1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <net/net_namespace.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <net/cfg80211.h> 24 #include <net/mac80211.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 #define IEEE80211_TX_OK 0 36 #define IEEE80211_TX_AGAIN 1 37 #define IEEE80211_TX_FRAG_AGAIN 2 38 39 /* misc utils */ 40 41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, 42 int next_frag_len) 43 { 44 int rate, mrate, erp, dur, i; 45 struct ieee80211_rate *txrate; 46 struct ieee80211_local *local = tx->local; 47 struct ieee80211_supported_band *sband; 48 struct ieee80211_hdr *hdr; 49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 50 51 /* assume HW handles this */ 52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 53 return 0; 54 55 /* uh huh? */ 56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 57 return 0; 58 59 sband = local->hw.wiphy->bands[tx->channel->band]; 60 txrate = &sband->bitrates[info->control.rates[0].idx]; 61 62 erp = txrate->flags & IEEE80211_RATE_ERP_G; 63 64 /* 65 * data and mgmt (except PS Poll): 66 * - during CFP: 32768 67 * - during contention period: 68 * if addr1 is group address: 0 69 * if more fragments = 0 and addr1 is individual address: time to 70 * transmit one ACK plus SIFS 71 * if more fragments = 1 and addr1 is individual address: time to 72 * transmit next fragment plus 2 x ACK plus 3 x SIFS 73 * 74 * IEEE 802.11, 9.6: 75 * - control response frame (CTS or ACK) shall be transmitted using the 76 * same rate as the immediately previous frame in the frame exchange 77 * sequence, if this rate belongs to the PHY mandatory rates, or else 78 * at the highest possible rate belonging to the PHY rates in the 79 * BSSBasicRateSet 80 */ 81 hdr = (struct ieee80211_hdr *)tx->skb->data; 82 if (ieee80211_is_ctl(hdr->frame_control)) { 83 /* TODO: These control frames are not currently sent by 84 * mac80211, but should they be implemented, this function 85 * needs to be updated to support duration field calculation. 86 * 87 * RTS: time needed to transmit pending data/mgmt frame plus 88 * one CTS frame plus one ACK frame plus 3 x SIFS 89 * CTS: duration of immediately previous RTS minus time 90 * required to transmit CTS and its SIFS 91 * ACK: 0 if immediately previous directed data/mgmt had 92 * more=0, with more=1 duration in ACK frame is duration 93 * from previous frame minus time needed to transmit ACK 94 * and its SIFS 95 * PS Poll: BIT(15) | BIT(14) | aid 96 */ 97 return 0; 98 } 99 100 /* data/mgmt */ 101 if (0 /* FIX: data/mgmt during CFP */) 102 return cpu_to_le16(32768); 103 104 if (group_addr) /* Group address as the destination - no ACK */ 105 return 0; 106 107 /* Individual destination address: 108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 109 * CTS and ACK frames shall be transmitted using the highest rate in 110 * basic rate set that is less than or equal to the rate of the 111 * immediately previous frame and that is using the same modulation 112 * (CCK or OFDM). If no basic rate set matches with these requirements, 113 * the highest mandatory rate of the PHY that is less than or equal to 114 * the rate of the previous frame is used. 115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 116 */ 117 rate = -1; 118 /* use lowest available if everything fails */ 119 mrate = sband->bitrates[0].bitrate; 120 for (i = 0; i < sband->n_bitrates; i++) { 121 struct ieee80211_rate *r = &sband->bitrates[i]; 122 123 if (r->bitrate > txrate->bitrate) 124 break; 125 126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 127 rate = r->bitrate; 128 129 switch (sband->band) { 130 case IEEE80211_BAND_2GHZ: { 131 u32 flag; 132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 133 flag = IEEE80211_RATE_MANDATORY_G; 134 else 135 flag = IEEE80211_RATE_MANDATORY_B; 136 if (r->flags & flag) 137 mrate = r->bitrate; 138 break; 139 } 140 case IEEE80211_BAND_5GHZ: 141 if (r->flags & IEEE80211_RATE_MANDATORY_A) 142 mrate = r->bitrate; 143 break; 144 case IEEE80211_NUM_BANDS: 145 WARN_ON(1); 146 break; 147 } 148 } 149 if (rate == -1) { 150 /* No matching basic rate found; use highest suitable mandatory 151 * PHY rate */ 152 rate = mrate; 153 } 154 155 /* Time needed to transmit ACK 156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 157 * to closest integer */ 158 159 dur = ieee80211_frame_duration(local, 10, rate, erp, 160 tx->sdata->vif.bss_conf.use_short_preamble); 161 162 if (next_frag_len) { 163 /* Frame is fragmented: duration increases with time needed to 164 * transmit next fragment plus ACK and 2 x SIFS. */ 165 dur *= 2; /* ACK + SIFS */ 166 /* next fragment */ 167 dur += ieee80211_frame_duration(local, next_frag_len, 168 txrate->bitrate, erp, 169 tx->sdata->vif.bss_conf.use_short_preamble); 170 } 171 172 return cpu_to_le16(dur); 173 } 174 175 static int inline is_ieee80211_device(struct ieee80211_local *local, 176 struct net_device *dev) 177 { 178 return local == wdev_priv(dev->ieee80211_ptr); 179 } 180 181 /* tx handlers */ 182 183 static ieee80211_tx_result debug_noinline 184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 185 { 186 187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 189 u32 sta_flags; 190 191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 192 return TX_CONTINUE; 193 194 if (unlikely(tx->local->sw_scanning) && 195 !ieee80211_is_probe_req(hdr->frame_control)) 196 return TX_DROP; 197 198 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 199 return TX_CONTINUE; 200 201 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 202 return TX_CONTINUE; 203 204 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; 205 206 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 207 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && 208 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 209 ieee80211_is_data(hdr->frame_control))) { 210 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 211 printk(KERN_DEBUG "%s: dropped data frame to not " 212 "associated station %pM\n", 213 tx->dev->name, hdr->addr1); 214 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 215 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 216 return TX_DROP; 217 } 218 } else { 219 if (unlikely(ieee80211_is_data(hdr->frame_control) && 220 tx->local->num_sta == 0 && 221 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { 222 /* 223 * No associated STAs - no need to send multicast 224 * frames. 225 */ 226 return TX_DROP; 227 } 228 return TX_CONTINUE; 229 } 230 231 return TX_CONTINUE; 232 } 233 234 /* This function is called whenever the AP is about to exceed the maximum limit 235 * of buffered frames for power saving STAs. This situation should not really 236 * happen often during normal operation, so dropping the oldest buffered packet 237 * from each queue should be OK to make some room for new frames. */ 238 static void purge_old_ps_buffers(struct ieee80211_local *local) 239 { 240 int total = 0, purged = 0; 241 struct sk_buff *skb; 242 struct ieee80211_sub_if_data *sdata; 243 struct sta_info *sta; 244 245 /* 246 * virtual interfaces are protected by RCU 247 */ 248 rcu_read_lock(); 249 250 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 251 struct ieee80211_if_ap *ap; 252 if (sdata->vif.type != NL80211_IFTYPE_AP) 253 continue; 254 ap = &sdata->u.ap; 255 skb = skb_dequeue(&ap->ps_bc_buf); 256 if (skb) { 257 purged++; 258 dev_kfree_skb(skb); 259 } 260 total += skb_queue_len(&ap->ps_bc_buf); 261 } 262 263 list_for_each_entry_rcu(sta, &local->sta_list, list) { 264 skb = skb_dequeue(&sta->ps_tx_buf); 265 if (skb) { 266 purged++; 267 dev_kfree_skb(skb); 268 } 269 total += skb_queue_len(&sta->ps_tx_buf); 270 } 271 272 rcu_read_unlock(); 273 274 local->total_ps_buffered = total; 275 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 276 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n", 277 wiphy_name(local->hw.wiphy), purged); 278 #endif 279 } 280 281 static ieee80211_tx_result 282 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 283 { 284 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 285 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 286 287 /* 288 * broadcast/multicast frame 289 * 290 * If any of the associated stations is in power save mode, 291 * the frame is buffered to be sent after DTIM beacon frame. 292 * This is done either by the hardware or us. 293 */ 294 295 /* powersaving STAs only in AP/VLAN mode */ 296 if (!tx->sdata->bss) 297 return TX_CONTINUE; 298 299 /* no buffering for ordered frames */ 300 if (ieee80211_has_order(hdr->frame_control)) 301 return TX_CONTINUE; 302 303 /* no stations in PS mode */ 304 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 305 return TX_CONTINUE; 306 307 /* buffered in mac80211 */ 308 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) { 309 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 310 purge_old_ps_buffers(tx->local); 311 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= 312 AP_MAX_BC_BUFFER) { 313 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 314 if (net_ratelimit()) { 315 printk(KERN_DEBUG "%s: BC TX buffer full - " 316 "dropping the oldest frame\n", 317 tx->dev->name); 318 } 319 #endif 320 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 321 } else 322 tx->local->total_ps_buffered++; 323 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 324 return TX_QUEUED; 325 } 326 327 /* buffered in hardware */ 328 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 329 330 return TX_CONTINUE; 331 } 332 333 static ieee80211_tx_result 334 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 335 { 336 struct sta_info *sta = tx->sta; 337 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 338 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 339 u32 staflags; 340 341 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control))) 342 return TX_CONTINUE; 343 344 staflags = get_sta_flags(sta); 345 346 if (unlikely((staflags & WLAN_STA_PS) && 347 !(staflags & WLAN_STA_PSPOLL))) { 348 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 349 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " 350 "before %d)\n", 351 sta->sta.addr, sta->sta.aid, 352 skb_queue_len(&sta->ps_tx_buf)); 353 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 354 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 355 purge_old_ps_buffers(tx->local); 356 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { 357 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); 358 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 359 if (net_ratelimit()) { 360 printk(KERN_DEBUG "%s: STA %pM TX " 361 "buffer full - dropping oldest frame\n", 362 tx->dev->name, sta->sta.addr); 363 } 364 #endif 365 dev_kfree_skb(old); 366 } else 367 tx->local->total_ps_buffered++; 368 369 /* Queue frame to be sent after STA sends an PS Poll frame */ 370 if (skb_queue_empty(&sta->ps_tx_buf)) 371 sta_info_set_tim_bit(sta); 372 373 info->control.jiffies = jiffies; 374 skb_queue_tail(&sta->ps_tx_buf, tx->skb); 375 return TX_QUEUED; 376 } 377 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 378 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) { 379 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " 380 "set -> send frame\n", tx->dev->name, 381 sta->sta.addr); 382 } 383 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 384 clear_sta_flags(sta, WLAN_STA_PSPOLL); 385 386 return TX_CONTINUE; 387 } 388 389 static ieee80211_tx_result debug_noinline 390 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 391 { 392 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 393 return TX_CONTINUE; 394 395 if (tx->flags & IEEE80211_TX_UNICAST) 396 return ieee80211_tx_h_unicast_ps_buf(tx); 397 else 398 return ieee80211_tx_h_multicast_ps_buf(tx); 399 } 400 401 static ieee80211_tx_result debug_noinline 402 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 403 { 404 struct ieee80211_key *key; 405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 406 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 407 408 if (unlikely(tx->skb->do_not_encrypt)) 409 tx->key = NULL; 410 else if (tx->sta && (key = rcu_dereference(tx->sta->key))) 411 tx->key = key; 412 else if ((key = rcu_dereference(tx->sdata->default_key))) 413 tx->key = key; 414 else if (tx->sdata->drop_unencrypted && 415 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && 416 !(info->flags & IEEE80211_TX_CTL_INJECTED)) { 417 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 418 return TX_DROP; 419 } else 420 tx->key = NULL; 421 422 if (tx->key) { 423 tx->key->tx_rx_count++; 424 /* TODO: add threshold stuff again */ 425 426 switch (tx->key->conf.alg) { 427 case ALG_WEP: 428 if (ieee80211_is_auth(hdr->frame_control)) 429 break; 430 case ALG_TKIP: 431 case ALG_CCMP: 432 if (!ieee80211_is_data_present(hdr->frame_control)) 433 tx->key = NULL; 434 break; 435 } 436 } 437 438 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) 439 tx->skb->do_not_encrypt = 1; 440 441 return TX_CONTINUE; 442 } 443 444 static ieee80211_tx_result debug_noinline 445 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 446 { 447 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 448 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 449 struct ieee80211_supported_band *sband; 450 struct ieee80211_rate *rate; 451 int i, len; 452 bool inval = false, rts = false, short_preamble = false; 453 struct ieee80211_tx_rate_control txrc; 454 455 memset(&txrc, 0, sizeof(txrc)); 456 457 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 458 459 len = min_t(int, tx->skb->len + FCS_LEN, 460 tx->local->fragmentation_threshold); 461 462 /* set up the tx rate control struct we give the RC algo */ 463 txrc.hw = local_to_hw(tx->local); 464 txrc.sband = sband; 465 txrc.bss_conf = &tx->sdata->vif.bss_conf; 466 txrc.skb = tx->skb; 467 txrc.reported_rate.idx = -1; 468 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx; 469 470 /* set up RTS protection if desired */ 471 if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD && 472 len > tx->local->rts_threshold) { 473 txrc.rts = rts = true; 474 } 475 476 /* 477 * Use short preamble if the BSS can handle it, but not for 478 * management frames unless we know the receiver can handle 479 * that -- the management frame might be to a station that 480 * just wants a probe response. 481 */ 482 if (tx->sdata->vif.bss_conf.use_short_preamble && 483 (ieee80211_is_data(hdr->frame_control) || 484 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 485 txrc.short_preamble = short_preamble = true; 486 487 488 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 489 490 if (unlikely(info->control.rates[0].idx < 0)) 491 return TX_DROP; 492 493 if (txrc.reported_rate.idx < 0) 494 txrc.reported_rate = info->control.rates[0]; 495 496 if (tx->sta) 497 tx->sta->last_tx_rate = txrc.reported_rate; 498 499 if (unlikely(!info->control.rates[0].count)) 500 info->control.rates[0].count = 1; 501 502 if (is_multicast_ether_addr(hdr->addr1)) { 503 /* 504 * XXX: verify the rate is in the basic rateset 505 */ 506 return TX_CONTINUE; 507 } 508 509 /* 510 * set up the RTS/CTS rate as the fastest basic rate 511 * that is not faster than the data rate 512 * 513 * XXX: Should this check all retry rates? 514 */ 515 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 516 s8 baserate = 0; 517 518 rate = &sband->bitrates[info->control.rates[0].idx]; 519 520 for (i = 0; i < sband->n_bitrates; i++) { 521 /* must be a basic rate */ 522 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 523 continue; 524 /* must not be faster than the data rate */ 525 if (sband->bitrates[i].bitrate > rate->bitrate) 526 continue; 527 /* maximum */ 528 if (sband->bitrates[baserate].bitrate < 529 sband->bitrates[i].bitrate) 530 baserate = i; 531 } 532 533 info->control.rts_cts_rate_idx = baserate; 534 } 535 536 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 537 /* 538 * make sure there's no valid rate following 539 * an invalid one, just in case drivers don't 540 * take the API seriously to stop at -1. 541 */ 542 if (inval) { 543 info->control.rates[i].idx = -1; 544 continue; 545 } 546 if (info->control.rates[i].idx < 0) { 547 inval = true; 548 continue; 549 } 550 551 /* 552 * For now assume MCS is already set up correctly, this 553 * needs to be fixed. 554 */ 555 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 556 WARN_ON(info->control.rates[i].idx > 76); 557 continue; 558 } 559 560 /* set up RTS protection if desired */ 561 if (rts) 562 info->control.rates[i].flags |= 563 IEEE80211_TX_RC_USE_RTS_CTS; 564 565 /* RC is busted */ 566 if (WARN_ON_ONCE(info->control.rates[i].idx >= 567 sband->n_bitrates)) { 568 info->control.rates[i].idx = -1; 569 continue; 570 } 571 572 rate = &sband->bitrates[info->control.rates[i].idx]; 573 574 /* set up short preamble */ 575 if (short_preamble && 576 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 577 info->control.rates[i].flags |= 578 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 579 580 /* set up G protection */ 581 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 582 rate->flags & IEEE80211_RATE_ERP_G) 583 info->control.rates[i].flags |= 584 IEEE80211_TX_RC_USE_CTS_PROTECT; 585 } 586 587 return TX_CONTINUE; 588 } 589 590 static ieee80211_tx_result debug_noinline 591 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx) 592 { 593 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 594 595 if (tx->sta) 596 info->control.sta = &tx->sta->sta; 597 598 return TX_CONTINUE; 599 } 600 601 static ieee80211_tx_result debug_noinline 602 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 603 { 604 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 605 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 606 u16 *seq; 607 u8 *qc; 608 int tid; 609 610 /* 611 * Packet injection may want to control the sequence 612 * number, if we have no matching interface then we 613 * neither assign one ourselves nor ask the driver to. 614 */ 615 if (unlikely(!info->control.vif)) 616 return TX_CONTINUE; 617 618 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 619 return TX_CONTINUE; 620 621 if (ieee80211_hdrlen(hdr->frame_control) < 24) 622 return TX_CONTINUE; 623 624 /* 625 * Anything but QoS data that has a sequence number field 626 * (is long enough) gets a sequence number from the global 627 * counter. 628 */ 629 if (!ieee80211_is_data_qos(hdr->frame_control)) { 630 /* driver should assign sequence number */ 631 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 632 /* for pure STA mode without beacons, we can do it */ 633 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 634 tx->sdata->sequence_number += 0x10; 635 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ; 636 return TX_CONTINUE; 637 } 638 639 /* 640 * This should be true for injected/management frames only, for 641 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 642 * above since they are not QoS-data frames. 643 */ 644 if (!tx->sta) 645 return TX_CONTINUE; 646 647 /* include per-STA, per-TID sequence counter */ 648 649 qc = ieee80211_get_qos_ctl(hdr); 650 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 651 seq = &tx->sta->tid_seq[tid]; 652 653 hdr->seq_ctrl = cpu_to_le16(*seq); 654 655 /* Increase the sequence number. */ 656 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 657 658 return TX_CONTINUE; 659 } 660 661 static ieee80211_tx_result debug_noinline 662 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 663 { 664 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 665 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 666 size_t hdrlen, per_fragm, num_fragm, payload_len, left; 667 struct sk_buff **frags, *first, *frag; 668 int i; 669 u16 seq; 670 u8 *pos; 671 int frag_threshold = tx->local->fragmentation_threshold; 672 673 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) 674 return TX_CONTINUE; 675 676 /* 677 * Warn when submitting a fragmented A-MPDU frame and drop it. 678 * This scenario is handled in __ieee80211_tx_prepare but extra 679 * caution taken here as fragmented ampdu may cause Tx stop. 680 */ 681 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 682 return TX_DROP; 683 684 first = tx->skb; 685 686 hdrlen = ieee80211_hdrlen(hdr->frame_control); 687 payload_len = first->len - hdrlen; 688 per_fragm = frag_threshold - hdrlen - FCS_LEN; 689 num_fragm = DIV_ROUND_UP(payload_len, per_fragm); 690 691 frags = kzalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC); 692 if (!frags) 693 goto fail; 694 695 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 696 seq = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_SEQ; 697 pos = first->data + hdrlen + per_fragm; 698 left = payload_len - per_fragm; 699 for (i = 0; i < num_fragm - 1; i++) { 700 struct ieee80211_hdr *fhdr; 701 size_t copylen; 702 703 if (left <= 0) 704 goto fail; 705 706 /* reserve enough extra head and tail room for possible 707 * encryption */ 708 frag = frags[i] = 709 dev_alloc_skb(tx->local->tx_headroom + 710 frag_threshold + 711 IEEE80211_ENCRYPT_HEADROOM + 712 IEEE80211_ENCRYPT_TAILROOM); 713 if (!frag) 714 goto fail; 715 716 /* Make sure that all fragments use the same priority so 717 * that they end up using the same TX queue */ 718 frag->priority = first->priority; 719 720 skb_reserve(frag, tx->local->tx_headroom + 721 IEEE80211_ENCRYPT_HEADROOM); 722 723 /* copy TX information */ 724 info = IEEE80211_SKB_CB(frag); 725 memcpy(info, first->cb, sizeof(frag->cb)); 726 727 /* copy/fill in 802.11 header */ 728 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen); 729 memcpy(fhdr, first->data, hdrlen); 730 fhdr->seq_ctrl = cpu_to_le16(seq | ((i + 1) & IEEE80211_SCTL_FRAG)); 731 732 if (i == num_fragm - 2) { 733 /* clear MOREFRAGS bit for the last fragment */ 734 fhdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREFRAGS); 735 } else { 736 /* 737 * No multi-rate retries for fragmented frames, that 738 * would completely throw off the NAV at other STAs. 739 */ 740 info->control.rates[1].idx = -1; 741 info->control.rates[2].idx = -1; 742 info->control.rates[3].idx = -1; 743 info->control.rates[4].idx = -1; 744 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 745 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 746 } 747 748 /* copy data */ 749 copylen = left > per_fragm ? per_fragm : left; 750 memcpy(skb_put(frag, copylen), pos, copylen); 751 752 skb_copy_queue_mapping(frag, first); 753 754 frag->do_not_encrypt = first->do_not_encrypt; 755 756 pos += copylen; 757 left -= copylen; 758 } 759 skb_trim(first, hdrlen + per_fragm); 760 761 tx->num_extra_frag = num_fragm - 1; 762 tx->extra_frag = frags; 763 764 return TX_CONTINUE; 765 766 fail: 767 if (frags) { 768 for (i = 0; i < num_fragm - 1; i++) 769 if (frags[i]) 770 dev_kfree_skb(frags[i]); 771 kfree(frags); 772 } 773 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment); 774 return TX_DROP; 775 } 776 777 static ieee80211_tx_result debug_noinline 778 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 779 { 780 if (!tx->key) 781 return TX_CONTINUE; 782 783 switch (tx->key->conf.alg) { 784 case ALG_WEP: 785 return ieee80211_crypto_wep_encrypt(tx); 786 case ALG_TKIP: 787 return ieee80211_crypto_tkip_encrypt(tx); 788 case ALG_CCMP: 789 return ieee80211_crypto_ccmp_encrypt(tx); 790 } 791 792 /* not reached */ 793 WARN_ON(1); 794 return TX_DROP; 795 } 796 797 static ieee80211_tx_result debug_noinline 798 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 799 { 800 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 801 int next_len, i; 802 int group_addr = is_multicast_ether_addr(hdr->addr1); 803 804 if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) { 805 hdr->duration_id = ieee80211_duration(tx, group_addr, 0); 806 return TX_CONTINUE; 807 } 808 809 hdr->duration_id = ieee80211_duration(tx, group_addr, 810 tx->extra_frag[0]->len); 811 812 for (i = 0; i < tx->num_extra_frag; i++) { 813 if (i + 1 < tx->num_extra_frag) 814 next_len = tx->extra_frag[i + 1]->len; 815 else 816 next_len = 0; 817 818 hdr = (struct ieee80211_hdr *)tx->extra_frag[i]->data; 819 hdr->duration_id = ieee80211_duration(tx, 0, next_len); 820 } 821 822 return TX_CONTINUE; 823 } 824 825 static ieee80211_tx_result debug_noinline 826 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 827 { 828 int i; 829 830 if (!tx->sta) 831 return TX_CONTINUE; 832 833 tx->sta->tx_packets++; 834 tx->sta->tx_fragments++; 835 tx->sta->tx_bytes += tx->skb->len; 836 if (tx->extra_frag) { 837 tx->sta->tx_fragments += tx->num_extra_frag; 838 for (i = 0; i < tx->num_extra_frag; i++) 839 tx->sta->tx_bytes += tx->extra_frag[i]->len; 840 } 841 842 return TX_CONTINUE; 843 } 844 845 846 /* actual transmit path */ 847 848 /* 849 * deal with packet injection down monitor interface 850 * with Radiotap Header -- only called for monitor mode interface 851 */ 852 static ieee80211_tx_result 853 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, 854 struct sk_buff *skb) 855 { 856 /* 857 * this is the moment to interpret and discard the radiotap header that 858 * must be at the start of the packet injected in Monitor mode 859 * 860 * Need to take some care with endian-ness since radiotap 861 * args are little-endian 862 */ 863 864 struct ieee80211_radiotap_iterator iterator; 865 struct ieee80211_radiotap_header *rthdr = 866 (struct ieee80211_radiotap_header *) skb->data; 867 struct ieee80211_supported_band *sband; 868 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len); 869 870 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 871 872 skb->do_not_encrypt = 1; 873 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 874 875 /* 876 * for every radiotap entry that is present 877 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 878 * entries present, or -EINVAL on error) 879 */ 880 881 while (!ret) { 882 ret = ieee80211_radiotap_iterator_next(&iterator); 883 884 if (ret) 885 continue; 886 887 /* see if this argument is something we can use */ 888 switch (iterator.this_arg_index) { 889 /* 890 * You must take care when dereferencing iterator.this_arg 891 * for multibyte types... the pointer is not aligned. Use 892 * get_unaligned((type *)iterator.this_arg) to dereference 893 * iterator.this_arg for type "type" safely on all arches. 894 */ 895 case IEEE80211_RADIOTAP_FLAGS: 896 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 897 /* 898 * this indicates that the skb we have been 899 * handed has the 32-bit FCS CRC at the end... 900 * we should react to that by snipping it off 901 * because it will be recomputed and added 902 * on transmission 903 */ 904 if (skb->len < (iterator.max_length + FCS_LEN)) 905 return TX_DROP; 906 907 skb_trim(skb, skb->len - FCS_LEN); 908 } 909 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 910 tx->skb->do_not_encrypt = 0; 911 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 912 tx->flags |= IEEE80211_TX_FRAGMENTED; 913 break; 914 915 /* 916 * Please update the file 917 * Documentation/networking/mac80211-injection.txt 918 * when parsing new fields here. 919 */ 920 921 default: 922 break; 923 } 924 } 925 926 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 927 return TX_DROP; 928 929 /* 930 * remove the radiotap header 931 * iterator->max_length was sanity-checked against 932 * skb->len by iterator init 933 */ 934 skb_pull(skb, iterator.max_length); 935 936 return TX_CONTINUE; 937 } 938 939 /* 940 * initialises @tx 941 */ 942 static ieee80211_tx_result 943 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx, 944 struct sk_buff *skb, 945 struct net_device *dev) 946 { 947 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 948 struct ieee80211_hdr *hdr; 949 struct ieee80211_sub_if_data *sdata; 950 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 951 952 int hdrlen, tid; 953 u8 *qc, *state; 954 955 memset(tx, 0, sizeof(*tx)); 956 tx->skb = skb; 957 tx->dev = dev; /* use original interface */ 958 tx->local = local; 959 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev); 960 tx->channel = local->hw.conf.channel; 961 /* 962 * Set this flag (used below to indicate "automatic fragmentation"), 963 * it will be cleared/left by radiotap as desired. 964 */ 965 tx->flags |= IEEE80211_TX_FRAGMENTED; 966 967 /* process and remove the injection radiotap header */ 968 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 969 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) { 970 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP) 971 return TX_DROP; 972 973 /* 974 * __ieee80211_parse_tx_radiotap has now removed 975 * the radiotap header that was present and pre-filled 976 * 'tx' with tx control information. 977 */ 978 } 979 980 hdr = (struct ieee80211_hdr *) skb->data; 981 982 tx->sta = sta_info_get(local, hdr->addr1); 983 984 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control)) { 985 qc = ieee80211_get_qos_ctl(hdr); 986 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 987 988 state = &tx->sta->ampdu_mlme.tid_state_tx[tid]; 989 if (*state == HT_AGG_STATE_OPERATIONAL) 990 info->flags |= IEEE80211_TX_CTL_AMPDU; 991 } 992 993 if (is_multicast_ether_addr(hdr->addr1)) { 994 tx->flags &= ~IEEE80211_TX_UNICAST; 995 info->flags |= IEEE80211_TX_CTL_NO_ACK; 996 } else { 997 tx->flags |= IEEE80211_TX_UNICAST; 998 info->flags &= ~IEEE80211_TX_CTL_NO_ACK; 999 } 1000 1001 if (tx->flags & IEEE80211_TX_FRAGMENTED) { 1002 if ((tx->flags & IEEE80211_TX_UNICAST) && 1003 skb->len + FCS_LEN > local->fragmentation_threshold && 1004 !(info->flags & IEEE80211_TX_CTL_AMPDU)) 1005 tx->flags |= IEEE80211_TX_FRAGMENTED; 1006 else 1007 tx->flags &= ~IEEE80211_TX_FRAGMENTED; 1008 } 1009 1010 if (!tx->sta) 1011 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1012 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1013 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1014 1015 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1016 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { 1017 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; 1018 tx->ethertype = (pos[0] << 8) | pos[1]; 1019 } 1020 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1021 1022 return TX_CONTINUE; 1023 } 1024 1025 /* 1026 * NB: @tx is uninitialised when passed in here 1027 */ 1028 static int ieee80211_tx_prepare(struct ieee80211_local *local, 1029 struct ieee80211_tx_data *tx, 1030 struct sk_buff *skb) 1031 { 1032 struct net_device *dev; 1033 1034 dev = dev_get_by_index(&init_net, skb->iif); 1035 if (unlikely(dev && !is_ieee80211_device(local, dev))) { 1036 dev_put(dev); 1037 dev = NULL; 1038 } 1039 if (unlikely(!dev)) 1040 return -ENODEV; 1041 /* initialises tx with control */ 1042 __ieee80211_tx_prepare(tx, skb, dev); 1043 dev_put(dev); 1044 return 0; 1045 } 1046 1047 static int __ieee80211_tx(struct ieee80211_local *local, struct sk_buff *skb, 1048 struct ieee80211_tx_data *tx) 1049 { 1050 struct ieee80211_tx_info *info; 1051 int ret, i; 1052 1053 if (skb) { 1054 if (netif_subqueue_stopped(local->mdev, skb)) 1055 return IEEE80211_TX_AGAIN; 1056 info = IEEE80211_SKB_CB(skb); 1057 1058 ret = local->ops->tx(local_to_hw(local), skb); 1059 if (ret) 1060 return IEEE80211_TX_AGAIN; 1061 local->mdev->trans_start = jiffies; 1062 ieee80211_led_tx(local, 1); 1063 } 1064 if (tx->extra_frag) { 1065 for (i = 0; i < tx->num_extra_frag; i++) { 1066 if (!tx->extra_frag[i]) 1067 continue; 1068 info = IEEE80211_SKB_CB(tx->extra_frag[i]); 1069 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 1070 IEEE80211_TX_CTL_FIRST_FRAGMENT); 1071 if (netif_subqueue_stopped(local->mdev, 1072 tx->extra_frag[i])) 1073 return IEEE80211_TX_FRAG_AGAIN; 1074 1075 ret = local->ops->tx(local_to_hw(local), 1076 tx->extra_frag[i]); 1077 if (ret) 1078 return IEEE80211_TX_FRAG_AGAIN; 1079 local->mdev->trans_start = jiffies; 1080 ieee80211_led_tx(local, 1); 1081 tx->extra_frag[i] = NULL; 1082 } 1083 kfree(tx->extra_frag); 1084 tx->extra_frag = NULL; 1085 } 1086 return IEEE80211_TX_OK; 1087 } 1088 1089 /* 1090 * Invoke TX handlers, return 0 on success and non-zero if the 1091 * frame was dropped or queued. 1092 */ 1093 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1094 { 1095 struct sk_buff *skb = tx->skb; 1096 ieee80211_tx_result res = TX_DROP; 1097 int i; 1098 1099 #define CALL_TXH(txh) \ 1100 res = txh(tx); \ 1101 if (res != TX_CONTINUE) \ 1102 goto txh_done; 1103 1104 CALL_TXH(ieee80211_tx_h_check_assoc) 1105 CALL_TXH(ieee80211_tx_h_ps_buf) 1106 CALL_TXH(ieee80211_tx_h_select_key) 1107 CALL_TXH(ieee80211_tx_h_michael_mic_add) 1108 CALL_TXH(ieee80211_tx_h_rate_ctrl) 1109 CALL_TXH(ieee80211_tx_h_misc) 1110 CALL_TXH(ieee80211_tx_h_sequence) 1111 CALL_TXH(ieee80211_tx_h_fragment) 1112 /* handlers after fragment must be aware of tx info fragmentation! */ 1113 CALL_TXH(ieee80211_tx_h_encrypt) 1114 CALL_TXH(ieee80211_tx_h_calculate_duration) 1115 CALL_TXH(ieee80211_tx_h_stats) 1116 #undef CALL_TXH 1117 1118 txh_done: 1119 if (unlikely(res == TX_DROP)) { 1120 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1121 dev_kfree_skb(skb); 1122 for (i = 0; i < tx->num_extra_frag; i++) 1123 if (tx->extra_frag[i]) 1124 dev_kfree_skb(tx->extra_frag[i]); 1125 kfree(tx->extra_frag); 1126 return -1; 1127 } else if (unlikely(res == TX_QUEUED)) { 1128 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1129 return -1; 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb) 1136 { 1137 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1138 struct sta_info *sta; 1139 struct ieee80211_tx_data tx; 1140 ieee80211_tx_result res_prepare; 1141 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1142 int ret, i; 1143 u16 queue; 1144 1145 queue = skb_get_queue_mapping(skb); 1146 1147 WARN_ON(test_bit(queue, local->queues_pending)); 1148 1149 if (unlikely(skb->len < 10)) { 1150 dev_kfree_skb(skb); 1151 return 0; 1152 } 1153 1154 rcu_read_lock(); 1155 1156 /* initialises tx */ 1157 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev); 1158 1159 if (res_prepare == TX_DROP) { 1160 dev_kfree_skb(skb); 1161 rcu_read_unlock(); 1162 return 0; 1163 } 1164 1165 sta = tx.sta; 1166 tx.channel = local->hw.conf.channel; 1167 info->band = tx.channel->band; 1168 1169 if (invoke_tx_handlers(&tx)) 1170 goto out; 1171 1172 retry: 1173 ret = __ieee80211_tx(local, skb, &tx); 1174 if (ret) { 1175 struct ieee80211_tx_stored_packet *store; 1176 1177 /* 1178 * Since there are no fragmented frames on A-MPDU 1179 * queues, there's no reason for a driver to reject 1180 * a frame there, warn and drop it. 1181 */ 1182 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 1183 goto drop; 1184 1185 store = &local->pending_packet[queue]; 1186 1187 if (ret == IEEE80211_TX_FRAG_AGAIN) 1188 skb = NULL; 1189 1190 set_bit(queue, local->queues_pending); 1191 smp_mb(); 1192 /* 1193 * When the driver gets out of buffers during sending of 1194 * fragments and calls ieee80211_stop_queue, the netif 1195 * subqueue is stopped. There is, however, a small window 1196 * in which the PENDING bit is not yet set. If a buffer 1197 * gets available in that window (i.e. driver calls 1198 * ieee80211_wake_queue), we would end up with ieee80211_tx 1199 * called with the PENDING bit still set. Prevent this by 1200 * continuing transmitting here when that situation is 1201 * possible to have happened. 1202 */ 1203 if (!__netif_subqueue_stopped(local->mdev, queue)) { 1204 clear_bit(queue, local->queues_pending); 1205 goto retry; 1206 } 1207 store->skb = skb; 1208 store->extra_frag = tx.extra_frag; 1209 store->num_extra_frag = tx.num_extra_frag; 1210 } 1211 out: 1212 rcu_read_unlock(); 1213 return 0; 1214 1215 drop: 1216 if (skb) 1217 dev_kfree_skb(skb); 1218 for (i = 0; i < tx.num_extra_frag; i++) 1219 if (tx.extra_frag[i]) 1220 dev_kfree_skb(tx.extra_frag[i]); 1221 kfree(tx.extra_frag); 1222 rcu_read_unlock(); 1223 return 0; 1224 } 1225 1226 /* device xmit handlers */ 1227 1228 static int ieee80211_skb_resize(struct ieee80211_local *local, 1229 struct sk_buff *skb, 1230 int head_need, bool may_encrypt) 1231 { 1232 int tail_need = 0; 1233 1234 /* 1235 * This could be optimised, devices that do full hardware 1236 * crypto (including TKIP MMIC) need no tailroom... But we 1237 * have no drivers for such devices currently. 1238 */ 1239 if (may_encrypt) { 1240 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1241 tail_need -= skb_tailroom(skb); 1242 tail_need = max_t(int, tail_need, 0); 1243 } 1244 1245 if (head_need || tail_need) { 1246 /* Sorry. Can't account for this any more */ 1247 skb_orphan(skb); 1248 } 1249 1250 if (skb_header_cloned(skb)) 1251 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1252 else 1253 I802_DEBUG_INC(local->tx_expand_skb_head); 1254 1255 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1256 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n", 1257 wiphy_name(local->hw.wiphy)); 1258 return -ENOMEM; 1259 } 1260 1261 /* update truesize too */ 1262 skb->truesize += head_need + tail_need; 1263 1264 return 0; 1265 } 1266 1267 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev) 1268 { 1269 struct ieee80211_master_priv *mpriv = netdev_priv(dev); 1270 struct ieee80211_local *local = mpriv->local; 1271 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1272 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1273 struct net_device *odev = NULL; 1274 struct ieee80211_sub_if_data *osdata; 1275 int headroom; 1276 bool may_encrypt; 1277 enum { 1278 NOT_MONITOR, 1279 FOUND_SDATA, 1280 UNKNOWN_ADDRESS, 1281 } monitor_iface = NOT_MONITOR; 1282 int ret; 1283 1284 if (skb->iif) 1285 odev = dev_get_by_index(&init_net, skb->iif); 1286 if (unlikely(odev && !is_ieee80211_device(local, odev))) { 1287 dev_put(odev); 1288 odev = NULL; 1289 } 1290 if (unlikely(!odev)) { 1291 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1292 printk(KERN_DEBUG "%s: Discarded packet with nonexistent " 1293 "originating device\n", dev->name); 1294 #endif 1295 dev_kfree_skb(skb); 1296 return 0; 1297 } 1298 1299 memset(info, 0, sizeof(*info)); 1300 1301 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1302 1303 osdata = IEEE80211_DEV_TO_SUB_IF(odev); 1304 1305 if (ieee80211_vif_is_mesh(&osdata->vif) && 1306 ieee80211_is_data(hdr->frame_control)) { 1307 if (is_multicast_ether_addr(hdr->addr3)) 1308 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN); 1309 else 1310 if (mesh_nexthop_lookup(skb, osdata)) { 1311 dev_put(odev); 1312 return 0; 1313 } 1314 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0) 1315 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh, 1316 fwded_frames); 1317 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) { 1318 struct ieee80211_sub_if_data *sdata; 1319 int hdrlen; 1320 u16 len_rthdr; 1321 1322 info->flags |= IEEE80211_TX_CTL_INJECTED; 1323 monitor_iface = UNKNOWN_ADDRESS; 1324 1325 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1326 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr; 1327 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1328 1329 /* check the header is complete in the frame */ 1330 if (likely(skb->len >= len_rthdr + hdrlen)) { 1331 /* 1332 * We process outgoing injected frames that have a 1333 * local address we handle as though they are our 1334 * own frames. 1335 * This code here isn't entirely correct, the local 1336 * MAC address is not necessarily enough to find 1337 * the interface to use; for that proper VLAN/WDS 1338 * support we will need a different mechanism. 1339 */ 1340 1341 rcu_read_lock(); 1342 list_for_each_entry_rcu(sdata, &local->interfaces, 1343 list) { 1344 if (!netif_running(sdata->dev)) 1345 continue; 1346 if (compare_ether_addr(sdata->dev->dev_addr, 1347 hdr->addr2)) { 1348 dev_hold(sdata->dev); 1349 dev_put(odev); 1350 osdata = sdata; 1351 odev = osdata->dev; 1352 skb->iif = sdata->dev->ifindex; 1353 monitor_iface = FOUND_SDATA; 1354 break; 1355 } 1356 } 1357 rcu_read_unlock(); 1358 } 1359 } 1360 1361 may_encrypt = !skb->do_not_encrypt; 1362 1363 headroom = osdata->local->tx_headroom; 1364 if (may_encrypt) 1365 headroom += IEEE80211_ENCRYPT_HEADROOM; 1366 headroom -= skb_headroom(skb); 1367 headroom = max_t(int, 0, headroom); 1368 1369 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) { 1370 dev_kfree_skb(skb); 1371 dev_put(odev); 1372 return 0; 1373 } 1374 1375 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1376 osdata = container_of(osdata->bss, 1377 struct ieee80211_sub_if_data, 1378 u.ap); 1379 if (likely(monitor_iface != UNKNOWN_ADDRESS)) 1380 info->control.vif = &osdata->vif; 1381 ret = ieee80211_tx(odev, skb); 1382 dev_put(odev); 1383 1384 return ret; 1385 } 1386 1387 int ieee80211_monitor_start_xmit(struct sk_buff *skb, 1388 struct net_device *dev) 1389 { 1390 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1391 struct ieee80211_radiotap_header *prthdr = 1392 (struct ieee80211_radiotap_header *)skb->data; 1393 u16 len_rthdr; 1394 1395 /* check for not even having the fixed radiotap header part */ 1396 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1397 goto fail; /* too short to be possibly valid */ 1398 1399 /* is it a header version we can trust to find length from? */ 1400 if (unlikely(prthdr->it_version)) 1401 goto fail; /* only version 0 is supported */ 1402 1403 /* then there must be a radiotap header with a length we can use */ 1404 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1405 1406 /* does the skb contain enough to deliver on the alleged length? */ 1407 if (unlikely(skb->len < len_rthdr)) 1408 goto fail; /* skb too short for claimed rt header extent */ 1409 1410 skb->dev = local->mdev; 1411 1412 /* needed because we set skb device to master */ 1413 skb->iif = dev->ifindex; 1414 1415 /* sometimes we do encrypt injected frames, will be fixed 1416 * up in radiotap parser if not wanted */ 1417 skb->do_not_encrypt = 0; 1418 1419 /* 1420 * fix up the pointers accounting for the radiotap 1421 * header still being in there. We are being given 1422 * a precooked IEEE80211 header so no need for 1423 * normal processing 1424 */ 1425 skb_set_mac_header(skb, len_rthdr); 1426 /* 1427 * these are just fixed to the end of the rt area since we 1428 * don't have any better information and at this point, nobody cares 1429 */ 1430 skb_set_network_header(skb, len_rthdr); 1431 skb_set_transport_header(skb, len_rthdr); 1432 1433 /* pass the radiotap header up to the next stage intact */ 1434 dev_queue_xmit(skb); 1435 return NETDEV_TX_OK; 1436 1437 fail: 1438 dev_kfree_skb(skb); 1439 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1440 } 1441 1442 /** 1443 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1444 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1445 * @skb: packet to be sent 1446 * @dev: incoming interface 1447 * 1448 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1449 * not be freed, and caller is responsible for either retrying later or freeing 1450 * skb). 1451 * 1452 * This function takes in an Ethernet header and encapsulates it with suitable 1453 * IEEE 802.11 header based on which interface the packet is coming in. The 1454 * encapsulated packet will then be passed to master interface, wlan#.11, for 1455 * transmission (through low-level driver). 1456 */ 1457 int ieee80211_subif_start_xmit(struct sk_buff *skb, 1458 struct net_device *dev) 1459 { 1460 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1461 struct ieee80211_local *local = sdata->local; 1462 int ret = 1, head_need; 1463 u16 ethertype, hdrlen, meshhdrlen = 0; 1464 __le16 fc; 1465 struct ieee80211_hdr hdr; 1466 struct ieee80211s_hdr mesh_hdr; 1467 const u8 *encaps_data; 1468 int encaps_len, skip_header_bytes; 1469 int nh_pos, h_pos; 1470 struct sta_info *sta; 1471 u32 sta_flags = 0; 1472 1473 if (unlikely(skb->len < ETH_HLEN)) { 1474 ret = 0; 1475 goto fail; 1476 } 1477 1478 if (!(local->hw.flags & IEEE80211_HW_NO_STACK_DYNAMIC_PS) && 1479 local->dynamic_ps_timeout > 0) { 1480 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 1481 ieee80211_stop_queues_by_reason(&local->hw, 1482 IEEE80211_QUEUE_STOP_REASON_PS); 1483 queue_work(local->hw.workqueue, 1484 &local->dynamic_ps_disable_work); 1485 } 1486 1487 mod_timer(&local->dynamic_ps_timer, jiffies + 1488 msecs_to_jiffies(local->dynamic_ps_timeout)); 1489 } 1490 1491 nh_pos = skb_network_header(skb) - skb->data; 1492 h_pos = skb_transport_header(skb) - skb->data; 1493 1494 /* convert Ethernet header to proper 802.11 header (based on 1495 * operation mode) */ 1496 ethertype = (skb->data[12] << 8) | skb->data[13]; 1497 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1498 1499 switch (sdata->vif.type) { 1500 case NL80211_IFTYPE_AP: 1501 case NL80211_IFTYPE_AP_VLAN: 1502 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1503 /* DA BSSID SA */ 1504 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1505 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1506 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1507 hdrlen = 24; 1508 break; 1509 case NL80211_IFTYPE_WDS: 1510 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1511 /* RA TA DA SA */ 1512 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1513 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1514 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1515 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1516 hdrlen = 30; 1517 break; 1518 #ifdef CONFIG_MAC80211_MESH 1519 case NL80211_IFTYPE_MESH_POINT: 1520 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1521 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1522 /* Do not send frames with mesh_ttl == 0 */ 1523 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1524 ret = 0; 1525 goto fail; 1526 } 1527 memset(&mesh_hdr, 0, sizeof(mesh_hdr)); 1528 1529 if (compare_ether_addr(dev->dev_addr, 1530 skb->data + ETH_ALEN) == 0) { 1531 /* RA TA DA SA */ 1532 memset(hdr.addr1, 0, ETH_ALEN); 1533 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1534 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1535 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1536 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata); 1537 } else { 1538 /* packet from other interface */ 1539 struct mesh_path *mppath; 1540 1541 memset(hdr.addr1, 0, ETH_ALEN); 1542 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN); 1543 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN); 1544 1545 if (is_multicast_ether_addr(skb->data)) 1546 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1547 else { 1548 rcu_read_lock(); 1549 mppath = mpp_path_lookup(skb->data, sdata); 1550 if (mppath) 1551 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN); 1552 else 1553 memset(hdr.addr3, 0xff, ETH_ALEN); 1554 rcu_read_unlock(); 1555 } 1556 1557 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6; 1558 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL; 1559 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum); 1560 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN); 1561 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN); 1562 sdata->u.mesh.mesh_seqnum++; 1563 meshhdrlen = 18; 1564 } 1565 hdrlen = 30; 1566 break; 1567 #endif 1568 case NL80211_IFTYPE_STATION: 1569 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1570 /* BSSID SA DA */ 1571 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN); 1572 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1573 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1574 hdrlen = 24; 1575 break; 1576 case NL80211_IFTYPE_ADHOC: 1577 /* DA SA BSSID */ 1578 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1579 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1580 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN); 1581 hdrlen = 24; 1582 break; 1583 default: 1584 ret = 0; 1585 goto fail; 1586 } 1587 1588 /* 1589 * There's no need to try to look up the destination 1590 * if it is a multicast address (which can only happen 1591 * in AP mode) 1592 */ 1593 if (!is_multicast_ether_addr(hdr.addr1)) { 1594 rcu_read_lock(); 1595 sta = sta_info_get(local, hdr.addr1); 1596 if (sta) 1597 sta_flags = get_sta_flags(sta); 1598 rcu_read_unlock(); 1599 } 1600 1601 /* receiver and we are QoS enabled, use a QoS type frame */ 1602 if (sta_flags & WLAN_STA_WME && 1603 ieee80211_num_regular_queues(&local->hw) >= 4) { 1604 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1605 hdrlen += 2; 1606 } 1607 1608 /* 1609 * Drop unicast frames to unauthorised stations unless they are 1610 * EAPOL frames from the local station. 1611 */ 1612 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1613 unlikely(!is_multicast_ether_addr(hdr.addr1) && 1614 !(sta_flags & WLAN_STA_AUTHORIZED) && 1615 !(ethertype == ETH_P_PAE && 1616 compare_ether_addr(dev->dev_addr, 1617 skb->data + ETH_ALEN) == 0))) { 1618 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1619 if (net_ratelimit()) 1620 printk(KERN_DEBUG "%s: dropped frame to %pM" 1621 " (unauthorized port)\n", dev->name, 1622 hdr.addr1); 1623 #endif 1624 1625 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1626 1627 ret = 0; 1628 goto fail; 1629 } 1630 1631 hdr.frame_control = fc; 1632 hdr.duration_id = 0; 1633 hdr.seq_ctrl = 0; 1634 1635 skip_header_bytes = ETH_HLEN; 1636 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 1637 encaps_data = bridge_tunnel_header; 1638 encaps_len = sizeof(bridge_tunnel_header); 1639 skip_header_bytes -= 2; 1640 } else if (ethertype >= 0x600) { 1641 encaps_data = rfc1042_header; 1642 encaps_len = sizeof(rfc1042_header); 1643 skip_header_bytes -= 2; 1644 } else { 1645 encaps_data = NULL; 1646 encaps_len = 0; 1647 } 1648 1649 skb_pull(skb, skip_header_bytes); 1650 nh_pos -= skip_header_bytes; 1651 h_pos -= skip_header_bytes; 1652 1653 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 1654 1655 /* 1656 * So we need to modify the skb header and hence need a copy of 1657 * that. The head_need variable above doesn't, so far, include 1658 * the needed header space that we don't need right away. If we 1659 * can, then we don't reallocate right now but only after the 1660 * frame arrives at the master device (if it does...) 1661 * 1662 * If we cannot, however, then we will reallocate to include all 1663 * the ever needed space. Also, if we need to reallocate it anyway, 1664 * make it big enough for everything we may ever need. 1665 */ 1666 1667 if (head_need > 0 || skb_cloned(skb)) { 1668 head_need += IEEE80211_ENCRYPT_HEADROOM; 1669 head_need += local->tx_headroom; 1670 head_need = max_t(int, 0, head_need); 1671 if (ieee80211_skb_resize(local, skb, head_need, true)) 1672 goto fail; 1673 } 1674 1675 if (encaps_data) { 1676 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 1677 nh_pos += encaps_len; 1678 h_pos += encaps_len; 1679 } 1680 1681 if (meshhdrlen > 0) { 1682 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 1683 nh_pos += meshhdrlen; 1684 h_pos += meshhdrlen; 1685 } 1686 1687 if (ieee80211_is_data_qos(fc)) { 1688 __le16 *qos_control; 1689 1690 qos_control = (__le16*) skb_push(skb, 2); 1691 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 1692 /* 1693 * Maybe we could actually set some fields here, for now just 1694 * initialise to zero to indicate no special operation. 1695 */ 1696 *qos_control = 0; 1697 } else 1698 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 1699 1700 nh_pos += hdrlen; 1701 h_pos += hdrlen; 1702 1703 skb->iif = dev->ifindex; 1704 1705 skb->dev = local->mdev; 1706 dev->stats.tx_packets++; 1707 dev->stats.tx_bytes += skb->len; 1708 1709 /* Update skb pointers to various headers since this modified frame 1710 * is going to go through Linux networking code that may potentially 1711 * need things like pointer to IP header. */ 1712 skb_set_mac_header(skb, 0); 1713 skb_set_network_header(skb, nh_pos); 1714 skb_set_transport_header(skb, h_pos); 1715 1716 dev->trans_start = jiffies; 1717 dev_queue_xmit(skb); 1718 1719 return 0; 1720 1721 fail: 1722 if (!ret) 1723 dev_kfree_skb(skb); 1724 1725 return ret; 1726 } 1727 1728 1729 /* 1730 * ieee80211_clear_tx_pending may not be called in a context where 1731 * it is possible that it packets could come in again. 1732 */ 1733 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 1734 { 1735 int i, j; 1736 struct ieee80211_tx_stored_packet *store; 1737 1738 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1739 if (!test_bit(i, local->queues_pending)) 1740 continue; 1741 store = &local->pending_packet[i]; 1742 kfree_skb(store->skb); 1743 for (j = 0; j < store->num_extra_frag; j++) 1744 kfree_skb(store->extra_frag[j]); 1745 kfree(store->extra_frag); 1746 clear_bit(i, local->queues_pending); 1747 } 1748 } 1749 1750 /* 1751 * Transmit all pending packets. Called from tasklet, locks master device 1752 * TX lock so that no new packets can come in. 1753 */ 1754 void ieee80211_tx_pending(unsigned long data) 1755 { 1756 struct ieee80211_local *local = (struct ieee80211_local *)data; 1757 struct net_device *dev = local->mdev; 1758 struct ieee80211_tx_stored_packet *store; 1759 struct ieee80211_tx_data tx; 1760 int i, ret; 1761 1762 netif_tx_lock_bh(dev); 1763 for (i = 0; i < ieee80211_num_regular_queues(&local->hw); i++) { 1764 /* Check that this queue is ok */ 1765 if (__netif_subqueue_stopped(local->mdev, i) && 1766 !test_bit(i, local->queues_pending_run)) 1767 continue; 1768 1769 if (!test_bit(i, local->queues_pending)) { 1770 clear_bit(i, local->queues_pending_run); 1771 ieee80211_wake_queue(&local->hw, i); 1772 continue; 1773 } 1774 1775 clear_bit(i, local->queues_pending_run); 1776 netif_start_subqueue(local->mdev, i); 1777 1778 store = &local->pending_packet[i]; 1779 tx.extra_frag = store->extra_frag; 1780 tx.num_extra_frag = store->num_extra_frag; 1781 tx.flags = 0; 1782 ret = __ieee80211_tx(local, store->skb, &tx); 1783 if (ret) { 1784 if (ret == IEEE80211_TX_FRAG_AGAIN) 1785 store->skb = NULL; 1786 } else { 1787 clear_bit(i, local->queues_pending); 1788 ieee80211_wake_queue(&local->hw, i); 1789 } 1790 } 1791 netif_tx_unlock_bh(dev); 1792 } 1793 1794 /* functions for drivers to get certain frames */ 1795 1796 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 1797 struct sk_buff *skb, 1798 struct beacon_data *beacon) 1799 { 1800 u8 *pos, *tim; 1801 int aid0 = 0; 1802 int i, have_bits = 0, n1, n2; 1803 1804 /* Generate bitmap for TIM only if there are any STAs in power save 1805 * mode. */ 1806 if (atomic_read(&bss->num_sta_ps) > 0) 1807 /* in the hope that this is faster than 1808 * checking byte-for-byte */ 1809 have_bits = !bitmap_empty((unsigned long*)bss->tim, 1810 IEEE80211_MAX_AID+1); 1811 1812 if (bss->dtim_count == 0) 1813 bss->dtim_count = beacon->dtim_period - 1; 1814 else 1815 bss->dtim_count--; 1816 1817 tim = pos = (u8 *) skb_put(skb, 6); 1818 *pos++ = WLAN_EID_TIM; 1819 *pos++ = 4; 1820 *pos++ = bss->dtim_count; 1821 *pos++ = beacon->dtim_period; 1822 1823 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 1824 aid0 = 1; 1825 1826 if (have_bits) { 1827 /* Find largest even number N1 so that bits numbered 1 through 1828 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 1829 * (N2 + 1) x 8 through 2007 are 0. */ 1830 n1 = 0; 1831 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 1832 if (bss->tim[i]) { 1833 n1 = i & 0xfe; 1834 break; 1835 } 1836 } 1837 n2 = n1; 1838 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 1839 if (bss->tim[i]) { 1840 n2 = i; 1841 break; 1842 } 1843 } 1844 1845 /* Bitmap control */ 1846 *pos++ = n1 | aid0; 1847 /* Part Virt Bitmap */ 1848 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 1849 1850 tim[1] = n2 - n1 + 4; 1851 skb_put(skb, n2 - n1); 1852 } else { 1853 *pos++ = aid0; /* Bitmap control */ 1854 *pos++ = 0; /* Part Virt Bitmap */ 1855 } 1856 } 1857 1858 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw, 1859 struct ieee80211_vif *vif) 1860 { 1861 struct ieee80211_local *local = hw_to_local(hw); 1862 struct sk_buff *skb = NULL; 1863 struct ieee80211_tx_info *info; 1864 struct ieee80211_sub_if_data *sdata = NULL; 1865 struct ieee80211_if_ap *ap = NULL; 1866 struct ieee80211_if_sta *ifsta = NULL; 1867 struct beacon_data *beacon; 1868 struct ieee80211_supported_band *sband; 1869 enum ieee80211_band band = local->hw.conf.channel->band; 1870 1871 sband = local->hw.wiphy->bands[band]; 1872 1873 rcu_read_lock(); 1874 1875 sdata = vif_to_sdata(vif); 1876 1877 if (sdata->vif.type == NL80211_IFTYPE_AP) { 1878 ap = &sdata->u.ap; 1879 beacon = rcu_dereference(ap->beacon); 1880 if (ap && beacon) { 1881 /* 1882 * headroom, head length, 1883 * tail length and maximum TIM length 1884 */ 1885 skb = dev_alloc_skb(local->tx_headroom + 1886 beacon->head_len + 1887 beacon->tail_len + 256); 1888 if (!skb) 1889 goto out; 1890 1891 skb_reserve(skb, local->tx_headroom); 1892 memcpy(skb_put(skb, beacon->head_len), beacon->head, 1893 beacon->head_len); 1894 1895 /* 1896 * Not very nice, but we want to allow the driver to call 1897 * ieee80211_beacon_get() as a response to the set_tim() 1898 * callback. That, however, is already invoked under the 1899 * sta_lock to guarantee consistent and race-free update 1900 * of the tim bitmap in mac80211 and the driver. 1901 */ 1902 if (local->tim_in_locked_section) { 1903 ieee80211_beacon_add_tim(ap, skb, beacon); 1904 } else { 1905 unsigned long flags; 1906 1907 spin_lock_irqsave(&local->sta_lock, flags); 1908 ieee80211_beacon_add_tim(ap, skb, beacon); 1909 spin_unlock_irqrestore(&local->sta_lock, flags); 1910 } 1911 1912 if (beacon->tail) 1913 memcpy(skb_put(skb, beacon->tail_len), 1914 beacon->tail, beacon->tail_len); 1915 } else 1916 goto out; 1917 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1918 struct ieee80211_hdr *hdr; 1919 ifsta = &sdata->u.sta; 1920 1921 if (!ifsta->probe_resp) 1922 goto out; 1923 1924 skb = skb_copy(ifsta->probe_resp, GFP_ATOMIC); 1925 if (!skb) 1926 goto out; 1927 1928 hdr = (struct ieee80211_hdr *) skb->data; 1929 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 1930 IEEE80211_STYPE_BEACON); 1931 1932 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 1933 struct ieee80211_mgmt *mgmt; 1934 u8 *pos; 1935 1936 /* headroom, head length, tail length and maximum TIM length */ 1937 skb = dev_alloc_skb(local->tx_headroom + 400); 1938 if (!skb) 1939 goto out; 1940 1941 skb_reserve(skb, local->hw.extra_tx_headroom); 1942 mgmt = (struct ieee80211_mgmt *) 1943 skb_put(skb, 24 + sizeof(mgmt->u.beacon)); 1944 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); 1945 mgmt->frame_control = 1946 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 1947 memset(mgmt->da, 0xff, ETH_ALEN); 1948 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN); 1949 /* BSSID is left zeroed, wildcard value */ 1950 mgmt->u.beacon.beacon_int = 1951 cpu_to_le16(local->hw.conf.beacon_int); 1952 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ 1953 1954 pos = skb_put(skb, 2); 1955 *pos++ = WLAN_EID_SSID; 1956 *pos++ = 0x0; 1957 1958 mesh_mgmt_ies_add(skb, sdata); 1959 } else { 1960 WARN_ON(1); 1961 goto out; 1962 } 1963 1964 info = IEEE80211_SKB_CB(skb); 1965 1966 skb->do_not_encrypt = 1; 1967 1968 info->band = band; 1969 /* 1970 * XXX: For now, always use the lowest rate 1971 */ 1972 info->control.rates[0].idx = 0; 1973 info->control.rates[0].count = 1; 1974 info->control.rates[1].idx = -1; 1975 info->control.rates[2].idx = -1; 1976 info->control.rates[3].idx = -1; 1977 info->control.rates[4].idx = -1; 1978 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 1979 1980 info->control.vif = vif; 1981 1982 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1983 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1984 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 1985 out: 1986 rcu_read_unlock(); 1987 return skb; 1988 } 1989 EXPORT_SYMBOL(ieee80211_beacon_get); 1990 1991 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 1992 const void *frame, size_t frame_len, 1993 const struct ieee80211_tx_info *frame_txctl, 1994 struct ieee80211_rts *rts) 1995 { 1996 const struct ieee80211_hdr *hdr = frame; 1997 1998 rts->frame_control = 1999 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2000 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2001 frame_txctl); 2002 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2003 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2004 } 2005 EXPORT_SYMBOL(ieee80211_rts_get); 2006 2007 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2008 const void *frame, size_t frame_len, 2009 const struct ieee80211_tx_info *frame_txctl, 2010 struct ieee80211_cts *cts) 2011 { 2012 const struct ieee80211_hdr *hdr = frame; 2013 2014 cts->frame_control = 2015 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2016 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2017 frame_len, frame_txctl); 2018 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2019 } 2020 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2021 2022 struct sk_buff * 2023 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2024 struct ieee80211_vif *vif) 2025 { 2026 struct ieee80211_local *local = hw_to_local(hw); 2027 struct sk_buff *skb = NULL; 2028 struct sta_info *sta; 2029 struct ieee80211_tx_data tx; 2030 struct ieee80211_sub_if_data *sdata; 2031 struct ieee80211_if_ap *bss = NULL; 2032 struct beacon_data *beacon; 2033 struct ieee80211_tx_info *info; 2034 2035 sdata = vif_to_sdata(vif); 2036 bss = &sdata->u.ap; 2037 2038 if (!bss) 2039 return NULL; 2040 2041 rcu_read_lock(); 2042 beacon = rcu_dereference(bss->beacon); 2043 2044 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2045 goto out; 2046 2047 if (bss->dtim_count != 0) 2048 goto out; /* send buffered bc/mc only after DTIM beacon */ 2049 2050 while (1) { 2051 skb = skb_dequeue(&bss->ps_bc_buf); 2052 if (!skb) 2053 goto out; 2054 local->total_ps_buffered--; 2055 2056 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2057 struct ieee80211_hdr *hdr = 2058 (struct ieee80211_hdr *) skb->data; 2059 /* more buffered multicast/broadcast frames ==> set 2060 * MoreData flag in IEEE 802.11 header to inform PS 2061 * STAs */ 2062 hdr->frame_control |= 2063 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2064 } 2065 2066 if (!ieee80211_tx_prepare(local, &tx, skb)) 2067 break; 2068 dev_kfree_skb_any(skb); 2069 } 2070 2071 info = IEEE80211_SKB_CB(skb); 2072 2073 sta = tx.sta; 2074 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2075 tx.channel = local->hw.conf.channel; 2076 info->band = tx.channel->band; 2077 2078 if (invoke_tx_handlers(&tx)) 2079 skb = NULL; 2080 out: 2081 rcu_read_unlock(); 2082 2083 return skb; 2084 } 2085 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2086