xref: /linux/net/mac80211/sta_info.c (revision fb2ac84f8acccdec644d26dfc8ba6554f30cd6c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 struct sta_link_alloc {
68 	struct link_sta_info info;
69 	struct ieee80211_link_sta sta;
70 	struct rcu_head rcu_head;
71 };
72 
73 static const struct rhashtable_params sta_rht_params = {
74 	.nelem_hint = 3, /* start small */
75 	.automatic_shrinking = true,
76 	.head_offset = offsetof(struct sta_info, hash_node),
77 	.key_offset = offsetof(struct sta_info, addr),
78 	.key_len = ETH_ALEN,
79 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
80 };
81 
82 static const struct rhashtable_params link_sta_rht_params = {
83 	.nelem_hint = 3, /* start small */
84 	.automatic_shrinking = true,
85 	.head_offset = offsetof(struct link_sta_info, link_hash_node),
86 	.key_offset = offsetof(struct link_sta_info, addr),
87 	.key_len = ETH_ALEN,
88 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
89 };
90 
91 /* Caller must hold local->sta_mtx */
92 static int sta_info_hash_del(struct ieee80211_local *local,
93 			     struct sta_info *sta)
94 {
95 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
96 			       sta_rht_params);
97 }
98 
99 static int link_sta_info_hash_add(struct ieee80211_local *local,
100 				  struct link_sta_info *link_sta)
101 {
102 	lockdep_assert_held(&local->sta_mtx);
103 	return rhltable_insert(&local->link_sta_hash,
104 			       &link_sta->link_hash_node,
105 			       link_sta_rht_params);
106 }
107 
108 static int link_sta_info_hash_del(struct ieee80211_local *local,
109 				  struct link_sta_info *link_sta)
110 {
111 	lockdep_assert_held(&local->sta_mtx);
112 	return rhltable_remove(&local->link_sta_hash,
113 			       &link_sta->link_hash_node,
114 			       link_sta_rht_params);
115 }
116 
117 static void __cleanup_single_sta(struct sta_info *sta)
118 {
119 	int ac, i;
120 	struct tid_ampdu_tx *tid_tx;
121 	struct ieee80211_sub_if_data *sdata = sta->sdata;
122 	struct ieee80211_local *local = sdata->local;
123 	struct ps_data *ps;
124 
125 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
126 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
127 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
128 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
129 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
130 			ps = &sdata->bss->ps;
131 		else if (ieee80211_vif_is_mesh(&sdata->vif))
132 			ps = &sdata->u.mesh.ps;
133 		else
134 			return;
135 
136 		clear_sta_flag(sta, WLAN_STA_PS_STA);
137 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
138 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
139 
140 		atomic_dec(&ps->num_sta_ps);
141 	}
142 
143 	if (sta->sta.txq[0]) {
144 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
145 			struct txq_info *txqi;
146 
147 			if (!sta->sta.txq[i])
148 				continue;
149 
150 			txqi = to_txq_info(sta->sta.txq[i]);
151 
152 			ieee80211_txq_purge(local, txqi);
153 		}
154 	}
155 
156 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
157 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
158 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
159 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
160 	}
161 
162 	if (ieee80211_vif_is_mesh(&sdata->vif))
163 		mesh_sta_cleanup(sta);
164 
165 	cancel_work_sync(&sta->drv_deliver_wk);
166 
167 	/*
168 	 * Destroy aggregation state here. It would be nice to wait for the
169 	 * driver to finish aggregation stop and then clean up, but for now
170 	 * drivers have to handle aggregation stop being requested, followed
171 	 * directly by station destruction.
172 	 */
173 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
174 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
175 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
176 		if (!tid_tx)
177 			continue;
178 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
179 		kfree(tid_tx);
180 	}
181 }
182 
183 static void cleanup_single_sta(struct sta_info *sta)
184 {
185 	struct ieee80211_sub_if_data *sdata = sta->sdata;
186 	struct ieee80211_local *local = sdata->local;
187 
188 	__cleanup_single_sta(sta);
189 	sta_info_free(local, sta);
190 }
191 
192 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
193 					 const u8 *addr)
194 {
195 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
196 }
197 
198 /* protected by RCU */
199 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
200 			      const u8 *addr)
201 {
202 	struct ieee80211_local *local = sdata->local;
203 	struct rhlist_head *tmp;
204 	struct sta_info *sta;
205 
206 	rcu_read_lock();
207 	for_each_sta_info(local, addr, sta, tmp) {
208 		if (sta->sdata == sdata) {
209 			rcu_read_unlock();
210 			/* this is safe as the caller must already hold
211 			 * another rcu read section or the mutex
212 			 */
213 			return sta;
214 		}
215 	}
216 	rcu_read_unlock();
217 	return NULL;
218 }
219 
220 /*
221  * Get sta info either from the specified interface
222  * or from one of its vlans
223  */
224 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
225 				  const u8 *addr)
226 {
227 	struct ieee80211_local *local = sdata->local;
228 	struct rhlist_head *tmp;
229 	struct sta_info *sta;
230 
231 	rcu_read_lock();
232 	for_each_sta_info(local, addr, sta, tmp) {
233 		if (sta->sdata == sdata ||
234 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
235 			rcu_read_unlock();
236 			/* this is safe as the caller must already hold
237 			 * another rcu read section or the mutex
238 			 */
239 			return sta;
240 		}
241 	}
242 	rcu_read_unlock();
243 	return NULL;
244 }
245 
246 struct rhlist_head *link_sta_info_hash_lookup(struct ieee80211_local *local,
247 					      const u8 *addr)
248 {
249 	return rhltable_lookup(&local->link_sta_hash, addr,
250 			       link_sta_rht_params);
251 }
252 
253 struct link_sta_info *
254 link_sta_info_get_bss(struct ieee80211_sub_if_data *sdata, const u8 *addr)
255 {
256 	struct ieee80211_local *local = sdata->local;
257 	struct rhlist_head *tmp;
258 	struct link_sta_info *link_sta;
259 
260 	rcu_read_lock();
261 	for_each_link_sta_info(local, addr, link_sta, tmp) {
262 		struct sta_info *sta = link_sta->sta;
263 
264 		if (sta->sdata == sdata ||
265 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
266 			rcu_read_unlock();
267 			/* this is safe as the caller must already hold
268 			 * another rcu read section or the mutex
269 			 */
270 			return link_sta;
271 		}
272 	}
273 	rcu_read_unlock();
274 	return NULL;
275 }
276 
277 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
278 				       const u8 *sta_addr, const u8 *vif_addr)
279 {
280 	struct rhlist_head *tmp;
281 	struct sta_info *sta;
282 
283 	for_each_sta_info(local, sta_addr, sta, tmp) {
284 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
285 			return sta;
286 	}
287 
288 	return NULL;
289 }
290 
291 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
292 				     int idx)
293 {
294 	struct ieee80211_local *local = sdata->local;
295 	struct sta_info *sta;
296 	int i = 0;
297 
298 	list_for_each_entry_rcu(sta, &local->sta_list, list,
299 				lockdep_is_held(&local->sta_mtx)) {
300 		if (sdata != sta->sdata)
301 			continue;
302 		if (i < idx) {
303 			++i;
304 			continue;
305 		}
306 		return sta;
307 	}
308 
309 	return NULL;
310 }
311 
312 static void sta_info_free_link(struct link_sta_info *link_sta)
313 {
314 	free_percpu(link_sta->pcpu_rx_stats);
315 }
316 
317 static void sta_remove_link(struct sta_info *sta, unsigned int link_id,
318 			    bool unhash)
319 {
320 	struct sta_link_alloc *alloc = NULL;
321 	struct link_sta_info *link_sta;
322 
323 	link_sta = rcu_dereference_protected(sta->link[link_id],
324 					     lockdep_is_held(&sta->local->sta_mtx));
325 
326 	if (WARN_ON(!link_sta))
327 		return;
328 
329 	if (unhash)
330 		link_sta_info_hash_del(sta->local, link_sta);
331 
332 	if (link_sta != &sta->deflink)
333 		alloc = container_of(link_sta, typeof(*alloc), info);
334 
335 	sta->sta.valid_links &= ~BIT(link_id);
336 	RCU_INIT_POINTER(sta->link[link_id], NULL);
337 	RCU_INIT_POINTER(sta->sta.link[link_id], NULL);
338 	if (alloc) {
339 		sta_info_free_link(&alloc->info);
340 		kfree_rcu(alloc, rcu_head);
341 	}
342 }
343 
344 /**
345  * sta_info_free - free STA
346  *
347  * @local: pointer to the global information
348  * @sta: STA info to free
349  *
350  * This function must undo everything done by sta_info_alloc()
351  * that may happen before sta_info_insert(). It may only be
352  * called when sta_info_insert() has not been attempted (and
353  * if that fails, the station is freed anyway.)
354  */
355 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
356 {
357 	int i;
358 
359 	for (i = 0; i < ARRAY_SIZE(sta->link); i++) {
360 		if (!(sta->sta.valid_links & BIT(i)))
361 			continue;
362 
363 		sta_remove_link(sta, i, false);
364 	}
365 
366 	/*
367 	 * If we had used sta_info_pre_move_state() then we might not
368 	 * have gone through the state transitions down again, so do
369 	 * it here now (and warn if it's inserted).
370 	 *
371 	 * This will clear state such as fast TX/RX that may have been
372 	 * allocated during state transitions.
373 	 */
374 	while (sta->sta_state > IEEE80211_STA_NONE) {
375 		int ret;
376 
377 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
378 
379 		ret = sta_info_move_state(sta, sta->sta_state - 1);
380 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
381 			break;
382 	}
383 
384 	if (sta->rate_ctrl)
385 		rate_control_free_sta(sta);
386 
387 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
388 
389 	if (sta->sta.txq[0])
390 		kfree(to_txq_info(sta->sta.txq[0]));
391 	kfree(rcu_dereference_raw(sta->sta.rates));
392 #ifdef CONFIG_MAC80211_MESH
393 	kfree(sta->mesh);
394 #endif
395 
396 	sta_info_free_link(&sta->deflink);
397 	kfree(sta);
398 }
399 
400 /* Caller must hold local->sta_mtx */
401 static int sta_info_hash_add(struct ieee80211_local *local,
402 			     struct sta_info *sta)
403 {
404 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
405 			       sta_rht_params);
406 }
407 
408 static void sta_deliver_ps_frames(struct work_struct *wk)
409 {
410 	struct sta_info *sta;
411 
412 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
413 
414 	if (sta->dead)
415 		return;
416 
417 	local_bh_disable();
418 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
419 		ieee80211_sta_ps_deliver_wakeup(sta);
420 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
421 		ieee80211_sta_ps_deliver_poll_response(sta);
422 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
423 		ieee80211_sta_ps_deliver_uapsd(sta);
424 	local_bh_enable();
425 }
426 
427 static int sta_prepare_rate_control(struct ieee80211_local *local,
428 				    struct sta_info *sta, gfp_t gfp)
429 {
430 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
431 		return 0;
432 
433 	sta->rate_ctrl = local->rate_ctrl;
434 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
435 						     sta, gfp);
436 	if (!sta->rate_ctrl_priv)
437 		return -ENOMEM;
438 
439 	return 0;
440 }
441 
442 static int sta_info_alloc_link(struct ieee80211_local *local,
443 			       struct link_sta_info *link_info,
444 			       gfp_t gfp)
445 {
446 	struct ieee80211_hw *hw = &local->hw;
447 	int i;
448 
449 	if (ieee80211_hw_check(hw, USES_RSS)) {
450 		link_info->pcpu_rx_stats =
451 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
452 		if (!link_info->pcpu_rx_stats)
453 			return -ENOMEM;
454 	}
455 
456 	link_info->rx_stats.last_rx = jiffies;
457 	u64_stats_init(&link_info->rx_stats.syncp);
458 
459 	ewma_signal_init(&link_info->rx_stats_avg.signal);
460 	ewma_avg_signal_init(&link_info->status_stats.avg_ack_signal);
461 	for (i = 0; i < ARRAY_SIZE(link_info->rx_stats_avg.chain_signal); i++)
462 		ewma_signal_init(&link_info->rx_stats_avg.chain_signal[i]);
463 
464 	return 0;
465 }
466 
467 static void sta_info_add_link(struct sta_info *sta,
468 			      unsigned int link_id,
469 			      struct link_sta_info *link_info,
470 			      struct ieee80211_link_sta *link_sta)
471 {
472 	link_info->sta = sta;
473 	link_info->link_id = link_id;
474 	link_info->pub = link_sta;
475 	rcu_assign_pointer(sta->link[link_id], link_info);
476 	rcu_assign_pointer(sta->sta.link[link_id], link_sta);
477 }
478 
479 static struct sta_info *
480 __sta_info_alloc(struct ieee80211_sub_if_data *sdata,
481 		 const u8 *addr, int link_id, const u8 *link_addr,
482 		 gfp_t gfp)
483 {
484 	struct ieee80211_local *local = sdata->local;
485 	struct ieee80211_hw *hw = &local->hw;
486 	struct sta_info *sta;
487 	int i;
488 
489 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
490 	if (!sta)
491 		return NULL;
492 
493 	sta->local = local;
494 	sta->sdata = sdata;
495 
496 	if (sta_info_alloc_link(local, &sta->deflink, gfp))
497 		goto free;
498 
499 	if (link_id >= 0) {
500 		sta_info_add_link(sta, link_id, &sta->deflink,
501 				  &sta->sta.deflink);
502 		sta->sta.valid_links = BIT(link_id);
503 	} else {
504 		sta_info_add_link(sta, 0, &sta->deflink, &sta->sta.deflink);
505 	}
506 
507 	spin_lock_init(&sta->lock);
508 	spin_lock_init(&sta->ps_lock);
509 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
510 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
511 	mutex_init(&sta->ampdu_mlme.mtx);
512 #ifdef CONFIG_MAC80211_MESH
513 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
514 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
515 		if (!sta->mesh)
516 			goto free;
517 		sta->mesh->plink_sta = sta;
518 		spin_lock_init(&sta->mesh->plink_lock);
519 		if (!sdata->u.mesh.user_mpm)
520 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
521 				    0);
522 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
523 	}
524 #endif
525 
526 	memcpy(sta->addr, addr, ETH_ALEN);
527 	memcpy(sta->sta.addr, addr, ETH_ALEN);
528 	memcpy(sta->deflink.addr, link_addr, ETH_ALEN);
529 	memcpy(sta->sta.deflink.addr, link_addr, ETH_ALEN);
530 	sta->sta.max_rx_aggregation_subframes =
531 		local->hw.max_rx_aggregation_subframes;
532 
533 	/* TODO link specific alloc and assignments for MLO Link STA */
534 
535 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
536 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
537 	 * references to is not NULL. To not use the initial Rx-only key
538 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
539 	 * which always will refer to a NULL key.
540 	 */
541 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
542 	sta->ptk_idx = INVALID_PTK_KEYIDX;
543 
544 
545 	ieee80211_init_frag_cache(&sta->frags);
546 
547 	sta->sta_state = IEEE80211_STA_NONE;
548 
549 	/* Mark TID as unreserved */
550 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
551 
552 	sta->last_connected = ktime_get_seconds();
553 
554 	if (local->ops->wake_tx_queue) {
555 		void *txq_data;
556 		int size = sizeof(struct txq_info) +
557 			   ALIGN(hw->txq_data_size, sizeof(void *));
558 
559 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
560 		if (!txq_data)
561 			goto free;
562 
563 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
564 			struct txq_info *txq = txq_data + i * size;
565 
566 			/* might not do anything for the bufferable MMPDU TXQ */
567 			ieee80211_txq_init(sdata, sta, txq, i);
568 		}
569 	}
570 
571 	if (sta_prepare_rate_control(local, sta, gfp))
572 		goto free_txq;
573 
574 	sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT;
575 
576 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
577 		skb_queue_head_init(&sta->ps_tx_buf[i]);
578 		skb_queue_head_init(&sta->tx_filtered[i]);
579 		sta->airtime[i].deficit = sta->airtime_weight;
580 		atomic_set(&sta->airtime[i].aql_tx_pending, 0);
581 		sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i];
582 		sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i];
583 	}
584 
585 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
586 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
587 
588 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
589 		u32 mandatory = 0;
590 		int r;
591 
592 		if (!hw->wiphy->bands[i])
593 			continue;
594 
595 		switch (i) {
596 		case NL80211_BAND_2GHZ:
597 		case NL80211_BAND_LC:
598 			/*
599 			 * We use both here, even if we cannot really know for
600 			 * sure the station will support both, but the only use
601 			 * for this is when we don't know anything yet and send
602 			 * management frames, and then we'll pick the lowest
603 			 * possible rate anyway.
604 			 * If we don't include _G here, we cannot find a rate
605 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
606 			 */
607 			mandatory = IEEE80211_RATE_MANDATORY_B |
608 				    IEEE80211_RATE_MANDATORY_G;
609 			break;
610 		case NL80211_BAND_5GHZ:
611 			mandatory = IEEE80211_RATE_MANDATORY_A;
612 			break;
613 		case NL80211_BAND_60GHZ:
614 			WARN_ON(1);
615 			mandatory = 0;
616 			break;
617 		}
618 
619 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
620 			struct ieee80211_rate *rate;
621 
622 			rate = &hw->wiphy->bands[i]->bitrates[r];
623 
624 			if (!(rate->flags & mandatory))
625 				continue;
626 			sta->sta.deflink.supp_rates[i] |= BIT(r);
627 		}
628 	}
629 
630 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
631 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
632 
633 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
634 	sta->cparams.target = MS2TIME(20);
635 	sta->cparams.interval = MS2TIME(100);
636 	sta->cparams.ecn = true;
637 	sta->cparams.ce_threshold_selector = 0;
638 	sta->cparams.ce_threshold_mask = 0;
639 
640 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
641 
642 	return sta;
643 
644 free_txq:
645 	if (sta->sta.txq[0])
646 		kfree(to_txq_info(sta->sta.txq[0]));
647 free:
648 	sta_info_free_link(&sta->deflink);
649 #ifdef CONFIG_MAC80211_MESH
650 	kfree(sta->mesh);
651 #endif
652 	kfree(sta);
653 	return NULL;
654 }
655 
656 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
657 				const u8 *addr, gfp_t gfp)
658 {
659 	return __sta_info_alloc(sdata, addr, -1, addr, gfp);
660 }
661 
662 struct sta_info *sta_info_alloc_with_link(struct ieee80211_sub_if_data *sdata,
663 					  const u8 *mld_addr,
664 					  unsigned int link_id,
665 					  const u8 *link_addr,
666 					  gfp_t gfp)
667 {
668 	return __sta_info_alloc(sdata, mld_addr, link_id, link_addr, gfp);
669 }
670 
671 static int sta_info_insert_check(struct sta_info *sta)
672 {
673 	struct ieee80211_sub_if_data *sdata = sta->sdata;
674 
675 	/*
676 	 * Can't be a WARN_ON because it can be triggered through a race:
677 	 * something inserts a STA (on one CPU) without holding the RTNL
678 	 * and another CPU turns off the net device.
679 	 */
680 	if (unlikely(!ieee80211_sdata_running(sdata)))
681 		return -ENETDOWN;
682 
683 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
684 		    !is_valid_ether_addr(sta->sta.addr)))
685 		return -EINVAL;
686 
687 	/* The RCU read lock is required by rhashtable due to
688 	 * asynchronous resize/rehash.  We also require the mutex
689 	 * for correctness.
690 	 */
691 	rcu_read_lock();
692 	lockdep_assert_held(&sdata->local->sta_mtx);
693 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
694 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
695 		rcu_read_unlock();
696 		return -ENOTUNIQ;
697 	}
698 	rcu_read_unlock();
699 
700 	return 0;
701 }
702 
703 static int sta_info_insert_drv_state(struct ieee80211_local *local,
704 				     struct ieee80211_sub_if_data *sdata,
705 				     struct sta_info *sta)
706 {
707 	enum ieee80211_sta_state state;
708 	int err = 0;
709 
710 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
711 		err = drv_sta_state(local, sdata, sta, state, state + 1);
712 		if (err)
713 			break;
714 	}
715 
716 	if (!err) {
717 		/*
718 		 * Drivers using legacy sta_add/sta_remove callbacks only
719 		 * get uploaded set to true after sta_add is called.
720 		 */
721 		if (!local->ops->sta_add)
722 			sta->uploaded = true;
723 		return 0;
724 	}
725 
726 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
727 		sdata_info(sdata,
728 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
729 			   sta->sta.addr, state + 1, err);
730 		err = 0;
731 	}
732 
733 	/* unwind on error */
734 	for (; state > IEEE80211_STA_NOTEXIST; state--)
735 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
736 
737 	return err;
738 }
739 
740 static void
741 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
742 {
743 	struct ieee80211_local *local = sdata->local;
744 	bool allow_p2p_go_ps = sdata->vif.p2p;
745 	struct sta_info *sta;
746 
747 	rcu_read_lock();
748 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
749 		if (sdata != sta->sdata ||
750 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
751 			continue;
752 		if (!sta->sta.support_p2p_ps) {
753 			allow_p2p_go_ps = false;
754 			break;
755 		}
756 	}
757 	rcu_read_unlock();
758 
759 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
760 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
761 		ieee80211_link_info_change_notify(sdata, &sdata->deflink,
762 						  BSS_CHANGED_P2P_PS);
763 	}
764 }
765 
766 /*
767  * should be called with sta_mtx locked
768  * this function replaces the mutex lock
769  * with a RCU lock
770  */
771 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
772 {
773 	struct ieee80211_local *local = sta->local;
774 	struct ieee80211_sub_if_data *sdata = sta->sdata;
775 	struct station_info *sinfo = NULL;
776 	int err = 0;
777 
778 	lockdep_assert_held(&local->sta_mtx);
779 
780 	/* check if STA exists already */
781 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
782 		err = -EEXIST;
783 		goto out_cleanup;
784 	}
785 
786 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
787 	if (!sinfo) {
788 		err = -ENOMEM;
789 		goto out_cleanup;
790 	}
791 
792 	local->num_sta++;
793 	local->sta_generation++;
794 	smp_mb();
795 
796 	/* simplify things and don't accept BA sessions yet */
797 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
798 
799 	/* make the station visible */
800 	err = sta_info_hash_add(local, sta);
801 	if (err)
802 		goto out_drop_sta;
803 
804 	if (sta->sta.valid_links) {
805 		err = link_sta_info_hash_add(local, &sta->deflink);
806 		if (err) {
807 			sta_info_hash_del(local, sta);
808 			goto out_drop_sta;
809 		}
810 	}
811 
812 	list_add_tail_rcu(&sta->list, &local->sta_list);
813 
814 	/* update channel context before notifying the driver about state
815 	 * change, this enables driver using the updated channel context right away.
816 	 */
817 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
818 		ieee80211_recalc_min_chandef(sta->sdata, -1);
819 		if (!sta->sta.support_p2p_ps)
820 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
821 	}
822 
823 	/* notify driver */
824 	err = sta_info_insert_drv_state(local, sdata, sta);
825 	if (err)
826 		goto out_remove;
827 
828 	set_sta_flag(sta, WLAN_STA_INSERTED);
829 
830 	/* accept BA sessions now */
831 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
832 
833 	ieee80211_sta_debugfs_add(sta);
834 	rate_control_add_sta_debugfs(sta);
835 
836 	sinfo->generation = local->sta_generation;
837 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
838 	kfree(sinfo);
839 
840 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
841 
842 	/* move reference to rcu-protected */
843 	rcu_read_lock();
844 	mutex_unlock(&local->sta_mtx);
845 
846 	if (ieee80211_vif_is_mesh(&sdata->vif))
847 		mesh_accept_plinks_update(sdata);
848 
849 	return 0;
850  out_remove:
851 	if (sta->sta.valid_links)
852 		link_sta_info_hash_del(local, &sta->deflink);
853 	sta_info_hash_del(local, sta);
854 	list_del_rcu(&sta->list);
855  out_drop_sta:
856 	local->num_sta--;
857 	synchronize_net();
858  out_cleanup:
859 	cleanup_single_sta(sta);
860 	mutex_unlock(&local->sta_mtx);
861 	kfree(sinfo);
862 	rcu_read_lock();
863 	return err;
864 }
865 
866 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
867 {
868 	struct ieee80211_local *local = sta->local;
869 	int err;
870 
871 	might_sleep();
872 
873 	mutex_lock(&local->sta_mtx);
874 
875 	err = sta_info_insert_check(sta);
876 	if (err) {
877 		sta_info_free(local, sta);
878 		mutex_unlock(&local->sta_mtx);
879 		rcu_read_lock();
880 		return err;
881 	}
882 
883 	return sta_info_insert_finish(sta);
884 }
885 
886 int sta_info_insert(struct sta_info *sta)
887 {
888 	int err = sta_info_insert_rcu(sta);
889 
890 	rcu_read_unlock();
891 
892 	return err;
893 }
894 
895 static inline void __bss_tim_set(u8 *tim, u16 id)
896 {
897 	/*
898 	 * This format has been mandated by the IEEE specifications,
899 	 * so this line may not be changed to use the __set_bit() format.
900 	 */
901 	tim[id / 8] |= (1 << (id % 8));
902 }
903 
904 static inline void __bss_tim_clear(u8 *tim, u16 id)
905 {
906 	/*
907 	 * This format has been mandated by the IEEE specifications,
908 	 * so this line may not be changed to use the __clear_bit() format.
909 	 */
910 	tim[id / 8] &= ~(1 << (id % 8));
911 }
912 
913 static inline bool __bss_tim_get(u8 *tim, u16 id)
914 {
915 	/*
916 	 * This format has been mandated by the IEEE specifications,
917 	 * so this line may not be changed to use the test_bit() format.
918 	 */
919 	return tim[id / 8] & (1 << (id % 8));
920 }
921 
922 static unsigned long ieee80211_tids_for_ac(int ac)
923 {
924 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
925 	switch (ac) {
926 	case IEEE80211_AC_VO:
927 		return BIT(6) | BIT(7);
928 	case IEEE80211_AC_VI:
929 		return BIT(4) | BIT(5);
930 	case IEEE80211_AC_BE:
931 		return BIT(0) | BIT(3);
932 	case IEEE80211_AC_BK:
933 		return BIT(1) | BIT(2);
934 	default:
935 		WARN_ON(1);
936 		return 0;
937 	}
938 }
939 
940 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
941 {
942 	struct ieee80211_local *local = sta->local;
943 	struct ps_data *ps;
944 	bool indicate_tim = false;
945 	u8 ignore_for_tim = sta->sta.uapsd_queues;
946 	int ac;
947 	u16 id = sta->sta.aid;
948 
949 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
950 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
951 		if (WARN_ON_ONCE(!sta->sdata->bss))
952 			return;
953 
954 		ps = &sta->sdata->bss->ps;
955 #ifdef CONFIG_MAC80211_MESH
956 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
957 		ps = &sta->sdata->u.mesh.ps;
958 #endif
959 	} else {
960 		return;
961 	}
962 
963 	/* No need to do anything if the driver does all */
964 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
965 		return;
966 
967 	if (sta->dead)
968 		goto done;
969 
970 	/*
971 	 * If all ACs are delivery-enabled then we should build
972 	 * the TIM bit for all ACs anyway; if only some are then
973 	 * we ignore those and build the TIM bit using only the
974 	 * non-enabled ones.
975 	 */
976 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
977 		ignore_for_tim = 0;
978 
979 	if (ignore_pending)
980 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
981 
982 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
983 		unsigned long tids;
984 
985 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
986 			continue;
987 
988 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
989 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
990 		if (indicate_tim)
991 			break;
992 
993 		tids = ieee80211_tids_for_ac(ac);
994 
995 		indicate_tim |=
996 			sta->driver_buffered_tids & tids;
997 		indicate_tim |=
998 			sta->txq_buffered_tids & tids;
999 	}
1000 
1001  done:
1002 	spin_lock_bh(&local->tim_lock);
1003 
1004 	if (indicate_tim == __bss_tim_get(ps->tim, id))
1005 		goto out_unlock;
1006 
1007 	if (indicate_tim)
1008 		__bss_tim_set(ps->tim, id);
1009 	else
1010 		__bss_tim_clear(ps->tim, id);
1011 
1012 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
1013 		local->tim_in_locked_section = true;
1014 		drv_set_tim(local, &sta->sta, indicate_tim);
1015 		local->tim_in_locked_section = false;
1016 	}
1017 
1018 out_unlock:
1019 	spin_unlock_bh(&local->tim_lock);
1020 }
1021 
1022 void sta_info_recalc_tim(struct sta_info *sta)
1023 {
1024 	__sta_info_recalc_tim(sta, false);
1025 }
1026 
1027 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
1028 {
1029 	struct ieee80211_tx_info *info;
1030 	int timeout;
1031 
1032 	if (!skb)
1033 		return false;
1034 
1035 	info = IEEE80211_SKB_CB(skb);
1036 
1037 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
1038 	timeout = (sta->listen_interval *
1039 		   sta->sdata->vif.bss_conf.beacon_int *
1040 		   32 / 15625) * HZ;
1041 	if (timeout < STA_TX_BUFFER_EXPIRE)
1042 		timeout = STA_TX_BUFFER_EXPIRE;
1043 	return time_after(jiffies, info->control.jiffies + timeout);
1044 }
1045 
1046 
1047 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
1048 						struct sta_info *sta, int ac)
1049 {
1050 	unsigned long flags;
1051 	struct sk_buff *skb;
1052 
1053 	/*
1054 	 * First check for frames that should expire on the filtered
1055 	 * queue. Frames here were rejected by the driver and are on
1056 	 * a separate queue to avoid reordering with normal PS-buffered
1057 	 * frames. They also aren't accounted for right now in the
1058 	 * total_ps_buffered counter.
1059 	 */
1060 	for (;;) {
1061 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1062 		skb = skb_peek(&sta->tx_filtered[ac]);
1063 		if (sta_info_buffer_expired(sta, skb))
1064 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
1065 		else
1066 			skb = NULL;
1067 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1068 
1069 		/*
1070 		 * Frames are queued in order, so if this one
1071 		 * hasn't expired yet we can stop testing. If
1072 		 * we actually reached the end of the queue we
1073 		 * also need to stop, of course.
1074 		 */
1075 		if (!skb)
1076 			break;
1077 		ieee80211_free_txskb(&local->hw, skb);
1078 	}
1079 
1080 	/*
1081 	 * Now also check the normal PS-buffered queue, this will
1082 	 * only find something if the filtered queue was emptied
1083 	 * since the filtered frames are all before the normal PS
1084 	 * buffered frames.
1085 	 */
1086 	for (;;) {
1087 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1088 		skb = skb_peek(&sta->ps_tx_buf[ac]);
1089 		if (sta_info_buffer_expired(sta, skb))
1090 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
1091 		else
1092 			skb = NULL;
1093 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1094 
1095 		/*
1096 		 * frames are queued in order, so if this one
1097 		 * hasn't expired yet (or we reached the end of
1098 		 * the queue) we can stop testing
1099 		 */
1100 		if (!skb)
1101 			break;
1102 
1103 		local->total_ps_buffered--;
1104 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
1105 		       sta->sta.addr);
1106 		ieee80211_free_txskb(&local->hw, skb);
1107 	}
1108 
1109 	/*
1110 	 * Finally, recalculate the TIM bit for this station -- it might
1111 	 * now be clear because the station was too slow to retrieve its
1112 	 * frames.
1113 	 */
1114 	sta_info_recalc_tim(sta);
1115 
1116 	/*
1117 	 * Return whether there are any frames still buffered, this is
1118 	 * used to check whether the cleanup timer still needs to run,
1119 	 * if there are no frames we don't need to rearm the timer.
1120 	 */
1121 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
1122 		 skb_queue_empty(&sta->tx_filtered[ac]));
1123 }
1124 
1125 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
1126 					     struct sta_info *sta)
1127 {
1128 	bool have_buffered = false;
1129 	int ac;
1130 
1131 	/* This is only necessary for stations on BSS/MBSS interfaces */
1132 	if (!sta->sdata->bss &&
1133 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
1134 		return false;
1135 
1136 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
1137 		have_buffered |=
1138 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
1139 
1140 	return have_buffered;
1141 }
1142 
1143 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
1144 {
1145 	struct ieee80211_local *local;
1146 	struct ieee80211_sub_if_data *sdata;
1147 	int ret, i;
1148 
1149 	might_sleep();
1150 
1151 	if (!sta)
1152 		return -ENOENT;
1153 
1154 	local = sta->local;
1155 	sdata = sta->sdata;
1156 
1157 	lockdep_assert_held(&local->sta_mtx);
1158 
1159 	/*
1160 	 * Before removing the station from the driver and
1161 	 * rate control, it might still start new aggregation
1162 	 * sessions -- block that to make sure the tear-down
1163 	 * will be sufficient.
1164 	 */
1165 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1166 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1167 
1168 	/*
1169 	 * Before removing the station from the driver there might be pending
1170 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1171 	 * all such frames to be processed.
1172 	 */
1173 	drv_sync_rx_queues(local, sta);
1174 
1175 	for (i = 0; i < ARRAY_SIZE(sta->link); i++) {
1176 		struct link_sta_info *link_sta;
1177 
1178 		if (!(sta->sta.valid_links & BIT(i)))
1179 			continue;
1180 
1181 		link_sta = rcu_dereference_protected(sta->link[i],
1182 						     lockdep_is_held(&local->sta_mtx));
1183 
1184 		link_sta_info_hash_del(local, link_sta);
1185 	}
1186 
1187 	ret = sta_info_hash_del(local, sta);
1188 	if (WARN_ON(ret))
1189 		return ret;
1190 
1191 	/*
1192 	 * for TDLS peers, make sure to return to the base channel before
1193 	 * removal.
1194 	 */
1195 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1196 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1197 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1198 	}
1199 
1200 	list_del_rcu(&sta->list);
1201 	sta->removed = true;
1202 
1203 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1204 
1205 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1206 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1207 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1208 
1209 	return 0;
1210 }
1211 
1212 static void __sta_info_destroy_part2(struct sta_info *sta)
1213 {
1214 	struct ieee80211_local *local = sta->local;
1215 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1216 	struct station_info *sinfo;
1217 	int ret;
1218 
1219 	/*
1220 	 * NOTE: This assumes at least synchronize_net() was done
1221 	 *	 after _part1 and before _part2!
1222 	 */
1223 
1224 	might_sleep();
1225 	lockdep_assert_held(&local->sta_mtx);
1226 
1227 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1228 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1229 		WARN_ON_ONCE(ret);
1230 	}
1231 
1232 	/* now keys can no longer be reached */
1233 	ieee80211_free_sta_keys(local, sta);
1234 
1235 	/* disable TIM bit - last chance to tell driver */
1236 	__sta_info_recalc_tim(sta, true);
1237 
1238 	sta->dead = true;
1239 
1240 	local->num_sta--;
1241 	local->sta_generation++;
1242 
1243 	while (sta->sta_state > IEEE80211_STA_NONE) {
1244 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1245 		if (ret) {
1246 			WARN_ON_ONCE(1);
1247 			break;
1248 		}
1249 	}
1250 
1251 	if (sta->uploaded) {
1252 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1253 				    IEEE80211_STA_NOTEXIST);
1254 		WARN_ON_ONCE(ret != 0);
1255 	}
1256 
1257 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1258 
1259 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1260 	if (sinfo)
1261 		sta_set_sinfo(sta, sinfo, true);
1262 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1263 	kfree(sinfo);
1264 
1265 	ieee80211_sta_debugfs_remove(sta);
1266 
1267 	ieee80211_destroy_frag_cache(&sta->frags);
1268 
1269 	cleanup_single_sta(sta);
1270 }
1271 
1272 int __must_check __sta_info_destroy(struct sta_info *sta)
1273 {
1274 	int err = __sta_info_destroy_part1(sta);
1275 
1276 	if (err)
1277 		return err;
1278 
1279 	synchronize_net();
1280 
1281 	__sta_info_destroy_part2(sta);
1282 
1283 	return 0;
1284 }
1285 
1286 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1287 {
1288 	struct sta_info *sta;
1289 	int ret;
1290 
1291 	mutex_lock(&sdata->local->sta_mtx);
1292 	sta = sta_info_get(sdata, addr);
1293 	ret = __sta_info_destroy(sta);
1294 	mutex_unlock(&sdata->local->sta_mtx);
1295 
1296 	return ret;
1297 }
1298 
1299 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1300 			      const u8 *addr)
1301 {
1302 	struct sta_info *sta;
1303 	int ret;
1304 
1305 	mutex_lock(&sdata->local->sta_mtx);
1306 	sta = sta_info_get_bss(sdata, addr);
1307 	ret = __sta_info_destroy(sta);
1308 	mutex_unlock(&sdata->local->sta_mtx);
1309 
1310 	return ret;
1311 }
1312 
1313 static void sta_info_cleanup(struct timer_list *t)
1314 {
1315 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1316 	struct sta_info *sta;
1317 	bool timer_needed = false;
1318 
1319 	rcu_read_lock();
1320 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1321 		if (sta_info_cleanup_expire_buffered(local, sta))
1322 			timer_needed = true;
1323 	rcu_read_unlock();
1324 
1325 	if (local->quiescing)
1326 		return;
1327 
1328 	if (!timer_needed)
1329 		return;
1330 
1331 	mod_timer(&local->sta_cleanup,
1332 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1333 }
1334 
1335 int sta_info_init(struct ieee80211_local *local)
1336 {
1337 	int err;
1338 
1339 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1340 	if (err)
1341 		return err;
1342 
1343 	err = rhltable_init(&local->link_sta_hash, &link_sta_rht_params);
1344 	if (err) {
1345 		rhltable_destroy(&local->sta_hash);
1346 		return err;
1347 	}
1348 
1349 	spin_lock_init(&local->tim_lock);
1350 	mutex_init(&local->sta_mtx);
1351 	INIT_LIST_HEAD(&local->sta_list);
1352 
1353 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1354 	return 0;
1355 }
1356 
1357 void sta_info_stop(struct ieee80211_local *local)
1358 {
1359 	del_timer_sync(&local->sta_cleanup);
1360 	rhltable_destroy(&local->sta_hash);
1361 	rhltable_destroy(&local->link_sta_hash);
1362 }
1363 
1364 
1365 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1366 {
1367 	struct ieee80211_local *local = sdata->local;
1368 	struct sta_info *sta, *tmp;
1369 	LIST_HEAD(free_list);
1370 	int ret = 0;
1371 
1372 	might_sleep();
1373 
1374 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1375 	WARN_ON(vlans && !sdata->bss);
1376 
1377 	mutex_lock(&local->sta_mtx);
1378 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1379 		if (sdata == sta->sdata ||
1380 		    (vlans && sdata->bss == sta->sdata->bss)) {
1381 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1382 				list_add(&sta->free_list, &free_list);
1383 			ret++;
1384 		}
1385 	}
1386 
1387 	if (!list_empty(&free_list)) {
1388 		synchronize_net();
1389 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1390 			__sta_info_destroy_part2(sta);
1391 	}
1392 	mutex_unlock(&local->sta_mtx);
1393 
1394 	return ret;
1395 }
1396 
1397 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1398 			  unsigned long exp_time)
1399 {
1400 	struct ieee80211_local *local = sdata->local;
1401 	struct sta_info *sta, *tmp;
1402 
1403 	mutex_lock(&local->sta_mtx);
1404 
1405 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1406 		unsigned long last_active = ieee80211_sta_last_active(sta);
1407 
1408 		if (sdata != sta->sdata)
1409 			continue;
1410 
1411 		if (time_is_before_jiffies(last_active + exp_time)) {
1412 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1413 				sta->sta.addr);
1414 
1415 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1416 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1417 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1418 
1419 			WARN_ON(__sta_info_destroy(sta));
1420 		}
1421 	}
1422 
1423 	mutex_unlock(&local->sta_mtx);
1424 }
1425 
1426 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1427 						   const u8 *addr,
1428 						   const u8 *localaddr)
1429 {
1430 	struct ieee80211_local *local = hw_to_local(hw);
1431 	struct rhlist_head *tmp;
1432 	struct sta_info *sta;
1433 
1434 	/*
1435 	 * Just return a random station if localaddr is NULL
1436 	 * ... first in list.
1437 	 */
1438 	for_each_sta_info(local, addr, sta, tmp) {
1439 		if (localaddr &&
1440 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1441 			continue;
1442 		if (!sta->uploaded)
1443 			return NULL;
1444 		return &sta->sta;
1445 	}
1446 
1447 	return NULL;
1448 }
1449 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1450 
1451 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1452 					 const u8 *addr)
1453 {
1454 	struct sta_info *sta;
1455 
1456 	if (!vif)
1457 		return NULL;
1458 
1459 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1460 	if (!sta)
1461 		return NULL;
1462 
1463 	if (!sta->uploaded)
1464 		return NULL;
1465 
1466 	return &sta->sta;
1467 }
1468 EXPORT_SYMBOL(ieee80211_find_sta);
1469 
1470 /* powersave support code */
1471 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1472 {
1473 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1474 	struct ieee80211_local *local = sdata->local;
1475 	struct sk_buff_head pending;
1476 	int filtered = 0, buffered = 0, ac, i;
1477 	unsigned long flags;
1478 	struct ps_data *ps;
1479 
1480 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1481 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1482 				     u.ap);
1483 
1484 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1485 		ps = &sdata->bss->ps;
1486 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1487 		ps = &sdata->u.mesh.ps;
1488 	else
1489 		return;
1490 
1491 	clear_sta_flag(sta, WLAN_STA_SP);
1492 
1493 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1494 	sta->driver_buffered_tids = 0;
1495 	sta->txq_buffered_tids = 0;
1496 
1497 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1498 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1499 
1500 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1501 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1502 			continue;
1503 
1504 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1505 	}
1506 
1507 	skb_queue_head_init(&pending);
1508 
1509 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1510 	spin_lock(&sta->ps_lock);
1511 	/* Send all buffered frames to the station */
1512 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1513 		int count = skb_queue_len(&pending), tmp;
1514 
1515 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1516 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1517 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1518 		tmp = skb_queue_len(&pending);
1519 		filtered += tmp - count;
1520 		count = tmp;
1521 
1522 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1523 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1524 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1525 		tmp = skb_queue_len(&pending);
1526 		buffered += tmp - count;
1527 	}
1528 
1529 	ieee80211_add_pending_skbs(local, &pending);
1530 
1531 	/* now we're no longer in the deliver code */
1532 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1533 
1534 	/* The station might have polled and then woken up before we responded,
1535 	 * so clear these flags now to avoid them sticking around.
1536 	 */
1537 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1538 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1539 	spin_unlock(&sta->ps_lock);
1540 
1541 	atomic_dec(&ps->num_sta_ps);
1542 
1543 	local->total_ps_buffered -= buffered;
1544 
1545 	sta_info_recalc_tim(sta);
1546 
1547 	ps_dbg(sdata,
1548 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1549 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1550 
1551 	ieee80211_check_fast_xmit(sta);
1552 }
1553 
1554 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1555 					 enum ieee80211_frame_release_type reason,
1556 					 bool call_driver, bool more_data)
1557 {
1558 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1559 	struct ieee80211_local *local = sdata->local;
1560 	struct ieee80211_qos_hdr *nullfunc;
1561 	struct sk_buff *skb;
1562 	int size = sizeof(*nullfunc);
1563 	__le16 fc;
1564 	bool qos = sta->sta.wme;
1565 	struct ieee80211_tx_info *info;
1566 	struct ieee80211_chanctx_conf *chanctx_conf;
1567 
1568 	if (qos) {
1569 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1570 				 IEEE80211_STYPE_QOS_NULLFUNC |
1571 				 IEEE80211_FCTL_FROMDS);
1572 	} else {
1573 		size -= 2;
1574 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1575 				 IEEE80211_STYPE_NULLFUNC |
1576 				 IEEE80211_FCTL_FROMDS);
1577 	}
1578 
1579 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1580 	if (!skb)
1581 		return;
1582 
1583 	skb_reserve(skb, local->hw.extra_tx_headroom);
1584 
1585 	nullfunc = skb_put(skb, size);
1586 	nullfunc->frame_control = fc;
1587 	nullfunc->duration_id = 0;
1588 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1589 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1590 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1591 	nullfunc->seq_ctrl = 0;
1592 
1593 	skb->priority = tid;
1594 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1595 	if (qos) {
1596 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1597 
1598 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1599 			nullfunc->qos_ctrl |=
1600 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1601 			if (more_data)
1602 				nullfunc->frame_control |=
1603 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1604 		}
1605 	}
1606 
1607 	info = IEEE80211_SKB_CB(skb);
1608 
1609 	/*
1610 	 * Tell TX path to send this frame even though the
1611 	 * STA may still remain is PS mode after this frame
1612 	 * exchange. Also set EOSP to indicate this packet
1613 	 * ends the poll/service period.
1614 	 */
1615 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1616 		       IEEE80211_TX_STATUS_EOSP |
1617 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1618 
1619 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1620 
1621 	if (call_driver)
1622 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1623 					  reason, false);
1624 
1625 	skb->dev = sdata->dev;
1626 
1627 	rcu_read_lock();
1628 	chanctx_conf = rcu_dereference(sdata->vif.bss_conf.chanctx_conf);
1629 	if (WARN_ON(!chanctx_conf)) {
1630 		rcu_read_unlock();
1631 		kfree_skb(skb);
1632 		return;
1633 	}
1634 
1635 	info->band = chanctx_conf->def.chan->band;
1636 	ieee80211_xmit(sdata, sta, skb);
1637 	rcu_read_unlock();
1638 }
1639 
1640 static int find_highest_prio_tid(unsigned long tids)
1641 {
1642 	/* lower 3 TIDs aren't ordered perfectly */
1643 	if (tids & 0xF8)
1644 		return fls(tids) - 1;
1645 	/* TID 0 is BE just like TID 3 */
1646 	if (tids & BIT(0))
1647 		return 0;
1648 	return fls(tids) - 1;
1649 }
1650 
1651 /* Indicates if the MORE_DATA bit should be set in the last
1652  * frame obtained by ieee80211_sta_ps_get_frames.
1653  * Note that driver_release_tids is relevant only if
1654  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1655  */
1656 static bool
1657 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1658 			   enum ieee80211_frame_release_type reason,
1659 			   unsigned long driver_release_tids)
1660 {
1661 	int ac;
1662 
1663 	/* If the driver has data on more than one TID then
1664 	 * certainly there's more data if we release just a
1665 	 * single frame now (from a single TID). This will
1666 	 * only happen for PS-Poll.
1667 	 */
1668 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1669 	    hweight16(driver_release_tids) > 1)
1670 		return true;
1671 
1672 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1673 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1674 			continue;
1675 
1676 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1677 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1678 			return true;
1679 	}
1680 
1681 	return false;
1682 }
1683 
1684 static void
1685 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1686 			    enum ieee80211_frame_release_type reason,
1687 			    struct sk_buff_head *frames,
1688 			    unsigned long *driver_release_tids)
1689 {
1690 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1691 	struct ieee80211_local *local = sdata->local;
1692 	int ac;
1693 
1694 	/* Get response frame(s) and more data bit for the last one. */
1695 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1696 		unsigned long tids;
1697 
1698 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1699 			continue;
1700 
1701 		tids = ieee80211_tids_for_ac(ac);
1702 
1703 		/* if we already have frames from software, then we can't also
1704 		 * release from hardware queues
1705 		 */
1706 		if (skb_queue_empty(frames)) {
1707 			*driver_release_tids |=
1708 				sta->driver_buffered_tids & tids;
1709 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1710 		}
1711 
1712 		if (!*driver_release_tids) {
1713 			struct sk_buff *skb;
1714 
1715 			while (n_frames > 0) {
1716 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1717 				if (!skb) {
1718 					skb = skb_dequeue(
1719 						&sta->ps_tx_buf[ac]);
1720 					if (skb)
1721 						local->total_ps_buffered--;
1722 				}
1723 				if (!skb)
1724 					break;
1725 				n_frames--;
1726 				__skb_queue_tail(frames, skb);
1727 			}
1728 		}
1729 
1730 		/* If we have more frames buffered on this AC, then abort the
1731 		 * loop since we can't send more data from other ACs before
1732 		 * the buffered frames from this.
1733 		 */
1734 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1735 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1736 			break;
1737 	}
1738 }
1739 
1740 static void
1741 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1742 				  int n_frames, u8 ignored_acs,
1743 				  enum ieee80211_frame_release_type reason)
1744 {
1745 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1746 	struct ieee80211_local *local = sdata->local;
1747 	unsigned long driver_release_tids = 0;
1748 	struct sk_buff_head frames;
1749 	bool more_data;
1750 
1751 	/* Service or PS-Poll period starts */
1752 	set_sta_flag(sta, WLAN_STA_SP);
1753 
1754 	__skb_queue_head_init(&frames);
1755 
1756 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1757 				    &frames, &driver_release_tids);
1758 
1759 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1760 
1761 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1762 		driver_release_tids =
1763 			BIT(find_highest_prio_tid(driver_release_tids));
1764 
1765 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1766 		int tid, ac;
1767 
1768 		/*
1769 		 * For PS-Poll, this can only happen due to a race condition
1770 		 * when we set the TIM bit and the station notices it, but
1771 		 * before it can poll for the frame we expire it.
1772 		 *
1773 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1774 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1775 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1776 		 *	more than the value specified in the Max SP Length field
1777 		 *	in the QoS Capability element from delivery-enabled ACs,
1778 		 *	that are destined for the non-AP STA.
1779 		 *
1780 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1781 		 */
1782 
1783 		/* This will evaluate to 1, 3, 5 or 7. */
1784 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1785 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1786 				break;
1787 		tid = 7 - 2 * ac;
1788 
1789 		ieee80211_send_null_response(sta, tid, reason, true, false);
1790 	} else if (!driver_release_tids) {
1791 		struct sk_buff_head pending;
1792 		struct sk_buff *skb;
1793 		int num = 0;
1794 		u16 tids = 0;
1795 		bool need_null = false;
1796 
1797 		skb_queue_head_init(&pending);
1798 
1799 		while ((skb = __skb_dequeue(&frames))) {
1800 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1801 			struct ieee80211_hdr *hdr = (void *) skb->data;
1802 			u8 *qoshdr = NULL;
1803 
1804 			num++;
1805 
1806 			/*
1807 			 * Tell TX path to send this frame even though the
1808 			 * STA may still remain is PS mode after this frame
1809 			 * exchange.
1810 			 */
1811 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1812 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1813 
1814 			/*
1815 			 * Use MoreData flag to indicate whether there are
1816 			 * more buffered frames for this STA
1817 			 */
1818 			if (more_data || !skb_queue_empty(&frames))
1819 				hdr->frame_control |=
1820 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1821 			else
1822 				hdr->frame_control &=
1823 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1824 
1825 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1826 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1827 				qoshdr = ieee80211_get_qos_ctl(hdr);
1828 
1829 			tids |= BIT(skb->priority);
1830 
1831 			__skb_queue_tail(&pending, skb);
1832 
1833 			/* end service period after last frame or add one */
1834 			if (!skb_queue_empty(&frames))
1835 				continue;
1836 
1837 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1838 				/* for PS-Poll, there's only one frame */
1839 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1840 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1841 				break;
1842 			}
1843 
1844 			/* For uAPSD, things are a bit more complicated. If the
1845 			 * last frame has a QoS header (i.e. is a QoS-data or
1846 			 * QoS-nulldata frame) then just set the EOSP bit there
1847 			 * and be done.
1848 			 * If the frame doesn't have a QoS header (which means
1849 			 * it should be a bufferable MMPDU) then we can't set
1850 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1851 			 * frame to the list to send it after the MMPDU.
1852 			 *
1853 			 * Note that this code is only in the mac80211-release
1854 			 * code path, we assume that the driver will not buffer
1855 			 * anything but QoS-data frames, or if it does, will
1856 			 * create the QoS-nulldata frame by itself if needed.
1857 			 *
1858 			 * Cf. 802.11-2012 10.2.1.10 (c).
1859 			 */
1860 			if (qoshdr) {
1861 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1862 
1863 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1864 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1865 			} else {
1866 				/* The standard isn't completely clear on this
1867 				 * as it says the more-data bit should be set
1868 				 * if there are more BUs. The QoS-Null frame
1869 				 * we're about to send isn't buffered yet, we
1870 				 * only create it below, but let's pretend it
1871 				 * was buffered just in case some clients only
1872 				 * expect more-data=0 when eosp=1.
1873 				 */
1874 				hdr->frame_control |=
1875 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1876 				need_null = true;
1877 				num++;
1878 			}
1879 			break;
1880 		}
1881 
1882 		drv_allow_buffered_frames(local, sta, tids, num,
1883 					  reason, more_data);
1884 
1885 		ieee80211_add_pending_skbs(local, &pending);
1886 
1887 		if (need_null)
1888 			ieee80211_send_null_response(
1889 				sta, find_highest_prio_tid(tids),
1890 				reason, false, false);
1891 
1892 		sta_info_recalc_tim(sta);
1893 	} else {
1894 		int tid;
1895 
1896 		/*
1897 		 * We need to release a frame that is buffered somewhere in the
1898 		 * driver ... it'll have to handle that.
1899 		 * Note that the driver also has to check the number of frames
1900 		 * on the TIDs we're releasing from - if there are more than
1901 		 * n_frames it has to set the more-data bit (if we didn't ask
1902 		 * it to set it anyway due to other buffered frames); if there
1903 		 * are fewer than n_frames it has to make sure to adjust that
1904 		 * to allow the service period to end properly.
1905 		 */
1906 		drv_release_buffered_frames(local, sta, driver_release_tids,
1907 					    n_frames, reason, more_data);
1908 
1909 		/*
1910 		 * Note that we don't recalculate the TIM bit here as it would
1911 		 * most likely have no effect at all unless the driver told us
1912 		 * that the TID(s) became empty before returning here from the
1913 		 * release function.
1914 		 * Either way, however, when the driver tells us that the TID(s)
1915 		 * became empty or we find that a txq became empty, we'll do the
1916 		 * TIM recalculation.
1917 		 */
1918 
1919 		if (!sta->sta.txq[0])
1920 			return;
1921 
1922 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1923 			if (!sta->sta.txq[tid] ||
1924 			    !(driver_release_tids & BIT(tid)) ||
1925 			    txq_has_queue(sta->sta.txq[tid]))
1926 				continue;
1927 
1928 			sta_info_recalc_tim(sta);
1929 			break;
1930 		}
1931 	}
1932 }
1933 
1934 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1935 {
1936 	u8 ignore_for_response = sta->sta.uapsd_queues;
1937 
1938 	/*
1939 	 * If all ACs are delivery-enabled then we should reply
1940 	 * from any of them, if only some are enabled we reply
1941 	 * only from the non-enabled ones.
1942 	 */
1943 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1944 		ignore_for_response = 0;
1945 
1946 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1947 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1948 }
1949 
1950 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1951 {
1952 	int n_frames = sta->sta.max_sp;
1953 	u8 delivery_enabled = sta->sta.uapsd_queues;
1954 
1955 	/*
1956 	 * If we ever grow support for TSPEC this might happen if
1957 	 * the TSPEC update from hostapd comes in between a trigger
1958 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1959 	 * actually getting called.
1960 	 */
1961 	if (!delivery_enabled)
1962 		return;
1963 
1964 	switch (sta->sta.max_sp) {
1965 	case 1:
1966 		n_frames = 2;
1967 		break;
1968 	case 2:
1969 		n_frames = 4;
1970 		break;
1971 	case 3:
1972 		n_frames = 6;
1973 		break;
1974 	case 0:
1975 		/* XXX: what is a good value? */
1976 		n_frames = 128;
1977 		break;
1978 	}
1979 
1980 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1981 					  IEEE80211_FRAME_RELEASE_UAPSD);
1982 }
1983 
1984 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1985 			       struct ieee80211_sta *pubsta, bool block)
1986 {
1987 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1988 
1989 	trace_api_sta_block_awake(sta->local, pubsta, block);
1990 
1991 	if (block) {
1992 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1993 		ieee80211_clear_fast_xmit(sta);
1994 		return;
1995 	}
1996 
1997 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1998 		return;
1999 
2000 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
2001 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
2002 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
2003 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
2004 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
2005 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
2006 		/* must be asleep in this case */
2007 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
2008 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
2009 	} else {
2010 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
2011 		ieee80211_check_fast_xmit(sta);
2012 	}
2013 }
2014 EXPORT_SYMBOL(ieee80211_sta_block_awake);
2015 
2016 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
2017 {
2018 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2019 	struct ieee80211_local *local = sta->local;
2020 
2021 	trace_api_eosp(local, pubsta);
2022 
2023 	clear_sta_flag(sta, WLAN_STA_SP);
2024 }
2025 EXPORT_SYMBOL(ieee80211_sta_eosp);
2026 
2027 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
2028 {
2029 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2030 	enum ieee80211_frame_release_type reason;
2031 	bool more_data;
2032 
2033 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
2034 
2035 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
2036 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
2037 					       reason, 0);
2038 
2039 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
2040 }
2041 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
2042 
2043 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
2044 				u8 tid, bool buffered)
2045 {
2046 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2047 
2048 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
2049 		return;
2050 
2051 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
2052 
2053 	if (buffered)
2054 		set_bit(tid, &sta->driver_buffered_tids);
2055 	else
2056 		clear_bit(tid, &sta->driver_buffered_tids);
2057 
2058 	sta_info_recalc_tim(sta);
2059 }
2060 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
2061 
2062 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
2063 				    u32 tx_airtime, u32 rx_airtime)
2064 {
2065 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2066 	struct ieee80211_local *local = sta->sdata->local;
2067 	u8 ac = ieee80211_ac_from_tid(tid);
2068 	u32 airtime = 0;
2069 	u32 diff;
2070 
2071 	if (sta->local->airtime_flags & AIRTIME_USE_TX)
2072 		airtime += tx_airtime;
2073 	if (sta->local->airtime_flags & AIRTIME_USE_RX)
2074 		airtime += rx_airtime;
2075 
2076 	spin_lock_bh(&local->active_txq_lock[ac]);
2077 	sta->airtime[ac].tx_airtime += tx_airtime;
2078 	sta->airtime[ac].rx_airtime += rx_airtime;
2079 
2080 	diff = (u32)jiffies - sta->airtime[ac].last_active;
2081 	if (diff <= AIRTIME_ACTIVE_DURATION)
2082 		sta->airtime[ac].deficit -= airtime;
2083 
2084 	spin_unlock_bh(&local->active_txq_lock[ac]);
2085 }
2086 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
2087 
2088 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
2089 					  struct sta_info *sta, u8 ac,
2090 					  u16 tx_airtime, bool tx_completed)
2091 {
2092 	int tx_pending;
2093 
2094 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
2095 		return;
2096 
2097 	if (!tx_completed) {
2098 		if (sta)
2099 			atomic_add(tx_airtime,
2100 				   &sta->airtime[ac].aql_tx_pending);
2101 
2102 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
2103 		atomic_add(tx_airtime, &local->aql_ac_pending_airtime[ac]);
2104 		return;
2105 	}
2106 
2107 	if (sta) {
2108 		tx_pending = atomic_sub_return(tx_airtime,
2109 					       &sta->airtime[ac].aql_tx_pending);
2110 		if (tx_pending < 0)
2111 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
2112 				       tx_pending, 0);
2113 	}
2114 
2115 	atomic_sub(tx_airtime, &local->aql_total_pending_airtime);
2116 	tx_pending = atomic_sub_return(tx_airtime,
2117 				       &local->aql_ac_pending_airtime[ac]);
2118 	if (WARN_ONCE(tx_pending < 0,
2119 		      "Device %s AC %d pending airtime underflow: %u, %u",
2120 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
2121 		      tx_airtime)) {
2122 		atomic_cmpxchg(&local->aql_ac_pending_airtime[ac],
2123 			       tx_pending, 0);
2124 		atomic_sub(tx_pending, &local->aql_total_pending_airtime);
2125 	}
2126 }
2127 
2128 int sta_info_move_state(struct sta_info *sta,
2129 			enum ieee80211_sta_state new_state)
2130 {
2131 	might_sleep();
2132 
2133 	if (sta->sta_state == new_state)
2134 		return 0;
2135 
2136 	/* check allowed transitions first */
2137 
2138 	switch (new_state) {
2139 	case IEEE80211_STA_NONE:
2140 		if (sta->sta_state != IEEE80211_STA_AUTH)
2141 			return -EINVAL;
2142 		break;
2143 	case IEEE80211_STA_AUTH:
2144 		if (sta->sta_state != IEEE80211_STA_NONE &&
2145 		    sta->sta_state != IEEE80211_STA_ASSOC)
2146 			return -EINVAL;
2147 		break;
2148 	case IEEE80211_STA_ASSOC:
2149 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2150 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2151 			return -EINVAL;
2152 		break;
2153 	case IEEE80211_STA_AUTHORIZED:
2154 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2155 			return -EINVAL;
2156 		break;
2157 	default:
2158 		WARN(1, "invalid state %d", new_state);
2159 		return -EINVAL;
2160 	}
2161 
2162 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2163 		sta->sta.addr, new_state);
2164 
2165 	/*
2166 	 * notify the driver before the actual changes so it can
2167 	 * fail the transition
2168 	 */
2169 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2170 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2171 					sta->sta_state, new_state);
2172 		if (err)
2173 			return err;
2174 	}
2175 
2176 	/* reflect the change in all state variables */
2177 
2178 	switch (new_state) {
2179 	case IEEE80211_STA_NONE:
2180 		if (sta->sta_state == IEEE80211_STA_AUTH)
2181 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2182 		break;
2183 	case IEEE80211_STA_AUTH:
2184 		if (sta->sta_state == IEEE80211_STA_NONE) {
2185 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2186 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2187 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2188 			ieee80211_recalc_min_chandef(sta->sdata, -1);
2189 			if (!sta->sta.support_p2p_ps)
2190 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2191 		}
2192 		break;
2193 	case IEEE80211_STA_ASSOC:
2194 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2195 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2196 			sta->assoc_at = ktime_get_boottime_ns();
2197 			ieee80211_recalc_min_chandef(sta->sdata, -1);
2198 			if (!sta->sta.support_p2p_ps)
2199 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2200 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2201 			ieee80211_vif_dec_num_mcast(sta->sdata);
2202 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2203 			ieee80211_clear_fast_xmit(sta);
2204 			ieee80211_clear_fast_rx(sta);
2205 		}
2206 		break;
2207 	case IEEE80211_STA_AUTHORIZED:
2208 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2209 			ieee80211_vif_inc_num_mcast(sta->sdata);
2210 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2211 			ieee80211_check_fast_xmit(sta);
2212 			ieee80211_check_fast_rx(sta);
2213 		}
2214 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2215 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2216 			cfg80211_send_layer2_update(sta->sdata->dev,
2217 						    sta->sta.addr);
2218 		break;
2219 	default:
2220 		break;
2221 	}
2222 
2223 	sta->sta_state = new_state;
2224 
2225 	return 0;
2226 }
2227 
2228 static struct ieee80211_sta_rx_stats *
2229 sta_get_last_rx_stats(struct sta_info *sta)
2230 {
2231 	struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
2232 	int cpu;
2233 
2234 	if (!sta->deflink.pcpu_rx_stats)
2235 		return stats;
2236 
2237 	for_each_possible_cpu(cpu) {
2238 		struct ieee80211_sta_rx_stats *cpustats;
2239 
2240 		cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2241 
2242 		if (time_after(cpustats->last_rx, stats->last_rx))
2243 			stats = cpustats;
2244 	}
2245 
2246 	return stats;
2247 }
2248 
2249 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2250 				  struct rate_info *rinfo)
2251 {
2252 	rinfo->bw = STA_STATS_GET(BW, rate);
2253 
2254 	switch (STA_STATS_GET(TYPE, rate)) {
2255 	case STA_STATS_RATE_TYPE_VHT:
2256 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2257 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2258 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2259 		if (STA_STATS_GET(SGI, rate))
2260 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2261 		break;
2262 	case STA_STATS_RATE_TYPE_HT:
2263 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2264 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2265 		if (STA_STATS_GET(SGI, rate))
2266 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2267 		break;
2268 	case STA_STATS_RATE_TYPE_LEGACY: {
2269 		struct ieee80211_supported_band *sband;
2270 		u16 brate;
2271 		unsigned int shift;
2272 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2273 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2274 
2275 		sband = local->hw.wiphy->bands[band];
2276 
2277 		if (WARN_ON_ONCE(!sband->bitrates))
2278 			break;
2279 
2280 		brate = sband->bitrates[rate_idx].bitrate;
2281 		if (rinfo->bw == RATE_INFO_BW_5)
2282 			shift = 2;
2283 		else if (rinfo->bw == RATE_INFO_BW_10)
2284 			shift = 1;
2285 		else
2286 			shift = 0;
2287 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2288 		break;
2289 		}
2290 	case STA_STATS_RATE_TYPE_HE:
2291 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2292 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2293 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2294 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2295 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2296 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2297 		break;
2298 	}
2299 }
2300 
2301 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2302 {
2303 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2304 
2305 	if (rate == STA_STATS_RATE_INVALID)
2306 		return -EINVAL;
2307 
2308 	sta_stats_decode_rate(sta->local, rate, rinfo);
2309 	return 0;
2310 }
2311 
2312 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2313 					int tid)
2314 {
2315 	unsigned int start;
2316 	u64 value;
2317 
2318 	do {
2319 		start = u64_stats_fetch_begin_irq(&rxstats->syncp);
2320 		value = rxstats->msdu[tid];
2321 	} while (u64_stats_fetch_retry_irq(&rxstats->syncp, start));
2322 
2323 	return value;
2324 }
2325 
2326 static void sta_set_tidstats(struct sta_info *sta,
2327 			     struct cfg80211_tid_stats *tidstats,
2328 			     int tid)
2329 {
2330 	struct ieee80211_local *local = sta->local;
2331 	int cpu;
2332 
2333 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2334 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats,
2335 							   tid);
2336 
2337 		if (sta->deflink.pcpu_rx_stats) {
2338 			for_each_possible_cpu(cpu) {
2339 				struct ieee80211_sta_rx_stats *cpurxs;
2340 
2341 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2342 						     cpu);
2343 				tidstats->rx_msdu +=
2344 					sta_get_tidstats_msdu(cpurxs, tid);
2345 			}
2346 		}
2347 
2348 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2349 	}
2350 
2351 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2352 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2353 		tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid];
2354 	}
2355 
2356 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2357 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2358 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2359 		tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid];
2360 	}
2361 
2362 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2363 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2364 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2365 		tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid];
2366 	}
2367 
2368 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2369 		spin_lock_bh(&local->fq.lock);
2370 		rcu_read_lock();
2371 
2372 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2373 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2374 					 to_txq_info(sta->sta.txq[tid]));
2375 
2376 		rcu_read_unlock();
2377 		spin_unlock_bh(&local->fq.lock);
2378 	}
2379 }
2380 
2381 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2382 {
2383 	unsigned int start;
2384 	u64 value;
2385 
2386 	do {
2387 		start = u64_stats_fetch_begin_irq(&rxstats->syncp);
2388 		value = rxstats->bytes;
2389 	} while (u64_stats_fetch_retry_irq(&rxstats->syncp, start));
2390 
2391 	return value;
2392 }
2393 
2394 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2395 		   bool tidstats)
2396 {
2397 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2398 	struct ieee80211_local *local = sdata->local;
2399 	u32 thr = 0;
2400 	int i, ac, cpu;
2401 	struct ieee80211_sta_rx_stats *last_rxstats;
2402 
2403 	last_rxstats = sta_get_last_rx_stats(sta);
2404 
2405 	sinfo->generation = sdata->local->sta_generation;
2406 
2407 	/* do before driver, so beacon filtering drivers have a
2408 	 * chance to e.g. just add the number of filtered beacons
2409 	 * (or just modify the value entirely, of course)
2410 	 */
2411 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2412 		sinfo->rx_beacon = sdata->deflink.u.mgd.count_beacon_signal;
2413 
2414 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2415 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2416 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2417 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2418 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2419 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2420 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2421 
2422 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2423 		sinfo->beacon_loss_count =
2424 			sdata->deflink.u.mgd.beacon_loss_count;
2425 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2426 	}
2427 
2428 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2429 	sinfo->assoc_at = sta->assoc_at;
2430 	sinfo->inactive_time =
2431 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2432 
2433 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2434 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2435 		sinfo->tx_bytes = 0;
2436 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2437 			sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac];
2438 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2439 	}
2440 
2441 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2442 		sinfo->tx_packets = 0;
2443 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2444 			sinfo->tx_packets += sta->deflink.tx_stats.packets[ac];
2445 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2446 	}
2447 
2448 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2449 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2450 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats);
2451 
2452 		if (sta->deflink.pcpu_rx_stats) {
2453 			for_each_possible_cpu(cpu) {
2454 				struct ieee80211_sta_rx_stats *cpurxs;
2455 
2456 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2457 						     cpu);
2458 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2459 			}
2460 		}
2461 
2462 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2463 	}
2464 
2465 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2466 		sinfo->rx_packets = sta->deflink.rx_stats.packets;
2467 		if (sta->deflink.pcpu_rx_stats) {
2468 			for_each_possible_cpu(cpu) {
2469 				struct ieee80211_sta_rx_stats *cpurxs;
2470 
2471 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2472 						     cpu);
2473 				sinfo->rx_packets += cpurxs->packets;
2474 			}
2475 		}
2476 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2477 	}
2478 
2479 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2480 		sinfo->tx_retries = sta->deflink.status_stats.retry_count;
2481 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2482 	}
2483 
2484 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2485 		sinfo->tx_failed = sta->deflink.status_stats.retry_failed;
2486 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2487 	}
2488 
2489 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2490 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2491 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2492 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2493 	}
2494 
2495 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2496 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2497 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2498 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2499 	}
2500 
2501 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2502 		sinfo->airtime_weight = sta->airtime_weight;
2503 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2504 	}
2505 
2506 	sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped;
2507 	if (sta->deflink.pcpu_rx_stats) {
2508 		for_each_possible_cpu(cpu) {
2509 			struct ieee80211_sta_rx_stats *cpurxs;
2510 
2511 			cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2512 			sinfo->rx_dropped_misc += cpurxs->dropped;
2513 		}
2514 	}
2515 
2516 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2517 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2518 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2519 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2520 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2521 	}
2522 
2523 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2524 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2525 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2526 			sinfo->signal = (s8)last_rxstats->last_signal;
2527 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2528 		}
2529 
2530 		if (!sta->deflink.pcpu_rx_stats &&
2531 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2532 			sinfo->signal_avg =
2533 				-ewma_signal_read(&sta->deflink.rx_stats_avg.signal);
2534 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2535 		}
2536 	}
2537 
2538 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2539 	 * the sta->rx_stats struct, so the check here is fine with and without
2540 	 * pcpu statistics
2541 	 */
2542 	if (last_rxstats->chains &&
2543 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2544 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2545 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2546 		if (!sta->deflink.pcpu_rx_stats)
2547 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2548 
2549 		sinfo->chains = last_rxstats->chains;
2550 
2551 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2552 			sinfo->chain_signal[i] =
2553 				last_rxstats->chain_signal_last[i];
2554 			sinfo->chain_signal_avg[i] =
2555 				-ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]);
2556 		}
2557 	}
2558 
2559 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE)) &&
2560 	    !sta->sta.valid_links) {
2561 		sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate,
2562 				     &sinfo->txrate);
2563 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2564 	}
2565 
2566 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE)) &&
2567 	    !sta->sta.valid_links) {
2568 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2569 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2570 	}
2571 
2572 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2573 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2574 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2575 	}
2576 
2577 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2578 #ifdef CONFIG_MAC80211_MESH
2579 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2580 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2581 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2582 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2583 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2584 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2585 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2586 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2587 
2588 		sinfo->llid = sta->mesh->llid;
2589 		sinfo->plid = sta->mesh->plid;
2590 		sinfo->plink_state = sta->mesh->plink_state;
2591 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2592 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2593 			sinfo->t_offset = sta->mesh->t_offset;
2594 		}
2595 		sinfo->local_pm = sta->mesh->local_pm;
2596 		sinfo->peer_pm = sta->mesh->peer_pm;
2597 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2598 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2599 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2600 #endif
2601 	}
2602 
2603 	sinfo->bss_param.flags = 0;
2604 	if (sdata->vif.bss_conf.use_cts_prot)
2605 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2606 	if (sdata->vif.bss_conf.use_short_preamble)
2607 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2608 	if (sdata->vif.bss_conf.use_short_slot)
2609 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2610 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2611 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2612 
2613 	sinfo->sta_flags.set = 0;
2614 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2615 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2616 				BIT(NL80211_STA_FLAG_WME) |
2617 				BIT(NL80211_STA_FLAG_MFP) |
2618 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2619 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2620 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2621 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2622 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2623 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2624 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2625 	if (sta->sta.wme)
2626 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2627 	if (test_sta_flag(sta, WLAN_STA_MFP))
2628 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2629 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2630 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2631 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2632 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2633 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2634 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2635 
2636 	thr = sta_get_expected_throughput(sta);
2637 
2638 	if (thr != 0) {
2639 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2640 		sinfo->expected_throughput = thr;
2641 	}
2642 
2643 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2644 	    sta->deflink.status_stats.ack_signal_filled) {
2645 		sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal;
2646 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2647 	}
2648 
2649 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2650 	    sta->deflink.status_stats.ack_signal_filled) {
2651 		sinfo->avg_ack_signal =
2652 			-(s8)ewma_avg_signal_read(
2653 				&sta->deflink.status_stats.avg_ack_signal);
2654 		sinfo->filled |=
2655 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2656 	}
2657 
2658 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2659 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2660 		sinfo->airtime_link_metric =
2661 			airtime_link_metric_get(local, sta);
2662 	}
2663 }
2664 
2665 u32 sta_get_expected_throughput(struct sta_info *sta)
2666 {
2667 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2668 	struct ieee80211_local *local = sdata->local;
2669 	struct rate_control_ref *ref = NULL;
2670 	u32 thr = 0;
2671 
2672 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2673 		ref = local->rate_ctrl;
2674 
2675 	/* check if the driver has a SW RC implementation */
2676 	if (ref && ref->ops->get_expected_throughput)
2677 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2678 	else
2679 		thr = drv_get_expected_throughput(local, sta);
2680 
2681 	return thr;
2682 }
2683 
2684 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2685 {
2686 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2687 
2688 	if (!sta->deflink.status_stats.last_ack ||
2689 	    time_after(stats->last_rx, sta->deflink.status_stats.last_ack))
2690 		return stats->last_rx;
2691 	return sta->deflink.status_stats.last_ack;
2692 }
2693 
2694 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2695 {
2696 	if (!sta->sdata->local->ops->wake_tx_queue)
2697 		return;
2698 
2699 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2700 		sta->cparams.target = MS2TIME(50);
2701 		sta->cparams.interval = MS2TIME(300);
2702 		sta->cparams.ecn = false;
2703 	} else {
2704 		sta->cparams.target = MS2TIME(20);
2705 		sta->cparams.interval = MS2TIME(100);
2706 		sta->cparams.ecn = true;
2707 	}
2708 }
2709 
2710 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2711 					   u32 thr)
2712 {
2713 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2714 
2715 	sta_update_codel_params(sta, thr);
2716 }
2717 
2718 int ieee80211_sta_allocate_link(struct sta_info *sta, unsigned int link_id)
2719 {
2720 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2721 	struct sta_link_alloc *alloc;
2722 	int ret;
2723 
2724 	lockdep_assert_held(&sdata->local->sta_mtx);
2725 
2726 	/* must represent an MLD from the start */
2727 	if (WARN_ON(!sta->sta.valid_links))
2728 		return -EINVAL;
2729 
2730 	if (WARN_ON(sta->sta.valid_links & BIT(link_id) ||
2731 		    sta->link[link_id]))
2732 		return -EBUSY;
2733 
2734 	alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
2735 	if (!alloc)
2736 		return -ENOMEM;
2737 
2738 	ret = sta_info_alloc_link(sdata->local, &alloc->info, GFP_KERNEL);
2739 	if (ret) {
2740 		kfree(alloc);
2741 		return ret;
2742 	}
2743 
2744 	sta_info_add_link(sta, link_id, &alloc->info, &alloc->sta);
2745 
2746 	return 0;
2747 }
2748 
2749 void ieee80211_sta_free_link(struct sta_info *sta, unsigned int link_id)
2750 {
2751 	lockdep_assert_held(&sta->sdata->local->sta_mtx);
2752 
2753 	sta_remove_link(sta, link_id, false);
2754 }
2755 
2756 int ieee80211_sta_activate_link(struct sta_info *sta, unsigned int link_id)
2757 {
2758 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2759 	struct link_sta_info *link_sta;
2760 	u16 old_links = sta->sta.valid_links;
2761 	u16 new_links = old_links | BIT(link_id);
2762 	int ret;
2763 
2764 	link_sta = rcu_dereference_protected(sta->link[link_id],
2765 					     lockdep_is_held(&sdata->local->sta_mtx));
2766 
2767 	if (WARN_ON(old_links == new_links || !link_sta))
2768 		return -EINVAL;
2769 
2770 	rcu_read_lock();
2771 	if (link_sta_info_hash_lookup(sdata->local, link_sta->addr)) {
2772 		rcu_read_unlock();
2773 		return -EALREADY;
2774 	}
2775 	/* we only modify under the mutex so this is fine */
2776 	rcu_read_unlock();
2777 
2778 	sta->sta.valid_links = new_links;
2779 
2780 	if (!test_sta_flag(sta, WLAN_STA_INSERTED)) {
2781 		ret = 0;
2782 		goto hash;
2783 	}
2784 
2785 	ret = drv_change_sta_links(sdata->local, sdata, &sta->sta,
2786 				   old_links, new_links);
2787 	if (ret) {
2788 		sta->sta.valid_links = old_links;
2789 		sta_remove_link(sta, link_id, false);
2790 		return ret;
2791 	}
2792 
2793 hash:
2794 	ret = link_sta_info_hash_add(sdata->local, link_sta);
2795 	WARN_ON(ret);
2796 	return 0;
2797 }
2798 
2799 void ieee80211_sta_remove_link(struct sta_info *sta, unsigned int link_id)
2800 {
2801 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2802 
2803 	lockdep_assert_held(&sdata->local->sta_mtx);
2804 
2805 	sta->sta.valid_links &= ~BIT(link_id);
2806 
2807 	if (test_sta_flag(sta, WLAN_STA_INSERTED))
2808 		drv_change_sta_links(sdata->local, sdata, &sta->sta,
2809 				     sta->sta.valid_links,
2810 				     sta->sta.valid_links & ~BIT(link_id));
2811 
2812 	sta_remove_link(sta, link_id, true);
2813 }
2814 
2815 void ieee80211_sta_set_max_amsdu_subframes(struct sta_info *sta,
2816 					   const u8 *ext_capab,
2817 					   unsigned int ext_capab_len)
2818 {
2819 	u8 val;
2820 
2821 	sta->sta.max_amsdu_subframes = 0;
2822 
2823 	if (ext_capab_len < 8)
2824 		return;
2825 
2826 	/* The sender might not have sent the last bit, consider it to be 0 */
2827 	val = u8_get_bits(ext_capab[7], WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB);
2828 
2829 	/* we did get all the bits, take the MSB as well */
2830 	if (ext_capab_len >= 9)
2831 		val |= u8_get_bits(ext_capab[8],
2832 				   WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB) << 1;
2833 
2834 	if (val)
2835 		sta->sta.max_amsdu_subframes = 4 << val;
2836 }
2837