1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 Intel Deutschland GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/etherdevice.h> 15 #include <linux/netdevice.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/skbuff.h> 19 #include <linux/if_arp.h> 20 #include <linux/timer.h> 21 #include <linux/rtnetlink.h> 22 23 #include <net/mac80211.h> 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "rate.h" 27 #include "sta_info.h" 28 #include "debugfs_sta.h" 29 #include "mesh.h" 30 #include "wme.h" 31 32 /** 33 * DOC: STA information lifetime rules 34 * 35 * STA info structures (&struct sta_info) are managed in a hash table 36 * for faster lookup and a list for iteration. They are managed using 37 * RCU, i.e. access to the list and hash table is protected by RCU. 38 * 39 * Upon allocating a STA info structure with sta_info_alloc(), the caller 40 * owns that structure. It must then insert it into the hash table using 41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 42 * case (which acquires an rcu read section but must not be called from 43 * within one) will the pointer still be valid after the call. Note that 44 * the caller may not do much with the STA info before inserting it, in 45 * particular, it may not start any mesh peer link management or add 46 * encryption keys. 47 * 48 * When the insertion fails (sta_info_insert()) returns non-zero), the 49 * structure will have been freed by sta_info_insert()! 50 * 51 * Station entries are added by mac80211 when you establish a link with a 52 * peer. This means different things for the different type of interfaces 53 * we support. For a regular station this mean we add the AP sta when we 54 * receive an association response from the AP. For IBSS this occurs when 55 * get to know about a peer on the same IBSS. For WDS we add the sta for 56 * the peer immediately upon device open. When using AP mode we add stations 57 * for each respective station upon request from userspace through nl80211. 58 * 59 * In order to remove a STA info structure, various sta_info_destroy_*() 60 * calls are available. 61 * 62 * There is no concept of ownership on a STA entry, each structure is 63 * owned by the global hash table/list until it is removed. All users of 64 * the structure need to be RCU protected so that the structure won't be 65 * freed before they are done using it. 66 */ 67 68 static const struct rhashtable_params sta_rht_params = { 69 .nelem_hint = 3, /* start small */ 70 .automatic_shrinking = true, 71 .head_offset = offsetof(struct sta_info, hash_node), 72 .key_offset = offsetof(struct sta_info, addr), 73 .key_len = ETH_ALEN, 74 .hashfn = sta_addr_hash, 75 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 76 }; 77 78 /* Caller must hold local->sta_mtx */ 79 static int sta_info_hash_del(struct ieee80211_local *local, 80 struct sta_info *sta) 81 { 82 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 83 sta_rht_params); 84 } 85 86 static void __cleanup_single_sta(struct sta_info *sta) 87 { 88 int ac, i; 89 struct tid_ampdu_tx *tid_tx; 90 struct ieee80211_sub_if_data *sdata = sta->sdata; 91 struct ieee80211_local *local = sdata->local; 92 struct ps_data *ps; 93 94 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 95 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 96 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 97 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 98 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 99 ps = &sdata->bss->ps; 100 else if (ieee80211_vif_is_mesh(&sdata->vif)) 101 ps = &sdata->u.mesh.ps; 102 else 103 return; 104 105 clear_sta_flag(sta, WLAN_STA_PS_STA); 106 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 107 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 108 109 atomic_dec(&ps->num_sta_ps); 110 } 111 112 if (sta->sta.txq[0]) { 113 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 114 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 115 int n = skb_queue_len(&txqi->queue); 116 117 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 118 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 119 txqi->byte_cnt = 0; 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 /* protected by RCU */ 160 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 161 const u8 *addr) 162 { 163 struct ieee80211_local *local = sdata->local; 164 struct sta_info *sta; 165 struct rhash_head *tmp; 166 const struct bucket_table *tbl; 167 168 rcu_read_lock(); 169 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 170 171 for_each_sta_info(local, tbl, addr, sta, tmp) { 172 if (sta->sdata == sdata) { 173 rcu_read_unlock(); 174 /* this is safe as the caller must already hold 175 * another rcu read section or the mutex 176 */ 177 return sta; 178 } 179 } 180 rcu_read_unlock(); 181 return NULL; 182 } 183 184 /* 185 * Get sta info either from the specified interface 186 * or from one of its vlans 187 */ 188 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 189 const u8 *addr) 190 { 191 struct ieee80211_local *local = sdata->local; 192 struct sta_info *sta; 193 struct rhash_head *tmp; 194 const struct bucket_table *tbl; 195 196 rcu_read_lock(); 197 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 198 199 for_each_sta_info(local, tbl, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 214 int idx) 215 { 216 struct ieee80211_local *local = sdata->local; 217 struct sta_info *sta; 218 int i = 0; 219 220 list_for_each_entry_rcu(sta, &local->sta_list, list) { 221 if (sdata != sta->sdata) 222 continue; 223 if (i < idx) { 224 ++i; 225 continue; 226 } 227 return sta; 228 } 229 230 return NULL; 231 } 232 233 /** 234 * sta_info_free - free STA 235 * 236 * @local: pointer to the global information 237 * @sta: STA info to free 238 * 239 * This function must undo everything done by sta_info_alloc() 240 * that may happen before sta_info_insert(). It may only be 241 * called when sta_info_insert() has not been attempted (and 242 * if that fails, the station is freed anyway.) 243 */ 244 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 245 { 246 if (sta->rate_ctrl) 247 rate_control_free_sta(sta); 248 249 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 250 251 if (sta->sta.txq[0]) 252 kfree(to_txq_info(sta->sta.txq[0])); 253 kfree(rcu_dereference_raw(sta->sta.rates)); 254 #ifdef CONFIG_MAC80211_MESH 255 kfree(sta->mesh); 256 #endif 257 kfree(sta); 258 } 259 260 /* Caller must hold local->sta_mtx */ 261 static void sta_info_hash_add(struct ieee80211_local *local, 262 struct sta_info *sta) 263 { 264 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 265 sta_rht_params); 266 } 267 268 static void sta_deliver_ps_frames(struct work_struct *wk) 269 { 270 struct sta_info *sta; 271 272 sta = container_of(wk, struct sta_info, drv_deliver_wk); 273 274 if (sta->dead) 275 return; 276 277 local_bh_disable(); 278 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 279 ieee80211_sta_ps_deliver_wakeup(sta); 280 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 281 ieee80211_sta_ps_deliver_poll_response(sta); 282 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 283 ieee80211_sta_ps_deliver_uapsd(sta); 284 local_bh_enable(); 285 } 286 287 static int sta_prepare_rate_control(struct ieee80211_local *local, 288 struct sta_info *sta, gfp_t gfp) 289 { 290 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 291 return 0; 292 293 sta->rate_ctrl = local->rate_ctrl; 294 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 295 sta, gfp); 296 if (!sta->rate_ctrl_priv) 297 return -ENOMEM; 298 299 return 0; 300 } 301 302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 303 const u8 *addr, gfp_t gfp) 304 { 305 struct ieee80211_local *local = sdata->local; 306 struct ieee80211_hw *hw = &local->hw; 307 struct sta_info *sta; 308 int i; 309 310 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 311 if (!sta) 312 return NULL; 313 314 spin_lock_init(&sta->lock); 315 spin_lock_init(&sta->ps_lock); 316 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 317 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 318 mutex_init(&sta->ampdu_mlme.mtx); 319 #ifdef CONFIG_MAC80211_MESH 320 if (ieee80211_vif_is_mesh(&sdata->vif)) { 321 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 322 if (!sta->mesh) 323 goto free; 324 spin_lock_init(&sta->mesh->plink_lock); 325 if (ieee80211_vif_is_mesh(&sdata->vif) && 326 !sdata->u.mesh.user_mpm) 327 init_timer(&sta->mesh->plink_timer); 328 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 329 } 330 #endif 331 332 memcpy(sta->addr, addr, ETH_ALEN); 333 memcpy(sta->sta.addr, addr, ETH_ALEN); 334 sta->local = local; 335 sta->sdata = sdata; 336 sta->rx_stats.last_rx = jiffies; 337 338 sta->sta_state = IEEE80211_STA_NONE; 339 340 /* Mark TID as unreserved */ 341 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 342 343 sta->last_connected = ktime_get_seconds(); 344 ewma_signal_init(&sta->rx_stats.avg_signal); 345 for (i = 0; i < ARRAY_SIZE(sta->rx_stats.chain_signal_avg); i++) 346 ewma_signal_init(&sta->rx_stats.chain_signal_avg[i]); 347 348 if (local->ops->wake_tx_queue) { 349 void *txq_data; 350 int size = sizeof(struct txq_info) + 351 ALIGN(hw->txq_data_size, sizeof(void *)); 352 353 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 354 if (!txq_data) 355 goto free; 356 357 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 358 struct txq_info *txq = txq_data + i * size; 359 360 ieee80211_init_tx_queue(sdata, sta, txq, i); 361 } 362 } 363 364 if (sta_prepare_rate_control(local, sta, gfp)) 365 goto free_txq; 366 367 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 368 /* 369 * timer_to_tid must be initialized with identity mapping 370 * to enable session_timer's data differentiation. See 371 * sta_rx_agg_session_timer_expired for usage. 372 */ 373 sta->timer_to_tid[i] = i; 374 } 375 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 376 skb_queue_head_init(&sta->ps_tx_buf[i]); 377 skb_queue_head_init(&sta->tx_filtered[i]); 378 } 379 380 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 381 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 382 383 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 384 if (sdata->vif.type == NL80211_IFTYPE_AP || 385 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 386 struct ieee80211_supported_band *sband = 387 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 388 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 389 IEEE80211_HT_CAP_SM_PS_SHIFT; 390 /* 391 * Assume that hostapd advertises our caps in the beacon and 392 * this is the known_smps_mode for a station that just assciated 393 */ 394 switch (smps) { 395 case WLAN_HT_SMPS_CONTROL_DISABLED: 396 sta->known_smps_mode = IEEE80211_SMPS_OFF; 397 break; 398 case WLAN_HT_SMPS_CONTROL_STATIC: 399 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 400 break; 401 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 402 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 403 break; 404 default: 405 WARN_ON(1); 406 } 407 } 408 409 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 410 411 return sta; 412 413 free_txq: 414 if (sta->sta.txq[0]) 415 kfree(to_txq_info(sta->sta.txq[0])); 416 free: 417 #ifdef CONFIG_MAC80211_MESH 418 kfree(sta->mesh); 419 #endif 420 kfree(sta); 421 return NULL; 422 } 423 424 static int sta_info_insert_check(struct sta_info *sta) 425 { 426 struct ieee80211_sub_if_data *sdata = sta->sdata; 427 428 /* 429 * Can't be a WARN_ON because it can be triggered through a race: 430 * something inserts a STA (on one CPU) without holding the RTNL 431 * and another CPU turns off the net device. 432 */ 433 if (unlikely(!ieee80211_sdata_running(sdata))) 434 return -ENETDOWN; 435 436 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 437 is_multicast_ether_addr(sta->sta.addr))) 438 return -EINVAL; 439 440 /* Strictly speaking this isn't necessary as we hold the mutex, but 441 * the rhashtable code can't really deal with that distinction. We 442 * do require the mutex for correctness though. 443 */ 444 rcu_read_lock(); 445 lockdep_assert_held(&sdata->local->sta_mtx); 446 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 447 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 448 rcu_read_unlock(); 449 return -ENOTUNIQ; 450 } 451 rcu_read_unlock(); 452 453 return 0; 454 } 455 456 static int sta_info_insert_drv_state(struct ieee80211_local *local, 457 struct ieee80211_sub_if_data *sdata, 458 struct sta_info *sta) 459 { 460 enum ieee80211_sta_state state; 461 int err = 0; 462 463 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 464 err = drv_sta_state(local, sdata, sta, state, state + 1); 465 if (err) 466 break; 467 } 468 469 if (!err) { 470 /* 471 * Drivers using legacy sta_add/sta_remove callbacks only 472 * get uploaded set to true after sta_add is called. 473 */ 474 if (!local->ops->sta_add) 475 sta->uploaded = true; 476 return 0; 477 } 478 479 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 480 sdata_info(sdata, 481 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 482 sta->sta.addr, state + 1, err); 483 err = 0; 484 } 485 486 /* unwind on error */ 487 for (; state > IEEE80211_STA_NOTEXIST; state--) 488 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 489 490 return err; 491 } 492 493 /* 494 * should be called with sta_mtx locked 495 * this function replaces the mutex lock 496 * with a RCU lock 497 */ 498 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 499 { 500 struct ieee80211_local *local = sta->local; 501 struct ieee80211_sub_if_data *sdata = sta->sdata; 502 struct station_info *sinfo; 503 int err = 0; 504 505 lockdep_assert_held(&local->sta_mtx); 506 507 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 508 if (!sinfo) { 509 err = -ENOMEM; 510 goto out_err; 511 } 512 513 /* check if STA exists already */ 514 if (sta_info_get_bss(sdata, sta->sta.addr)) { 515 err = -EEXIST; 516 goto out_err; 517 } 518 519 local->num_sta++; 520 local->sta_generation++; 521 smp_mb(); 522 523 /* simplify things and don't accept BA sessions yet */ 524 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 525 526 /* make the station visible */ 527 sta_info_hash_add(local, sta); 528 529 list_add_tail_rcu(&sta->list, &local->sta_list); 530 531 /* notify driver */ 532 err = sta_info_insert_drv_state(local, sdata, sta); 533 if (err) 534 goto out_remove; 535 536 set_sta_flag(sta, WLAN_STA_INSERTED); 537 /* accept BA sessions now */ 538 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 539 540 ieee80211_sta_debugfs_add(sta); 541 rate_control_add_sta_debugfs(sta); 542 543 sinfo->generation = local->sta_generation; 544 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 545 kfree(sinfo); 546 547 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 548 549 /* move reference to rcu-protected */ 550 rcu_read_lock(); 551 mutex_unlock(&local->sta_mtx); 552 553 if (ieee80211_vif_is_mesh(&sdata->vif)) 554 mesh_accept_plinks_update(sdata); 555 556 return 0; 557 out_remove: 558 sta_info_hash_del(local, sta); 559 list_del_rcu(&sta->list); 560 local->num_sta--; 561 synchronize_net(); 562 __cleanup_single_sta(sta); 563 out_err: 564 mutex_unlock(&local->sta_mtx); 565 kfree(sinfo); 566 rcu_read_lock(); 567 return err; 568 } 569 570 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 571 { 572 struct ieee80211_local *local = sta->local; 573 int err; 574 575 might_sleep(); 576 577 mutex_lock(&local->sta_mtx); 578 579 err = sta_info_insert_check(sta); 580 if (err) { 581 mutex_unlock(&local->sta_mtx); 582 rcu_read_lock(); 583 goto out_free; 584 } 585 586 err = sta_info_insert_finish(sta); 587 if (err) 588 goto out_free; 589 590 return 0; 591 out_free: 592 sta_info_free(local, sta); 593 return err; 594 } 595 596 int sta_info_insert(struct sta_info *sta) 597 { 598 int err = sta_info_insert_rcu(sta); 599 600 rcu_read_unlock(); 601 602 return err; 603 } 604 605 static inline void __bss_tim_set(u8 *tim, u16 id) 606 { 607 /* 608 * This format has been mandated by the IEEE specifications, 609 * so this line may not be changed to use the __set_bit() format. 610 */ 611 tim[id / 8] |= (1 << (id % 8)); 612 } 613 614 static inline void __bss_tim_clear(u8 *tim, u16 id) 615 { 616 /* 617 * This format has been mandated by the IEEE specifications, 618 * so this line may not be changed to use the __clear_bit() format. 619 */ 620 tim[id / 8] &= ~(1 << (id % 8)); 621 } 622 623 static inline bool __bss_tim_get(u8 *tim, u16 id) 624 { 625 /* 626 * This format has been mandated by the IEEE specifications, 627 * so this line may not be changed to use the test_bit() format. 628 */ 629 return tim[id / 8] & (1 << (id % 8)); 630 } 631 632 static unsigned long ieee80211_tids_for_ac(int ac) 633 { 634 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 635 switch (ac) { 636 case IEEE80211_AC_VO: 637 return BIT(6) | BIT(7); 638 case IEEE80211_AC_VI: 639 return BIT(4) | BIT(5); 640 case IEEE80211_AC_BE: 641 return BIT(0) | BIT(3); 642 case IEEE80211_AC_BK: 643 return BIT(1) | BIT(2); 644 default: 645 WARN_ON(1); 646 return 0; 647 } 648 } 649 650 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 651 { 652 struct ieee80211_local *local = sta->local; 653 struct ps_data *ps; 654 bool indicate_tim = false; 655 u8 ignore_for_tim = sta->sta.uapsd_queues; 656 int ac; 657 u16 id = sta->sta.aid; 658 659 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 660 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 661 if (WARN_ON_ONCE(!sta->sdata->bss)) 662 return; 663 664 ps = &sta->sdata->bss->ps; 665 #ifdef CONFIG_MAC80211_MESH 666 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 667 ps = &sta->sdata->u.mesh.ps; 668 #endif 669 } else { 670 return; 671 } 672 673 /* No need to do anything if the driver does all */ 674 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 675 return; 676 677 if (sta->dead) 678 goto done; 679 680 /* 681 * If all ACs are delivery-enabled then we should build 682 * the TIM bit for all ACs anyway; if only some are then 683 * we ignore those and build the TIM bit using only the 684 * non-enabled ones. 685 */ 686 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 687 ignore_for_tim = 0; 688 689 if (ignore_pending) 690 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 691 692 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 693 unsigned long tids; 694 695 if (ignore_for_tim & BIT(ac)) 696 continue; 697 698 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 699 !skb_queue_empty(&sta->ps_tx_buf[ac]); 700 if (indicate_tim) 701 break; 702 703 tids = ieee80211_tids_for_ac(ac); 704 705 indicate_tim |= 706 sta->driver_buffered_tids & tids; 707 indicate_tim |= 708 sta->txq_buffered_tids & tids; 709 } 710 711 done: 712 spin_lock_bh(&local->tim_lock); 713 714 if (indicate_tim == __bss_tim_get(ps->tim, id)) 715 goto out_unlock; 716 717 if (indicate_tim) 718 __bss_tim_set(ps->tim, id); 719 else 720 __bss_tim_clear(ps->tim, id); 721 722 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 723 local->tim_in_locked_section = true; 724 drv_set_tim(local, &sta->sta, indicate_tim); 725 local->tim_in_locked_section = false; 726 } 727 728 out_unlock: 729 spin_unlock_bh(&local->tim_lock); 730 } 731 732 void sta_info_recalc_tim(struct sta_info *sta) 733 { 734 __sta_info_recalc_tim(sta, false); 735 } 736 737 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 738 { 739 struct ieee80211_tx_info *info; 740 int timeout; 741 742 if (!skb) 743 return false; 744 745 info = IEEE80211_SKB_CB(skb); 746 747 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 748 timeout = (sta->listen_interval * 749 sta->sdata->vif.bss_conf.beacon_int * 750 32 / 15625) * HZ; 751 if (timeout < STA_TX_BUFFER_EXPIRE) 752 timeout = STA_TX_BUFFER_EXPIRE; 753 return time_after(jiffies, info->control.jiffies + timeout); 754 } 755 756 757 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 758 struct sta_info *sta, int ac) 759 { 760 unsigned long flags; 761 struct sk_buff *skb; 762 763 /* 764 * First check for frames that should expire on the filtered 765 * queue. Frames here were rejected by the driver and are on 766 * a separate queue to avoid reordering with normal PS-buffered 767 * frames. They also aren't accounted for right now in the 768 * total_ps_buffered counter. 769 */ 770 for (;;) { 771 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 772 skb = skb_peek(&sta->tx_filtered[ac]); 773 if (sta_info_buffer_expired(sta, skb)) 774 skb = __skb_dequeue(&sta->tx_filtered[ac]); 775 else 776 skb = NULL; 777 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 778 779 /* 780 * Frames are queued in order, so if this one 781 * hasn't expired yet we can stop testing. If 782 * we actually reached the end of the queue we 783 * also need to stop, of course. 784 */ 785 if (!skb) 786 break; 787 ieee80211_free_txskb(&local->hw, skb); 788 } 789 790 /* 791 * Now also check the normal PS-buffered queue, this will 792 * only find something if the filtered queue was emptied 793 * since the filtered frames are all before the normal PS 794 * buffered frames. 795 */ 796 for (;;) { 797 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 798 skb = skb_peek(&sta->ps_tx_buf[ac]); 799 if (sta_info_buffer_expired(sta, skb)) 800 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 801 else 802 skb = NULL; 803 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 804 805 /* 806 * frames are queued in order, so if this one 807 * hasn't expired yet (or we reached the end of 808 * the queue) we can stop testing 809 */ 810 if (!skb) 811 break; 812 813 local->total_ps_buffered--; 814 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 815 sta->sta.addr); 816 ieee80211_free_txskb(&local->hw, skb); 817 } 818 819 /* 820 * Finally, recalculate the TIM bit for this station -- it might 821 * now be clear because the station was too slow to retrieve its 822 * frames. 823 */ 824 sta_info_recalc_tim(sta); 825 826 /* 827 * Return whether there are any frames still buffered, this is 828 * used to check whether the cleanup timer still needs to run, 829 * if there are no frames we don't need to rearm the timer. 830 */ 831 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 832 skb_queue_empty(&sta->tx_filtered[ac])); 833 } 834 835 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 836 struct sta_info *sta) 837 { 838 bool have_buffered = false; 839 int ac; 840 841 /* This is only necessary for stations on BSS/MBSS interfaces */ 842 if (!sta->sdata->bss && 843 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 844 return false; 845 846 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 847 have_buffered |= 848 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 849 850 return have_buffered; 851 } 852 853 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 854 { 855 struct ieee80211_local *local; 856 struct ieee80211_sub_if_data *sdata; 857 int ret; 858 859 might_sleep(); 860 861 if (!sta) 862 return -ENOENT; 863 864 local = sta->local; 865 sdata = sta->sdata; 866 867 lockdep_assert_held(&local->sta_mtx); 868 869 /* 870 * Before removing the station from the driver and 871 * rate control, it might still start new aggregation 872 * sessions -- block that to make sure the tear-down 873 * will be sufficient. 874 */ 875 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 876 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 877 878 ret = sta_info_hash_del(local, sta); 879 if (WARN_ON(ret)) 880 return ret; 881 882 /* 883 * for TDLS peers, make sure to return to the base channel before 884 * removal. 885 */ 886 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 887 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 888 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 889 } 890 891 list_del_rcu(&sta->list); 892 sta->removed = true; 893 894 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 895 896 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 897 rcu_access_pointer(sdata->u.vlan.sta) == sta) 898 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 899 900 return 0; 901 } 902 903 static void __sta_info_destroy_part2(struct sta_info *sta) 904 { 905 struct ieee80211_local *local = sta->local; 906 struct ieee80211_sub_if_data *sdata = sta->sdata; 907 struct station_info *sinfo; 908 int ret; 909 910 /* 911 * NOTE: This assumes at least synchronize_net() was done 912 * after _part1 and before _part2! 913 */ 914 915 might_sleep(); 916 lockdep_assert_held(&local->sta_mtx); 917 918 /* now keys can no longer be reached */ 919 ieee80211_free_sta_keys(local, sta); 920 921 /* disable TIM bit - last chance to tell driver */ 922 __sta_info_recalc_tim(sta, true); 923 924 sta->dead = true; 925 926 local->num_sta--; 927 local->sta_generation++; 928 929 while (sta->sta_state > IEEE80211_STA_NONE) { 930 ret = sta_info_move_state(sta, sta->sta_state - 1); 931 if (ret) { 932 WARN_ON_ONCE(1); 933 break; 934 } 935 } 936 937 if (sta->uploaded) { 938 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 939 IEEE80211_STA_NOTEXIST); 940 WARN_ON_ONCE(ret != 0); 941 } 942 943 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 944 945 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 946 if (sinfo) 947 sta_set_sinfo(sta, sinfo); 948 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 949 kfree(sinfo); 950 951 rate_control_remove_sta_debugfs(sta); 952 ieee80211_sta_debugfs_remove(sta); 953 954 cleanup_single_sta(sta); 955 } 956 957 int __must_check __sta_info_destroy(struct sta_info *sta) 958 { 959 int err = __sta_info_destroy_part1(sta); 960 961 if (err) 962 return err; 963 964 synchronize_net(); 965 966 __sta_info_destroy_part2(sta); 967 968 return 0; 969 } 970 971 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 972 { 973 struct sta_info *sta; 974 int ret; 975 976 mutex_lock(&sdata->local->sta_mtx); 977 sta = sta_info_get(sdata, addr); 978 ret = __sta_info_destroy(sta); 979 mutex_unlock(&sdata->local->sta_mtx); 980 981 return ret; 982 } 983 984 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 985 const u8 *addr) 986 { 987 struct sta_info *sta; 988 int ret; 989 990 mutex_lock(&sdata->local->sta_mtx); 991 sta = sta_info_get_bss(sdata, addr); 992 ret = __sta_info_destroy(sta); 993 mutex_unlock(&sdata->local->sta_mtx); 994 995 return ret; 996 } 997 998 static void sta_info_cleanup(unsigned long data) 999 { 1000 struct ieee80211_local *local = (struct ieee80211_local *) data; 1001 struct sta_info *sta; 1002 bool timer_needed = false; 1003 1004 rcu_read_lock(); 1005 list_for_each_entry_rcu(sta, &local->sta_list, list) 1006 if (sta_info_cleanup_expire_buffered(local, sta)) 1007 timer_needed = true; 1008 rcu_read_unlock(); 1009 1010 if (local->quiescing) 1011 return; 1012 1013 if (!timer_needed) 1014 return; 1015 1016 mod_timer(&local->sta_cleanup, 1017 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1018 } 1019 1020 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 1021 { 1022 return jhash(key, ETH_ALEN, seed); 1023 } 1024 1025 int sta_info_init(struct ieee80211_local *local) 1026 { 1027 int err; 1028 1029 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 1030 if (err) 1031 return err; 1032 1033 spin_lock_init(&local->tim_lock); 1034 mutex_init(&local->sta_mtx); 1035 INIT_LIST_HEAD(&local->sta_list); 1036 1037 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1038 (unsigned long)local); 1039 return 0; 1040 } 1041 1042 void sta_info_stop(struct ieee80211_local *local) 1043 { 1044 del_timer_sync(&local->sta_cleanup); 1045 rhashtable_destroy(&local->sta_hash); 1046 } 1047 1048 1049 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1050 { 1051 struct ieee80211_local *local = sdata->local; 1052 struct sta_info *sta, *tmp; 1053 LIST_HEAD(free_list); 1054 int ret = 0; 1055 1056 might_sleep(); 1057 1058 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1059 WARN_ON(vlans && !sdata->bss); 1060 1061 mutex_lock(&local->sta_mtx); 1062 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1063 if (sdata == sta->sdata || 1064 (vlans && sdata->bss == sta->sdata->bss)) { 1065 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1066 list_add(&sta->free_list, &free_list); 1067 ret++; 1068 } 1069 } 1070 1071 if (!list_empty(&free_list)) { 1072 synchronize_net(); 1073 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1074 __sta_info_destroy_part2(sta); 1075 } 1076 mutex_unlock(&local->sta_mtx); 1077 1078 return ret; 1079 } 1080 1081 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1082 unsigned long exp_time) 1083 { 1084 struct ieee80211_local *local = sdata->local; 1085 struct sta_info *sta, *tmp; 1086 1087 mutex_lock(&local->sta_mtx); 1088 1089 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1090 if (sdata != sta->sdata) 1091 continue; 1092 1093 if (time_after(jiffies, sta->rx_stats.last_rx + exp_time)) { 1094 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1095 sta->sta.addr); 1096 1097 if (ieee80211_vif_is_mesh(&sdata->vif) && 1098 test_sta_flag(sta, WLAN_STA_PS_STA)) 1099 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1100 1101 WARN_ON(__sta_info_destroy(sta)); 1102 } 1103 } 1104 1105 mutex_unlock(&local->sta_mtx); 1106 } 1107 1108 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1109 const u8 *addr, 1110 const u8 *localaddr) 1111 { 1112 struct ieee80211_local *local = hw_to_local(hw); 1113 struct sta_info *sta; 1114 struct rhash_head *tmp; 1115 const struct bucket_table *tbl; 1116 1117 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1118 1119 /* 1120 * Just return a random station if localaddr is NULL 1121 * ... first in list. 1122 */ 1123 for_each_sta_info(local, tbl, addr, sta, tmp) { 1124 if (localaddr && 1125 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1126 continue; 1127 if (!sta->uploaded) 1128 return NULL; 1129 return &sta->sta; 1130 } 1131 1132 return NULL; 1133 } 1134 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1135 1136 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1137 const u8 *addr) 1138 { 1139 struct sta_info *sta; 1140 1141 if (!vif) 1142 return NULL; 1143 1144 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1145 if (!sta) 1146 return NULL; 1147 1148 if (!sta->uploaded) 1149 return NULL; 1150 1151 return &sta->sta; 1152 } 1153 EXPORT_SYMBOL(ieee80211_find_sta); 1154 1155 /* powersave support code */ 1156 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1157 { 1158 struct ieee80211_sub_if_data *sdata = sta->sdata; 1159 struct ieee80211_local *local = sdata->local; 1160 struct sk_buff_head pending; 1161 int filtered = 0, buffered = 0, ac, i; 1162 unsigned long flags; 1163 struct ps_data *ps; 1164 1165 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1166 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1167 u.ap); 1168 1169 if (sdata->vif.type == NL80211_IFTYPE_AP) 1170 ps = &sdata->bss->ps; 1171 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1172 ps = &sdata->u.mesh.ps; 1173 else 1174 return; 1175 1176 clear_sta_flag(sta, WLAN_STA_SP); 1177 1178 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1179 sta->driver_buffered_tids = 0; 1180 sta->txq_buffered_tids = 0; 1181 1182 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1183 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1184 1185 if (sta->sta.txq[0]) { 1186 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1187 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1188 1189 if (!skb_queue_len(&txqi->queue)) 1190 continue; 1191 1192 drv_wake_tx_queue(local, txqi); 1193 } 1194 } 1195 1196 skb_queue_head_init(&pending); 1197 1198 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1199 spin_lock(&sta->ps_lock); 1200 /* Send all buffered frames to the station */ 1201 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1202 int count = skb_queue_len(&pending), tmp; 1203 1204 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1205 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1206 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1207 tmp = skb_queue_len(&pending); 1208 filtered += tmp - count; 1209 count = tmp; 1210 1211 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1212 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1213 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1214 tmp = skb_queue_len(&pending); 1215 buffered += tmp - count; 1216 } 1217 1218 ieee80211_add_pending_skbs(local, &pending); 1219 1220 /* now we're no longer in the deliver code */ 1221 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1222 1223 /* The station might have polled and then woken up before we responded, 1224 * so clear these flags now to avoid them sticking around. 1225 */ 1226 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1227 clear_sta_flag(sta, WLAN_STA_UAPSD); 1228 spin_unlock(&sta->ps_lock); 1229 1230 atomic_dec(&ps->num_sta_ps); 1231 1232 /* This station just woke up and isn't aware of our SMPS state */ 1233 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1234 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1235 sdata->smps_mode) && 1236 sta->known_smps_mode != sdata->bss->req_smps && 1237 sta_info_tx_streams(sta) != 1) { 1238 ht_dbg(sdata, 1239 "%pM just woke up and MIMO capable - update SMPS\n", 1240 sta->sta.addr); 1241 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1242 sta->sta.addr, 1243 sdata->vif.bss_conf.bssid); 1244 } 1245 1246 local->total_ps_buffered -= buffered; 1247 1248 sta_info_recalc_tim(sta); 1249 1250 ps_dbg(sdata, 1251 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1252 sta->sta.addr, sta->sta.aid, filtered, buffered); 1253 1254 ieee80211_check_fast_xmit(sta); 1255 } 1256 1257 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1258 enum ieee80211_frame_release_type reason, 1259 bool call_driver, bool more_data) 1260 { 1261 struct ieee80211_sub_if_data *sdata = sta->sdata; 1262 struct ieee80211_local *local = sdata->local; 1263 struct ieee80211_qos_hdr *nullfunc; 1264 struct sk_buff *skb; 1265 int size = sizeof(*nullfunc); 1266 __le16 fc; 1267 bool qos = sta->sta.wme; 1268 struct ieee80211_tx_info *info; 1269 struct ieee80211_chanctx_conf *chanctx_conf; 1270 1271 if (qos) { 1272 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1273 IEEE80211_STYPE_QOS_NULLFUNC | 1274 IEEE80211_FCTL_FROMDS); 1275 } else { 1276 size -= 2; 1277 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1278 IEEE80211_STYPE_NULLFUNC | 1279 IEEE80211_FCTL_FROMDS); 1280 } 1281 1282 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1283 if (!skb) 1284 return; 1285 1286 skb_reserve(skb, local->hw.extra_tx_headroom); 1287 1288 nullfunc = (void *) skb_put(skb, size); 1289 nullfunc->frame_control = fc; 1290 nullfunc->duration_id = 0; 1291 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1292 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1293 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1294 nullfunc->seq_ctrl = 0; 1295 1296 skb->priority = tid; 1297 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1298 if (qos) { 1299 nullfunc->qos_ctrl = cpu_to_le16(tid); 1300 1301 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1302 nullfunc->qos_ctrl |= 1303 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1304 if (more_data) 1305 nullfunc->frame_control |= 1306 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1307 } 1308 } 1309 1310 info = IEEE80211_SKB_CB(skb); 1311 1312 /* 1313 * Tell TX path to send this frame even though the 1314 * STA may still remain is PS mode after this frame 1315 * exchange. Also set EOSP to indicate this packet 1316 * ends the poll/service period. 1317 */ 1318 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1319 IEEE80211_TX_STATUS_EOSP | 1320 IEEE80211_TX_CTL_REQ_TX_STATUS; 1321 1322 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1323 1324 if (call_driver) 1325 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1326 reason, false); 1327 1328 skb->dev = sdata->dev; 1329 1330 rcu_read_lock(); 1331 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1332 if (WARN_ON(!chanctx_conf)) { 1333 rcu_read_unlock(); 1334 kfree_skb(skb); 1335 return; 1336 } 1337 1338 info->band = chanctx_conf->def.chan->band; 1339 ieee80211_xmit(sdata, sta, skb); 1340 rcu_read_unlock(); 1341 } 1342 1343 static int find_highest_prio_tid(unsigned long tids) 1344 { 1345 /* lower 3 TIDs aren't ordered perfectly */ 1346 if (tids & 0xF8) 1347 return fls(tids) - 1; 1348 /* TID 0 is BE just like TID 3 */ 1349 if (tids & BIT(0)) 1350 return 0; 1351 return fls(tids) - 1; 1352 } 1353 1354 /* Indicates if the MORE_DATA bit should be set in the last 1355 * frame obtained by ieee80211_sta_ps_get_frames. 1356 * Note that driver_release_tids is relevant only if 1357 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1358 */ 1359 static bool 1360 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1361 enum ieee80211_frame_release_type reason, 1362 unsigned long driver_release_tids) 1363 { 1364 int ac; 1365 1366 /* If the driver has data on more than one TID then 1367 * certainly there's more data if we release just a 1368 * single frame now (from a single TID). This will 1369 * only happen for PS-Poll. 1370 */ 1371 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1372 hweight16(driver_release_tids) > 1) 1373 return true; 1374 1375 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1376 if (ignored_acs & BIT(ac)) 1377 continue; 1378 1379 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1380 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1381 return true; 1382 } 1383 1384 return false; 1385 } 1386 1387 static void 1388 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1389 enum ieee80211_frame_release_type reason, 1390 struct sk_buff_head *frames, 1391 unsigned long *driver_release_tids) 1392 { 1393 struct ieee80211_sub_if_data *sdata = sta->sdata; 1394 struct ieee80211_local *local = sdata->local; 1395 int ac; 1396 1397 /* Get response frame(s) and more data bit for the last one. */ 1398 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1399 unsigned long tids; 1400 1401 if (ignored_acs & BIT(ac)) 1402 continue; 1403 1404 tids = ieee80211_tids_for_ac(ac); 1405 1406 /* if we already have frames from software, then we can't also 1407 * release from hardware queues 1408 */ 1409 if (skb_queue_empty(frames)) { 1410 *driver_release_tids |= 1411 sta->driver_buffered_tids & tids; 1412 *driver_release_tids |= sta->txq_buffered_tids & tids; 1413 } 1414 1415 if (!*driver_release_tids) { 1416 struct sk_buff *skb; 1417 1418 while (n_frames > 0) { 1419 skb = skb_dequeue(&sta->tx_filtered[ac]); 1420 if (!skb) { 1421 skb = skb_dequeue( 1422 &sta->ps_tx_buf[ac]); 1423 if (skb) 1424 local->total_ps_buffered--; 1425 } 1426 if (!skb) 1427 break; 1428 n_frames--; 1429 __skb_queue_tail(frames, skb); 1430 } 1431 } 1432 1433 /* If we have more frames buffered on this AC, then abort the 1434 * loop since we can't send more data from other ACs before 1435 * the buffered frames from this. 1436 */ 1437 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1438 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1439 break; 1440 } 1441 } 1442 1443 static void 1444 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1445 int n_frames, u8 ignored_acs, 1446 enum ieee80211_frame_release_type reason) 1447 { 1448 struct ieee80211_sub_if_data *sdata = sta->sdata; 1449 struct ieee80211_local *local = sdata->local; 1450 unsigned long driver_release_tids = 0; 1451 struct sk_buff_head frames; 1452 bool more_data; 1453 1454 /* Service or PS-Poll period starts */ 1455 set_sta_flag(sta, WLAN_STA_SP); 1456 1457 __skb_queue_head_init(&frames); 1458 1459 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1460 &frames, &driver_release_tids); 1461 1462 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1463 1464 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1465 driver_release_tids = 1466 BIT(find_highest_prio_tid(driver_release_tids)); 1467 1468 if (skb_queue_empty(&frames) && !driver_release_tids) { 1469 int tid; 1470 1471 /* 1472 * For PS-Poll, this can only happen due to a race condition 1473 * when we set the TIM bit and the station notices it, but 1474 * before it can poll for the frame we expire it. 1475 * 1476 * For uAPSD, this is said in the standard (11.2.1.5 h): 1477 * At each unscheduled SP for a non-AP STA, the AP shall 1478 * attempt to transmit at least one MSDU or MMPDU, but no 1479 * more than the value specified in the Max SP Length field 1480 * in the QoS Capability element from delivery-enabled ACs, 1481 * that are destined for the non-AP STA. 1482 * 1483 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1484 */ 1485 1486 /* This will evaluate to 1, 3, 5 or 7. */ 1487 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1488 1489 ieee80211_send_null_response(sta, tid, reason, true, false); 1490 } else if (!driver_release_tids) { 1491 struct sk_buff_head pending; 1492 struct sk_buff *skb; 1493 int num = 0; 1494 u16 tids = 0; 1495 bool need_null = false; 1496 1497 skb_queue_head_init(&pending); 1498 1499 while ((skb = __skb_dequeue(&frames))) { 1500 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1501 struct ieee80211_hdr *hdr = (void *) skb->data; 1502 u8 *qoshdr = NULL; 1503 1504 num++; 1505 1506 /* 1507 * Tell TX path to send this frame even though the 1508 * STA may still remain is PS mode after this frame 1509 * exchange. 1510 */ 1511 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1512 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1513 1514 /* 1515 * Use MoreData flag to indicate whether there are 1516 * more buffered frames for this STA 1517 */ 1518 if (more_data || !skb_queue_empty(&frames)) 1519 hdr->frame_control |= 1520 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1521 else 1522 hdr->frame_control &= 1523 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1524 1525 if (ieee80211_is_data_qos(hdr->frame_control) || 1526 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1527 qoshdr = ieee80211_get_qos_ctl(hdr); 1528 1529 tids |= BIT(skb->priority); 1530 1531 __skb_queue_tail(&pending, skb); 1532 1533 /* end service period after last frame or add one */ 1534 if (!skb_queue_empty(&frames)) 1535 continue; 1536 1537 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1538 /* for PS-Poll, there's only one frame */ 1539 info->flags |= IEEE80211_TX_STATUS_EOSP | 1540 IEEE80211_TX_CTL_REQ_TX_STATUS; 1541 break; 1542 } 1543 1544 /* For uAPSD, things are a bit more complicated. If the 1545 * last frame has a QoS header (i.e. is a QoS-data or 1546 * QoS-nulldata frame) then just set the EOSP bit there 1547 * and be done. 1548 * If the frame doesn't have a QoS header (which means 1549 * it should be a bufferable MMPDU) then we can't set 1550 * the EOSP bit in the QoS header; add a QoS-nulldata 1551 * frame to the list to send it after the MMPDU. 1552 * 1553 * Note that this code is only in the mac80211-release 1554 * code path, we assume that the driver will not buffer 1555 * anything but QoS-data frames, or if it does, will 1556 * create the QoS-nulldata frame by itself if needed. 1557 * 1558 * Cf. 802.11-2012 10.2.1.10 (c). 1559 */ 1560 if (qoshdr) { 1561 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1562 1563 info->flags |= IEEE80211_TX_STATUS_EOSP | 1564 IEEE80211_TX_CTL_REQ_TX_STATUS; 1565 } else { 1566 /* The standard isn't completely clear on this 1567 * as it says the more-data bit should be set 1568 * if there are more BUs. The QoS-Null frame 1569 * we're about to send isn't buffered yet, we 1570 * only create it below, but let's pretend it 1571 * was buffered just in case some clients only 1572 * expect more-data=0 when eosp=1. 1573 */ 1574 hdr->frame_control |= 1575 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1576 need_null = true; 1577 num++; 1578 } 1579 break; 1580 } 1581 1582 drv_allow_buffered_frames(local, sta, tids, num, 1583 reason, more_data); 1584 1585 ieee80211_add_pending_skbs(local, &pending); 1586 1587 if (need_null) 1588 ieee80211_send_null_response( 1589 sta, find_highest_prio_tid(tids), 1590 reason, false, false); 1591 1592 sta_info_recalc_tim(sta); 1593 } else { 1594 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1595 int tid; 1596 1597 /* 1598 * We need to release a frame that is buffered somewhere in the 1599 * driver ... it'll have to handle that. 1600 * Note that the driver also has to check the number of frames 1601 * on the TIDs we're releasing from - if there are more than 1602 * n_frames it has to set the more-data bit (if we didn't ask 1603 * it to set it anyway due to other buffered frames); if there 1604 * are fewer than n_frames it has to make sure to adjust that 1605 * to allow the service period to end properly. 1606 */ 1607 drv_release_buffered_frames(local, sta, driver_release_tids, 1608 n_frames, reason, more_data); 1609 1610 /* 1611 * Note that we don't recalculate the TIM bit here as it would 1612 * most likely have no effect at all unless the driver told us 1613 * that the TID(s) became empty before returning here from the 1614 * release function. 1615 * Either way, however, when the driver tells us that the TID(s) 1616 * became empty or we find that a txq became empty, we'll do the 1617 * TIM recalculation. 1618 */ 1619 1620 if (!sta->sta.txq[0]) 1621 return; 1622 1623 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1624 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1625 1626 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1627 continue; 1628 1629 sta_info_recalc_tim(sta); 1630 break; 1631 } 1632 } 1633 } 1634 1635 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1636 { 1637 u8 ignore_for_response = sta->sta.uapsd_queues; 1638 1639 /* 1640 * If all ACs are delivery-enabled then we should reply 1641 * from any of them, if only some are enabled we reply 1642 * only from the non-enabled ones. 1643 */ 1644 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1645 ignore_for_response = 0; 1646 1647 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1648 IEEE80211_FRAME_RELEASE_PSPOLL); 1649 } 1650 1651 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1652 { 1653 int n_frames = sta->sta.max_sp; 1654 u8 delivery_enabled = sta->sta.uapsd_queues; 1655 1656 /* 1657 * If we ever grow support for TSPEC this might happen if 1658 * the TSPEC update from hostapd comes in between a trigger 1659 * frame setting WLAN_STA_UAPSD in the RX path and this 1660 * actually getting called. 1661 */ 1662 if (!delivery_enabled) 1663 return; 1664 1665 switch (sta->sta.max_sp) { 1666 case 1: 1667 n_frames = 2; 1668 break; 1669 case 2: 1670 n_frames = 4; 1671 break; 1672 case 3: 1673 n_frames = 6; 1674 break; 1675 case 0: 1676 /* XXX: what is a good value? */ 1677 n_frames = 128; 1678 break; 1679 } 1680 1681 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1682 IEEE80211_FRAME_RELEASE_UAPSD); 1683 } 1684 1685 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1686 struct ieee80211_sta *pubsta, bool block) 1687 { 1688 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1689 1690 trace_api_sta_block_awake(sta->local, pubsta, block); 1691 1692 if (block) { 1693 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1694 ieee80211_clear_fast_xmit(sta); 1695 return; 1696 } 1697 1698 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1699 return; 1700 1701 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1702 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1703 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1704 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1705 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1706 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1707 /* must be asleep in this case */ 1708 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1709 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1710 } else { 1711 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1712 ieee80211_check_fast_xmit(sta); 1713 } 1714 } 1715 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1716 1717 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1718 { 1719 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1720 struct ieee80211_local *local = sta->local; 1721 1722 trace_api_eosp(local, pubsta); 1723 1724 clear_sta_flag(sta, WLAN_STA_SP); 1725 } 1726 EXPORT_SYMBOL(ieee80211_sta_eosp); 1727 1728 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1729 { 1730 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1731 enum ieee80211_frame_release_type reason; 1732 bool more_data; 1733 1734 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1735 1736 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1737 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1738 reason, 0); 1739 1740 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1741 } 1742 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1743 1744 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1745 u8 tid, bool buffered) 1746 { 1747 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1748 1749 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1750 return; 1751 1752 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1753 1754 if (buffered) 1755 set_bit(tid, &sta->driver_buffered_tids); 1756 else 1757 clear_bit(tid, &sta->driver_buffered_tids); 1758 1759 sta_info_recalc_tim(sta); 1760 } 1761 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1762 1763 int sta_info_move_state(struct sta_info *sta, 1764 enum ieee80211_sta_state new_state) 1765 { 1766 might_sleep(); 1767 1768 if (sta->sta_state == new_state) 1769 return 0; 1770 1771 /* check allowed transitions first */ 1772 1773 switch (new_state) { 1774 case IEEE80211_STA_NONE: 1775 if (sta->sta_state != IEEE80211_STA_AUTH) 1776 return -EINVAL; 1777 break; 1778 case IEEE80211_STA_AUTH: 1779 if (sta->sta_state != IEEE80211_STA_NONE && 1780 sta->sta_state != IEEE80211_STA_ASSOC) 1781 return -EINVAL; 1782 break; 1783 case IEEE80211_STA_ASSOC: 1784 if (sta->sta_state != IEEE80211_STA_AUTH && 1785 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1786 return -EINVAL; 1787 break; 1788 case IEEE80211_STA_AUTHORIZED: 1789 if (sta->sta_state != IEEE80211_STA_ASSOC) 1790 return -EINVAL; 1791 break; 1792 default: 1793 WARN(1, "invalid state %d", new_state); 1794 return -EINVAL; 1795 } 1796 1797 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1798 sta->sta.addr, new_state); 1799 1800 /* 1801 * notify the driver before the actual changes so it can 1802 * fail the transition 1803 */ 1804 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1805 int err = drv_sta_state(sta->local, sta->sdata, sta, 1806 sta->sta_state, new_state); 1807 if (err) 1808 return err; 1809 } 1810 1811 /* reflect the change in all state variables */ 1812 1813 switch (new_state) { 1814 case IEEE80211_STA_NONE: 1815 if (sta->sta_state == IEEE80211_STA_AUTH) 1816 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1817 break; 1818 case IEEE80211_STA_AUTH: 1819 if (sta->sta_state == IEEE80211_STA_NONE) { 1820 set_bit(WLAN_STA_AUTH, &sta->_flags); 1821 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1822 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1823 ieee80211_recalc_min_chandef(sta->sdata); 1824 } 1825 break; 1826 case IEEE80211_STA_ASSOC: 1827 if (sta->sta_state == IEEE80211_STA_AUTH) { 1828 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1829 ieee80211_recalc_min_chandef(sta->sdata); 1830 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1831 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1832 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1833 !sta->sdata->u.vlan.sta)) 1834 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1835 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1836 ieee80211_clear_fast_xmit(sta); 1837 } 1838 break; 1839 case IEEE80211_STA_AUTHORIZED: 1840 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1841 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1842 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1843 !sta->sdata->u.vlan.sta)) 1844 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1845 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1846 ieee80211_check_fast_xmit(sta); 1847 } 1848 break; 1849 default: 1850 break; 1851 } 1852 1853 sta->sta_state = new_state; 1854 1855 return 0; 1856 } 1857 1858 u8 sta_info_tx_streams(struct sta_info *sta) 1859 { 1860 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1861 u8 rx_streams; 1862 1863 if (!sta->sta.ht_cap.ht_supported) 1864 return 1; 1865 1866 if (sta->sta.vht_cap.vht_supported) { 1867 int i; 1868 u16 tx_mcs_map = 1869 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1870 1871 for (i = 7; i >= 0; i--) 1872 if ((tx_mcs_map & (0x3 << (i * 2))) != 1873 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1874 return i + 1; 1875 } 1876 1877 if (ht_cap->mcs.rx_mask[3]) 1878 rx_streams = 4; 1879 else if (ht_cap->mcs.rx_mask[2]) 1880 rx_streams = 3; 1881 else if (ht_cap->mcs.rx_mask[1]) 1882 rx_streams = 2; 1883 else 1884 rx_streams = 1; 1885 1886 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1887 return rx_streams; 1888 1889 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1890 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1891 } 1892 1893 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 1894 { 1895 rinfo->flags = 0; 1896 1897 if (sta->rx_stats.last_rate_flag & RX_FLAG_HT) { 1898 rinfo->flags |= RATE_INFO_FLAGS_MCS; 1899 rinfo->mcs = sta->rx_stats.last_rate_idx; 1900 } else if (sta->rx_stats.last_rate_flag & RX_FLAG_VHT) { 1901 rinfo->flags |= RATE_INFO_FLAGS_VHT_MCS; 1902 rinfo->nss = sta->rx_stats.last_rate_vht_nss; 1903 rinfo->mcs = sta->rx_stats.last_rate_idx; 1904 } else { 1905 struct ieee80211_supported_band *sband; 1906 int shift = ieee80211_vif_get_shift(&sta->sdata->vif); 1907 u16 brate; 1908 1909 sband = sta->local->hw.wiphy->bands[ 1910 ieee80211_get_sdata_band(sta->sdata)]; 1911 brate = sband->bitrates[sta->rx_stats.last_rate_idx].bitrate; 1912 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 1913 } 1914 1915 if (sta->rx_stats.last_rate_flag & RX_FLAG_SHORT_GI) 1916 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1917 1918 if (sta->rx_stats.last_rate_flag & RX_FLAG_5MHZ) 1919 rinfo->bw = RATE_INFO_BW_5; 1920 else if (sta->rx_stats.last_rate_flag & RX_FLAG_10MHZ) 1921 rinfo->bw = RATE_INFO_BW_10; 1922 else if (sta->rx_stats.last_rate_flag & RX_FLAG_40MHZ) 1923 rinfo->bw = RATE_INFO_BW_40; 1924 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_80MHZ) 1925 rinfo->bw = RATE_INFO_BW_80; 1926 else if (sta->rx_stats.last_rate_vht_flag & RX_VHT_FLAG_160MHZ) 1927 rinfo->bw = RATE_INFO_BW_160; 1928 else 1929 rinfo->bw = RATE_INFO_BW_20; 1930 } 1931 1932 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1933 { 1934 struct ieee80211_sub_if_data *sdata = sta->sdata; 1935 struct ieee80211_local *local = sdata->local; 1936 struct rate_control_ref *ref = NULL; 1937 u32 thr = 0; 1938 int i, ac; 1939 1940 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1941 ref = local->rate_ctrl; 1942 1943 sinfo->generation = sdata->local->sta_generation; 1944 1945 /* do before driver, so beacon filtering drivers have a 1946 * chance to e.g. just add the number of filtered beacons 1947 * (or just modify the value entirely, of course) 1948 */ 1949 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1950 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 1951 1952 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 1953 1954 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 1955 BIT(NL80211_STA_INFO_STA_FLAGS) | 1956 BIT(NL80211_STA_INFO_BSS_PARAM) | 1957 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 1958 BIT(NL80211_STA_INFO_RX_DROP_MISC); 1959 1960 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 1961 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 1962 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 1963 } 1964 1965 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 1966 sinfo->inactive_time = 1967 jiffies_to_msecs(jiffies - sta->rx_stats.last_rx); 1968 1969 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 1970 BIT(NL80211_STA_INFO_TX_BYTES)))) { 1971 sinfo->tx_bytes = 0; 1972 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1973 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 1974 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 1975 } 1976 1977 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 1978 sinfo->tx_packets = 0; 1979 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1980 sinfo->tx_packets += sta->tx_stats.packets[ac]; 1981 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 1982 } 1983 1984 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 1985 BIT(NL80211_STA_INFO_RX_BYTES)))) { 1986 sinfo->rx_bytes = sta->rx_stats.bytes; 1987 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 1988 } 1989 1990 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 1991 sinfo->rx_packets = sta->rx_stats.packets; 1992 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 1993 } 1994 1995 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 1996 sinfo->tx_retries = sta->status_stats.retry_count; 1997 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 1998 } 1999 2000 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 2001 sinfo->tx_failed = sta->status_stats.retry_failed; 2002 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 2003 } 2004 2005 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2006 2007 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2008 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2009 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 2010 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2011 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2012 } 2013 2014 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2015 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2016 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 2017 sinfo->signal = (s8)sta->rx_stats.last_signal; 2018 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 2019 } 2020 2021 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 2022 sinfo->signal_avg = 2023 -ewma_signal_read(&sta->rx_stats.avg_signal); 2024 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 2025 } 2026 } 2027 2028 if (sta->rx_stats.chains && 2029 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2030 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2031 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2032 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2033 2034 sinfo->chains = sta->rx_stats.chains; 2035 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2036 sinfo->chain_signal[i] = 2037 sta->rx_stats.chain_signal_last[i]; 2038 sinfo->chain_signal_avg[i] = 2039 -ewma_signal_read(&sta->rx_stats.chain_signal_avg[i]); 2040 } 2041 } 2042 2043 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 2044 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2045 &sinfo->txrate); 2046 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 2047 } 2048 2049 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 2050 sta_set_rate_info_rx(sta, &sinfo->rxrate); 2051 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 2052 } 2053 2054 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 2055 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 2056 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 2057 2058 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2059 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2060 tidstats->rx_msdu = sta->rx_stats.msdu[i]; 2061 } 2062 2063 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2064 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2065 tidstats->tx_msdu = sta->tx_stats.msdu[i]; 2066 } 2067 2068 if (!(tidstats->filled & 2069 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2070 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2071 tidstats->filled |= 2072 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2073 tidstats->tx_msdu_retries = 2074 sta->status_stats.msdu_retries[i]; 2075 } 2076 2077 if (!(tidstats->filled & 2078 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2079 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2080 tidstats->filled |= 2081 BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2082 tidstats->tx_msdu_failed = 2083 sta->status_stats.msdu_failed[i]; 2084 } 2085 } 2086 2087 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2088 #ifdef CONFIG_MAC80211_MESH 2089 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2090 BIT(NL80211_STA_INFO_PLID) | 2091 BIT(NL80211_STA_INFO_PLINK_STATE) | 2092 BIT(NL80211_STA_INFO_LOCAL_PM) | 2093 BIT(NL80211_STA_INFO_PEER_PM) | 2094 BIT(NL80211_STA_INFO_NONPEER_PM); 2095 2096 sinfo->llid = sta->mesh->llid; 2097 sinfo->plid = sta->mesh->plid; 2098 sinfo->plink_state = sta->mesh->plink_state; 2099 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2100 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2101 sinfo->t_offset = sta->mesh->t_offset; 2102 } 2103 sinfo->local_pm = sta->mesh->local_pm; 2104 sinfo->peer_pm = sta->mesh->peer_pm; 2105 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2106 #endif 2107 } 2108 2109 sinfo->bss_param.flags = 0; 2110 if (sdata->vif.bss_conf.use_cts_prot) 2111 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2112 if (sdata->vif.bss_conf.use_short_preamble) 2113 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2114 if (sdata->vif.bss_conf.use_short_slot) 2115 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2116 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2117 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2118 2119 sinfo->sta_flags.set = 0; 2120 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2121 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2122 BIT(NL80211_STA_FLAG_WME) | 2123 BIT(NL80211_STA_FLAG_MFP) | 2124 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2125 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2126 BIT(NL80211_STA_FLAG_TDLS_PEER); 2127 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2128 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2129 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2130 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2131 if (sta->sta.wme) 2132 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2133 if (test_sta_flag(sta, WLAN_STA_MFP)) 2134 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2135 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2136 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2137 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2138 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2139 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2140 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2141 2142 /* check if the driver has a SW RC implementation */ 2143 if (ref && ref->ops->get_expected_throughput) 2144 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2145 else 2146 thr = drv_get_expected_throughput(local, &sta->sta); 2147 2148 if (thr != 0) { 2149 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2150 sinfo->expected_throughput = thr; 2151 } 2152 } 2153