1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2020 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (ieee80211_vif_is_mesh(&sdata->vif) && 368 !sdata->u.mesh.user_mpm) 369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 370 0); 371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 372 } 373 #endif 374 375 memcpy(sta->addr, addr, ETH_ALEN); 376 memcpy(sta->sta.addr, addr, ETH_ALEN); 377 sta->sta.max_rx_aggregation_subframes = 378 local->hw.max_rx_aggregation_subframes; 379 380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 381 * The Tx path starts to use a key as soon as the key slot ptk_idx 382 * references to is not NULL. To not use the initial Rx-only key 383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 384 * which always will refer to a NULL key. 385 */ 386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 387 sta->ptk_idx = INVALID_PTK_KEYIDX; 388 389 sta->local = local; 390 sta->sdata = sdata; 391 sta->rx_stats.last_rx = jiffies; 392 393 u64_stats_init(&sta->rx_stats.syncp); 394 395 sta->sta_state = IEEE80211_STA_NONE; 396 397 /* Mark TID as unreserved */ 398 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 399 400 sta->last_connected = ktime_get_seconds(); 401 ewma_signal_init(&sta->rx_stats_avg.signal); 402 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 403 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 404 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 405 406 if (local->ops->wake_tx_queue) { 407 void *txq_data; 408 int size = sizeof(struct txq_info) + 409 ALIGN(hw->txq_data_size, sizeof(void *)); 410 411 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 412 if (!txq_data) 413 goto free; 414 415 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 416 struct txq_info *txq = txq_data + i * size; 417 418 /* might not do anything for the bufferable MMPDU TXQ */ 419 ieee80211_txq_init(sdata, sta, txq, i); 420 } 421 } 422 423 if (sta_prepare_rate_control(local, sta, gfp)) 424 goto free_txq; 425 426 sta->airtime_weight = IEEE80211_DEFAULT_AIRTIME_WEIGHT; 427 428 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 429 skb_queue_head_init(&sta->ps_tx_buf[i]); 430 skb_queue_head_init(&sta->tx_filtered[i]); 431 sta->airtime[i].deficit = sta->airtime_weight; 432 atomic_set(&sta->airtime[i].aql_tx_pending, 0); 433 sta->airtime[i].aql_limit_low = local->aql_txq_limit_low[i]; 434 sta->airtime[i].aql_limit_high = local->aql_txq_limit_high[i]; 435 } 436 437 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 438 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 439 440 for (i = 0; i < NUM_NL80211_BANDS; i++) { 441 u32 mandatory = 0; 442 int r; 443 444 if (!hw->wiphy->bands[i]) 445 continue; 446 447 switch (i) { 448 case NL80211_BAND_2GHZ: 449 /* 450 * We use both here, even if we cannot really know for 451 * sure the station will support both, but the only use 452 * for this is when we don't know anything yet and send 453 * management frames, and then we'll pick the lowest 454 * possible rate anyway. 455 * If we don't include _G here, we cannot find a rate 456 * in P2P, and thus trigger the WARN_ONCE() in rate.c 457 */ 458 mandatory = IEEE80211_RATE_MANDATORY_B | 459 IEEE80211_RATE_MANDATORY_G; 460 break; 461 case NL80211_BAND_5GHZ: 462 mandatory = IEEE80211_RATE_MANDATORY_A; 463 break; 464 case NL80211_BAND_60GHZ: 465 WARN_ON(1); 466 mandatory = 0; 467 break; 468 } 469 470 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 471 struct ieee80211_rate *rate; 472 473 rate = &hw->wiphy->bands[i]->bitrates[r]; 474 475 if (!(rate->flags & mandatory)) 476 continue; 477 sta->sta.supp_rates[i] |= BIT(r); 478 } 479 } 480 481 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 482 if (sdata->vif.type == NL80211_IFTYPE_AP || 483 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 484 struct ieee80211_supported_band *sband; 485 u8 smps; 486 487 sband = ieee80211_get_sband(sdata); 488 if (!sband) 489 goto free_txq; 490 491 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 492 IEEE80211_HT_CAP_SM_PS_SHIFT; 493 /* 494 * Assume that hostapd advertises our caps in the beacon and 495 * this is the known_smps_mode for a station that just assciated 496 */ 497 switch (smps) { 498 case WLAN_HT_SMPS_CONTROL_DISABLED: 499 sta->known_smps_mode = IEEE80211_SMPS_OFF; 500 break; 501 case WLAN_HT_SMPS_CONTROL_STATIC: 502 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 503 break; 504 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 505 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 506 break; 507 default: 508 WARN_ON(1); 509 } 510 } 511 512 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 513 514 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 515 sta->cparams.target = MS2TIME(20); 516 sta->cparams.interval = MS2TIME(100); 517 sta->cparams.ecn = true; 518 519 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 520 521 return sta; 522 523 free_txq: 524 if (sta->sta.txq[0]) 525 kfree(to_txq_info(sta->sta.txq[0])); 526 free: 527 free_percpu(sta->pcpu_rx_stats); 528 #ifdef CONFIG_MAC80211_MESH 529 kfree(sta->mesh); 530 #endif 531 kfree(sta); 532 return NULL; 533 } 534 535 static int sta_info_insert_check(struct sta_info *sta) 536 { 537 struct ieee80211_sub_if_data *sdata = sta->sdata; 538 539 /* 540 * Can't be a WARN_ON because it can be triggered through a race: 541 * something inserts a STA (on one CPU) without holding the RTNL 542 * and another CPU turns off the net device. 543 */ 544 if (unlikely(!ieee80211_sdata_running(sdata))) 545 return -ENETDOWN; 546 547 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 548 is_multicast_ether_addr(sta->sta.addr))) 549 return -EINVAL; 550 551 /* The RCU read lock is required by rhashtable due to 552 * asynchronous resize/rehash. We also require the mutex 553 * for correctness. 554 */ 555 rcu_read_lock(); 556 lockdep_assert_held(&sdata->local->sta_mtx); 557 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 558 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 559 rcu_read_unlock(); 560 return -ENOTUNIQ; 561 } 562 rcu_read_unlock(); 563 564 return 0; 565 } 566 567 static int sta_info_insert_drv_state(struct ieee80211_local *local, 568 struct ieee80211_sub_if_data *sdata, 569 struct sta_info *sta) 570 { 571 enum ieee80211_sta_state state; 572 int err = 0; 573 574 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 575 err = drv_sta_state(local, sdata, sta, state, state + 1); 576 if (err) 577 break; 578 } 579 580 if (!err) { 581 /* 582 * Drivers using legacy sta_add/sta_remove callbacks only 583 * get uploaded set to true after sta_add is called. 584 */ 585 if (!local->ops->sta_add) 586 sta->uploaded = true; 587 return 0; 588 } 589 590 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 591 sdata_info(sdata, 592 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 593 sta->sta.addr, state + 1, err); 594 err = 0; 595 } 596 597 /* unwind on error */ 598 for (; state > IEEE80211_STA_NOTEXIST; state--) 599 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 600 601 return err; 602 } 603 604 static void 605 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 606 { 607 struct ieee80211_local *local = sdata->local; 608 bool allow_p2p_go_ps = sdata->vif.p2p; 609 struct sta_info *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(sta, &local->sta_list, list) { 613 if (sdata != sta->sdata || 614 !test_sta_flag(sta, WLAN_STA_ASSOC)) 615 continue; 616 if (!sta->sta.support_p2p_ps) { 617 allow_p2p_go_ps = false; 618 break; 619 } 620 } 621 rcu_read_unlock(); 622 623 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 624 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 625 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 626 } 627 } 628 629 /* 630 * should be called with sta_mtx locked 631 * this function replaces the mutex lock 632 * with a RCU lock 633 */ 634 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 635 { 636 struct ieee80211_local *local = sta->local; 637 struct ieee80211_sub_if_data *sdata = sta->sdata; 638 struct station_info *sinfo = NULL; 639 int err = 0; 640 641 lockdep_assert_held(&local->sta_mtx); 642 643 /* check if STA exists already */ 644 if (sta_info_get_bss(sdata, sta->sta.addr)) { 645 err = -EEXIST; 646 goto out_err; 647 } 648 649 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 650 if (!sinfo) { 651 err = -ENOMEM; 652 goto out_err; 653 } 654 655 local->num_sta++; 656 local->sta_generation++; 657 smp_mb(); 658 659 /* simplify things and don't accept BA sessions yet */ 660 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 661 662 /* make the station visible */ 663 err = sta_info_hash_add(local, sta); 664 if (err) 665 goto out_drop_sta; 666 667 list_add_tail_rcu(&sta->list, &local->sta_list); 668 669 /* notify driver */ 670 err = sta_info_insert_drv_state(local, sdata, sta); 671 if (err) 672 goto out_remove; 673 674 set_sta_flag(sta, WLAN_STA_INSERTED); 675 676 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 677 ieee80211_recalc_min_chandef(sta->sdata); 678 if (!sta->sta.support_p2p_ps) 679 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 680 } 681 682 /* accept BA sessions now */ 683 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 684 685 ieee80211_sta_debugfs_add(sta); 686 rate_control_add_sta_debugfs(sta); 687 688 sinfo->generation = local->sta_generation; 689 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 690 kfree(sinfo); 691 692 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 693 694 /* move reference to rcu-protected */ 695 rcu_read_lock(); 696 mutex_unlock(&local->sta_mtx); 697 698 if (ieee80211_vif_is_mesh(&sdata->vif)) 699 mesh_accept_plinks_update(sdata); 700 701 return 0; 702 out_remove: 703 sta_info_hash_del(local, sta); 704 list_del_rcu(&sta->list); 705 out_drop_sta: 706 local->num_sta--; 707 synchronize_net(); 708 cleanup_single_sta(sta); 709 out_err: 710 mutex_unlock(&local->sta_mtx); 711 kfree(sinfo); 712 rcu_read_lock(); 713 return err; 714 } 715 716 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 717 { 718 struct ieee80211_local *local = sta->local; 719 int err; 720 721 might_sleep(); 722 723 mutex_lock(&local->sta_mtx); 724 725 err = sta_info_insert_check(sta); 726 if (err) { 727 sta_info_free(local, sta); 728 mutex_unlock(&local->sta_mtx); 729 rcu_read_lock(); 730 return err; 731 } 732 733 return sta_info_insert_finish(sta); 734 } 735 736 int sta_info_insert(struct sta_info *sta) 737 { 738 int err = sta_info_insert_rcu(sta); 739 740 rcu_read_unlock(); 741 742 return err; 743 } 744 745 static inline void __bss_tim_set(u8 *tim, u16 id) 746 { 747 /* 748 * This format has been mandated by the IEEE specifications, 749 * so this line may not be changed to use the __set_bit() format. 750 */ 751 tim[id / 8] |= (1 << (id % 8)); 752 } 753 754 static inline void __bss_tim_clear(u8 *tim, u16 id) 755 { 756 /* 757 * This format has been mandated by the IEEE specifications, 758 * so this line may not be changed to use the __clear_bit() format. 759 */ 760 tim[id / 8] &= ~(1 << (id % 8)); 761 } 762 763 static inline bool __bss_tim_get(u8 *tim, u16 id) 764 { 765 /* 766 * This format has been mandated by the IEEE specifications, 767 * so this line may not be changed to use the test_bit() format. 768 */ 769 return tim[id / 8] & (1 << (id % 8)); 770 } 771 772 static unsigned long ieee80211_tids_for_ac(int ac) 773 { 774 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 775 switch (ac) { 776 case IEEE80211_AC_VO: 777 return BIT(6) | BIT(7); 778 case IEEE80211_AC_VI: 779 return BIT(4) | BIT(5); 780 case IEEE80211_AC_BE: 781 return BIT(0) | BIT(3); 782 case IEEE80211_AC_BK: 783 return BIT(1) | BIT(2); 784 default: 785 WARN_ON(1); 786 return 0; 787 } 788 } 789 790 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 791 { 792 struct ieee80211_local *local = sta->local; 793 struct ps_data *ps; 794 bool indicate_tim = false; 795 u8 ignore_for_tim = sta->sta.uapsd_queues; 796 int ac; 797 u16 id = sta->sta.aid; 798 799 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 800 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 801 if (WARN_ON_ONCE(!sta->sdata->bss)) 802 return; 803 804 ps = &sta->sdata->bss->ps; 805 #ifdef CONFIG_MAC80211_MESH 806 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 807 ps = &sta->sdata->u.mesh.ps; 808 #endif 809 } else { 810 return; 811 } 812 813 /* No need to do anything if the driver does all */ 814 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 815 return; 816 817 if (sta->dead) 818 goto done; 819 820 /* 821 * If all ACs are delivery-enabled then we should build 822 * the TIM bit for all ACs anyway; if only some are then 823 * we ignore those and build the TIM bit using only the 824 * non-enabled ones. 825 */ 826 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 827 ignore_for_tim = 0; 828 829 if (ignore_pending) 830 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 831 832 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 833 unsigned long tids; 834 835 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 836 continue; 837 838 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 839 !skb_queue_empty(&sta->ps_tx_buf[ac]); 840 if (indicate_tim) 841 break; 842 843 tids = ieee80211_tids_for_ac(ac); 844 845 indicate_tim |= 846 sta->driver_buffered_tids & tids; 847 indicate_tim |= 848 sta->txq_buffered_tids & tids; 849 } 850 851 done: 852 spin_lock_bh(&local->tim_lock); 853 854 if (indicate_tim == __bss_tim_get(ps->tim, id)) 855 goto out_unlock; 856 857 if (indicate_tim) 858 __bss_tim_set(ps->tim, id); 859 else 860 __bss_tim_clear(ps->tim, id); 861 862 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 863 local->tim_in_locked_section = true; 864 drv_set_tim(local, &sta->sta, indicate_tim); 865 local->tim_in_locked_section = false; 866 } 867 868 out_unlock: 869 spin_unlock_bh(&local->tim_lock); 870 } 871 872 void sta_info_recalc_tim(struct sta_info *sta) 873 { 874 __sta_info_recalc_tim(sta, false); 875 } 876 877 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 878 { 879 struct ieee80211_tx_info *info; 880 int timeout; 881 882 if (!skb) 883 return false; 884 885 info = IEEE80211_SKB_CB(skb); 886 887 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 888 timeout = (sta->listen_interval * 889 sta->sdata->vif.bss_conf.beacon_int * 890 32 / 15625) * HZ; 891 if (timeout < STA_TX_BUFFER_EXPIRE) 892 timeout = STA_TX_BUFFER_EXPIRE; 893 return time_after(jiffies, info->control.jiffies + timeout); 894 } 895 896 897 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 898 struct sta_info *sta, int ac) 899 { 900 unsigned long flags; 901 struct sk_buff *skb; 902 903 /* 904 * First check for frames that should expire on the filtered 905 * queue. Frames here were rejected by the driver and are on 906 * a separate queue to avoid reordering with normal PS-buffered 907 * frames. They also aren't accounted for right now in the 908 * total_ps_buffered counter. 909 */ 910 for (;;) { 911 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 912 skb = skb_peek(&sta->tx_filtered[ac]); 913 if (sta_info_buffer_expired(sta, skb)) 914 skb = __skb_dequeue(&sta->tx_filtered[ac]); 915 else 916 skb = NULL; 917 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 918 919 /* 920 * Frames are queued in order, so if this one 921 * hasn't expired yet we can stop testing. If 922 * we actually reached the end of the queue we 923 * also need to stop, of course. 924 */ 925 if (!skb) 926 break; 927 ieee80211_free_txskb(&local->hw, skb); 928 } 929 930 /* 931 * Now also check the normal PS-buffered queue, this will 932 * only find something if the filtered queue was emptied 933 * since the filtered frames are all before the normal PS 934 * buffered frames. 935 */ 936 for (;;) { 937 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 938 skb = skb_peek(&sta->ps_tx_buf[ac]); 939 if (sta_info_buffer_expired(sta, skb)) 940 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 941 else 942 skb = NULL; 943 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 944 945 /* 946 * frames are queued in order, so if this one 947 * hasn't expired yet (or we reached the end of 948 * the queue) we can stop testing 949 */ 950 if (!skb) 951 break; 952 953 local->total_ps_buffered--; 954 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 955 sta->sta.addr); 956 ieee80211_free_txskb(&local->hw, skb); 957 } 958 959 /* 960 * Finally, recalculate the TIM bit for this station -- it might 961 * now be clear because the station was too slow to retrieve its 962 * frames. 963 */ 964 sta_info_recalc_tim(sta); 965 966 /* 967 * Return whether there are any frames still buffered, this is 968 * used to check whether the cleanup timer still needs to run, 969 * if there are no frames we don't need to rearm the timer. 970 */ 971 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 972 skb_queue_empty(&sta->tx_filtered[ac])); 973 } 974 975 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 976 struct sta_info *sta) 977 { 978 bool have_buffered = false; 979 int ac; 980 981 /* This is only necessary for stations on BSS/MBSS interfaces */ 982 if (!sta->sdata->bss && 983 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 984 return false; 985 986 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 987 have_buffered |= 988 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 989 990 return have_buffered; 991 } 992 993 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 994 { 995 struct ieee80211_local *local; 996 struct ieee80211_sub_if_data *sdata; 997 int ret; 998 999 might_sleep(); 1000 1001 if (!sta) 1002 return -ENOENT; 1003 1004 local = sta->local; 1005 sdata = sta->sdata; 1006 1007 lockdep_assert_held(&local->sta_mtx); 1008 1009 /* 1010 * Before removing the station from the driver and 1011 * rate control, it might still start new aggregation 1012 * sessions -- block that to make sure the tear-down 1013 * will be sufficient. 1014 */ 1015 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1016 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1017 1018 /* 1019 * Before removing the station from the driver there might be pending 1020 * rx frames on RSS queues sent prior to the disassociation - wait for 1021 * all such frames to be processed. 1022 */ 1023 drv_sync_rx_queues(local, sta); 1024 1025 ret = sta_info_hash_del(local, sta); 1026 if (WARN_ON(ret)) 1027 return ret; 1028 1029 /* 1030 * for TDLS peers, make sure to return to the base channel before 1031 * removal. 1032 */ 1033 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1034 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1035 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1036 } 1037 1038 list_del_rcu(&sta->list); 1039 sta->removed = true; 1040 1041 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1042 1043 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1044 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1045 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1046 1047 return 0; 1048 } 1049 1050 static void __sta_info_destroy_part2(struct sta_info *sta) 1051 { 1052 struct ieee80211_local *local = sta->local; 1053 struct ieee80211_sub_if_data *sdata = sta->sdata; 1054 struct station_info *sinfo; 1055 int ret; 1056 1057 /* 1058 * NOTE: This assumes at least synchronize_net() was done 1059 * after _part1 and before _part2! 1060 */ 1061 1062 might_sleep(); 1063 lockdep_assert_held(&local->sta_mtx); 1064 1065 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1066 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1067 WARN_ON_ONCE(ret); 1068 } 1069 1070 /* now keys can no longer be reached */ 1071 ieee80211_free_sta_keys(local, sta); 1072 1073 /* disable TIM bit - last chance to tell driver */ 1074 __sta_info_recalc_tim(sta, true); 1075 1076 sta->dead = true; 1077 1078 local->num_sta--; 1079 local->sta_generation++; 1080 1081 while (sta->sta_state > IEEE80211_STA_NONE) { 1082 ret = sta_info_move_state(sta, sta->sta_state - 1); 1083 if (ret) { 1084 WARN_ON_ONCE(1); 1085 break; 1086 } 1087 } 1088 1089 if (sta->uploaded) { 1090 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1091 IEEE80211_STA_NOTEXIST); 1092 WARN_ON_ONCE(ret != 0); 1093 } 1094 1095 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1096 1097 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1098 if (sinfo) 1099 sta_set_sinfo(sta, sinfo, true); 1100 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1101 kfree(sinfo); 1102 1103 ieee80211_sta_debugfs_remove(sta); 1104 1105 cleanup_single_sta(sta); 1106 } 1107 1108 int __must_check __sta_info_destroy(struct sta_info *sta) 1109 { 1110 int err = __sta_info_destroy_part1(sta); 1111 1112 if (err) 1113 return err; 1114 1115 synchronize_net(); 1116 1117 __sta_info_destroy_part2(sta); 1118 1119 return 0; 1120 } 1121 1122 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1123 { 1124 struct sta_info *sta; 1125 int ret; 1126 1127 mutex_lock(&sdata->local->sta_mtx); 1128 sta = sta_info_get(sdata, addr); 1129 ret = __sta_info_destroy(sta); 1130 mutex_unlock(&sdata->local->sta_mtx); 1131 1132 return ret; 1133 } 1134 1135 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1136 const u8 *addr) 1137 { 1138 struct sta_info *sta; 1139 int ret; 1140 1141 mutex_lock(&sdata->local->sta_mtx); 1142 sta = sta_info_get_bss(sdata, addr); 1143 ret = __sta_info_destroy(sta); 1144 mutex_unlock(&sdata->local->sta_mtx); 1145 1146 return ret; 1147 } 1148 1149 static void sta_info_cleanup(struct timer_list *t) 1150 { 1151 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1152 struct sta_info *sta; 1153 bool timer_needed = false; 1154 1155 rcu_read_lock(); 1156 list_for_each_entry_rcu(sta, &local->sta_list, list) 1157 if (sta_info_cleanup_expire_buffered(local, sta)) 1158 timer_needed = true; 1159 rcu_read_unlock(); 1160 1161 if (local->quiescing) 1162 return; 1163 1164 if (!timer_needed) 1165 return; 1166 1167 mod_timer(&local->sta_cleanup, 1168 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1169 } 1170 1171 int sta_info_init(struct ieee80211_local *local) 1172 { 1173 int err; 1174 1175 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1176 if (err) 1177 return err; 1178 1179 spin_lock_init(&local->tim_lock); 1180 mutex_init(&local->sta_mtx); 1181 INIT_LIST_HEAD(&local->sta_list); 1182 1183 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1184 return 0; 1185 } 1186 1187 void sta_info_stop(struct ieee80211_local *local) 1188 { 1189 del_timer_sync(&local->sta_cleanup); 1190 rhltable_destroy(&local->sta_hash); 1191 } 1192 1193 1194 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1195 { 1196 struct ieee80211_local *local = sdata->local; 1197 struct sta_info *sta, *tmp; 1198 LIST_HEAD(free_list); 1199 int ret = 0; 1200 1201 might_sleep(); 1202 1203 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1204 WARN_ON(vlans && !sdata->bss); 1205 1206 mutex_lock(&local->sta_mtx); 1207 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1208 if (sdata == sta->sdata || 1209 (vlans && sdata->bss == sta->sdata->bss)) { 1210 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1211 list_add(&sta->free_list, &free_list); 1212 ret++; 1213 } 1214 } 1215 1216 if (!list_empty(&free_list)) { 1217 synchronize_net(); 1218 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1219 __sta_info_destroy_part2(sta); 1220 } 1221 mutex_unlock(&local->sta_mtx); 1222 1223 return ret; 1224 } 1225 1226 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1227 unsigned long exp_time) 1228 { 1229 struct ieee80211_local *local = sdata->local; 1230 struct sta_info *sta, *tmp; 1231 1232 mutex_lock(&local->sta_mtx); 1233 1234 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1235 unsigned long last_active = ieee80211_sta_last_active(sta); 1236 1237 if (sdata != sta->sdata) 1238 continue; 1239 1240 if (time_is_before_jiffies(last_active + exp_time)) { 1241 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1242 sta->sta.addr); 1243 1244 if (ieee80211_vif_is_mesh(&sdata->vif) && 1245 test_sta_flag(sta, WLAN_STA_PS_STA)) 1246 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1247 1248 WARN_ON(__sta_info_destroy(sta)); 1249 } 1250 } 1251 1252 mutex_unlock(&local->sta_mtx); 1253 } 1254 1255 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1256 const u8 *addr, 1257 const u8 *localaddr) 1258 { 1259 struct ieee80211_local *local = hw_to_local(hw); 1260 struct rhlist_head *tmp; 1261 struct sta_info *sta; 1262 1263 /* 1264 * Just return a random station if localaddr is NULL 1265 * ... first in list. 1266 */ 1267 for_each_sta_info(local, addr, sta, tmp) { 1268 if (localaddr && 1269 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1270 continue; 1271 if (!sta->uploaded) 1272 return NULL; 1273 return &sta->sta; 1274 } 1275 1276 return NULL; 1277 } 1278 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1279 1280 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1281 const u8 *addr) 1282 { 1283 struct sta_info *sta; 1284 1285 if (!vif) 1286 return NULL; 1287 1288 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1289 if (!sta) 1290 return NULL; 1291 1292 if (!sta->uploaded) 1293 return NULL; 1294 1295 return &sta->sta; 1296 } 1297 EXPORT_SYMBOL(ieee80211_find_sta); 1298 1299 /* powersave support code */ 1300 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1301 { 1302 struct ieee80211_sub_if_data *sdata = sta->sdata; 1303 struct ieee80211_local *local = sdata->local; 1304 struct sk_buff_head pending; 1305 int filtered = 0, buffered = 0, ac, i; 1306 unsigned long flags; 1307 struct ps_data *ps; 1308 1309 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1310 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1311 u.ap); 1312 1313 if (sdata->vif.type == NL80211_IFTYPE_AP) 1314 ps = &sdata->bss->ps; 1315 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1316 ps = &sdata->u.mesh.ps; 1317 else 1318 return; 1319 1320 clear_sta_flag(sta, WLAN_STA_SP); 1321 1322 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1323 sta->driver_buffered_tids = 0; 1324 sta->txq_buffered_tids = 0; 1325 1326 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1327 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1328 1329 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1330 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1331 continue; 1332 1333 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1334 } 1335 1336 skb_queue_head_init(&pending); 1337 1338 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1339 spin_lock(&sta->ps_lock); 1340 /* Send all buffered frames to the station */ 1341 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1342 int count = skb_queue_len(&pending), tmp; 1343 1344 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1345 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1346 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1347 tmp = skb_queue_len(&pending); 1348 filtered += tmp - count; 1349 count = tmp; 1350 1351 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1352 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1353 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1354 tmp = skb_queue_len(&pending); 1355 buffered += tmp - count; 1356 } 1357 1358 ieee80211_add_pending_skbs(local, &pending); 1359 1360 /* now we're no longer in the deliver code */ 1361 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1362 1363 /* The station might have polled and then woken up before we responded, 1364 * so clear these flags now to avoid them sticking around. 1365 */ 1366 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1367 clear_sta_flag(sta, WLAN_STA_UAPSD); 1368 spin_unlock(&sta->ps_lock); 1369 1370 atomic_dec(&ps->num_sta_ps); 1371 1372 local->total_ps_buffered -= buffered; 1373 1374 sta_info_recalc_tim(sta); 1375 1376 ps_dbg(sdata, 1377 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1378 sta->sta.addr, sta->sta.aid, filtered, buffered); 1379 1380 ieee80211_check_fast_xmit(sta); 1381 } 1382 1383 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1384 enum ieee80211_frame_release_type reason, 1385 bool call_driver, bool more_data) 1386 { 1387 struct ieee80211_sub_if_data *sdata = sta->sdata; 1388 struct ieee80211_local *local = sdata->local; 1389 struct ieee80211_qos_hdr *nullfunc; 1390 struct sk_buff *skb; 1391 int size = sizeof(*nullfunc); 1392 __le16 fc; 1393 bool qos = sta->sta.wme; 1394 struct ieee80211_tx_info *info; 1395 struct ieee80211_chanctx_conf *chanctx_conf; 1396 1397 /* Don't send NDPs when STA is connected HE */ 1398 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1399 !(sdata->u.mgd.flags & IEEE80211_STA_DISABLE_HE)) 1400 return; 1401 1402 if (qos) { 1403 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1404 IEEE80211_STYPE_QOS_NULLFUNC | 1405 IEEE80211_FCTL_FROMDS); 1406 } else { 1407 size -= 2; 1408 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1409 IEEE80211_STYPE_NULLFUNC | 1410 IEEE80211_FCTL_FROMDS); 1411 } 1412 1413 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1414 if (!skb) 1415 return; 1416 1417 skb_reserve(skb, local->hw.extra_tx_headroom); 1418 1419 nullfunc = skb_put(skb, size); 1420 nullfunc->frame_control = fc; 1421 nullfunc->duration_id = 0; 1422 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1423 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1424 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1425 nullfunc->seq_ctrl = 0; 1426 1427 skb->priority = tid; 1428 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1429 if (qos) { 1430 nullfunc->qos_ctrl = cpu_to_le16(tid); 1431 1432 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1433 nullfunc->qos_ctrl |= 1434 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1435 if (more_data) 1436 nullfunc->frame_control |= 1437 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1438 } 1439 } 1440 1441 info = IEEE80211_SKB_CB(skb); 1442 1443 /* 1444 * Tell TX path to send this frame even though the 1445 * STA may still remain is PS mode after this frame 1446 * exchange. Also set EOSP to indicate this packet 1447 * ends the poll/service period. 1448 */ 1449 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1450 IEEE80211_TX_STATUS_EOSP | 1451 IEEE80211_TX_CTL_REQ_TX_STATUS; 1452 1453 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1454 1455 if (call_driver) 1456 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1457 reason, false); 1458 1459 skb->dev = sdata->dev; 1460 1461 rcu_read_lock(); 1462 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1463 if (WARN_ON(!chanctx_conf)) { 1464 rcu_read_unlock(); 1465 kfree_skb(skb); 1466 return; 1467 } 1468 1469 info->band = chanctx_conf->def.chan->band; 1470 ieee80211_xmit(sdata, sta, skb); 1471 rcu_read_unlock(); 1472 } 1473 1474 static int find_highest_prio_tid(unsigned long tids) 1475 { 1476 /* lower 3 TIDs aren't ordered perfectly */ 1477 if (tids & 0xF8) 1478 return fls(tids) - 1; 1479 /* TID 0 is BE just like TID 3 */ 1480 if (tids & BIT(0)) 1481 return 0; 1482 return fls(tids) - 1; 1483 } 1484 1485 /* Indicates if the MORE_DATA bit should be set in the last 1486 * frame obtained by ieee80211_sta_ps_get_frames. 1487 * Note that driver_release_tids is relevant only if 1488 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1489 */ 1490 static bool 1491 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1492 enum ieee80211_frame_release_type reason, 1493 unsigned long driver_release_tids) 1494 { 1495 int ac; 1496 1497 /* If the driver has data on more than one TID then 1498 * certainly there's more data if we release just a 1499 * single frame now (from a single TID). This will 1500 * only happen for PS-Poll. 1501 */ 1502 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1503 hweight16(driver_release_tids) > 1) 1504 return true; 1505 1506 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1507 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1508 continue; 1509 1510 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1511 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1512 return true; 1513 } 1514 1515 return false; 1516 } 1517 1518 static void 1519 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1520 enum ieee80211_frame_release_type reason, 1521 struct sk_buff_head *frames, 1522 unsigned long *driver_release_tids) 1523 { 1524 struct ieee80211_sub_if_data *sdata = sta->sdata; 1525 struct ieee80211_local *local = sdata->local; 1526 int ac; 1527 1528 /* Get response frame(s) and more data bit for the last one. */ 1529 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1530 unsigned long tids; 1531 1532 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1533 continue; 1534 1535 tids = ieee80211_tids_for_ac(ac); 1536 1537 /* if we already have frames from software, then we can't also 1538 * release from hardware queues 1539 */ 1540 if (skb_queue_empty(frames)) { 1541 *driver_release_tids |= 1542 sta->driver_buffered_tids & tids; 1543 *driver_release_tids |= sta->txq_buffered_tids & tids; 1544 } 1545 1546 if (!*driver_release_tids) { 1547 struct sk_buff *skb; 1548 1549 while (n_frames > 0) { 1550 skb = skb_dequeue(&sta->tx_filtered[ac]); 1551 if (!skb) { 1552 skb = skb_dequeue( 1553 &sta->ps_tx_buf[ac]); 1554 if (skb) 1555 local->total_ps_buffered--; 1556 } 1557 if (!skb) 1558 break; 1559 n_frames--; 1560 __skb_queue_tail(frames, skb); 1561 } 1562 } 1563 1564 /* If we have more frames buffered on this AC, then abort the 1565 * loop since we can't send more data from other ACs before 1566 * the buffered frames from this. 1567 */ 1568 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1569 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1570 break; 1571 } 1572 } 1573 1574 static void 1575 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1576 int n_frames, u8 ignored_acs, 1577 enum ieee80211_frame_release_type reason) 1578 { 1579 struct ieee80211_sub_if_data *sdata = sta->sdata; 1580 struct ieee80211_local *local = sdata->local; 1581 unsigned long driver_release_tids = 0; 1582 struct sk_buff_head frames; 1583 bool more_data; 1584 1585 /* Service or PS-Poll period starts */ 1586 set_sta_flag(sta, WLAN_STA_SP); 1587 1588 __skb_queue_head_init(&frames); 1589 1590 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1591 &frames, &driver_release_tids); 1592 1593 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1594 1595 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1596 driver_release_tids = 1597 BIT(find_highest_prio_tid(driver_release_tids)); 1598 1599 if (skb_queue_empty(&frames) && !driver_release_tids) { 1600 int tid, ac; 1601 1602 /* 1603 * For PS-Poll, this can only happen due to a race condition 1604 * when we set the TIM bit and the station notices it, but 1605 * before it can poll for the frame we expire it. 1606 * 1607 * For uAPSD, this is said in the standard (11.2.1.5 h): 1608 * At each unscheduled SP for a non-AP STA, the AP shall 1609 * attempt to transmit at least one MSDU or MMPDU, but no 1610 * more than the value specified in the Max SP Length field 1611 * in the QoS Capability element from delivery-enabled ACs, 1612 * that are destined for the non-AP STA. 1613 * 1614 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1615 */ 1616 1617 /* This will evaluate to 1, 3, 5 or 7. */ 1618 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1619 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1620 break; 1621 tid = 7 - 2 * ac; 1622 1623 ieee80211_send_null_response(sta, tid, reason, true, false); 1624 } else if (!driver_release_tids) { 1625 struct sk_buff_head pending; 1626 struct sk_buff *skb; 1627 int num = 0; 1628 u16 tids = 0; 1629 bool need_null = false; 1630 1631 skb_queue_head_init(&pending); 1632 1633 while ((skb = __skb_dequeue(&frames))) { 1634 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1635 struct ieee80211_hdr *hdr = (void *) skb->data; 1636 u8 *qoshdr = NULL; 1637 1638 num++; 1639 1640 /* 1641 * Tell TX path to send this frame even though the 1642 * STA may still remain is PS mode after this frame 1643 * exchange. 1644 */ 1645 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1646 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1647 1648 /* 1649 * Use MoreData flag to indicate whether there are 1650 * more buffered frames for this STA 1651 */ 1652 if (more_data || !skb_queue_empty(&frames)) 1653 hdr->frame_control |= 1654 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1655 else 1656 hdr->frame_control &= 1657 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1658 1659 if (ieee80211_is_data_qos(hdr->frame_control) || 1660 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1661 qoshdr = ieee80211_get_qos_ctl(hdr); 1662 1663 tids |= BIT(skb->priority); 1664 1665 __skb_queue_tail(&pending, skb); 1666 1667 /* end service period after last frame or add one */ 1668 if (!skb_queue_empty(&frames)) 1669 continue; 1670 1671 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1672 /* for PS-Poll, there's only one frame */ 1673 info->flags |= IEEE80211_TX_STATUS_EOSP | 1674 IEEE80211_TX_CTL_REQ_TX_STATUS; 1675 break; 1676 } 1677 1678 /* For uAPSD, things are a bit more complicated. If the 1679 * last frame has a QoS header (i.e. is a QoS-data or 1680 * QoS-nulldata frame) then just set the EOSP bit there 1681 * and be done. 1682 * If the frame doesn't have a QoS header (which means 1683 * it should be a bufferable MMPDU) then we can't set 1684 * the EOSP bit in the QoS header; add a QoS-nulldata 1685 * frame to the list to send it after the MMPDU. 1686 * 1687 * Note that this code is only in the mac80211-release 1688 * code path, we assume that the driver will not buffer 1689 * anything but QoS-data frames, or if it does, will 1690 * create the QoS-nulldata frame by itself if needed. 1691 * 1692 * Cf. 802.11-2012 10.2.1.10 (c). 1693 */ 1694 if (qoshdr) { 1695 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1696 1697 info->flags |= IEEE80211_TX_STATUS_EOSP | 1698 IEEE80211_TX_CTL_REQ_TX_STATUS; 1699 } else { 1700 /* The standard isn't completely clear on this 1701 * as it says the more-data bit should be set 1702 * if there are more BUs. The QoS-Null frame 1703 * we're about to send isn't buffered yet, we 1704 * only create it below, but let's pretend it 1705 * was buffered just in case some clients only 1706 * expect more-data=0 when eosp=1. 1707 */ 1708 hdr->frame_control |= 1709 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1710 need_null = true; 1711 num++; 1712 } 1713 break; 1714 } 1715 1716 drv_allow_buffered_frames(local, sta, tids, num, 1717 reason, more_data); 1718 1719 ieee80211_add_pending_skbs(local, &pending); 1720 1721 if (need_null) 1722 ieee80211_send_null_response( 1723 sta, find_highest_prio_tid(tids), 1724 reason, false, false); 1725 1726 sta_info_recalc_tim(sta); 1727 } else { 1728 int tid; 1729 1730 /* 1731 * We need to release a frame that is buffered somewhere in the 1732 * driver ... it'll have to handle that. 1733 * Note that the driver also has to check the number of frames 1734 * on the TIDs we're releasing from - if there are more than 1735 * n_frames it has to set the more-data bit (if we didn't ask 1736 * it to set it anyway due to other buffered frames); if there 1737 * are fewer than n_frames it has to make sure to adjust that 1738 * to allow the service period to end properly. 1739 */ 1740 drv_release_buffered_frames(local, sta, driver_release_tids, 1741 n_frames, reason, more_data); 1742 1743 /* 1744 * Note that we don't recalculate the TIM bit here as it would 1745 * most likely have no effect at all unless the driver told us 1746 * that the TID(s) became empty before returning here from the 1747 * release function. 1748 * Either way, however, when the driver tells us that the TID(s) 1749 * became empty or we find that a txq became empty, we'll do the 1750 * TIM recalculation. 1751 */ 1752 1753 if (!sta->sta.txq[0]) 1754 return; 1755 1756 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1757 if (!sta->sta.txq[tid] || 1758 !(driver_release_tids & BIT(tid)) || 1759 txq_has_queue(sta->sta.txq[tid])) 1760 continue; 1761 1762 sta_info_recalc_tim(sta); 1763 break; 1764 } 1765 } 1766 } 1767 1768 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1769 { 1770 u8 ignore_for_response = sta->sta.uapsd_queues; 1771 1772 /* 1773 * If all ACs are delivery-enabled then we should reply 1774 * from any of them, if only some are enabled we reply 1775 * only from the non-enabled ones. 1776 */ 1777 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1778 ignore_for_response = 0; 1779 1780 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1781 IEEE80211_FRAME_RELEASE_PSPOLL); 1782 } 1783 1784 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1785 { 1786 int n_frames = sta->sta.max_sp; 1787 u8 delivery_enabled = sta->sta.uapsd_queues; 1788 1789 /* 1790 * If we ever grow support for TSPEC this might happen if 1791 * the TSPEC update from hostapd comes in between a trigger 1792 * frame setting WLAN_STA_UAPSD in the RX path and this 1793 * actually getting called. 1794 */ 1795 if (!delivery_enabled) 1796 return; 1797 1798 switch (sta->sta.max_sp) { 1799 case 1: 1800 n_frames = 2; 1801 break; 1802 case 2: 1803 n_frames = 4; 1804 break; 1805 case 3: 1806 n_frames = 6; 1807 break; 1808 case 0: 1809 /* XXX: what is a good value? */ 1810 n_frames = 128; 1811 break; 1812 } 1813 1814 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1815 IEEE80211_FRAME_RELEASE_UAPSD); 1816 } 1817 1818 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1819 struct ieee80211_sta *pubsta, bool block) 1820 { 1821 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1822 1823 trace_api_sta_block_awake(sta->local, pubsta, block); 1824 1825 if (block) { 1826 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1827 ieee80211_clear_fast_xmit(sta); 1828 return; 1829 } 1830 1831 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1832 return; 1833 1834 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1835 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1836 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1837 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1838 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1839 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1840 /* must be asleep in this case */ 1841 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1842 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1843 } else { 1844 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1845 ieee80211_check_fast_xmit(sta); 1846 } 1847 } 1848 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1849 1850 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1851 { 1852 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1853 struct ieee80211_local *local = sta->local; 1854 1855 trace_api_eosp(local, pubsta); 1856 1857 clear_sta_flag(sta, WLAN_STA_SP); 1858 } 1859 EXPORT_SYMBOL(ieee80211_sta_eosp); 1860 1861 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1862 { 1863 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1864 enum ieee80211_frame_release_type reason; 1865 bool more_data; 1866 1867 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1868 1869 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1870 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1871 reason, 0); 1872 1873 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1874 } 1875 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1876 1877 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1878 u8 tid, bool buffered) 1879 { 1880 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1881 1882 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1883 return; 1884 1885 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1886 1887 if (buffered) 1888 set_bit(tid, &sta->driver_buffered_tids); 1889 else 1890 clear_bit(tid, &sta->driver_buffered_tids); 1891 1892 sta_info_recalc_tim(sta); 1893 } 1894 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1895 1896 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1897 u32 tx_airtime, u32 rx_airtime) 1898 { 1899 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1900 struct ieee80211_local *local = sta->sdata->local; 1901 u8 ac = ieee80211_ac_from_tid(tid); 1902 u32 airtime = 0; 1903 1904 if (sta->local->airtime_flags & AIRTIME_USE_TX) 1905 airtime += tx_airtime; 1906 if (sta->local->airtime_flags & AIRTIME_USE_RX) 1907 airtime += rx_airtime; 1908 1909 spin_lock_bh(&local->active_txq_lock[ac]); 1910 sta->airtime[ac].tx_airtime += tx_airtime; 1911 sta->airtime[ac].rx_airtime += rx_airtime; 1912 sta->airtime[ac].deficit -= airtime; 1913 spin_unlock_bh(&local->active_txq_lock[ac]); 1914 } 1915 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1916 1917 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1918 struct sta_info *sta, u8 ac, 1919 u16 tx_airtime, bool tx_completed) 1920 { 1921 int tx_pending; 1922 1923 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1924 return; 1925 1926 if (!tx_completed) { 1927 if (sta) 1928 atomic_add(tx_airtime, 1929 &sta->airtime[ac].aql_tx_pending); 1930 1931 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1932 return; 1933 } 1934 1935 if (sta) { 1936 tx_pending = atomic_sub_return(tx_airtime, 1937 &sta->airtime[ac].aql_tx_pending); 1938 if (tx_pending < 0) 1939 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1940 tx_pending, 0); 1941 } 1942 1943 tx_pending = atomic_sub_return(tx_airtime, 1944 &local->aql_total_pending_airtime); 1945 if (WARN_ONCE(tx_pending < 0, 1946 "Device %s AC %d pending airtime underflow: %u, %u", 1947 wiphy_name(local->hw.wiphy), ac, tx_pending, 1948 tx_airtime)) 1949 atomic_cmpxchg(&local->aql_total_pending_airtime, 1950 tx_pending, 0); 1951 } 1952 1953 int sta_info_move_state(struct sta_info *sta, 1954 enum ieee80211_sta_state new_state) 1955 { 1956 might_sleep(); 1957 1958 if (sta->sta_state == new_state) 1959 return 0; 1960 1961 /* check allowed transitions first */ 1962 1963 switch (new_state) { 1964 case IEEE80211_STA_NONE: 1965 if (sta->sta_state != IEEE80211_STA_AUTH) 1966 return -EINVAL; 1967 break; 1968 case IEEE80211_STA_AUTH: 1969 if (sta->sta_state != IEEE80211_STA_NONE && 1970 sta->sta_state != IEEE80211_STA_ASSOC) 1971 return -EINVAL; 1972 break; 1973 case IEEE80211_STA_ASSOC: 1974 if (sta->sta_state != IEEE80211_STA_AUTH && 1975 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1976 return -EINVAL; 1977 break; 1978 case IEEE80211_STA_AUTHORIZED: 1979 if (sta->sta_state != IEEE80211_STA_ASSOC) 1980 return -EINVAL; 1981 break; 1982 default: 1983 WARN(1, "invalid state %d", new_state); 1984 return -EINVAL; 1985 } 1986 1987 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1988 sta->sta.addr, new_state); 1989 1990 /* 1991 * notify the driver before the actual changes so it can 1992 * fail the transition 1993 */ 1994 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1995 int err = drv_sta_state(sta->local, sta->sdata, sta, 1996 sta->sta_state, new_state); 1997 if (err) 1998 return err; 1999 } 2000 2001 /* reflect the change in all state variables */ 2002 2003 switch (new_state) { 2004 case IEEE80211_STA_NONE: 2005 if (sta->sta_state == IEEE80211_STA_AUTH) 2006 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2007 break; 2008 case IEEE80211_STA_AUTH: 2009 if (sta->sta_state == IEEE80211_STA_NONE) { 2010 set_bit(WLAN_STA_AUTH, &sta->_flags); 2011 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2012 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2013 ieee80211_recalc_min_chandef(sta->sdata); 2014 if (!sta->sta.support_p2p_ps) 2015 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2016 } 2017 break; 2018 case IEEE80211_STA_ASSOC: 2019 if (sta->sta_state == IEEE80211_STA_AUTH) { 2020 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2021 sta->assoc_at = ktime_get_boottime_ns(); 2022 ieee80211_recalc_min_chandef(sta->sdata); 2023 if (!sta->sta.support_p2p_ps) 2024 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2025 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2026 ieee80211_vif_dec_num_mcast(sta->sdata); 2027 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2028 ieee80211_clear_fast_xmit(sta); 2029 ieee80211_clear_fast_rx(sta); 2030 } 2031 break; 2032 case IEEE80211_STA_AUTHORIZED: 2033 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2034 ieee80211_vif_inc_num_mcast(sta->sdata); 2035 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2036 ieee80211_check_fast_xmit(sta); 2037 ieee80211_check_fast_rx(sta); 2038 } 2039 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2040 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2041 cfg80211_send_layer2_update(sta->sdata->dev, 2042 sta->sta.addr); 2043 break; 2044 default: 2045 break; 2046 } 2047 2048 sta->sta_state = new_state; 2049 2050 return 0; 2051 } 2052 2053 u8 sta_info_tx_streams(struct sta_info *sta) 2054 { 2055 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2056 u8 rx_streams; 2057 2058 if (!sta->sta.ht_cap.ht_supported) 2059 return 1; 2060 2061 if (sta->sta.vht_cap.vht_supported) { 2062 int i; 2063 u16 tx_mcs_map = 2064 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2065 2066 for (i = 7; i >= 0; i--) 2067 if ((tx_mcs_map & (0x3 << (i * 2))) != 2068 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2069 return i + 1; 2070 } 2071 2072 if (ht_cap->mcs.rx_mask[3]) 2073 rx_streams = 4; 2074 else if (ht_cap->mcs.rx_mask[2]) 2075 rx_streams = 3; 2076 else if (ht_cap->mcs.rx_mask[1]) 2077 rx_streams = 2; 2078 else 2079 rx_streams = 1; 2080 2081 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2082 return rx_streams; 2083 2084 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2085 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2086 } 2087 2088 static struct ieee80211_sta_rx_stats * 2089 sta_get_last_rx_stats(struct sta_info *sta) 2090 { 2091 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2092 struct ieee80211_local *local = sta->local; 2093 int cpu; 2094 2095 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2096 return stats; 2097 2098 for_each_possible_cpu(cpu) { 2099 struct ieee80211_sta_rx_stats *cpustats; 2100 2101 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2102 2103 if (time_after(cpustats->last_rx, stats->last_rx)) 2104 stats = cpustats; 2105 } 2106 2107 return stats; 2108 } 2109 2110 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2111 struct rate_info *rinfo) 2112 { 2113 rinfo->bw = STA_STATS_GET(BW, rate); 2114 2115 switch (STA_STATS_GET(TYPE, rate)) { 2116 case STA_STATS_RATE_TYPE_VHT: 2117 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2118 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2119 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2120 if (STA_STATS_GET(SGI, rate)) 2121 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2122 break; 2123 case STA_STATS_RATE_TYPE_HT: 2124 rinfo->flags = RATE_INFO_FLAGS_MCS; 2125 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2126 if (STA_STATS_GET(SGI, rate)) 2127 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2128 break; 2129 case STA_STATS_RATE_TYPE_LEGACY: { 2130 struct ieee80211_supported_band *sband; 2131 u16 brate; 2132 unsigned int shift; 2133 int band = STA_STATS_GET(LEGACY_BAND, rate); 2134 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2135 2136 sband = local->hw.wiphy->bands[band]; 2137 2138 if (WARN_ON_ONCE(!sband->bitrates)) 2139 break; 2140 2141 brate = sband->bitrates[rate_idx].bitrate; 2142 if (rinfo->bw == RATE_INFO_BW_5) 2143 shift = 2; 2144 else if (rinfo->bw == RATE_INFO_BW_10) 2145 shift = 1; 2146 else 2147 shift = 0; 2148 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2149 break; 2150 } 2151 case STA_STATS_RATE_TYPE_HE: 2152 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2153 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2154 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2155 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2156 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2157 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2158 break; 2159 } 2160 } 2161 2162 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2163 { 2164 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2165 2166 if (rate == STA_STATS_RATE_INVALID) 2167 return -EINVAL; 2168 2169 sta_stats_decode_rate(sta->local, rate, rinfo); 2170 return 0; 2171 } 2172 2173 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2174 int tid) 2175 { 2176 unsigned int start; 2177 u64 value; 2178 2179 do { 2180 start = u64_stats_fetch_begin(&rxstats->syncp); 2181 value = rxstats->msdu[tid]; 2182 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2183 2184 return value; 2185 } 2186 2187 static void sta_set_tidstats(struct sta_info *sta, 2188 struct cfg80211_tid_stats *tidstats, 2189 int tid) 2190 { 2191 struct ieee80211_local *local = sta->local; 2192 int cpu; 2193 2194 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2195 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2196 tidstats->rx_msdu += 2197 sta_get_tidstats_msdu(&sta->rx_stats, tid); 2198 2199 if (sta->pcpu_rx_stats) { 2200 for_each_possible_cpu(cpu) { 2201 struct ieee80211_sta_rx_stats *cpurxs; 2202 2203 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2204 tidstats->rx_msdu += 2205 sta_get_tidstats_msdu(cpurxs, tid); 2206 } 2207 } 2208 2209 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2210 } 2211 2212 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2213 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2214 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2215 } 2216 2217 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2218 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2219 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2220 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2221 } 2222 2223 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2224 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2225 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2226 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2227 } 2228 2229 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2230 spin_lock_bh(&local->fq.lock); 2231 rcu_read_lock(); 2232 2233 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2234 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2235 to_txq_info(sta->sta.txq[tid])); 2236 2237 rcu_read_unlock(); 2238 spin_unlock_bh(&local->fq.lock); 2239 } 2240 } 2241 2242 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2243 { 2244 unsigned int start; 2245 u64 value; 2246 2247 do { 2248 start = u64_stats_fetch_begin(&rxstats->syncp); 2249 value = rxstats->bytes; 2250 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2251 2252 return value; 2253 } 2254 2255 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2256 bool tidstats) 2257 { 2258 struct ieee80211_sub_if_data *sdata = sta->sdata; 2259 struct ieee80211_local *local = sdata->local; 2260 u32 thr = 0; 2261 int i, ac, cpu; 2262 struct ieee80211_sta_rx_stats *last_rxstats; 2263 2264 last_rxstats = sta_get_last_rx_stats(sta); 2265 2266 sinfo->generation = sdata->local->sta_generation; 2267 2268 /* do before driver, so beacon filtering drivers have a 2269 * chance to e.g. just add the number of filtered beacons 2270 * (or just modify the value entirely, of course) 2271 */ 2272 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2273 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2274 2275 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2276 2277 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2278 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2279 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2280 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2281 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2282 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2283 2284 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2285 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2286 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2287 } 2288 2289 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2290 sinfo->assoc_at = sta->assoc_at; 2291 sinfo->inactive_time = 2292 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2293 2294 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2295 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2296 sinfo->tx_bytes = 0; 2297 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2298 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2299 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2300 } 2301 2302 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2303 sinfo->tx_packets = 0; 2304 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2305 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2306 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2307 } 2308 2309 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2310 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2311 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 2312 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2313 2314 if (sta->pcpu_rx_stats) { 2315 for_each_possible_cpu(cpu) { 2316 struct ieee80211_sta_rx_stats *cpurxs; 2317 2318 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2319 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2320 } 2321 } 2322 2323 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2324 } 2325 2326 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2327 sinfo->rx_packets = sta->rx_stats.packets; 2328 if (sta->pcpu_rx_stats) { 2329 for_each_possible_cpu(cpu) { 2330 struct ieee80211_sta_rx_stats *cpurxs; 2331 2332 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2333 sinfo->rx_packets += cpurxs->packets; 2334 } 2335 } 2336 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2337 } 2338 2339 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2340 sinfo->tx_retries = sta->status_stats.retry_count; 2341 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2342 } 2343 2344 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2345 sinfo->tx_failed = sta->status_stats.retry_failed; 2346 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2347 } 2348 2349 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2350 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2351 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2352 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2353 } 2354 2355 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2356 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2357 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2358 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2359 } 2360 2361 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2362 sinfo->airtime_weight = sta->airtime_weight; 2363 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2364 } 2365 2366 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2367 if (sta->pcpu_rx_stats) { 2368 for_each_possible_cpu(cpu) { 2369 struct ieee80211_sta_rx_stats *cpurxs; 2370 2371 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2372 sinfo->rx_dropped_misc += cpurxs->dropped; 2373 } 2374 } 2375 2376 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2377 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2378 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2379 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2380 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2381 } 2382 2383 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2384 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2385 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2386 sinfo->signal = (s8)last_rxstats->last_signal; 2387 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2388 } 2389 2390 if (!sta->pcpu_rx_stats && 2391 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2392 sinfo->signal_avg = 2393 -ewma_signal_read(&sta->rx_stats_avg.signal); 2394 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2395 } 2396 } 2397 2398 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2399 * the sta->rx_stats struct, so the check here is fine with and without 2400 * pcpu statistics 2401 */ 2402 if (last_rxstats->chains && 2403 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2404 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2406 if (!sta->pcpu_rx_stats) 2407 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2408 2409 sinfo->chains = last_rxstats->chains; 2410 2411 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2412 sinfo->chain_signal[i] = 2413 last_rxstats->chain_signal_last[i]; 2414 sinfo->chain_signal_avg[i] = 2415 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2416 } 2417 } 2418 2419 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2420 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2421 &sinfo->txrate); 2422 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2423 } 2424 2425 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2426 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2427 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2428 } 2429 2430 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2431 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2432 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2433 } 2434 2435 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2436 #ifdef CONFIG_MAC80211_MESH 2437 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2438 BIT_ULL(NL80211_STA_INFO_PLID) | 2439 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2440 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2441 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2442 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2443 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2444 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2445 2446 sinfo->llid = sta->mesh->llid; 2447 sinfo->plid = sta->mesh->plid; 2448 sinfo->plink_state = sta->mesh->plink_state; 2449 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2450 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2451 sinfo->t_offset = sta->mesh->t_offset; 2452 } 2453 sinfo->local_pm = sta->mesh->local_pm; 2454 sinfo->peer_pm = sta->mesh->peer_pm; 2455 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2456 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2457 sinfo->connected_to_as = sta->mesh->connected_to_as; 2458 #endif 2459 } 2460 2461 sinfo->bss_param.flags = 0; 2462 if (sdata->vif.bss_conf.use_cts_prot) 2463 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2464 if (sdata->vif.bss_conf.use_short_preamble) 2465 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2466 if (sdata->vif.bss_conf.use_short_slot) 2467 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2468 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2469 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2470 2471 sinfo->sta_flags.set = 0; 2472 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2473 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2474 BIT(NL80211_STA_FLAG_WME) | 2475 BIT(NL80211_STA_FLAG_MFP) | 2476 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2477 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2478 BIT(NL80211_STA_FLAG_TDLS_PEER); 2479 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2480 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2481 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2482 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2483 if (sta->sta.wme) 2484 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2485 if (test_sta_flag(sta, WLAN_STA_MFP)) 2486 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2487 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2488 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2489 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2490 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2491 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2492 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2493 2494 thr = sta_get_expected_throughput(sta); 2495 2496 if (thr != 0) { 2497 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2498 sinfo->expected_throughput = thr; 2499 } 2500 2501 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2502 sta->status_stats.ack_signal_filled) { 2503 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2504 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2505 } 2506 2507 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2508 sta->status_stats.ack_signal_filled) { 2509 sinfo->avg_ack_signal = 2510 -(s8)ewma_avg_signal_read( 2511 &sta->status_stats.avg_ack_signal); 2512 sinfo->filled |= 2513 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2514 } 2515 2516 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2517 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2518 sinfo->airtime_link_metric = 2519 airtime_link_metric_get(local, sta); 2520 } 2521 } 2522 2523 u32 sta_get_expected_throughput(struct sta_info *sta) 2524 { 2525 struct ieee80211_sub_if_data *sdata = sta->sdata; 2526 struct ieee80211_local *local = sdata->local; 2527 struct rate_control_ref *ref = NULL; 2528 u32 thr = 0; 2529 2530 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2531 ref = local->rate_ctrl; 2532 2533 /* check if the driver has a SW RC implementation */ 2534 if (ref && ref->ops->get_expected_throughput) 2535 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2536 else 2537 thr = drv_get_expected_throughput(local, sta); 2538 2539 return thr; 2540 } 2541 2542 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2543 { 2544 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2545 2546 if (!sta->status_stats.last_ack || 2547 time_after(stats->last_rx, sta->status_stats.last_ack)) 2548 return stats->last_rx; 2549 return sta->status_stats.last_ack; 2550 } 2551 2552 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2553 { 2554 if (!sta->sdata->local->ops->wake_tx_queue) 2555 return; 2556 2557 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2558 sta->cparams.target = MS2TIME(50); 2559 sta->cparams.interval = MS2TIME(300); 2560 sta->cparams.ecn = false; 2561 } else { 2562 sta->cparams.target = MS2TIME(20); 2563 sta->cparams.interval = MS2TIME(100); 2564 sta->cparams.ecn = true; 2565 } 2566 } 2567 2568 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2569 u32 thr) 2570 { 2571 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2572 2573 sta_update_codel_params(sta, thr); 2574 } 2575