_BW)) 3001 ext_nss_bw_supp = 0; 3002 3003 /* 3004 * Cf. IEEE 802.11 Table 9-250 3005 * 3006 * We really just consider that because it's inefficient to connect 3007 * at a higher bandwidth than we'll actually be able to use. 3008 */ 3009 switch ((supp_chwidth << 4) | ext_nss_bw_supp) { 3010 default: 3011 case 0x00: 3012 ccf1 = 0; 3013 support_160 = false; 3014 support_80_80 = false; 3015 break; 3016 case 0x01: 3017 support_80_80 = false; 3018 fallthrough; 3019 case 0x02: 3020 case 0x03: 3021 ccf1 = ccfs2; 3022 break; 3023 case 0x10: 3024 ccf1 = ccfs1; 3025 break; 3026 case 0x11: 3027 case 0x12: 3028 if (!ccfs1) 3029 ccf1 = ccfs2; 3030 else 3031 ccf1 = ccfs1; 3032 break; 3033 case 0x13: 3034 case 0x20: 3035 case 0x23: 3036 ccf1 = ccfs1; 3037 break; 3038 } 3039 3040 cf0 = ieee80211_channel_to_frequency(ccf0, chandef->chan->band); 3041 cf1 = ieee80211_channel_to_frequency(ccf1, chandef->chan->band); 3042 3043 switch (oper->chan_width) { 3044 case IEEE80211_VHT_CHANWIDTH_USE_HT: 3045 /* just use HT information directly */ 3046 break; 3047 case IEEE80211_VHT_CHANWIDTH_80MHZ: 3048 new.width = NL80211_CHAN_WIDTH_80; 3049 new.center_freq1 = cf0; 3050 /* If needed, adjust based on the newer interop workaround. */ 3051 if (ccf1) { 3052 unsigned int diff; 3053 3054 diff = abs(ccf1 - ccf0); 3055 if ((diff == 8) && support_160) { 3056 new.width = NL80211_CHAN_WIDTH_160; 3057 new.center_freq1 = cf1; 3058 } else if ((diff > 8) && support_80_80) { 3059 new.width = NL80211_CHAN_WIDTH_80P80; 3060 new.center_freq2 = cf1; 3061 } 3062 } 3063 break; 3064 case IEEE80211_VHT_CHANWIDTH_160MHZ: 3065 /* deprecated encoding */ 3066 new.width = NL80211_CHAN_WIDTH_160; 3067 new.center_freq1 = cf0; 3068 break; 3069 case IEEE80211_VHT_CHANWIDTH_80P80MHZ: 3070 /* deprecated encoding */ 3071 new.width = NL80211_CHAN_WIDTH_80P80; 3072 new.center_freq1 = cf0; 3073 new.center_freq2 = cf1; 3074 break; 3075 default: 3076 return false; 3077 } 3078 3079 if (!cfg80211_chandef_valid(&new)) 3080 return false; 3081 3082 *chandef = new; 3083 return true; 3084 } 3085 3086 void ieee80211_chandef_eht_oper(const struct ieee80211_eht_operation_info *info, 3087 struct cfg80211_chan_def *chandef) 3088 { 3089 chandef->center_freq1 = 3090 ieee80211_channel_to_frequency(info->ccfs0, 3091 chandef->chan->band); 3092 3093 switch (u8_get_bits(info->control, 3094 IEEE80211_EHT_OPER_CHAN_WIDTH)) { 3095 case IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ: 3096 chandef->width = NL80211_CHAN_WIDTH_20; 3097 break; 3098 case IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ: 3099 chandef->width = NL80211_CHAN_WIDTH_40; 3100 break; 3101 case IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ: 3102 chandef->width = NL80211_CHAN_WIDTH_80; 3103 break; 3104 case IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ: 3105 chandef->width = NL80211_CHAN_WIDTH_160; 3106 chandef->center_freq1 = 3107 ieee80211_channel_to_frequency(info->ccfs1, 3108 chandef->chan->band); 3109 break; 3110 case IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ: 3111 chandef->width = NL80211_CHAN_WIDTH_320; 3112 chandef->center_freq1 = 3113 ieee80211_channel_to_frequency(info->ccfs1, 3114 chandef->chan->band); 3115 break; 3116 } 3117 } 3118 3119 bool ieee80211_chandef_he_6ghz_oper(struct ieee80211_local *local, 3120 const struct ieee80211_he_operation *he_oper, 3121 const struct ieee80211_eht_operation *eht_oper, 3122 struct cfg80211_chan_def *chandef) 3123 { 3124 struct cfg80211_chan_def he_chandef = *chandef; 3125 const struct ieee80211_he_6ghz_oper *he_6ghz_oper; 3126 u32 freq; 3127 3128 if (chandef->chan->band != NL80211_BAND_6GHZ) 3129 return true; 3130 3131 if (!he_oper) 3132 return false; 3133 3134 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper); 3135 if (!he_6ghz_oper) 3136 return false; 3137 3138 /* 3139 * The EHT operation IE does not contain the primary channel so the 3140 * primary channel frequency should be taken from the 6 GHz operation 3141 * information. 3142 */ 3143 freq = ieee80211_channel_to_frequency(he_6ghz_oper->primary, 3144 NL80211_BAND_6GHZ); 3145 he_chandef.chan = ieee80211_get_channel(local->hw.wiphy, freq); 3146 3147 if (!he_chandef.chan) 3148 return false; 3149 3150 if (!eht_oper || 3151 !(eht_oper->params & IEEE80211_EHT_OPER_INFO_PRESENT)) { 3152 switch (u8_get_bits(he_6ghz_oper->control, 3153 IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH)) { 3154 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ: 3155 he_chandef.width = NL80211_CHAN_WIDTH_20; 3156 break; 3157 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ: 3158 he_chandef.width = NL80211_CHAN_WIDTH_40; 3159 break; 3160 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ: 3161 he_chandef.width = NL80211_CHAN_WIDTH_80; 3162 break; 3163 case IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ: 3164 he_chandef.width = NL80211_CHAN_WIDTH_80; 3165 if (!he_6ghz_oper->ccfs1) 3166 break; 3167 if (abs(he_6ghz_oper->ccfs1 - he_6ghz_oper->ccfs0) == 8) 3168 he_chandef.width = NL80211_CHAN_WIDTH_160; 3169 else 3170 he_chandef.width = NL80211_CHAN_WIDTH_80P80; 3171 break; 3172 } 3173 3174 if (he_chandef.width == NL80211_CHAN_WIDTH_160) { 3175 he_chandef.center_freq1 = 3176 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3177 NL80211_BAND_6GHZ); 3178 } else { 3179 he_chandef.center_freq1 = 3180 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs0, 3181 NL80211_BAND_6GHZ); 3182 he_chandef.center_freq2 = 3183 ieee80211_channel_to_frequency(he_6ghz_oper->ccfs1, 3184 NL80211_BAND_6GHZ); 3185 } 3186 } else { 3187 ieee80211_chandef_eht_oper((const void *)eht_oper->optional, 3188 &he_chandef); 3189 he_chandef.punctured = 3190 ieee80211_eht_oper_dis_subchan_bitmap(eht_oper); 3191 } 3192 3193 if (!cfg80211_chandef_valid(&he_chandef)) 3194 return false; 3195 3196 *chandef = he_chandef; 3197 3198 return true; 3199 } 3200 3201 bool ieee80211_chandef_s1g_oper(const struct ieee80211_s1g_oper_ie *oper, 3202 struct cfg80211_chan_def *chandef) 3203 { 3204 u32 oper_freq; 3205 3206 if (!oper) 3207 return false; 3208 3209 switch (FIELD_GET(S1G_OPER_CH_WIDTH_OPER, oper->ch_width)) { 3210 case IEEE80211_S1G_CHANWIDTH_1MHZ: 3211 chandef->width = NL80211_CHAN_WIDTH_1; 3212 break; 3213 case IEEE80211_S1G_CHANWIDTH_2MHZ: 3214 chandef->width = NL80211_CHAN_WIDTH_2; 3215 break; 3216 case IEEE80211_S1G_CHANWIDTH_4MHZ: 3217 chandef->width = NL80211_CHAN_WIDTH_4; 3218 break; 3219 case IEEE80211_S1G_CHANWIDTH_8MHZ: 3220 chandef->width = NL80211_CHAN_WIDTH_8; 3221 break; 3222 case IEEE80211_S1G_CHANWIDTH_16MHZ: 3223 chandef->width = NL80211_CHAN_WIDTH_16; 3224 break; 3225 default: 3226 return false; 3227 } 3228 3229 oper_freq = ieee80211_channel_to_freq_khz(oper->oper_ch, 3230 NL80211_BAND_S1GHZ); 3231 chandef->center_freq1 = KHZ_TO_MHZ(oper_freq); 3232 chandef->freq1_offset = oper_freq % 1000; 3233 3234 return true; 3235 } 3236 3237 int ieee80211_put_srates_elem(struct sk_buff *skb, 3238 const struct ieee80211_supported_band *sband, 3239 u32 basic_rates, u32 masked_rates, 3240 u8 element_id) 3241 { 3242 u8 i, rates, skip; 3243 3244 rates = 0; 3245 for (i = 0; i < sband->n_bitrates; i++) { 3246 if (masked_rates & BIT(i)) 3247 continue; 3248 rates++; 3249 } 3250 3251 if (element_id == WLAN_EID_SUPP_RATES) { 3252 rates = min_t(u8, rates, 8); 3253 skip = 0; 3254 } else { 3255 skip = 8; 3256 if (rates <= skip) 3257 return 0; 3258 rates -= skip; 3259 } 3260 3261 if (skb_tailroom(skb) < rates + 2) 3262 return -ENOBUFS; 3263 3264 skb_put_u8(skb, element_id); 3265 skb_put_u8(skb, rates); 3266 3267 for (i = 0; i < sband->n_bitrates && rates; i++) { 3268 int rate; 3269 u8 basic; 3270 3271 if (masked_rates & BIT(i)) 3272 continue; 3273 3274 if (skip > 0) { 3275 skip--; 3276 continue; 3277 } 3278 3279 basic = basic_rates & BIT(i) ? 0x80 : 0; 3280 3281 rate = DIV_ROUND_UP(sband->bitrates[i].bitrate, 5); 3282 skb_put_u8(skb, basic | (u8)rate); 3283 rates--; 3284 } 3285 3286 WARN(rates > 0, "rates confused: rates:%d, element:%d\n", 3287 rates, element_id); 3288 3289 return 0; 3290 } 3291 3292 int ieee80211_ave_rssi(struct ieee80211_vif *vif, int link_id) 3293 { 3294 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 3295 struct ieee80211_link_data *link_data; 3296 3297 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) 3298 return 0; 3299 3300 if (link_id < 0) 3301 link_data = &sdata->deflink; 3302 else 3303 link_data = wiphy_dereference(sdata->local->hw.wiphy, 3304 sdata->link[link_id]); 3305 3306 if (WARN_ON_ONCE(!link_data)) 3307 return -99; 3308 3309 return -ewma_beacon_signal_read(&link_data->u.mgd.ave_beacon_signal); 3310 } 3311 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi); 3312 3313 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs) 3314 { 3315 if (!mcs) 3316 return 1; 3317 3318 /* TODO: consider rx_highest */ 3319 3320 if (mcs->rx_mask[3]) 3321 return 4; 3322 if (mcs->rx_mask[2]) 3323 return 3; 3324 if (mcs->rx_mask[1]) 3325 return 2; 3326 return 1; 3327 } 3328 3329 /** 3330 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame 3331 * @local: mac80211 hw info struct 3332 * @status: RX status 3333 * @mpdu_len: total MPDU length (including FCS) 3334 * @mpdu_offset: offset into MPDU to calculate timestamp at 3335 * 3336 * This function calculates the RX timestamp at the given MPDU offset, taking 3337 * into account what the RX timestamp was. An offset of 0 will just normalize 3338 * the timestamp to TSF at beginning of MPDU reception. 3339 * 3340 * Returns: the calculated timestamp 3341 */ 3342 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local, 3343 struct ieee80211_rx_status *status, 3344 unsigned int mpdu_len, 3345 unsigned int mpdu_offset) 3346 { 3347 u64 ts = status->mactime; 3348 bool mactime_plcp_start; 3349 struct rate_info ri; 3350 u16 rate; 3351 u8 n_ltf; 3352 3353 if (WARN_ON(!ieee80211_have_rx_timestamp(status))) 3354 return 0; 3355 3356 mactime_plcp_start = (status->flag & RX_FLAG_MACTIME) == 3357 RX_FLAG_MACTIME_PLCP_START; 3358 3359 memset(&ri, 0, sizeof(ri)); 3360 3361 ri.bw = status->bw; 3362 3363 /* Fill cfg80211 rate info */ 3364 switch (status->encoding) { 3365 case RX_ENC_EHT: 3366 ri.flags |= RATE_INFO_FLAGS_EHT_MCS; 3367 ri.mcs = status->rate_idx; 3368 ri.nss = status->nss; 3369 ri.eht_ru_alloc = status->eht.ru; 3370 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3371 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3372 /* TODO/FIXME: is this right? handle other PPDUs */ 3373 if (mactime_plcp_start) { 3374 mpdu_offset += 2; 3375 ts += 36; 3376 } 3377 break; 3378 case RX_ENC_HE: 3379 ri.flags |= RATE_INFO_FLAGS_HE_MCS; 3380 ri.mcs = status->rate_idx; 3381 ri.nss = status->nss; 3382 ri.he_ru_alloc = status->he_ru; 3383 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3384 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3385 3386 /* 3387 * See P802.11ax_D6.0, section 27.3.4 for 3388 * VHT PPDU format. 3389 */ 3390 if (mactime_plcp_start) { 3391 mpdu_offset += 2; 3392 ts += 36; 3393 3394 /* 3395 * TODO: 3396 * For HE MU PPDU, add the HE-SIG-B. 3397 * For HE ER PPDU, add 8us for the HE-SIG-A. 3398 * For HE TB PPDU, add 4us for the HE-STF. 3399 * Add the HE-LTF durations - variable. 3400 */ 3401 } 3402 3403 break; 3404 case RX_ENC_HT: 3405 ri.mcs = status->rate_idx; 3406 ri.flags |= RATE_INFO_FLAGS_MCS; 3407 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3408 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3409 3410 /* 3411 * See P802.11REVmd_D3.0, section 19.3.2 for 3412 * HT PPDU format. 3413 */ 3414 if (mactime_plcp_start) { 3415 mpdu_offset += 2; 3416 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 3417 ts += 24; 3418 else 3419 ts += 32; 3420 3421 /* 3422 * Add Data HT-LTFs per streams 3423 * TODO: add Extension HT-LTFs, 4us per LTF 3424 */ 3425 n_ltf = ((ri.mcs >> 3) & 3) + 1; 3426 n_ltf = n_ltf == 3 ? 4 : n_ltf; 3427 ts += n_ltf * 4; 3428 } 3429 3430 break; 3431 case RX_ENC_VHT: 3432 ri.flags |= RATE_INFO_FLAGS_VHT_MCS; 3433 ri.mcs = status->rate_idx; 3434 ri.nss = status->nss; 3435 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 3436 ri.flags |= RATE_INFO_FLAGS_SHORT_GI; 3437 3438 /* 3439 * See P802.11REVmd_D3.0, section 21.3.2 for 3440 * VHT PPDU format. 3441 */ 3442 if (mactime_plcp_start) { 3443 mpdu_offset += 2; 3444 ts += 36; 3445 3446 /* 3447 * Add VHT-LTFs per streams 3448 */ 3449 n_ltf = (ri.nss != 1) && (ri.nss % 2) ? 3450 ri.nss + 1 : ri.nss; 3451 ts += 4 * n_ltf; 3452 } 3453 3454 break; 3455 default: 3456 WARN_ON(1); 3457 fallthrough; 3458 case RX_ENC_LEGACY: { 3459 struct ieee80211_supported_band *sband; 3460 3461 sband = local->hw.wiphy->bands[status->band]; 3462 ri.legacy = sband->bitrates[status->rate_idx].bitrate; 3463 3464 if (mactime_plcp_start) { 3465 if (status->band == NL80211_BAND_5GHZ) { 3466 ts += 20; 3467 mpdu_offset += 2; 3468 } else if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) { 3469 ts += 96; 3470 } else { 3471 ts += 192; 3472 } 3473 } 3474 break; 3475 } 3476 } 3477 3478 rate = cfg80211_calculate_bitrate(&ri); 3479 if (WARN_ONCE(!rate, 3480 "Invalid bitrate: flags=0x%llx, idx=%d, vht_nss=%d\n", 3481 (unsigned long long)status->flag, status->rate_idx, 3482 status->nss)) 3483 return 0; 3484 3485 /* rewind from end of MPDU */ 3486 if ((status->flag & RX_FLAG_MACTIME) == RX_FLAG_MACTIME_END) 3487 ts -= mpdu_len * 8 * 10 / rate; 3488 3489 ts += mpdu_offset * 8 * 10 / rate; 3490 3491 return ts; 3492 } 3493 3494 /* Cancel CAC for the interfaces under the specified @local. If @ctx is 3495 * also provided, only the interfaces using that ctx will be canceled. 3496 */ 3497 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local, 3498 struct ieee80211_chanctx *ctx) 3499 { 3500 struct ieee80211_sub_if_data *sdata; 3501 struct cfg80211_chan_def chandef; 3502 struct ieee80211_link_data *link; 3503 struct ieee80211_chanctx_conf *chanctx_conf; 3504 unsigned int link_id; 3505 3506 lockdep_assert_wiphy(local->hw.wiphy); 3507 3508 list_for_each_entry(sdata, &local->interfaces, list) { 3509 for (link_id = 0; link_id < IEEE80211_MLD_MAX_NUM_LINKS; 3510 link_id++) { 3511 link = sdata_dereference(sdata->link[link_id], 3512 sdata); 3513 if (!link) 3514 continue; 3515 3516 chanctx_conf = sdata_dereference(link->conf->chanctx_conf, 3517 sdata); 3518 if (ctx && &ctx->conf != chanctx_conf) 3519 continue; 3520 3521 wiphy_delayed_work_cancel(local->hw.wiphy, 3522 &link->dfs_cac_timer_work); 3523 3524 if (!sdata->wdev.links[link_id].cac_started) 3525 continue; 3526 3527 chandef = link->conf->chanreq.oper; 3528 ieee80211_link_release_channel(link); 3529 cfg80211_cac_event(sdata->dev, &chandef, 3530 NL80211_RADAR_CAC_ABORTED, 3531 GFP_KERNEL, link_id); 3532 } 3533 } 3534 } 3535 3536 void ieee80211_dfs_radar_detected_work(struct wiphy *wiphy, 3537 struct wiphy_work *work) 3538 { 3539 struct ieee80211_local *local = 3540 container_of(work, struct ieee80211_local, radar_detected_work); 3541 struct cfg80211_chan_def chandef; 3542 struct ieee80211_chanctx *ctx; 3543 3544 lockdep_assert_wiphy(local->hw.wiphy); 3545 3546 list_for_each_entry(ctx, &local->chanctx_list, list) { 3547 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3548 continue; 3549 3550 if (!ctx->radar_detected) 3551 continue; 3552 3553 ctx->radar_detected = false; 3554 3555 chandef = ctx->conf.def; 3556 3557 ieee80211_dfs_cac_cancel(local, ctx); 3558 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL); 3559 } 3560 } 3561 3562 static void 3563 ieee80211_radar_mark_chan_ctx_iterator(struct ieee80211_hw *hw, 3564 struct ieee80211_chanctx_conf *chanctx_conf, 3565 void *data) 3566 { 3567 struct ieee80211_chanctx *ctx = 3568 container_of(chanctx_conf, struct ieee80211_chanctx, 3569 conf); 3570 3571 if (ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER) 3572 return; 3573 3574 if (data && data != chanctx_conf) 3575 return; 3576 3577 ctx->radar_detected = true; 3578 } 3579 3580 void ieee80211_radar_detected(struct ieee80211_hw *hw, 3581 struct ieee80211_chanctx_conf *chanctx_conf) 3582 { 3583 struct ieee80211_local *local = hw_to_local(hw); 3584 3585 trace_api_radar_detected(local); 3586 3587 ieee80211_iter_chan_contexts_atomic(hw, ieee80211_radar_mark_chan_ctx_iterator, 3588 chanctx_conf); 3589 3590 wiphy_work_queue(hw->wiphy, &local->radar_detected_work); 3591 } 3592 EXPORT_SYMBOL(ieee80211_radar_detected); 3593 3594 void ieee80211_chandef_downgrade(struct cfg80211_chan_def *c, 3595 struct ieee80211_conn_settings *conn) 3596 { 3597 enum nl80211_chan_width new_primary_width; 3598 struct ieee80211_conn_settings _ignored = {}; 3599 3600 /* allow passing NULL if caller doesn't care */ 3601 if (!conn) 3602 conn = &_ignored; 3603 3604 again: 3605 /* no-HT indicates nothing to do */ 3606 new_primary_width = NL80211_CHAN_WIDTH_20_NOHT; 3607 3608 switch (c->width) { 3609 default: 3610 case NL80211_CHAN_WIDTH_20_NOHT: 3611 WARN_ON_ONCE(1); 3612 fallthrough; 3613 case NL80211_CHAN_WIDTH_20: 3614 c->width = NL80211_CHAN_WIDTH_20_NOHT; 3615 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3616 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3617 c->punctured = 0; 3618 break; 3619 case NL80211_CHAN_WIDTH_40: 3620 c->width = NL80211_CHAN_WIDTH_20; 3621 c->center_freq1 = c->chan->center_freq; 3622 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3623 conn->mode = IEEE80211_CONN_MODE_HT; 3624 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3625 c->punctured = 0; 3626 break; 3627 case NL80211_CHAN_WIDTH_80: 3628 new_primary_width = NL80211_CHAN_WIDTH_40; 3629 if (conn->mode == IEEE80211_CONN_MODE_VHT) 3630 conn->mode = IEEE80211_CONN_MODE_HT; 3631 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_40; 3632 break; 3633 case NL80211_CHAN_WIDTH_80P80: 3634 c->center_freq2 = 0; 3635 c->width = NL80211_CHAN_WIDTH_80; 3636 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3637 break; 3638 case NL80211_CHAN_WIDTH_160: 3639 new_primary_width = NL80211_CHAN_WIDTH_80; 3640 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_80; 3641 break; 3642 case NL80211_CHAN_WIDTH_320: 3643 new_primary_width = NL80211_CHAN_WIDTH_160; 3644 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_160; 3645 break; 3646 case NL80211_CHAN_WIDTH_1: 3647 case NL80211_CHAN_WIDTH_2: 3648 case NL80211_CHAN_WIDTH_4: 3649 case NL80211_CHAN_WIDTH_8: 3650 case NL80211_CHAN_WIDTH_16: 3651 WARN_ON_ONCE(1); 3652 /* keep c->width */ 3653 conn->mode = IEEE80211_CONN_MODE_S1G; 3654 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3655 break; 3656 case NL80211_CHAN_WIDTH_5: 3657 case NL80211_CHAN_WIDTH_10: 3658 WARN_ON_ONCE(1); 3659 /* keep c->width */ 3660 conn->mode = IEEE80211_CONN_MODE_LEGACY; 3661 conn->bw_limit = IEEE80211_CONN_BW_LIMIT_20; 3662 break; 3663 } 3664 3665 if (new_primary_width != NL80211_CHAN_WIDTH_20_NOHT) { 3666 c->center_freq1 = cfg80211_chandef_primary(c, new_primary_width, 3667 &c->punctured); 3668 c->width = new_primary_width; 3669 } 3670 3671 /* 3672 * With an 80 MHz channel, we might have the puncturing in the primary 3673 * 40 Mhz channel, but that's not valid when downgraded to 40 MHz width. 3674 * In that case, downgrade again. 3675 */ 3676 if (!cfg80211_chandef_valid(c) && c->punctured) 3677 goto again; 3678 3679 WARN_ON_ONCE(!cfg80211_chandef_valid(c)); 3680 } 3681 3682 int ieee80211_send_action_csa(struct ieee80211_sub_if_data *sdata, 3683 struct cfg80211_csa_settings *csa_settings) 3684 { 3685 struct sk_buff *skb; 3686 struct ieee80211_mgmt *mgmt; 3687 struct ieee80211_local *local = sdata->local; 3688 int freq; 3689 int hdr_len = offsetofend(struct ieee80211_mgmt, 3690 u.action.u.chan_switch); 3691 u8 *pos; 3692 3693 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3694 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3695 return -EOPNOTSUPP; 3696 3697 skb = dev_alloc_skb(local->tx_headroom + hdr_len + 3698 5 + /* channel switch announcement element */ 3699 3 + /* secondary channel offset element */ 3700 5 + /* wide bandwidth channel switch announcement */ 3701 8); /* mesh channel switch parameters element */ 3702 if (!skb) 3703 return -ENOMEM; 3704 3705 skb_reserve(skb, local->tx_headroom); 3706 mgmt = skb_put_zero(skb, hdr_len); 3707 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3708 IEEE80211_STYPE_ACTION); 3709 3710 eth_broadcast_addr(mgmt->da); 3711 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 3712 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3713 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 3714 } else { 3715 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 3716 memcpy(mgmt->bssid, ifibss->bssid, ETH_ALEN); 3717 } 3718 mgmt->u.action.category = WLAN_CATEGORY_SPECTRUM_MGMT; 3719 mgmt->u.action.u.chan_switch.action_code = WLAN_ACTION_SPCT_CHL_SWITCH; 3720 pos = skb_put(skb, 5); 3721 *pos++ = WLAN_EID_CHANNEL_SWITCH; /* EID */ 3722 *pos++ = 3; /* IE length */ 3723 *pos++ = csa_settings->block_tx ? 1 : 0; /* CSA mode */ 3724 freq = csa_settings->chandef.chan->center_freq; 3725 *pos++ = ieee80211_frequency_to_channel(freq); /* channel */ 3726 *pos++ = csa_settings->count; /* count */ 3727 3728 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_40) { 3729 enum nl80211_channel_type ch_type; 3730 3731 skb_put(skb, 3); 3732 *pos++ = WLAN_EID_SECONDARY_CHANNEL_OFFSET; /* EID */ 3733 *pos++ = 1; /* IE length */ 3734 ch_type = cfg80211_get_chandef_type(&csa_settings->chandef); 3735 if (ch_type == NL80211_CHAN_HT40PLUS) 3736 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_ABOVE; 3737 else 3738 *pos++ = IEEE80211_HT_PARAM_CHA_SEC_BELOW; 3739 } 3740 3741 if (ieee80211_vif_is_mesh(&sdata->vif)) { 3742 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 3743 3744 skb_put(skb, 8); 3745 *pos++ = WLAN_EID_CHAN_SWITCH_PARAM; /* EID */ 3746 *pos++ = 6; /* IE length */ 3747 *pos++ = sdata->u.mesh.mshcfg.dot11MeshTTL; /* Mesh TTL */ 3748 *pos = 0x00; /* Mesh Flag: Tx Restrict, Initiator, Reason */ 3749 *pos |= WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR; 3750 *pos++ |= csa_settings->block_tx ? 3751 WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT : 0x00; 3752 put_unaligned_le16(WLAN_REASON_MESH_CHAN, pos); /* Reason Cd */ 3753 pos += 2; 3754 put_unaligned_le16(ifmsh->pre_value, pos);/* Precedence Value */ 3755 pos += 2; 3756 } 3757 3758 if (csa_settings->chandef.width == NL80211_CHAN_WIDTH_80 || 3759 csa_settings->chandef.width == NL80211_CHAN_WIDTH_80P80 || 3760 csa_settings->chandef.width == NL80211_CHAN_WIDTH_160) { 3761 skb_put(skb, 5); 3762 ieee80211_ie_build_wide_bw_cs(pos, &csa_settings->chandef); 3763 } 3764 3765 ieee80211_tx_skb(sdata, skb); 3766 return 0; 3767 } 3768 3769 static bool 3770 ieee80211_extend_noa_desc(struct ieee80211_noa_data *data, u32 tsf, int i) 3771 { 3772 s32 end = data->desc[i].start + data->desc[i].duration - (tsf + 1); 3773 int skip; 3774 3775 if (end > 0) 3776 return false; 3777 3778 /* One shot NOA */ 3779 if (data->count[i] == 1) 3780 return false; 3781 3782 if (data->desc[i].interval == 0) 3783 return false; 3784 3785 /* End time is in the past, check for repetitions */ 3786 skip = DIV_ROUND_UP(-end, data->desc[i].interval); 3787 if (data->count[i] < 255) { 3788 if (data->count[i] <= skip) { 3789 data->count[i] = 0; 3790 return false; 3791 } 3792 3793 data->count[i] -= skip; 3794 } 3795 3796 data->desc[i].start += skip * data->desc[i].interval; 3797 3798 return true; 3799 } 3800 3801 static bool 3802 ieee80211_extend_absent_time(struct ieee80211_noa_data *data, u32 tsf, 3803 s32 *offset) 3804 { 3805 bool ret = false; 3806 int i; 3807 3808 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3809 s32 cur; 3810 3811 if (!data->count[i]) 3812 continue; 3813 3814 if (ieee80211_extend_noa_desc(data, tsf + *offset, i)) 3815 ret = true; 3816 3817 cur = data->desc[i].start - tsf; 3818 if (cur > *offset) 3819 continue; 3820 3821 cur = data->desc[i].start + data->desc[i].duration - tsf; 3822 if (cur > *offset) 3823 *offset = cur; 3824 } 3825 3826 return ret; 3827 } 3828 3829 static u32 3830 ieee80211_get_noa_absent_time(struct ieee80211_noa_data *data, u32 tsf) 3831 { 3832 s32 offset = 0; 3833 int tries = 0; 3834 /* 3835 * arbitrary limit, used to avoid infinite loops when combined NoA 3836 * descriptors cover the full time period. 3837 */ 3838 int max_tries = 5; 3839 3840 ieee80211_extend_absent_time(data, tsf, &offset); 3841 do { 3842 if (!ieee80211_extend_absent_time(data, tsf, &offset)) 3843 break; 3844 3845 tries++; 3846 } while (tries < max_tries); 3847 3848 return offset; 3849 } 3850 3851 void ieee80211_update_p2p_noa(struct ieee80211_noa_data *data, u32 tsf) 3852 { 3853 u32 next_offset = BIT(31) - 1; 3854 int i; 3855 3856 data->absent = 0; 3857 data->has_next_tsf = false; 3858 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3859 s32 start; 3860 3861 if (!data->count[i]) 3862 continue; 3863 3864 ieee80211_extend_noa_desc(data, tsf, i); 3865 start = data->desc[i].start - tsf; 3866 if (start <= 0) 3867 data->absent |= BIT(i); 3868 3869 if (next_offset > start) 3870 next_offset = start; 3871 3872 data->has_next_tsf = true; 3873 } 3874 3875 if (data->absent) 3876 next_offset = ieee80211_get_noa_absent_time(data, tsf); 3877 3878 data->next_tsf = tsf + next_offset; 3879 } 3880 EXPORT_SYMBOL(ieee80211_update_p2p_noa); 3881 3882 int ieee80211_parse_p2p_noa(const struct ieee80211_p2p_noa_attr *attr, 3883 struct ieee80211_noa_data *data, u32 tsf) 3884 { 3885 int ret = 0; 3886 int i; 3887 3888 memset(data, 0, sizeof(*data)); 3889 3890 for (i = 0; i < IEEE80211_P2P_NOA_DESC_MAX; i++) { 3891 const struct ieee80211_p2p_noa_desc *desc = &attr->desc[i]; 3892 3893 if (!desc->count || !desc->duration) 3894 continue; 3895 3896 data->count[i] = desc->count; 3897 data->desc[i].start = le32_to_cpu(desc->start_time); 3898 data->desc[i].duration = le32_to_cpu(desc->duration); 3899 data->desc[i].interval = le32_to_cpu(desc->interval); 3900 3901 if (data->count[i] > 1 && 3902 data->desc[i].interval < data->desc[i].duration) 3903 continue; 3904 3905 ieee80211_extend_noa_desc(data, tsf, i); 3906 ret++; 3907 } 3908 3909 if (ret) 3910 ieee80211_update_p2p_noa(data, tsf); 3911 3912 return ret; 3913 } 3914 EXPORT_SYMBOL(ieee80211_parse_p2p_noa); 3915 3916 void ieee80211_recalc_dtim(struct ieee80211_sub_if_data *sdata, u64 tsf) 3917 { 3918 u64 dtim_count = 0; 3919 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3920 u8 dtim_period = sdata->vif.bss_conf.dtim_period; 3921 struct ps_data *ps; 3922 u8 bcns_from_dtim; 3923 3924 if (tsf == -1ULL || !beacon_int || !dtim_period) 3925 return; 3926 3927 if (sdata->vif.type == NL80211_IFTYPE_AP || 3928 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 3929 if (!sdata->bss) 3930 return; 3931 3932 ps = &sdata->bss->ps; 3933 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 3934 ps = &sdata->u.mesh.ps; 3935 } else { 3936 return; 3937 } 3938 3939 /* 3940 * actually finds last dtim_count, mac80211 will update in 3941 * __beacon_add_tim(). 3942 * dtim_count = dtim_period - (tsf / bcn_int) % dtim_period 3943 */ 3944 do_div(tsf, beacon_int); 3945 bcns_from_dtim = do_div(tsf, dtim_period); 3946 /* just had a DTIM */ 3947 if (!bcns_from_dtim) 3948 dtim_count = 0; 3949 else 3950 dtim_count = dtim_period - bcns_from_dtim; 3951 3952 ps->dtim_count = dtim_count; 3953 } 3954 3955 /* 3956 * Given a long beacon period, calculate the current index into 3957 * that period to determine the number of TSBTTs until the next TBTT. 3958 * It is completely valid to have a short beacon period that differs 3959 * from the dtim period (i.e a TBTT thats not a DTIM). 3960 */ 3961 void ieee80211_recalc_sb_count(struct ieee80211_sub_if_data *sdata, u64 tsf) 3962 { 3963 u32 sb_idx; 3964 struct ps_data *ps = &sdata->bss->ps; 3965 u8 lb_period = sdata->vif.bss_conf.s1g_long_beacon_period; 3966 u32 beacon_int = sdata->vif.bss_conf.beacon_int * 1024; 3967 3968 /* No mesh / IBSS support for short beaconing */ 3969 if (tsf == -1ULL || !lb_period || 3970 (sdata->vif.type != NL80211_IFTYPE_AP && 3971 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 3972 return; 3973 3974 /* find the current TSBTT index in our lb_period */ 3975 do_div(tsf, beacon_int); 3976 sb_idx = do_div(tsf, lb_period); 3977 3978 /* num TSBTTs until the next TBTT */ 3979 ps->sb_count = sb_idx ? lb_period - sb_idx : 0; 3980 } 3981 3982 static u8 ieee80211_chanctx_radar_detect(struct ieee80211_local *local, 3983 struct ieee80211_chanctx *ctx) 3984 { 3985 struct ieee80211_link_data *link; 3986 u8 radar_detect = 0; 3987 3988 lockdep_assert_wiphy(local->hw.wiphy); 3989 3990 if (WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED)) 3991 return 0; 3992 3993 list_for_each_entry(link, &ctx->reserved_links, reserved_chanctx_list) 3994 if (link->reserved_radar_required) 3995 radar_detect |= BIT(link->reserved.oper.width); 3996 3997 /* 3998 * An in-place reservation context should not have any assigned vifs 3999 * until it replaces the other context. 4000 */ 4001 WARN_ON(ctx->replace_state == IEEE80211_CHANCTX_REPLACES_OTHER && 4002 !list_empty(&ctx->assigned_links)); 4003 4004 list_for_each_entry(link, &ctx->assigned_links, assigned_chanctx_list) { 4005 if (!link->radar_required) 4006 continue; 4007 4008 radar_detect |= 4009 BIT(link->conf->chanreq.oper.width); 4010 } 4011 4012 return radar_detect; 4013 } 4014 4015 bool ieee80211_is_radio_idx_in_scan_req(struct wiphy *wiphy, 4016 struct cfg80211_scan_request *scan_req, 4017 int radio_idx) 4018 { 4019 struct ieee80211_channel *chan; 4020 int i, chan_radio_idx; 4021 4022 for (i = 0; i < scan_req->n_channels; i++) { 4023 chan = scan_req->channels[i]; 4024 chan_radio_idx = cfg80211_get_radio_idx_by_chan(wiphy, chan); 4025 /* 4026 * The chan_radio_idx should be valid since it's taken from a 4027 * valid scan request. 4028 * However, if chan_radio_idx is unexpectedly invalid (negative), 4029 * we take a conservative approach and assume the scan request 4030 * might use the specified radio_idx. Hence, return true. 4031 */ 4032 if (WARN_ON(chan_radio_idx < 0)) 4033 return true; 4034 4035 if (chan_radio_idx == radio_idx) 4036 return true; 4037 } 4038 4039 return false; 4040 } 4041 4042 static u32 4043 __ieee80211_get_radio_mask(struct ieee80211_sub_if_data *sdata) 4044 { 4045 struct ieee80211_bss_conf *link_conf; 4046 struct ieee80211_chanctx_conf *conf; 4047 unsigned int link_id; 4048 u32 mask = 0; 4049 4050 for_each_vif_active_link(&sdata->vif, link_conf, link_id) { 4051 conf = sdata_dereference(link_conf->chanctx_conf, sdata); 4052 if (!conf || conf->radio_idx < 0) 4053 continue; 4054 4055 mask |= BIT(conf->radio_idx); 4056 } 4057 4058 return mask; 4059 } 4060 4061 u32 ieee80211_get_radio_mask(struct wiphy *wiphy, struct net_device *dev) 4062 { 4063 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 4064 4065 return __ieee80211_get_radio_mask(sdata); 4066 } 4067 4068 static bool 4069 ieee80211_sdata_uses_radio(struct ieee80211_sub_if_data *sdata, int radio_idx) 4070 { 4071 if (radio_idx < 0) 4072 return true; 4073 4074 return __ieee80211_get_radio_mask(sdata) & BIT(radio_idx); 4075 } 4076 4077 static int 4078 ieee80211_fill_ifcomb_params(struct ieee80211_local *local, 4079 struct iface_combination_params *params, 4080 const struct cfg80211_chan_def *chandef, 4081 struct ieee80211_sub_if_data *sdata) 4082 { 4083 struct ieee80211_sub_if_data *sdata_iter; 4084 struct ieee80211_chanctx *ctx; 4085 int total = !!sdata; 4086 4087 list_for_each_entry(ctx, &local->chanctx_list, list) { 4088 if (ctx->replace_state == IEEE80211_CHANCTX_WILL_BE_REPLACED) 4089 continue; 4090 4091 if (params->radio_idx >= 0 && 4092 ctx->conf.radio_idx != params->radio_idx) 4093 continue; 4094 4095 params->radar_detect |= 4096 ieee80211_chanctx_radar_detect(local, ctx); 4097 4098 if (chandef && ctx->mode != IEEE80211_CHANCTX_EXCLUSIVE && 4099 cfg80211_chandef_compatible(chandef, &ctx->conf.def)) 4100 continue; 4101 4102 params->num_different_channels++; 4103 } 4104 4105 list_for_each_entry(sdata_iter, &local->interfaces, list) { 4106 struct wireless_dev *wdev_iter; 4107 4108 wdev_iter = &sdata_iter->wdev; 4109 4110 if (sdata_iter == sdata || 4111 !ieee80211_sdata_running(sdata_iter) || 4112 cfg80211_iftype_allowed(local->hw.wiphy, 4113 wdev_iter->iftype, 0, 1)) 4114 continue; 4115 4116 if (!ieee80211_sdata_uses_radio(sdata_iter, params->radio_idx)) 4117 continue; 4118 4119 params->iftype_num[wdev_iter->iftype]++; 4120 total++; 4121 } 4122 4123 return total; 4124 } 4125 4126 int ieee80211_check_combinations(struct ieee80211_sub_if_data *sdata, 4127 const struct cfg80211_chan_def *chandef, 4128 enum ieee80211_chanctx_mode chanmode, 4129 u8 radar_detect, int radio_idx) 4130 { 4131 bool shared = chanmode == IEEE80211_CHANCTX_SHARED; 4132 struct ieee80211_local *local = sdata->local; 4133 enum nl80211_iftype iftype = sdata->wdev.iftype; 4134 struct iface_combination_params params = { 4135 .radar_detect = radar_detect, 4136 .radio_idx = radio_idx, 4137 }; 4138 int total; 4139 4140 lockdep_assert_wiphy(local->hw.wiphy); 4141 4142 if (WARN_ON(hweight32(radar_detect) > 1)) 4143 return -EINVAL; 4144 4145 if (WARN_ON(chandef && chanmode == IEEE80211_CHANCTX_SHARED && 4146 !chandef->chan)) 4147 return -EINVAL; 4148 4149 if (WARN_ON(iftype >= NUM_NL80211_IFTYPES)) 4150 return -EINVAL; 4151 4152 if (sdata->vif.type == NL80211_IFTYPE_AP || 4153 sdata->vif.type == NL80211_IFTYPE_MESH_POINT) { 4154 /* 4155 * always passing this is harmless, since it'll be the 4156 * same value that cfg80211 finds if it finds the same 4157 * interface ... and that's always allowed 4158 */ 4159 params.new_beacon_int = sdata->vif.bss_conf.beacon_int; 4160 } 4161 4162 /* Always allow software iftypes */ 4163 if (cfg80211_iftype_allowed(local->hw.wiphy, iftype, 0, 1)) { 4164 if (radar_detect) 4165 return -EINVAL; 4166 return 0; 4167 } 4168 4169 if (chandef) 4170 params.num_different_channels = 1; 4171 4172 if (iftype != NL80211_IFTYPE_UNSPECIFIED) 4173 params.iftype_num[iftype] = 1; 4174 4175 total = ieee80211_fill_ifcomb_params(local, ¶ms, 4176 shared ? chandef : NULL, 4177 sdata); 4178 if (total == 1 && !params.radar_detect) 4179 return 0; 4180 4181 return cfg80211_check_combinations(local->hw.wiphy, ¶ms); 4182 } 4183 4184 static void 4185 ieee80211_iter_max_chans(const struct ieee80211_iface_combination *c, 4186 void *data) 4187 { 4188 u32 *max_num_different_channels = data; 4189 4190 *max_num_different_channels = max(*max_num_different_channels, 4191 c->num_different_channels); 4192 } 4193 4194 int ieee80211_max_num_channels(struct ieee80211_local *local, int radio_idx) 4195 { 4196 u32 max_num_different_channels = 1; 4197 int err; 4198 struct iface_combination_params params = { 4199 .radio_idx = radio_idx, 4200 }; 4201 4202 lockdep_assert_wiphy(local->hw.wiphy); 4203 4204 ieee80211_fill_ifcomb_params(local, ¶ms, NULL, NULL); 4205 4206 err = cfg80211_iter_combinations(local->hw.wiphy, ¶ms, 4207 ieee80211_iter_max_chans, 4208 &max_num_different_channels); 4209 if (err < 0) 4210 return err; 4211 4212 return max_num_different_channels; 4213 } 4214 4215 void ieee80211_add_s1g_capab_ie(struct ieee80211_sub_if_data *sdata, 4216 struct ieee80211_sta_s1g_cap *caps, 4217 struct sk_buff *skb) 4218 { 4219 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd; 4220 struct ieee80211_s1g_cap s1g_capab; 4221 u8 *pos; 4222 int i; 4223 4224 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION)) 4225 return; 4226 4227 if (!caps->s1g) 4228 return; 4229 4230 memcpy(s1g_capab.capab_info, caps->cap, sizeof(caps->cap)); 4231 memcpy(s1g_capab.supp_mcs_nss, caps->nss_mcs, sizeof(caps->nss_mcs)); 4232 4233 /* override the capability info */ 4234 for (i = 0; i < sizeof(ifmgd->s1g_capa.capab_info); i++) { 4235 u8 mask = ifmgd->s1g_capa_mask.capab_info[i]; 4236 4237 s1g_capab.capab_info[i] &= ~mask; 4238 s1g_capab.capab_info[i] |= ifmgd->s1g_capa.capab_info[i] & mask; 4239 } 4240 4241 /* then MCS and NSS set */ 4242 for (i = 0; i < sizeof(ifmgd->s1g_capa.supp_mcs_nss); i++) { 4243 u8 mask = ifmgd->s1g_capa_mask.supp_mcs_nss[i]; 4244 4245 s1g_capab.supp_mcs_nss[i] &= ~mask; 4246 s1g_capab.supp_mcs_nss[i] |= 4247 ifmgd->s1g_capa.supp_mcs_nss[i] & mask; 4248 } 4249 4250 pos = skb_put(skb, 2 + sizeof(s1g_capab)); 4251 *pos++ = WLAN_EID_S1G_CAPABILITIES; 4252 *pos++ = sizeof(s1g_capab); 4253 4254 memcpy(pos, &s1g_capab, sizeof(s1g_capab)); 4255 } 4256 4257 void ieee80211_add_aid_request_ie(struct ieee80211_sub_if_data *sdata, 4258 struct sk_buff *skb) 4259 { 4260 u8 *pos = skb_put(skb, 3); 4261 4262 *pos++ = WLAN_EID_AID_REQUEST; 4263 *pos++ = 1; 4264 *pos++ = 0; 4265 } 4266 4267 u8 *ieee80211_add_wmm_info_ie(u8 *buf, u8 qosinfo) 4268 { 4269 *buf++ = WLAN_EID_VENDOR_SPECIFIC; 4270 *buf++ = 7; /* len */ 4271 *buf++ = 0x00; /* Microsoft OUI 00:50:F2 */ 4272 *buf++ = 0x50; 4273 *buf++ = 0xf2; 4274 *buf++ = 2; /* WME */ 4275 *buf++ = 0; /* WME info */ 4276 *buf++ = 1; /* WME ver */ 4277 *buf++ = qosinfo; /* U-APSD no in use */ 4278 4279 return buf; 4280 } 4281 4282 void ieee80211_txq_get_depth(struct ieee80211_txq *txq, 4283 unsigned long *frame_cnt, 4284 unsigned long *byte_cnt) 4285 { 4286 struct txq_info *txqi = to_txq_info(txq); 4287 u32 frag_cnt = 0, frag_bytes = 0; 4288 struct sk_buff *skb; 4289 4290 skb_queue_walk(&txqi->frags, skb) { 4291 frag_cnt++; 4292 frag_bytes += skb->len; 4293 } 4294 4295 if (frame_cnt) 4296 *frame_cnt = txqi->tin.backlog_packets + frag_cnt; 4297 4298 if (byte_cnt) 4299 *byte_cnt = txqi->tin.backlog_bytes + frag_bytes; 4300 } 4301 EXPORT_SYMBOL(ieee80211_txq_get_depth); 4302 4303 const u8 ieee80211_ac_to_qos_mask[IEEE80211_NUM_ACS] = { 4304 IEEE80211_WMM_IE_STA_QOSINFO_AC_VO, 4305 IEEE80211_WMM_IE_STA_QOSINFO_AC_VI, 4306 IEEE80211_WMM_IE_STA_QOSINFO_AC_BE, 4307 IEEE80211_WMM_IE_STA_QOSINFO_AC_BK 4308 }; 4309 4310 u16 ieee80211_encode_usf(int listen_interval) 4311 { 4312 static const int listen_int_usf[] = { 1, 10, 1000, 10000 }; 4313 u16 ui, usf = 0; 4314 4315 /* find greatest USF */ 4316 while (usf < IEEE80211_MAX_USF) { 4317 if (listen_interval % listen_int_usf[usf + 1]) 4318 break; 4319 usf += 1; 4320 } 4321 ui = listen_interval / listen_int_usf[usf]; 4322 4323 /* error if there is a remainder. Should've been checked by user */ 4324 WARN_ON_ONCE(ui > IEEE80211_MAX_UI); 4325 listen_interval = FIELD_PREP(LISTEN_INT_USF, usf) | 4326 FIELD_PREP(LISTEN_INT_UI, ui); 4327 4328 return (u16) listen_interval; 4329 } 4330 4331 /* this may return more than ieee80211_put_eht_cap() will need */ 4332 u8 ieee80211_ie_len_eht_cap(struct ieee80211_sub_if_data *sdata) 4333 { 4334 const struct ieee80211_sta_he_cap *he_cap; 4335 const struct ieee80211_sta_eht_cap *eht_cap; 4336 struct ieee80211_supported_band *sband; 4337 bool is_ap; 4338 u8 n; 4339 4340 sband = ieee80211_get_sband(sdata); 4341 if (!sband) 4342 return 0; 4343 4344 he_cap = ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4345 eht_cap = ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4346 if (!he_cap || !eht_cap) 4347 return 0; 4348 4349 is_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4350 4351 n = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4352 &eht_cap->eht_cap_elem, 4353 is_ap); 4354 return 2 + 1 + 4355 sizeof(eht_cap->eht_cap_elem) + n + 4356 ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4357 eht_cap->eht_cap_elem.phy_cap_info); 4358 return 0; 4359 } 4360 4361 int ieee80211_put_eht_cap(struct sk_buff *skb, 4362 struct ieee80211_sub_if_data *sdata, 4363 const struct ieee80211_supported_band *sband, 4364 const struct ieee80211_conn_settings *conn) 4365 { 4366 const struct ieee80211_sta_he_cap *he_cap = 4367 ieee80211_get_he_iftype_cap_vif(sband, &sdata->vif); 4368 const struct ieee80211_sta_eht_cap *eht_cap = 4369 ieee80211_get_eht_iftype_cap_vif(sband, &sdata->vif); 4370 bool for_ap = sdata->vif.type == NL80211_IFTYPE_AP; 4371 struct ieee80211_eht_cap_elem_fixed fixed; 4372 struct ieee80211_he_cap_elem he; 4373 u8 mcs_nss_len, ppet_len; 4374 u8 orig_mcs_nss_len; 4375 u8 ie_len; 4376 4377 if (!conn) 4378 conn = &ieee80211_conn_settings_unlimited; 4379 4380 /* Make sure we have place for the IE */ 4381 if (!he_cap || !eht_cap) 4382 return 0; 4383 4384 orig_mcs_nss_len = ieee80211_eht_mcs_nss_size(&he_cap->he_cap_elem, 4385 &eht_cap->eht_cap_elem, 4386 for_ap); 4387 4388 ieee80211_get_adjusted_he_cap(conn, he_cap, &he); 4389 4390 fixed = eht_cap->eht_cap_elem; 4391 4392 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_80) 4393 fixed.phy_cap_info[6] &= 4394 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_80MHZ; 4395 4396 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_160) { 4397 fixed.phy_cap_info[1] &= 4398 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK; 4399 fixed.phy_cap_info[2] &= 4400 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK; 4401 fixed.phy_cap_info[6] &= 4402 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_160MHZ; 4403 } 4404 4405 if (conn->bw_limit < IEEE80211_CONN_BW_LIMIT_320) { 4406 fixed.phy_cap_info[0] &= 4407 ~IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ; 4408 fixed.phy_cap_info[1] &= 4409 ~IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK; 4410 fixed.phy_cap_info[2] &= 4411 ~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK; 4412 fixed.phy_cap_info[6] &= 4413 ~IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_320MHZ; 4414 } 4415 4416 if (conn->bw_limit == IEEE80211_CONN_BW_LIMIT_20) 4417 fixed.phy_cap_info[0] &= 4418 ~IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ; 4419 4420 mcs_nss_len = ieee80211_eht_mcs_nss_size(&he, &fixed, for_ap); 4421 ppet_len = ieee80211_eht_ppe_size(eht_cap->eht_ppe_thres[0], 4422 fixed.phy_cap_info); 4423 4424 ie_len = 2 + 1 + sizeof(eht_cap->eht_cap_elem) + mcs_nss_len + ppet_len; 4425 if (skb_tailroom(skb) < ie_len) 4426 return -ENOBUFS; 4427 4428 skb_put_u8(skb, WLAN_EID_EXTENSION); 4429 skb_put_u8(skb, ie_len - 2); 4430 skb_put_u8(skb, WLAN_EID_EXT_EHT_CAPABILITY); 4431 skb_put_data(skb, &fixed, sizeof(fixed)); 4432 4433 if (mcs_nss_len == 4 && orig_mcs_nss_len != 4) { 4434 /* 4435 * If the (non-AP) STA became 20 MHz only, then convert from 4436 * <=80 to 20-MHz-only format, where MCSes are indicated in 4437 * the groups 0-7, 8-9, 10-11, 12-13 rather than just 0-9, 4438 * 10-11, 12-13. Thus, use 0-9 for 0-7 and 8-9. 4439 */ 4440 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4441 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs9_max_nss); 4442 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs11_max_nss); 4443 skb_put_u8(skb, eht_cap->eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss); 4444 } else { 4445 skb_put_data(skb, &eht_cap->eht_mcs_nss_supp, mcs_nss_len); 4446 } 4447 4448 if (ppet_len) 4449 skb_put_data(skb, &eht_cap->eht_ppe_thres, ppet_len); 4450 4451 return 0; 4452 } 4453 4454 const char *ieee80211_conn_mode_str(enum ieee80211_conn_mode mode) 4455 { 4456 static const char * const modes[] = { 4457 [IEEE80211_CONN_MODE_S1G] = "S1G", 4458 [IEEE80211_CONN_MODE_LEGACY] = "legacy", 4459 [IEEE80211_CONN_MODE_HT] = "HT", 4460 [IEEE80211_CONN_MODE_VHT] = "VHT", 4461 [IEEE80211_CONN_MODE_HE] = "HE", 4462 [IEEE80211_CONN_MODE_EHT] = "EHT", 4463 }; 4464 4465 if (WARN_ON(mode >= ARRAY_SIZE(modes))) 4466 return "<out of range>"; 4467 4468 return modes[mode] ?: "<missing string>"; 4469 } 4470 4471 enum ieee80211_conn_bw_limit 4472 ieee80211_min_bw_limit_from_chandef(struct cfg80211_chan_def *chandef) 4473 { 4474 switch (chandef->width) { 4475 case NL80211_CHAN_WIDTH_20_NOHT: 4476 case NL80211_CHAN_WIDTH_20: 4477 return IEEE80211_CONN_BW_LIMIT_20; 4478 case NL80211_CHAN_WIDTH_40: 4479 return IEEE80211_CONN_BW_LIMIT_40; 4480 case NL80211_CHAN_WIDTH_80: 4481 return IEEE80211_CONN_BW_LIMIT_80; 4482 case NL80211_CHAN_WIDTH_80P80: 4483 case NL80211_CHAN_WIDTH_160: 4484 return IEEE80211_CONN_BW_LIMIT_160; 4485 case NL80211_CHAN_WIDTH_320: 4486 return IEEE80211_CONN_BW_LIMIT_320; 4487 default: 4488 WARN(1, "unhandled chandef width %d\n", chandef->width); 4489 return IEEE80211_CONN_BW_LIMIT_20; 4490 } 4491 } 4492 4493 void ieee80211_clear_tpe(struct ieee80211_parsed_tpe *tpe) 4494 { 4495 for (int i = 0; i < 2; i++) { 4496 tpe->max_local[i].valid = false; 4497 memset(tpe->max_local[i].power, 4498 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4499 sizeof(tpe->max_local[i].power)); 4500 4501 tpe->max_reg_client[i].valid = false; 4502 memset(tpe->max_reg_client[i].power, 4503 IEEE80211_TPE_MAX_TX_PWR_NO_CONSTRAINT, 4504 sizeof(tpe->max_reg_client[i].power)); 4505 4506 tpe->psd_local[i].valid = false; 4507 memset(tpe->psd_local[i].power, 4508 IEEE80211_TPE_PSD_NO_LIMIT, 4509 sizeof(tpe->psd_local[i].power)); 4510 4511 tpe->psd_reg_client[i].valid = false; 4512 memset(tpe->psd_reg_client[i].power, 4513 IEEE80211_TPE_PSD_NO_LIMIT, 4514 sizeof(tpe->psd_reg_client[i].power)); 4515 } 4516 } 4517