1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 #define IEEE80211_TX_OK 0 37 #define IEEE80211_TX_AGAIN 1 38 #define IEEE80211_TX_PENDING 2 39 40 /* misc utils */ 41 42 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 43 int next_frag_len) 44 { 45 int rate, mrate, erp, dur, i; 46 struct ieee80211_rate *txrate; 47 struct ieee80211_local *local = tx->local; 48 struct ieee80211_supported_band *sband; 49 struct ieee80211_hdr *hdr; 50 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 51 52 /* assume HW handles this */ 53 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 54 return 0; 55 56 /* uh huh? */ 57 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 58 return 0; 59 60 sband = local->hw.wiphy->bands[tx->channel->band]; 61 txrate = &sband->bitrates[info->control.rates[0].idx]; 62 63 erp = txrate->flags & IEEE80211_RATE_ERP_G; 64 65 /* 66 * data and mgmt (except PS Poll): 67 * - during CFP: 32768 68 * - during contention period: 69 * if addr1 is group address: 0 70 * if more fragments = 0 and addr1 is individual address: time to 71 * transmit one ACK plus SIFS 72 * if more fragments = 1 and addr1 is individual address: time to 73 * transmit next fragment plus 2 x ACK plus 3 x SIFS 74 * 75 * IEEE 802.11, 9.6: 76 * - control response frame (CTS or ACK) shall be transmitted using the 77 * same rate as the immediately previous frame in the frame exchange 78 * sequence, if this rate belongs to the PHY mandatory rates, or else 79 * at the highest possible rate belonging to the PHY rates in the 80 * BSSBasicRateSet 81 */ 82 hdr = (struct ieee80211_hdr *)tx->skb->data; 83 if (ieee80211_is_ctl(hdr->frame_control)) { 84 /* TODO: These control frames are not currently sent by 85 * mac80211, but should they be implemented, this function 86 * needs to be updated to support duration field calculation. 87 * 88 * RTS: time needed to transmit pending data/mgmt frame plus 89 * one CTS frame plus one ACK frame plus 3 x SIFS 90 * CTS: duration of immediately previous RTS minus time 91 * required to transmit CTS and its SIFS 92 * ACK: 0 if immediately previous directed data/mgmt had 93 * more=0, with more=1 duration in ACK frame is duration 94 * from previous frame minus time needed to transmit ACK 95 * and its SIFS 96 * PS Poll: BIT(15) | BIT(14) | aid 97 */ 98 return 0; 99 } 100 101 /* data/mgmt */ 102 if (0 /* FIX: data/mgmt during CFP */) 103 return cpu_to_le16(32768); 104 105 if (group_addr) /* Group address as the destination - no ACK */ 106 return 0; 107 108 /* Individual destination address: 109 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 110 * CTS and ACK frames shall be transmitted using the highest rate in 111 * basic rate set that is less than or equal to the rate of the 112 * immediately previous frame and that is using the same modulation 113 * (CCK or OFDM). If no basic rate set matches with these requirements, 114 * the highest mandatory rate of the PHY that is less than or equal to 115 * the rate of the previous frame is used. 116 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 117 */ 118 rate = -1; 119 /* use lowest available if everything fails */ 120 mrate = sband->bitrates[0].bitrate; 121 for (i = 0; i < sband->n_bitrates; i++) { 122 struct ieee80211_rate *r = &sband->bitrates[i]; 123 124 if (r->bitrate > txrate->bitrate) 125 break; 126 127 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 128 rate = r->bitrate; 129 130 switch (sband->band) { 131 case IEEE80211_BAND_2GHZ: { 132 u32 flag; 133 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 134 flag = IEEE80211_RATE_MANDATORY_G; 135 else 136 flag = IEEE80211_RATE_MANDATORY_B; 137 if (r->flags & flag) 138 mrate = r->bitrate; 139 break; 140 } 141 case IEEE80211_BAND_5GHZ: 142 if (r->flags & IEEE80211_RATE_MANDATORY_A) 143 mrate = r->bitrate; 144 break; 145 case IEEE80211_NUM_BANDS: 146 WARN_ON(1); 147 break; 148 } 149 } 150 if (rate == -1) { 151 /* No matching basic rate found; use highest suitable mandatory 152 * PHY rate */ 153 rate = mrate; 154 } 155 156 /* Time needed to transmit ACK 157 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 158 * to closest integer */ 159 160 dur = ieee80211_frame_duration(local, 10, rate, erp, 161 tx->sdata->vif.bss_conf.use_short_preamble); 162 163 if (next_frag_len) { 164 /* Frame is fragmented: duration increases with time needed to 165 * transmit next fragment plus ACK and 2 x SIFS. */ 166 dur *= 2; /* ACK + SIFS */ 167 /* next fragment */ 168 dur += ieee80211_frame_duration(local, next_frag_len, 169 txrate->bitrate, erp, 170 tx->sdata->vif.bss_conf.use_short_preamble); 171 } 172 173 return cpu_to_le16(dur); 174 } 175 176 static int inline is_ieee80211_device(struct ieee80211_local *local, 177 struct net_device *dev) 178 { 179 return local == wdev_priv(dev->ieee80211_ptr); 180 } 181 182 /* tx handlers */ 183 static ieee80211_tx_result debug_noinline 184 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) 185 { 186 struct ieee80211_local *local = tx->local; 187 struct ieee80211_if_managed *ifmgd; 188 189 /* driver doesn't support power save */ 190 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 191 return TX_CONTINUE; 192 193 /* hardware does dynamic power save */ 194 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 195 return TX_CONTINUE; 196 197 /* dynamic power save disabled */ 198 if (local->hw.conf.dynamic_ps_timeout <= 0) 199 return TX_CONTINUE; 200 201 /* we are scanning, don't enable power save */ 202 if (local->scanning) 203 return TX_CONTINUE; 204 205 if (!local->ps_sdata) 206 return TX_CONTINUE; 207 208 /* No point if we're going to suspend */ 209 if (local->quiescing) 210 return TX_CONTINUE; 211 212 /* dynamic ps is supported only in managed mode */ 213 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) 214 return TX_CONTINUE; 215 216 ifmgd = &tx->sdata->u.mgd; 217 218 /* 219 * Don't wakeup from power save if u-apsd is enabled, voip ac has 220 * u-apsd enabled and the frame is in voip class. This effectively 221 * means that even if all access categories have u-apsd enabled, in 222 * practise u-apsd is only used with the voip ac. This is a 223 * workaround for the case when received voip class packets do not 224 * have correct qos tag for some reason, due the network or the 225 * peer application. 226 * 227 * Note: local->uapsd_queues access is racy here. If the value is 228 * changed via debugfs, user needs to reassociate manually to have 229 * everything in sync. 230 */ 231 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) 232 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 233 && skb_get_queue_mapping(tx->skb) == 0) 234 return TX_CONTINUE; 235 236 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 237 ieee80211_stop_queues_by_reason(&local->hw, 238 IEEE80211_QUEUE_STOP_REASON_PS); 239 ieee80211_queue_work(&local->hw, 240 &local->dynamic_ps_disable_work); 241 } 242 243 mod_timer(&local->dynamic_ps_timer, jiffies + 244 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 245 246 return TX_CONTINUE; 247 } 248 249 static ieee80211_tx_result debug_noinline 250 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 251 { 252 253 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 254 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 255 u32 sta_flags; 256 257 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 258 return TX_CONTINUE; 259 260 if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) && 261 !ieee80211_is_probe_req(hdr->frame_control) && 262 !ieee80211_is_nullfunc(hdr->frame_control)) 263 /* 264 * When software scanning only nullfunc frames (to notify 265 * the sleep state to the AP) and probe requests (for the 266 * active scan) are allowed, all other frames should not be 267 * sent and we should not get here, but if we do 268 * nonetheless, drop them to avoid sending them 269 * off-channel. See the link below and 270 * ieee80211_start_scan() for more. 271 * 272 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 273 */ 274 return TX_DROP; 275 276 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 277 return TX_CONTINUE; 278 279 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 280 return TX_CONTINUE; 281 282 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 283 284 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 285 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 286 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 287 ieee80211_is_data(hdr->frame_control))) { 288 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 289 printk(KERN_DEBUG "%s: dropped data frame to not " 290 "associated station %pM\n", 291 tx->sdata->name, hdr->addr1); 292 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 293 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 294 return TX_DROP; 295 } 296 } else { 297 if (unlikely(ieee80211_is_data(hdr->frame_control) && 298 tx->local->num_sta == 0 && 299 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 300 /* 301 * No associated STAs - no need to send multicast 302 * frames. 303 */ 304 return TX_DROP; 305 } 306 return TX_CONTINUE; 307 } 308 309 return TX_CONTINUE; 310 } 311 312 /* This function is called whenever the AP is about to exceed the maximum limit 313 * of buffered frames for power saving STAs. This situation should not really 314 * happen often during normal operation, so dropping the oldest buffered packet 315 * from each queue should be OK to make some room for new frames. */ 316 static void purge_old_ps_buffers(struct ieee80211_local *local) 317 { 318 int total = 0, purged = 0; 319 struct sk_buff *skb; 320 struct ieee80211_sub_if_data *sdata; 321 struct sta_info *sta; 322 323 /* 324 * virtual interfaces are protected by RCU 325 */ 326 rcu_read_lock(); 327 328 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 329 struct ieee80211_if_ap *ap; 330 if (sdata->vif.type != NL80211_IFTYPE_AP) 331 continue; 332 ap = &sdata->u.ap; 333 skb = skb_dequeue(&ap->ps_bc_buf); 334 if (skb) { 335 purged++; 336 dev_kfree_skb(skb); 337 } 338 total += skb_queue_len(&ap->ps_bc_buf); 339 } 340 341 list_for_each_entry_rcu(sta, &local->sta_list, list) { 342 skb = skb_dequeue(&sta->ps_tx_buf); 343 if (skb) { 344 purged++; 345 dev_kfree_skb(skb); 346 } 347 total += skb_queue_len(&sta->ps_tx_buf); 348 } 349 350 rcu_read_unlock(); 351 352 local->total_ps_buffered = total; 353 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 354 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 355 wiphy_name(local->hw.wiphy), purged); 356 #endif 357 } 358 359 static ieee80211_tx_result 360 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 361 { 362 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 363 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 364 365 /* 366 * broadcast/multicast frame 367 * 368 * If any of the associated stations is in power save mode, 369 * the frame is buffered to be sent after DTIM beacon frame. 370 * This is done either by the hardware or us. 371 */ 372 373 /* powersaving STAs only in AP/VLAN mode */ 374 if (!tx->sdata->bss) 375 return TX_CONTINUE; 376 377 /* no buffering for ordered frames */ 378 if (ieee80211_has_order(hdr->frame_control)) 379 return TX_CONTINUE; 380 381 /* no stations in PS mode */ 382 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 383 return TX_CONTINUE; 384 385 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 386 387 /* device releases frame after DTIM beacon */ 388 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 389 return TX_CONTINUE; 390 391 /* buffered in mac80211 */ 392 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 393 purge_old_ps_buffers(tx->local); 394 395 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 396 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 397 if (net_ratelimit()) 398 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 399 tx->sdata->name); 400 #endif 401 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 402 } else 403 tx->local->total_ps_buffered++; 404 405 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 406 407 return TX_QUEUED; 408 } 409 410 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 411 struct sk_buff *skb) 412 { 413 if (!ieee80211_is_mgmt(fc)) 414 return 0; 415 416 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) 417 return 0; 418 419 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 420 skb->data)) 421 return 0; 422 423 return 1; 424 } 425 426 static ieee80211_tx_result 427 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 428 { 429 struct sta_info *sta = tx->sta; 430 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 431 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 432 struct ieee80211_local *local = tx->local; 433 u32 staflags; 434 435 if (unlikely(!sta || 436 ieee80211_is_probe_resp(hdr->frame_control) || 437 ieee80211_is_auth(hdr->frame_control) || 438 ieee80211_is_assoc_resp(hdr->frame_control) || 439 ieee80211_is_reassoc_resp(hdr->frame_control))) 440 return TX_CONTINUE; 441 442 staflags = get_sta_flags(sta); 443 444 if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && 445 !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { 446 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 447 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 448 "before %d)\n", 449 sta->sta.addr, sta->sta.aid, 450 skb_queue_len(&sta->ps_tx_buf)); 451 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 452 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 453 purge_old_ps_buffers(tx->local); 454 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 455 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 456 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 457 if (net_ratelimit()) { 458 printk(KERN_DEBUG "%s: STA %pM TX " 459 "buffer full - dropping oldest frame\n", 460 tx->sdata->name, sta->sta.addr); 461 } 462 #endif 463 dev_kfree_skb(old); 464 } else 465 tx->local->total_ps_buffered++; 466 467 /* 468 * Queue frame to be sent after STA wakes up/polls, 469 * but don't set the TIM bit if the driver is blocking 470 * wakeup or poll response transmissions anyway. 471 */ 472 if (skb_queue_empty(&sta->ps_tx_buf) && 473 !(staflags & WLAN_STA_PS_DRIVER)) 474 sta_info_set_tim_bit(sta); 475 476 info->control.jiffies = jiffies; 477 info->control.vif = &tx->sdata->vif; 478 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 479 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 480 481 if (!timer_pending(&local->sta_cleanup)) 482 mod_timer(&local->sta_cleanup, 483 round_jiffies(jiffies + 484 STA_INFO_CLEANUP_INTERVAL)); 485 486 return TX_QUEUED; 487 } 488 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 489 else if (unlikely(staflags & WLAN_STA_PS_STA)) { 490 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 491 "set -> send frame\n", tx->sdata->name, 492 sta->sta.addr); 493 } 494 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 495 496 return TX_CONTINUE; 497 } 498 499 static ieee80211_tx_result debug_noinline 500 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 501 { 502 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 503 return TX_CONTINUE; 504 505 if (tx->flags & IEEE80211_TX_UNICAST) 506 return ieee80211_tx_h_unicast_ps_buf(tx); 507 else 508 return ieee80211_tx_h_multicast_ps_buf(tx); 509 } 510 511 static ieee80211_tx_result debug_noinline 512 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 513 { 514 struct ieee80211_key *key = NULL; 515 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 516 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 517 518 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 519 tx->key = NULL; 520 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 521 tx->key = key; 522 else if (ieee80211_is_mgmt(hdr->frame_control) && 523 is_multicast_ether_addr(hdr->addr1) && 524 ieee80211_is_robust_mgmt_frame(hdr) && 525 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 526 tx->key = key; 527 else if ((key = rcu_dereference(tx->sdata->default_key))) 528 tx->key = key; 529 else if (tx->sdata->drop_unencrypted && 530 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && 531 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 532 (!ieee80211_is_robust_mgmt_frame(hdr) || 533 (ieee80211_is_action(hdr->frame_control) && 534 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { 535 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 536 return TX_DROP; 537 } else 538 tx->key = NULL; 539 540 if (tx->key) { 541 bool skip_hw = false; 542 543 tx->key->tx_rx_count++; 544 /* TODO: add threshold stuff again */ 545 546 switch (tx->key->conf.alg) { 547 case ALG_WEP: 548 if (ieee80211_is_auth(hdr->frame_control)) 549 break; 550 case ALG_TKIP: 551 if (!ieee80211_is_data_present(hdr->frame_control)) 552 tx->key = NULL; 553 break; 554 case ALG_CCMP: 555 if (!ieee80211_is_data_present(hdr->frame_control) && 556 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 557 tx->skb)) 558 tx->key = NULL; 559 else 560 skip_hw = (tx->key->conf.flags & 561 IEEE80211_KEY_FLAG_SW_MGMT) && 562 ieee80211_is_mgmt(hdr->frame_control); 563 break; 564 case ALG_AES_CMAC: 565 if (!ieee80211_is_mgmt(hdr->frame_control)) 566 tx->key = NULL; 567 break; 568 } 569 570 if (!skip_hw && tx->key && 571 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) 572 info->control.hw_key = &tx->key->conf; 573 } 574 575 return TX_CONTINUE; 576 } 577 578 static ieee80211_tx_result debug_noinline 579 ieee80211_tx_h_sta(struct ieee80211_tx_data *tx) 580 { 581 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 582 583 if (tx->sta && tx->sta->uploaded) 584 info->control.sta = &tx->sta->sta; 585 586 return TX_CONTINUE; 587 } 588 589 static ieee80211_tx_result debug_noinline 590 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 591 { 592 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 593 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 594 struct ieee80211_supported_band *sband; 595 struct ieee80211_rate *rate; 596 int i; 597 u32 len; 598 bool inval = false, rts = false, short_preamble = false; 599 struct ieee80211_tx_rate_control txrc; 600 u32 sta_flags; 601 602 memset(&txrc, 0, sizeof(txrc)); 603 604 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 605 606 len = min_t(u32, tx->skb->len + FCS_LEN, 607 tx->local->hw.wiphy->frag_threshold); 608 609 /* set up the tx rate control struct we give the RC algo */ 610 txrc.hw = local_to_hw(tx->local); 611 txrc.sband = sband; 612 txrc.bss_conf = &tx->sdata->vif.bss_conf; 613 txrc.skb = tx->skb; 614 txrc.reported_rate.idx = -1; 615 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; 616 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 617 txrc.max_rate_idx = -1; 618 else 619 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 620 txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP; 621 622 /* set up RTS protection if desired */ 623 if (len > tx->local->hw.wiphy->rts_threshold) { 624 txrc.rts = rts = true; 625 } 626 627 /* 628 * Use short preamble if the BSS can handle it, but not for 629 * management frames unless we know the receiver can handle 630 * that -- the management frame might be to a station that 631 * just wants a probe response. 632 */ 633 if (tx->sdata->vif.bss_conf.use_short_preamble && 634 (ieee80211_is_data(hdr->frame_control) || 635 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 636 txrc.short_preamble = short_preamble = true; 637 638 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 639 640 /* 641 * Lets not bother rate control if we're associated and cannot 642 * talk to the sta. This should not happen. 643 */ 644 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && 645 (sta_flags & WLAN_STA_ASSOC) && 646 !rate_usable_index_exists(sband, &tx->sta->sta), 647 "%s: Dropped data frame as no usable bitrate found while " 648 "scanning and associated. Target station: " 649 "%pM on %d GHz band\n", 650 tx->sdata->name, hdr->addr1, 651 tx->channel->band ? 5 : 2)) 652 return TX_DROP; 653 654 /* 655 * If we're associated with the sta at this point we know we can at 656 * least send the frame at the lowest bit rate. 657 */ 658 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 659 660 if (unlikely(info->control.rates[0].idx < 0)) 661 return TX_DROP; 662 663 if (txrc.reported_rate.idx < 0) 664 txrc.reported_rate = info->control.rates[0]; 665 666 if (tx->sta) 667 tx->sta->last_tx_rate = txrc.reported_rate; 668 669 if (unlikely(!info->control.rates[0].count)) 670 info->control.rates[0].count = 1; 671 672 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 673 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 674 info->control.rates[0].count = 1; 675 676 if (is_multicast_ether_addr(hdr->addr1)) { 677 /* 678 * XXX: verify the rate is in the basic rateset 679 */ 680 return TX_CONTINUE; 681 } 682 683 /* 684 * set up the RTS/CTS rate as the fastest basic rate 685 * that is not faster than the data rate 686 * 687 * XXX: Should this check all retry rates? 688 */ 689 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 690 s8 baserate = 0; 691 692 rate = &sband->bitrates[info->control.rates[0].idx]; 693 694 for (i = 0; i < sband->n_bitrates; i++) { 695 /* must be a basic rate */ 696 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 697 continue; 698 /* must not be faster than the data rate */ 699 if (sband->bitrates[i].bitrate > rate->bitrate) 700 continue; 701 /* maximum */ 702 if (sband->bitrates[baserate].bitrate < 703 sband->bitrates[i].bitrate) 704 baserate = i; 705 } 706 707 info->control.rts_cts_rate_idx = baserate; 708 } 709 710 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 711 /* 712 * make sure there's no valid rate following 713 * an invalid one, just in case drivers don't 714 * take the API seriously to stop at -1. 715 */ 716 if (inval) { 717 info->control.rates[i].idx = -1; 718 continue; 719 } 720 if (info->control.rates[i].idx < 0) { 721 inval = true; 722 continue; 723 } 724 725 /* 726 * For now assume MCS is already set up correctly, this 727 * needs to be fixed. 728 */ 729 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 730 WARN_ON(info->control.rates[i].idx > 76); 731 continue; 732 } 733 734 /* set up RTS protection if desired */ 735 if (rts) 736 info->control.rates[i].flags |= 737 IEEE80211_TX_RC_USE_RTS_CTS; 738 739 /* RC is busted */ 740 if (WARN_ON_ONCE(info->control.rates[i].idx >= 741 sband->n_bitrates)) { 742 info->control.rates[i].idx = -1; 743 continue; 744 } 745 746 rate = &sband->bitrates[info->control.rates[i].idx]; 747 748 /* set up short preamble */ 749 if (short_preamble && 750 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 751 info->control.rates[i].flags |= 752 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 753 754 /* set up G protection */ 755 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 756 rate->flags & IEEE80211_RATE_ERP_G) 757 info->control.rates[i].flags |= 758 IEEE80211_TX_RC_USE_CTS_PROTECT; 759 } 760 761 return TX_CONTINUE; 762 } 763 764 static ieee80211_tx_result debug_noinline 765 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 766 { 767 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 768 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 769 u16 *seq; 770 u8 *qc; 771 int tid; 772 773 /* 774 * Packet injection may want to control the sequence 775 * number, if we have no matching interface then we 776 * neither assign one ourselves nor ask the driver to. 777 */ 778 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 779 return TX_CONTINUE; 780 781 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 782 return TX_CONTINUE; 783 784 if (ieee80211_hdrlen(hdr->frame_control) < 24) 785 return TX_CONTINUE; 786 787 /* 788 * Anything but QoS data that has a sequence number field 789 * (is long enough) gets a sequence number from the global 790 * counter. 791 */ 792 if (!ieee80211_is_data_qos(hdr->frame_control)) { 793 /* driver should assign sequence number */ 794 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 795 /* for pure STA mode without beacons, we can do it */ 796 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 797 tx->sdata->sequence_number += 0x10; 798 return TX_CONTINUE; 799 } 800 801 /* 802 * This should be true for injected/management frames only, for 803 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 804 * above since they are not QoS-data frames. 805 */ 806 if (!tx->sta) 807 return TX_CONTINUE; 808 809 /* include per-STA, per-TID sequence counter */ 810 811 qc = ieee80211_get_qos_ctl(hdr); 812 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 813 seq = &tx->sta->tid_seq[tid]; 814 815 hdr->seq_ctrl = cpu_to_le16(*seq); 816 817 /* Increase the sequence number. */ 818 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 819 820 return TX_CONTINUE; 821 } 822 823 static int ieee80211_fragment(struct ieee80211_local *local, 824 struct sk_buff *skb, int hdrlen, 825 int frag_threshold) 826 { 827 struct sk_buff *tail = skb, *tmp; 828 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 829 int pos = hdrlen + per_fragm; 830 int rem = skb->len - hdrlen - per_fragm; 831 832 if (WARN_ON(rem < 0)) 833 return -EINVAL; 834 835 while (rem) { 836 int fraglen = per_fragm; 837 838 if (fraglen > rem) 839 fraglen = rem; 840 rem -= fraglen; 841 tmp = dev_alloc_skb(local->tx_headroom + 842 frag_threshold + 843 IEEE80211_ENCRYPT_HEADROOM + 844 IEEE80211_ENCRYPT_TAILROOM); 845 if (!tmp) 846 return -ENOMEM; 847 tail->next = tmp; 848 tail = tmp; 849 skb_reserve(tmp, local->tx_headroom + 850 IEEE80211_ENCRYPT_HEADROOM); 851 /* copy control information */ 852 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 853 skb_copy_queue_mapping(tmp, skb); 854 tmp->priority = skb->priority; 855 tmp->dev = skb->dev; 856 857 /* copy header and data */ 858 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 859 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 860 861 pos += fraglen; 862 } 863 864 skb->len = hdrlen + per_fragm; 865 return 0; 866 } 867 868 static ieee80211_tx_result debug_noinline 869 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 870 { 871 struct sk_buff *skb = tx->skb; 872 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 873 struct ieee80211_hdr *hdr = (void *)skb->data; 874 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 875 int hdrlen; 876 int fragnum; 877 878 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 879 return TX_CONTINUE; 880 881 /* 882 * Warn when submitting a fragmented A-MPDU frame and drop it. 883 * This scenario is handled in ieee80211_tx_prepare but extra 884 * caution taken here as fragmented ampdu may cause Tx stop. 885 */ 886 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 887 return TX_DROP; 888 889 hdrlen = ieee80211_hdrlen(hdr->frame_control); 890 891 /* internal error, why is TX_FRAGMENTED set? */ 892 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 893 return TX_DROP; 894 895 /* 896 * Now fragment the frame. This will allocate all the fragments and 897 * chain them (using skb as the first fragment) to skb->next. 898 * During transmission, we will remove the successfully transmitted 899 * fragments from this list. When the low-level driver rejects one 900 * of the fragments then we will simply pretend to accept the skb 901 * but store it away as pending. 902 */ 903 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) 904 return TX_DROP; 905 906 /* update duration/seq/flags of fragments */ 907 fragnum = 0; 908 do { 909 int next_len; 910 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 911 912 hdr = (void *)skb->data; 913 info = IEEE80211_SKB_CB(skb); 914 915 if (skb->next) { 916 hdr->frame_control |= morefrags; 917 next_len = skb->next->len; 918 /* 919 * No multi-rate retries for fragmented frames, that 920 * would completely throw off the NAV at other STAs. 921 */ 922 info->control.rates[1].idx = -1; 923 info->control.rates[2].idx = -1; 924 info->control.rates[3].idx = -1; 925 info->control.rates[4].idx = -1; 926 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 927 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 928 } else { 929 hdr->frame_control &= ~morefrags; 930 next_len = 0; 931 } 932 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 933 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 934 fragnum++; 935 } while ((skb = skb->next)); 936 937 return TX_CONTINUE; 938 } 939 940 static ieee80211_tx_result debug_noinline 941 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 942 { 943 struct sk_buff *skb = tx->skb; 944 945 if (!tx->sta) 946 return TX_CONTINUE; 947 948 tx->sta->tx_packets++; 949 do { 950 tx->sta->tx_fragments++; 951 tx->sta->tx_bytes += skb->len; 952 } while ((skb = skb->next)); 953 954 return TX_CONTINUE; 955 } 956 957 static ieee80211_tx_result debug_noinline 958 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 959 { 960 if (!tx->key) 961 return TX_CONTINUE; 962 963 switch (tx->key->conf.alg) { 964 case ALG_WEP: 965 return ieee80211_crypto_wep_encrypt(tx); 966 case ALG_TKIP: 967 return ieee80211_crypto_tkip_encrypt(tx); 968 case ALG_CCMP: 969 return ieee80211_crypto_ccmp_encrypt(tx); 970 case ALG_AES_CMAC: 971 return ieee80211_crypto_aes_cmac_encrypt(tx); 972 } 973 974 /* not reached */ 975 WARN_ON(1); 976 return TX_DROP; 977 } 978 979 static ieee80211_tx_result debug_noinline 980 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 981 { 982 struct sk_buff *skb = tx->skb; 983 struct ieee80211_hdr *hdr; 984 int next_len; 985 bool group_addr; 986 987 do { 988 hdr = (void *) skb->data; 989 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 990 break; /* must not overwrite AID */ 991 next_len = skb->next ? skb->next->len : 0; 992 group_addr = is_multicast_ether_addr(hdr->addr1); 993 994 hdr->duration_id = 995 ieee80211_duration(tx, group_addr, next_len); 996 } while ((skb = skb->next)); 997 998 return TX_CONTINUE; 999 } 1000 1001 /* actual transmit path */ 1002 1003 /* 1004 * deal with packet injection down monitor interface 1005 * with Radiotap Header -- only called for monitor mode interface 1006 */ 1007 static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 1008 struct sk_buff *skb) 1009 { 1010 /* 1011 * this is the moment to interpret and discard the radiotap header that 1012 * must be at the start of the packet injected in Monitor mode 1013 * 1014 * Need to take some care with endian-ness since radiotap 1015 * args are little-endian 1016 */ 1017 1018 struct ieee80211_radiotap_iterator iterator; 1019 struct ieee80211_radiotap_header *rthdr = 1020 (struct ieee80211_radiotap_header *) skb->data; 1021 struct ieee80211_supported_band *sband; 1022 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1023 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, 1024 NULL); 1025 1026 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 1027 1028 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 1029 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1030 1031 /* 1032 * for every radiotap entry that is present 1033 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 1034 * entries present, or -EINVAL on error) 1035 */ 1036 1037 while (!ret) { 1038 ret = ieee80211_radiotap_iterator_next(&iterator); 1039 1040 if (ret) 1041 continue; 1042 1043 /* see if this argument is something we can use */ 1044 switch (iterator.this_arg_index) { 1045 /* 1046 * You must take care when dereferencing iterator.this_arg 1047 * for multibyte types... the pointer is not aligned. Use 1048 * get_unaligned((type *)iterator.this_arg) to dereference 1049 * iterator.this_arg for type "type" safely on all arches. 1050 */ 1051 case IEEE80211_RADIOTAP_FLAGS: 1052 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 1053 /* 1054 * this indicates that the skb we have been 1055 * handed has the 32-bit FCS CRC at the end... 1056 * we should react to that by snipping it off 1057 * because it will be recomputed and added 1058 * on transmission 1059 */ 1060 if (skb->len < (iterator._max_length + FCS_LEN)) 1061 return false; 1062 1063 skb_trim(skb, skb->len - FCS_LEN); 1064 } 1065 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 1066 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 1067 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 1068 tx->flags |= IEEE80211_TX_FRAGMENTED; 1069 break; 1070 1071 /* 1072 * Please update the file 1073 * Documentation/networking/mac80211-injection.txt 1074 * when parsing new fields here. 1075 */ 1076 1077 default: 1078 break; 1079 } 1080 } 1081 1082 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 1083 return false; 1084 1085 /* 1086 * remove the radiotap header 1087 * iterator->_max_length was sanity-checked against 1088 * skb->len by iterator init 1089 */ 1090 skb_pull(skb, iterator._max_length); 1091 1092 return true; 1093 } 1094 1095 /* 1096 * initialises @tx 1097 */ 1098 static ieee80211_tx_result 1099 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1100 struct ieee80211_tx_data *tx, 1101 struct sk_buff *skb) 1102 { 1103 struct ieee80211_local *local = sdata->local; 1104 struct ieee80211_hdr *hdr; 1105 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1106 int hdrlen, tid; 1107 u8 *qc, *state; 1108 bool queued = false; 1109 1110 memset(tx, 0, sizeof(*tx)); 1111 tx->skb = skb; 1112 tx->local = local; 1113 tx->sdata = sdata; 1114 tx->channel = local->hw.conf.channel; 1115 /* 1116 * Set this flag (used below to indicate "automatic fragmentation"), 1117 * it will be cleared/left by radiotap as desired. 1118 */ 1119 tx->flags |= IEEE80211_TX_FRAGMENTED; 1120 1121 /* process and remove the injection radiotap header */ 1122 if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { 1123 if (!__ieee80211_parse_tx_radiotap(tx, skb)) 1124 return TX_DROP; 1125 1126 /* 1127 * __ieee80211_parse_tx_radiotap has now removed 1128 * the radiotap header that was present and pre-filled 1129 * 'tx' with tx control information. 1130 */ 1131 info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; 1132 } 1133 1134 /* 1135 * If this flag is set to true anywhere, and we get here, 1136 * we are doing the needed processing, so remove the flag 1137 * now. 1138 */ 1139 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1140 1141 hdr = (struct ieee80211_hdr *) skb->data; 1142 1143 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1144 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1145 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) 1146 return TX_DROP; 1147 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { 1148 tx->sta = sta_info_get_bss(sdata, hdr->addr1); 1149 } 1150 if (!tx->sta) 1151 tx->sta = sta_info_get(sdata, hdr->addr1); 1152 1153 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1154 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { 1155 struct tid_ampdu_tx *tid_tx; 1156 1157 qc = ieee80211_get_qos_ctl(hdr); 1158 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1159 1160 spin_lock(&tx->sta->lock); 1161 /* 1162 * XXX: This spinlock could be fairly expensive, but see the 1163 * comment in agg-tx.c:ieee80211_agg_tx_operational(). 1164 * One way to solve this would be to do something RCU-like 1165 * for managing the tid_tx struct and using atomic bitops 1166 * for the actual state -- by introducing an actual 1167 * 'operational' bit that would be possible. It would 1168 * require changing ieee80211_agg_tx_operational() to 1169 * set that bit, and changing the way tid_tx is managed 1170 * everywhere, including races between that bit and 1171 * tid_tx going away (tid_tx being added can be easily 1172 * committed to memory before the 'operational' bit). 1173 */ 1174 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; 1175 state = &tx->sta->ampdu_mlme.tid_state_tx[tid]; 1176 if (*state == HT_AGG_STATE_OPERATIONAL) { 1177 info->flags |= IEEE80211_TX_CTL_AMPDU; 1178 } else if (*state != HT_AGG_STATE_IDLE) { 1179 /* in progress */ 1180 queued = true; 1181 info->control.vif = &sdata->vif; 1182 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1183 __skb_queue_tail(&tid_tx->pending, skb); 1184 } 1185 spin_unlock(&tx->sta->lock); 1186 1187 if (unlikely(queued)) 1188 return TX_QUEUED; 1189 } 1190 1191 if (is_multicast_ether_addr(hdr->addr1)) { 1192 tx->flags &= ~IEEE80211_TX_UNICAST; 1193 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1194 } else { 1195 tx->flags |= IEEE80211_TX_UNICAST; 1196 if (unlikely(local->wifi_wme_noack_test)) 1197 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1198 else 1199 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 1200 } 1201 1202 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1203 if ((tx->flags & IEEE80211_TX_UNICAST) && 1204 skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && 1205 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1206 tx->flags |= IEEE80211_TX_FRAGMENTED; 1207 else 1208 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1209 } 1210 1211 if (!tx->sta) 1212 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1213 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1214 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1215 1216 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1217 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1218 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1219 tx->ethertype = (pos[0] << 8) | pos[1]; 1220 } 1221 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1222 1223 return TX_CONTINUE; 1224 } 1225 1226 static int __ieee80211_tx(struct ieee80211_local *local, 1227 struct sk_buff **skbp, 1228 struct sta_info *sta, 1229 bool txpending) 1230 { 1231 struct sk_buff *skb = *skbp, *next; 1232 struct ieee80211_tx_info *info; 1233 struct ieee80211_sub_if_data *sdata; 1234 unsigned long flags; 1235 int ret, len; 1236 bool fragm = false; 1237 1238 while (skb) { 1239 int q = skb_get_queue_mapping(skb); 1240 1241 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1242 ret = IEEE80211_TX_OK; 1243 if (local->queue_stop_reasons[q] || 1244 (!txpending && !skb_queue_empty(&local->pending[q]))) 1245 ret = IEEE80211_TX_PENDING; 1246 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1247 if (ret != IEEE80211_TX_OK) 1248 return ret; 1249 1250 info = IEEE80211_SKB_CB(skb); 1251 1252 if (fragm) 1253 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1254 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1255 1256 next = skb->next; 1257 len = skb->len; 1258 1259 if (next) 1260 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 1261 1262 sdata = vif_to_sdata(info->control.vif); 1263 1264 switch (sdata->vif.type) { 1265 case NL80211_IFTYPE_MONITOR: 1266 info->control.vif = NULL; 1267 break; 1268 case NL80211_IFTYPE_AP_VLAN: 1269 info->control.vif = &container_of(sdata->bss, 1270 struct ieee80211_sub_if_data, u.ap)->vif; 1271 break; 1272 default: 1273 /* keep */ 1274 break; 1275 } 1276 1277 ret = drv_tx(local, skb); 1278 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { 1279 dev_kfree_skb(skb); 1280 ret = NETDEV_TX_OK; 1281 } 1282 if (ret != NETDEV_TX_OK) { 1283 info->control.vif = &sdata->vif; 1284 return IEEE80211_TX_AGAIN; 1285 } 1286 1287 *skbp = skb = next; 1288 ieee80211_led_tx(local, 1); 1289 fragm = true; 1290 } 1291 1292 return IEEE80211_TX_OK; 1293 } 1294 1295 /* 1296 * Invoke TX handlers, return 0 on success and non-zero if the 1297 * frame was dropped or queued. 1298 */ 1299 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1300 { 1301 struct sk_buff *skb = tx->skb; 1302 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1303 ieee80211_tx_result res = TX_DROP; 1304 1305 #define CALL_TXH(txh) \ 1306 do { \ 1307 res = txh(tx); \ 1308 if (res != TX_CONTINUE) \ 1309 goto txh_done; \ 1310 } while (0) 1311 1312 CALL_TXH(ieee80211_tx_h_dynamic_ps); 1313 CALL_TXH(ieee80211_tx_h_check_assoc); 1314 CALL_TXH(ieee80211_tx_h_ps_buf); 1315 CALL_TXH(ieee80211_tx_h_select_key); 1316 CALL_TXH(ieee80211_tx_h_sta); 1317 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1318 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1319 1320 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) 1321 goto txh_done; 1322 1323 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1324 CALL_TXH(ieee80211_tx_h_sequence); 1325 CALL_TXH(ieee80211_tx_h_fragment); 1326 /* handlers after fragment must be aware of tx info fragmentation! */ 1327 CALL_TXH(ieee80211_tx_h_stats); 1328 CALL_TXH(ieee80211_tx_h_encrypt); 1329 CALL_TXH(ieee80211_tx_h_calculate_duration); 1330 #undef CALL_TXH 1331 1332 txh_done: 1333 if (unlikely(res == TX_DROP)) { 1334 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1335 while (skb) { 1336 struct sk_buff *next; 1337 1338 next = skb->next; 1339 dev_kfree_skb(skb); 1340 skb = next; 1341 } 1342 return -1; 1343 } else if (unlikely(res == TX_QUEUED)) { 1344 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1345 return -1; 1346 } 1347 1348 return 0; 1349 } 1350 1351 static void ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1352 struct sk_buff *skb, bool txpending) 1353 { 1354 struct ieee80211_local *local = sdata->local; 1355 struct ieee80211_tx_data tx; 1356 ieee80211_tx_result res_prepare; 1357 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1358 struct sk_buff *next; 1359 unsigned long flags; 1360 int ret, retries; 1361 u16 queue; 1362 1363 queue = skb_get_queue_mapping(skb); 1364 1365 if (unlikely(skb->len < 10)) { 1366 dev_kfree_skb(skb); 1367 return; 1368 } 1369 1370 rcu_read_lock(); 1371 1372 /* initialises tx */ 1373 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1374 1375 if (unlikely(res_prepare == TX_DROP)) { 1376 dev_kfree_skb(skb); 1377 rcu_read_unlock(); 1378 return; 1379 } else if (unlikely(res_prepare == TX_QUEUED)) { 1380 rcu_read_unlock(); 1381 return; 1382 } 1383 1384 tx.channel = local->hw.conf.channel; 1385 info->band = tx.channel->band; 1386 1387 if (invoke_tx_handlers(&tx)) 1388 goto out; 1389 1390 retries = 0; 1391 retry: 1392 ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); 1393 switch (ret) { 1394 case IEEE80211_TX_OK: 1395 break; 1396 case IEEE80211_TX_AGAIN: 1397 /* 1398 * Since there are no fragmented frames on A-MPDU 1399 * queues, there's no reason for a driver to reject 1400 * a frame there, warn and drop it. 1401 */ 1402 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 1403 goto drop; 1404 /* fall through */ 1405 case IEEE80211_TX_PENDING: 1406 skb = tx.skb; 1407 1408 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1409 1410 if (local->queue_stop_reasons[queue] || 1411 !skb_queue_empty(&local->pending[queue])) { 1412 /* 1413 * if queue is stopped, queue up frames for later 1414 * transmission from the tasklet 1415 */ 1416 do { 1417 next = skb->next; 1418 skb->next = NULL; 1419 if (unlikely(txpending)) 1420 __skb_queue_head(&local->pending[queue], 1421 skb); 1422 else 1423 __skb_queue_tail(&local->pending[queue], 1424 skb); 1425 } while ((skb = next)); 1426 1427 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1428 flags); 1429 } else { 1430 /* 1431 * otherwise retry, but this is a race condition or 1432 * a driver bug (which we warn about if it persists) 1433 */ 1434 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1435 flags); 1436 1437 retries++; 1438 if (WARN(retries > 10, "tx refused but queue active\n")) 1439 goto drop; 1440 goto retry; 1441 } 1442 } 1443 out: 1444 rcu_read_unlock(); 1445 return; 1446 1447 drop: 1448 rcu_read_unlock(); 1449 1450 skb = tx.skb; 1451 while (skb) { 1452 next = skb->next; 1453 dev_kfree_skb(skb); 1454 skb = next; 1455 } 1456 } 1457 1458 /* device xmit handlers */ 1459 1460 static int ieee80211_skb_resize(struct ieee80211_local *local, 1461 struct sk_buff *skb, 1462 int head_need, bool may_encrypt) 1463 { 1464 int tail_need = 0; 1465 1466 /* 1467 * This could be optimised, devices that do full hardware 1468 * crypto (including TKIP MMIC) need no tailroom... But we 1469 * have no drivers for such devices currently. 1470 */ 1471 if (may_encrypt) { 1472 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1473 tail_need -= skb_tailroom(skb); 1474 tail_need = max_t(int, tail_need, 0); 1475 } 1476 1477 if (head_need || tail_need) { 1478 /* Sorry. Can't account for this any more */ 1479 skb_orphan(skb); 1480 } 1481 1482 if (skb_header_cloned(skb)) 1483 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1484 else 1485 I802_DEBUG_INC(local->tx_expand_skb_head); 1486 1487 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1488 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1489 wiphy_name(local->hw.wiphy)); 1490 return -ENOMEM; 1491 } 1492 1493 /* update truesize too */ 1494 skb->truesize += head_need + tail_need; 1495 1496 return 0; 1497 } 1498 1499 static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, 1500 struct sk_buff *skb) 1501 { 1502 struct ieee80211_local *local = sdata->local; 1503 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1504 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1505 struct ieee80211_sub_if_data *tmp_sdata; 1506 int headroom; 1507 bool may_encrypt; 1508 1509 rcu_read_lock(); 1510 1511 if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1512 int hdrlen; 1513 u16 len_rthdr; 1514 1515 info->flags |= IEEE80211_TX_CTL_INJECTED | 1516 IEEE80211_TX_INTFL_HAS_RADIOTAP; 1517 1518 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1519 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1520 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1521 1522 /* check the header is complete in the frame */ 1523 if (likely(skb->len >= len_rthdr + hdrlen)) { 1524 /* 1525 * We process outgoing injected frames that have a 1526 * local address we handle as though they are our 1527 * own frames. 1528 * This code here isn't entirely correct, the local 1529 * MAC address is not necessarily enough to find 1530 * the interface to use; for that proper VLAN/WDS 1531 * support we will need a different mechanism. 1532 */ 1533 1534 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, 1535 list) { 1536 if (!ieee80211_sdata_running(tmp_sdata)) 1537 continue; 1538 if (tmp_sdata->vif.type != NL80211_IFTYPE_AP) 1539 continue; 1540 if (compare_ether_addr(tmp_sdata->vif.addr, 1541 hdr->addr2) == 0) { 1542 sdata = tmp_sdata; 1543 break; 1544 } 1545 } 1546 } 1547 } 1548 1549 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1550 1551 headroom = local->tx_headroom; 1552 if (may_encrypt) 1553 headroom += IEEE80211_ENCRYPT_HEADROOM; 1554 headroom -= skb_headroom(skb); 1555 headroom = max_t(int, 0, headroom); 1556 1557 if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { 1558 dev_kfree_skb(skb); 1559 rcu_read_unlock(); 1560 return; 1561 } 1562 1563 info->control.vif = &sdata->vif; 1564 1565 if (ieee80211_vif_is_mesh(&sdata->vif) && 1566 ieee80211_is_data(hdr->frame_control) && 1567 !is_multicast_ether_addr(hdr->addr1)) 1568 if (mesh_nexthop_lookup(skb, sdata)) { 1569 /* skb queued: don't free */ 1570 rcu_read_unlock(); 1571 return; 1572 } 1573 1574 ieee80211_set_qos_hdr(local, skb); 1575 ieee80211_tx(sdata, skb, false); 1576 rcu_read_unlock(); 1577 } 1578 1579 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1580 struct net_device *dev) 1581 { 1582 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1583 struct ieee80211_channel *chan = local->hw.conf.channel; 1584 struct ieee80211_radiotap_header *prthdr = 1585 (struct ieee80211_radiotap_header *)skb->data; 1586 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1587 u16 len_rthdr; 1588 1589 /* 1590 * Frame injection is not allowed if beaconing is not allowed 1591 * or if we need radar detection. Beaconing is usually not allowed when 1592 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1593 * Passive scan is also used in world regulatory domains where 1594 * your country is not known and as such it should be treated as 1595 * NO TX unless the channel is explicitly allowed in which case 1596 * your current regulatory domain would not have the passive scan 1597 * flag. 1598 * 1599 * Since AP mode uses monitor interfaces to inject/TX management 1600 * frames we can make AP mode the exception to this rule once it 1601 * supports radar detection as its implementation can deal with 1602 * radar detection by itself. We can do that later by adding a 1603 * monitor flag interfaces used for AP support. 1604 */ 1605 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1606 IEEE80211_CHAN_PASSIVE_SCAN))) 1607 goto fail; 1608 1609 /* check for not even having the fixed radiotap header part */ 1610 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1611 goto fail; /* too short to be possibly valid */ 1612 1613 /* is it a header version we can trust to find length from? */ 1614 if (unlikely(prthdr->it_version)) 1615 goto fail; /* only version 0 is supported */ 1616 1617 /* then there must be a radiotap header with a length we can use */ 1618 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1619 1620 /* does the skb contain enough to deliver on the alleged length? */ 1621 if (unlikely(skb->len < len_rthdr)) 1622 goto fail; /* skb too short for claimed rt header extent */ 1623 1624 /* 1625 * fix up the pointers accounting for the radiotap 1626 * header still being in there. We are being given 1627 * a precooked IEEE80211 header so no need for 1628 * normal processing 1629 */ 1630 skb_set_mac_header(skb, len_rthdr); 1631 /* 1632 * these are just fixed to the end of the rt area since we 1633 * don't have any better information and at this point, nobody cares 1634 */ 1635 skb_set_network_header(skb, len_rthdr); 1636 skb_set_transport_header(skb, len_rthdr); 1637 1638 memset(info, 0, sizeof(*info)); 1639 1640 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1641 1642 /* pass the radiotap header up to xmit */ 1643 ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); 1644 return NETDEV_TX_OK; 1645 1646 fail: 1647 dev_kfree_skb(skb); 1648 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1649 } 1650 1651 /** 1652 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1653 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1654 * @skb: packet to be sent 1655 * @dev: incoming interface 1656 * 1657 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1658 * not be freed, and caller is responsible for either retrying later or freeing 1659 * skb). 1660 * 1661 * This function takes in an Ethernet header and encapsulates it with suitable 1662 * IEEE 802.11 header based on which interface the packet is coming in. The 1663 * encapsulated packet will then be passed to master interface, wlan#.11, for 1664 * transmission (through low-level driver). 1665 */ 1666 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1667 struct net_device *dev) 1668 { 1669 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1670 struct ieee80211_local *local = sdata->local; 1671 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1672 int ret = NETDEV_TX_BUSY, head_need; 1673 u16 ethertype, hdrlen, meshhdrlen = 0; 1674 __le16 fc; 1675 struct ieee80211_hdr hdr; 1676 struct ieee80211s_hdr mesh_hdr; 1677 const u8 *encaps_data; 1678 int encaps_len, skip_header_bytes; 1679 int nh_pos, h_pos; 1680 struct sta_info *sta = NULL; 1681 u32 sta_flags = 0; 1682 1683 if (unlikely(skb->len < ETH_HLEN)) { 1684 ret = NETDEV_TX_OK; 1685 goto fail; 1686 } 1687 1688 nh_pos = skb_network_header(skb) - skb->data; 1689 h_pos = skb_transport_header(skb) - skb->data; 1690 1691 /* convert Ethernet header to proper 802.11 header (based on 1692 * operation mode) */ 1693 ethertype = (skb->data[12] << 8) | skb->data[13]; 1694 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1695 1696 switch (sdata->vif.type) { 1697 case NL80211_IFTYPE_AP_VLAN: 1698 rcu_read_lock(); 1699 sta = rcu_dereference(sdata->u.vlan.sta); 1700 if (sta) { 1701 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1702 /* RA TA DA SA */ 1703 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1704 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1705 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1706 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1707 hdrlen = 30; 1708 sta_flags = get_sta_flags(sta); 1709 } 1710 rcu_read_unlock(); 1711 if (sta) 1712 break; 1713 /* fall through */ 1714 case NL80211_IFTYPE_AP: 1715 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1716 /* DA BSSID SA */ 1717 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1718 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1719 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1720 hdrlen = 24; 1721 break; 1722 case NL80211_IFTYPE_WDS: 1723 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1724 /* RA TA DA SA */ 1725 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1726 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1727 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1728 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1729 hdrlen = 30; 1730 break; 1731 #ifdef CONFIG_MAC80211_MESH 1732 case NL80211_IFTYPE_MESH_POINT: 1733 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1734 /* Do not send frames with mesh_ttl == 0 */ 1735 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1736 ret = NETDEV_TX_OK; 1737 goto fail; 1738 } 1739 1740 if (compare_ether_addr(sdata->vif.addr, 1741 skb->data + ETH_ALEN) == 0) { 1742 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1743 skb->data, skb->data + ETH_ALEN); 1744 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1745 sdata, NULL, NULL, NULL); 1746 } else { 1747 /* packet from other interface */ 1748 struct mesh_path *mppath; 1749 int is_mesh_mcast = 1; 1750 const u8 *mesh_da; 1751 1752 rcu_read_lock(); 1753 if (is_multicast_ether_addr(skb->data)) 1754 /* DA TA mSA AE:SA */ 1755 mesh_da = skb->data; 1756 else { 1757 static const u8 bcast[ETH_ALEN] = 1758 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1759 1760 mppath = mpp_path_lookup(skb->data, sdata); 1761 if (mppath) { 1762 /* RA TA mDA mSA AE:DA SA */ 1763 mesh_da = mppath->mpp; 1764 is_mesh_mcast = 0; 1765 } else { 1766 /* DA TA mSA AE:SA */ 1767 mesh_da = bcast; 1768 } 1769 } 1770 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1771 mesh_da, sdata->vif.addr); 1772 rcu_read_unlock(); 1773 if (is_mesh_mcast) 1774 meshhdrlen = 1775 ieee80211_new_mesh_header(&mesh_hdr, 1776 sdata, 1777 skb->data + ETH_ALEN, 1778 NULL, 1779 NULL); 1780 else 1781 meshhdrlen = 1782 ieee80211_new_mesh_header(&mesh_hdr, 1783 sdata, 1784 NULL, 1785 skb->data, 1786 skb->data + ETH_ALEN); 1787 1788 } 1789 break; 1790 #endif 1791 case NL80211_IFTYPE_STATION: 1792 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1793 if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) { 1794 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1795 /* RA TA DA SA */ 1796 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1797 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1798 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1799 hdrlen = 30; 1800 } else { 1801 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1802 /* BSSID SA DA */ 1803 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1804 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1805 hdrlen = 24; 1806 } 1807 break; 1808 case NL80211_IFTYPE_ADHOC: 1809 /* DA SA BSSID */ 1810 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1811 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1812 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1813 hdrlen = 24; 1814 break; 1815 default: 1816 ret = NETDEV_TX_OK; 1817 goto fail; 1818 } 1819 1820 /* 1821 * There's no need to try to look up the destination 1822 * if it is a multicast address (which can only happen 1823 * in AP mode) 1824 */ 1825 if (!is_multicast_ether_addr(hdr.addr1)) { 1826 rcu_read_lock(); 1827 sta = sta_info_get(sdata, hdr.addr1); 1828 if (sta) 1829 sta_flags = get_sta_flags(sta); 1830 rcu_read_unlock(); 1831 } 1832 1833 /* receiver and we are QoS enabled, use a QoS type frame */ 1834 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { 1835 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1836 hdrlen += 2; 1837 } 1838 1839 /* 1840 * Drop unicast frames to unauthorised stations unless they are 1841 * EAPOL frames from the local station. 1842 */ 1843 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1844 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1845 !(sta_flags & WLAN_STA_AUTHORIZED) && 1846 !(ethertype == ETH_P_PAE && 1847 compare_ether_addr(sdata->vif.addr, 1848 skb->data + ETH_ALEN) == 0))) { 1849 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1850 if (net_ratelimit()) 1851 printk(KERN_DEBUG "%s: dropped frame to %pM" 1852 " (unauthorized port)\n", dev->name, 1853 hdr.addr1); 1854 #endif 1855 1856 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1857 1858 ret = NETDEV_TX_OK; 1859 goto fail; 1860 } 1861 1862 hdr.frame_control = fc; 1863 hdr.duration_id = 0; 1864 hdr.seq_ctrl = 0; 1865 1866 skip_header_bytes = ETH_HLEN; 1867 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1868 encaps_data = bridge_tunnel_header; 1869 encaps_len = sizeof(bridge_tunnel_header); 1870 skip_header_bytes -= 2; 1871 } else if (ethertype >= 0x600) { 1872 encaps_data = rfc1042_header; 1873 encaps_len = sizeof(rfc1042_header); 1874 skip_header_bytes -= 2; 1875 } else { 1876 encaps_data = NULL; 1877 encaps_len = 0; 1878 } 1879 1880 skb_pull(skb, skip_header_bytes); 1881 nh_pos -= skip_header_bytes; 1882 h_pos -= skip_header_bytes; 1883 1884 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1885 1886 /* 1887 * So we need to modify the skb header and hence need a copy of 1888 * that. The head_need variable above doesn't, so far, include 1889 * the needed header space that we don't need right away. If we 1890 * can, then we don't reallocate right now but only after the 1891 * frame arrives at the master device (if it does...) 1892 * 1893 * If we cannot, however, then we will reallocate to include all 1894 * the ever needed space. Also, if we need to reallocate it anyway, 1895 * make it big enough for everything we may ever need. 1896 */ 1897 1898 if (head_need > 0 || skb_cloned(skb)) { 1899 head_need += IEEE80211_ENCRYPT_HEADROOM; 1900 head_need += local->tx_headroom; 1901 head_need = max_t(int, 0, head_need); 1902 if (ieee80211_skb_resize(local, skb, head_need, true)) 1903 goto fail; 1904 } 1905 1906 if (encaps_data) { 1907 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1908 nh_pos += encaps_len; 1909 h_pos += encaps_len; 1910 } 1911 1912 if (meshhdrlen > 0) { 1913 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1914 nh_pos += meshhdrlen; 1915 h_pos += meshhdrlen; 1916 } 1917 1918 if (ieee80211_is_data_qos(fc)) { 1919 __le16 *qos_control; 1920 1921 qos_control = (__le16*) skb_push(skb, 2); 1922 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1923 /* 1924 * Maybe we could actually set some fields here, for now just 1925 * initialise to zero to indicate no special operation. 1926 */ 1927 *qos_control = 0; 1928 } else 1929 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1930 1931 nh_pos += hdrlen; 1932 h_pos += hdrlen; 1933 1934 dev->stats.tx_packets++; 1935 dev->stats.tx_bytes += skb->len; 1936 1937 /* Update skb pointers to various headers since this modified frame 1938 * is going to go through Linux networking code that may potentially 1939 * need things like pointer to IP header. */ 1940 skb_set_mac_header(skb, 0); 1941 skb_set_network_header(skb, nh_pos); 1942 skb_set_transport_header(skb, h_pos); 1943 1944 memset(info, 0, sizeof(*info)); 1945 1946 dev->trans_start = jiffies; 1947 ieee80211_xmit(sdata, skb); 1948 1949 return NETDEV_TX_OK; 1950 1951 fail: 1952 if (ret == NETDEV_TX_OK) 1953 dev_kfree_skb(skb); 1954 1955 return ret; 1956 } 1957 1958 1959 /* 1960 * ieee80211_clear_tx_pending may not be called in a context where 1961 * it is possible that it packets could come in again. 1962 */ 1963 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1964 { 1965 int i; 1966 1967 for (i = 0; i < local->hw.queues; i++) 1968 skb_queue_purge(&local->pending[i]); 1969 } 1970 1971 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 1972 struct sk_buff *skb) 1973 { 1974 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1975 struct ieee80211_sub_if_data *sdata; 1976 struct sta_info *sta; 1977 struct ieee80211_hdr *hdr; 1978 int ret; 1979 bool result = true; 1980 1981 sdata = vif_to_sdata(info->control.vif); 1982 1983 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 1984 ieee80211_tx(sdata, skb, true); 1985 } else { 1986 hdr = (struct ieee80211_hdr *)skb->data; 1987 sta = sta_info_get(sdata, hdr->addr1); 1988 1989 ret = __ieee80211_tx(local, &skb, sta, true); 1990 if (ret != IEEE80211_TX_OK) 1991 result = false; 1992 } 1993 1994 return result; 1995 } 1996 1997 /* 1998 * Transmit all pending packets. Called from tasklet. 1999 */ 2000 void ieee80211_tx_pending(unsigned long data) 2001 { 2002 struct ieee80211_local *local = (struct ieee80211_local *)data; 2003 struct ieee80211_sub_if_data *sdata; 2004 unsigned long flags; 2005 int i; 2006 bool txok; 2007 2008 rcu_read_lock(); 2009 2010 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 2011 for (i = 0; i < local->hw.queues; i++) { 2012 /* 2013 * If queue is stopped by something other than due to pending 2014 * frames, or we have no pending frames, proceed to next queue. 2015 */ 2016 if (local->queue_stop_reasons[i] || 2017 skb_queue_empty(&local->pending[i])) 2018 continue; 2019 2020 while (!skb_queue_empty(&local->pending[i])) { 2021 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 2022 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2023 2024 if (WARN_ON(!info->control.vif)) { 2025 kfree_skb(skb); 2026 continue; 2027 } 2028 2029 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 2030 flags); 2031 2032 txok = ieee80211_tx_pending_skb(local, skb); 2033 if (!txok) 2034 __skb_queue_head(&local->pending[i], skb); 2035 spin_lock_irqsave(&local->queue_stop_reason_lock, 2036 flags); 2037 if (!txok) 2038 break; 2039 } 2040 2041 if (skb_queue_empty(&local->pending[i])) 2042 list_for_each_entry_rcu(sdata, &local->interfaces, list) 2043 netif_tx_wake_queue( 2044 netdev_get_tx_queue(sdata->dev, i)); 2045 } 2046 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 2047 2048 rcu_read_unlock(); 2049 } 2050 2051 /* functions for drivers to get certain frames */ 2052 2053 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 2054 struct sk_buff *skb, 2055 struct beacon_data *beacon) 2056 { 2057 u8 *pos, *tim; 2058 int aid0 = 0; 2059 int i, have_bits = 0, n1, n2; 2060 2061 /* Generate bitmap for TIM only if there are any STAs in power save 2062 * mode. */ 2063 if (atomic_read(&bss->num_sta_ps) > 0) 2064 /* in the hope that this is faster than 2065 * checking byte-for-byte */ 2066 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2067 IEEE80211_MAX_AID+1); 2068 2069 if (bss->dtim_count == 0) 2070 bss->dtim_count = beacon->dtim_period - 1; 2071 else 2072 bss->dtim_count--; 2073 2074 tim = pos = (u8 *) skb_put(skb, 6); 2075 *pos++ = WLAN_EID_TIM; 2076 *pos++ = 4; 2077 *pos++ = bss->dtim_count; 2078 *pos++ = beacon->dtim_period; 2079 2080 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2081 aid0 = 1; 2082 2083 if (have_bits) { 2084 /* Find largest even number N1 so that bits numbered 1 through 2085 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2086 * (N2 + 1) x 8 through 2007 are 0. */ 2087 n1 = 0; 2088 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2089 if (bss->tim[i]) { 2090 n1 = i & 0xfe; 2091 break; 2092 } 2093 } 2094 n2 = n1; 2095 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2096 if (bss->tim[i]) { 2097 n2 = i; 2098 break; 2099 } 2100 } 2101 2102 /* Bitmap control */ 2103 *pos++ = n1 | aid0; 2104 /* Part Virt Bitmap */ 2105 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2106 2107 tim[1] = n2 - n1 + 4; 2108 skb_put(skb, n2 - n1); 2109 } else { 2110 *pos++ = aid0; /* Bitmap control */ 2111 *pos++ = 0; /* Part Virt Bitmap */ 2112 } 2113 } 2114 2115 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2116 struct ieee80211_vif *vif, 2117 u16 *tim_offset, u16 *tim_length) 2118 { 2119 struct ieee80211_local *local = hw_to_local(hw); 2120 struct sk_buff *skb = NULL; 2121 struct ieee80211_tx_info *info; 2122 struct ieee80211_sub_if_data *sdata = NULL; 2123 struct ieee80211_if_ap *ap = NULL; 2124 struct beacon_data *beacon; 2125 struct ieee80211_supported_band *sband; 2126 enum ieee80211_band band = local->hw.conf.channel->band; 2127 struct ieee80211_tx_rate_control txrc; 2128 2129 sband = local->hw.wiphy->bands[band]; 2130 2131 rcu_read_lock(); 2132 2133 sdata = vif_to_sdata(vif); 2134 2135 if (tim_offset) 2136 *tim_offset = 0; 2137 if (tim_length) 2138 *tim_length = 0; 2139 2140 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2141 ap = &sdata->u.ap; 2142 beacon = rcu_dereference(ap->beacon); 2143 if (ap && beacon) { 2144 /* 2145 * headroom, head length, 2146 * tail length and maximum TIM length 2147 */ 2148 skb = dev_alloc_skb(local->tx_headroom + 2149 beacon->head_len + 2150 beacon->tail_len + 256); 2151 if (!skb) 2152 goto out; 2153 2154 skb_reserve(skb, local->tx_headroom); 2155 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2156 beacon->head_len); 2157 2158 /* 2159 * Not very nice, but we want to allow the driver to call 2160 * ieee80211_beacon_get() as a response to the set_tim() 2161 * callback. That, however, is already invoked under the 2162 * sta_lock to guarantee consistent and race-free update 2163 * of the tim bitmap in mac80211 and the driver. 2164 */ 2165 if (local->tim_in_locked_section) { 2166 ieee80211_beacon_add_tim(ap, skb, beacon); 2167 } else { 2168 unsigned long flags; 2169 2170 spin_lock_irqsave(&local->sta_lock, flags); 2171 ieee80211_beacon_add_tim(ap, skb, beacon); 2172 spin_unlock_irqrestore(&local->sta_lock, flags); 2173 } 2174 2175 if (tim_offset) 2176 *tim_offset = beacon->head_len; 2177 if (tim_length) 2178 *tim_length = skb->len - beacon->head_len; 2179 2180 if (beacon->tail) 2181 memcpy(skb_put(skb, beacon->tail_len), 2182 beacon->tail, beacon->tail_len); 2183 } else 2184 goto out; 2185 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2186 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2187 struct ieee80211_hdr *hdr; 2188 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2189 2190 if (!presp) 2191 goto out; 2192 2193 skb = skb_copy(presp, GFP_ATOMIC); 2194 if (!skb) 2195 goto out; 2196 2197 hdr = (struct ieee80211_hdr *) skb->data; 2198 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2199 IEEE80211_STYPE_BEACON); 2200 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2201 struct ieee80211_mgmt *mgmt; 2202 u8 *pos; 2203 2204 /* headroom, head length, tail length and maximum TIM length */ 2205 skb = dev_alloc_skb(local->tx_headroom + 400); 2206 if (!skb) 2207 goto out; 2208 2209 skb_reserve(skb, local->hw.extra_tx_headroom); 2210 mgmt = (struct ieee80211_mgmt *) 2211 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 2212 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 2213 mgmt->frame_control = 2214 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2215 memset(mgmt->da, 0xff, ETH_ALEN); 2216 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2217 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2218 mgmt->u.beacon.beacon_int = 2219 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2220 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 2221 2222 pos = skb_put(skb, 2); 2223 *pos++ = WLAN_EID_SSID; 2224 *pos++ = 0x0; 2225 2226 mesh_mgmt_ies_add(skb, sdata); 2227 } else { 2228 WARN_ON(1); 2229 goto out; 2230 } 2231 2232 info = IEEE80211_SKB_CB(skb); 2233 2234 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2235 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2236 info->band = band; 2237 2238 memset(&txrc, 0, sizeof(txrc)); 2239 txrc.hw = hw; 2240 txrc.sband = sband; 2241 txrc.bss_conf = &sdata->vif.bss_conf; 2242 txrc.skb = skb; 2243 txrc.reported_rate.idx = -1; 2244 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; 2245 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 2246 txrc.max_rate_idx = -1; 2247 else 2248 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 2249 txrc.ap = true; 2250 rate_control_get_rate(sdata, NULL, &txrc); 2251 2252 info->control.vif = vif; 2253 2254 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | 2255 IEEE80211_TX_CTL_ASSIGN_SEQ | 2256 IEEE80211_TX_CTL_FIRST_FRAGMENT; 2257 out: 2258 rcu_read_unlock(); 2259 return skb; 2260 } 2261 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2262 2263 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2264 struct ieee80211_vif *vif) 2265 { 2266 struct ieee80211_sub_if_data *sdata; 2267 struct ieee80211_if_managed *ifmgd; 2268 struct ieee80211_pspoll *pspoll; 2269 struct ieee80211_local *local; 2270 struct sk_buff *skb; 2271 2272 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2273 return NULL; 2274 2275 sdata = vif_to_sdata(vif); 2276 ifmgd = &sdata->u.mgd; 2277 local = sdata->local; 2278 2279 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); 2280 if (!skb) { 2281 printk(KERN_DEBUG "%s: failed to allocate buffer for " 2282 "pspoll template\n", sdata->name); 2283 return NULL; 2284 } 2285 skb_reserve(skb, local->hw.extra_tx_headroom); 2286 2287 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); 2288 memset(pspoll, 0, sizeof(*pspoll)); 2289 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 2290 IEEE80211_STYPE_PSPOLL); 2291 pspoll->aid = cpu_to_le16(ifmgd->aid); 2292 2293 /* aid in PS-Poll has its two MSBs each set to 1 */ 2294 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); 2295 2296 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); 2297 memcpy(pspoll->ta, vif->addr, ETH_ALEN); 2298 2299 return skb; 2300 } 2301 EXPORT_SYMBOL(ieee80211_pspoll_get); 2302 2303 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2304 struct ieee80211_vif *vif) 2305 { 2306 struct ieee80211_hdr_3addr *nullfunc; 2307 struct ieee80211_sub_if_data *sdata; 2308 struct ieee80211_if_managed *ifmgd; 2309 struct ieee80211_local *local; 2310 struct sk_buff *skb; 2311 2312 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2313 return NULL; 2314 2315 sdata = vif_to_sdata(vif); 2316 ifmgd = &sdata->u.mgd; 2317 local = sdata->local; 2318 2319 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); 2320 if (!skb) { 2321 printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " 2322 "template\n", sdata->name); 2323 return NULL; 2324 } 2325 skb_reserve(skb, local->hw.extra_tx_headroom); 2326 2327 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, 2328 sizeof(*nullfunc)); 2329 memset(nullfunc, 0, sizeof(*nullfunc)); 2330 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | 2331 IEEE80211_STYPE_NULLFUNC | 2332 IEEE80211_FCTL_TODS); 2333 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); 2334 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); 2335 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); 2336 2337 return skb; 2338 } 2339 EXPORT_SYMBOL(ieee80211_nullfunc_get); 2340 2341 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2342 struct ieee80211_vif *vif, 2343 const u8 *ssid, size_t ssid_len, 2344 const u8 *ie, size_t ie_len) 2345 { 2346 struct ieee80211_sub_if_data *sdata; 2347 struct ieee80211_local *local; 2348 struct ieee80211_hdr_3addr *hdr; 2349 struct sk_buff *skb; 2350 size_t ie_ssid_len; 2351 u8 *pos; 2352 2353 sdata = vif_to_sdata(vif); 2354 local = sdata->local; 2355 ie_ssid_len = 2 + ssid_len; 2356 2357 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + 2358 ie_ssid_len + ie_len); 2359 if (!skb) { 2360 printk(KERN_DEBUG "%s: failed to allocate buffer for probe " 2361 "request template\n", sdata->name); 2362 return NULL; 2363 } 2364 2365 skb_reserve(skb, local->hw.extra_tx_headroom); 2366 2367 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); 2368 memset(hdr, 0, sizeof(*hdr)); 2369 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2370 IEEE80211_STYPE_PROBE_REQ); 2371 memset(hdr->addr1, 0xff, ETH_ALEN); 2372 memcpy(hdr->addr2, vif->addr, ETH_ALEN); 2373 memset(hdr->addr3, 0xff, ETH_ALEN); 2374 2375 pos = skb_put(skb, ie_ssid_len); 2376 *pos++ = WLAN_EID_SSID; 2377 *pos++ = ssid_len; 2378 if (ssid) 2379 memcpy(pos, ssid, ssid_len); 2380 pos += ssid_len; 2381 2382 if (ie) { 2383 pos = skb_put(skb, ie_len); 2384 memcpy(pos, ie, ie_len); 2385 } 2386 2387 return skb; 2388 } 2389 EXPORT_SYMBOL(ieee80211_probereq_get); 2390 2391 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2392 const void *frame, size_t frame_len, 2393 const struct ieee80211_tx_info *frame_txctl, 2394 struct ieee80211_rts *rts) 2395 { 2396 const struct ieee80211_hdr *hdr = frame; 2397 2398 rts->frame_control = 2399 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2400 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2401 frame_txctl); 2402 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2403 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2404 } 2405 EXPORT_SYMBOL(ieee80211_rts_get); 2406 2407 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2408 const void *frame, size_t frame_len, 2409 const struct ieee80211_tx_info *frame_txctl, 2410 struct ieee80211_cts *cts) 2411 { 2412 const struct ieee80211_hdr *hdr = frame; 2413 2414 cts->frame_control = 2415 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2416 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2417 frame_len, frame_txctl); 2418 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2419 } 2420 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2421 2422 struct sk_buff * 2423 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2424 struct ieee80211_vif *vif) 2425 { 2426 struct ieee80211_local *local = hw_to_local(hw); 2427 struct sk_buff *skb = NULL; 2428 struct sta_info *sta; 2429 struct ieee80211_tx_data tx; 2430 struct ieee80211_sub_if_data *sdata; 2431 struct ieee80211_if_ap *bss = NULL; 2432 struct beacon_data *beacon; 2433 struct ieee80211_tx_info *info; 2434 2435 sdata = vif_to_sdata(vif); 2436 bss = &sdata->u.ap; 2437 2438 rcu_read_lock(); 2439 beacon = rcu_dereference(bss->beacon); 2440 2441 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2442 goto out; 2443 2444 if (bss->dtim_count != 0) 2445 goto out; /* send buffered bc/mc only after DTIM beacon */ 2446 2447 while (1) { 2448 skb = skb_dequeue(&bss->ps_bc_buf); 2449 if (!skb) 2450 goto out; 2451 local->total_ps_buffered--; 2452 2453 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2454 struct ieee80211_hdr *hdr = 2455 (struct ieee80211_hdr *) skb->data; 2456 /* more buffered multicast/broadcast frames ==> set 2457 * MoreData flag in IEEE 802.11 header to inform PS 2458 * STAs */ 2459 hdr->frame_control |= 2460 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2461 } 2462 2463 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2464 break; 2465 dev_kfree_skb_any(skb); 2466 } 2467 2468 info = IEEE80211_SKB_CB(skb); 2469 2470 sta = tx.sta; 2471 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2472 tx.channel = local->hw.conf.channel; 2473 info->band = tx.channel->band; 2474 2475 if (invoke_tx_handlers(&tx)) 2476 skb = NULL; 2477 out: 2478 rcu_read_unlock(); 2479 2480 return skb; 2481 } 2482 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2483 2484 void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 2485 { 2486 skb_set_mac_header(skb, 0); 2487 skb_set_network_header(skb, 0); 2488 skb_set_transport_header(skb, 0); 2489 2490 /* send all internal mgmt frames on VO */ 2491 skb_set_queue_mapping(skb, 0); 2492 2493 /* 2494 * The other path calling ieee80211_xmit is from the tasklet, 2495 * and while we can handle concurrent transmissions locking 2496 * requirements are that we do not come into tx with bhs on. 2497 */ 2498 local_bh_disable(); 2499 ieee80211_xmit(sdata, skb); 2500 local_bh_enable(); 2501 } 2502