1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/etherdevice.h> 15 #include <linux/netdevice.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/skbuff.h> 19 #include <linux/if_arp.h> 20 #include <linux/timer.h> 21 #include <linux/rtnetlink.h> 22 23 #include <net/mac80211.h> 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "rate.h" 27 #include "sta_info.h" 28 #include "debugfs_sta.h" 29 #include "mesh.h" 30 #include "wme.h" 31 32 /** 33 * DOC: STA information lifetime rules 34 * 35 * STA info structures (&struct sta_info) are managed in a hash table 36 * for faster lookup and a list for iteration. They are managed using 37 * RCU, i.e. access to the list and hash table is protected by RCU. 38 * 39 * Upon allocating a STA info structure with sta_info_alloc(), the caller 40 * owns that structure. It must then insert it into the hash table using 41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 42 * case (which acquires an rcu read section but must not be called from 43 * within one) will the pointer still be valid after the call. Note that 44 * the caller may not do much with the STA info before inserting it, in 45 * particular, it may not start any mesh peer link management or add 46 * encryption keys. 47 * 48 * When the insertion fails (sta_info_insert()) returns non-zero), the 49 * structure will have been freed by sta_info_insert()! 50 * 51 * Station entries are added by mac80211 when you establish a link with a 52 * peer. This means different things for the different type of interfaces 53 * we support. For a regular station this mean we add the AP sta when we 54 * receive an association response from the AP. For IBSS this occurs when 55 * get to know about a peer on the same IBSS. For WDS we add the sta for 56 * the peer immediately upon device open. When using AP mode we add stations 57 * for each respective station upon request from userspace through nl80211. 58 * 59 * In order to remove a STA info structure, various sta_info_destroy_*() 60 * calls are available. 61 * 62 * There is no concept of ownership on a STA entry, each structure is 63 * owned by the global hash table/list until it is removed. All users of 64 * the structure need to be RCU protected so that the structure won't be 65 * freed before they are done using it. 66 */ 67 68 static const struct rhashtable_params sta_rht_params = { 69 .nelem_hint = 3, /* start small */ 70 .automatic_shrinking = true, 71 .head_offset = offsetof(struct sta_info, hash_node), 72 .key_offset = offsetof(struct sta_info, addr), 73 .key_len = ETH_ALEN, 74 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 75 }; 76 77 /* Caller must hold local->sta_mtx */ 78 static int sta_info_hash_del(struct ieee80211_local *local, 79 struct sta_info *sta) 80 { 81 return rhltable_remove(&local->sta_hash, &sta->hash_node, 82 sta_rht_params); 83 } 84 85 static void __cleanup_single_sta(struct sta_info *sta) 86 { 87 int ac, i; 88 struct tid_ampdu_tx *tid_tx; 89 struct ieee80211_sub_if_data *sdata = sta->sdata; 90 struct ieee80211_local *local = sdata->local; 91 struct fq *fq = &local->fq; 92 struct ps_data *ps; 93 94 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 95 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 96 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 97 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 98 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 99 ps = &sdata->bss->ps; 100 else if (ieee80211_vif_is_mesh(&sdata->vif)) 101 ps = &sdata->u.mesh.ps; 102 else 103 return; 104 105 clear_sta_flag(sta, WLAN_STA_PS_STA); 106 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 107 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 108 109 atomic_dec(&ps->num_sta_ps); 110 } 111 112 if (sta->sta.txq[0]) { 113 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 114 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 115 116 spin_lock_bh(&fq->lock); 117 ieee80211_txq_purge(local, txqi); 118 spin_unlock_bh(&fq->lock); 119 } 120 } 121 122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 126 } 127 128 if (ieee80211_vif_is_mesh(&sdata->vif)) 129 mesh_sta_cleanup(sta); 130 131 cancel_work_sync(&sta->drv_deliver_wk); 132 133 /* 134 * Destroy aggregation state here. It would be nice to wait for the 135 * driver to finish aggregation stop and then clean up, but for now 136 * drivers have to handle aggregation stop being requested, followed 137 * directly by station destruction. 138 */ 139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 140 kfree(sta->ampdu_mlme.tid_start_tx[i]); 141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 142 if (!tid_tx) 143 continue; 144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 145 kfree(tid_tx); 146 } 147 } 148 149 static void cleanup_single_sta(struct sta_info *sta) 150 { 151 struct ieee80211_sub_if_data *sdata = sta->sdata; 152 struct ieee80211_local *local = sdata->local; 153 154 __cleanup_single_sta(sta); 155 sta_info_free(local, sta); 156 } 157 158 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 159 const u8 *addr) 160 { 161 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 162 } 163 164 /* protected by RCU */ 165 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 166 const u8 *addr) 167 { 168 struct ieee80211_local *local = sdata->local; 169 struct rhlist_head *tmp; 170 struct sta_info *sta; 171 172 rcu_read_lock(); 173 for_each_sta_info(local, addr, sta, tmp) { 174 if (sta->sdata == sdata) { 175 rcu_read_unlock(); 176 /* this is safe as the caller must already hold 177 * another rcu read section or the mutex 178 */ 179 return sta; 180 } 181 } 182 rcu_read_unlock(); 183 return NULL; 184 } 185 186 /* 187 * Get sta info either from the specified interface 188 * or from one of its vlans 189 */ 190 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 191 const u8 *addr) 192 { 193 struct ieee80211_local *local = sdata->local; 194 struct rhlist_head *tmp; 195 struct sta_info *sta; 196 197 rcu_read_lock(); 198 for_each_sta_info(local, addr, sta, tmp) { 199 if (sta->sdata == sdata || 200 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 201 rcu_read_unlock(); 202 /* this is safe as the caller must already hold 203 * another rcu read section or the mutex 204 */ 205 return sta; 206 } 207 } 208 rcu_read_unlock(); 209 return NULL; 210 } 211 212 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 213 int idx) 214 { 215 struct ieee80211_local *local = sdata->local; 216 struct sta_info *sta; 217 int i = 0; 218 219 list_for_each_entry_rcu(sta, &local->sta_list, list) { 220 if (sdata != sta->sdata) 221 continue; 222 if (i < idx) { 223 ++i; 224 continue; 225 } 226 return sta; 227 } 228 229 return NULL; 230 } 231 232 /** 233 * sta_info_free - free STA 234 * 235 * @local: pointer to the global information 236 * @sta: STA info to free 237 * 238 * This function must undo everything done by sta_info_alloc() 239 * that may happen before sta_info_insert(). It may only be 240 * called when sta_info_insert() has not been attempted (and 241 * if that fails, the station is freed anyway.) 242 */ 243 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 244 { 245 if (sta->rate_ctrl) 246 rate_control_free_sta(sta); 247 248 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 249 250 if (sta->sta.txq[0]) 251 kfree(to_txq_info(sta->sta.txq[0])); 252 kfree(rcu_dereference_raw(sta->sta.rates)); 253 #ifdef CONFIG_MAC80211_MESH 254 kfree(sta->mesh); 255 #endif 256 free_percpu(sta->pcpu_rx_stats); 257 kfree(sta); 258 } 259 260 /* Caller must hold local->sta_mtx */ 261 static int sta_info_hash_add(struct ieee80211_local *local, 262 struct sta_info *sta) 263 { 264 return rhltable_insert(&local->sta_hash, &sta->hash_node, 265 sta_rht_params); 266 } 267 268 static void sta_deliver_ps_frames(struct work_struct *wk) 269 { 270 struct sta_info *sta; 271 272 sta = container_of(wk, struct sta_info, drv_deliver_wk); 273 274 if (sta->dead) 275 return; 276 277 local_bh_disable(); 278 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 279 ieee80211_sta_ps_deliver_wakeup(sta); 280 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 281 ieee80211_sta_ps_deliver_poll_response(sta); 282 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 283 ieee80211_sta_ps_deliver_uapsd(sta); 284 local_bh_enable(); 285 } 286 287 static int sta_prepare_rate_control(struct ieee80211_local *local, 288 struct sta_info *sta, gfp_t gfp) 289 { 290 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 291 return 0; 292 293 sta->rate_ctrl = local->rate_ctrl; 294 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 295 sta, gfp); 296 if (!sta->rate_ctrl_priv) 297 return -ENOMEM; 298 299 return 0; 300 } 301 302 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 303 const u8 *addr, gfp_t gfp) 304 { 305 struct ieee80211_local *local = sdata->local; 306 struct ieee80211_hw *hw = &local->hw; 307 struct sta_info *sta; 308 int i; 309 310 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 311 if (!sta) 312 return NULL; 313 314 if (ieee80211_hw_check(hw, USES_RSS)) { 315 sta->pcpu_rx_stats = 316 alloc_percpu(struct ieee80211_sta_rx_stats); 317 if (!sta->pcpu_rx_stats) 318 goto free; 319 } 320 321 spin_lock_init(&sta->lock); 322 spin_lock_init(&sta->ps_lock); 323 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 324 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 325 mutex_init(&sta->ampdu_mlme.mtx); 326 #ifdef CONFIG_MAC80211_MESH 327 if (ieee80211_vif_is_mesh(&sdata->vif)) { 328 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 329 if (!sta->mesh) 330 goto free; 331 spin_lock_init(&sta->mesh->plink_lock); 332 if (ieee80211_vif_is_mesh(&sdata->vif) && 333 !sdata->u.mesh.user_mpm) 334 init_timer(&sta->mesh->plink_timer); 335 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 336 } 337 #endif 338 339 memcpy(sta->addr, addr, ETH_ALEN); 340 memcpy(sta->sta.addr, addr, ETH_ALEN); 341 sta->sta.max_rx_aggregation_subframes = 342 local->hw.max_rx_aggregation_subframes; 343 344 sta->local = local; 345 sta->sdata = sdata; 346 sta->rx_stats.last_rx = jiffies; 347 348 u64_stats_init(&sta->rx_stats.syncp); 349 350 sta->sta_state = IEEE80211_STA_NONE; 351 352 /* Mark TID as unreserved */ 353 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 354 355 sta->last_connected = ktime_get_seconds(); 356 ewma_signal_init(&sta->rx_stats_avg.signal); 357 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 358 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 359 360 if (local->ops->wake_tx_queue) { 361 void *txq_data; 362 int size = sizeof(struct txq_info) + 363 ALIGN(hw->txq_data_size, sizeof(void *)); 364 365 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 366 if (!txq_data) 367 goto free; 368 369 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 370 struct txq_info *txq = txq_data + i * size; 371 372 ieee80211_txq_init(sdata, sta, txq, i); 373 } 374 } 375 376 if (sta_prepare_rate_control(local, sta, gfp)) 377 goto free_txq; 378 379 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 380 /* 381 * timer_to_tid must be initialized with identity mapping 382 * to enable session_timer's data differentiation. See 383 * sta_rx_agg_session_timer_expired for usage. 384 */ 385 sta->timer_to_tid[i] = i; 386 } 387 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 388 skb_queue_head_init(&sta->ps_tx_buf[i]); 389 skb_queue_head_init(&sta->tx_filtered[i]); 390 } 391 392 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 393 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 394 395 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 396 if (sdata->vif.type == NL80211_IFTYPE_AP || 397 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 398 struct ieee80211_supported_band *sband; 399 u8 smps; 400 401 sband = ieee80211_get_sband(sdata); 402 if (!sband) 403 goto free_txq; 404 405 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 406 IEEE80211_HT_CAP_SM_PS_SHIFT; 407 /* 408 * Assume that hostapd advertises our caps in the beacon and 409 * this is the known_smps_mode for a station that just assciated 410 */ 411 switch (smps) { 412 case WLAN_HT_SMPS_CONTROL_DISABLED: 413 sta->known_smps_mode = IEEE80211_SMPS_OFF; 414 break; 415 case WLAN_HT_SMPS_CONTROL_STATIC: 416 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 417 break; 418 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 419 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 420 break; 421 default: 422 WARN_ON(1); 423 } 424 } 425 426 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 427 428 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 429 430 return sta; 431 432 free_txq: 433 if (sta->sta.txq[0]) 434 kfree(to_txq_info(sta->sta.txq[0])); 435 free: 436 #ifdef CONFIG_MAC80211_MESH 437 kfree(sta->mesh); 438 #endif 439 kfree(sta); 440 return NULL; 441 } 442 443 static int sta_info_insert_check(struct sta_info *sta) 444 { 445 struct ieee80211_sub_if_data *sdata = sta->sdata; 446 447 /* 448 * Can't be a WARN_ON because it can be triggered through a race: 449 * something inserts a STA (on one CPU) without holding the RTNL 450 * and another CPU turns off the net device. 451 */ 452 if (unlikely(!ieee80211_sdata_running(sdata))) 453 return -ENETDOWN; 454 455 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 456 is_multicast_ether_addr(sta->sta.addr))) 457 return -EINVAL; 458 459 /* The RCU read lock is required by rhashtable due to 460 * asynchronous resize/rehash. We also require the mutex 461 * for correctness. 462 */ 463 rcu_read_lock(); 464 lockdep_assert_held(&sdata->local->sta_mtx); 465 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 466 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 467 rcu_read_unlock(); 468 return -ENOTUNIQ; 469 } 470 rcu_read_unlock(); 471 472 return 0; 473 } 474 475 static int sta_info_insert_drv_state(struct ieee80211_local *local, 476 struct ieee80211_sub_if_data *sdata, 477 struct sta_info *sta) 478 { 479 enum ieee80211_sta_state state; 480 int err = 0; 481 482 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 483 err = drv_sta_state(local, sdata, sta, state, state + 1); 484 if (err) 485 break; 486 } 487 488 if (!err) { 489 /* 490 * Drivers using legacy sta_add/sta_remove callbacks only 491 * get uploaded set to true after sta_add is called. 492 */ 493 if (!local->ops->sta_add) 494 sta->uploaded = true; 495 return 0; 496 } 497 498 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 499 sdata_info(sdata, 500 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 501 sta->sta.addr, state + 1, err); 502 err = 0; 503 } 504 505 /* unwind on error */ 506 for (; state > IEEE80211_STA_NOTEXIST; state--) 507 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 508 509 return err; 510 } 511 512 /* 513 * should be called with sta_mtx locked 514 * this function replaces the mutex lock 515 * with a RCU lock 516 */ 517 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 518 { 519 struct ieee80211_local *local = sta->local; 520 struct ieee80211_sub_if_data *sdata = sta->sdata; 521 struct station_info *sinfo = NULL; 522 int err = 0; 523 524 lockdep_assert_held(&local->sta_mtx); 525 526 /* check if STA exists already */ 527 if (sta_info_get_bss(sdata, sta->sta.addr)) { 528 err = -EEXIST; 529 goto out_err; 530 } 531 532 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 533 if (!sinfo) { 534 err = -ENOMEM; 535 goto out_err; 536 } 537 538 local->num_sta++; 539 local->sta_generation++; 540 smp_mb(); 541 542 /* simplify things and don't accept BA sessions yet */ 543 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 544 545 /* make the station visible */ 546 err = sta_info_hash_add(local, sta); 547 if (err) 548 goto out_drop_sta; 549 550 list_add_tail_rcu(&sta->list, &local->sta_list); 551 552 /* notify driver */ 553 err = sta_info_insert_drv_state(local, sdata, sta); 554 if (err) 555 goto out_remove; 556 557 set_sta_flag(sta, WLAN_STA_INSERTED); 558 /* accept BA sessions now */ 559 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 560 561 ieee80211_sta_debugfs_add(sta); 562 rate_control_add_sta_debugfs(sta); 563 564 sinfo->generation = local->sta_generation; 565 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 566 kfree(sinfo); 567 568 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 569 570 /* move reference to rcu-protected */ 571 rcu_read_lock(); 572 mutex_unlock(&local->sta_mtx); 573 574 if (ieee80211_vif_is_mesh(&sdata->vif)) 575 mesh_accept_plinks_update(sdata); 576 577 return 0; 578 out_remove: 579 sta_info_hash_del(local, sta); 580 list_del_rcu(&sta->list); 581 out_drop_sta: 582 local->num_sta--; 583 synchronize_net(); 584 __cleanup_single_sta(sta); 585 out_err: 586 mutex_unlock(&local->sta_mtx); 587 kfree(sinfo); 588 rcu_read_lock(); 589 return err; 590 } 591 592 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 593 { 594 struct ieee80211_local *local = sta->local; 595 int err; 596 597 might_sleep(); 598 599 mutex_lock(&local->sta_mtx); 600 601 err = sta_info_insert_check(sta); 602 if (err) { 603 mutex_unlock(&local->sta_mtx); 604 rcu_read_lock(); 605 goto out_free; 606 } 607 608 err = sta_info_insert_finish(sta); 609 if (err) 610 goto out_free; 611 612 return 0; 613 out_free: 614 sta_info_free(local, sta); 615 return err; 616 } 617 618 int sta_info_insert(struct sta_info *sta) 619 { 620 int err = sta_info_insert_rcu(sta); 621 622 rcu_read_unlock(); 623 624 return err; 625 } 626 627 static inline void __bss_tim_set(u8 *tim, u16 id) 628 { 629 /* 630 * This format has been mandated by the IEEE specifications, 631 * so this line may not be changed to use the __set_bit() format. 632 */ 633 tim[id / 8] |= (1 << (id % 8)); 634 } 635 636 static inline void __bss_tim_clear(u8 *tim, u16 id) 637 { 638 /* 639 * This format has been mandated by the IEEE specifications, 640 * so this line may not be changed to use the __clear_bit() format. 641 */ 642 tim[id / 8] &= ~(1 << (id % 8)); 643 } 644 645 static inline bool __bss_tim_get(u8 *tim, u16 id) 646 { 647 /* 648 * This format has been mandated by the IEEE specifications, 649 * so this line may not be changed to use the test_bit() format. 650 */ 651 return tim[id / 8] & (1 << (id % 8)); 652 } 653 654 static unsigned long ieee80211_tids_for_ac(int ac) 655 { 656 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 657 switch (ac) { 658 case IEEE80211_AC_VO: 659 return BIT(6) | BIT(7); 660 case IEEE80211_AC_VI: 661 return BIT(4) | BIT(5); 662 case IEEE80211_AC_BE: 663 return BIT(0) | BIT(3); 664 case IEEE80211_AC_BK: 665 return BIT(1) | BIT(2); 666 default: 667 WARN_ON(1); 668 return 0; 669 } 670 } 671 672 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 673 { 674 struct ieee80211_local *local = sta->local; 675 struct ps_data *ps; 676 bool indicate_tim = false; 677 u8 ignore_for_tim = sta->sta.uapsd_queues; 678 int ac; 679 u16 id = sta->sta.aid; 680 681 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 682 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 683 if (WARN_ON_ONCE(!sta->sdata->bss)) 684 return; 685 686 ps = &sta->sdata->bss->ps; 687 #ifdef CONFIG_MAC80211_MESH 688 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 689 ps = &sta->sdata->u.mesh.ps; 690 #endif 691 } else { 692 return; 693 } 694 695 /* No need to do anything if the driver does all */ 696 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 697 return; 698 699 if (sta->dead) 700 goto done; 701 702 /* 703 * If all ACs are delivery-enabled then we should build 704 * the TIM bit for all ACs anyway; if only some are then 705 * we ignore those and build the TIM bit using only the 706 * non-enabled ones. 707 */ 708 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 709 ignore_for_tim = 0; 710 711 if (ignore_pending) 712 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 713 714 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 715 unsigned long tids; 716 717 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 718 continue; 719 720 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 721 !skb_queue_empty(&sta->ps_tx_buf[ac]); 722 if (indicate_tim) 723 break; 724 725 tids = ieee80211_tids_for_ac(ac); 726 727 indicate_tim |= 728 sta->driver_buffered_tids & tids; 729 indicate_tim |= 730 sta->txq_buffered_tids & tids; 731 } 732 733 done: 734 spin_lock_bh(&local->tim_lock); 735 736 if (indicate_tim == __bss_tim_get(ps->tim, id)) 737 goto out_unlock; 738 739 if (indicate_tim) 740 __bss_tim_set(ps->tim, id); 741 else 742 __bss_tim_clear(ps->tim, id); 743 744 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 745 local->tim_in_locked_section = true; 746 drv_set_tim(local, &sta->sta, indicate_tim); 747 local->tim_in_locked_section = false; 748 } 749 750 out_unlock: 751 spin_unlock_bh(&local->tim_lock); 752 } 753 754 void sta_info_recalc_tim(struct sta_info *sta) 755 { 756 __sta_info_recalc_tim(sta, false); 757 } 758 759 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 760 { 761 struct ieee80211_tx_info *info; 762 int timeout; 763 764 if (!skb) 765 return false; 766 767 info = IEEE80211_SKB_CB(skb); 768 769 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 770 timeout = (sta->listen_interval * 771 sta->sdata->vif.bss_conf.beacon_int * 772 32 / 15625) * HZ; 773 if (timeout < STA_TX_BUFFER_EXPIRE) 774 timeout = STA_TX_BUFFER_EXPIRE; 775 return time_after(jiffies, info->control.jiffies + timeout); 776 } 777 778 779 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 780 struct sta_info *sta, int ac) 781 { 782 unsigned long flags; 783 struct sk_buff *skb; 784 785 /* 786 * First check for frames that should expire on the filtered 787 * queue. Frames here were rejected by the driver and are on 788 * a separate queue to avoid reordering with normal PS-buffered 789 * frames. They also aren't accounted for right now in the 790 * total_ps_buffered counter. 791 */ 792 for (;;) { 793 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 794 skb = skb_peek(&sta->tx_filtered[ac]); 795 if (sta_info_buffer_expired(sta, skb)) 796 skb = __skb_dequeue(&sta->tx_filtered[ac]); 797 else 798 skb = NULL; 799 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 800 801 /* 802 * Frames are queued in order, so if this one 803 * hasn't expired yet we can stop testing. If 804 * we actually reached the end of the queue we 805 * also need to stop, of course. 806 */ 807 if (!skb) 808 break; 809 ieee80211_free_txskb(&local->hw, skb); 810 } 811 812 /* 813 * Now also check the normal PS-buffered queue, this will 814 * only find something if the filtered queue was emptied 815 * since the filtered frames are all before the normal PS 816 * buffered frames. 817 */ 818 for (;;) { 819 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 820 skb = skb_peek(&sta->ps_tx_buf[ac]); 821 if (sta_info_buffer_expired(sta, skb)) 822 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 823 else 824 skb = NULL; 825 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 826 827 /* 828 * frames are queued in order, so if this one 829 * hasn't expired yet (or we reached the end of 830 * the queue) we can stop testing 831 */ 832 if (!skb) 833 break; 834 835 local->total_ps_buffered--; 836 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 837 sta->sta.addr); 838 ieee80211_free_txskb(&local->hw, skb); 839 } 840 841 /* 842 * Finally, recalculate the TIM bit for this station -- it might 843 * now be clear because the station was too slow to retrieve its 844 * frames. 845 */ 846 sta_info_recalc_tim(sta); 847 848 /* 849 * Return whether there are any frames still buffered, this is 850 * used to check whether the cleanup timer still needs to run, 851 * if there are no frames we don't need to rearm the timer. 852 */ 853 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 854 skb_queue_empty(&sta->tx_filtered[ac])); 855 } 856 857 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 858 struct sta_info *sta) 859 { 860 bool have_buffered = false; 861 int ac; 862 863 /* This is only necessary for stations on BSS/MBSS interfaces */ 864 if (!sta->sdata->bss && 865 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 866 return false; 867 868 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 869 have_buffered |= 870 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 871 872 return have_buffered; 873 } 874 875 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 876 { 877 struct ieee80211_local *local; 878 struct ieee80211_sub_if_data *sdata; 879 int ret; 880 881 might_sleep(); 882 883 if (!sta) 884 return -ENOENT; 885 886 local = sta->local; 887 sdata = sta->sdata; 888 889 lockdep_assert_held(&local->sta_mtx); 890 891 /* 892 * Before removing the station from the driver and 893 * rate control, it might still start new aggregation 894 * sessions -- block that to make sure the tear-down 895 * will be sufficient. 896 */ 897 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 898 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 899 900 /* 901 * Before removing the station from the driver there might be pending 902 * rx frames on RSS queues sent prior to the disassociation - wait for 903 * all such frames to be processed. 904 */ 905 drv_sync_rx_queues(local, sta); 906 907 ret = sta_info_hash_del(local, sta); 908 if (WARN_ON(ret)) 909 return ret; 910 911 /* 912 * for TDLS peers, make sure to return to the base channel before 913 * removal. 914 */ 915 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 916 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 917 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 918 } 919 920 list_del_rcu(&sta->list); 921 sta->removed = true; 922 923 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 924 925 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 926 rcu_access_pointer(sdata->u.vlan.sta) == sta) 927 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 928 929 return 0; 930 } 931 932 static void __sta_info_destroy_part2(struct sta_info *sta) 933 { 934 struct ieee80211_local *local = sta->local; 935 struct ieee80211_sub_if_data *sdata = sta->sdata; 936 struct station_info *sinfo; 937 int ret; 938 939 /* 940 * NOTE: This assumes at least synchronize_net() was done 941 * after _part1 and before _part2! 942 */ 943 944 might_sleep(); 945 lockdep_assert_held(&local->sta_mtx); 946 947 /* now keys can no longer be reached */ 948 ieee80211_free_sta_keys(local, sta); 949 950 /* disable TIM bit - last chance to tell driver */ 951 __sta_info_recalc_tim(sta, true); 952 953 sta->dead = true; 954 955 local->num_sta--; 956 local->sta_generation++; 957 958 while (sta->sta_state > IEEE80211_STA_NONE) { 959 ret = sta_info_move_state(sta, sta->sta_state - 1); 960 if (ret) { 961 WARN_ON_ONCE(1); 962 break; 963 } 964 } 965 966 if (sta->uploaded) { 967 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 968 IEEE80211_STA_NOTEXIST); 969 WARN_ON_ONCE(ret != 0); 970 } 971 972 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 973 974 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 975 if (sinfo) 976 sta_set_sinfo(sta, sinfo); 977 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 978 kfree(sinfo); 979 980 rate_control_remove_sta_debugfs(sta); 981 ieee80211_sta_debugfs_remove(sta); 982 983 cleanup_single_sta(sta); 984 } 985 986 int __must_check __sta_info_destroy(struct sta_info *sta) 987 { 988 int err = __sta_info_destroy_part1(sta); 989 990 if (err) 991 return err; 992 993 synchronize_net(); 994 995 __sta_info_destroy_part2(sta); 996 997 return 0; 998 } 999 1000 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1001 { 1002 struct sta_info *sta; 1003 int ret; 1004 1005 mutex_lock(&sdata->local->sta_mtx); 1006 sta = sta_info_get(sdata, addr); 1007 ret = __sta_info_destroy(sta); 1008 mutex_unlock(&sdata->local->sta_mtx); 1009 1010 return ret; 1011 } 1012 1013 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1014 const u8 *addr) 1015 { 1016 struct sta_info *sta; 1017 int ret; 1018 1019 mutex_lock(&sdata->local->sta_mtx); 1020 sta = sta_info_get_bss(sdata, addr); 1021 ret = __sta_info_destroy(sta); 1022 mutex_unlock(&sdata->local->sta_mtx); 1023 1024 return ret; 1025 } 1026 1027 static void sta_info_cleanup(unsigned long data) 1028 { 1029 struct ieee80211_local *local = (struct ieee80211_local *) data; 1030 struct sta_info *sta; 1031 bool timer_needed = false; 1032 1033 rcu_read_lock(); 1034 list_for_each_entry_rcu(sta, &local->sta_list, list) 1035 if (sta_info_cleanup_expire_buffered(local, sta)) 1036 timer_needed = true; 1037 rcu_read_unlock(); 1038 1039 if (local->quiescing) 1040 return; 1041 1042 if (!timer_needed) 1043 return; 1044 1045 mod_timer(&local->sta_cleanup, 1046 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1047 } 1048 1049 int sta_info_init(struct ieee80211_local *local) 1050 { 1051 int err; 1052 1053 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1054 if (err) 1055 return err; 1056 1057 spin_lock_init(&local->tim_lock); 1058 mutex_init(&local->sta_mtx); 1059 INIT_LIST_HEAD(&local->sta_list); 1060 1061 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1062 (unsigned long)local); 1063 return 0; 1064 } 1065 1066 void sta_info_stop(struct ieee80211_local *local) 1067 { 1068 del_timer_sync(&local->sta_cleanup); 1069 rhltable_destroy(&local->sta_hash); 1070 } 1071 1072 1073 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1074 { 1075 struct ieee80211_local *local = sdata->local; 1076 struct sta_info *sta, *tmp; 1077 LIST_HEAD(free_list); 1078 int ret = 0; 1079 1080 might_sleep(); 1081 1082 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1083 WARN_ON(vlans && !sdata->bss); 1084 1085 mutex_lock(&local->sta_mtx); 1086 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1087 if (sdata == sta->sdata || 1088 (vlans && sdata->bss == sta->sdata->bss)) { 1089 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1090 list_add(&sta->free_list, &free_list); 1091 ret++; 1092 } 1093 } 1094 1095 if (!list_empty(&free_list)) { 1096 synchronize_net(); 1097 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1098 __sta_info_destroy_part2(sta); 1099 } 1100 mutex_unlock(&local->sta_mtx); 1101 1102 return ret; 1103 } 1104 1105 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1106 unsigned long exp_time) 1107 { 1108 struct ieee80211_local *local = sdata->local; 1109 struct sta_info *sta, *tmp; 1110 1111 mutex_lock(&local->sta_mtx); 1112 1113 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1114 unsigned long last_active = ieee80211_sta_last_active(sta); 1115 1116 if (sdata != sta->sdata) 1117 continue; 1118 1119 if (time_is_before_jiffies(last_active + exp_time)) { 1120 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1121 sta->sta.addr); 1122 1123 if (ieee80211_vif_is_mesh(&sdata->vif) && 1124 test_sta_flag(sta, WLAN_STA_PS_STA)) 1125 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1126 1127 WARN_ON(__sta_info_destroy(sta)); 1128 } 1129 } 1130 1131 mutex_unlock(&local->sta_mtx); 1132 } 1133 1134 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1135 const u8 *addr, 1136 const u8 *localaddr) 1137 { 1138 struct ieee80211_local *local = hw_to_local(hw); 1139 struct rhlist_head *tmp; 1140 struct sta_info *sta; 1141 1142 /* 1143 * Just return a random station if localaddr is NULL 1144 * ... first in list. 1145 */ 1146 for_each_sta_info(local, addr, sta, tmp) { 1147 if (localaddr && 1148 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1149 continue; 1150 if (!sta->uploaded) 1151 return NULL; 1152 return &sta->sta; 1153 } 1154 1155 return NULL; 1156 } 1157 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1158 1159 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1160 const u8 *addr) 1161 { 1162 struct sta_info *sta; 1163 1164 if (!vif) 1165 return NULL; 1166 1167 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1168 if (!sta) 1169 return NULL; 1170 1171 if (!sta->uploaded) 1172 return NULL; 1173 1174 return &sta->sta; 1175 } 1176 EXPORT_SYMBOL(ieee80211_find_sta); 1177 1178 /* powersave support code */ 1179 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1180 { 1181 struct ieee80211_sub_if_data *sdata = sta->sdata; 1182 struct ieee80211_local *local = sdata->local; 1183 struct sk_buff_head pending; 1184 int filtered = 0, buffered = 0, ac, i; 1185 unsigned long flags; 1186 struct ps_data *ps; 1187 1188 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1189 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1190 u.ap); 1191 1192 if (sdata->vif.type == NL80211_IFTYPE_AP) 1193 ps = &sdata->bss->ps; 1194 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1195 ps = &sdata->u.mesh.ps; 1196 else 1197 return; 1198 1199 clear_sta_flag(sta, WLAN_STA_SP); 1200 1201 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1202 sta->driver_buffered_tids = 0; 1203 sta->txq_buffered_tids = 0; 1204 1205 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1206 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1207 1208 if (sta->sta.txq[0]) { 1209 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1210 if (!txq_has_queue(sta->sta.txq[i])) 1211 continue; 1212 1213 drv_wake_tx_queue(local, to_txq_info(sta->sta.txq[i])); 1214 } 1215 } 1216 1217 skb_queue_head_init(&pending); 1218 1219 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1220 spin_lock(&sta->ps_lock); 1221 /* Send all buffered frames to the station */ 1222 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1223 int count = skb_queue_len(&pending), tmp; 1224 1225 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1226 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1227 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1228 tmp = skb_queue_len(&pending); 1229 filtered += tmp - count; 1230 count = tmp; 1231 1232 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1233 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1234 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1235 tmp = skb_queue_len(&pending); 1236 buffered += tmp - count; 1237 } 1238 1239 ieee80211_add_pending_skbs(local, &pending); 1240 1241 /* now we're no longer in the deliver code */ 1242 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1243 1244 /* The station might have polled and then woken up before we responded, 1245 * so clear these flags now to avoid them sticking around. 1246 */ 1247 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1248 clear_sta_flag(sta, WLAN_STA_UAPSD); 1249 spin_unlock(&sta->ps_lock); 1250 1251 atomic_dec(&ps->num_sta_ps); 1252 1253 /* This station just woke up and isn't aware of our SMPS state */ 1254 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1255 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1256 sdata->smps_mode) && 1257 sta->known_smps_mode != sdata->bss->req_smps && 1258 sta_info_tx_streams(sta) != 1) { 1259 ht_dbg(sdata, 1260 "%pM just woke up and MIMO capable - update SMPS\n", 1261 sta->sta.addr); 1262 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1263 sta->sta.addr, 1264 sdata->vif.bss_conf.bssid); 1265 } 1266 1267 local->total_ps_buffered -= buffered; 1268 1269 sta_info_recalc_tim(sta); 1270 1271 ps_dbg(sdata, 1272 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1273 sta->sta.addr, sta->sta.aid, filtered, buffered); 1274 1275 ieee80211_check_fast_xmit(sta); 1276 } 1277 1278 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1279 enum ieee80211_frame_release_type reason, 1280 bool call_driver, bool more_data) 1281 { 1282 struct ieee80211_sub_if_data *sdata = sta->sdata; 1283 struct ieee80211_local *local = sdata->local; 1284 struct ieee80211_qos_hdr *nullfunc; 1285 struct sk_buff *skb; 1286 int size = sizeof(*nullfunc); 1287 __le16 fc; 1288 bool qos = sta->sta.wme; 1289 struct ieee80211_tx_info *info; 1290 struct ieee80211_chanctx_conf *chanctx_conf; 1291 1292 if (qos) { 1293 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1294 IEEE80211_STYPE_QOS_NULLFUNC | 1295 IEEE80211_FCTL_FROMDS); 1296 } else { 1297 size -= 2; 1298 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1299 IEEE80211_STYPE_NULLFUNC | 1300 IEEE80211_FCTL_FROMDS); 1301 } 1302 1303 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1304 if (!skb) 1305 return; 1306 1307 skb_reserve(skb, local->hw.extra_tx_headroom); 1308 1309 nullfunc = (void *) skb_put(skb, size); 1310 nullfunc->frame_control = fc; 1311 nullfunc->duration_id = 0; 1312 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1313 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1314 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1315 nullfunc->seq_ctrl = 0; 1316 1317 skb->priority = tid; 1318 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1319 if (qos) { 1320 nullfunc->qos_ctrl = cpu_to_le16(tid); 1321 1322 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1323 nullfunc->qos_ctrl |= 1324 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1325 if (more_data) 1326 nullfunc->frame_control |= 1327 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1328 } 1329 } 1330 1331 info = IEEE80211_SKB_CB(skb); 1332 1333 /* 1334 * Tell TX path to send this frame even though the 1335 * STA may still remain is PS mode after this frame 1336 * exchange. Also set EOSP to indicate this packet 1337 * ends the poll/service period. 1338 */ 1339 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1340 IEEE80211_TX_STATUS_EOSP | 1341 IEEE80211_TX_CTL_REQ_TX_STATUS; 1342 1343 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1344 1345 if (call_driver) 1346 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1347 reason, false); 1348 1349 skb->dev = sdata->dev; 1350 1351 rcu_read_lock(); 1352 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1353 if (WARN_ON(!chanctx_conf)) { 1354 rcu_read_unlock(); 1355 kfree_skb(skb); 1356 return; 1357 } 1358 1359 info->band = chanctx_conf->def.chan->band; 1360 ieee80211_xmit(sdata, sta, skb); 1361 rcu_read_unlock(); 1362 } 1363 1364 static int find_highest_prio_tid(unsigned long tids) 1365 { 1366 /* lower 3 TIDs aren't ordered perfectly */ 1367 if (tids & 0xF8) 1368 return fls(tids) - 1; 1369 /* TID 0 is BE just like TID 3 */ 1370 if (tids & BIT(0)) 1371 return 0; 1372 return fls(tids) - 1; 1373 } 1374 1375 /* Indicates if the MORE_DATA bit should be set in the last 1376 * frame obtained by ieee80211_sta_ps_get_frames. 1377 * Note that driver_release_tids is relevant only if 1378 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1379 */ 1380 static bool 1381 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1382 enum ieee80211_frame_release_type reason, 1383 unsigned long driver_release_tids) 1384 { 1385 int ac; 1386 1387 /* If the driver has data on more than one TID then 1388 * certainly there's more data if we release just a 1389 * single frame now (from a single TID). This will 1390 * only happen for PS-Poll. 1391 */ 1392 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1393 hweight16(driver_release_tids) > 1) 1394 return true; 1395 1396 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1397 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1398 continue; 1399 1400 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1401 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1402 return true; 1403 } 1404 1405 return false; 1406 } 1407 1408 static void 1409 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1410 enum ieee80211_frame_release_type reason, 1411 struct sk_buff_head *frames, 1412 unsigned long *driver_release_tids) 1413 { 1414 struct ieee80211_sub_if_data *sdata = sta->sdata; 1415 struct ieee80211_local *local = sdata->local; 1416 int ac; 1417 1418 /* Get response frame(s) and more data bit for the last one. */ 1419 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1420 unsigned long tids; 1421 1422 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1423 continue; 1424 1425 tids = ieee80211_tids_for_ac(ac); 1426 1427 /* if we already have frames from software, then we can't also 1428 * release from hardware queues 1429 */ 1430 if (skb_queue_empty(frames)) { 1431 *driver_release_tids |= 1432 sta->driver_buffered_tids & tids; 1433 *driver_release_tids |= sta->txq_buffered_tids & tids; 1434 } 1435 1436 if (!*driver_release_tids) { 1437 struct sk_buff *skb; 1438 1439 while (n_frames > 0) { 1440 skb = skb_dequeue(&sta->tx_filtered[ac]); 1441 if (!skb) { 1442 skb = skb_dequeue( 1443 &sta->ps_tx_buf[ac]); 1444 if (skb) 1445 local->total_ps_buffered--; 1446 } 1447 if (!skb) 1448 break; 1449 n_frames--; 1450 __skb_queue_tail(frames, skb); 1451 } 1452 } 1453 1454 /* If we have more frames buffered on this AC, then abort the 1455 * loop since we can't send more data from other ACs before 1456 * the buffered frames from this. 1457 */ 1458 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1459 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1460 break; 1461 } 1462 } 1463 1464 static void 1465 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1466 int n_frames, u8 ignored_acs, 1467 enum ieee80211_frame_release_type reason) 1468 { 1469 struct ieee80211_sub_if_data *sdata = sta->sdata; 1470 struct ieee80211_local *local = sdata->local; 1471 unsigned long driver_release_tids = 0; 1472 struct sk_buff_head frames; 1473 bool more_data; 1474 1475 /* Service or PS-Poll period starts */ 1476 set_sta_flag(sta, WLAN_STA_SP); 1477 1478 __skb_queue_head_init(&frames); 1479 1480 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1481 &frames, &driver_release_tids); 1482 1483 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1484 1485 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1486 driver_release_tids = 1487 BIT(find_highest_prio_tid(driver_release_tids)); 1488 1489 if (skb_queue_empty(&frames) && !driver_release_tids) { 1490 int tid, ac; 1491 1492 /* 1493 * For PS-Poll, this can only happen due to a race condition 1494 * when we set the TIM bit and the station notices it, but 1495 * before it can poll for the frame we expire it. 1496 * 1497 * For uAPSD, this is said in the standard (11.2.1.5 h): 1498 * At each unscheduled SP for a non-AP STA, the AP shall 1499 * attempt to transmit at least one MSDU or MMPDU, but no 1500 * more than the value specified in the Max SP Length field 1501 * in the QoS Capability element from delivery-enabled ACs, 1502 * that are destined for the non-AP STA. 1503 * 1504 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1505 */ 1506 1507 /* This will evaluate to 1, 3, 5 or 7. */ 1508 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1509 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1510 break; 1511 tid = 7 - 2 * ac; 1512 1513 ieee80211_send_null_response(sta, tid, reason, true, false); 1514 } else if (!driver_release_tids) { 1515 struct sk_buff_head pending; 1516 struct sk_buff *skb; 1517 int num = 0; 1518 u16 tids = 0; 1519 bool need_null = false; 1520 1521 skb_queue_head_init(&pending); 1522 1523 while ((skb = __skb_dequeue(&frames))) { 1524 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1525 struct ieee80211_hdr *hdr = (void *) skb->data; 1526 u8 *qoshdr = NULL; 1527 1528 num++; 1529 1530 /* 1531 * Tell TX path to send this frame even though the 1532 * STA may still remain is PS mode after this frame 1533 * exchange. 1534 */ 1535 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1536 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1537 1538 /* 1539 * Use MoreData flag to indicate whether there are 1540 * more buffered frames for this STA 1541 */ 1542 if (more_data || !skb_queue_empty(&frames)) 1543 hdr->frame_control |= 1544 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1545 else 1546 hdr->frame_control &= 1547 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1548 1549 if (ieee80211_is_data_qos(hdr->frame_control) || 1550 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1551 qoshdr = ieee80211_get_qos_ctl(hdr); 1552 1553 tids |= BIT(skb->priority); 1554 1555 __skb_queue_tail(&pending, skb); 1556 1557 /* end service period after last frame or add one */ 1558 if (!skb_queue_empty(&frames)) 1559 continue; 1560 1561 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1562 /* for PS-Poll, there's only one frame */ 1563 info->flags |= IEEE80211_TX_STATUS_EOSP | 1564 IEEE80211_TX_CTL_REQ_TX_STATUS; 1565 break; 1566 } 1567 1568 /* For uAPSD, things are a bit more complicated. If the 1569 * last frame has a QoS header (i.e. is a QoS-data or 1570 * QoS-nulldata frame) then just set the EOSP bit there 1571 * and be done. 1572 * If the frame doesn't have a QoS header (which means 1573 * it should be a bufferable MMPDU) then we can't set 1574 * the EOSP bit in the QoS header; add a QoS-nulldata 1575 * frame to the list to send it after the MMPDU. 1576 * 1577 * Note that this code is only in the mac80211-release 1578 * code path, we assume that the driver will not buffer 1579 * anything but QoS-data frames, or if it does, will 1580 * create the QoS-nulldata frame by itself if needed. 1581 * 1582 * Cf. 802.11-2012 10.2.1.10 (c). 1583 */ 1584 if (qoshdr) { 1585 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1586 1587 info->flags |= IEEE80211_TX_STATUS_EOSP | 1588 IEEE80211_TX_CTL_REQ_TX_STATUS; 1589 } else { 1590 /* The standard isn't completely clear on this 1591 * as it says the more-data bit should be set 1592 * if there are more BUs. The QoS-Null frame 1593 * we're about to send isn't buffered yet, we 1594 * only create it below, but let's pretend it 1595 * was buffered just in case some clients only 1596 * expect more-data=0 when eosp=1. 1597 */ 1598 hdr->frame_control |= 1599 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1600 need_null = true; 1601 num++; 1602 } 1603 break; 1604 } 1605 1606 drv_allow_buffered_frames(local, sta, tids, num, 1607 reason, more_data); 1608 1609 ieee80211_add_pending_skbs(local, &pending); 1610 1611 if (need_null) 1612 ieee80211_send_null_response( 1613 sta, find_highest_prio_tid(tids), 1614 reason, false, false); 1615 1616 sta_info_recalc_tim(sta); 1617 } else { 1618 int tid; 1619 1620 /* 1621 * We need to release a frame that is buffered somewhere in the 1622 * driver ... it'll have to handle that. 1623 * Note that the driver also has to check the number of frames 1624 * on the TIDs we're releasing from - if there are more than 1625 * n_frames it has to set the more-data bit (if we didn't ask 1626 * it to set it anyway due to other buffered frames); if there 1627 * are fewer than n_frames it has to make sure to adjust that 1628 * to allow the service period to end properly. 1629 */ 1630 drv_release_buffered_frames(local, sta, driver_release_tids, 1631 n_frames, reason, more_data); 1632 1633 /* 1634 * Note that we don't recalculate the TIM bit here as it would 1635 * most likely have no effect at all unless the driver told us 1636 * that the TID(s) became empty before returning here from the 1637 * release function. 1638 * Either way, however, when the driver tells us that the TID(s) 1639 * became empty or we find that a txq became empty, we'll do the 1640 * TIM recalculation. 1641 */ 1642 1643 if (!sta->sta.txq[0]) 1644 return; 1645 1646 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1647 if (!(driver_release_tids & BIT(tid)) || 1648 txq_has_queue(sta->sta.txq[tid])) 1649 continue; 1650 1651 sta_info_recalc_tim(sta); 1652 break; 1653 } 1654 } 1655 } 1656 1657 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1658 { 1659 u8 ignore_for_response = sta->sta.uapsd_queues; 1660 1661 /* 1662 * If all ACs are delivery-enabled then we should reply 1663 * from any of them, if only some are enabled we reply 1664 * only from the non-enabled ones. 1665 */ 1666 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1667 ignore_for_response = 0; 1668 1669 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1670 IEEE80211_FRAME_RELEASE_PSPOLL); 1671 } 1672 1673 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1674 { 1675 int n_frames = sta->sta.max_sp; 1676 u8 delivery_enabled = sta->sta.uapsd_queues; 1677 1678 /* 1679 * If we ever grow support for TSPEC this might happen if 1680 * the TSPEC update from hostapd comes in between a trigger 1681 * frame setting WLAN_STA_UAPSD in the RX path and this 1682 * actually getting called. 1683 */ 1684 if (!delivery_enabled) 1685 return; 1686 1687 switch (sta->sta.max_sp) { 1688 case 1: 1689 n_frames = 2; 1690 break; 1691 case 2: 1692 n_frames = 4; 1693 break; 1694 case 3: 1695 n_frames = 6; 1696 break; 1697 case 0: 1698 /* XXX: what is a good value? */ 1699 n_frames = 128; 1700 break; 1701 } 1702 1703 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1704 IEEE80211_FRAME_RELEASE_UAPSD); 1705 } 1706 1707 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1708 struct ieee80211_sta *pubsta, bool block) 1709 { 1710 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1711 1712 trace_api_sta_block_awake(sta->local, pubsta, block); 1713 1714 if (block) { 1715 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1716 ieee80211_clear_fast_xmit(sta); 1717 return; 1718 } 1719 1720 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1721 return; 1722 1723 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1724 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1725 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1726 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1727 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1728 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1729 /* must be asleep in this case */ 1730 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1731 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1732 } else { 1733 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1734 ieee80211_check_fast_xmit(sta); 1735 } 1736 } 1737 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1738 1739 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1740 { 1741 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1742 struct ieee80211_local *local = sta->local; 1743 1744 trace_api_eosp(local, pubsta); 1745 1746 clear_sta_flag(sta, WLAN_STA_SP); 1747 } 1748 EXPORT_SYMBOL(ieee80211_sta_eosp); 1749 1750 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1751 { 1752 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1753 enum ieee80211_frame_release_type reason; 1754 bool more_data; 1755 1756 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1757 1758 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1759 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1760 reason, 0); 1761 1762 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1763 } 1764 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1765 1766 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1767 u8 tid, bool buffered) 1768 { 1769 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1770 1771 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1772 return; 1773 1774 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1775 1776 if (buffered) 1777 set_bit(tid, &sta->driver_buffered_tids); 1778 else 1779 clear_bit(tid, &sta->driver_buffered_tids); 1780 1781 sta_info_recalc_tim(sta); 1782 } 1783 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1784 1785 static void 1786 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 1787 { 1788 struct ieee80211_local *local = sdata->local; 1789 bool allow_p2p_go_ps = sdata->vif.p2p; 1790 struct sta_info *sta; 1791 1792 rcu_read_lock(); 1793 list_for_each_entry_rcu(sta, &local->sta_list, list) { 1794 if (sdata != sta->sdata || 1795 !test_sta_flag(sta, WLAN_STA_ASSOC)) 1796 continue; 1797 if (!sta->sta.support_p2p_ps) { 1798 allow_p2p_go_ps = false; 1799 break; 1800 } 1801 } 1802 rcu_read_unlock(); 1803 1804 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 1805 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 1806 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 1807 } 1808 } 1809 1810 int sta_info_move_state(struct sta_info *sta, 1811 enum ieee80211_sta_state new_state) 1812 { 1813 might_sleep(); 1814 1815 if (sta->sta_state == new_state) 1816 return 0; 1817 1818 /* check allowed transitions first */ 1819 1820 switch (new_state) { 1821 case IEEE80211_STA_NONE: 1822 if (sta->sta_state != IEEE80211_STA_AUTH) 1823 return -EINVAL; 1824 break; 1825 case IEEE80211_STA_AUTH: 1826 if (sta->sta_state != IEEE80211_STA_NONE && 1827 sta->sta_state != IEEE80211_STA_ASSOC) 1828 return -EINVAL; 1829 break; 1830 case IEEE80211_STA_ASSOC: 1831 if (sta->sta_state != IEEE80211_STA_AUTH && 1832 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1833 return -EINVAL; 1834 break; 1835 case IEEE80211_STA_AUTHORIZED: 1836 if (sta->sta_state != IEEE80211_STA_ASSOC) 1837 return -EINVAL; 1838 break; 1839 default: 1840 WARN(1, "invalid state %d", new_state); 1841 return -EINVAL; 1842 } 1843 1844 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1845 sta->sta.addr, new_state); 1846 1847 /* 1848 * notify the driver before the actual changes so it can 1849 * fail the transition 1850 */ 1851 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1852 int err = drv_sta_state(sta->local, sta->sdata, sta, 1853 sta->sta_state, new_state); 1854 if (err) 1855 return err; 1856 } 1857 1858 /* reflect the change in all state variables */ 1859 1860 switch (new_state) { 1861 case IEEE80211_STA_NONE: 1862 if (sta->sta_state == IEEE80211_STA_AUTH) 1863 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1864 break; 1865 case IEEE80211_STA_AUTH: 1866 if (sta->sta_state == IEEE80211_STA_NONE) { 1867 set_bit(WLAN_STA_AUTH, &sta->_flags); 1868 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1869 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1870 ieee80211_recalc_min_chandef(sta->sdata); 1871 if (!sta->sta.support_p2p_ps) 1872 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1873 } 1874 break; 1875 case IEEE80211_STA_ASSOC: 1876 if (sta->sta_state == IEEE80211_STA_AUTH) { 1877 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1878 ieee80211_recalc_min_chandef(sta->sdata); 1879 if (!sta->sta.support_p2p_ps) 1880 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1881 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1882 ieee80211_vif_dec_num_mcast(sta->sdata); 1883 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1884 ieee80211_clear_fast_xmit(sta); 1885 ieee80211_clear_fast_rx(sta); 1886 } 1887 break; 1888 case IEEE80211_STA_AUTHORIZED: 1889 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1890 ieee80211_vif_inc_num_mcast(sta->sdata); 1891 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1892 ieee80211_check_fast_xmit(sta); 1893 ieee80211_check_fast_rx(sta); 1894 } 1895 break; 1896 default: 1897 break; 1898 } 1899 1900 sta->sta_state = new_state; 1901 1902 return 0; 1903 } 1904 1905 u8 sta_info_tx_streams(struct sta_info *sta) 1906 { 1907 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1908 u8 rx_streams; 1909 1910 if (!sta->sta.ht_cap.ht_supported) 1911 return 1; 1912 1913 if (sta->sta.vht_cap.vht_supported) { 1914 int i; 1915 u16 tx_mcs_map = 1916 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1917 1918 for (i = 7; i >= 0; i--) 1919 if ((tx_mcs_map & (0x3 << (i * 2))) != 1920 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1921 return i + 1; 1922 } 1923 1924 if (ht_cap->mcs.rx_mask[3]) 1925 rx_streams = 4; 1926 else if (ht_cap->mcs.rx_mask[2]) 1927 rx_streams = 3; 1928 else if (ht_cap->mcs.rx_mask[1]) 1929 rx_streams = 2; 1930 else 1931 rx_streams = 1; 1932 1933 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1934 return rx_streams; 1935 1936 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1937 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1938 } 1939 1940 static struct ieee80211_sta_rx_stats * 1941 sta_get_last_rx_stats(struct sta_info *sta) 1942 { 1943 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 1944 struct ieee80211_local *local = sta->local; 1945 int cpu; 1946 1947 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 1948 return stats; 1949 1950 for_each_possible_cpu(cpu) { 1951 struct ieee80211_sta_rx_stats *cpustats; 1952 1953 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 1954 1955 if (time_after(cpustats->last_rx, stats->last_rx)) 1956 stats = cpustats; 1957 } 1958 1959 return stats; 1960 } 1961 1962 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate, 1963 struct rate_info *rinfo) 1964 { 1965 rinfo->bw = STA_STATS_GET(BW, rate); 1966 1967 switch (STA_STATS_GET(TYPE, rate)) { 1968 case STA_STATS_RATE_TYPE_VHT: 1969 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 1970 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 1971 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 1972 if (STA_STATS_GET(SGI, rate)) 1973 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1974 break; 1975 case STA_STATS_RATE_TYPE_HT: 1976 rinfo->flags = RATE_INFO_FLAGS_MCS; 1977 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 1978 if (STA_STATS_GET(SGI, rate)) 1979 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 1980 break; 1981 case STA_STATS_RATE_TYPE_LEGACY: { 1982 struct ieee80211_supported_band *sband; 1983 u16 brate; 1984 unsigned int shift; 1985 int band = STA_STATS_GET(LEGACY_BAND, rate); 1986 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 1987 1988 rinfo->flags = 0; 1989 sband = local->hw.wiphy->bands[band]; 1990 brate = sband->bitrates[rate_idx].bitrate; 1991 if (rinfo->bw == RATE_INFO_BW_5) 1992 shift = 2; 1993 else if (rinfo->bw == RATE_INFO_BW_10) 1994 shift = 1; 1995 else 1996 shift = 0; 1997 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 1998 break; 1999 } 2000 } 2001 } 2002 2003 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2004 { 2005 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2006 2007 if (rate == STA_STATS_RATE_INVALID) 2008 return -EINVAL; 2009 2010 sta_stats_decode_rate(sta->local, rate, rinfo); 2011 return 0; 2012 } 2013 2014 static void sta_set_tidstats(struct sta_info *sta, 2015 struct cfg80211_tid_stats *tidstats, 2016 int tid) 2017 { 2018 struct ieee80211_local *local = sta->local; 2019 2020 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2021 unsigned int start; 2022 2023 do { 2024 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2025 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2026 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2027 2028 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2029 } 2030 2031 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2032 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2033 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2034 } 2035 2036 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2037 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2038 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2039 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2040 } 2041 2042 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2043 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2044 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2045 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2046 } 2047 } 2048 2049 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2050 { 2051 unsigned int start; 2052 u64 value; 2053 2054 do { 2055 start = u64_stats_fetch_begin(&rxstats->syncp); 2056 value = rxstats->bytes; 2057 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2058 2059 return value; 2060 } 2061 2062 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 2063 { 2064 struct ieee80211_sub_if_data *sdata = sta->sdata; 2065 struct ieee80211_local *local = sdata->local; 2066 u32 thr = 0; 2067 int i, ac, cpu; 2068 struct ieee80211_sta_rx_stats *last_rxstats; 2069 2070 last_rxstats = sta_get_last_rx_stats(sta); 2071 2072 sinfo->generation = sdata->local->sta_generation; 2073 2074 /* do before driver, so beacon filtering drivers have a 2075 * chance to e.g. just add the number of filtered beacons 2076 * (or just modify the value entirely, of course) 2077 */ 2078 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2079 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2080 2081 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2082 2083 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 2084 BIT(NL80211_STA_INFO_STA_FLAGS) | 2085 BIT(NL80211_STA_INFO_BSS_PARAM) | 2086 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 2087 BIT(NL80211_STA_INFO_RX_DROP_MISC); 2088 2089 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2090 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2091 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 2092 } 2093 2094 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2095 sinfo->inactive_time = 2096 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2097 2098 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 2099 BIT(NL80211_STA_INFO_TX_BYTES)))) { 2100 sinfo->tx_bytes = 0; 2101 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2102 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2103 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 2104 } 2105 2106 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 2107 sinfo->tx_packets = 0; 2108 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2109 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2110 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 2111 } 2112 2113 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 2114 BIT(NL80211_STA_INFO_RX_BYTES)))) { 2115 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2116 2117 if (sta->pcpu_rx_stats) { 2118 for_each_possible_cpu(cpu) { 2119 struct ieee80211_sta_rx_stats *cpurxs; 2120 2121 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2122 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2123 } 2124 } 2125 2126 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 2127 } 2128 2129 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 2130 sinfo->rx_packets = sta->rx_stats.packets; 2131 if (sta->pcpu_rx_stats) { 2132 for_each_possible_cpu(cpu) { 2133 struct ieee80211_sta_rx_stats *cpurxs; 2134 2135 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2136 sinfo->rx_packets += cpurxs->packets; 2137 } 2138 } 2139 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 2140 } 2141 2142 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 2143 sinfo->tx_retries = sta->status_stats.retry_count; 2144 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 2145 } 2146 2147 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 2148 sinfo->tx_failed = sta->status_stats.retry_failed; 2149 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 2150 } 2151 2152 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2153 if (sta->pcpu_rx_stats) { 2154 for_each_possible_cpu(cpu) { 2155 struct ieee80211_sta_rx_stats *cpurxs; 2156 2157 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2158 sinfo->rx_packets += cpurxs->dropped; 2159 } 2160 } 2161 2162 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2163 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2164 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 2165 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2166 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2167 } 2168 2169 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2170 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2171 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 2172 sinfo->signal = (s8)last_rxstats->last_signal; 2173 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 2174 } 2175 2176 if (!sta->pcpu_rx_stats && 2177 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 2178 sinfo->signal_avg = 2179 -ewma_signal_read(&sta->rx_stats_avg.signal); 2180 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 2181 } 2182 } 2183 2184 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2185 * the sta->rx_stats struct, so the check here is fine with and without 2186 * pcpu statistics 2187 */ 2188 if (last_rxstats->chains && 2189 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2190 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2191 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); 2192 if (!sta->pcpu_rx_stats) 2193 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2194 2195 sinfo->chains = last_rxstats->chains; 2196 2197 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2198 sinfo->chain_signal[i] = 2199 last_rxstats->chain_signal_last[i]; 2200 sinfo->chain_signal_avg[i] = 2201 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2202 } 2203 } 2204 2205 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 2206 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2207 &sinfo->txrate); 2208 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 2209 } 2210 2211 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 2212 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2213 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 2214 } 2215 2216 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 2217 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 2218 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 2219 2220 sta_set_tidstats(sta, tidstats, i); 2221 } 2222 2223 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2224 #ifdef CONFIG_MAC80211_MESH 2225 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2226 BIT(NL80211_STA_INFO_PLID) | 2227 BIT(NL80211_STA_INFO_PLINK_STATE) | 2228 BIT(NL80211_STA_INFO_LOCAL_PM) | 2229 BIT(NL80211_STA_INFO_PEER_PM) | 2230 BIT(NL80211_STA_INFO_NONPEER_PM); 2231 2232 sinfo->llid = sta->mesh->llid; 2233 sinfo->plid = sta->mesh->plid; 2234 sinfo->plink_state = sta->mesh->plink_state; 2235 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2236 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2237 sinfo->t_offset = sta->mesh->t_offset; 2238 } 2239 sinfo->local_pm = sta->mesh->local_pm; 2240 sinfo->peer_pm = sta->mesh->peer_pm; 2241 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2242 #endif 2243 } 2244 2245 sinfo->bss_param.flags = 0; 2246 if (sdata->vif.bss_conf.use_cts_prot) 2247 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2248 if (sdata->vif.bss_conf.use_short_preamble) 2249 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2250 if (sdata->vif.bss_conf.use_short_slot) 2251 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2252 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2253 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2254 2255 sinfo->sta_flags.set = 0; 2256 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2257 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2258 BIT(NL80211_STA_FLAG_WME) | 2259 BIT(NL80211_STA_FLAG_MFP) | 2260 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2261 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2262 BIT(NL80211_STA_FLAG_TDLS_PEER); 2263 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2264 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2265 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2266 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2267 if (sta->sta.wme) 2268 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2269 if (test_sta_flag(sta, WLAN_STA_MFP)) 2270 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2271 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2272 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2273 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2274 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2275 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2276 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2277 2278 thr = sta_get_expected_throughput(sta); 2279 2280 if (thr != 0) { 2281 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2282 sinfo->expected_throughput = thr; 2283 } 2284 } 2285 2286 u32 sta_get_expected_throughput(struct sta_info *sta) 2287 { 2288 struct ieee80211_sub_if_data *sdata = sta->sdata; 2289 struct ieee80211_local *local = sdata->local; 2290 struct rate_control_ref *ref = NULL; 2291 u32 thr = 0; 2292 2293 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2294 ref = local->rate_ctrl; 2295 2296 /* check if the driver has a SW RC implementation */ 2297 if (ref && ref->ops->get_expected_throughput) 2298 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2299 else 2300 thr = drv_get_expected_throughput(local, sta); 2301 2302 return thr; 2303 } 2304 2305 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2306 { 2307 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2308 2309 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2310 return stats->last_rx; 2311 return sta->status_stats.last_ack; 2312 } 2313