1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .hashfn = sta_addr_hash, 74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 75 }; 76 77 /* Caller must hold local->sta_mtx */ 78 static int sta_info_hash_del(struct ieee80211_local *local, 79 struct sta_info *sta) 80 { 81 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 82 sta_rht_params); 83 } 84 85 static void __cleanup_single_sta(struct sta_info *sta) 86 { 87 int ac, i; 88 struct tid_ampdu_tx *tid_tx; 89 struct ieee80211_sub_if_data *sdata = sta->sdata; 90 struct ieee80211_local *local = sdata->local; 91 struct ps_data *ps; 92 93 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 94 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 95 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 96 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 97 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 98 ps = &sdata->bss->ps; 99 else if (ieee80211_vif_is_mesh(&sdata->vif)) 100 ps = &sdata->u.mesh.ps; 101 else 102 return; 103 104 clear_sta_flag(sta, WLAN_STA_PS_STA); 105 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 106 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 107 108 atomic_dec(&ps->num_sta_ps); 109 } 110 111 if (sta->sta.txq[0]) { 112 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 113 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 114 int n = skb_queue_len(&txqi->queue); 115 116 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 117 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 118 } 119 } 120 121 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 122 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 123 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 125 } 126 127 if (ieee80211_vif_is_mesh(&sdata->vif)) 128 mesh_sta_cleanup(sta); 129 130 cancel_work_sync(&sta->drv_deliver_wk); 131 132 /* 133 * Destroy aggregation state here. It would be nice to wait for the 134 * driver to finish aggregation stop and then clean up, but for now 135 * drivers have to handle aggregation stop being requested, followed 136 * directly by station destruction. 137 */ 138 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 139 kfree(sta->ampdu_mlme.tid_start_tx[i]); 140 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 141 if (!tid_tx) 142 continue; 143 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 144 kfree(tid_tx); 145 } 146 } 147 148 static void cleanup_single_sta(struct sta_info *sta) 149 { 150 struct ieee80211_sub_if_data *sdata = sta->sdata; 151 struct ieee80211_local *local = sdata->local; 152 153 __cleanup_single_sta(sta); 154 sta_info_free(local, sta); 155 } 156 157 /* protected by RCU */ 158 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 159 const u8 *addr) 160 { 161 struct ieee80211_local *local = sdata->local; 162 struct sta_info *sta; 163 struct rhash_head *tmp; 164 const struct bucket_table *tbl; 165 166 rcu_read_lock(); 167 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 168 169 for_each_sta_info(local, tbl, addr, sta, tmp) { 170 if (sta->sdata == sdata) { 171 rcu_read_unlock(); 172 /* this is safe as the caller must already hold 173 * another rcu read section or the mutex 174 */ 175 return sta; 176 } 177 } 178 rcu_read_unlock(); 179 return NULL; 180 } 181 182 /* 183 * Get sta info either from the specified interface 184 * or from one of its vlans 185 */ 186 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 187 const u8 *addr) 188 { 189 struct ieee80211_local *local = sdata->local; 190 struct sta_info *sta; 191 struct rhash_head *tmp; 192 const struct bucket_table *tbl; 193 194 rcu_read_lock(); 195 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 196 197 for_each_sta_info(local, tbl, addr, sta, tmp) { 198 if (sta->sdata == sdata || 199 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 200 rcu_read_unlock(); 201 /* this is safe as the caller must already hold 202 * another rcu read section or the mutex 203 */ 204 return sta; 205 } 206 } 207 rcu_read_unlock(); 208 return NULL; 209 } 210 211 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 212 int idx) 213 { 214 struct ieee80211_local *local = sdata->local; 215 struct sta_info *sta; 216 int i = 0; 217 218 list_for_each_entry_rcu(sta, &local->sta_list, list) { 219 if (sdata != sta->sdata) 220 continue; 221 if (i < idx) { 222 ++i; 223 continue; 224 } 225 return sta; 226 } 227 228 return NULL; 229 } 230 231 /** 232 * sta_info_free - free STA 233 * 234 * @local: pointer to the global information 235 * @sta: STA info to free 236 * 237 * This function must undo everything done by sta_info_alloc() 238 * that may happen before sta_info_insert(). It may only be 239 * called when sta_info_insert() has not been attempted (and 240 * if that fails, the station is freed anyway.) 241 */ 242 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 243 { 244 if (sta->rate_ctrl) 245 rate_control_free_sta(sta); 246 247 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 248 249 if (sta->sta.txq[0]) 250 kfree(to_txq_info(sta->sta.txq[0])); 251 kfree(rcu_dereference_raw(sta->sta.rates)); 252 #ifdef CONFIG_MAC80211_MESH 253 kfree(sta->mesh); 254 #endif 255 kfree(sta); 256 } 257 258 /* Caller must hold local->sta_mtx */ 259 static void sta_info_hash_add(struct ieee80211_local *local, 260 struct sta_info *sta) 261 { 262 rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 263 sta_rht_params); 264 } 265 266 static void sta_deliver_ps_frames(struct work_struct *wk) 267 { 268 struct sta_info *sta; 269 270 sta = container_of(wk, struct sta_info, drv_deliver_wk); 271 272 if (sta->dead) 273 return; 274 275 local_bh_disable(); 276 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 277 ieee80211_sta_ps_deliver_wakeup(sta); 278 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 279 ieee80211_sta_ps_deliver_poll_response(sta); 280 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 281 ieee80211_sta_ps_deliver_uapsd(sta); 282 local_bh_enable(); 283 } 284 285 static int sta_prepare_rate_control(struct ieee80211_local *local, 286 struct sta_info *sta, gfp_t gfp) 287 { 288 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 289 return 0; 290 291 sta->rate_ctrl = local->rate_ctrl; 292 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 293 sta, gfp); 294 if (!sta->rate_ctrl_priv) 295 return -ENOMEM; 296 297 return 0; 298 } 299 300 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 301 const u8 *addr, gfp_t gfp) 302 { 303 struct ieee80211_local *local = sdata->local; 304 struct ieee80211_hw *hw = &local->hw; 305 struct sta_info *sta; 306 struct timespec uptime; 307 int i; 308 309 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 310 if (!sta) 311 return NULL; 312 313 spin_lock_init(&sta->lock); 314 spin_lock_init(&sta->ps_lock); 315 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 316 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 317 mutex_init(&sta->ampdu_mlme.mtx); 318 #ifdef CONFIG_MAC80211_MESH 319 if (ieee80211_vif_is_mesh(&sdata->vif)) { 320 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 321 if (!sta->mesh) 322 goto free; 323 spin_lock_init(&sta->mesh->plink_lock); 324 if (ieee80211_vif_is_mesh(&sdata->vif) && 325 !sdata->u.mesh.user_mpm) 326 init_timer(&sta->mesh->plink_timer); 327 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 328 } 329 #endif 330 331 memcpy(sta->addr, addr, ETH_ALEN); 332 memcpy(sta->sta.addr, addr, ETH_ALEN); 333 sta->local = local; 334 sta->sdata = sdata; 335 sta->last_rx = jiffies; 336 337 sta->sta_state = IEEE80211_STA_NONE; 338 339 /* Mark TID as unreserved */ 340 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 341 342 ktime_get_ts(&uptime); 343 sta->last_connected = uptime.tv_sec; 344 ewma_signal_init(&sta->avg_signal); 345 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 346 ewma_signal_init(&sta->chain_signal_avg[i]); 347 348 if (local->ops->wake_tx_queue) { 349 void *txq_data; 350 int size = sizeof(struct txq_info) + 351 ALIGN(hw->txq_data_size, sizeof(void *)); 352 353 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 354 if (!txq_data) 355 goto free; 356 357 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 358 struct txq_info *txq = txq_data + i * size; 359 360 ieee80211_init_tx_queue(sdata, sta, txq, i); 361 } 362 } 363 364 if (sta_prepare_rate_control(local, sta, gfp)) 365 goto free_txq; 366 367 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 368 /* 369 * timer_to_tid must be initialized with identity mapping 370 * to enable session_timer's data differentiation. See 371 * sta_rx_agg_session_timer_expired for usage. 372 */ 373 sta->timer_to_tid[i] = i; 374 } 375 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 376 skb_queue_head_init(&sta->ps_tx_buf[i]); 377 skb_queue_head_init(&sta->tx_filtered[i]); 378 } 379 380 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 381 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 382 383 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 384 if (sdata->vif.type == NL80211_IFTYPE_AP || 385 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 386 struct ieee80211_supported_band *sband = 387 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 388 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 389 IEEE80211_HT_CAP_SM_PS_SHIFT; 390 /* 391 * Assume that hostapd advertises our caps in the beacon and 392 * this is the known_smps_mode for a station that just assciated 393 */ 394 switch (smps) { 395 case WLAN_HT_SMPS_CONTROL_DISABLED: 396 sta->known_smps_mode = IEEE80211_SMPS_OFF; 397 break; 398 case WLAN_HT_SMPS_CONTROL_STATIC: 399 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 400 break; 401 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 402 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 403 break; 404 default: 405 WARN_ON(1); 406 } 407 } 408 409 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 410 411 return sta; 412 413 free_txq: 414 if (sta->sta.txq[0]) 415 kfree(to_txq_info(sta->sta.txq[0])); 416 free: 417 #ifdef CONFIG_MAC80211_MESH 418 kfree(sta->mesh); 419 #endif 420 kfree(sta); 421 return NULL; 422 } 423 424 static int sta_info_insert_check(struct sta_info *sta) 425 { 426 struct ieee80211_sub_if_data *sdata = sta->sdata; 427 428 /* 429 * Can't be a WARN_ON because it can be triggered through a race: 430 * something inserts a STA (on one CPU) without holding the RTNL 431 * and another CPU turns off the net device. 432 */ 433 if (unlikely(!ieee80211_sdata_running(sdata))) 434 return -ENETDOWN; 435 436 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 437 is_multicast_ether_addr(sta->sta.addr))) 438 return -EINVAL; 439 440 return 0; 441 } 442 443 static int sta_info_insert_drv_state(struct ieee80211_local *local, 444 struct ieee80211_sub_if_data *sdata, 445 struct sta_info *sta) 446 { 447 enum ieee80211_sta_state state; 448 int err = 0; 449 450 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 451 err = drv_sta_state(local, sdata, sta, state, state + 1); 452 if (err) 453 break; 454 } 455 456 if (!err) { 457 /* 458 * Drivers using legacy sta_add/sta_remove callbacks only 459 * get uploaded set to true after sta_add is called. 460 */ 461 if (!local->ops->sta_add) 462 sta->uploaded = true; 463 return 0; 464 } 465 466 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 467 sdata_info(sdata, 468 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 469 sta->sta.addr, state + 1, err); 470 err = 0; 471 } 472 473 /* unwind on error */ 474 for (; state > IEEE80211_STA_NOTEXIST; state--) 475 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 476 477 return err; 478 } 479 480 /* 481 * should be called with sta_mtx locked 482 * this function replaces the mutex lock 483 * with a RCU lock 484 */ 485 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 486 { 487 struct ieee80211_local *local = sta->local; 488 struct ieee80211_sub_if_data *sdata = sta->sdata; 489 struct station_info sinfo; 490 int err = 0; 491 492 lockdep_assert_held(&local->sta_mtx); 493 494 /* check if STA exists already */ 495 if (sta_info_get_bss(sdata, sta->sta.addr)) { 496 err = -EEXIST; 497 goto out_err; 498 } 499 500 local->num_sta++; 501 local->sta_generation++; 502 smp_mb(); 503 504 /* simplify things and don't accept BA sessions yet */ 505 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 506 507 /* make the station visible */ 508 sta_info_hash_add(local, sta); 509 510 list_add_tail_rcu(&sta->list, &local->sta_list); 511 512 /* notify driver */ 513 err = sta_info_insert_drv_state(local, sdata, sta); 514 if (err) 515 goto out_remove; 516 517 set_sta_flag(sta, WLAN_STA_INSERTED); 518 /* accept BA sessions now */ 519 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 520 521 ieee80211_recalc_min_chandef(sdata); 522 ieee80211_sta_debugfs_add(sta); 523 rate_control_add_sta_debugfs(sta); 524 525 memset(&sinfo, 0, sizeof(sinfo)); 526 sinfo.filled = 0; 527 sinfo.generation = local->sta_generation; 528 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 529 530 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 531 532 /* move reference to rcu-protected */ 533 rcu_read_lock(); 534 mutex_unlock(&local->sta_mtx); 535 536 if (ieee80211_vif_is_mesh(&sdata->vif)) 537 mesh_accept_plinks_update(sdata); 538 539 return 0; 540 out_remove: 541 sta_info_hash_del(local, sta); 542 list_del_rcu(&sta->list); 543 local->num_sta--; 544 synchronize_net(); 545 __cleanup_single_sta(sta); 546 out_err: 547 mutex_unlock(&local->sta_mtx); 548 rcu_read_lock(); 549 return err; 550 } 551 552 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 553 { 554 struct ieee80211_local *local = sta->local; 555 int err; 556 557 might_sleep(); 558 559 err = sta_info_insert_check(sta); 560 if (err) { 561 rcu_read_lock(); 562 goto out_free; 563 } 564 565 mutex_lock(&local->sta_mtx); 566 567 err = sta_info_insert_finish(sta); 568 if (err) 569 goto out_free; 570 571 return 0; 572 out_free: 573 sta_info_free(local, sta); 574 return err; 575 } 576 577 int sta_info_insert(struct sta_info *sta) 578 { 579 int err = sta_info_insert_rcu(sta); 580 581 rcu_read_unlock(); 582 583 return err; 584 } 585 586 static inline void __bss_tim_set(u8 *tim, u16 id) 587 { 588 /* 589 * This format has been mandated by the IEEE specifications, 590 * so this line may not be changed to use the __set_bit() format. 591 */ 592 tim[id / 8] |= (1 << (id % 8)); 593 } 594 595 static inline void __bss_tim_clear(u8 *tim, u16 id) 596 { 597 /* 598 * This format has been mandated by the IEEE specifications, 599 * so this line may not be changed to use the __clear_bit() format. 600 */ 601 tim[id / 8] &= ~(1 << (id % 8)); 602 } 603 604 static inline bool __bss_tim_get(u8 *tim, u16 id) 605 { 606 /* 607 * This format has been mandated by the IEEE specifications, 608 * so this line may not be changed to use the test_bit() format. 609 */ 610 return tim[id / 8] & (1 << (id % 8)); 611 } 612 613 static unsigned long ieee80211_tids_for_ac(int ac) 614 { 615 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 616 switch (ac) { 617 case IEEE80211_AC_VO: 618 return BIT(6) | BIT(7); 619 case IEEE80211_AC_VI: 620 return BIT(4) | BIT(5); 621 case IEEE80211_AC_BE: 622 return BIT(0) | BIT(3); 623 case IEEE80211_AC_BK: 624 return BIT(1) | BIT(2); 625 default: 626 WARN_ON(1); 627 return 0; 628 } 629 } 630 631 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 632 { 633 struct ieee80211_local *local = sta->local; 634 struct ps_data *ps; 635 bool indicate_tim = false; 636 u8 ignore_for_tim = sta->sta.uapsd_queues; 637 int ac; 638 u16 id = sta->sta.aid; 639 640 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 641 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 642 if (WARN_ON_ONCE(!sta->sdata->bss)) 643 return; 644 645 ps = &sta->sdata->bss->ps; 646 #ifdef CONFIG_MAC80211_MESH 647 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 648 ps = &sta->sdata->u.mesh.ps; 649 #endif 650 } else { 651 return; 652 } 653 654 /* No need to do anything if the driver does all */ 655 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 656 return; 657 658 if (sta->dead) 659 goto done; 660 661 /* 662 * If all ACs are delivery-enabled then we should build 663 * the TIM bit for all ACs anyway; if only some are then 664 * we ignore those and build the TIM bit using only the 665 * non-enabled ones. 666 */ 667 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 668 ignore_for_tim = 0; 669 670 if (ignore_pending) 671 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 672 673 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 674 unsigned long tids; 675 676 if (ignore_for_tim & BIT(ac)) 677 continue; 678 679 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 680 !skb_queue_empty(&sta->ps_tx_buf[ac]); 681 if (indicate_tim) 682 break; 683 684 tids = ieee80211_tids_for_ac(ac); 685 686 indicate_tim |= 687 sta->driver_buffered_tids & tids; 688 indicate_tim |= 689 sta->txq_buffered_tids & tids; 690 } 691 692 done: 693 spin_lock_bh(&local->tim_lock); 694 695 if (indicate_tim == __bss_tim_get(ps->tim, id)) 696 goto out_unlock; 697 698 if (indicate_tim) 699 __bss_tim_set(ps->tim, id); 700 else 701 __bss_tim_clear(ps->tim, id); 702 703 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 704 local->tim_in_locked_section = true; 705 drv_set_tim(local, &sta->sta, indicate_tim); 706 local->tim_in_locked_section = false; 707 } 708 709 out_unlock: 710 spin_unlock_bh(&local->tim_lock); 711 } 712 713 void sta_info_recalc_tim(struct sta_info *sta) 714 { 715 __sta_info_recalc_tim(sta, false); 716 } 717 718 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 719 { 720 struct ieee80211_tx_info *info; 721 int timeout; 722 723 if (!skb) 724 return false; 725 726 info = IEEE80211_SKB_CB(skb); 727 728 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 729 timeout = (sta->listen_interval * 730 sta->sdata->vif.bss_conf.beacon_int * 731 32 / 15625) * HZ; 732 if (timeout < STA_TX_BUFFER_EXPIRE) 733 timeout = STA_TX_BUFFER_EXPIRE; 734 return time_after(jiffies, info->control.jiffies + timeout); 735 } 736 737 738 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 739 struct sta_info *sta, int ac) 740 { 741 unsigned long flags; 742 struct sk_buff *skb; 743 744 /* 745 * First check for frames that should expire on the filtered 746 * queue. Frames here were rejected by the driver and are on 747 * a separate queue to avoid reordering with normal PS-buffered 748 * frames. They also aren't accounted for right now in the 749 * total_ps_buffered counter. 750 */ 751 for (;;) { 752 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 753 skb = skb_peek(&sta->tx_filtered[ac]); 754 if (sta_info_buffer_expired(sta, skb)) 755 skb = __skb_dequeue(&sta->tx_filtered[ac]); 756 else 757 skb = NULL; 758 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 759 760 /* 761 * Frames are queued in order, so if this one 762 * hasn't expired yet we can stop testing. If 763 * we actually reached the end of the queue we 764 * also need to stop, of course. 765 */ 766 if (!skb) 767 break; 768 ieee80211_free_txskb(&local->hw, skb); 769 } 770 771 /* 772 * Now also check the normal PS-buffered queue, this will 773 * only find something if the filtered queue was emptied 774 * since the filtered frames are all before the normal PS 775 * buffered frames. 776 */ 777 for (;;) { 778 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 779 skb = skb_peek(&sta->ps_tx_buf[ac]); 780 if (sta_info_buffer_expired(sta, skb)) 781 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 782 else 783 skb = NULL; 784 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 785 786 /* 787 * frames are queued in order, so if this one 788 * hasn't expired yet (or we reached the end of 789 * the queue) we can stop testing 790 */ 791 if (!skb) 792 break; 793 794 local->total_ps_buffered--; 795 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 796 sta->sta.addr); 797 ieee80211_free_txskb(&local->hw, skb); 798 } 799 800 /* 801 * Finally, recalculate the TIM bit for this station -- it might 802 * now be clear because the station was too slow to retrieve its 803 * frames. 804 */ 805 sta_info_recalc_tim(sta); 806 807 /* 808 * Return whether there are any frames still buffered, this is 809 * used to check whether the cleanup timer still needs to run, 810 * if there are no frames we don't need to rearm the timer. 811 */ 812 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 813 skb_queue_empty(&sta->tx_filtered[ac])); 814 } 815 816 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 817 struct sta_info *sta) 818 { 819 bool have_buffered = false; 820 int ac; 821 822 /* This is only necessary for stations on BSS/MBSS interfaces */ 823 if (!sta->sdata->bss && 824 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 825 return false; 826 827 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 828 have_buffered |= 829 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 830 831 return have_buffered; 832 } 833 834 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 835 { 836 struct ieee80211_local *local; 837 struct ieee80211_sub_if_data *sdata; 838 int ret; 839 840 might_sleep(); 841 842 if (!sta) 843 return -ENOENT; 844 845 local = sta->local; 846 sdata = sta->sdata; 847 848 lockdep_assert_held(&local->sta_mtx); 849 850 /* 851 * Before removing the station from the driver and 852 * rate control, it might still start new aggregation 853 * sessions -- block that to make sure the tear-down 854 * will be sufficient. 855 */ 856 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 857 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 858 859 ret = sta_info_hash_del(local, sta); 860 if (WARN_ON(ret)) 861 return ret; 862 863 /* 864 * for TDLS peers, make sure to return to the base channel before 865 * removal. 866 */ 867 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 868 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 869 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 870 } 871 872 list_del_rcu(&sta->list); 873 874 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 875 876 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 877 rcu_access_pointer(sdata->u.vlan.sta) == sta) 878 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 879 880 return 0; 881 } 882 883 static void __sta_info_destroy_part2(struct sta_info *sta) 884 { 885 struct ieee80211_local *local = sta->local; 886 struct ieee80211_sub_if_data *sdata = sta->sdata; 887 struct station_info sinfo = {}; 888 int ret; 889 890 /* 891 * NOTE: This assumes at least synchronize_net() was done 892 * after _part1 and before _part2! 893 */ 894 895 might_sleep(); 896 lockdep_assert_held(&local->sta_mtx); 897 898 /* now keys can no longer be reached */ 899 ieee80211_free_sta_keys(local, sta); 900 901 /* disable TIM bit - last chance to tell driver */ 902 __sta_info_recalc_tim(sta, true); 903 904 sta->dead = true; 905 906 local->num_sta--; 907 local->sta_generation++; 908 909 while (sta->sta_state > IEEE80211_STA_NONE) { 910 ret = sta_info_move_state(sta, sta->sta_state - 1); 911 if (ret) { 912 WARN_ON_ONCE(1); 913 break; 914 } 915 } 916 917 if (sta->uploaded) { 918 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 919 IEEE80211_STA_NOTEXIST); 920 WARN_ON_ONCE(ret != 0); 921 } 922 923 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 924 925 sta_set_sinfo(sta, &sinfo); 926 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 927 928 rate_control_remove_sta_debugfs(sta); 929 ieee80211_sta_debugfs_remove(sta); 930 ieee80211_recalc_min_chandef(sdata); 931 932 cleanup_single_sta(sta); 933 } 934 935 int __must_check __sta_info_destroy(struct sta_info *sta) 936 { 937 int err = __sta_info_destroy_part1(sta); 938 939 if (err) 940 return err; 941 942 synchronize_net(); 943 944 __sta_info_destroy_part2(sta); 945 946 return 0; 947 } 948 949 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 950 { 951 struct sta_info *sta; 952 int ret; 953 954 mutex_lock(&sdata->local->sta_mtx); 955 sta = sta_info_get(sdata, addr); 956 ret = __sta_info_destroy(sta); 957 mutex_unlock(&sdata->local->sta_mtx); 958 959 return ret; 960 } 961 962 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 963 const u8 *addr) 964 { 965 struct sta_info *sta; 966 int ret; 967 968 mutex_lock(&sdata->local->sta_mtx); 969 sta = sta_info_get_bss(sdata, addr); 970 ret = __sta_info_destroy(sta); 971 mutex_unlock(&sdata->local->sta_mtx); 972 973 return ret; 974 } 975 976 static void sta_info_cleanup(unsigned long data) 977 { 978 struct ieee80211_local *local = (struct ieee80211_local *) data; 979 struct sta_info *sta; 980 bool timer_needed = false; 981 982 rcu_read_lock(); 983 list_for_each_entry_rcu(sta, &local->sta_list, list) 984 if (sta_info_cleanup_expire_buffered(local, sta)) 985 timer_needed = true; 986 rcu_read_unlock(); 987 988 if (local->quiescing) 989 return; 990 991 if (!timer_needed) 992 return; 993 994 mod_timer(&local->sta_cleanup, 995 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 996 } 997 998 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 999 { 1000 return jhash(key, ETH_ALEN, seed); 1001 } 1002 1003 int sta_info_init(struct ieee80211_local *local) 1004 { 1005 int err; 1006 1007 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 1008 if (err) 1009 return err; 1010 1011 spin_lock_init(&local->tim_lock); 1012 mutex_init(&local->sta_mtx); 1013 INIT_LIST_HEAD(&local->sta_list); 1014 1015 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1016 (unsigned long)local); 1017 return 0; 1018 } 1019 1020 void sta_info_stop(struct ieee80211_local *local) 1021 { 1022 del_timer_sync(&local->sta_cleanup); 1023 rhashtable_destroy(&local->sta_hash); 1024 } 1025 1026 1027 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1028 { 1029 struct ieee80211_local *local = sdata->local; 1030 struct sta_info *sta, *tmp; 1031 LIST_HEAD(free_list); 1032 int ret = 0; 1033 1034 might_sleep(); 1035 1036 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1037 WARN_ON(vlans && !sdata->bss); 1038 1039 mutex_lock(&local->sta_mtx); 1040 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1041 if (sdata == sta->sdata || 1042 (vlans && sdata->bss == sta->sdata->bss)) { 1043 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1044 list_add(&sta->free_list, &free_list); 1045 ret++; 1046 } 1047 } 1048 1049 if (!list_empty(&free_list)) { 1050 synchronize_net(); 1051 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1052 __sta_info_destroy_part2(sta); 1053 } 1054 mutex_unlock(&local->sta_mtx); 1055 1056 return ret; 1057 } 1058 1059 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1060 unsigned long exp_time) 1061 { 1062 struct ieee80211_local *local = sdata->local; 1063 struct sta_info *sta, *tmp; 1064 1065 mutex_lock(&local->sta_mtx); 1066 1067 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1068 if (sdata != sta->sdata) 1069 continue; 1070 1071 if (time_after(jiffies, sta->last_rx + exp_time)) { 1072 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1073 sta->sta.addr); 1074 1075 if (ieee80211_vif_is_mesh(&sdata->vif) && 1076 test_sta_flag(sta, WLAN_STA_PS_STA)) 1077 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1078 1079 WARN_ON(__sta_info_destroy(sta)); 1080 } 1081 } 1082 1083 mutex_unlock(&local->sta_mtx); 1084 } 1085 1086 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1087 const u8 *addr, 1088 const u8 *localaddr) 1089 { 1090 struct ieee80211_local *local = hw_to_local(hw); 1091 struct sta_info *sta; 1092 struct rhash_head *tmp; 1093 const struct bucket_table *tbl; 1094 1095 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1096 1097 /* 1098 * Just return a random station if localaddr is NULL 1099 * ... first in list. 1100 */ 1101 for_each_sta_info(local, tbl, addr, sta, tmp) { 1102 if (localaddr && 1103 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1104 continue; 1105 if (!sta->uploaded) 1106 return NULL; 1107 return &sta->sta; 1108 } 1109 1110 return NULL; 1111 } 1112 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1113 1114 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1115 const u8 *addr) 1116 { 1117 struct sta_info *sta; 1118 1119 if (!vif) 1120 return NULL; 1121 1122 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1123 if (!sta) 1124 return NULL; 1125 1126 if (!sta->uploaded) 1127 return NULL; 1128 1129 return &sta->sta; 1130 } 1131 EXPORT_SYMBOL(ieee80211_find_sta); 1132 1133 /* powersave support code */ 1134 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1135 { 1136 struct ieee80211_sub_if_data *sdata = sta->sdata; 1137 struct ieee80211_local *local = sdata->local; 1138 struct sk_buff_head pending; 1139 int filtered = 0, buffered = 0, ac, i; 1140 unsigned long flags; 1141 struct ps_data *ps; 1142 1143 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1144 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1145 u.ap); 1146 1147 if (sdata->vif.type == NL80211_IFTYPE_AP) 1148 ps = &sdata->bss->ps; 1149 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1150 ps = &sdata->u.mesh.ps; 1151 else 1152 return; 1153 1154 clear_sta_flag(sta, WLAN_STA_SP); 1155 1156 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1157 sta->driver_buffered_tids = 0; 1158 sta->txq_buffered_tids = 0; 1159 1160 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1161 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1162 1163 if (sta->sta.txq[0]) { 1164 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1165 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1166 1167 if (!skb_queue_len(&txqi->queue)) 1168 continue; 1169 1170 drv_wake_tx_queue(local, txqi); 1171 } 1172 } 1173 1174 skb_queue_head_init(&pending); 1175 1176 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1177 spin_lock(&sta->ps_lock); 1178 /* Send all buffered frames to the station */ 1179 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1180 int count = skb_queue_len(&pending), tmp; 1181 1182 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1183 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1184 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1185 tmp = skb_queue_len(&pending); 1186 filtered += tmp - count; 1187 count = tmp; 1188 1189 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1190 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1191 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1192 tmp = skb_queue_len(&pending); 1193 buffered += tmp - count; 1194 } 1195 1196 ieee80211_add_pending_skbs(local, &pending); 1197 1198 /* now we're no longer in the deliver code */ 1199 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1200 1201 /* The station might have polled and then woken up before we responded, 1202 * so clear these flags now to avoid them sticking around. 1203 */ 1204 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1205 clear_sta_flag(sta, WLAN_STA_UAPSD); 1206 spin_unlock(&sta->ps_lock); 1207 1208 atomic_dec(&ps->num_sta_ps); 1209 1210 /* This station just woke up and isn't aware of our SMPS state */ 1211 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1212 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1213 sdata->smps_mode) && 1214 sta->known_smps_mode != sdata->bss->req_smps && 1215 sta_info_tx_streams(sta) != 1) { 1216 ht_dbg(sdata, 1217 "%pM just woke up and MIMO capable - update SMPS\n", 1218 sta->sta.addr); 1219 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1220 sta->sta.addr, 1221 sdata->vif.bss_conf.bssid); 1222 } 1223 1224 local->total_ps_buffered -= buffered; 1225 1226 sta_info_recalc_tim(sta); 1227 1228 ps_dbg(sdata, 1229 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1230 sta->sta.addr, sta->sta.aid, filtered, buffered); 1231 1232 ieee80211_check_fast_xmit(sta); 1233 } 1234 1235 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1236 struct sta_info *sta, int tid, 1237 enum ieee80211_frame_release_type reason, 1238 bool call_driver) 1239 { 1240 struct ieee80211_local *local = sdata->local; 1241 struct ieee80211_qos_hdr *nullfunc; 1242 struct sk_buff *skb; 1243 int size = sizeof(*nullfunc); 1244 __le16 fc; 1245 bool qos = sta->sta.wme; 1246 struct ieee80211_tx_info *info; 1247 struct ieee80211_chanctx_conf *chanctx_conf; 1248 1249 if (qos) { 1250 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1251 IEEE80211_STYPE_QOS_NULLFUNC | 1252 IEEE80211_FCTL_FROMDS); 1253 } else { 1254 size -= 2; 1255 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1256 IEEE80211_STYPE_NULLFUNC | 1257 IEEE80211_FCTL_FROMDS); 1258 } 1259 1260 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1261 if (!skb) 1262 return; 1263 1264 skb_reserve(skb, local->hw.extra_tx_headroom); 1265 1266 nullfunc = (void *) skb_put(skb, size); 1267 nullfunc->frame_control = fc; 1268 nullfunc->duration_id = 0; 1269 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1270 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1271 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1272 nullfunc->seq_ctrl = 0; 1273 1274 skb->priority = tid; 1275 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1276 if (qos) { 1277 nullfunc->qos_ctrl = cpu_to_le16(tid); 1278 1279 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1280 nullfunc->qos_ctrl |= 1281 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1282 } 1283 1284 info = IEEE80211_SKB_CB(skb); 1285 1286 /* 1287 * Tell TX path to send this frame even though the 1288 * STA may still remain is PS mode after this frame 1289 * exchange. Also set EOSP to indicate this packet 1290 * ends the poll/service period. 1291 */ 1292 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1293 IEEE80211_TX_STATUS_EOSP | 1294 IEEE80211_TX_CTL_REQ_TX_STATUS; 1295 1296 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1297 1298 if (call_driver) 1299 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1300 reason, false); 1301 1302 skb->dev = sdata->dev; 1303 1304 rcu_read_lock(); 1305 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1306 if (WARN_ON(!chanctx_conf)) { 1307 rcu_read_unlock(); 1308 kfree_skb(skb); 1309 return; 1310 } 1311 1312 info->band = chanctx_conf->def.chan->band; 1313 ieee80211_xmit(sdata, sta, skb); 1314 rcu_read_unlock(); 1315 } 1316 1317 static int find_highest_prio_tid(unsigned long tids) 1318 { 1319 /* lower 3 TIDs aren't ordered perfectly */ 1320 if (tids & 0xF8) 1321 return fls(tids) - 1; 1322 /* TID 0 is BE just like TID 3 */ 1323 if (tids & BIT(0)) 1324 return 0; 1325 return fls(tids) - 1; 1326 } 1327 1328 static void 1329 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1330 int n_frames, u8 ignored_acs, 1331 enum ieee80211_frame_release_type reason) 1332 { 1333 struct ieee80211_sub_if_data *sdata = sta->sdata; 1334 struct ieee80211_local *local = sdata->local; 1335 bool more_data = false; 1336 int ac; 1337 unsigned long driver_release_tids = 0; 1338 struct sk_buff_head frames; 1339 1340 /* Service or PS-Poll period starts */ 1341 set_sta_flag(sta, WLAN_STA_SP); 1342 1343 __skb_queue_head_init(&frames); 1344 1345 /* Get response frame(s) and more data bit for the last one. */ 1346 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1347 unsigned long tids; 1348 1349 if (ignored_acs & BIT(ac)) 1350 continue; 1351 1352 tids = ieee80211_tids_for_ac(ac); 1353 1354 /* if we already have frames from software, then we can't also 1355 * release from hardware queues 1356 */ 1357 if (skb_queue_empty(&frames)) { 1358 driver_release_tids |= sta->driver_buffered_tids & tids; 1359 driver_release_tids |= sta->txq_buffered_tids & tids; 1360 } 1361 1362 if (driver_release_tids) { 1363 /* If the driver has data on more than one TID then 1364 * certainly there's more data if we release just a 1365 * single frame now (from a single TID). This will 1366 * only happen for PS-Poll. 1367 */ 1368 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1369 hweight16(driver_release_tids) > 1) { 1370 more_data = true; 1371 driver_release_tids = 1372 BIT(find_highest_prio_tid( 1373 driver_release_tids)); 1374 break; 1375 } 1376 } else { 1377 struct sk_buff *skb; 1378 1379 while (n_frames > 0) { 1380 skb = skb_dequeue(&sta->tx_filtered[ac]); 1381 if (!skb) { 1382 skb = skb_dequeue( 1383 &sta->ps_tx_buf[ac]); 1384 if (skb) 1385 local->total_ps_buffered--; 1386 } 1387 if (!skb) 1388 break; 1389 n_frames--; 1390 __skb_queue_tail(&frames, skb); 1391 } 1392 } 1393 1394 /* If we have more frames buffered on this AC, then set the 1395 * more-data bit and abort the loop since we can't send more 1396 * data from other ACs before the buffered frames from this. 1397 */ 1398 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1399 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1400 more_data = true; 1401 break; 1402 } 1403 } 1404 1405 if (skb_queue_empty(&frames) && !driver_release_tids) { 1406 int tid; 1407 1408 /* 1409 * For PS-Poll, this can only happen due to a race condition 1410 * when we set the TIM bit and the station notices it, but 1411 * before it can poll for the frame we expire it. 1412 * 1413 * For uAPSD, this is said in the standard (11.2.1.5 h): 1414 * At each unscheduled SP for a non-AP STA, the AP shall 1415 * attempt to transmit at least one MSDU or MMPDU, but no 1416 * more than the value specified in the Max SP Length field 1417 * in the QoS Capability element from delivery-enabled ACs, 1418 * that are destined for the non-AP STA. 1419 * 1420 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1421 */ 1422 1423 /* This will evaluate to 1, 3, 5 or 7. */ 1424 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1425 1426 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1427 } else if (!driver_release_tids) { 1428 struct sk_buff_head pending; 1429 struct sk_buff *skb; 1430 int num = 0; 1431 u16 tids = 0; 1432 bool need_null = false; 1433 1434 skb_queue_head_init(&pending); 1435 1436 while ((skb = __skb_dequeue(&frames))) { 1437 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1438 struct ieee80211_hdr *hdr = (void *) skb->data; 1439 u8 *qoshdr = NULL; 1440 1441 num++; 1442 1443 /* 1444 * Tell TX path to send this frame even though the 1445 * STA may still remain is PS mode after this frame 1446 * exchange. 1447 */ 1448 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1449 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1450 1451 /* 1452 * Use MoreData flag to indicate whether there are 1453 * more buffered frames for this STA 1454 */ 1455 if (more_data || !skb_queue_empty(&frames)) 1456 hdr->frame_control |= 1457 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1458 else 1459 hdr->frame_control &= 1460 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1461 1462 if (ieee80211_is_data_qos(hdr->frame_control) || 1463 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1464 qoshdr = ieee80211_get_qos_ctl(hdr); 1465 1466 tids |= BIT(skb->priority); 1467 1468 __skb_queue_tail(&pending, skb); 1469 1470 /* end service period after last frame or add one */ 1471 if (!skb_queue_empty(&frames)) 1472 continue; 1473 1474 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1475 /* for PS-Poll, there's only one frame */ 1476 info->flags |= IEEE80211_TX_STATUS_EOSP | 1477 IEEE80211_TX_CTL_REQ_TX_STATUS; 1478 break; 1479 } 1480 1481 /* For uAPSD, things are a bit more complicated. If the 1482 * last frame has a QoS header (i.e. is a QoS-data or 1483 * QoS-nulldata frame) then just set the EOSP bit there 1484 * and be done. 1485 * If the frame doesn't have a QoS header (which means 1486 * it should be a bufferable MMPDU) then we can't set 1487 * the EOSP bit in the QoS header; add a QoS-nulldata 1488 * frame to the list to send it after the MMPDU. 1489 * 1490 * Note that this code is only in the mac80211-release 1491 * code path, we assume that the driver will not buffer 1492 * anything but QoS-data frames, or if it does, will 1493 * create the QoS-nulldata frame by itself if needed. 1494 * 1495 * Cf. 802.11-2012 10.2.1.10 (c). 1496 */ 1497 if (qoshdr) { 1498 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1499 1500 info->flags |= IEEE80211_TX_STATUS_EOSP | 1501 IEEE80211_TX_CTL_REQ_TX_STATUS; 1502 } else { 1503 /* The standard isn't completely clear on this 1504 * as it says the more-data bit should be set 1505 * if there are more BUs. The QoS-Null frame 1506 * we're about to send isn't buffered yet, we 1507 * only create it below, but let's pretend it 1508 * was buffered just in case some clients only 1509 * expect more-data=0 when eosp=1. 1510 */ 1511 hdr->frame_control |= 1512 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1513 need_null = true; 1514 num++; 1515 } 1516 break; 1517 } 1518 1519 drv_allow_buffered_frames(local, sta, tids, num, 1520 reason, more_data); 1521 1522 ieee80211_add_pending_skbs(local, &pending); 1523 1524 if (need_null) 1525 ieee80211_send_null_response( 1526 sdata, sta, find_highest_prio_tid(tids), 1527 reason, false); 1528 1529 sta_info_recalc_tim(sta); 1530 } else { 1531 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1532 int tid; 1533 1534 /* 1535 * We need to release a frame that is buffered somewhere in the 1536 * driver ... it'll have to handle that. 1537 * Note that the driver also has to check the number of frames 1538 * on the TIDs we're releasing from - if there are more than 1539 * n_frames it has to set the more-data bit (if we didn't ask 1540 * it to set it anyway due to other buffered frames); if there 1541 * are fewer than n_frames it has to make sure to adjust that 1542 * to allow the service period to end properly. 1543 */ 1544 drv_release_buffered_frames(local, sta, driver_release_tids, 1545 n_frames, reason, more_data); 1546 1547 /* 1548 * Note that we don't recalculate the TIM bit here as it would 1549 * most likely have no effect at all unless the driver told us 1550 * that the TID(s) became empty before returning here from the 1551 * release function. 1552 * Either way, however, when the driver tells us that the TID(s) 1553 * became empty or we find that a txq became empty, we'll do the 1554 * TIM recalculation. 1555 */ 1556 1557 if (!sta->sta.txq[0]) 1558 return; 1559 1560 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1561 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1562 1563 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1564 continue; 1565 1566 sta_info_recalc_tim(sta); 1567 break; 1568 } 1569 } 1570 } 1571 1572 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1573 { 1574 u8 ignore_for_response = sta->sta.uapsd_queues; 1575 1576 /* 1577 * If all ACs are delivery-enabled then we should reply 1578 * from any of them, if only some are enabled we reply 1579 * only from the non-enabled ones. 1580 */ 1581 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1582 ignore_for_response = 0; 1583 1584 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1585 IEEE80211_FRAME_RELEASE_PSPOLL); 1586 } 1587 1588 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1589 { 1590 int n_frames = sta->sta.max_sp; 1591 u8 delivery_enabled = sta->sta.uapsd_queues; 1592 1593 /* 1594 * If we ever grow support for TSPEC this might happen if 1595 * the TSPEC update from hostapd comes in between a trigger 1596 * frame setting WLAN_STA_UAPSD in the RX path and this 1597 * actually getting called. 1598 */ 1599 if (!delivery_enabled) 1600 return; 1601 1602 switch (sta->sta.max_sp) { 1603 case 1: 1604 n_frames = 2; 1605 break; 1606 case 2: 1607 n_frames = 4; 1608 break; 1609 case 3: 1610 n_frames = 6; 1611 break; 1612 case 0: 1613 /* XXX: what is a good value? */ 1614 n_frames = 128; 1615 break; 1616 } 1617 1618 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1619 IEEE80211_FRAME_RELEASE_UAPSD); 1620 } 1621 1622 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1623 struct ieee80211_sta *pubsta, bool block) 1624 { 1625 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1626 1627 trace_api_sta_block_awake(sta->local, pubsta, block); 1628 1629 if (block) { 1630 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1631 ieee80211_clear_fast_xmit(sta); 1632 return; 1633 } 1634 1635 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1636 return; 1637 1638 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1639 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1640 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1641 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1642 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1643 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1644 /* must be asleep in this case */ 1645 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1646 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1647 } else { 1648 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1649 ieee80211_check_fast_xmit(sta); 1650 } 1651 } 1652 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1653 1654 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1655 { 1656 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1657 struct ieee80211_local *local = sta->local; 1658 1659 trace_api_eosp(local, pubsta); 1660 1661 clear_sta_flag(sta, WLAN_STA_SP); 1662 } 1663 EXPORT_SYMBOL(ieee80211_sta_eosp); 1664 1665 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1666 u8 tid, bool buffered) 1667 { 1668 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1669 1670 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1671 return; 1672 1673 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1674 1675 if (buffered) 1676 set_bit(tid, &sta->driver_buffered_tids); 1677 else 1678 clear_bit(tid, &sta->driver_buffered_tids); 1679 1680 sta_info_recalc_tim(sta); 1681 } 1682 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1683 1684 int sta_info_move_state(struct sta_info *sta, 1685 enum ieee80211_sta_state new_state) 1686 { 1687 might_sleep(); 1688 1689 if (sta->sta_state == new_state) 1690 return 0; 1691 1692 /* check allowed transitions first */ 1693 1694 switch (new_state) { 1695 case IEEE80211_STA_NONE: 1696 if (sta->sta_state != IEEE80211_STA_AUTH) 1697 return -EINVAL; 1698 break; 1699 case IEEE80211_STA_AUTH: 1700 if (sta->sta_state != IEEE80211_STA_NONE && 1701 sta->sta_state != IEEE80211_STA_ASSOC) 1702 return -EINVAL; 1703 break; 1704 case IEEE80211_STA_ASSOC: 1705 if (sta->sta_state != IEEE80211_STA_AUTH && 1706 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1707 return -EINVAL; 1708 break; 1709 case IEEE80211_STA_AUTHORIZED: 1710 if (sta->sta_state != IEEE80211_STA_ASSOC) 1711 return -EINVAL; 1712 break; 1713 default: 1714 WARN(1, "invalid state %d", new_state); 1715 return -EINVAL; 1716 } 1717 1718 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1719 sta->sta.addr, new_state); 1720 1721 /* 1722 * notify the driver before the actual changes so it can 1723 * fail the transition 1724 */ 1725 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1726 int err = drv_sta_state(sta->local, sta->sdata, sta, 1727 sta->sta_state, new_state); 1728 if (err) 1729 return err; 1730 } 1731 1732 /* reflect the change in all state variables */ 1733 1734 switch (new_state) { 1735 case IEEE80211_STA_NONE: 1736 if (sta->sta_state == IEEE80211_STA_AUTH) 1737 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1738 break; 1739 case IEEE80211_STA_AUTH: 1740 if (sta->sta_state == IEEE80211_STA_NONE) 1741 set_bit(WLAN_STA_AUTH, &sta->_flags); 1742 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1743 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1744 break; 1745 case IEEE80211_STA_ASSOC: 1746 if (sta->sta_state == IEEE80211_STA_AUTH) { 1747 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1748 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1749 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1750 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1751 !sta->sdata->u.vlan.sta)) 1752 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1753 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1754 ieee80211_clear_fast_xmit(sta); 1755 } 1756 break; 1757 case IEEE80211_STA_AUTHORIZED: 1758 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1759 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1760 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1761 !sta->sdata->u.vlan.sta)) 1762 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1763 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1764 ieee80211_check_fast_xmit(sta); 1765 } 1766 break; 1767 default: 1768 break; 1769 } 1770 1771 sta->sta_state = new_state; 1772 1773 return 0; 1774 } 1775 1776 u8 sta_info_tx_streams(struct sta_info *sta) 1777 { 1778 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1779 u8 rx_streams; 1780 1781 if (!sta->sta.ht_cap.ht_supported) 1782 return 1; 1783 1784 if (sta->sta.vht_cap.vht_supported) { 1785 int i; 1786 u16 tx_mcs_map = 1787 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1788 1789 for (i = 7; i >= 0; i--) 1790 if ((tx_mcs_map & (0x3 << (i * 2))) != 1791 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1792 return i + 1; 1793 } 1794 1795 if (ht_cap->mcs.rx_mask[3]) 1796 rx_streams = 4; 1797 else if (ht_cap->mcs.rx_mask[2]) 1798 rx_streams = 3; 1799 else if (ht_cap->mcs.rx_mask[1]) 1800 rx_streams = 2; 1801 else 1802 rx_streams = 1; 1803 1804 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1805 return rx_streams; 1806 1807 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1808 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1809 } 1810 1811 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1812 { 1813 struct ieee80211_sub_if_data *sdata = sta->sdata; 1814 struct ieee80211_local *local = sdata->local; 1815 struct rate_control_ref *ref = NULL; 1816 struct timespec uptime; 1817 u32 thr = 0; 1818 int i, ac; 1819 1820 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1821 ref = local->rate_ctrl; 1822 1823 sinfo->generation = sdata->local->sta_generation; 1824 1825 /* do before driver, so beacon filtering drivers have a 1826 * chance to e.g. just add the number of filtered beacons 1827 * (or just modify the value entirely, of course) 1828 */ 1829 if (sdata->vif.type == NL80211_IFTYPE_STATION) 1830 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 1831 1832 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 1833 1834 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 1835 BIT(NL80211_STA_INFO_STA_FLAGS) | 1836 BIT(NL80211_STA_INFO_BSS_PARAM) | 1837 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 1838 BIT(NL80211_STA_INFO_RX_DROP_MISC) | 1839 BIT(NL80211_STA_INFO_BEACON_LOSS); 1840 1841 ktime_get_ts(&uptime); 1842 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1843 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1844 1845 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 1846 BIT(NL80211_STA_INFO_TX_BYTES)))) { 1847 sinfo->tx_bytes = 0; 1848 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1849 sinfo->tx_bytes += sta->tx_bytes[ac]; 1850 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 1851 } 1852 1853 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 1854 sinfo->tx_packets = 0; 1855 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 1856 sinfo->tx_packets += sta->tx_packets[ac]; 1857 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 1858 } 1859 1860 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 1861 BIT(NL80211_STA_INFO_RX_BYTES)))) { 1862 sinfo->rx_bytes = sta->rx_bytes; 1863 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 1864 } 1865 1866 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 1867 sinfo->rx_packets = sta->rx_packets; 1868 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 1869 } 1870 1871 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 1872 sinfo->tx_retries = sta->tx_retry_count; 1873 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 1874 } 1875 1876 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 1877 sinfo->tx_failed = sta->tx_retry_failed; 1878 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 1879 } 1880 1881 sinfo->rx_dropped_misc = sta->rx_dropped; 1882 sinfo->beacon_loss_count = sta->beacon_loss_count; 1883 1884 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1885 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 1886 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 1887 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 1888 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 1889 } 1890 1891 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 1892 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 1893 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 1894 sinfo->signal = (s8)sta->last_signal; 1895 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 1896 } 1897 1898 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 1899 sinfo->signal_avg = 1900 (s8) -ewma_signal_read(&sta->avg_signal); 1901 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 1902 } 1903 } 1904 1905 if (sta->chains && 1906 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1907 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 1908 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 1909 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 1910 1911 sinfo->chains = sta->chains; 1912 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1913 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1914 sinfo->chain_signal_avg[i] = 1915 (s8) -ewma_signal_read(&sta->chain_signal_avg[i]); 1916 } 1917 } 1918 1919 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 1920 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1921 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 1922 } 1923 1924 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 1925 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1926 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 1927 } 1928 1929 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 1930 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 1931 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 1932 1933 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 1934 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 1935 tidstats->rx_msdu = sta->rx_msdu[i]; 1936 } 1937 1938 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 1939 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 1940 tidstats->tx_msdu = sta->tx_msdu[i]; 1941 } 1942 1943 if (!(tidstats->filled & 1944 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 1945 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1946 tidstats->filled |= 1947 BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 1948 tidstats->tx_msdu_retries = sta->tx_msdu_retries[i]; 1949 } 1950 1951 if (!(tidstats->filled & 1952 BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 1953 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 1954 tidstats->filled |= 1955 BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 1956 tidstats->tx_msdu_failed = sta->tx_msdu_failed[i]; 1957 } 1958 } 1959 1960 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1961 #ifdef CONFIG_MAC80211_MESH 1962 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 1963 BIT(NL80211_STA_INFO_PLID) | 1964 BIT(NL80211_STA_INFO_PLINK_STATE) | 1965 BIT(NL80211_STA_INFO_LOCAL_PM) | 1966 BIT(NL80211_STA_INFO_PEER_PM) | 1967 BIT(NL80211_STA_INFO_NONPEER_PM); 1968 1969 sinfo->llid = sta->mesh->llid; 1970 sinfo->plid = sta->mesh->plid; 1971 sinfo->plink_state = sta->mesh->plink_state; 1972 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1973 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 1974 sinfo->t_offset = sta->mesh->t_offset; 1975 } 1976 sinfo->local_pm = sta->mesh->local_pm; 1977 sinfo->peer_pm = sta->mesh->peer_pm; 1978 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 1979 #endif 1980 } 1981 1982 sinfo->bss_param.flags = 0; 1983 if (sdata->vif.bss_conf.use_cts_prot) 1984 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1985 if (sdata->vif.bss_conf.use_short_preamble) 1986 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1987 if (sdata->vif.bss_conf.use_short_slot) 1988 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1989 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1990 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1991 1992 sinfo->sta_flags.set = 0; 1993 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1994 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1995 BIT(NL80211_STA_FLAG_WME) | 1996 BIT(NL80211_STA_FLAG_MFP) | 1997 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1998 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1999 BIT(NL80211_STA_FLAG_TDLS_PEER); 2000 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2001 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2002 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2003 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2004 if (sta->sta.wme) 2005 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2006 if (test_sta_flag(sta, WLAN_STA_MFP)) 2007 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2008 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2009 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2010 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2011 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2012 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2013 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2014 2015 /* check if the driver has a SW RC implementation */ 2016 if (ref && ref->ops->get_expected_throughput) 2017 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2018 else 2019 thr = drv_get_expected_throughput(local, &sta->sta); 2020 2021 if (thr != 0) { 2022 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2023 sinfo->expected_throughput = thr; 2024 } 2025 } 2026