xref: /linux/net/mac80211/tkip.c (revision d524dac9279b6a41ffdf7ff7958c577f2e387db6)
1 /*
2  * Copyright 2002-2004, Instant802 Networks, Inc.
3  * Copyright 2005, Devicescape Software, Inc.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  */
9 #include <linux/kernel.h>
10 #include <linux/bitops.h>
11 #include <linux/types.h>
12 #include <linux/netdevice.h>
13 #include <asm/unaligned.h>
14 
15 #include <net/mac80211.h>
16 #include "driver-ops.h"
17 #include "key.h"
18 #include "tkip.h"
19 #include "wep.h"
20 
21 #define PHASE1_LOOP_COUNT 8
22 
23 /*
24  * 2-byte by 2-byte subset of the full AES S-box table; second part of this
25  * table is identical to first part but byte-swapped
26  */
27 static const u16 tkip_sbox[256] =
28 {
29 	0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
30 	0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
31 	0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
32 	0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
33 	0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
34 	0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
35 	0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
36 	0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
37 	0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
38 	0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
39 	0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
40 	0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
41 	0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
42 	0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
43 	0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
44 	0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
45 	0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
46 	0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
47 	0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
48 	0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
49 	0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
50 	0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
51 	0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
52 	0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
53 	0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
54 	0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
55 	0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
56 	0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
57 	0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
58 	0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
59 	0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
60 	0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
61 };
62 
63 static u16 tkipS(u16 val)
64 {
65 	return tkip_sbox[val & 0xff] ^ swab16(tkip_sbox[val >> 8]);
66 }
67 
68 static u8 *write_tkip_iv(u8 *pos, u16 iv16)
69 {
70 	*pos++ = iv16 >> 8;
71 	*pos++ = ((iv16 >> 8) | 0x20) & 0x7f;
72 	*pos++ = iv16 & 0xFF;
73 	return pos;
74 }
75 
76 /*
77  * P1K := Phase1(TA, TK, TSC)
78  * TA = transmitter address (48 bits)
79  * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
80  * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
81  * P1K: 80 bits
82  */
83 static void tkip_mixing_phase1(const u8 *tk, struct tkip_ctx *ctx,
84 			       const u8 *ta, u32 tsc_IV32)
85 {
86 	int i, j;
87 	u16 *p1k = ctx->p1k;
88 
89 	p1k[0] = tsc_IV32 & 0xFFFF;
90 	p1k[1] = tsc_IV32 >> 16;
91 	p1k[2] = get_unaligned_le16(ta + 0);
92 	p1k[3] = get_unaligned_le16(ta + 2);
93 	p1k[4] = get_unaligned_le16(ta + 4);
94 
95 	for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
96 		j = 2 * (i & 1);
97 		p1k[0] += tkipS(p1k[4] ^ get_unaligned_le16(tk + 0 + j));
98 		p1k[1] += tkipS(p1k[0] ^ get_unaligned_le16(tk + 4 + j));
99 		p1k[2] += tkipS(p1k[1] ^ get_unaligned_le16(tk + 8 + j));
100 		p1k[3] += tkipS(p1k[2] ^ get_unaligned_le16(tk + 12 + j));
101 		p1k[4] += tkipS(p1k[3] ^ get_unaligned_le16(tk + 0 + j)) + i;
102 	}
103 	ctx->state = TKIP_STATE_PHASE1_DONE;
104 }
105 
106 static void tkip_mixing_phase2(const u8 *tk, struct tkip_ctx *ctx,
107 			       u16 tsc_IV16, u8 *rc4key)
108 {
109 	u16 ppk[6];
110 	const u16 *p1k = ctx->p1k;
111 	int i;
112 
113 	ppk[0] = p1k[0];
114 	ppk[1] = p1k[1];
115 	ppk[2] = p1k[2];
116 	ppk[3] = p1k[3];
117 	ppk[4] = p1k[4];
118 	ppk[5] = p1k[4] + tsc_IV16;
119 
120 	ppk[0] += tkipS(ppk[5] ^ get_unaligned_le16(tk + 0));
121 	ppk[1] += tkipS(ppk[0] ^ get_unaligned_le16(tk + 2));
122 	ppk[2] += tkipS(ppk[1] ^ get_unaligned_le16(tk + 4));
123 	ppk[3] += tkipS(ppk[2] ^ get_unaligned_le16(tk + 6));
124 	ppk[4] += tkipS(ppk[3] ^ get_unaligned_le16(tk + 8));
125 	ppk[5] += tkipS(ppk[4] ^ get_unaligned_le16(tk + 10));
126 	ppk[0] += ror16(ppk[5] ^ get_unaligned_le16(tk + 12), 1);
127 	ppk[1] += ror16(ppk[0] ^ get_unaligned_le16(tk + 14), 1);
128 	ppk[2] += ror16(ppk[1], 1);
129 	ppk[3] += ror16(ppk[2], 1);
130 	ppk[4] += ror16(ppk[3], 1);
131 	ppk[5] += ror16(ppk[4], 1);
132 
133 	rc4key = write_tkip_iv(rc4key, tsc_IV16);
134 	*rc4key++ = ((ppk[5] ^ get_unaligned_le16(tk)) >> 1) & 0xFF;
135 
136 	for (i = 0; i < 6; i++)
137 		put_unaligned_le16(ppk[i], rc4key + 2 * i);
138 }
139 
140 /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
141  * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
142  * the packet payload). */
143 u8 *ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key, u16 iv16)
144 {
145 	pos = write_tkip_iv(pos, iv16);
146 	*pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
147 	put_unaligned_le32(key->u.tkip.tx.iv32, pos);
148 	return pos + 4;
149 }
150 
151 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
152 			struct sk_buff *skb, enum ieee80211_tkip_key_type type,
153 			u8 *outkey)
154 {
155 	struct ieee80211_key *key = (struct ieee80211_key *)
156 			container_of(keyconf, struct ieee80211_key, conf);
157 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
158 	u8 *data;
159 	const u8 *tk;
160 	struct tkip_ctx *ctx;
161 	u16 iv16;
162 	u32 iv32;
163 
164 	data = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
165 	iv16 = data[2] | (data[0] << 8);
166 	iv32 = get_unaligned_le32(&data[4]);
167 
168 	tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
169 	ctx = &key->u.tkip.tx;
170 
171 #ifdef CONFIG_MAC80211_TKIP_DEBUG
172 	printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
173 			iv16, iv32);
174 
175 	if (iv32 != ctx->iv32) {
176 		printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
177 			iv32, ctx->iv32);
178 		printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
179 			"fragmented packet\n");
180 	}
181 #endif
182 
183 	/* Update the p1k only when the iv16 in the packet wraps around, this
184 	 * might occur after the wrap around of iv16 in the key in case of
185 	 * fragmented packets. */
186 	if (iv16 == 0 || ctx->state == TKIP_STATE_NOT_INIT)
187 		tkip_mixing_phase1(tk, ctx, hdr->addr2, iv32);
188 
189 	if (type == IEEE80211_TKIP_P1_KEY) {
190 		memcpy(outkey, ctx->p1k, sizeof(u16) * 5);
191 		return;
192 	}
193 
194 	tkip_mixing_phase2(tk, ctx, iv16, outkey);
195 }
196 EXPORT_SYMBOL(ieee80211_get_tkip_key);
197 
198 /*
199  * Encrypt packet payload with TKIP using @key. @pos is a pointer to the
200  * beginning of the buffer containing payload. This payload must include
201  * the IV/Ext.IV and space for (taildroom) four octets for ICV.
202  * @payload_len is the length of payload (_not_ including IV/ICV length).
203  * @ta is the transmitter addresses.
204  */
205 int ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
206 				struct ieee80211_key *key,
207 				u8 *pos, size_t payload_len, u8 *ta)
208 {
209 	u8 rc4key[16];
210 	struct tkip_ctx *ctx = &key->u.tkip.tx;
211 	const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
212 
213 	/* Calculate per-packet key */
214 	if (ctx->iv16 == 0 || ctx->state == TKIP_STATE_NOT_INIT)
215 		tkip_mixing_phase1(tk, ctx, ta, ctx->iv32);
216 
217 	tkip_mixing_phase2(tk, ctx, ctx->iv16, rc4key);
218 
219 	return ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
220 }
221 
222 /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
223  * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
224  * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
225  * length of payload, including IV, Ext. IV, MIC, ICV.  */
226 int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
227 				struct ieee80211_key *key,
228 				u8 *payload, size_t payload_len, u8 *ta,
229 				u8 *ra, int only_iv, int queue,
230 				u32 *out_iv32, u16 *out_iv16)
231 {
232 	u32 iv32;
233 	u32 iv16;
234 	u8 rc4key[16], keyid, *pos = payload;
235 	int res;
236 	const u8 *tk = &key->conf.key[NL80211_TKIP_DATA_OFFSET_ENCR_KEY];
237 
238 	if (payload_len < 12)
239 		return -1;
240 
241 	iv16 = (pos[0] << 8) | pos[2];
242 	keyid = pos[3];
243 	iv32 = get_unaligned_le32(pos + 4);
244 	pos += 8;
245 #ifdef CONFIG_MAC80211_TKIP_DEBUG
246 	{
247 		int i;
248 		printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
249 		for (i = 0; i < payload_len; i++)
250 			printk(" %02x", payload[i]);
251 		printk("\n");
252 		printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
253 		       iv16, iv32);
254 	}
255 #endif
256 
257 	if (!(keyid & (1 << 5)))
258 		return TKIP_DECRYPT_NO_EXT_IV;
259 
260 	if ((keyid >> 6) != key->conf.keyidx)
261 		return TKIP_DECRYPT_INVALID_KEYIDX;
262 
263 	if (key->u.tkip.rx[queue].state != TKIP_STATE_NOT_INIT &&
264 	    (iv32 < key->u.tkip.rx[queue].iv32 ||
265 	     (iv32 == key->u.tkip.rx[queue].iv32 &&
266 	      iv16 <= key->u.tkip.rx[queue].iv16))) {
267 #ifdef CONFIG_MAC80211_TKIP_DEBUG
268 		printk(KERN_DEBUG "TKIP replay detected for RX frame from "
269 		       "%pM (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
270 		       ta,
271 		       iv32, iv16, key->u.tkip.rx[queue].iv32,
272 		       key->u.tkip.rx[queue].iv16);
273 #endif
274 		return TKIP_DECRYPT_REPLAY;
275 	}
276 
277 	if (only_iv) {
278 		res = TKIP_DECRYPT_OK;
279 		key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
280 		goto done;
281 	}
282 
283 	if (key->u.tkip.rx[queue].state == TKIP_STATE_NOT_INIT ||
284 	    key->u.tkip.rx[queue].iv32 != iv32) {
285 		/* IV16 wrapped around - perform TKIP phase 1 */
286 		tkip_mixing_phase1(tk, &key->u.tkip.rx[queue], ta, iv32);
287 #ifdef CONFIG_MAC80211_TKIP_DEBUG
288 		{
289 			int i;
290 			u8 key_offset = NL80211_TKIP_DATA_OFFSET_ENCR_KEY;
291 			printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%pM"
292 			       " TK=", ta);
293 			for (i = 0; i < 16; i++)
294 				printk("%02x ",
295 				       key->conf.key[key_offset + i]);
296 			printk("\n");
297 			printk(KERN_DEBUG "TKIP decrypt: P1K=");
298 			for (i = 0; i < 5; i++)
299 				printk("%04x ", key->u.tkip.rx[queue].p1k[i]);
300 			printk("\n");
301 		}
302 #endif
303 	}
304 	if (key->local->ops->update_tkip_key &&
305 	    key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE &&
306 	    key->u.tkip.rx[queue].state != TKIP_STATE_PHASE1_HW_UPLOADED) {
307 		struct ieee80211_sub_if_data *sdata = key->sdata;
308 
309 		if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
310 			sdata = container_of(key->sdata->bss,
311 					struct ieee80211_sub_if_data, u.ap);
312 		drv_update_tkip_key(key->local, sdata, &key->conf, key->sta,
313 				iv32, key->u.tkip.rx[queue].p1k);
314 		key->u.tkip.rx[queue].state = TKIP_STATE_PHASE1_HW_UPLOADED;
315 	}
316 
317 	tkip_mixing_phase2(tk, &key->u.tkip.rx[queue], iv16, rc4key);
318 #ifdef CONFIG_MAC80211_TKIP_DEBUG
319 	{
320 		int i;
321 		printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
322 		for (i = 0; i < 16; i++)
323 			printk("%02x ", rc4key[i]);
324 		printk("\n");
325 	}
326 #endif
327 
328 	res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
329  done:
330 	if (res == TKIP_DECRYPT_OK) {
331 		/*
332 		 * Record previously received IV, will be copied into the
333 		 * key information after MIC verification. It is possible
334 		 * that we don't catch replays of fragments but that's ok
335 		 * because the Michael MIC verication will then fail.
336 		 */
337 		*out_iv32 = iv32;
338 		*out_iv16 = iv16;
339 	}
340 
341 	return res;
342 }
343