xref: /linux/net/mac80211/sta_info.c (revision b2e44430b6348f68f56e78e932e6312f12128778)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->deflink.pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->deflink.pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->deflink.pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (!sdata->u.mesh.user_mpm)
368 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
369 				    0);
370 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
371 	}
372 #endif
373 
374 	memcpy(sta->addr, addr, ETH_ALEN);
375 	memcpy(sta->sta.addr, addr, ETH_ALEN);
376 	sta->sta.max_rx_aggregation_subframes =
377 		local->hw.max_rx_aggregation_subframes;
378 
379 	/* TODO link specific alloc and assignments for MLO Link STA */
380 
381 	/* For non MLO STA, link info can be accessed either via deflink
382 	 * or link[0]
383 	 */
384 	sta->link[0] = &sta->deflink;
385 	sta->sta.link[0] = &sta->sta.deflink;
386 
387 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
388 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
389 	 * references to is not NULL. To not use the initial Rx-only key
390 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
391 	 * which always will refer to a NULL key.
392 	 */
393 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
394 	sta->ptk_idx = INVALID_PTK_KEYIDX;
395 
396 	sta->local = local;
397 	sta->sdata = sdata;
398 	sta->deflink.rx_stats.last_rx = jiffies;
399 
400 	u64_stats_init(&sta->deflink.rx_stats.syncp);
401 
402 	ieee80211_init_frag_cache(&sta->frags);
403 
404 	sta->sta_state = IEEE80211_STA_NONE;
405 
406 	/* Mark TID as unreserved */
407 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
408 
409 	sta->last_connected = ktime_get_seconds();
410 	ewma_signal_init(&sta->deflink.rx_stats_avg.signal);
411 	ewma_avg_signal_init(&sta->deflink.status_stats.avg_ack_signal);
412 	for (i = 0; i < ARRAY_SIZE(sta->deflink.rx_stats_avg.chain_signal); i++)
413 		ewma_signal_init(&sta->deflink.rx_stats_avg.chain_signal[i]);
414 
415 	if (local->ops->wake_tx_queue) {
416 		void *txq_data;
417 		int size = sizeof(struct txq_info) +
418 			   ALIGN(hw->txq_data_size, sizeof(void *));
419 
420 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
421 		if (!txq_data)
422 			goto free;
423 
424 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
425 			struct txq_info *txq = txq_data + i * size;
426 
427 			/* might not do anything for the bufferable MMPDU TXQ */
428 			ieee80211_txq_init(sdata, sta, txq, i);
429 		}
430 	}
431 
432 	if (sta_prepare_rate_control(local, sta, gfp))
433 		goto free_txq;
434 
435 
436 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
437 		skb_queue_head_init(&sta->ps_tx_buf[i]);
438 		skb_queue_head_init(&sta->tx_filtered[i]);
439 		init_airtime_info(&sta->airtime[i], &local->airtime[i]);
440 	}
441 
442 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
443 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
444 
445 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
446 		u32 mandatory = 0;
447 		int r;
448 
449 		if (!hw->wiphy->bands[i])
450 			continue;
451 
452 		switch (i) {
453 		case NL80211_BAND_2GHZ:
454 		case NL80211_BAND_LC:
455 			/*
456 			 * We use both here, even if we cannot really know for
457 			 * sure the station will support both, but the only use
458 			 * for this is when we don't know anything yet and send
459 			 * management frames, and then we'll pick the lowest
460 			 * possible rate anyway.
461 			 * If we don't include _G here, we cannot find a rate
462 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
463 			 */
464 			mandatory = IEEE80211_RATE_MANDATORY_B |
465 				    IEEE80211_RATE_MANDATORY_G;
466 			break;
467 		case NL80211_BAND_5GHZ:
468 			mandatory = IEEE80211_RATE_MANDATORY_A;
469 			break;
470 		case NL80211_BAND_60GHZ:
471 			WARN_ON(1);
472 			mandatory = 0;
473 			break;
474 		}
475 
476 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
477 			struct ieee80211_rate *rate;
478 
479 			rate = &hw->wiphy->bands[i]->bitrates[r];
480 
481 			if (!(rate->flags & mandatory))
482 				continue;
483 			sta->sta.deflink.supp_rates[i] |= BIT(r);
484 		}
485 	}
486 
487 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
488 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
489 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
490 		struct ieee80211_supported_band *sband;
491 		u8 smps;
492 
493 		sband = ieee80211_get_sband(sdata);
494 		if (!sband)
495 			goto free_txq;
496 
497 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
498 			IEEE80211_HT_CAP_SM_PS_SHIFT;
499 		/*
500 		 * Assume that hostapd advertises our caps in the beacon and
501 		 * this is the known_smps_mode for a station that just assciated
502 		 */
503 		switch (smps) {
504 		case WLAN_HT_SMPS_CONTROL_DISABLED:
505 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
506 			break;
507 		case WLAN_HT_SMPS_CONTROL_STATIC:
508 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
509 			break;
510 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
511 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
512 			break;
513 		default:
514 			WARN_ON(1);
515 		}
516 	}
517 
518 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
519 
520 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
521 	sta->cparams.target = MS2TIME(20);
522 	sta->cparams.interval = MS2TIME(100);
523 	sta->cparams.ecn = true;
524 	sta->cparams.ce_threshold_selector = 0;
525 	sta->cparams.ce_threshold_mask = 0;
526 
527 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
528 
529 	return sta;
530 
531 free_txq:
532 	if (sta->sta.txq[0])
533 		kfree(to_txq_info(sta->sta.txq[0]));
534 free:
535 	free_percpu(sta->deflink.pcpu_rx_stats);
536 #ifdef CONFIG_MAC80211_MESH
537 	kfree(sta->mesh);
538 #endif
539 	kfree(sta);
540 	return NULL;
541 }
542 
543 static int sta_info_insert_check(struct sta_info *sta)
544 {
545 	struct ieee80211_sub_if_data *sdata = sta->sdata;
546 
547 	/*
548 	 * Can't be a WARN_ON because it can be triggered through a race:
549 	 * something inserts a STA (on one CPU) without holding the RTNL
550 	 * and another CPU turns off the net device.
551 	 */
552 	if (unlikely(!ieee80211_sdata_running(sdata)))
553 		return -ENETDOWN;
554 
555 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
556 		    !is_valid_ether_addr(sta->sta.addr)))
557 		return -EINVAL;
558 
559 	/* The RCU read lock is required by rhashtable due to
560 	 * asynchronous resize/rehash.  We also require the mutex
561 	 * for correctness.
562 	 */
563 	rcu_read_lock();
564 	lockdep_assert_held(&sdata->local->sta_mtx);
565 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
566 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
567 		rcu_read_unlock();
568 		return -ENOTUNIQ;
569 	}
570 	rcu_read_unlock();
571 
572 	return 0;
573 }
574 
575 static int sta_info_insert_drv_state(struct ieee80211_local *local,
576 				     struct ieee80211_sub_if_data *sdata,
577 				     struct sta_info *sta)
578 {
579 	enum ieee80211_sta_state state;
580 	int err = 0;
581 
582 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
583 		err = drv_sta_state(local, sdata, sta, state, state + 1);
584 		if (err)
585 			break;
586 	}
587 
588 	if (!err) {
589 		/*
590 		 * Drivers using legacy sta_add/sta_remove callbacks only
591 		 * get uploaded set to true after sta_add is called.
592 		 */
593 		if (!local->ops->sta_add)
594 			sta->uploaded = true;
595 		return 0;
596 	}
597 
598 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
599 		sdata_info(sdata,
600 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
601 			   sta->sta.addr, state + 1, err);
602 		err = 0;
603 	}
604 
605 	/* unwind on error */
606 	for (; state > IEEE80211_STA_NOTEXIST; state--)
607 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
608 
609 	return err;
610 }
611 
612 static void
613 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
614 {
615 	struct ieee80211_local *local = sdata->local;
616 	bool allow_p2p_go_ps = sdata->vif.p2p;
617 	struct sta_info *sta;
618 
619 	rcu_read_lock();
620 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
621 		if (sdata != sta->sdata ||
622 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
623 			continue;
624 		if (!sta->sta.support_p2p_ps) {
625 			allow_p2p_go_ps = false;
626 			break;
627 		}
628 	}
629 	rcu_read_unlock();
630 
631 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
632 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
633 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
634 	}
635 }
636 
637 /*
638  * should be called with sta_mtx locked
639  * this function replaces the mutex lock
640  * with a RCU lock
641  */
642 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
643 {
644 	struct ieee80211_local *local = sta->local;
645 	struct ieee80211_sub_if_data *sdata = sta->sdata;
646 	struct station_info *sinfo = NULL;
647 	int err = 0;
648 
649 	lockdep_assert_held(&local->sta_mtx);
650 
651 	/* check if STA exists already */
652 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
653 		err = -EEXIST;
654 		goto out_cleanup;
655 	}
656 
657 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
658 	if (!sinfo) {
659 		err = -ENOMEM;
660 		goto out_cleanup;
661 	}
662 
663 	local->num_sta++;
664 	local->sta_generation++;
665 	smp_mb();
666 
667 	/* simplify things and don't accept BA sessions yet */
668 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
669 
670 	/* make the station visible */
671 	err = sta_info_hash_add(local, sta);
672 	if (err)
673 		goto out_drop_sta;
674 
675 	list_add_tail_rcu(&sta->list, &local->sta_list);
676 
677 	/* update channel context before notifying the driver about state
678 	 * change, this enables driver using the updated channel context right away.
679 	 */
680 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
681 		ieee80211_recalc_min_chandef(sta->sdata);
682 		if (!sta->sta.support_p2p_ps)
683 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
684 	}
685 
686 	/* notify driver */
687 	err = sta_info_insert_drv_state(local, sdata, sta);
688 	if (err)
689 		goto out_remove;
690 
691 	set_sta_flag(sta, WLAN_STA_INSERTED);
692 
693 	/* accept BA sessions now */
694 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
695 
696 	ieee80211_sta_debugfs_add(sta);
697 	rate_control_add_sta_debugfs(sta);
698 
699 	sinfo->generation = local->sta_generation;
700 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
701 	kfree(sinfo);
702 
703 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
704 
705 	/* move reference to rcu-protected */
706 	rcu_read_lock();
707 	mutex_unlock(&local->sta_mtx);
708 
709 	if (ieee80211_vif_is_mesh(&sdata->vif))
710 		mesh_accept_plinks_update(sdata);
711 
712 	return 0;
713  out_remove:
714 	sta_info_hash_del(local, sta);
715 	list_del_rcu(&sta->list);
716  out_drop_sta:
717 	local->num_sta--;
718 	synchronize_net();
719  out_cleanup:
720 	cleanup_single_sta(sta);
721 	mutex_unlock(&local->sta_mtx);
722 	kfree(sinfo);
723 	rcu_read_lock();
724 	return err;
725 }
726 
727 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
728 {
729 	struct ieee80211_local *local = sta->local;
730 	int err;
731 
732 	might_sleep();
733 
734 	mutex_lock(&local->sta_mtx);
735 
736 	err = sta_info_insert_check(sta);
737 	if (err) {
738 		sta_info_free(local, sta);
739 		mutex_unlock(&local->sta_mtx);
740 		rcu_read_lock();
741 		return err;
742 	}
743 
744 	return sta_info_insert_finish(sta);
745 }
746 
747 int sta_info_insert(struct sta_info *sta)
748 {
749 	int err = sta_info_insert_rcu(sta);
750 
751 	rcu_read_unlock();
752 
753 	return err;
754 }
755 
756 static inline void __bss_tim_set(u8 *tim, u16 id)
757 {
758 	/*
759 	 * This format has been mandated by the IEEE specifications,
760 	 * so this line may not be changed to use the __set_bit() format.
761 	 */
762 	tim[id / 8] |= (1 << (id % 8));
763 }
764 
765 static inline void __bss_tim_clear(u8 *tim, u16 id)
766 {
767 	/*
768 	 * This format has been mandated by the IEEE specifications,
769 	 * so this line may not be changed to use the __clear_bit() format.
770 	 */
771 	tim[id / 8] &= ~(1 << (id % 8));
772 }
773 
774 static inline bool __bss_tim_get(u8 *tim, u16 id)
775 {
776 	/*
777 	 * This format has been mandated by the IEEE specifications,
778 	 * so this line may not be changed to use the test_bit() format.
779 	 */
780 	return tim[id / 8] & (1 << (id % 8));
781 }
782 
783 static unsigned long ieee80211_tids_for_ac(int ac)
784 {
785 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
786 	switch (ac) {
787 	case IEEE80211_AC_VO:
788 		return BIT(6) | BIT(7);
789 	case IEEE80211_AC_VI:
790 		return BIT(4) | BIT(5);
791 	case IEEE80211_AC_BE:
792 		return BIT(0) | BIT(3);
793 	case IEEE80211_AC_BK:
794 		return BIT(1) | BIT(2);
795 	default:
796 		WARN_ON(1);
797 		return 0;
798 	}
799 }
800 
801 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
802 {
803 	struct ieee80211_local *local = sta->local;
804 	struct ps_data *ps;
805 	bool indicate_tim = false;
806 	u8 ignore_for_tim = sta->sta.uapsd_queues;
807 	int ac;
808 	u16 id = sta->sta.aid;
809 
810 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
811 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
812 		if (WARN_ON_ONCE(!sta->sdata->bss))
813 			return;
814 
815 		ps = &sta->sdata->bss->ps;
816 #ifdef CONFIG_MAC80211_MESH
817 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
818 		ps = &sta->sdata->u.mesh.ps;
819 #endif
820 	} else {
821 		return;
822 	}
823 
824 	/* No need to do anything if the driver does all */
825 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
826 		return;
827 
828 	if (sta->dead)
829 		goto done;
830 
831 	/*
832 	 * If all ACs are delivery-enabled then we should build
833 	 * the TIM bit for all ACs anyway; if only some are then
834 	 * we ignore those and build the TIM bit using only the
835 	 * non-enabled ones.
836 	 */
837 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
838 		ignore_for_tim = 0;
839 
840 	if (ignore_pending)
841 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
842 
843 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
844 		unsigned long tids;
845 
846 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
847 			continue;
848 
849 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
850 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
851 		if (indicate_tim)
852 			break;
853 
854 		tids = ieee80211_tids_for_ac(ac);
855 
856 		indicate_tim |=
857 			sta->driver_buffered_tids & tids;
858 		indicate_tim |=
859 			sta->txq_buffered_tids & tids;
860 	}
861 
862  done:
863 	spin_lock_bh(&local->tim_lock);
864 
865 	if (indicate_tim == __bss_tim_get(ps->tim, id))
866 		goto out_unlock;
867 
868 	if (indicate_tim)
869 		__bss_tim_set(ps->tim, id);
870 	else
871 		__bss_tim_clear(ps->tim, id);
872 
873 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
874 		local->tim_in_locked_section = true;
875 		drv_set_tim(local, &sta->sta, indicate_tim);
876 		local->tim_in_locked_section = false;
877 	}
878 
879 out_unlock:
880 	spin_unlock_bh(&local->tim_lock);
881 }
882 
883 void sta_info_recalc_tim(struct sta_info *sta)
884 {
885 	__sta_info_recalc_tim(sta, false);
886 }
887 
888 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
889 {
890 	struct ieee80211_tx_info *info;
891 	int timeout;
892 
893 	if (!skb)
894 		return false;
895 
896 	info = IEEE80211_SKB_CB(skb);
897 
898 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
899 	timeout = (sta->listen_interval *
900 		   sta->sdata->vif.bss_conf.beacon_int *
901 		   32 / 15625) * HZ;
902 	if (timeout < STA_TX_BUFFER_EXPIRE)
903 		timeout = STA_TX_BUFFER_EXPIRE;
904 	return time_after(jiffies, info->control.jiffies + timeout);
905 }
906 
907 
908 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
909 						struct sta_info *sta, int ac)
910 {
911 	unsigned long flags;
912 	struct sk_buff *skb;
913 
914 	/*
915 	 * First check for frames that should expire on the filtered
916 	 * queue. Frames here were rejected by the driver and are on
917 	 * a separate queue to avoid reordering with normal PS-buffered
918 	 * frames. They also aren't accounted for right now in the
919 	 * total_ps_buffered counter.
920 	 */
921 	for (;;) {
922 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
923 		skb = skb_peek(&sta->tx_filtered[ac]);
924 		if (sta_info_buffer_expired(sta, skb))
925 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
926 		else
927 			skb = NULL;
928 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
929 
930 		/*
931 		 * Frames are queued in order, so if this one
932 		 * hasn't expired yet we can stop testing. If
933 		 * we actually reached the end of the queue we
934 		 * also need to stop, of course.
935 		 */
936 		if (!skb)
937 			break;
938 		ieee80211_free_txskb(&local->hw, skb);
939 	}
940 
941 	/*
942 	 * Now also check the normal PS-buffered queue, this will
943 	 * only find something if the filtered queue was emptied
944 	 * since the filtered frames are all before the normal PS
945 	 * buffered frames.
946 	 */
947 	for (;;) {
948 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
949 		skb = skb_peek(&sta->ps_tx_buf[ac]);
950 		if (sta_info_buffer_expired(sta, skb))
951 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
952 		else
953 			skb = NULL;
954 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
955 
956 		/*
957 		 * frames are queued in order, so if this one
958 		 * hasn't expired yet (or we reached the end of
959 		 * the queue) we can stop testing
960 		 */
961 		if (!skb)
962 			break;
963 
964 		local->total_ps_buffered--;
965 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
966 		       sta->sta.addr);
967 		ieee80211_free_txskb(&local->hw, skb);
968 	}
969 
970 	/*
971 	 * Finally, recalculate the TIM bit for this station -- it might
972 	 * now be clear because the station was too slow to retrieve its
973 	 * frames.
974 	 */
975 	sta_info_recalc_tim(sta);
976 
977 	/*
978 	 * Return whether there are any frames still buffered, this is
979 	 * used to check whether the cleanup timer still needs to run,
980 	 * if there are no frames we don't need to rearm the timer.
981 	 */
982 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
983 		 skb_queue_empty(&sta->tx_filtered[ac]));
984 }
985 
986 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
987 					     struct sta_info *sta)
988 {
989 	bool have_buffered = false;
990 	int ac;
991 
992 	/* This is only necessary for stations on BSS/MBSS interfaces */
993 	if (!sta->sdata->bss &&
994 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
995 		return false;
996 
997 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
998 		have_buffered |=
999 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
1000 
1001 	return have_buffered;
1002 }
1003 
1004 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
1005 {
1006 	struct ieee80211_local *local;
1007 	struct ieee80211_sub_if_data *sdata;
1008 	int ret;
1009 
1010 	might_sleep();
1011 
1012 	if (!sta)
1013 		return -ENOENT;
1014 
1015 	local = sta->local;
1016 	sdata = sta->sdata;
1017 
1018 	lockdep_assert_held(&local->sta_mtx);
1019 
1020 	/*
1021 	 * Before removing the station from the driver and
1022 	 * rate control, it might still start new aggregation
1023 	 * sessions -- block that to make sure the tear-down
1024 	 * will be sufficient.
1025 	 */
1026 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1027 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1028 
1029 	/*
1030 	 * Before removing the station from the driver there might be pending
1031 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1032 	 * all such frames to be processed.
1033 	 */
1034 	drv_sync_rx_queues(local, sta);
1035 
1036 	ret = sta_info_hash_del(local, sta);
1037 	if (WARN_ON(ret))
1038 		return ret;
1039 
1040 	/*
1041 	 * for TDLS peers, make sure to return to the base channel before
1042 	 * removal.
1043 	 */
1044 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1045 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1046 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1047 	}
1048 
1049 	list_del_rcu(&sta->list);
1050 	sta->removed = true;
1051 
1052 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1053 
1054 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1055 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1056 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1057 
1058 	return 0;
1059 }
1060 
1061 static void __sta_info_destroy_part2(struct sta_info *sta)
1062 {
1063 	struct ieee80211_local *local = sta->local;
1064 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1065 	struct station_info *sinfo;
1066 	int ret;
1067 
1068 	/*
1069 	 * NOTE: This assumes at least synchronize_net() was done
1070 	 *	 after _part1 and before _part2!
1071 	 */
1072 
1073 	might_sleep();
1074 	lockdep_assert_held(&local->sta_mtx);
1075 
1076 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1077 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1078 		WARN_ON_ONCE(ret);
1079 	}
1080 
1081 	/* now keys can no longer be reached */
1082 	ieee80211_free_sta_keys(local, sta);
1083 
1084 	/* disable TIM bit - last chance to tell driver */
1085 	__sta_info_recalc_tim(sta, true);
1086 
1087 	sta->dead = true;
1088 
1089 	local->num_sta--;
1090 	local->sta_generation++;
1091 
1092 	while (sta->sta_state > IEEE80211_STA_NONE) {
1093 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1094 		if (ret) {
1095 			WARN_ON_ONCE(1);
1096 			break;
1097 		}
1098 	}
1099 
1100 	if (sta->uploaded) {
1101 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1102 				    IEEE80211_STA_NOTEXIST);
1103 		WARN_ON_ONCE(ret != 0);
1104 	}
1105 
1106 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1107 
1108 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1109 	if (sinfo)
1110 		sta_set_sinfo(sta, sinfo, true);
1111 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1112 	kfree(sinfo);
1113 
1114 	ieee80211_sta_debugfs_remove(sta);
1115 
1116 	ieee80211_destroy_frag_cache(&sta->frags);
1117 
1118 	cleanup_single_sta(sta);
1119 }
1120 
1121 int __must_check __sta_info_destroy(struct sta_info *sta)
1122 {
1123 	int err = __sta_info_destroy_part1(sta);
1124 
1125 	if (err)
1126 		return err;
1127 
1128 	synchronize_net();
1129 
1130 	__sta_info_destroy_part2(sta);
1131 
1132 	return 0;
1133 }
1134 
1135 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1136 {
1137 	struct sta_info *sta;
1138 	int ret;
1139 
1140 	mutex_lock(&sdata->local->sta_mtx);
1141 	sta = sta_info_get(sdata, addr);
1142 	ret = __sta_info_destroy(sta);
1143 	mutex_unlock(&sdata->local->sta_mtx);
1144 
1145 	return ret;
1146 }
1147 
1148 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1149 			      const u8 *addr)
1150 {
1151 	struct sta_info *sta;
1152 	int ret;
1153 
1154 	mutex_lock(&sdata->local->sta_mtx);
1155 	sta = sta_info_get_bss(sdata, addr);
1156 	ret = __sta_info_destroy(sta);
1157 	mutex_unlock(&sdata->local->sta_mtx);
1158 
1159 	return ret;
1160 }
1161 
1162 static void sta_info_cleanup(struct timer_list *t)
1163 {
1164 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1165 	struct sta_info *sta;
1166 	bool timer_needed = false;
1167 
1168 	rcu_read_lock();
1169 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1170 		if (sta_info_cleanup_expire_buffered(local, sta))
1171 			timer_needed = true;
1172 	rcu_read_unlock();
1173 
1174 	if (local->quiescing)
1175 		return;
1176 
1177 	if (!timer_needed)
1178 		return;
1179 
1180 	mod_timer(&local->sta_cleanup,
1181 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1182 }
1183 
1184 int sta_info_init(struct ieee80211_local *local)
1185 {
1186 	int err;
1187 
1188 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1189 	if (err)
1190 		return err;
1191 
1192 	spin_lock_init(&local->tim_lock);
1193 	mutex_init(&local->sta_mtx);
1194 	INIT_LIST_HEAD(&local->sta_list);
1195 
1196 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1197 	return 0;
1198 }
1199 
1200 void sta_info_stop(struct ieee80211_local *local)
1201 {
1202 	del_timer_sync(&local->sta_cleanup);
1203 	rhltable_destroy(&local->sta_hash);
1204 }
1205 
1206 
1207 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1208 {
1209 	struct ieee80211_local *local = sdata->local;
1210 	struct sta_info *sta, *tmp;
1211 	LIST_HEAD(free_list);
1212 	int ret = 0;
1213 
1214 	might_sleep();
1215 
1216 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1217 	WARN_ON(vlans && !sdata->bss);
1218 
1219 	mutex_lock(&local->sta_mtx);
1220 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1221 		if (sdata == sta->sdata ||
1222 		    (vlans && sdata->bss == sta->sdata->bss)) {
1223 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1224 				list_add(&sta->free_list, &free_list);
1225 			ret++;
1226 		}
1227 	}
1228 
1229 	if (!list_empty(&free_list)) {
1230 		synchronize_net();
1231 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1232 			__sta_info_destroy_part2(sta);
1233 	}
1234 	mutex_unlock(&local->sta_mtx);
1235 
1236 	return ret;
1237 }
1238 
1239 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1240 			  unsigned long exp_time)
1241 {
1242 	struct ieee80211_local *local = sdata->local;
1243 	struct sta_info *sta, *tmp;
1244 
1245 	mutex_lock(&local->sta_mtx);
1246 
1247 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1248 		unsigned long last_active = ieee80211_sta_last_active(sta);
1249 
1250 		if (sdata != sta->sdata)
1251 			continue;
1252 
1253 		if (time_is_before_jiffies(last_active + exp_time)) {
1254 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1255 				sta->sta.addr);
1256 
1257 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1258 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1259 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1260 
1261 			WARN_ON(__sta_info_destroy(sta));
1262 		}
1263 	}
1264 
1265 	mutex_unlock(&local->sta_mtx);
1266 }
1267 
1268 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1269 						   const u8 *addr,
1270 						   const u8 *localaddr)
1271 {
1272 	struct ieee80211_local *local = hw_to_local(hw);
1273 	struct rhlist_head *tmp;
1274 	struct sta_info *sta;
1275 
1276 	/*
1277 	 * Just return a random station if localaddr is NULL
1278 	 * ... first in list.
1279 	 */
1280 	for_each_sta_info(local, addr, sta, tmp) {
1281 		if (localaddr &&
1282 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1283 			continue;
1284 		if (!sta->uploaded)
1285 			return NULL;
1286 		return &sta->sta;
1287 	}
1288 
1289 	return NULL;
1290 }
1291 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1292 
1293 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1294 					 const u8 *addr)
1295 {
1296 	struct sta_info *sta;
1297 
1298 	if (!vif)
1299 		return NULL;
1300 
1301 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1302 	if (!sta)
1303 		return NULL;
1304 
1305 	if (!sta->uploaded)
1306 		return NULL;
1307 
1308 	return &sta->sta;
1309 }
1310 EXPORT_SYMBOL(ieee80211_find_sta);
1311 
1312 /* powersave support code */
1313 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1314 {
1315 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1316 	struct ieee80211_local *local = sdata->local;
1317 	struct sk_buff_head pending;
1318 	int filtered = 0, buffered = 0, ac, i;
1319 	unsigned long flags;
1320 	struct ps_data *ps;
1321 
1322 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1323 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1324 				     u.ap);
1325 
1326 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1327 		ps = &sdata->bss->ps;
1328 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1329 		ps = &sdata->u.mesh.ps;
1330 	else
1331 		return;
1332 
1333 	clear_sta_flag(sta, WLAN_STA_SP);
1334 
1335 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1336 	sta->driver_buffered_tids = 0;
1337 	sta->txq_buffered_tids = 0;
1338 
1339 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1340 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1341 
1342 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1343 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1344 			continue;
1345 
1346 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1347 	}
1348 
1349 	skb_queue_head_init(&pending);
1350 
1351 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1352 	spin_lock(&sta->ps_lock);
1353 	/* Send all buffered frames to the station */
1354 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1355 		int count = skb_queue_len(&pending), tmp;
1356 
1357 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1358 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1359 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1360 		tmp = skb_queue_len(&pending);
1361 		filtered += tmp - count;
1362 		count = tmp;
1363 
1364 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1365 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1366 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1367 		tmp = skb_queue_len(&pending);
1368 		buffered += tmp - count;
1369 	}
1370 
1371 	ieee80211_add_pending_skbs(local, &pending);
1372 
1373 	/* now we're no longer in the deliver code */
1374 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1375 
1376 	/* The station might have polled and then woken up before we responded,
1377 	 * so clear these flags now to avoid them sticking around.
1378 	 */
1379 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1380 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1381 	spin_unlock(&sta->ps_lock);
1382 
1383 	atomic_dec(&ps->num_sta_ps);
1384 
1385 	local->total_ps_buffered -= buffered;
1386 
1387 	sta_info_recalc_tim(sta);
1388 
1389 	ps_dbg(sdata,
1390 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1391 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1392 
1393 	ieee80211_check_fast_xmit(sta);
1394 }
1395 
1396 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1397 					 enum ieee80211_frame_release_type reason,
1398 					 bool call_driver, bool more_data)
1399 {
1400 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1401 	struct ieee80211_local *local = sdata->local;
1402 	struct ieee80211_qos_hdr *nullfunc;
1403 	struct sk_buff *skb;
1404 	int size = sizeof(*nullfunc);
1405 	__le16 fc;
1406 	bool qos = sta->sta.wme;
1407 	struct ieee80211_tx_info *info;
1408 	struct ieee80211_chanctx_conf *chanctx_conf;
1409 
1410 	if (qos) {
1411 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1412 				 IEEE80211_STYPE_QOS_NULLFUNC |
1413 				 IEEE80211_FCTL_FROMDS);
1414 	} else {
1415 		size -= 2;
1416 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1417 				 IEEE80211_STYPE_NULLFUNC |
1418 				 IEEE80211_FCTL_FROMDS);
1419 	}
1420 
1421 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1422 	if (!skb)
1423 		return;
1424 
1425 	skb_reserve(skb, local->hw.extra_tx_headroom);
1426 
1427 	nullfunc = skb_put(skb, size);
1428 	nullfunc->frame_control = fc;
1429 	nullfunc->duration_id = 0;
1430 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1431 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1432 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1433 	nullfunc->seq_ctrl = 0;
1434 
1435 	skb->priority = tid;
1436 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1437 	if (qos) {
1438 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1439 
1440 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1441 			nullfunc->qos_ctrl |=
1442 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1443 			if (more_data)
1444 				nullfunc->frame_control |=
1445 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1446 		}
1447 	}
1448 
1449 	info = IEEE80211_SKB_CB(skb);
1450 
1451 	/*
1452 	 * Tell TX path to send this frame even though the
1453 	 * STA may still remain is PS mode after this frame
1454 	 * exchange. Also set EOSP to indicate this packet
1455 	 * ends the poll/service period.
1456 	 */
1457 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1458 		       IEEE80211_TX_STATUS_EOSP |
1459 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1460 
1461 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1462 
1463 	if (call_driver)
1464 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1465 					  reason, false);
1466 
1467 	skb->dev = sdata->dev;
1468 
1469 	rcu_read_lock();
1470 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1471 	if (WARN_ON(!chanctx_conf)) {
1472 		rcu_read_unlock();
1473 		kfree_skb(skb);
1474 		return;
1475 	}
1476 
1477 	info->band = chanctx_conf->def.chan->band;
1478 	ieee80211_xmit(sdata, sta, skb);
1479 	rcu_read_unlock();
1480 }
1481 
1482 static int find_highest_prio_tid(unsigned long tids)
1483 {
1484 	/* lower 3 TIDs aren't ordered perfectly */
1485 	if (tids & 0xF8)
1486 		return fls(tids) - 1;
1487 	/* TID 0 is BE just like TID 3 */
1488 	if (tids & BIT(0))
1489 		return 0;
1490 	return fls(tids) - 1;
1491 }
1492 
1493 /* Indicates if the MORE_DATA bit should be set in the last
1494  * frame obtained by ieee80211_sta_ps_get_frames.
1495  * Note that driver_release_tids is relevant only if
1496  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1497  */
1498 static bool
1499 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1500 			   enum ieee80211_frame_release_type reason,
1501 			   unsigned long driver_release_tids)
1502 {
1503 	int ac;
1504 
1505 	/* If the driver has data on more than one TID then
1506 	 * certainly there's more data if we release just a
1507 	 * single frame now (from a single TID). This will
1508 	 * only happen for PS-Poll.
1509 	 */
1510 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1511 	    hweight16(driver_release_tids) > 1)
1512 		return true;
1513 
1514 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1515 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1516 			continue;
1517 
1518 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1519 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1520 			return true;
1521 	}
1522 
1523 	return false;
1524 }
1525 
1526 static void
1527 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1528 			    enum ieee80211_frame_release_type reason,
1529 			    struct sk_buff_head *frames,
1530 			    unsigned long *driver_release_tids)
1531 {
1532 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1533 	struct ieee80211_local *local = sdata->local;
1534 	int ac;
1535 
1536 	/* Get response frame(s) and more data bit for the last one. */
1537 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1538 		unsigned long tids;
1539 
1540 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1541 			continue;
1542 
1543 		tids = ieee80211_tids_for_ac(ac);
1544 
1545 		/* if we already have frames from software, then we can't also
1546 		 * release from hardware queues
1547 		 */
1548 		if (skb_queue_empty(frames)) {
1549 			*driver_release_tids |=
1550 				sta->driver_buffered_tids & tids;
1551 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1552 		}
1553 
1554 		if (!*driver_release_tids) {
1555 			struct sk_buff *skb;
1556 
1557 			while (n_frames > 0) {
1558 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1559 				if (!skb) {
1560 					skb = skb_dequeue(
1561 						&sta->ps_tx_buf[ac]);
1562 					if (skb)
1563 						local->total_ps_buffered--;
1564 				}
1565 				if (!skb)
1566 					break;
1567 				n_frames--;
1568 				__skb_queue_tail(frames, skb);
1569 			}
1570 		}
1571 
1572 		/* If we have more frames buffered on this AC, then abort the
1573 		 * loop since we can't send more data from other ACs before
1574 		 * the buffered frames from this.
1575 		 */
1576 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1577 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1578 			break;
1579 	}
1580 }
1581 
1582 static void
1583 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1584 				  int n_frames, u8 ignored_acs,
1585 				  enum ieee80211_frame_release_type reason)
1586 {
1587 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1588 	struct ieee80211_local *local = sdata->local;
1589 	unsigned long driver_release_tids = 0;
1590 	struct sk_buff_head frames;
1591 	bool more_data;
1592 
1593 	/* Service or PS-Poll period starts */
1594 	set_sta_flag(sta, WLAN_STA_SP);
1595 
1596 	__skb_queue_head_init(&frames);
1597 
1598 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1599 				    &frames, &driver_release_tids);
1600 
1601 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1602 
1603 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1604 		driver_release_tids =
1605 			BIT(find_highest_prio_tid(driver_release_tids));
1606 
1607 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1608 		int tid, ac;
1609 
1610 		/*
1611 		 * For PS-Poll, this can only happen due to a race condition
1612 		 * when we set the TIM bit and the station notices it, but
1613 		 * before it can poll for the frame we expire it.
1614 		 *
1615 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1616 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1617 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1618 		 *	more than the value specified in the Max SP Length field
1619 		 *	in the QoS Capability element from delivery-enabled ACs,
1620 		 *	that are destined for the non-AP STA.
1621 		 *
1622 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1623 		 */
1624 
1625 		/* This will evaluate to 1, 3, 5 or 7. */
1626 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1627 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1628 				break;
1629 		tid = 7 - 2 * ac;
1630 
1631 		ieee80211_send_null_response(sta, tid, reason, true, false);
1632 	} else if (!driver_release_tids) {
1633 		struct sk_buff_head pending;
1634 		struct sk_buff *skb;
1635 		int num = 0;
1636 		u16 tids = 0;
1637 		bool need_null = false;
1638 
1639 		skb_queue_head_init(&pending);
1640 
1641 		while ((skb = __skb_dequeue(&frames))) {
1642 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1643 			struct ieee80211_hdr *hdr = (void *) skb->data;
1644 			u8 *qoshdr = NULL;
1645 
1646 			num++;
1647 
1648 			/*
1649 			 * Tell TX path to send this frame even though the
1650 			 * STA may still remain is PS mode after this frame
1651 			 * exchange.
1652 			 */
1653 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1654 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1655 
1656 			/*
1657 			 * Use MoreData flag to indicate whether there are
1658 			 * more buffered frames for this STA
1659 			 */
1660 			if (more_data || !skb_queue_empty(&frames))
1661 				hdr->frame_control |=
1662 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1663 			else
1664 				hdr->frame_control &=
1665 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1666 
1667 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1668 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1669 				qoshdr = ieee80211_get_qos_ctl(hdr);
1670 
1671 			tids |= BIT(skb->priority);
1672 
1673 			__skb_queue_tail(&pending, skb);
1674 
1675 			/* end service period after last frame or add one */
1676 			if (!skb_queue_empty(&frames))
1677 				continue;
1678 
1679 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1680 				/* for PS-Poll, there's only one frame */
1681 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1682 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1683 				break;
1684 			}
1685 
1686 			/* For uAPSD, things are a bit more complicated. If the
1687 			 * last frame has a QoS header (i.e. is a QoS-data or
1688 			 * QoS-nulldata frame) then just set the EOSP bit there
1689 			 * and be done.
1690 			 * If the frame doesn't have a QoS header (which means
1691 			 * it should be a bufferable MMPDU) then we can't set
1692 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1693 			 * frame to the list to send it after the MMPDU.
1694 			 *
1695 			 * Note that this code is only in the mac80211-release
1696 			 * code path, we assume that the driver will not buffer
1697 			 * anything but QoS-data frames, or if it does, will
1698 			 * create the QoS-nulldata frame by itself if needed.
1699 			 *
1700 			 * Cf. 802.11-2012 10.2.1.10 (c).
1701 			 */
1702 			if (qoshdr) {
1703 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1704 
1705 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1706 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1707 			} else {
1708 				/* The standard isn't completely clear on this
1709 				 * as it says the more-data bit should be set
1710 				 * if there are more BUs. The QoS-Null frame
1711 				 * we're about to send isn't buffered yet, we
1712 				 * only create it below, but let's pretend it
1713 				 * was buffered just in case some clients only
1714 				 * expect more-data=0 when eosp=1.
1715 				 */
1716 				hdr->frame_control |=
1717 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1718 				need_null = true;
1719 				num++;
1720 			}
1721 			break;
1722 		}
1723 
1724 		drv_allow_buffered_frames(local, sta, tids, num,
1725 					  reason, more_data);
1726 
1727 		ieee80211_add_pending_skbs(local, &pending);
1728 
1729 		if (need_null)
1730 			ieee80211_send_null_response(
1731 				sta, find_highest_prio_tid(tids),
1732 				reason, false, false);
1733 
1734 		sta_info_recalc_tim(sta);
1735 	} else {
1736 		int tid;
1737 
1738 		/*
1739 		 * We need to release a frame that is buffered somewhere in the
1740 		 * driver ... it'll have to handle that.
1741 		 * Note that the driver also has to check the number of frames
1742 		 * on the TIDs we're releasing from - if there are more than
1743 		 * n_frames it has to set the more-data bit (if we didn't ask
1744 		 * it to set it anyway due to other buffered frames); if there
1745 		 * are fewer than n_frames it has to make sure to adjust that
1746 		 * to allow the service period to end properly.
1747 		 */
1748 		drv_release_buffered_frames(local, sta, driver_release_tids,
1749 					    n_frames, reason, more_data);
1750 
1751 		/*
1752 		 * Note that we don't recalculate the TIM bit here as it would
1753 		 * most likely have no effect at all unless the driver told us
1754 		 * that the TID(s) became empty before returning here from the
1755 		 * release function.
1756 		 * Either way, however, when the driver tells us that the TID(s)
1757 		 * became empty or we find that a txq became empty, we'll do the
1758 		 * TIM recalculation.
1759 		 */
1760 
1761 		if (!sta->sta.txq[0])
1762 			return;
1763 
1764 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1765 			if (!sta->sta.txq[tid] ||
1766 			    !(driver_release_tids & BIT(tid)) ||
1767 			    txq_has_queue(sta->sta.txq[tid]))
1768 				continue;
1769 
1770 			sta_info_recalc_tim(sta);
1771 			break;
1772 		}
1773 	}
1774 }
1775 
1776 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1777 {
1778 	u8 ignore_for_response = sta->sta.uapsd_queues;
1779 
1780 	/*
1781 	 * If all ACs are delivery-enabled then we should reply
1782 	 * from any of them, if only some are enabled we reply
1783 	 * only from the non-enabled ones.
1784 	 */
1785 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1786 		ignore_for_response = 0;
1787 
1788 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1789 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1790 }
1791 
1792 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1793 {
1794 	int n_frames = sta->sta.max_sp;
1795 	u8 delivery_enabled = sta->sta.uapsd_queues;
1796 
1797 	/*
1798 	 * If we ever grow support for TSPEC this might happen if
1799 	 * the TSPEC update from hostapd comes in between a trigger
1800 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1801 	 * actually getting called.
1802 	 */
1803 	if (!delivery_enabled)
1804 		return;
1805 
1806 	switch (sta->sta.max_sp) {
1807 	case 1:
1808 		n_frames = 2;
1809 		break;
1810 	case 2:
1811 		n_frames = 4;
1812 		break;
1813 	case 3:
1814 		n_frames = 6;
1815 		break;
1816 	case 0:
1817 		/* XXX: what is a good value? */
1818 		n_frames = 128;
1819 		break;
1820 	}
1821 
1822 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1823 					  IEEE80211_FRAME_RELEASE_UAPSD);
1824 }
1825 
1826 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1827 			       struct ieee80211_sta *pubsta, bool block)
1828 {
1829 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1830 
1831 	trace_api_sta_block_awake(sta->local, pubsta, block);
1832 
1833 	if (block) {
1834 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1835 		ieee80211_clear_fast_xmit(sta);
1836 		return;
1837 	}
1838 
1839 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1840 		return;
1841 
1842 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1843 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1844 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1845 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1846 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1847 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1848 		/* must be asleep in this case */
1849 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1850 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1851 	} else {
1852 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1853 		ieee80211_check_fast_xmit(sta);
1854 	}
1855 }
1856 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1857 
1858 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1859 {
1860 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1861 	struct ieee80211_local *local = sta->local;
1862 
1863 	trace_api_eosp(local, pubsta);
1864 
1865 	clear_sta_flag(sta, WLAN_STA_SP);
1866 }
1867 EXPORT_SYMBOL(ieee80211_sta_eosp);
1868 
1869 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1870 {
1871 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1872 	enum ieee80211_frame_release_type reason;
1873 	bool more_data;
1874 
1875 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1876 
1877 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1878 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1879 					       reason, 0);
1880 
1881 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1882 }
1883 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1884 
1885 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1886 				u8 tid, bool buffered)
1887 {
1888 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1889 
1890 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1891 		return;
1892 
1893 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1894 
1895 	if (buffered)
1896 		set_bit(tid, &sta->driver_buffered_tids);
1897 	else
1898 		clear_bit(tid, &sta->driver_buffered_tids);
1899 
1900 	sta_info_recalc_tim(sta);
1901 }
1902 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1903 
1904 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1905 				u32 tx_airtime, u32 rx_airtime)
1906 {
1907 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1908 	struct ieee80211_local *local = sdata->local;
1909 	u64 weight_sum, weight_sum_reciprocal;
1910 	struct airtime_sched_info *air_sched;
1911 	struct airtime_info *air_info;
1912 	u32 airtime = 0;
1913 
1914 	air_sched = &local->airtime[txq->ac];
1915 	air_info = to_airtime_info(txq);
1916 
1917 	if (local->airtime_flags & AIRTIME_USE_TX)
1918 		airtime += tx_airtime;
1919 	if (local->airtime_flags & AIRTIME_USE_RX)
1920 		airtime += rx_airtime;
1921 
1922 	/* Weights scale so the unit weight is 256 */
1923 	airtime <<= 8;
1924 
1925 	spin_lock_bh(&air_sched->lock);
1926 
1927 	air_info->tx_airtime += tx_airtime;
1928 	air_info->rx_airtime += rx_airtime;
1929 
1930 	if (air_sched->weight_sum) {
1931 		weight_sum = air_sched->weight_sum;
1932 		weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1933 	} else {
1934 		weight_sum = air_info->weight;
1935 		weight_sum_reciprocal = air_info->weight_reciprocal;
1936 	}
1937 
1938 	/* Round the calculation of global vt */
1939 	air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1940 				weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1941 	air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1942 			       air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1943 	ieee80211_resort_txq(&local->hw, txq);
1944 
1945 	spin_unlock_bh(&air_sched->lock);
1946 }
1947 
1948 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1949 				    u32 tx_airtime, u32 rx_airtime)
1950 {
1951 	struct ieee80211_txq *txq = pubsta->txq[tid];
1952 
1953 	if (!txq)
1954 		return;
1955 
1956 	ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1957 }
1958 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1959 
1960 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1961 					  struct sta_info *sta, u8 ac,
1962 					  u16 tx_airtime, bool tx_completed)
1963 {
1964 	int tx_pending;
1965 
1966 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1967 		return;
1968 
1969 	if (!tx_completed) {
1970 		if (sta)
1971 			atomic_add(tx_airtime,
1972 				   &sta->airtime[ac].aql_tx_pending);
1973 
1974 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1975 		return;
1976 	}
1977 
1978 	if (sta) {
1979 		tx_pending = atomic_sub_return(tx_airtime,
1980 					       &sta->airtime[ac].aql_tx_pending);
1981 		if (tx_pending < 0)
1982 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1983 				       tx_pending, 0);
1984 	}
1985 
1986 	tx_pending = atomic_sub_return(tx_airtime,
1987 				       &local->aql_total_pending_airtime);
1988 	if (WARN_ONCE(tx_pending < 0,
1989 		      "Device %s AC %d pending airtime underflow: %u, %u",
1990 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1991 		      tx_airtime))
1992 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1993 			       tx_pending, 0);
1994 }
1995 
1996 int sta_info_move_state(struct sta_info *sta,
1997 			enum ieee80211_sta_state new_state)
1998 {
1999 	might_sleep();
2000 
2001 	if (sta->sta_state == new_state)
2002 		return 0;
2003 
2004 	/* check allowed transitions first */
2005 
2006 	switch (new_state) {
2007 	case IEEE80211_STA_NONE:
2008 		if (sta->sta_state != IEEE80211_STA_AUTH)
2009 			return -EINVAL;
2010 		break;
2011 	case IEEE80211_STA_AUTH:
2012 		if (sta->sta_state != IEEE80211_STA_NONE &&
2013 		    sta->sta_state != IEEE80211_STA_ASSOC)
2014 			return -EINVAL;
2015 		break;
2016 	case IEEE80211_STA_ASSOC:
2017 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2018 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2019 			return -EINVAL;
2020 		break;
2021 	case IEEE80211_STA_AUTHORIZED:
2022 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2023 			return -EINVAL;
2024 		break;
2025 	default:
2026 		WARN(1, "invalid state %d", new_state);
2027 		return -EINVAL;
2028 	}
2029 
2030 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2031 		sta->sta.addr, new_state);
2032 
2033 	/*
2034 	 * notify the driver before the actual changes so it can
2035 	 * fail the transition
2036 	 */
2037 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2038 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2039 					sta->sta_state, new_state);
2040 		if (err)
2041 			return err;
2042 	}
2043 
2044 	/* reflect the change in all state variables */
2045 
2046 	switch (new_state) {
2047 	case IEEE80211_STA_NONE:
2048 		if (sta->sta_state == IEEE80211_STA_AUTH)
2049 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2050 		break;
2051 	case IEEE80211_STA_AUTH:
2052 		if (sta->sta_state == IEEE80211_STA_NONE) {
2053 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2054 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2055 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2056 			ieee80211_recalc_min_chandef(sta->sdata);
2057 			if (!sta->sta.support_p2p_ps)
2058 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2059 		}
2060 		break;
2061 	case IEEE80211_STA_ASSOC:
2062 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2063 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2064 			sta->assoc_at = ktime_get_boottime_ns();
2065 			ieee80211_recalc_min_chandef(sta->sdata);
2066 			if (!sta->sta.support_p2p_ps)
2067 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2068 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2069 			ieee80211_vif_dec_num_mcast(sta->sdata);
2070 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2071 			ieee80211_clear_fast_xmit(sta);
2072 			ieee80211_clear_fast_rx(sta);
2073 		}
2074 		break;
2075 	case IEEE80211_STA_AUTHORIZED:
2076 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2077 			ieee80211_vif_inc_num_mcast(sta->sdata);
2078 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2079 			ieee80211_check_fast_xmit(sta);
2080 			ieee80211_check_fast_rx(sta);
2081 		}
2082 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2083 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2084 			cfg80211_send_layer2_update(sta->sdata->dev,
2085 						    sta->sta.addr);
2086 		break;
2087 	default:
2088 		break;
2089 	}
2090 
2091 	sta->sta_state = new_state;
2092 
2093 	return 0;
2094 }
2095 
2096 u8 sta_info_tx_streams(struct sta_info *sta)
2097 {
2098 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.deflink.ht_cap;
2099 	u8 rx_streams;
2100 
2101 	if (!sta->sta.deflink.ht_cap.ht_supported)
2102 		return 1;
2103 
2104 	if (sta->sta.deflink.vht_cap.vht_supported) {
2105 		int i;
2106 		u16 tx_mcs_map =
2107 			le16_to_cpu(sta->sta.deflink.vht_cap.vht_mcs.tx_mcs_map);
2108 
2109 		for (i = 7; i >= 0; i--)
2110 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2111 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2112 				return i + 1;
2113 	}
2114 
2115 	if (ht_cap->mcs.rx_mask[3])
2116 		rx_streams = 4;
2117 	else if (ht_cap->mcs.rx_mask[2])
2118 		rx_streams = 3;
2119 	else if (ht_cap->mcs.rx_mask[1])
2120 		rx_streams = 2;
2121 	else
2122 		rx_streams = 1;
2123 
2124 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2125 		return rx_streams;
2126 
2127 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2128 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2129 }
2130 
2131 static struct ieee80211_sta_rx_stats *
2132 sta_get_last_rx_stats(struct sta_info *sta)
2133 {
2134 	struct ieee80211_sta_rx_stats *stats = &sta->deflink.rx_stats;
2135 	int cpu;
2136 
2137 	if (!sta->deflink.pcpu_rx_stats)
2138 		return stats;
2139 
2140 	for_each_possible_cpu(cpu) {
2141 		struct ieee80211_sta_rx_stats *cpustats;
2142 
2143 		cpustats = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2144 
2145 		if (time_after(cpustats->last_rx, stats->last_rx))
2146 			stats = cpustats;
2147 	}
2148 
2149 	return stats;
2150 }
2151 
2152 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2153 				  struct rate_info *rinfo)
2154 {
2155 	rinfo->bw = STA_STATS_GET(BW, rate);
2156 
2157 	switch (STA_STATS_GET(TYPE, rate)) {
2158 	case STA_STATS_RATE_TYPE_VHT:
2159 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2160 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2161 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2162 		if (STA_STATS_GET(SGI, rate))
2163 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2164 		break;
2165 	case STA_STATS_RATE_TYPE_HT:
2166 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2167 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2168 		if (STA_STATS_GET(SGI, rate))
2169 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2170 		break;
2171 	case STA_STATS_RATE_TYPE_LEGACY: {
2172 		struct ieee80211_supported_band *sband;
2173 		u16 brate;
2174 		unsigned int shift;
2175 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2176 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2177 
2178 		sband = local->hw.wiphy->bands[band];
2179 
2180 		if (WARN_ON_ONCE(!sband->bitrates))
2181 			break;
2182 
2183 		brate = sband->bitrates[rate_idx].bitrate;
2184 		if (rinfo->bw == RATE_INFO_BW_5)
2185 			shift = 2;
2186 		else if (rinfo->bw == RATE_INFO_BW_10)
2187 			shift = 1;
2188 		else
2189 			shift = 0;
2190 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2191 		break;
2192 		}
2193 	case STA_STATS_RATE_TYPE_HE:
2194 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2195 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2196 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2197 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2198 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2199 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2200 		break;
2201 	}
2202 }
2203 
2204 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2205 {
2206 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2207 
2208 	if (rate == STA_STATS_RATE_INVALID)
2209 		return -EINVAL;
2210 
2211 	sta_stats_decode_rate(sta->local, rate, rinfo);
2212 	return 0;
2213 }
2214 
2215 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2216 					int tid)
2217 {
2218 	unsigned int start;
2219 	u64 value;
2220 
2221 	do {
2222 		start = u64_stats_fetch_begin(&rxstats->syncp);
2223 		value = rxstats->msdu[tid];
2224 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2225 
2226 	return value;
2227 }
2228 
2229 static void sta_set_tidstats(struct sta_info *sta,
2230 			     struct cfg80211_tid_stats *tidstats,
2231 			     int tid)
2232 {
2233 	struct ieee80211_local *local = sta->local;
2234 	int cpu;
2235 
2236 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2237 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->deflink.rx_stats,
2238 							   tid);
2239 
2240 		if (sta->deflink.pcpu_rx_stats) {
2241 			for_each_possible_cpu(cpu) {
2242 				struct ieee80211_sta_rx_stats *cpurxs;
2243 
2244 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2245 						     cpu);
2246 				tidstats->rx_msdu +=
2247 					sta_get_tidstats_msdu(cpurxs, tid);
2248 			}
2249 		}
2250 
2251 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2252 	}
2253 
2254 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2255 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2256 		tidstats->tx_msdu = sta->deflink.tx_stats.msdu[tid];
2257 	}
2258 
2259 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2260 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2261 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2262 		tidstats->tx_msdu_retries = sta->deflink.status_stats.msdu_retries[tid];
2263 	}
2264 
2265 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2266 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2267 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2268 		tidstats->tx_msdu_failed = sta->deflink.status_stats.msdu_failed[tid];
2269 	}
2270 
2271 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2272 		spin_lock_bh(&local->fq.lock);
2273 		rcu_read_lock();
2274 
2275 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2276 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2277 					 to_txq_info(sta->sta.txq[tid]));
2278 
2279 		rcu_read_unlock();
2280 		spin_unlock_bh(&local->fq.lock);
2281 	}
2282 }
2283 
2284 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2285 {
2286 	unsigned int start;
2287 	u64 value;
2288 
2289 	do {
2290 		start = u64_stats_fetch_begin(&rxstats->syncp);
2291 		value = rxstats->bytes;
2292 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2293 
2294 	return value;
2295 }
2296 
2297 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2298 		   bool tidstats)
2299 {
2300 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2301 	struct ieee80211_local *local = sdata->local;
2302 	u32 thr = 0;
2303 	int i, ac, cpu;
2304 	struct ieee80211_sta_rx_stats *last_rxstats;
2305 
2306 	last_rxstats = sta_get_last_rx_stats(sta);
2307 
2308 	sinfo->generation = sdata->local->sta_generation;
2309 
2310 	/* do before driver, so beacon filtering drivers have a
2311 	 * chance to e.g. just add the number of filtered beacons
2312 	 * (or just modify the value entirely, of course)
2313 	 */
2314 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2315 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2316 
2317 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2318 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2319 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2320 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2321 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2322 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2323 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2324 
2325 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2326 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2327 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2328 	}
2329 
2330 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2331 	sinfo->assoc_at = sta->assoc_at;
2332 	sinfo->inactive_time =
2333 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2334 
2335 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2336 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2337 		sinfo->tx_bytes = 0;
2338 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2339 			sinfo->tx_bytes += sta->deflink.tx_stats.bytes[ac];
2340 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2341 	}
2342 
2343 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2344 		sinfo->tx_packets = 0;
2345 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2346 			sinfo->tx_packets += sta->deflink.tx_stats.packets[ac];
2347 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2348 	}
2349 
2350 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2351 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2352 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->deflink.rx_stats);
2353 
2354 		if (sta->deflink.pcpu_rx_stats) {
2355 			for_each_possible_cpu(cpu) {
2356 				struct ieee80211_sta_rx_stats *cpurxs;
2357 
2358 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2359 						     cpu);
2360 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2361 			}
2362 		}
2363 
2364 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2365 	}
2366 
2367 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2368 		sinfo->rx_packets = sta->deflink.rx_stats.packets;
2369 		if (sta->deflink.pcpu_rx_stats) {
2370 			for_each_possible_cpu(cpu) {
2371 				struct ieee80211_sta_rx_stats *cpurxs;
2372 
2373 				cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats,
2374 						     cpu);
2375 				sinfo->rx_packets += cpurxs->packets;
2376 			}
2377 		}
2378 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2379 	}
2380 
2381 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2382 		sinfo->tx_retries = sta->deflink.status_stats.retry_count;
2383 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2384 	}
2385 
2386 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2387 		sinfo->tx_failed = sta->deflink.status_stats.retry_failed;
2388 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2389 	}
2390 
2391 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2392 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2393 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2394 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2395 	}
2396 
2397 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2398 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2399 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2400 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2401 	}
2402 
2403 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2404 		sinfo->airtime_weight = sta->airtime[0].weight;
2405 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2406 	}
2407 
2408 	sinfo->rx_dropped_misc = sta->deflink.rx_stats.dropped;
2409 	if (sta->deflink.pcpu_rx_stats) {
2410 		for_each_possible_cpu(cpu) {
2411 			struct ieee80211_sta_rx_stats *cpurxs;
2412 
2413 			cpurxs = per_cpu_ptr(sta->deflink.pcpu_rx_stats, cpu);
2414 			sinfo->rx_dropped_misc += cpurxs->dropped;
2415 		}
2416 	}
2417 
2418 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2419 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2420 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2421 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2422 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2423 	}
2424 
2425 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2426 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2427 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2428 			sinfo->signal = (s8)last_rxstats->last_signal;
2429 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2430 		}
2431 
2432 		if (!sta->deflink.pcpu_rx_stats &&
2433 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2434 			sinfo->signal_avg =
2435 				-ewma_signal_read(&sta->deflink.rx_stats_avg.signal);
2436 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2437 		}
2438 	}
2439 
2440 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2441 	 * the sta->rx_stats struct, so the check here is fine with and without
2442 	 * pcpu statistics
2443 	 */
2444 	if (last_rxstats->chains &&
2445 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2446 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2447 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2448 		if (!sta->deflink.pcpu_rx_stats)
2449 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2450 
2451 		sinfo->chains = last_rxstats->chains;
2452 
2453 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2454 			sinfo->chain_signal[i] =
2455 				last_rxstats->chain_signal_last[i];
2456 			sinfo->chain_signal_avg[i] =
2457 				-ewma_signal_read(&sta->deflink.rx_stats_avg.chain_signal[i]);
2458 		}
2459 	}
2460 
2461 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2462 		sta_set_rate_info_tx(sta, &sta->deflink.tx_stats.last_rate,
2463 				     &sinfo->txrate);
2464 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2465 	}
2466 
2467 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2468 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2469 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2470 	}
2471 
2472 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2473 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2474 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2475 	}
2476 
2477 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2478 #ifdef CONFIG_MAC80211_MESH
2479 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2480 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2481 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2482 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2483 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2484 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2485 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2486 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2487 
2488 		sinfo->llid = sta->mesh->llid;
2489 		sinfo->plid = sta->mesh->plid;
2490 		sinfo->plink_state = sta->mesh->plink_state;
2491 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2492 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2493 			sinfo->t_offset = sta->mesh->t_offset;
2494 		}
2495 		sinfo->local_pm = sta->mesh->local_pm;
2496 		sinfo->peer_pm = sta->mesh->peer_pm;
2497 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2498 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2499 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2500 #endif
2501 	}
2502 
2503 	sinfo->bss_param.flags = 0;
2504 	if (sdata->vif.bss_conf.use_cts_prot)
2505 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2506 	if (sdata->vif.bss_conf.use_short_preamble)
2507 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2508 	if (sdata->vif.bss_conf.use_short_slot)
2509 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2510 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2511 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2512 
2513 	sinfo->sta_flags.set = 0;
2514 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2515 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2516 				BIT(NL80211_STA_FLAG_WME) |
2517 				BIT(NL80211_STA_FLAG_MFP) |
2518 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2519 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2520 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2521 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2522 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2523 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2524 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2525 	if (sta->sta.wme)
2526 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2527 	if (test_sta_flag(sta, WLAN_STA_MFP))
2528 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2529 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2530 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2531 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2532 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2533 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2534 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2535 
2536 	thr = sta_get_expected_throughput(sta);
2537 
2538 	if (thr != 0) {
2539 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2540 		sinfo->expected_throughput = thr;
2541 	}
2542 
2543 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2544 	    sta->deflink.status_stats.ack_signal_filled) {
2545 		sinfo->ack_signal = sta->deflink.status_stats.last_ack_signal;
2546 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2547 	}
2548 
2549 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2550 	    sta->deflink.status_stats.ack_signal_filled) {
2551 		sinfo->avg_ack_signal =
2552 			-(s8)ewma_avg_signal_read(
2553 				&sta->deflink.status_stats.avg_ack_signal);
2554 		sinfo->filled |=
2555 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2556 	}
2557 
2558 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2559 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2560 		sinfo->airtime_link_metric =
2561 			airtime_link_metric_get(local, sta);
2562 	}
2563 }
2564 
2565 u32 sta_get_expected_throughput(struct sta_info *sta)
2566 {
2567 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2568 	struct ieee80211_local *local = sdata->local;
2569 	struct rate_control_ref *ref = NULL;
2570 	u32 thr = 0;
2571 
2572 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2573 		ref = local->rate_ctrl;
2574 
2575 	/* check if the driver has a SW RC implementation */
2576 	if (ref && ref->ops->get_expected_throughput)
2577 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2578 	else
2579 		thr = drv_get_expected_throughput(local, sta);
2580 
2581 	return thr;
2582 }
2583 
2584 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2585 {
2586 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2587 
2588 	if (!sta->deflink.status_stats.last_ack ||
2589 	    time_after(stats->last_rx, sta->deflink.status_stats.last_ack))
2590 		return stats->last_rx;
2591 	return sta->deflink.status_stats.last_ack;
2592 }
2593 
2594 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2595 {
2596 	if (!sta->sdata->local->ops->wake_tx_queue)
2597 		return;
2598 
2599 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2600 		sta->cparams.target = MS2TIME(50);
2601 		sta->cparams.interval = MS2TIME(300);
2602 		sta->cparams.ecn = false;
2603 	} else {
2604 		sta->cparams.target = MS2TIME(20);
2605 		sta->cparams.interval = MS2TIME(100);
2606 		sta->cparams.ecn = true;
2607 	}
2608 }
2609 
2610 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2611 					   u32 thr)
2612 {
2613 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2614 
2615 	sta_update_codel_params(sta, thr);
2616 }
2617