1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/etherdevice.h> 14 #include <linux/netdevice.h> 15 #include <linux/types.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/if_arp.h> 19 #include <linux/timer.h> 20 #include <linux/rtnetlink.h> 21 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 /* Caller must hold local->sta_mtx */ 68 static int sta_info_hash_del(struct ieee80211_local *local, 69 struct sta_info *sta) 70 { 71 struct sta_info *s; 72 73 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)], 74 lockdep_is_held(&local->sta_mtx)); 75 if (!s) 76 return -ENOENT; 77 if (s == sta) { 78 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], 79 s->hnext); 80 return 0; 81 } 82 83 while (rcu_access_pointer(s->hnext) && 84 rcu_access_pointer(s->hnext) != sta) 85 s = rcu_dereference_protected(s->hnext, 86 lockdep_is_held(&local->sta_mtx)); 87 if (rcu_access_pointer(s->hnext)) { 88 rcu_assign_pointer(s->hnext, sta->hnext); 89 return 0; 90 } 91 92 return -ENOENT; 93 } 94 95 static void __cleanup_single_sta(struct sta_info *sta) 96 { 97 int ac, i; 98 struct tid_ampdu_tx *tid_tx; 99 struct ieee80211_sub_if_data *sdata = sta->sdata; 100 struct ieee80211_local *local = sdata->local; 101 struct ps_data *ps; 102 103 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 104 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 105 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 106 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 107 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 108 ps = &sdata->bss->ps; 109 else if (ieee80211_vif_is_mesh(&sdata->vif)) 110 ps = &sdata->u.mesh.ps; 111 else 112 return; 113 114 clear_sta_flag(sta, WLAN_STA_PS_STA); 115 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 116 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 117 118 atomic_dec(&ps->num_sta_ps); 119 sta_info_recalc_tim(sta); 120 } 121 122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 126 } 127 128 if (ieee80211_vif_is_mesh(&sdata->vif)) 129 mesh_sta_cleanup(sta); 130 131 cancel_work_sync(&sta->drv_deliver_wk); 132 133 /* 134 * Destroy aggregation state here. It would be nice to wait for the 135 * driver to finish aggregation stop and then clean up, but for now 136 * drivers have to handle aggregation stop being requested, followed 137 * directly by station destruction. 138 */ 139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 140 kfree(sta->ampdu_mlme.tid_start_tx[i]); 141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 142 if (!tid_tx) 143 continue; 144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 145 kfree(tid_tx); 146 } 147 } 148 149 static void cleanup_single_sta(struct sta_info *sta) 150 { 151 struct ieee80211_sub_if_data *sdata = sta->sdata; 152 struct ieee80211_local *local = sdata->local; 153 154 __cleanup_single_sta(sta); 155 sta_info_free(local, sta); 156 } 157 158 /* protected by RCU */ 159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 160 const u8 *addr) 161 { 162 struct ieee80211_local *local = sdata->local; 163 struct sta_info *sta; 164 165 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 166 lockdep_is_held(&local->sta_mtx)); 167 while (sta) { 168 if (sta->sdata == sdata && 169 ether_addr_equal(sta->sta.addr, addr)) 170 break; 171 sta = rcu_dereference_check(sta->hnext, 172 lockdep_is_held(&local->sta_mtx)); 173 } 174 return sta; 175 } 176 177 /* 178 * Get sta info either from the specified interface 179 * or from one of its vlans 180 */ 181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 182 const u8 *addr) 183 { 184 struct ieee80211_local *local = sdata->local; 185 struct sta_info *sta; 186 187 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)], 188 lockdep_is_held(&local->sta_mtx)); 189 while (sta) { 190 if ((sta->sdata == sdata || 191 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) && 192 ether_addr_equal(sta->sta.addr, addr)) 193 break; 194 sta = rcu_dereference_check(sta->hnext, 195 lockdep_is_held(&local->sta_mtx)); 196 } 197 return sta; 198 } 199 200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 201 int idx) 202 { 203 struct ieee80211_local *local = sdata->local; 204 struct sta_info *sta; 205 int i = 0; 206 207 list_for_each_entry_rcu(sta, &local->sta_list, list) { 208 if (sdata != sta->sdata) 209 continue; 210 if (i < idx) { 211 ++i; 212 continue; 213 } 214 return sta; 215 } 216 217 return NULL; 218 } 219 220 /** 221 * sta_info_free - free STA 222 * 223 * @local: pointer to the global information 224 * @sta: STA info to free 225 * 226 * This function must undo everything done by sta_info_alloc() 227 * that may happen before sta_info_insert(). It may only be 228 * called when sta_info_insert() has not been attempted (and 229 * if that fails, the station is freed anyway.) 230 */ 231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 232 { 233 int i; 234 235 if (sta->rate_ctrl) 236 rate_control_free_sta(sta); 237 238 if (sta->tx_lat) { 239 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 240 kfree(sta->tx_lat[i].bins); 241 kfree(sta->tx_lat); 242 } 243 244 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 245 246 kfree(rcu_dereference_raw(sta->sta.rates)); 247 kfree(sta); 248 } 249 250 /* Caller must hold local->sta_mtx */ 251 static void sta_info_hash_add(struct ieee80211_local *local, 252 struct sta_info *sta) 253 { 254 lockdep_assert_held(&local->sta_mtx); 255 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)]; 256 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta); 257 } 258 259 static void sta_deliver_ps_frames(struct work_struct *wk) 260 { 261 struct sta_info *sta; 262 263 sta = container_of(wk, struct sta_info, drv_deliver_wk); 264 265 if (sta->dead) 266 return; 267 268 local_bh_disable(); 269 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 270 ieee80211_sta_ps_deliver_wakeup(sta); 271 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 272 ieee80211_sta_ps_deliver_poll_response(sta); 273 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 274 ieee80211_sta_ps_deliver_uapsd(sta); 275 local_bh_enable(); 276 } 277 278 static int sta_prepare_rate_control(struct ieee80211_local *local, 279 struct sta_info *sta, gfp_t gfp) 280 { 281 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL) 282 return 0; 283 284 sta->rate_ctrl = local->rate_ctrl; 285 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 286 &sta->sta, gfp); 287 if (!sta->rate_ctrl_priv) 288 return -ENOMEM; 289 290 return 0; 291 } 292 293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 294 const u8 *addr, gfp_t gfp) 295 { 296 struct ieee80211_local *local = sdata->local; 297 struct sta_info *sta; 298 struct timespec uptime; 299 struct ieee80211_tx_latency_bin_ranges *tx_latency; 300 int i; 301 302 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp); 303 if (!sta) 304 return NULL; 305 306 rcu_read_lock(); 307 tx_latency = rcu_dereference(local->tx_latency); 308 /* init stations Tx latency statistics && TID bins */ 309 if (tx_latency) { 310 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS * 311 sizeof(struct ieee80211_tx_latency_stat), 312 GFP_ATOMIC); 313 if (!sta->tx_lat) { 314 rcu_read_unlock(); 315 goto free; 316 } 317 318 if (tx_latency->n_ranges) { 319 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 320 /* size of bins is size of the ranges +1 */ 321 sta->tx_lat[i].bin_count = 322 tx_latency->n_ranges + 1; 323 sta->tx_lat[i].bins = 324 kcalloc(sta->tx_lat[i].bin_count, 325 sizeof(u32), GFP_ATOMIC); 326 if (!sta->tx_lat[i].bins) { 327 rcu_read_unlock(); 328 goto free; 329 } 330 } 331 } 332 } 333 rcu_read_unlock(); 334 335 spin_lock_init(&sta->lock); 336 spin_lock_init(&sta->ps_lock); 337 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 338 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 339 mutex_init(&sta->ampdu_mlme.mtx); 340 #ifdef CONFIG_MAC80211_MESH 341 if (ieee80211_vif_is_mesh(&sdata->vif) && 342 !sdata->u.mesh.user_mpm) 343 init_timer(&sta->plink_timer); 344 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 345 #endif 346 347 memcpy(sta->sta.addr, addr, ETH_ALEN); 348 sta->local = local; 349 sta->sdata = sdata; 350 sta->last_rx = jiffies; 351 352 sta->sta_state = IEEE80211_STA_NONE; 353 354 /* Mark TID as unreserved */ 355 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 356 357 ktime_get_ts(&uptime); 358 sta->last_connected = uptime.tv_sec; 359 ewma_init(&sta->avg_signal, 1024, 8); 360 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++) 361 ewma_init(&sta->chain_signal_avg[i], 1024, 8); 362 363 if (sta_prepare_rate_control(local, sta, gfp)) 364 goto free; 365 366 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 367 /* 368 * timer_to_tid must be initialized with identity mapping 369 * to enable session_timer's data differentiation. See 370 * sta_rx_agg_session_timer_expired for usage. 371 */ 372 sta->timer_to_tid[i] = i; 373 } 374 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 375 skb_queue_head_init(&sta->ps_tx_buf[i]); 376 skb_queue_head_init(&sta->tx_filtered[i]); 377 } 378 379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 380 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 381 382 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 383 if (sdata->vif.type == NL80211_IFTYPE_AP || 384 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 385 struct ieee80211_supported_band *sband = 386 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)]; 387 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 388 IEEE80211_HT_CAP_SM_PS_SHIFT; 389 /* 390 * Assume that hostapd advertises our caps in the beacon and 391 * this is the known_smps_mode for a station that just assciated 392 */ 393 switch (smps) { 394 case WLAN_HT_SMPS_CONTROL_DISABLED: 395 sta->known_smps_mode = IEEE80211_SMPS_OFF; 396 break; 397 case WLAN_HT_SMPS_CONTROL_STATIC: 398 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 399 break; 400 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 401 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 402 break; 403 default: 404 WARN_ON(1); 405 } 406 } 407 408 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 409 return sta; 410 411 free: 412 if (sta->tx_lat) { 413 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 414 kfree(sta->tx_lat[i].bins); 415 kfree(sta->tx_lat); 416 } 417 kfree(sta); 418 return NULL; 419 } 420 421 static int sta_info_insert_check(struct sta_info *sta) 422 { 423 struct ieee80211_sub_if_data *sdata = sta->sdata; 424 425 /* 426 * Can't be a WARN_ON because it can be triggered through a race: 427 * something inserts a STA (on one CPU) without holding the RTNL 428 * and another CPU turns off the net device. 429 */ 430 if (unlikely(!ieee80211_sdata_running(sdata))) 431 return -ENETDOWN; 432 433 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 434 is_multicast_ether_addr(sta->sta.addr))) 435 return -EINVAL; 436 437 return 0; 438 } 439 440 static int sta_info_insert_drv_state(struct ieee80211_local *local, 441 struct ieee80211_sub_if_data *sdata, 442 struct sta_info *sta) 443 { 444 enum ieee80211_sta_state state; 445 int err = 0; 446 447 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 448 err = drv_sta_state(local, sdata, sta, state, state + 1); 449 if (err) 450 break; 451 } 452 453 if (!err) { 454 /* 455 * Drivers using legacy sta_add/sta_remove callbacks only 456 * get uploaded set to true after sta_add is called. 457 */ 458 if (!local->ops->sta_add) 459 sta->uploaded = true; 460 return 0; 461 } 462 463 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 464 sdata_info(sdata, 465 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 466 sta->sta.addr, state + 1, err); 467 err = 0; 468 } 469 470 /* unwind on error */ 471 for (; state > IEEE80211_STA_NOTEXIST; state--) 472 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 473 474 return err; 475 } 476 477 /* 478 * should be called with sta_mtx locked 479 * this function replaces the mutex lock 480 * with a RCU lock 481 */ 482 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 483 { 484 struct ieee80211_local *local = sta->local; 485 struct ieee80211_sub_if_data *sdata = sta->sdata; 486 struct station_info sinfo; 487 int err = 0; 488 489 lockdep_assert_held(&local->sta_mtx); 490 491 /* check if STA exists already */ 492 if (sta_info_get_bss(sdata, sta->sta.addr)) { 493 err = -EEXIST; 494 goto out_err; 495 } 496 497 local->num_sta++; 498 local->sta_generation++; 499 smp_mb(); 500 501 /* simplify things and don't accept BA sessions yet */ 502 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 503 504 /* make the station visible */ 505 sta_info_hash_add(local, sta); 506 507 list_add_tail_rcu(&sta->list, &local->sta_list); 508 509 /* notify driver */ 510 err = sta_info_insert_drv_state(local, sdata, sta); 511 if (err) 512 goto out_remove; 513 514 set_sta_flag(sta, WLAN_STA_INSERTED); 515 /* accept BA sessions now */ 516 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 517 518 ieee80211_recalc_min_chandef(sdata); 519 ieee80211_sta_debugfs_add(sta); 520 rate_control_add_sta_debugfs(sta); 521 522 memset(&sinfo, 0, sizeof(sinfo)); 523 sinfo.filled = 0; 524 sinfo.generation = local->sta_generation; 525 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL); 526 527 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 528 529 /* move reference to rcu-protected */ 530 rcu_read_lock(); 531 mutex_unlock(&local->sta_mtx); 532 533 if (ieee80211_vif_is_mesh(&sdata->vif)) 534 mesh_accept_plinks_update(sdata); 535 536 return 0; 537 out_remove: 538 sta_info_hash_del(local, sta); 539 list_del_rcu(&sta->list); 540 local->num_sta--; 541 synchronize_net(); 542 __cleanup_single_sta(sta); 543 out_err: 544 mutex_unlock(&local->sta_mtx); 545 rcu_read_lock(); 546 return err; 547 } 548 549 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 550 { 551 struct ieee80211_local *local = sta->local; 552 int err; 553 554 might_sleep(); 555 556 err = sta_info_insert_check(sta); 557 if (err) { 558 rcu_read_lock(); 559 goto out_free; 560 } 561 562 mutex_lock(&local->sta_mtx); 563 564 err = sta_info_insert_finish(sta); 565 if (err) 566 goto out_free; 567 568 return 0; 569 out_free: 570 sta_info_free(local, sta); 571 return err; 572 } 573 574 int sta_info_insert(struct sta_info *sta) 575 { 576 int err = sta_info_insert_rcu(sta); 577 578 rcu_read_unlock(); 579 580 return err; 581 } 582 583 static inline void __bss_tim_set(u8 *tim, u16 id) 584 { 585 /* 586 * This format has been mandated by the IEEE specifications, 587 * so this line may not be changed to use the __set_bit() format. 588 */ 589 tim[id / 8] |= (1 << (id % 8)); 590 } 591 592 static inline void __bss_tim_clear(u8 *tim, u16 id) 593 { 594 /* 595 * This format has been mandated by the IEEE specifications, 596 * so this line may not be changed to use the __clear_bit() format. 597 */ 598 tim[id / 8] &= ~(1 << (id % 8)); 599 } 600 601 static inline bool __bss_tim_get(u8 *tim, u16 id) 602 { 603 /* 604 * This format has been mandated by the IEEE specifications, 605 * so this line may not be changed to use the test_bit() format. 606 */ 607 return tim[id / 8] & (1 << (id % 8)); 608 } 609 610 static unsigned long ieee80211_tids_for_ac(int ac) 611 { 612 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 613 switch (ac) { 614 case IEEE80211_AC_VO: 615 return BIT(6) | BIT(7); 616 case IEEE80211_AC_VI: 617 return BIT(4) | BIT(5); 618 case IEEE80211_AC_BE: 619 return BIT(0) | BIT(3); 620 case IEEE80211_AC_BK: 621 return BIT(1) | BIT(2); 622 default: 623 WARN_ON(1); 624 return 0; 625 } 626 } 627 628 void sta_info_recalc_tim(struct sta_info *sta) 629 { 630 struct ieee80211_local *local = sta->local; 631 struct ps_data *ps; 632 bool indicate_tim = false; 633 u8 ignore_for_tim = sta->sta.uapsd_queues; 634 int ac; 635 u16 id; 636 637 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 638 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 639 if (WARN_ON_ONCE(!sta->sdata->bss)) 640 return; 641 642 ps = &sta->sdata->bss->ps; 643 id = sta->sta.aid; 644 #ifdef CONFIG_MAC80211_MESH 645 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 646 ps = &sta->sdata->u.mesh.ps; 647 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */ 648 id = sta->plid % (IEEE80211_MAX_AID + 1); 649 #endif 650 } else { 651 return; 652 } 653 654 /* No need to do anything if the driver does all */ 655 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS) 656 return; 657 658 if (sta->dead) 659 goto done; 660 661 /* 662 * If all ACs are delivery-enabled then we should build 663 * the TIM bit for all ACs anyway; if only some are then 664 * we ignore those and build the TIM bit using only the 665 * non-enabled ones. 666 */ 667 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 668 ignore_for_tim = 0; 669 670 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 671 unsigned long tids; 672 673 if (ignore_for_tim & BIT(ac)) 674 continue; 675 676 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 677 !skb_queue_empty(&sta->ps_tx_buf[ac]); 678 if (indicate_tim) 679 break; 680 681 tids = ieee80211_tids_for_ac(ac); 682 683 indicate_tim |= 684 sta->driver_buffered_tids & tids; 685 } 686 687 done: 688 spin_lock_bh(&local->tim_lock); 689 690 if (indicate_tim == __bss_tim_get(ps->tim, id)) 691 goto out_unlock; 692 693 if (indicate_tim) 694 __bss_tim_set(ps->tim, id); 695 else 696 __bss_tim_clear(ps->tim, id); 697 698 if (local->ops->set_tim) { 699 local->tim_in_locked_section = true; 700 drv_set_tim(local, &sta->sta, indicate_tim); 701 local->tim_in_locked_section = false; 702 } 703 704 out_unlock: 705 spin_unlock_bh(&local->tim_lock); 706 } 707 708 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 709 { 710 struct ieee80211_tx_info *info; 711 int timeout; 712 713 if (!skb) 714 return false; 715 716 info = IEEE80211_SKB_CB(skb); 717 718 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 719 timeout = (sta->listen_interval * 720 sta->sdata->vif.bss_conf.beacon_int * 721 32 / 15625) * HZ; 722 if (timeout < STA_TX_BUFFER_EXPIRE) 723 timeout = STA_TX_BUFFER_EXPIRE; 724 return time_after(jiffies, info->control.jiffies + timeout); 725 } 726 727 728 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 729 struct sta_info *sta, int ac) 730 { 731 unsigned long flags; 732 struct sk_buff *skb; 733 734 /* 735 * First check for frames that should expire on the filtered 736 * queue. Frames here were rejected by the driver and are on 737 * a separate queue to avoid reordering with normal PS-buffered 738 * frames. They also aren't accounted for right now in the 739 * total_ps_buffered counter. 740 */ 741 for (;;) { 742 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 743 skb = skb_peek(&sta->tx_filtered[ac]); 744 if (sta_info_buffer_expired(sta, skb)) 745 skb = __skb_dequeue(&sta->tx_filtered[ac]); 746 else 747 skb = NULL; 748 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 749 750 /* 751 * Frames are queued in order, so if this one 752 * hasn't expired yet we can stop testing. If 753 * we actually reached the end of the queue we 754 * also need to stop, of course. 755 */ 756 if (!skb) 757 break; 758 ieee80211_free_txskb(&local->hw, skb); 759 } 760 761 /* 762 * Now also check the normal PS-buffered queue, this will 763 * only find something if the filtered queue was emptied 764 * since the filtered frames are all before the normal PS 765 * buffered frames. 766 */ 767 for (;;) { 768 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 769 skb = skb_peek(&sta->ps_tx_buf[ac]); 770 if (sta_info_buffer_expired(sta, skb)) 771 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 772 else 773 skb = NULL; 774 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 775 776 /* 777 * frames are queued in order, so if this one 778 * hasn't expired yet (or we reached the end of 779 * the queue) we can stop testing 780 */ 781 if (!skb) 782 break; 783 784 local->total_ps_buffered--; 785 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 786 sta->sta.addr); 787 ieee80211_free_txskb(&local->hw, skb); 788 } 789 790 /* 791 * Finally, recalculate the TIM bit for this station -- it might 792 * now be clear because the station was too slow to retrieve its 793 * frames. 794 */ 795 sta_info_recalc_tim(sta); 796 797 /* 798 * Return whether there are any frames still buffered, this is 799 * used to check whether the cleanup timer still needs to run, 800 * if there are no frames we don't need to rearm the timer. 801 */ 802 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 803 skb_queue_empty(&sta->tx_filtered[ac])); 804 } 805 806 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 807 struct sta_info *sta) 808 { 809 bool have_buffered = false; 810 int ac; 811 812 /* This is only necessary for stations on BSS/MBSS interfaces */ 813 if (!sta->sdata->bss && 814 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 815 return false; 816 817 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 818 have_buffered |= 819 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 820 821 return have_buffered; 822 } 823 824 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 825 { 826 struct ieee80211_local *local; 827 struct ieee80211_sub_if_data *sdata; 828 int ret; 829 830 might_sleep(); 831 832 if (!sta) 833 return -ENOENT; 834 835 local = sta->local; 836 sdata = sta->sdata; 837 838 lockdep_assert_held(&local->sta_mtx); 839 840 /* 841 * Before removing the station from the driver and 842 * rate control, it might still start new aggregation 843 * sessions -- block that to make sure the tear-down 844 * will be sufficient. 845 */ 846 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 847 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 848 849 ret = sta_info_hash_del(local, sta); 850 if (WARN_ON(ret)) 851 return ret; 852 853 /* 854 * for TDLS peers, make sure to return to the base channel before 855 * removal. 856 */ 857 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 858 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 859 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 860 } 861 862 list_del_rcu(&sta->list); 863 864 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 865 866 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 867 rcu_access_pointer(sdata->u.vlan.sta) == sta) 868 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 869 870 return 0; 871 } 872 873 static void __sta_info_destroy_part2(struct sta_info *sta) 874 { 875 struct ieee80211_local *local = sta->local; 876 struct ieee80211_sub_if_data *sdata = sta->sdata; 877 int ret; 878 879 /* 880 * NOTE: This assumes at least synchronize_net() was done 881 * after _part1 and before _part2! 882 */ 883 884 might_sleep(); 885 lockdep_assert_held(&local->sta_mtx); 886 887 /* now keys can no longer be reached */ 888 ieee80211_free_sta_keys(local, sta); 889 890 sta->dead = true; 891 892 local->num_sta--; 893 local->sta_generation++; 894 895 while (sta->sta_state > IEEE80211_STA_NONE) { 896 ret = sta_info_move_state(sta, sta->sta_state - 1); 897 if (ret) { 898 WARN_ON_ONCE(1); 899 break; 900 } 901 } 902 903 if (sta->uploaded) { 904 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 905 IEEE80211_STA_NOTEXIST); 906 WARN_ON_ONCE(ret != 0); 907 } 908 909 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 910 911 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL); 912 913 rate_control_remove_sta_debugfs(sta); 914 ieee80211_sta_debugfs_remove(sta); 915 ieee80211_recalc_min_chandef(sdata); 916 917 cleanup_single_sta(sta); 918 } 919 920 int __must_check __sta_info_destroy(struct sta_info *sta) 921 { 922 int err = __sta_info_destroy_part1(sta); 923 924 if (err) 925 return err; 926 927 synchronize_net(); 928 929 __sta_info_destroy_part2(sta); 930 931 return 0; 932 } 933 934 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 935 { 936 struct sta_info *sta; 937 int ret; 938 939 mutex_lock(&sdata->local->sta_mtx); 940 sta = sta_info_get(sdata, addr); 941 ret = __sta_info_destroy(sta); 942 mutex_unlock(&sdata->local->sta_mtx); 943 944 return ret; 945 } 946 947 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 948 const u8 *addr) 949 { 950 struct sta_info *sta; 951 int ret; 952 953 mutex_lock(&sdata->local->sta_mtx); 954 sta = sta_info_get_bss(sdata, addr); 955 ret = __sta_info_destroy(sta); 956 mutex_unlock(&sdata->local->sta_mtx); 957 958 return ret; 959 } 960 961 static void sta_info_cleanup(unsigned long data) 962 { 963 struct ieee80211_local *local = (struct ieee80211_local *) data; 964 struct sta_info *sta; 965 bool timer_needed = false; 966 967 rcu_read_lock(); 968 list_for_each_entry_rcu(sta, &local->sta_list, list) 969 if (sta_info_cleanup_expire_buffered(local, sta)) 970 timer_needed = true; 971 rcu_read_unlock(); 972 973 if (local->quiescing) 974 return; 975 976 if (!timer_needed) 977 return; 978 979 mod_timer(&local->sta_cleanup, 980 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 981 } 982 983 void sta_info_init(struct ieee80211_local *local) 984 { 985 spin_lock_init(&local->tim_lock); 986 mutex_init(&local->sta_mtx); 987 INIT_LIST_HEAD(&local->sta_list); 988 989 setup_timer(&local->sta_cleanup, sta_info_cleanup, 990 (unsigned long)local); 991 } 992 993 void sta_info_stop(struct ieee80211_local *local) 994 { 995 del_timer_sync(&local->sta_cleanup); 996 } 997 998 999 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1000 { 1001 struct ieee80211_local *local = sdata->local; 1002 struct sta_info *sta, *tmp; 1003 LIST_HEAD(free_list); 1004 int ret = 0; 1005 1006 might_sleep(); 1007 1008 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1009 WARN_ON(vlans && !sdata->bss); 1010 1011 mutex_lock(&local->sta_mtx); 1012 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1013 if (sdata == sta->sdata || 1014 (vlans && sdata->bss == sta->sdata->bss)) { 1015 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1016 list_add(&sta->free_list, &free_list); 1017 ret++; 1018 } 1019 } 1020 1021 if (!list_empty(&free_list)) { 1022 synchronize_net(); 1023 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1024 __sta_info_destroy_part2(sta); 1025 } 1026 mutex_unlock(&local->sta_mtx); 1027 1028 return ret; 1029 } 1030 1031 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1032 unsigned long exp_time) 1033 { 1034 struct ieee80211_local *local = sdata->local; 1035 struct sta_info *sta, *tmp; 1036 1037 mutex_lock(&local->sta_mtx); 1038 1039 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1040 if (sdata != sta->sdata) 1041 continue; 1042 1043 if (time_after(jiffies, sta->last_rx + exp_time)) { 1044 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1045 sta->sta.addr); 1046 1047 if (ieee80211_vif_is_mesh(&sdata->vif) && 1048 test_sta_flag(sta, WLAN_STA_PS_STA)) 1049 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1050 1051 WARN_ON(__sta_info_destroy(sta)); 1052 } 1053 } 1054 1055 mutex_unlock(&local->sta_mtx); 1056 } 1057 1058 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1059 const u8 *addr, 1060 const u8 *localaddr) 1061 { 1062 struct sta_info *sta, *nxt; 1063 1064 /* 1065 * Just return a random station if localaddr is NULL 1066 * ... first in list. 1067 */ 1068 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) { 1069 if (localaddr && 1070 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1071 continue; 1072 if (!sta->uploaded) 1073 return NULL; 1074 return &sta->sta; 1075 } 1076 1077 return NULL; 1078 } 1079 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1080 1081 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1082 const u8 *addr) 1083 { 1084 struct sta_info *sta; 1085 1086 if (!vif) 1087 return NULL; 1088 1089 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1090 if (!sta) 1091 return NULL; 1092 1093 if (!sta->uploaded) 1094 return NULL; 1095 1096 return &sta->sta; 1097 } 1098 EXPORT_SYMBOL(ieee80211_find_sta); 1099 1100 /* powersave support code */ 1101 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1102 { 1103 struct ieee80211_sub_if_data *sdata = sta->sdata; 1104 struct ieee80211_local *local = sdata->local; 1105 struct sk_buff_head pending; 1106 int filtered = 0, buffered = 0, ac; 1107 unsigned long flags; 1108 struct ps_data *ps; 1109 1110 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1111 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1112 u.ap); 1113 1114 if (sdata->vif.type == NL80211_IFTYPE_AP) 1115 ps = &sdata->bss->ps; 1116 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1117 ps = &sdata->u.mesh.ps; 1118 else 1119 return; 1120 1121 clear_sta_flag(sta, WLAN_STA_SP); 1122 1123 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1124 sta->driver_buffered_tids = 0; 1125 1126 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1127 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1128 1129 skb_queue_head_init(&pending); 1130 1131 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1132 spin_lock(&sta->ps_lock); 1133 /* Send all buffered frames to the station */ 1134 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1135 int count = skb_queue_len(&pending), tmp; 1136 1137 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1138 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1139 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1140 tmp = skb_queue_len(&pending); 1141 filtered += tmp - count; 1142 count = tmp; 1143 1144 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1145 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1146 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1147 tmp = skb_queue_len(&pending); 1148 buffered += tmp - count; 1149 } 1150 1151 ieee80211_add_pending_skbs(local, &pending); 1152 1153 /* now we're no longer in the deliver code */ 1154 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1155 1156 /* The station might have polled and then woken up before we responded, 1157 * so clear these flags now to avoid them sticking around. 1158 */ 1159 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1160 clear_sta_flag(sta, WLAN_STA_UAPSD); 1161 spin_unlock(&sta->ps_lock); 1162 1163 atomic_dec(&ps->num_sta_ps); 1164 1165 /* This station just woke up and isn't aware of our SMPS state */ 1166 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1167 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1168 sdata->smps_mode) && 1169 sta->known_smps_mode != sdata->bss->req_smps && 1170 sta_info_tx_streams(sta) != 1) { 1171 ht_dbg(sdata, 1172 "%pM just woke up and MIMO capable - update SMPS\n", 1173 sta->sta.addr); 1174 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1175 sta->sta.addr, 1176 sdata->vif.bss_conf.bssid); 1177 } 1178 1179 local->total_ps_buffered -= buffered; 1180 1181 sta_info_recalc_tim(sta); 1182 1183 ps_dbg(sdata, 1184 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1185 sta->sta.addr, sta->sta.aid, filtered, buffered); 1186 } 1187 1188 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata, 1189 struct sta_info *sta, int tid, 1190 enum ieee80211_frame_release_type reason, 1191 bool call_driver) 1192 { 1193 struct ieee80211_local *local = sdata->local; 1194 struct ieee80211_qos_hdr *nullfunc; 1195 struct sk_buff *skb; 1196 int size = sizeof(*nullfunc); 1197 __le16 fc; 1198 bool qos = sta->sta.wme; 1199 struct ieee80211_tx_info *info; 1200 struct ieee80211_chanctx_conf *chanctx_conf; 1201 1202 if (qos) { 1203 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1204 IEEE80211_STYPE_QOS_NULLFUNC | 1205 IEEE80211_FCTL_FROMDS); 1206 } else { 1207 size -= 2; 1208 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1209 IEEE80211_STYPE_NULLFUNC | 1210 IEEE80211_FCTL_FROMDS); 1211 } 1212 1213 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1214 if (!skb) 1215 return; 1216 1217 skb_reserve(skb, local->hw.extra_tx_headroom); 1218 1219 nullfunc = (void *) skb_put(skb, size); 1220 nullfunc->frame_control = fc; 1221 nullfunc->duration_id = 0; 1222 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1223 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1224 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1225 nullfunc->seq_ctrl = 0; 1226 1227 skb->priority = tid; 1228 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1229 if (qos) { 1230 nullfunc->qos_ctrl = cpu_to_le16(tid); 1231 1232 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) 1233 nullfunc->qos_ctrl |= 1234 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1235 } 1236 1237 info = IEEE80211_SKB_CB(skb); 1238 1239 /* 1240 * Tell TX path to send this frame even though the 1241 * STA may still remain is PS mode after this frame 1242 * exchange. Also set EOSP to indicate this packet 1243 * ends the poll/service period. 1244 */ 1245 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1246 IEEE80211_TX_CTL_PS_RESPONSE | 1247 IEEE80211_TX_STATUS_EOSP | 1248 IEEE80211_TX_CTL_REQ_TX_STATUS; 1249 1250 if (call_driver) 1251 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1252 reason, false); 1253 1254 skb->dev = sdata->dev; 1255 1256 rcu_read_lock(); 1257 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1258 if (WARN_ON(!chanctx_conf)) { 1259 rcu_read_unlock(); 1260 kfree_skb(skb); 1261 return; 1262 } 1263 1264 info->band = chanctx_conf->def.chan->band; 1265 ieee80211_xmit(sdata, skb); 1266 rcu_read_unlock(); 1267 } 1268 1269 static int find_highest_prio_tid(unsigned long tids) 1270 { 1271 /* lower 3 TIDs aren't ordered perfectly */ 1272 if (tids & 0xF8) 1273 return fls(tids) - 1; 1274 /* TID 0 is BE just like TID 3 */ 1275 if (tids & BIT(0)) 1276 return 0; 1277 return fls(tids) - 1; 1278 } 1279 1280 static void 1281 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1282 int n_frames, u8 ignored_acs, 1283 enum ieee80211_frame_release_type reason) 1284 { 1285 struct ieee80211_sub_if_data *sdata = sta->sdata; 1286 struct ieee80211_local *local = sdata->local; 1287 bool more_data = false; 1288 int ac; 1289 unsigned long driver_release_tids = 0; 1290 struct sk_buff_head frames; 1291 1292 /* Service or PS-Poll period starts */ 1293 set_sta_flag(sta, WLAN_STA_SP); 1294 1295 __skb_queue_head_init(&frames); 1296 1297 /* Get response frame(s) and more data bit for the last one. */ 1298 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1299 unsigned long tids; 1300 1301 if (ignored_acs & BIT(ac)) 1302 continue; 1303 1304 tids = ieee80211_tids_for_ac(ac); 1305 1306 /* if we already have frames from software, then we can't also 1307 * release from hardware queues 1308 */ 1309 if (skb_queue_empty(&frames)) 1310 driver_release_tids |= sta->driver_buffered_tids & tids; 1311 1312 if (driver_release_tids) { 1313 /* If the driver has data on more than one TID then 1314 * certainly there's more data if we release just a 1315 * single frame now (from a single TID). This will 1316 * only happen for PS-Poll. 1317 */ 1318 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1319 hweight16(driver_release_tids) > 1) { 1320 more_data = true; 1321 driver_release_tids = 1322 BIT(find_highest_prio_tid( 1323 driver_release_tids)); 1324 break; 1325 } 1326 } else { 1327 struct sk_buff *skb; 1328 1329 while (n_frames > 0) { 1330 skb = skb_dequeue(&sta->tx_filtered[ac]); 1331 if (!skb) { 1332 skb = skb_dequeue( 1333 &sta->ps_tx_buf[ac]); 1334 if (skb) 1335 local->total_ps_buffered--; 1336 } 1337 if (!skb) 1338 break; 1339 n_frames--; 1340 __skb_queue_tail(&frames, skb); 1341 } 1342 } 1343 1344 /* If we have more frames buffered on this AC, then set the 1345 * more-data bit and abort the loop since we can't send more 1346 * data from other ACs before the buffered frames from this. 1347 */ 1348 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1349 !skb_queue_empty(&sta->ps_tx_buf[ac])) { 1350 more_data = true; 1351 break; 1352 } 1353 } 1354 1355 if (skb_queue_empty(&frames) && !driver_release_tids) { 1356 int tid; 1357 1358 /* 1359 * For PS-Poll, this can only happen due to a race condition 1360 * when we set the TIM bit and the station notices it, but 1361 * before it can poll for the frame we expire it. 1362 * 1363 * For uAPSD, this is said in the standard (11.2.1.5 h): 1364 * At each unscheduled SP for a non-AP STA, the AP shall 1365 * attempt to transmit at least one MSDU or MMPDU, but no 1366 * more than the value specified in the Max SP Length field 1367 * in the QoS Capability element from delivery-enabled ACs, 1368 * that are destined for the non-AP STA. 1369 * 1370 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1371 */ 1372 1373 /* This will evaluate to 1, 3, 5 or 7. */ 1374 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1375 1376 ieee80211_send_null_response(sdata, sta, tid, reason, true); 1377 } else if (!driver_release_tids) { 1378 struct sk_buff_head pending; 1379 struct sk_buff *skb; 1380 int num = 0; 1381 u16 tids = 0; 1382 bool need_null = false; 1383 1384 skb_queue_head_init(&pending); 1385 1386 while ((skb = __skb_dequeue(&frames))) { 1387 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1388 struct ieee80211_hdr *hdr = (void *) skb->data; 1389 u8 *qoshdr = NULL; 1390 1391 num++; 1392 1393 /* 1394 * Tell TX path to send this frame even though the 1395 * STA may still remain is PS mode after this frame 1396 * exchange. 1397 */ 1398 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1399 IEEE80211_TX_CTL_PS_RESPONSE; 1400 1401 /* 1402 * Use MoreData flag to indicate whether there are 1403 * more buffered frames for this STA 1404 */ 1405 if (more_data || !skb_queue_empty(&frames)) 1406 hdr->frame_control |= 1407 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1408 else 1409 hdr->frame_control &= 1410 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1411 1412 if (ieee80211_is_data_qos(hdr->frame_control) || 1413 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1414 qoshdr = ieee80211_get_qos_ctl(hdr); 1415 1416 tids |= BIT(skb->priority); 1417 1418 __skb_queue_tail(&pending, skb); 1419 1420 /* end service period after last frame or add one */ 1421 if (!skb_queue_empty(&frames)) 1422 continue; 1423 1424 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1425 /* for PS-Poll, there's only one frame */ 1426 info->flags |= IEEE80211_TX_STATUS_EOSP | 1427 IEEE80211_TX_CTL_REQ_TX_STATUS; 1428 break; 1429 } 1430 1431 /* For uAPSD, things are a bit more complicated. If the 1432 * last frame has a QoS header (i.e. is a QoS-data or 1433 * QoS-nulldata frame) then just set the EOSP bit there 1434 * and be done. 1435 * If the frame doesn't have a QoS header (which means 1436 * it should be a bufferable MMPDU) then we can't set 1437 * the EOSP bit in the QoS header; add a QoS-nulldata 1438 * frame to the list to send it after the MMPDU. 1439 * 1440 * Note that this code is only in the mac80211-release 1441 * code path, we assume that the driver will not buffer 1442 * anything but QoS-data frames, or if it does, will 1443 * create the QoS-nulldata frame by itself if needed. 1444 * 1445 * Cf. 802.11-2012 10.2.1.10 (c). 1446 */ 1447 if (qoshdr) { 1448 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1449 1450 info->flags |= IEEE80211_TX_STATUS_EOSP | 1451 IEEE80211_TX_CTL_REQ_TX_STATUS; 1452 } else { 1453 /* The standard isn't completely clear on this 1454 * as it says the more-data bit should be set 1455 * if there are more BUs. The QoS-Null frame 1456 * we're about to send isn't buffered yet, we 1457 * only create it below, but let's pretend it 1458 * was buffered just in case some clients only 1459 * expect more-data=0 when eosp=1. 1460 */ 1461 hdr->frame_control |= 1462 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1463 need_null = true; 1464 num++; 1465 } 1466 break; 1467 } 1468 1469 drv_allow_buffered_frames(local, sta, tids, num, 1470 reason, more_data); 1471 1472 ieee80211_add_pending_skbs(local, &pending); 1473 1474 if (need_null) 1475 ieee80211_send_null_response( 1476 sdata, sta, find_highest_prio_tid(tids), 1477 reason, false); 1478 1479 sta_info_recalc_tim(sta); 1480 } else { 1481 /* 1482 * We need to release a frame that is buffered somewhere in the 1483 * driver ... it'll have to handle that. 1484 * Note that the driver also has to check the number of frames 1485 * on the TIDs we're releasing from - if there are more than 1486 * n_frames it has to set the more-data bit (if we didn't ask 1487 * it to set it anyway due to other buffered frames); if there 1488 * are fewer than n_frames it has to make sure to adjust that 1489 * to allow the service period to end properly. 1490 */ 1491 drv_release_buffered_frames(local, sta, driver_release_tids, 1492 n_frames, reason, more_data); 1493 1494 /* 1495 * Note that we don't recalculate the TIM bit here as it would 1496 * most likely have no effect at all unless the driver told us 1497 * that the TID(s) became empty before returning here from the 1498 * release function. 1499 * Either way, however, when the driver tells us that the TID(s) 1500 * became empty we'll do the TIM recalculation. 1501 */ 1502 } 1503 } 1504 1505 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1506 { 1507 u8 ignore_for_response = sta->sta.uapsd_queues; 1508 1509 /* 1510 * If all ACs are delivery-enabled then we should reply 1511 * from any of them, if only some are enabled we reply 1512 * only from the non-enabled ones. 1513 */ 1514 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1515 ignore_for_response = 0; 1516 1517 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1518 IEEE80211_FRAME_RELEASE_PSPOLL); 1519 } 1520 1521 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1522 { 1523 int n_frames = sta->sta.max_sp; 1524 u8 delivery_enabled = sta->sta.uapsd_queues; 1525 1526 /* 1527 * If we ever grow support for TSPEC this might happen if 1528 * the TSPEC update from hostapd comes in between a trigger 1529 * frame setting WLAN_STA_UAPSD in the RX path and this 1530 * actually getting called. 1531 */ 1532 if (!delivery_enabled) 1533 return; 1534 1535 switch (sta->sta.max_sp) { 1536 case 1: 1537 n_frames = 2; 1538 break; 1539 case 2: 1540 n_frames = 4; 1541 break; 1542 case 3: 1543 n_frames = 6; 1544 break; 1545 case 0: 1546 /* XXX: what is a good value? */ 1547 n_frames = 128; 1548 break; 1549 } 1550 1551 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1552 IEEE80211_FRAME_RELEASE_UAPSD); 1553 } 1554 1555 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1556 struct ieee80211_sta *pubsta, bool block) 1557 { 1558 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1559 1560 trace_api_sta_block_awake(sta->local, pubsta, block); 1561 1562 if (block) { 1563 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1564 return; 1565 } 1566 1567 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1568 return; 1569 1570 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1571 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1572 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1573 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1574 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1575 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1576 /* must be asleep in this case */ 1577 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1578 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1579 } else { 1580 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1581 } 1582 } 1583 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1584 1585 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1586 { 1587 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1588 struct ieee80211_local *local = sta->local; 1589 1590 trace_api_eosp(local, pubsta); 1591 1592 clear_sta_flag(sta, WLAN_STA_SP); 1593 } 1594 EXPORT_SYMBOL(ieee80211_sta_eosp); 1595 1596 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1597 u8 tid, bool buffered) 1598 { 1599 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1600 1601 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1602 return; 1603 1604 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1605 1606 if (buffered) 1607 set_bit(tid, &sta->driver_buffered_tids); 1608 else 1609 clear_bit(tid, &sta->driver_buffered_tids); 1610 1611 sta_info_recalc_tim(sta); 1612 } 1613 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1614 1615 int sta_info_move_state(struct sta_info *sta, 1616 enum ieee80211_sta_state new_state) 1617 { 1618 might_sleep(); 1619 1620 if (sta->sta_state == new_state) 1621 return 0; 1622 1623 /* check allowed transitions first */ 1624 1625 switch (new_state) { 1626 case IEEE80211_STA_NONE: 1627 if (sta->sta_state != IEEE80211_STA_AUTH) 1628 return -EINVAL; 1629 break; 1630 case IEEE80211_STA_AUTH: 1631 if (sta->sta_state != IEEE80211_STA_NONE && 1632 sta->sta_state != IEEE80211_STA_ASSOC) 1633 return -EINVAL; 1634 break; 1635 case IEEE80211_STA_ASSOC: 1636 if (sta->sta_state != IEEE80211_STA_AUTH && 1637 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1638 return -EINVAL; 1639 break; 1640 case IEEE80211_STA_AUTHORIZED: 1641 if (sta->sta_state != IEEE80211_STA_ASSOC) 1642 return -EINVAL; 1643 break; 1644 default: 1645 WARN(1, "invalid state %d", new_state); 1646 return -EINVAL; 1647 } 1648 1649 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1650 sta->sta.addr, new_state); 1651 1652 /* 1653 * notify the driver before the actual changes so it can 1654 * fail the transition 1655 */ 1656 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1657 int err = drv_sta_state(sta->local, sta->sdata, sta, 1658 sta->sta_state, new_state); 1659 if (err) 1660 return err; 1661 } 1662 1663 /* reflect the change in all state variables */ 1664 1665 switch (new_state) { 1666 case IEEE80211_STA_NONE: 1667 if (sta->sta_state == IEEE80211_STA_AUTH) 1668 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1669 break; 1670 case IEEE80211_STA_AUTH: 1671 if (sta->sta_state == IEEE80211_STA_NONE) 1672 set_bit(WLAN_STA_AUTH, &sta->_flags); 1673 else if (sta->sta_state == IEEE80211_STA_ASSOC) 1674 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1675 break; 1676 case IEEE80211_STA_ASSOC: 1677 if (sta->sta_state == IEEE80211_STA_AUTH) { 1678 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1679 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1680 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1681 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1682 !sta->sdata->u.vlan.sta)) 1683 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1684 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1685 } 1686 break; 1687 case IEEE80211_STA_AUTHORIZED: 1688 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1689 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1690 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1691 !sta->sdata->u.vlan.sta)) 1692 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1693 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1694 } 1695 break; 1696 default: 1697 break; 1698 } 1699 1700 sta->sta_state = new_state; 1701 1702 return 0; 1703 } 1704 1705 u8 sta_info_tx_streams(struct sta_info *sta) 1706 { 1707 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1708 u8 rx_streams; 1709 1710 if (!sta->sta.ht_cap.ht_supported) 1711 return 1; 1712 1713 if (sta->sta.vht_cap.vht_supported) { 1714 int i; 1715 u16 tx_mcs_map = 1716 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1717 1718 for (i = 7; i >= 0; i--) 1719 if ((tx_mcs_map & (0x3 << (i * 2))) != 1720 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1721 return i + 1; 1722 } 1723 1724 if (ht_cap->mcs.rx_mask[3]) 1725 rx_streams = 4; 1726 else if (ht_cap->mcs.rx_mask[2]) 1727 rx_streams = 3; 1728 else if (ht_cap->mcs.rx_mask[1]) 1729 rx_streams = 2; 1730 else 1731 rx_streams = 1; 1732 1733 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1734 return rx_streams; 1735 1736 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1737 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1738 } 1739 1740 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 1741 { 1742 struct ieee80211_sub_if_data *sdata = sta->sdata; 1743 struct ieee80211_local *local = sdata->local; 1744 struct rate_control_ref *ref = NULL; 1745 struct timespec uptime; 1746 u64 packets = 0; 1747 u32 thr = 0; 1748 int i, ac; 1749 1750 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 1751 ref = local->rate_ctrl; 1752 1753 sinfo->generation = sdata->local->sta_generation; 1754 1755 sinfo->filled = STATION_INFO_INACTIVE_TIME | 1756 STATION_INFO_RX_BYTES64 | 1757 STATION_INFO_TX_BYTES64 | 1758 STATION_INFO_RX_PACKETS | 1759 STATION_INFO_TX_PACKETS | 1760 STATION_INFO_TX_RETRIES | 1761 STATION_INFO_TX_FAILED | 1762 STATION_INFO_TX_BITRATE | 1763 STATION_INFO_RX_BITRATE | 1764 STATION_INFO_RX_DROP_MISC | 1765 STATION_INFO_BSS_PARAM | 1766 STATION_INFO_CONNECTED_TIME | 1767 STATION_INFO_STA_FLAGS | 1768 STATION_INFO_BEACON_LOSS_COUNT; 1769 1770 ktime_get_ts(&uptime); 1771 sinfo->connected_time = uptime.tv_sec - sta->last_connected; 1772 1773 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx); 1774 sinfo->tx_bytes = 0; 1775 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1776 sinfo->tx_bytes += sta->tx_bytes[ac]; 1777 packets += sta->tx_packets[ac]; 1778 } 1779 sinfo->tx_packets = packets; 1780 sinfo->rx_bytes = sta->rx_bytes; 1781 sinfo->rx_packets = sta->rx_packets; 1782 sinfo->tx_retries = sta->tx_retry_count; 1783 sinfo->tx_failed = sta->tx_retry_failed; 1784 sinfo->rx_dropped_misc = sta->rx_dropped; 1785 sinfo->beacon_loss_count = sta->beacon_loss_count; 1786 1787 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) || 1788 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) { 1789 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG; 1790 if (!local->ops->get_rssi || 1791 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal)) 1792 sinfo->signal = (s8)sta->last_signal; 1793 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal); 1794 } 1795 if (sta->chains) { 1796 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL | 1797 STATION_INFO_CHAIN_SIGNAL_AVG; 1798 1799 sinfo->chains = sta->chains; 1800 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 1801 sinfo->chain_signal[i] = sta->chain_signal_last[i]; 1802 sinfo->chain_signal_avg[i] = 1803 (s8) -ewma_read(&sta->chain_signal_avg[i]); 1804 } 1805 } 1806 1807 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate); 1808 sta_set_rate_info_rx(sta, &sinfo->rxrate); 1809 1810 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1811 #ifdef CONFIG_MAC80211_MESH 1812 sinfo->filled |= STATION_INFO_LLID | 1813 STATION_INFO_PLID | 1814 STATION_INFO_PLINK_STATE | 1815 STATION_INFO_LOCAL_PM | 1816 STATION_INFO_PEER_PM | 1817 STATION_INFO_NONPEER_PM; 1818 1819 sinfo->llid = sta->llid; 1820 sinfo->plid = sta->plid; 1821 sinfo->plink_state = sta->plink_state; 1822 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 1823 sinfo->filled |= STATION_INFO_T_OFFSET; 1824 sinfo->t_offset = sta->t_offset; 1825 } 1826 sinfo->local_pm = sta->local_pm; 1827 sinfo->peer_pm = sta->peer_pm; 1828 sinfo->nonpeer_pm = sta->nonpeer_pm; 1829 #endif 1830 } 1831 1832 sinfo->bss_param.flags = 0; 1833 if (sdata->vif.bss_conf.use_cts_prot) 1834 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 1835 if (sdata->vif.bss_conf.use_short_preamble) 1836 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 1837 if (sdata->vif.bss_conf.use_short_slot) 1838 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 1839 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 1840 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 1841 1842 sinfo->sta_flags.set = 0; 1843 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 1844 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 1845 BIT(NL80211_STA_FLAG_WME) | 1846 BIT(NL80211_STA_FLAG_MFP) | 1847 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 1848 BIT(NL80211_STA_FLAG_ASSOCIATED) | 1849 BIT(NL80211_STA_FLAG_TDLS_PEER); 1850 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 1851 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 1852 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 1853 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 1854 if (sta->sta.wme) 1855 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 1856 if (test_sta_flag(sta, WLAN_STA_MFP)) 1857 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 1858 if (test_sta_flag(sta, WLAN_STA_AUTH)) 1859 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 1860 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 1861 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 1862 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 1863 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 1864 1865 /* check if the driver has a SW RC implementation */ 1866 if (ref && ref->ops->get_expected_throughput) 1867 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 1868 else 1869 thr = drv_get_expected_throughput(local, &sta->sta); 1870 1871 if (thr != 0) { 1872 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT; 1873 sinfo->expected_throughput = thr; 1874 } 1875 } 1876