xref: /linux/net/mac80211/tx.c (revision b233b28eac0cc37d07c2d007ea08c86c778c5af4)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  *
12  * Transmit and frame generation functions.
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26 
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 #define IEEE80211_TX_OK		0
36 #define IEEE80211_TX_AGAIN	1
37 #define IEEE80211_TX_FRAG_AGAIN	2
38 
39 /* misc utils */
40 
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 				 int next_frag_len)
43 {
44 	int rate, mrate, erp, dur, i;
45 	struct ieee80211_rate *txrate;
46 	struct ieee80211_local *local = tx->local;
47 	struct ieee80211_supported_band *sband;
48 	struct ieee80211_hdr *hdr;
49 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
50 
51 	/* assume HW handles this */
52 	if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
53 		return 0;
54 
55 	/* uh huh? */
56 	if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
57 		return 0;
58 
59 	sband = local->hw.wiphy->bands[tx->channel->band];
60 	txrate = &sband->bitrates[info->control.rates[0].idx];
61 
62 	erp = txrate->flags & IEEE80211_RATE_ERP_G;
63 
64 	/*
65 	 * data and mgmt (except PS Poll):
66 	 * - during CFP: 32768
67 	 * - during contention period:
68 	 *   if addr1 is group address: 0
69 	 *   if more fragments = 0 and addr1 is individual address: time to
70 	 *      transmit one ACK plus SIFS
71 	 *   if more fragments = 1 and addr1 is individual address: time to
72 	 *      transmit next fragment plus 2 x ACK plus 3 x SIFS
73 	 *
74 	 * IEEE 802.11, 9.6:
75 	 * - control response frame (CTS or ACK) shall be transmitted using the
76 	 *   same rate as the immediately previous frame in the frame exchange
77 	 *   sequence, if this rate belongs to the PHY mandatory rates, or else
78 	 *   at the highest possible rate belonging to the PHY rates in the
79 	 *   BSSBasicRateSet
80 	 */
81 	hdr = (struct ieee80211_hdr *)tx->skb->data;
82 	if (ieee80211_is_ctl(hdr->frame_control)) {
83 		/* TODO: These control frames are not currently sent by
84 		 * mac80211, but should they be implemented, this function
85 		 * needs to be updated to support duration field calculation.
86 		 *
87 		 * RTS: time needed to transmit pending data/mgmt frame plus
88 		 *    one CTS frame plus one ACK frame plus 3 x SIFS
89 		 * CTS: duration of immediately previous RTS minus time
90 		 *    required to transmit CTS and its SIFS
91 		 * ACK: 0 if immediately previous directed data/mgmt had
92 		 *    more=0, with more=1 duration in ACK frame is duration
93 		 *    from previous frame minus time needed to transmit ACK
94 		 *    and its SIFS
95 		 * PS Poll: BIT(15) | BIT(14) | aid
96 		 */
97 		return 0;
98 	}
99 
100 	/* data/mgmt */
101 	if (0 /* FIX: data/mgmt during CFP */)
102 		return cpu_to_le16(32768);
103 
104 	if (group_addr) /* Group address as the destination - no ACK */
105 		return 0;
106 
107 	/* Individual destination address:
108 	 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
109 	 * CTS and ACK frames shall be transmitted using the highest rate in
110 	 * basic rate set that is less than or equal to the rate of the
111 	 * immediately previous frame and that is using the same modulation
112 	 * (CCK or OFDM). If no basic rate set matches with these requirements,
113 	 * the highest mandatory rate of the PHY that is less than or equal to
114 	 * the rate of the previous frame is used.
115 	 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
116 	 */
117 	rate = -1;
118 	/* use lowest available if everything fails */
119 	mrate = sband->bitrates[0].bitrate;
120 	for (i = 0; i < sband->n_bitrates; i++) {
121 		struct ieee80211_rate *r = &sband->bitrates[i];
122 
123 		if (r->bitrate > txrate->bitrate)
124 			break;
125 
126 		if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
127 			rate = r->bitrate;
128 
129 		switch (sband->band) {
130 		case IEEE80211_BAND_2GHZ: {
131 			u32 flag;
132 			if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
133 				flag = IEEE80211_RATE_MANDATORY_G;
134 			else
135 				flag = IEEE80211_RATE_MANDATORY_B;
136 			if (r->flags & flag)
137 				mrate = r->bitrate;
138 			break;
139 		}
140 		case IEEE80211_BAND_5GHZ:
141 			if (r->flags & IEEE80211_RATE_MANDATORY_A)
142 				mrate = r->bitrate;
143 			break;
144 		case IEEE80211_NUM_BANDS:
145 			WARN_ON(1);
146 			break;
147 		}
148 	}
149 	if (rate == -1) {
150 		/* No matching basic rate found; use highest suitable mandatory
151 		 * PHY rate */
152 		rate = mrate;
153 	}
154 
155 	/* Time needed to transmit ACK
156 	 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
157 	 * to closest integer */
158 
159 	dur = ieee80211_frame_duration(local, 10, rate, erp,
160 				tx->sdata->vif.bss_conf.use_short_preamble);
161 
162 	if (next_frag_len) {
163 		/* Frame is fragmented: duration increases with time needed to
164 		 * transmit next fragment plus ACK and 2 x SIFS. */
165 		dur *= 2; /* ACK + SIFS */
166 		/* next fragment */
167 		dur += ieee80211_frame_duration(local, next_frag_len,
168 				txrate->bitrate, erp,
169 				tx->sdata->vif.bss_conf.use_short_preamble);
170 	}
171 
172 	return cpu_to_le16(dur);
173 }
174 
175 static int inline is_ieee80211_device(struct ieee80211_local *local,
176 				      struct net_device *dev)
177 {
178 	return local == wdev_priv(dev->ieee80211_ptr);
179 }
180 
181 /* tx handlers */
182 
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
185 {
186 
187 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
188 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
189 	u32 sta_flags;
190 
191 	if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
192 		return TX_CONTINUE;
193 
194 	if (unlikely(tx->local->sw_scanning) &&
195 	    !ieee80211_is_probe_req(hdr->frame_control))
196 		return TX_DROP;
197 
198 	if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
199 		return TX_CONTINUE;
200 
201 	if (tx->flags & IEEE80211_TX_PS_BUFFERED)
202 		return TX_CONTINUE;
203 
204 	sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
205 
206 	if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
207 		if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
208 			     tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
209 			     ieee80211_is_data(hdr->frame_control))) {
210 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
211 			printk(KERN_DEBUG "%s: dropped data frame to not "
212 			       "associated station %pM\n",
213 			       tx->dev->name, hdr->addr1);
214 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
215 			I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
216 			return TX_DROP;
217 		}
218 	} else {
219 		if (unlikely(ieee80211_is_data(hdr->frame_control) &&
220 			     tx->local->num_sta == 0 &&
221 			     tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
222 			/*
223 			 * No associated STAs - no need to send multicast
224 			 * frames.
225 			 */
226 			return TX_DROP;
227 		}
228 		return TX_CONTINUE;
229 	}
230 
231 	return TX_CONTINUE;
232 }
233 
234 /* This function is called whenever the AP is about to exceed the maximum limit
235  * of buffered frames for power saving STAs. This situation should not really
236  * happen often during normal operation, so dropping the oldest buffered packet
237  * from each queue should be OK to make some room for new frames. */
238 static void purge_old_ps_buffers(struct ieee80211_local *local)
239 {
240 	int total = 0, purged = 0;
241 	struct sk_buff *skb;
242 	struct ieee80211_sub_if_data *sdata;
243 	struct sta_info *sta;
244 
245 	/*
246 	 * virtual interfaces are protected by RCU
247 	 */
248 	rcu_read_lock();
249 
250 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
251 		struct ieee80211_if_ap *ap;
252 		if (sdata->vif.type != NL80211_IFTYPE_AP)
253 			continue;
254 		ap = &sdata->u.ap;
255 		skb = skb_dequeue(&ap->ps_bc_buf);
256 		if (skb) {
257 			purged++;
258 			dev_kfree_skb(skb);
259 		}
260 		total += skb_queue_len(&ap->ps_bc_buf);
261 	}
262 
263 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
264 		skb = skb_dequeue(&sta->ps_tx_buf);
265 		if (skb) {
266 			purged++;
267 			dev_kfree_skb(skb);
268 		}
269 		total += skb_queue_len(&sta->ps_tx_buf);
270 	}
271 
272 	rcu_read_unlock();
273 
274 	local->total_ps_buffered = total;
275 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
276 	printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
277 	       wiphy_name(local->hw.wiphy), purged);
278 #endif
279 }
280 
281 static ieee80211_tx_result
282 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
283 {
284 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
285 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
286 
287 	/*
288 	 * broadcast/multicast frame
289 	 *
290 	 * If any of the associated stations is in power save mode,
291 	 * the frame is buffered to be sent after DTIM beacon frame.
292 	 * This is done either by the hardware or us.
293 	 */
294 
295 	/* powersaving STAs only in AP/VLAN mode */
296 	if (!tx->sdata->bss)
297 		return TX_CONTINUE;
298 
299 	/* no buffering for ordered frames */
300 	if (ieee80211_has_order(hdr->frame_control))
301 		return TX_CONTINUE;
302 
303 	/* no stations in PS mode */
304 	if (!atomic_read(&tx->sdata->bss->num_sta_ps))
305 		return TX_CONTINUE;
306 
307 	/* buffered in mac80211 */
308 	if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
309 		if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
310 			purge_old_ps_buffers(tx->local);
311 		if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
312 		    AP_MAX_BC_BUFFER) {
313 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
314 			if (net_ratelimit()) {
315 				printk(KERN_DEBUG "%s: BC TX buffer full - "
316 				       "dropping the oldest frame\n",
317 				       tx->dev->name);
318 			}
319 #endif
320 			dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
321 		} else
322 			tx->local->total_ps_buffered++;
323 		skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
324 		return TX_QUEUED;
325 	}
326 
327 	/* buffered in hardware */
328 	info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
329 
330 	return TX_CONTINUE;
331 }
332 
333 static ieee80211_tx_result
334 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
335 {
336 	struct sta_info *sta = tx->sta;
337 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
338 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
339 	u32 staflags;
340 
341 	if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
342 		return TX_CONTINUE;
343 
344 	staflags = get_sta_flags(sta);
345 
346 	if (unlikely((staflags & WLAN_STA_PS) &&
347 		     !(staflags & WLAN_STA_PSPOLL))) {
348 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
349 		printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
350 		       "before %d)\n",
351 		       sta->sta.addr, sta->sta.aid,
352 		       skb_queue_len(&sta->ps_tx_buf));
353 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
354 		if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
355 			purge_old_ps_buffers(tx->local);
356 		if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
357 			struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
359 			if (net_ratelimit()) {
360 				printk(KERN_DEBUG "%s: STA %pM TX "
361 				       "buffer full - dropping oldest frame\n",
362 				       tx->dev->name, sta->sta.addr);
363 			}
364 #endif
365 			dev_kfree_skb(old);
366 		} else
367 			tx->local->total_ps_buffered++;
368 
369 		/* Queue frame to be sent after STA sends an PS Poll frame */
370 		if (skb_queue_empty(&sta->ps_tx_buf))
371 			sta_info_set_tim_bit(sta);
372 
373 		info->control.jiffies = jiffies;
374 		skb_queue_tail(&sta->ps_tx_buf, tx->skb);
375 		return TX_QUEUED;
376 	}
377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
378 	else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
379 		printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
380 		       "set -> send frame\n", tx->dev->name,
381 		       sta->sta.addr);
382 	}
383 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
384 	clear_sta_flags(sta, WLAN_STA_PSPOLL);
385 
386 	return TX_CONTINUE;
387 }
388 
389 static ieee80211_tx_result debug_noinline
390 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
391 {
392 	if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
393 		return TX_CONTINUE;
394 
395 	if (tx->flags & IEEE80211_TX_UNICAST)
396 		return ieee80211_tx_h_unicast_ps_buf(tx);
397 	else
398 		return ieee80211_tx_h_multicast_ps_buf(tx);
399 }
400 
401 static ieee80211_tx_result debug_noinline
402 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
403 {
404 	struct ieee80211_key *key;
405 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
406 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
407 
408 	if (unlikely(tx->skb->do_not_encrypt))
409 		tx->key = NULL;
410 	else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
411 		tx->key = key;
412 	else if ((key = rcu_dereference(tx->sdata->default_key)))
413 		tx->key = key;
414 	else if (tx->sdata->drop_unencrypted &&
415 		 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
416 		 !(info->flags & IEEE80211_TX_CTL_INJECTED)) {
417 		I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
418 		return TX_DROP;
419 	} else
420 		tx->key = NULL;
421 
422 	if (tx->key) {
423 		tx->key->tx_rx_count++;
424 		/* TODO: add threshold stuff again */
425 
426 		switch (tx->key->conf.alg) {
427 		case ALG_WEP:
428 			if (ieee80211_is_auth(hdr->frame_control))
429 				break;
430 		case ALG_TKIP:
431 		case ALG_CCMP:
432 			if (!ieee80211_is_data_present(hdr->frame_control))
433 				tx->key = NULL;
434 			break;
435 		}
436 	}
437 
438 	if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
439 		tx->skb->do_not_encrypt = 1;
440 
441 	return TX_CONTINUE;
442 }
443 
444 static ieee80211_tx_result debug_noinline
445 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
446 {
447 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
448 	struct ieee80211_hdr *hdr = (void *)tx->skb->data;
449 	struct ieee80211_supported_band *sband;
450 	struct ieee80211_rate *rate;
451 	int i, len;
452 	bool inval = false, rts = false, short_preamble = false;
453 	struct ieee80211_tx_rate_control txrc;
454 
455 	memset(&txrc, 0, sizeof(txrc));
456 
457 	sband = tx->local->hw.wiphy->bands[tx->channel->band];
458 
459 	len = min_t(int, tx->skb->len + FCS_LEN,
460 			 tx->local->fragmentation_threshold);
461 
462 	/* set up the tx rate control struct we give the RC algo */
463 	txrc.hw = local_to_hw(tx->local);
464 	txrc.sband = sband;
465 	txrc.bss_conf = &tx->sdata->vif.bss_conf;
466 	txrc.skb = tx->skb;
467 	txrc.reported_rate.idx = -1;
468 	txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
469 
470 	/* set up RTS protection if desired */
471 	if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD &&
472 	    len > tx->local->rts_threshold) {
473 		txrc.rts = rts = true;
474 	}
475 
476 	/*
477 	 * Use short preamble if the BSS can handle it, but not for
478 	 * management frames unless we know the receiver can handle
479 	 * that -- the management frame might be to a station that
480 	 * just wants a probe response.
481 	 */
482 	if (tx->sdata->vif.bss_conf.use_short_preamble &&
483 	    (ieee80211_is_data(hdr->frame_control) ||
484 	     (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
485 		txrc.short_preamble = short_preamble = true;
486 
487 
488 	rate_control_get_rate(tx->sdata, tx->sta, &txrc);
489 
490 	if (unlikely(info->control.rates[0].idx < 0))
491 		return TX_DROP;
492 
493 	if (txrc.reported_rate.idx < 0)
494 		txrc.reported_rate = info->control.rates[0];
495 
496 	if (tx->sta)
497 		tx->sta->last_tx_rate = txrc.reported_rate;
498 
499 	if (unlikely(!info->control.rates[0].count))
500 		info->control.rates[0].count = 1;
501 
502 	if (is_multicast_ether_addr(hdr->addr1)) {
503 		/*
504 		 * XXX: verify the rate is in the basic rateset
505 		 */
506 		return TX_CONTINUE;
507 	}
508 
509 	/*
510 	 * set up the RTS/CTS rate as the fastest basic rate
511 	 * that is not faster than the data rate
512 	 *
513 	 * XXX: Should this check all retry rates?
514 	 */
515 	if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
516 		s8 baserate = 0;
517 
518 		rate = &sband->bitrates[info->control.rates[0].idx];
519 
520 		for (i = 0; i < sband->n_bitrates; i++) {
521 			/* must be a basic rate */
522 			if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
523 				continue;
524 			/* must not be faster than the data rate */
525 			if (sband->bitrates[i].bitrate > rate->bitrate)
526 				continue;
527 			/* maximum */
528 			if (sband->bitrates[baserate].bitrate <
529 			     sband->bitrates[i].bitrate)
530 				baserate = i;
531 		}
532 
533 		info->control.rts_cts_rate_idx = baserate;
534 	}
535 
536 	for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
537 		/*
538 		 * make sure there's no valid rate following
539 		 * an invalid one, just in case drivers don't
540 		 * take the API seriously to stop at -1.
541 		 */
542 		if (inval) {
543 			info->control.rates[i].idx = -1;
544 			continue;
545 		}
546 		if (info->control.rates[i].idx < 0) {
547 			inval = true;
548 			continue;
549 		}
550 
551 		/*
552 		 * For now assume MCS is already set up correctly, this
553 		 * needs to be fixed.
554 		 */
555 		if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
556 			WARN_ON(info->control.rates[i].idx > 76);
557 			continue;
558 		}
559 
560 		/* set up RTS protection if desired */
561 		if (rts)
562 			info->control.rates[i].flags |=
563 				IEEE80211_TX_RC_USE_RTS_CTS;
564 
565 		/* RC is busted */
566 		if (WARN_ON_ONCE(info->control.rates[i].idx >=
567 				 sband->n_bitrates)) {
568 			info->control.rates[i].idx = -1;
569 			continue;
570 		}
571 
572 		rate = &sband->bitrates[info->control.rates[i].idx];
573 
574 		/* set up short preamble */
575 		if (short_preamble &&
576 		    rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
577 			info->control.rates[i].flags |=
578 				IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
579 
580 		/* set up G protection */
581 		if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
582 		    rate->flags & IEEE80211_RATE_ERP_G)
583 			info->control.rates[i].flags |=
584 				IEEE80211_TX_RC_USE_CTS_PROTECT;
585 	}
586 
587 	return TX_CONTINUE;
588 }
589 
590 static ieee80211_tx_result debug_noinline
591 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
592 {
593 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
594 
595 	if (tx->sta)
596 		info->control.sta = &tx->sta->sta;
597 
598 	return TX_CONTINUE;
599 }
600 
601 static ieee80211_tx_result debug_noinline
602 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
603 {
604 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
605 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
606 	u16 *seq;
607 	u8 *qc;
608 	int tid;
609 
610 	/*
611 	 * Packet injection may want to control the sequence
612 	 * number, if we have no matching interface then we
613 	 * neither assign one ourselves nor ask the driver to.
614 	 */
615 	if (unlikely(!info->control.vif))
616 		return TX_CONTINUE;
617 
618 	if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
619 		return TX_CONTINUE;
620 
621 	if (ieee80211_hdrlen(hdr->frame_control) < 24)
622 		return TX_CONTINUE;
623 
624 	/*
625 	 * Anything but QoS data that has a sequence number field
626 	 * (is long enough) gets a sequence number from the global
627 	 * counter.
628 	 */
629 	if (!ieee80211_is_data_qos(hdr->frame_control)) {
630 		/* driver should assign sequence number */
631 		info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
632 		/* for pure STA mode without beacons, we can do it */
633 		hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
634 		tx->sdata->sequence_number += 0x10;
635 		tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
636 		return TX_CONTINUE;
637 	}
638 
639 	/*
640 	 * This should be true for injected/management frames only, for
641 	 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
642 	 * above since they are not QoS-data frames.
643 	 */
644 	if (!tx->sta)
645 		return TX_CONTINUE;
646 
647 	/* include per-STA, per-TID sequence counter */
648 
649 	qc = ieee80211_get_qos_ctl(hdr);
650 	tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
651 	seq = &tx->sta->tid_seq[tid];
652 
653 	hdr->seq_ctrl = cpu_to_le16(*seq);
654 
655 	/* Increase the sequence number. */
656 	*seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
657 
658 	return TX_CONTINUE;
659 }
660 
661 static ieee80211_tx_result debug_noinline
662 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
663 {
664 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
665 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
666 	size_t hdrlen, per_fragm, num_fragm, payload_len, left;
667 	struct sk_buff **frags, *first, *frag;
668 	int i;
669 	u16 seq;
670 	u8 *pos;
671 	int frag_threshold = tx->local->fragmentation_threshold;
672 
673 	if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
674 		return TX_CONTINUE;
675 
676 	/*
677 	 * Warn when submitting a fragmented A-MPDU frame and drop it.
678 	 * This scenario is handled in __ieee80211_tx_prepare but extra
679 	 * caution taken here as fragmented ampdu may cause Tx stop.
680 	 */
681 	if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
682 		return TX_DROP;
683 
684 	first = tx->skb;
685 
686 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
687 	payload_len = first->len - hdrlen;
688 	per_fragm = frag_threshold - hdrlen - FCS_LEN;
689 	num_fragm = DIV_ROUND_UP(payload_len, per_fragm);
690 
691 	frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
692 	if (!frags)
693 		goto fail;
694 
695 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
696 	seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ;
697 	pos = first->data + hdrlen + per_fragm;
698 	left = payload_len - per_fragm;
699 	for (i = 0; i < num_fragm - 1; i++) {
700 		struct ieee80211_hdr *fhdr;
701 		size_t copylen;
702 
703 		if (left <= 0)
704 			goto fail;
705 
706 		/* reserve enough extra head and tail room for possible
707 		 * encryption */
708 		frag = frags[i] =
709 			dev_alloc_skb(tx->local->tx_headroom +
710 				      frag_threshold +
711 				      IEEE80211_ENCRYPT_HEADROOM +
712 				      IEEE80211_ENCRYPT_TAILROOM);
713 		if (!frag)
714 			goto fail;
715 
716 		/* Make sure that all fragments use the same priority so
717 		 * that they end up using the same TX queue */
718 		frag->priority = first->priority;
719 
720 		skb_reserve(frag, tx->local->tx_headroom +
721 				  IEEE80211_ENCRYPT_HEADROOM);
722 
723 		/* copy TX information */
724 		info = IEEE80211_SKB_CB(frag);
725 		memcpy(info, first->cb, sizeof(frag->cb));
726 
727 		/* copy/fill in 802.11 header */
728 		fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
729 		memcpy(fhdr, first->data, hdrlen);
730 		fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG));
731 
732 		if (i == num_fragm - 2) {
733 			/* clear MOREFRAGS bit for the last fragment */
734 			fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS);
735 		} else {
736 			/*
737 			 * No multi-rate retries for fragmented frames, that
738 			 * would completely throw off the NAV at other STAs.
739 			 */
740 			info->control.rates[1].idx = -1;
741 			info->control.rates[2].idx = -1;
742 			info->control.rates[3].idx = -1;
743 			info->control.rates[4].idx = -1;
744 			BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
745 			info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
746 		}
747 
748 		/* copy data */
749 		copylen = left > per_fragm ? per_fragm : left;
750 		memcpy(skb_put(frag, copylen), pos, copylen);
751 
752 		skb_copy_queue_mapping(frag, first);
753 
754 		frag->do_not_encrypt = first->do_not_encrypt;
755 
756 		pos += copylen;
757 		left -= copylen;
758 	}
759 	skb_trim(first, hdrlen + per_fragm);
760 
761 	tx->num_extra_frag = num_fragm - 1;
762 	tx->extra_frag = frags;
763 
764 	return TX_CONTINUE;
765 
766  fail:
767 	if (frags) {
768 		for (i = 0; i < num_fragm - 1; i++)
769 			if (frags[i])
770 				dev_kfree_skb(frags[i]);
771 		kfree(frags);
772 	}
773 	I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
774 	return TX_DROP;
775 }
776 
777 static ieee80211_tx_result debug_noinline
778 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
779 {
780 	if (!tx->key)
781 		return TX_CONTINUE;
782 
783 	switch (tx->key->conf.alg) {
784 	case ALG_WEP:
785 		return ieee80211_crypto_wep_encrypt(tx);
786 	case ALG_TKIP:
787 		return ieee80211_crypto_tkip_encrypt(tx);
788 	case ALG_CCMP:
789 		return ieee80211_crypto_ccmp_encrypt(tx);
790 	}
791 
792 	/* not reached */
793 	WARN_ON(1);
794 	return TX_DROP;
795 }
796 
797 static ieee80211_tx_result debug_noinline
798 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
799 {
800 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
801 	int next_len, i;
802 	int group_addr = is_multicast_ether_addr(hdr->addr1);
803 
804 	if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) {
805 		hdr->duration_id = ieee80211_duration(tx, group_addr, 0);
806 		return TX_CONTINUE;
807 	}
808 
809 	hdr->duration_id = ieee80211_duration(tx, group_addr,
810 					      tx->extra_frag[0]->len);
811 
812 	for (i = 0; i < tx->num_extra_frag; i++) {
813 		if (i + 1 < tx->num_extra_frag)
814 			next_len = tx->extra_frag[i + 1]->len;
815 		else
816 			next_len = 0;
817 
818 		hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data;
819 		hdr->duration_id = ieee80211_duration(tx, 0, next_len);
820 	}
821 
822 	return TX_CONTINUE;
823 }
824 
825 static ieee80211_tx_result debug_noinline
826 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
827 {
828 	int i;
829 
830 	if (!tx->sta)
831 		return TX_CONTINUE;
832 
833 	tx->sta->tx_packets++;
834 	tx->sta->tx_fragments++;
835 	tx->sta->tx_bytes += tx->skb->len;
836 	if (tx->extra_frag) {
837 		tx->sta->tx_fragments += tx->num_extra_frag;
838 		for (i = 0; i < tx->num_extra_frag; i++)
839 			tx->sta->tx_bytes += tx->extra_frag[i]->len;
840 	}
841 
842 	return TX_CONTINUE;
843 }
844 
845 
846 /* actual transmit path */
847 
848 /*
849  * deal with packet injection down monitor interface
850  * with Radiotap Header -- only called for monitor mode interface
851  */
852 static ieee80211_tx_result
853 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
854 			      struct sk_buff *skb)
855 {
856 	/*
857 	 * this is the moment to interpret and discard the radiotap header that
858 	 * must be at the start of the packet injected in Monitor mode
859 	 *
860 	 * Need to take some care with endian-ness since radiotap
861 	 * args are little-endian
862 	 */
863 
864 	struct ieee80211_radiotap_iterator iterator;
865 	struct ieee80211_radiotap_header *rthdr =
866 		(struct ieee80211_radiotap_header *) skb->data;
867 	struct ieee80211_supported_band *sband;
868 	int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
869 
870 	sband = tx->local->hw.wiphy->bands[tx->channel->band];
871 
872 	skb->do_not_encrypt = 1;
873 	tx->flags &= ~IEEE80211_TX_FRAGMENTED;
874 
875 	/*
876 	 * for every radiotap entry that is present
877 	 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
878 	 * entries present, or -EINVAL on error)
879 	 */
880 
881 	while (!ret) {
882 		ret = ieee80211_radiotap_iterator_next(&iterator);
883 
884 		if (ret)
885 			continue;
886 
887 		/* see if this argument is something we can use */
888 		switch (iterator.this_arg_index) {
889 		/*
890 		 * You must take care when dereferencing iterator.this_arg
891 		 * for multibyte types... the pointer is not aligned.  Use
892 		 * get_unaligned((type *)iterator.this_arg) to dereference
893 		 * iterator.this_arg for type "type" safely on all arches.
894 		*/
895 		case IEEE80211_RADIOTAP_FLAGS:
896 			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
897 				/*
898 				 * this indicates that the skb we have been
899 				 * handed has the 32-bit FCS CRC at the end...
900 				 * we should react to that by snipping it off
901 				 * because it will be recomputed and added
902 				 * on transmission
903 				 */
904 				if (skb->len < (iterator.max_length + FCS_LEN))
905 					return TX_DROP;
906 
907 				skb_trim(skb, skb->len - FCS_LEN);
908 			}
909 			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
910 				tx->skb->do_not_encrypt = 0;
911 			if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
912 				tx->flags |= IEEE80211_TX_FRAGMENTED;
913 			break;
914 
915 		/*
916 		 * Please update the file
917 		 * Documentation/networking/mac80211-injection.txt
918 		 * when parsing new fields here.
919 		 */
920 
921 		default:
922 			break;
923 		}
924 	}
925 
926 	if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
927 		return TX_DROP;
928 
929 	/*
930 	 * remove the radiotap header
931 	 * iterator->max_length was sanity-checked against
932 	 * skb->len by iterator init
933 	 */
934 	skb_pull(skb, iterator.max_length);
935 
936 	return TX_CONTINUE;
937 }
938 
939 /*
940  * initialises @tx
941  */
942 static ieee80211_tx_result
943 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
944 		       struct sk_buff *skb,
945 		       struct net_device *dev)
946 {
947 	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
948 	struct ieee80211_hdr *hdr;
949 	struct ieee80211_sub_if_data *sdata;
950 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
951 
952 	int hdrlen, tid;
953 	u8 *qc, *state;
954 
955 	memset(tx, 0, sizeof(*tx));
956 	tx->skb = skb;
957 	tx->dev = dev; /* use original interface */
958 	tx->local = local;
959 	tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
960 	tx->channel = local->hw.conf.channel;
961 	/*
962 	 * Set this flag (used below to indicate "automatic fragmentation"),
963 	 * it will be cleared/left by radiotap as desired.
964 	 */
965 	tx->flags |= IEEE80211_TX_FRAGMENTED;
966 
967 	/* process and remove the injection radiotap header */
968 	sdata = IEEE80211_DEV_TO_SUB_IF(dev);
969 	if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
970 		if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
971 			return TX_DROP;
972 
973 		/*
974 		 * __ieee80211_parse_tx_radiotap has now removed
975 		 * the radiotap header that was present and pre-filled
976 		 * 'tx' with tx control information.
977 		 */
978 	}
979 
980 	hdr = (struct ieee80211_hdr *) skb->data;
981 
982 	tx->sta = sta_info_get(local, hdr->addr1);
983 
984 	if (tx->sta && ieee80211_is_data_qos(hdr->frame_control)) {
985 		qc = ieee80211_get_qos_ctl(hdr);
986 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
987 
988 		state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
989 		if (*state == HT_AGG_STATE_OPERATIONAL)
990 			info->flags |= IEEE80211_TX_CTL_AMPDU;
991 	}
992 
993 	if (is_multicast_ether_addr(hdr->addr1)) {
994 		tx->flags &= ~IEEE80211_TX_UNICAST;
995 		info->flags |= IEEE80211_TX_CTL_NO_ACK;
996 	} else {
997 		tx->flags |= IEEE80211_TX_UNICAST;
998 		info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
999 	}
1000 
1001 	if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1002 		if ((tx->flags & IEEE80211_TX_UNICAST) &&
1003 		    skb->len + FCS_LEN > local->fragmentation_threshold &&
1004 		    !(info->flags & IEEE80211_TX_CTL_AMPDU))
1005 			tx->flags |= IEEE80211_TX_FRAGMENTED;
1006 		else
1007 			tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1008 	}
1009 
1010 	if (!tx->sta)
1011 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1012 	else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1013 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1014 
1015 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
1016 	if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1017 		u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1018 		tx->ethertype = (pos[0] << 8) | pos[1];
1019 	}
1020 	info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1021 
1022 	return TX_CONTINUE;
1023 }
1024 
1025 /*
1026  * NB: @tx is uninitialised when passed in here
1027  */
1028 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1029 				struct ieee80211_tx_data *tx,
1030 				struct sk_buff *skb)
1031 {
1032 	struct net_device *dev;
1033 
1034 	dev = dev_get_by_index(&init_net, skb->iif);
1035 	if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1036 		dev_put(dev);
1037 		dev = NULL;
1038 	}
1039 	if (unlikely(!dev))
1040 		return -ENODEV;
1041 	/* initialises tx with control */
1042 	__ieee80211_tx_prepare(tx, skb, dev);
1043 	dev_put(dev);
1044 	return 0;
1045 }
1046 
1047 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb,
1048 			  struct ieee80211_tx_data *tx)
1049 {
1050 	struct ieee80211_tx_info *info;
1051 	int ret, i;
1052 
1053 	if (skb) {
1054 		if (netif_subqueue_stopped(local->mdev, skb))
1055 			return IEEE80211_TX_AGAIN;
1056 		info =  IEEE80211_SKB_CB(skb);
1057 
1058 		ret = local->ops->tx(local_to_hw(local), skb);
1059 		if (ret)
1060 			return IEEE80211_TX_AGAIN;
1061 		local->mdev->trans_start = jiffies;
1062 		ieee80211_led_tx(local, 1);
1063 	}
1064 	if (tx->extra_frag) {
1065 		for (i = 0; i < tx->num_extra_frag; i++) {
1066 			if (!tx->extra_frag[i])
1067 				continue;
1068 			info = IEEE80211_SKB_CB(tx->extra_frag[i]);
1069 			info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1070 					 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1071 			if (netif_subqueue_stopped(local->mdev,
1072 						   tx->extra_frag[i]))
1073 				return IEEE80211_TX_FRAG_AGAIN;
1074 
1075 			ret = local->ops->tx(local_to_hw(local),
1076 					    tx->extra_frag[i]);
1077 			if (ret)
1078 				return IEEE80211_TX_FRAG_AGAIN;
1079 			local->mdev->trans_start = jiffies;
1080 			ieee80211_led_tx(local, 1);
1081 			tx->extra_frag[i] = NULL;
1082 		}
1083 		kfree(tx->extra_frag);
1084 		tx->extra_frag = NULL;
1085 	}
1086 	return IEEE80211_TX_OK;
1087 }
1088 
1089 /*
1090  * Invoke TX handlers, return 0 on success and non-zero if the
1091  * frame was dropped or queued.
1092  */
1093 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1094 {
1095 	struct sk_buff *skb = tx->skb;
1096 	ieee80211_tx_result res = TX_DROP;
1097 	int i;
1098 
1099 #define CALL_TXH(txh)		\
1100 	res = txh(tx);		\
1101 	if (res != TX_CONTINUE)	\
1102 		goto txh_done;
1103 
1104 	CALL_TXH(ieee80211_tx_h_check_assoc)
1105 	CALL_TXH(ieee80211_tx_h_ps_buf)
1106 	CALL_TXH(ieee80211_tx_h_select_key)
1107 	CALL_TXH(ieee80211_tx_h_michael_mic_add)
1108 	CALL_TXH(ieee80211_tx_h_rate_ctrl)
1109 	CALL_TXH(ieee80211_tx_h_misc)
1110 	CALL_TXH(ieee80211_tx_h_sequence)
1111 	CALL_TXH(ieee80211_tx_h_fragment)
1112 	/* handlers after fragment must be aware of tx info fragmentation! */
1113 	CALL_TXH(ieee80211_tx_h_encrypt)
1114 	CALL_TXH(ieee80211_tx_h_calculate_duration)
1115 	CALL_TXH(ieee80211_tx_h_stats)
1116 #undef CALL_TXH
1117 
1118  txh_done:
1119 	if (unlikely(res == TX_DROP)) {
1120 		I802_DEBUG_INC(tx->local->tx_handlers_drop);
1121 		dev_kfree_skb(skb);
1122 		for (i = 0; i < tx->num_extra_frag; i++)
1123 			if (tx->extra_frag[i])
1124 				dev_kfree_skb(tx->extra_frag[i]);
1125 		kfree(tx->extra_frag);
1126 		return -1;
1127 	} else if (unlikely(res == TX_QUEUED)) {
1128 		I802_DEBUG_INC(tx->local->tx_handlers_queued);
1129 		return -1;
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb)
1136 {
1137 	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1138 	struct sta_info *sta;
1139 	struct ieee80211_tx_data tx;
1140 	ieee80211_tx_result res_prepare;
1141 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1142 	int ret, i;
1143 	u16 queue;
1144 
1145 	queue = skb_get_queue_mapping(skb);
1146 
1147 	WARN_ON(test_bit(queue, local->queues_pending));
1148 
1149 	if (unlikely(skb->len < 10)) {
1150 		dev_kfree_skb(skb);
1151 		return 0;
1152 	}
1153 
1154 	rcu_read_lock();
1155 
1156 	/* initialises tx */
1157 	res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1158 
1159 	if (res_prepare == TX_DROP) {
1160 		dev_kfree_skb(skb);
1161 		rcu_read_unlock();
1162 		return 0;
1163 	}
1164 
1165 	sta = tx.sta;
1166 	tx.channel = local->hw.conf.channel;
1167 	info->band = tx.channel->band;
1168 
1169 	if (invoke_tx_handlers(&tx))
1170 		goto out;
1171 
1172 retry:
1173 	ret = __ieee80211_tx(local, skb, &tx);
1174 	if (ret) {
1175 		struct ieee80211_tx_stored_packet *store;
1176 
1177 		/*
1178 		 * Since there are no fragmented frames on A-MPDU
1179 		 * queues, there's no reason for a driver to reject
1180 		 * a frame there, warn and drop it.
1181 		 */
1182 		if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1183 			goto drop;
1184 
1185 		store = &local->pending_packet[queue];
1186 
1187 		if (ret == IEEE80211_TX_FRAG_AGAIN)
1188 			skb = NULL;
1189 
1190 		set_bit(queue, local->queues_pending);
1191 		smp_mb();
1192 		/*
1193 		 * When the driver gets out of buffers during sending of
1194 		 * fragments and calls ieee80211_stop_queue, the netif
1195 		 * subqueue is stopped. There is, however, a small window
1196 		 * in which the PENDING bit is not yet set. If a buffer
1197 		 * gets available in that window (i.e. driver calls
1198 		 * ieee80211_wake_queue), we would end up with ieee80211_tx
1199 		 * called with the PENDING bit still set. Prevent this by
1200 		 * continuing transmitting here when that situation is
1201 		 * possible to have happened.
1202 		 */
1203 		if (!__netif_subqueue_stopped(local->mdev, queue)) {
1204 			clear_bit(queue, local->queues_pending);
1205 			goto retry;
1206 		}
1207 		store->skb = skb;
1208 		store->extra_frag = tx.extra_frag;
1209 		store->num_extra_frag = tx.num_extra_frag;
1210 	}
1211  out:
1212 	rcu_read_unlock();
1213 	return 0;
1214 
1215  drop:
1216 	if (skb)
1217 		dev_kfree_skb(skb);
1218 	for (i = 0; i < tx.num_extra_frag; i++)
1219 		if (tx.extra_frag[i])
1220 			dev_kfree_skb(tx.extra_frag[i]);
1221 	kfree(tx.extra_frag);
1222 	rcu_read_unlock();
1223 	return 0;
1224 }
1225 
1226 /* device xmit handlers */
1227 
1228 static int ieee80211_skb_resize(struct ieee80211_local *local,
1229 				struct sk_buff *skb,
1230 				int head_need, bool may_encrypt)
1231 {
1232 	int tail_need = 0;
1233 
1234 	/*
1235 	 * This could be optimised, devices that do full hardware
1236 	 * crypto (including TKIP MMIC) need no tailroom... But we
1237 	 * have no drivers for such devices currently.
1238 	 */
1239 	if (may_encrypt) {
1240 		tail_need = IEEE80211_ENCRYPT_TAILROOM;
1241 		tail_need -= skb_tailroom(skb);
1242 		tail_need = max_t(int, tail_need, 0);
1243 	}
1244 
1245 	if (head_need || tail_need) {
1246 		/* Sorry. Can't account for this any more */
1247 		skb_orphan(skb);
1248 	}
1249 
1250 	if (skb_header_cloned(skb))
1251 		I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1252 	else
1253 		I802_DEBUG_INC(local->tx_expand_skb_head);
1254 
1255 	if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1256 		printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1257 		       wiphy_name(local->hw.wiphy));
1258 		return -ENOMEM;
1259 	}
1260 
1261 	/* update truesize too */
1262 	skb->truesize += head_need + tail_need;
1263 
1264 	return 0;
1265 }
1266 
1267 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1268 {
1269 	struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1270 	struct ieee80211_local *local = mpriv->local;
1271 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1272 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1273 	struct net_device *odev = NULL;
1274 	struct ieee80211_sub_if_data *osdata;
1275 	int headroom;
1276 	bool may_encrypt;
1277 	enum {
1278 		NOT_MONITOR,
1279 		FOUND_SDATA,
1280 		UNKNOWN_ADDRESS,
1281 	} monitor_iface = NOT_MONITOR;
1282 	int ret;
1283 
1284 	if (skb->iif)
1285 		odev = dev_get_by_index(&init_net, skb->iif);
1286 	if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1287 		dev_put(odev);
1288 		odev = NULL;
1289 	}
1290 	if (unlikely(!odev)) {
1291 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1292 		printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1293 		       "originating device\n", dev->name);
1294 #endif
1295 		dev_kfree_skb(skb);
1296 		return 0;
1297 	}
1298 
1299 	memset(info, 0, sizeof(*info));
1300 
1301 	info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1302 
1303 	osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1304 
1305 	if (ieee80211_vif_is_mesh(&osdata->vif) &&
1306 	    ieee80211_is_data(hdr->frame_control)) {
1307 		if (is_multicast_ether_addr(hdr->addr3))
1308 			memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1309 		else
1310 			if (mesh_nexthop_lookup(skb, osdata)) {
1311 				dev_put(odev);
1312 				return 0;
1313 			}
1314 		if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1315 			IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1316 							    fwded_frames);
1317 	} else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1318 		struct ieee80211_sub_if_data *sdata;
1319 		int hdrlen;
1320 		u16 len_rthdr;
1321 
1322 		info->flags |= IEEE80211_TX_CTL_INJECTED;
1323 		monitor_iface = UNKNOWN_ADDRESS;
1324 
1325 		len_rthdr = ieee80211_get_radiotap_len(skb->data);
1326 		hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1327 		hdrlen = ieee80211_hdrlen(hdr->frame_control);
1328 
1329 		/* check the header is complete in the frame */
1330 		if (likely(skb->len >= len_rthdr + hdrlen)) {
1331 			/*
1332 			 * We process outgoing injected frames that have a
1333 			 * local address we handle as though they are our
1334 			 * own frames.
1335 			 * This code here isn't entirely correct, the local
1336 			 * MAC address is not necessarily enough to find
1337 			 * the interface to use; for that proper VLAN/WDS
1338 			 * support we will need a different mechanism.
1339 			 */
1340 
1341 			rcu_read_lock();
1342 			list_for_each_entry_rcu(sdata, &local->interfaces,
1343 						list) {
1344 				if (!netif_running(sdata->dev))
1345 					continue;
1346 				if (compare_ether_addr(sdata->dev->dev_addr,
1347 						       hdr->addr2)) {
1348 					dev_hold(sdata->dev);
1349 					dev_put(odev);
1350 					osdata = sdata;
1351 					odev = osdata->dev;
1352 					skb->iif = sdata->dev->ifindex;
1353 					monitor_iface = FOUND_SDATA;
1354 					break;
1355 				}
1356 			}
1357 			rcu_read_unlock();
1358 		}
1359 	}
1360 
1361 	may_encrypt = !skb->do_not_encrypt;
1362 
1363 	headroom = osdata->local->tx_headroom;
1364 	if (may_encrypt)
1365 		headroom += IEEE80211_ENCRYPT_HEADROOM;
1366 	headroom -= skb_headroom(skb);
1367 	headroom = max_t(int, 0, headroom);
1368 
1369 	if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1370 		dev_kfree_skb(skb);
1371 		dev_put(odev);
1372 		return 0;
1373 	}
1374 
1375 	if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1376 		osdata = container_of(osdata->bss,
1377 				      struct ieee80211_sub_if_data,
1378 				      u.ap);
1379 	if (likely(monitor_iface != UNKNOWN_ADDRESS))
1380 		info->control.vif = &osdata->vif;
1381 	ret = ieee80211_tx(odev, skb);
1382 	dev_put(odev);
1383 
1384 	return ret;
1385 }
1386 
1387 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1388 				 struct net_device *dev)
1389 {
1390 	struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1391 	struct ieee80211_radiotap_header *prthdr =
1392 		(struct ieee80211_radiotap_header *)skb->data;
1393 	u16 len_rthdr;
1394 
1395 	/* check for not even having the fixed radiotap header part */
1396 	if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1397 		goto fail; /* too short to be possibly valid */
1398 
1399 	/* is it a header version we can trust to find length from? */
1400 	if (unlikely(prthdr->it_version))
1401 		goto fail; /* only version 0 is supported */
1402 
1403 	/* then there must be a radiotap header with a length we can use */
1404 	len_rthdr = ieee80211_get_radiotap_len(skb->data);
1405 
1406 	/* does the skb contain enough to deliver on the alleged length? */
1407 	if (unlikely(skb->len < len_rthdr))
1408 		goto fail; /* skb too short for claimed rt header extent */
1409 
1410 	skb->dev = local->mdev;
1411 
1412 	/* needed because we set skb device to master */
1413 	skb->iif = dev->ifindex;
1414 
1415 	/* sometimes we do encrypt injected frames, will be fixed
1416 	 * up in radiotap parser if not wanted */
1417 	skb->do_not_encrypt = 0;
1418 
1419 	/*
1420 	 * fix up the pointers accounting for the radiotap
1421 	 * header still being in there.  We are being given
1422 	 * a precooked IEEE80211 header so no need for
1423 	 * normal processing
1424 	 */
1425 	skb_set_mac_header(skb, len_rthdr);
1426 	/*
1427 	 * these are just fixed to the end of the rt area since we
1428 	 * don't have any better information and at this point, nobody cares
1429 	 */
1430 	skb_set_network_header(skb, len_rthdr);
1431 	skb_set_transport_header(skb, len_rthdr);
1432 
1433 	/* pass the radiotap header up to the next stage intact */
1434 	dev_queue_xmit(skb);
1435 	return NETDEV_TX_OK;
1436 
1437 fail:
1438 	dev_kfree_skb(skb);
1439 	return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1440 }
1441 
1442 /**
1443  * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1444  * subinterfaces (wlan#, WDS, and VLAN interfaces)
1445  * @skb: packet to be sent
1446  * @dev: incoming interface
1447  *
1448  * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1449  * not be freed, and caller is responsible for either retrying later or freeing
1450  * skb).
1451  *
1452  * This function takes in an Ethernet header and encapsulates it with suitable
1453  * IEEE 802.11 header based on which interface the packet is coming in. The
1454  * encapsulated packet will then be passed to master interface, wlan#.11, for
1455  * transmission (through low-level driver).
1456  */
1457 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1458 			       struct net_device *dev)
1459 {
1460 	struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1461 	struct ieee80211_local *local = sdata->local;
1462 	int ret = 1, head_need;
1463 	u16 ethertype, hdrlen,  meshhdrlen = 0;
1464 	__le16 fc;
1465 	struct ieee80211_hdr hdr;
1466 	struct ieee80211s_hdr mesh_hdr;
1467 	const u8 *encaps_data;
1468 	int encaps_len, skip_header_bytes;
1469 	int nh_pos, h_pos;
1470 	struct sta_info *sta;
1471 	u32 sta_flags = 0;
1472 
1473 	if (unlikely(skb->len < ETH_HLEN)) {
1474 		ret = 0;
1475 		goto fail;
1476 	}
1477 
1478 	if (!(local->hw.flags & IEEE80211_HW_NO_STACK_DYNAMIC_PS) &&
1479 	    local->dynamic_ps_timeout > 0) {
1480 		if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1481 			ieee80211_stop_queues_by_reason(&local->hw,
1482 							IEEE80211_QUEUE_STOP_REASON_PS);
1483 			queue_work(local->hw.workqueue,
1484 				   &local->dynamic_ps_disable_work);
1485 		}
1486 
1487 		mod_timer(&local->dynamic_ps_timer, jiffies +
1488 			  msecs_to_jiffies(local->dynamic_ps_timeout));
1489 	}
1490 
1491 	nh_pos = skb_network_header(skb) - skb->data;
1492 	h_pos = skb_transport_header(skb) - skb->data;
1493 
1494 	/* convert Ethernet header to proper 802.11 header (based on
1495 	 * operation mode) */
1496 	ethertype = (skb->data[12] << 8) | skb->data[13];
1497 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1498 
1499 	switch (sdata->vif.type) {
1500 	case NL80211_IFTYPE_AP:
1501 	case NL80211_IFTYPE_AP_VLAN:
1502 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1503 		/* DA BSSID SA */
1504 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
1505 		memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1506 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1507 		hdrlen = 24;
1508 		break;
1509 	case NL80211_IFTYPE_WDS:
1510 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1511 		/* RA TA DA SA */
1512 		memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1513 		memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1514 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
1515 		memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1516 		hdrlen = 30;
1517 		break;
1518 #ifdef CONFIG_MAC80211_MESH
1519 	case NL80211_IFTYPE_MESH_POINT:
1520 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1521 		if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1522 			/* Do not send frames with mesh_ttl == 0 */
1523 			sdata->u.mesh.mshstats.dropped_frames_ttl++;
1524 			ret = 0;
1525 			goto fail;
1526 		}
1527 		memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1528 
1529 		if (compare_ether_addr(dev->dev_addr,
1530 					  skb->data + ETH_ALEN) == 0) {
1531 			/* RA TA DA SA */
1532 			memset(hdr.addr1, 0, ETH_ALEN);
1533 			memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1534 			memcpy(hdr.addr3, skb->data, ETH_ALEN);
1535 			memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1536 			meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1537 		} else {
1538 			/* packet from other interface */
1539 			struct mesh_path *mppath;
1540 
1541 			memset(hdr.addr1, 0, ETH_ALEN);
1542 			memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1543 			memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1544 
1545 			if (is_multicast_ether_addr(skb->data))
1546 				memcpy(hdr.addr3, skb->data, ETH_ALEN);
1547 			else {
1548 				rcu_read_lock();
1549 				mppath = mpp_path_lookup(skb->data, sdata);
1550 				if (mppath)
1551 					memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1552 				else
1553 					memset(hdr.addr3, 0xff, ETH_ALEN);
1554 				rcu_read_unlock();
1555 			}
1556 
1557 			mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1558 			mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1559 			put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1560 			memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1561 			memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1562 			sdata->u.mesh.mesh_seqnum++;
1563 			meshhdrlen = 18;
1564 		}
1565 		hdrlen = 30;
1566 		break;
1567 #endif
1568 	case NL80211_IFTYPE_STATION:
1569 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1570 		/* BSSID SA DA */
1571 		memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1572 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1573 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
1574 		hdrlen = 24;
1575 		break;
1576 	case NL80211_IFTYPE_ADHOC:
1577 		/* DA SA BSSID */
1578 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
1579 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1580 		memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1581 		hdrlen = 24;
1582 		break;
1583 	default:
1584 		ret = 0;
1585 		goto fail;
1586 	}
1587 
1588 	/*
1589 	 * There's no need to try to look up the destination
1590 	 * if it is a multicast address (which can only happen
1591 	 * in AP mode)
1592 	 */
1593 	if (!is_multicast_ether_addr(hdr.addr1)) {
1594 		rcu_read_lock();
1595 		sta = sta_info_get(local, hdr.addr1);
1596 		if (sta)
1597 			sta_flags = get_sta_flags(sta);
1598 		rcu_read_unlock();
1599 	}
1600 
1601 	/* receiver and we are QoS enabled, use a QoS type frame */
1602 	if (sta_flags & WLAN_STA_WME &&
1603 	    ieee80211_num_regular_queues(&local->hw) >= 4) {
1604 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1605 		hdrlen += 2;
1606 	}
1607 
1608 	/*
1609 	 * Drop unicast frames to unauthorised stations unless they are
1610 	 * EAPOL frames from the local station.
1611 	 */
1612 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1613 		unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1614 		      !(sta_flags & WLAN_STA_AUTHORIZED) &&
1615 		      !(ethertype == ETH_P_PAE &&
1616 		       compare_ether_addr(dev->dev_addr,
1617 					  skb->data + ETH_ALEN) == 0))) {
1618 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1619 		if (net_ratelimit())
1620 			printk(KERN_DEBUG "%s: dropped frame to %pM"
1621 			       " (unauthorized port)\n", dev->name,
1622 			       hdr.addr1);
1623 #endif
1624 
1625 		I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1626 
1627 		ret = 0;
1628 		goto fail;
1629 	}
1630 
1631 	hdr.frame_control = fc;
1632 	hdr.duration_id = 0;
1633 	hdr.seq_ctrl = 0;
1634 
1635 	skip_header_bytes = ETH_HLEN;
1636 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1637 		encaps_data = bridge_tunnel_header;
1638 		encaps_len = sizeof(bridge_tunnel_header);
1639 		skip_header_bytes -= 2;
1640 	} else if (ethertype >= 0x600) {
1641 		encaps_data = rfc1042_header;
1642 		encaps_len = sizeof(rfc1042_header);
1643 		skip_header_bytes -= 2;
1644 	} else {
1645 		encaps_data = NULL;
1646 		encaps_len = 0;
1647 	}
1648 
1649 	skb_pull(skb, skip_header_bytes);
1650 	nh_pos -= skip_header_bytes;
1651 	h_pos -= skip_header_bytes;
1652 
1653 	head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1654 
1655 	/*
1656 	 * So we need to modify the skb header and hence need a copy of
1657 	 * that. The head_need variable above doesn't, so far, include
1658 	 * the needed header space that we don't need right away. If we
1659 	 * can, then we don't reallocate right now but only after the
1660 	 * frame arrives at the master device (if it does...)
1661 	 *
1662 	 * If we cannot, however, then we will reallocate to include all
1663 	 * the ever needed space. Also, if we need to reallocate it anyway,
1664 	 * make it big enough for everything we may ever need.
1665 	 */
1666 
1667 	if (head_need > 0 || skb_cloned(skb)) {
1668 		head_need += IEEE80211_ENCRYPT_HEADROOM;
1669 		head_need += local->tx_headroom;
1670 		head_need = max_t(int, 0, head_need);
1671 		if (ieee80211_skb_resize(local, skb, head_need, true))
1672 			goto fail;
1673 	}
1674 
1675 	if (encaps_data) {
1676 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1677 		nh_pos += encaps_len;
1678 		h_pos += encaps_len;
1679 	}
1680 
1681 	if (meshhdrlen > 0) {
1682 		memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1683 		nh_pos += meshhdrlen;
1684 		h_pos += meshhdrlen;
1685 	}
1686 
1687 	if (ieee80211_is_data_qos(fc)) {
1688 		__le16 *qos_control;
1689 
1690 		qos_control = (__le16*) skb_push(skb, 2);
1691 		memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1692 		/*
1693 		 * Maybe we could actually set some fields here, for now just
1694 		 * initialise to zero to indicate no special operation.
1695 		 */
1696 		*qos_control = 0;
1697 	} else
1698 		memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1699 
1700 	nh_pos += hdrlen;
1701 	h_pos += hdrlen;
1702 
1703 	skb->iif = dev->ifindex;
1704 
1705 	skb->dev = local->mdev;
1706 	dev->stats.tx_packets++;
1707 	dev->stats.tx_bytes += skb->len;
1708 
1709 	/* Update skb pointers to various headers since this modified frame
1710 	 * is going to go through Linux networking code that may potentially
1711 	 * need things like pointer to IP header. */
1712 	skb_set_mac_header(skb, 0);
1713 	skb_set_network_header(skb, nh_pos);
1714 	skb_set_transport_header(skb, h_pos);
1715 
1716 	dev->trans_start = jiffies;
1717 	dev_queue_xmit(skb);
1718 
1719 	return 0;
1720 
1721  fail:
1722 	if (!ret)
1723 		dev_kfree_skb(skb);
1724 
1725 	return ret;
1726 }
1727 
1728 
1729 /*
1730  * ieee80211_clear_tx_pending may not be called in a context where
1731  * it is possible that it packets could come in again.
1732  */
1733 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1734 {
1735 	int i, j;
1736 	struct ieee80211_tx_stored_packet *store;
1737 
1738 	for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1739 		if (!test_bit(i, local->queues_pending))
1740 			continue;
1741 		store = &local->pending_packet[i];
1742 		kfree_skb(store->skb);
1743 		for (j = 0; j < store->num_extra_frag; j++)
1744 			kfree_skb(store->extra_frag[j]);
1745 		kfree(store->extra_frag);
1746 		clear_bit(i, local->queues_pending);
1747 	}
1748 }
1749 
1750 /*
1751  * Transmit all pending packets. Called from tasklet, locks master device
1752  * TX lock so that no new packets can come in.
1753  */
1754 void ieee80211_tx_pending(unsigned long data)
1755 {
1756 	struct ieee80211_local *local = (struct ieee80211_local *)data;
1757 	struct net_device *dev = local->mdev;
1758 	struct ieee80211_tx_stored_packet *store;
1759 	struct ieee80211_tx_data tx;
1760 	int i, ret;
1761 
1762 	netif_tx_lock_bh(dev);
1763 	for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) {
1764 		/* Check that this queue is ok */
1765 		if (__netif_subqueue_stopped(local->mdev, i) &&
1766 		    !test_bit(i, local->queues_pending_run))
1767 			continue;
1768 
1769 		if (!test_bit(i, local->queues_pending)) {
1770 			clear_bit(i, local->queues_pending_run);
1771 			ieee80211_wake_queue(&local->hw, i);
1772 			continue;
1773 		}
1774 
1775 		clear_bit(i, local->queues_pending_run);
1776 		netif_start_subqueue(local->mdev, i);
1777 
1778 		store = &local->pending_packet[i];
1779 		tx.extra_frag = store->extra_frag;
1780 		tx.num_extra_frag = store->num_extra_frag;
1781 		tx.flags = 0;
1782 		ret = __ieee80211_tx(local, store->skb, &tx);
1783 		if (ret) {
1784 			if (ret == IEEE80211_TX_FRAG_AGAIN)
1785 				store->skb = NULL;
1786 		} else {
1787 			clear_bit(i, local->queues_pending);
1788 			ieee80211_wake_queue(&local->hw, i);
1789 		}
1790 	}
1791 	netif_tx_unlock_bh(dev);
1792 }
1793 
1794 /* functions for drivers to get certain frames */
1795 
1796 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1797 				     struct sk_buff *skb,
1798 				     struct beacon_data *beacon)
1799 {
1800 	u8 *pos, *tim;
1801 	int aid0 = 0;
1802 	int i, have_bits = 0, n1, n2;
1803 
1804 	/* Generate bitmap for TIM only if there are any STAs in power save
1805 	 * mode. */
1806 	if (atomic_read(&bss->num_sta_ps) > 0)
1807 		/* in the hope that this is faster than
1808 		 * checking byte-for-byte */
1809 		have_bits = !bitmap_empty((unsigned long*)bss->tim,
1810 					  IEEE80211_MAX_AID+1);
1811 
1812 	if (bss->dtim_count == 0)
1813 		bss->dtim_count = beacon->dtim_period - 1;
1814 	else
1815 		bss->dtim_count--;
1816 
1817 	tim = pos = (u8 *) skb_put(skb, 6);
1818 	*pos++ = WLAN_EID_TIM;
1819 	*pos++ = 4;
1820 	*pos++ = bss->dtim_count;
1821 	*pos++ = beacon->dtim_period;
1822 
1823 	if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
1824 		aid0 = 1;
1825 
1826 	if (have_bits) {
1827 		/* Find largest even number N1 so that bits numbered 1 through
1828 		 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1829 		 * (N2 + 1) x 8 through 2007 are 0. */
1830 		n1 = 0;
1831 		for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
1832 			if (bss->tim[i]) {
1833 				n1 = i & 0xfe;
1834 				break;
1835 			}
1836 		}
1837 		n2 = n1;
1838 		for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
1839 			if (bss->tim[i]) {
1840 				n2 = i;
1841 				break;
1842 			}
1843 		}
1844 
1845 		/* Bitmap control */
1846 		*pos++ = n1 | aid0;
1847 		/* Part Virt Bitmap */
1848 		memcpy(pos, bss->tim + n1, n2 - n1 + 1);
1849 
1850 		tim[1] = n2 - n1 + 4;
1851 		skb_put(skb, n2 - n1);
1852 	} else {
1853 		*pos++ = aid0; /* Bitmap control */
1854 		*pos++ = 0; /* Part Virt Bitmap */
1855 	}
1856 }
1857 
1858 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1859 				     struct ieee80211_vif *vif)
1860 {
1861 	struct ieee80211_local *local = hw_to_local(hw);
1862 	struct sk_buff *skb = NULL;
1863 	struct ieee80211_tx_info *info;
1864 	struct ieee80211_sub_if_data *sdata = NULL;
1865 	struct ieee80211_if_ap *ap = NULL;
1866 	struct ieee80211_if_sta *ifsta = NULL;
1867 	struct beacon_data *beacon;
1868 	struct ieee80211_supported_band *sband;
1869 	enum ieee80211_band band = local->hw.conf.channel->band;
1870 
1871 	sband = local->hw.wiphy->bands[band];
1872 
1873 	rcu_read_lock();
1874 
1875 	sdata = vif_to_sdata(vif);
1876 
1877 	if (sdata->vif.type == NL80211_IFTYPE_AP) {
1878 		ap = &sdata->u.ap;
1879 		beacon = rcu_dereference(ap->beacon);
1880 		if (ap && beacon) {
1881 			/*
1882 			 * headroom, head length,
1883 			 * tail length and maximum TIM length
1884 			 */
1885 			skb = dev_alloc_skb(local->tx_headroom +
1886 					    beacon->head_len +
1887 					    beacon->tail_len + 256);
1888 			if (!skb)
1889 				goto out;
1890 
1891 			skb_reserve(skb, local->tx_headroom);
1892 			memcpy(skb_put(skb, beacon->head_len), beacon->head,
1893 			       beacon->head_len);
1894 
1895 			/*
1896 			 * Not very nice, but we want to allow the driver to call
1897 			 * ieee80211_beacon_get() as a response to the set_tim()
1898 			 * callback. That, however, is already invoked under the
1899 			 * sta_lock to guarantee consistent and race-free update
1900 			 * of the tim bitmap in mac80211 and the driver.
1901 			 */
1902 			if (local->tim_in_locked_section) {
1903 				ieee80211_beacon_add_tim(ap, skb, beacon);
1904 			} else {
1905 				unsigned long flags;
1906 
1907 				spin_lock_irqsave(&local->sta_lock, flags);
1908 				ieee80211_beacon_add_tim(ap, skb, beacon);
1909 				spin_unlock_irqrestore(&local->sta_lock, flags);
1910 			}
1911 
1912 			if (beacon->tail)
1913 				memcpy(skb_put(skb, beacon->tail_len),
1914 				       beacon->tail, beacon->tail_len);
1915 		} else
1916 			goto out;
1917 	} else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1918 		struct ieee80211_hdr *hdr;
1919 		ifsta = &sdata->u.sta;
1920 
1921 		if (!ifsta->probe_resp)
1922 			goto out;
1923 
1924 		skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC);
1925 		if (!skb)
1926 			goto out;
1927 
1928 		hdr = (struct ieee80211_hdr *) skb->data;
1929 		hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1930 						 IEEE80211_STYPE_BEACON);
1931 
1932 	} else if (ieee80211_vif_is_mesh(&sdata->vif)) {
1933 		struct ieee80211_mgmt *mgmt;
1934 		u8 *pos;
1935 
1936 		/* headroom, head length, tail length and maximum TIM length */
1937 		skb = dev_alloc_skb(local->tx_headroom + 400);
1938 		if (!skb)
1939 			goto out;
1940 
1941 		skb_reserve(skb, local->hw.extra_tx_headroom);
1942 		mgmt = (struct ieee80211_mgmt *)
1943 			skb_put(skb, 24 + sizeof(mgmt->u.beacon));
1944 		memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
1945 		mgmt->frame_control =
1946 		    cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
1947 		memset(mgmt->da, 0xff, ETH_ALEN);
1948 		memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
1949 		/* BSSID is left zeroed, wildcard value */
1950 		mgmt->u.beacon.beacon_int =
1951 			cpu_to_le16(local->hw.conf.beacon_int);
1952 		mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
1953 
1954 		pos = skb_put(skb, 2);
1955 		*pos++ = WLAN_EID_SSID;
1956 		*pos++ = 0x0;
1957 
1958 		mesh_mgmt_ies_add(skb, sdata);
1959 	} else {
1960 		WARN_ON(1);
1961 		goto out;
1962 	}
1963 
1964 	info = IEEE80211_SKB_CB(skb);
1965 
1966 	skb->do_not_encrypt = 1;
1967 
1968 	info->band = band;
1969 	/*
1970 	 * XXX: For now, always use the lowest rate
1971 	 */
1972 	info->control.rates[0].idx = 0;
1973 	info->control.rates[0].count = 1;
1974 	info->control.rates[1].idx = -1;
1975 	info->control.rates[2].idx = -1;
1976 	info->control.rates[3].idx = -1;
1977 	info->control.rates[4].idx = -1;
1978 	BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
1979 
1980 	info->control.vif = vif;
1981 
1982 	info->flags |= IEEE80211_TX_CTL_NO_ACK;
1983 	info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1984 	info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
1985  out:
1986 	rcu_read_unlock();
1987 	return skb;
1988 }
1989 EXPORT_SYMBOL(ieee80211_beacon_get);
1990 
1991 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1992 		       const void *frame, size_t frame_len,
1993 		       const struct ieee80211_tx_info *frame_txctl,
1994 		       struct ieee80211_rts *rts)
1995 {
1996 	const struct ieee80211_hdr *hdr = frame;
1997 
1998 	rts->frame_control =
1999 	    cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2000 	rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2001 					       frame_txctl);
2002 	memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2003 	memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2004 }
2005 EXPORT_SYMBOL(ieee80211_rts_get);
2006 
2007 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2008 			     const void *frame, size_t frame_len,
2009 			     const struct ieee80211_tx_info *frame_txctl,
2010 			     struct ieee80211_cts *cts)
2011 {
2012 	const struct ieee80211_hdr *hdr = frame;
2013 
2014 	cts->frame_control =
2015 	    cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2016 	cts->duration = ieee80211_ctstoself_duration(hw, vif,
2017 						     frame_len, frame_txctl);
2018 	memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2019 }
2020 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2021 
2022 struct sk_buff *
2023 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2024 			  struct ieee80211_vif *vif)
2025 {
2026 	struct ieee80211_local *local = hw_to_local(hw);
2027 	struct sk_buff *skb = NULL;
2028 	struct sta_info *sta;
2029 	struct ieee80211_tx_data tx;
2030 	struct ieee80211_sub_if_data *sdata;
2031 	struct ieee80211_if_ap *bss = NULL;
2032 	struct beacon_data *beacon;
2033 	struct ieee80211_tx_info *info;
2034 
2035 	sdata = vif_to_sdata(vif);
2036 	bss = &sdata->u.ap;
2037 
2038 	if (!bss)
2039 		return NULL;
2040 
2041 	rcu_read_lock();
2042 	beacon = rcu_dereference(bss->beacon);
2043 
2044 	if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2045 		goto out;
2046 
2047 	if (bss->dtim_count != 0)
2048 		goto out; /* send buffered bc/mc only after DTIM beacon */
2049 
2050 	while (1) {
2051 		skb = skb_dequeue(&bss->ps_bc_buf);
2052 		if (!skb)
2053 			goto out;
2054 		local->total_ps_buffered--;
2055 
2056 		if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2057 			struct ieee80211_hdr *hdr =
2058 				(struct ieee80211_hdr *) skb->data;
2059 			/* more buffered multicast/broadcast frames ==> set
2060 			 * MoreData flag in IEEE 802.11 header to inform PS
2061 			 * STAs */
2062 			hdr->frame_control |=
2063 				cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2064 		}
2065 
2066 		if (!ieee80211_tx_prepare(local, &tx, skb))
2067 			break;
2068 		dev_kfree_skb_any(skb);
2069 	}
2070 
2071 	info = IEEE80211_SKB_CB(skb);
2072 
2073 	sta = tx.sta;
2074 	tx.flags |= IEEE80211_TX_PS_BUFFERED;
2075 	tx.channel = local->hw.conf.channel;
2076 	info->band = tx.channel->band;
2077 
2078 	if (invoke_tx_handlers(&tx))
2079 		skb = NULL;
2080  out:
2081 	rcu_read_unlock();
2082 
2083 	return skb;
2084 }
2085 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
2086