1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2013-2014 Intel Mobile Communications GmbH 6 * Copyright (C) 2015 - 2017 Intel Deutschland GmbH 7 * Copyright (C) 2018-2021 Intel Corporation 8 */ 9 10 #include <linux/module.h> 11 #include <linux/init.h> 12 #include <linux/etherdevice.h> 13 #include <linux/netdevice.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/skbuff.h> 17 #include <linux/if_arp.h> 18 #include <linux/timer.h> 19 #include <linux/rtnetlink.h> 20 21 #include <net/codel.h> 22 #include <net/mac80211.h> 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "rate.h" 26 #include "sta_info.h" 27 #include "debugfs_sta.h" 28 #include "mesh.h" 29 #include "wme.h" 30 31 /** 32 * DOC: STA information lifetime rules 33 * 34 * STA info structures (&struct sta_info) are managed in a hash table 35 * for faster lookup and a list for iteration. They are managed using 36 * RCU, i.e. access to the list and hash table is protected by RCU. 37 * 38 * Upon allocating a STA info structure with sta_info_alloc(), the caller 39 * owns that structure. It must then insert it into the hash table using 40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 41 * case (which acquires an rcu read section but must not be called from 42 * within one) will the pointer still be valid after the call. Note that 43 * the caller may not do much with the STA info before inserting it, in 44 * particular, it may not start any mesh peer link management or add 45 * encryption keys. 46 * 47 * When the insertion fails (sta_info_insert()) returns non-zero), the 48 * structure will have been freed by sta_info_insert()! 49 * 50 * Station entries are added by mac80211 when you establish a link with a 51 * peer. This means different things for the different type of interfaces 52 * we support. For a regular station this mean we add the AP sta when we 53 * receive an association response from the AP. For IBSS this occurs when 54 * get to know about a peer on the same IBSS. For WDS we add the sta for 55 * the peer immediately upon device open. When using AP mode we add stations 56 * for each respective station upon request from userspace through nl80211. 57 * 58 * In order to remove a STA info structure, various sta_info_destroy_*() 59 * calls are available. 60 * 61 * There is no concept of ownership on a STA entry, each structure is 62 * owned by the global hash table/list until it is removed. All users of 63 * the structure need to be RCU protected so that the structure won't be 64 * freed before they are done using it. 65 */ 66 67 static const struct rhashtable_params sta_rht_params = { 68 .nelem_hint = 3, /* start small */ 69 .automatic_shrinking = true, 70 .head_offset = offsetof(struct sta_info, hash_node), 71 .key_offset = offsetof(struct sta_info, addr), 72 .key_len = ETH_ALEN, 73 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 74 }; 75 76 /* Caller must hold local->sta_mtx */ 77 static int sta_info_hash_del(struct ieee80211_local *local, 78 struct sta_info *sta) 79 { 80 return rhltable_remove(&local->sta_hash, &sta->hash_node, 81 sta_rht_params); 82 } 83 84 static void __cleanup_single_sta(struct sta_info *sta) 85 { 86 int ac, i; 87 struct tid_ampdu_tx *tid_tx; 88 struct ieee80211_sub_if_data *sdata = sta->sdata; 89 struct ieee80211_local *local = sdata->local; 90 struct ps_data *ps; 91 92 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 93 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 94 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 95 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 96 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 97 ps = &sdata->bss->ps; 98 else if (ieee80211_vif_is_mesh(&sdata->vif)) 99 ps = &sdata->u.mesh.ps; 100 else 101 return; 102 103 clear_sta_flag(sta, WLAN_STA_PS_STA); 104 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 105 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 106 107 atomic_dec(&ps->num_sta_ps); 108 } 109 110 if (sta->sta.txq[0]) { 111 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 112 struct txq_info *txqi; 113 114 if (!sta->sta.txq[i]) 115 continue; 116 117 txqi = to_txq_info(sta->sta.txq[i]); 118 119 ieee80211_txq_purge(local, txqi); 120 } 121 } 122 123 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 124 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 125 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 127 } 128 129 if (ieee80211_vif_is_mesh(&sdata->vif)) 130 mesh_sta_cleanup(sta); 131 132 cancel_work_sync(&sta->drv_deliver_wk); 133 134 /* 135 * Destroy aggregation state here. It would be nice to wait for the 136 * driver to finish aggregation stop and then clean up, but for now 137 * drivers have to handle aggregation stop being requested, followed 138 * directly by station destruction. 139 */ 140 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 141 kfree(sta->ampdu_mlme.tid_start_tx[i]); 142 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 143 if (!tid_tx) 144 continue; 145 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 146 kfree(tid_tx); 147 } 148 } 149 150 static void cleanup_single_sta(struct sta_info *sta) 151 { 152 struct ieee80211_sub_if_data *sdata = sta->sdata; 153 struct ieee80211_local *local = sdata->local; 154 155 __cleanup_single_sta(sta); 156 sta_info_free(local, sta); 157 } 158 159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local, 160 const u8 *addr) 161 { 162 return rhltable_lookup(&local->sta_hash, addr, sta_rht_params); 163 } 164 165 /* protected by RCU */ 166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 167 const u8 *addr) 168 { 169 struct ieee80211_local *local = sdata->local; 170 struct rhlist_head *tmp; 171 struct sta_info *sta; 172 173 rcu_read_lock(); 174 for_each_sta_info(local, addr, sta, tmp) { 175 if (sta->sdata == sdata) { 176 rcu_read_unlock(); 177 /* this is safe as the caller must already hold 178 * another rcu read section or the mutex 179 */ 180 return sta; 181 } 182 } 183 rcu_read_unlock(); 184 return NULL; 185 } 186 187 /* 188 * Get sta info either from the specified interface 189 * or from one of its vlans 190 */ 191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 192 const u8 *addr) 193 { 194 struct ieee80211_local *local = sdata->local; 195 struct rhlist_head *tmp; 196 struct sta_info *sta; 197 198 rcu_read_lock(); 199 for_each_sta_info(local, addr, sta, tmp) { 200 if (sta->sdata == sdata || 201 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 202 rcu_read_unlock(); 203 /* this is safe as the caller must already hold 204 * another rcu read section or the mutex 205 */ 206 return sta; 207 } 208 } 209 rcu_read_unlock(); 210 return NULL; 211 } 212 213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local, 214 const u8 *sta_addr, const u8 *vif_addr) 215 { 216 struct rhlist_head *tmp; 217 struct sta_info *sta; 218 219 for_each_sta_info(local, sta_addr, sta, tmp) { 220 if (ether_addr_equal(vif_addr, sta->sdata->vif.addr)) 221 return sta; 222 } 223 224 return NULL; 225 } 226 227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 228 int idx) 229 { 230 struct ieee80211_local *local = sdata->local; 231 struct sta_info *sta; 232 int i = 0; 233 234 list_for_each_entry_rcu(sta, &local->sta_list, list, 235 lockdep_is_held(&local->sta_mtx)) { 236 if (sdata != sta->sdata) 237 continue; 238 if (i < idx) { 239 ++i; 240 continue; 241 } 242 return sta; 243 } 244 245 return NULL; 246 } 247 248 /** 249 * sta_info_free - free STA 250 * 251 * @local: pointer to the global information 252 * @sta: STA info to free 253 * 254 * This function must undo everything done by sta_info_alloc() 255 * that may happen before sta_info_insert(). It may only be 256 * called when sta_info_insert() has not been attempted (and 257 * if that fails, the station is freed anyway.) 258 */ 259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 260 { 261 /* 262 * If we had used sta_info_pre_move_state() then we might not 263 * have gone through the state transitions down again, so do 264 * it here now (and warn if it's inserted). 265 * 266 * This will clear state such as fast TX/RX that may have been 267 * allocated during state transitions. 268 */ 269 while (sta->sta_state > IEEE80211_STA_NONE) { 270 int ret; 271 272 WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED)); 273 274 ret = sta_info_move_state(sta, sta->sta_state - 1); 275 if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret)) 276 break; 277 } 278 279 if (sta->rate_ctrl) 280 rate_control_free_sta(sta); 281 282 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 283 284 if (sta->sta.txq[0]) 285 kfree(to_txq_info(sta->sta.txq[0])); 286 kfree(rcu_dereference_raw(sta->sta.rates)); 287 #ifdef CONFIG_MAC80211_MESH 288 kfree(sta->mesh); 289 #endif 290 free_percpu(sta->pcpu_rx_stats); 291 kfree(sta); 292 } 293 294 /* Caller must hold local->sta_mtx */ 295 static int sta_info_hash_add(struct ieee80211_local *local, 296 struct sta_info *sta) 297 { 298 return rhltable_insert(&local->sta_hash, &sta->hash_node, 299 sta_rht_params); 300 } 301 302 static void sta_deliver_ps_frames(struct work_struct *wk) 303 { 304 struct sta_info *sta; 305 306 sta = container_of(wk, struct sta_info, drv_deliver_wk); 307 308 if (sta->dead) 309 return; 310 311 local_bh_disable(); 312 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 313 ieee80211_sta_ps_deliver_wakeup(sta); 314 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 315 ieee80211_sta_ps_deliver_poll_response(sta); 316 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 317 ieee80211_sta_ps_deliver_uapsd(sta); 318 local_bh_enable(); 319 } 320 321 static int sta_prepare_rate_control(struct ieee80211_local *local, 322 struct sta_info *sta, gfp_t gfp) 323 { 324 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 325 return 0; 326 327 sta->rate_ctrl = local->rate_ctrl; 328 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 329 sta, gfp); 330 if (!sta->rate_ctrl_priv) 331 return -ENOMEM; 332 333 return 0; 334 } 335 336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 337 const u8 *addr, gfp_t gfp) 338 { 339 struct ieee80211_local *local = sdata->local; 340 struct ieee80211_hw *hw = &local->hw; 341 struct sta_info *sta; 342 int i; 343 344 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 345 if (!sta) 346 return NULL; 347 348 if (ieee80211_hw_check(hw, USES_RSS)) { 349 sta->pcpu_rx_stats = 350 alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp); 351 if (!sta->pcpu_rx_stats) 352 goto free; 353 } 354 355 spin_lock_init(&sta->lock); 356 spin_lock_init(&sta->ps_lock); 357 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 358 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 359 mutex_init(&sta->ampdu_mlme.mtx); 360 #ifdef CONFIG_MAC80211_MESH 361 if (ieee80211_vif_is_mesh(&sdata->vif)) { 362 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 363 if (!sta->mesh) 364 goto free; 365 sta->mesh->plink_sta = sta; 366 spin_lock_init(&sta->mesh->plink_lock); 367 if (ieee80211_vif_is_mesh(&sdata->vif) && 368 !sdata->u.mesh.user_mpm) 369 timer_setup(&sta->mesh->plink_timer, mesh_plink_timer, 370 0); 371 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 372 } 373 #endif 374 375 memcpy(sta->addr, addr, ETH_ALEN); 376 memcpy(sta->sta.addr, addr, ETH_ALEN); 377 sta->sta.max_rx_aggregation_subframes = 378 local->hw.max_rx_aggregation_subframes; 379 380 /* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only. 381 * The Tx path starts to use a key as soon as the key slot ptk_idx 382 * references to is not NULL. To not use the initial Rx-only key 383 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid 384 * which always will refer to a NULL key. 385 */ 386 BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX); 387 sta->ptk_idx = INVALID_PTK_KEYIDX; 388 389 sta->local = local; 390 sta->sdata = sdata; 391 sta->rx_stats.last_rx = jiffies; 392 393 u64_stats_init(&sta->rx_stats.syncp); 394 395 ieee80211_init_frag_cache(&sta->frags); 396 397 sta->sta_state = IEEE80211_STA_NONE; 398 399 /* Mark TID as unreserved */ 400 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 401 402 sta->last_connected = ktime_get_seconds(); 403 ewma_signal_init(&sta->rx_stats_avg.signal); 404 ewma_avg_signal_init(&sta->status_stats.avg_ack_signal); 405 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 406 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 407 408 if (local->ops->wake_tx_queue) { 409 void *txq_data; 410 int size = sizeof(struct txq_info) + 411 ALIGN(hw->txq_data_size, sizeof(void *)); 412 413 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 414 if (!txq_data) 415 goto free; 416 417 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 418 struct txq_info *txq = txq_data + i * size; 419 420 /* might not do anything for the bufferable MMPDU TXQ */ 421 ieee80211_txq_init(sdata, sta, txq, i); 422 } 423 } 424 425 if (sta_prepare_rate_control(local, sta, gfp)) 426 goto free_txq; 427 428 429 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 430 skb_queue_head_init(&sta->ps_tx_buf[i]); 431 skb_queue_head_init(&sta->tx_filtered[i]); 432 init_airtime_info(&sta->airtime[i], &local->airtime[i]); 433 } 434 435 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 436 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 437 438 for (i = 0; i < NUM_NL80211_BANDS; i++) { 439 u32 mandatory = 0; 440 int r; 441 442 if (!hw->wiphy->bands[i]) 443 continue; 444 445 switch (i) { 446 case NL80211_BAND_2GHZ: 447 /* 448 * We use both here, even if we cannot really know for 449 * sure the station will support both, but the only use 450 * for this is when we don't know anything yet and send 451 * management frames, and then we'll pick the lowest 452 * possible rate anyway. 453 * If we don't include _G here, we cannot find a rate 454 * in P2P, and thus trigger the WARN_ONCE() in rate.c 455 */ 456 mandatory = IEEE80211_RATE_MANDATORY_B | 457 IEEE80211_RATE_MANDATORY_G; 458 break; 459 case NL80211_BAND_5GHZ: 460 mandatory = IEEE80211_RATE_MANDATORY_A; 461 break; 462 case NL80211_BAND_60GHZ: 463 WARN_ON(1); 464 mandatory = 0; 465 break; 466 } 467 468 for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) { 469 struct ieee80211_rate *rate; 470 471 rate = &hw->wiphy->bands[i]->bitrates[r]; 472 473 if (!(rate->flags & mandatory)) 474 continue; 475 sta->sta.supp_rates[i] |= BIT(r); 476 } 477 } 478 479 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 480 if (sdata->vif.type == NL80211_IFTYPE_AP || 481 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 482 struct ieee80211_supported_band *sband; 483 u8 smps; 484 485 sband = ieee80211_get_sband(sdata); 486 if (!sband) 487 goto free_txq; 488 489 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 490 IEEE80211_HT_CAP_SM_PS_SHIFT; 491 /* 492 * Assume that hostapd advertises our caps in the beacon and 493 * this is the known_smps_mode for a station that just assciated 494 */ 495 switch (smps) { 496 case WLAN_HT_SMPS_CONTROL_DISABLED: 497 sta->known_smps_mode = IEEE80211_SMPS_OFF; 498 break; 499 case WLAN_HT_SMPS_CONTROL_STATIC: 500 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 501 break; 502 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 503 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 504 break; 505 default: 506 WARN_ON(1); 507 } 508 } 509 510 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 511 512 sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD; 513 sta->cparams.target = MS2TIME(20); 514 sta->cparams.interval = MS2TIME(100); 515 sta->cparams.ecn = true; 516 sta->cparams.ce_threshold_selector = 0; 517 sta->cparams.ce_threshold_mask = 0; 518 519 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 520 521 return sta; 522 523 free_txq: 524 if (sta->sta.txq[0]) 525 kfree(to_txq_info(sta->sta.txq[0])); 526 free: 527 free_percpu(sta->pcpu_rx_stats); 528 #ifdef CONFIG_MAC80211_MESH 529 kfree(sta->mesh); 530 #endif 531 kfree(sta); 532 return NULL; 533 } 534 535 static int sta_info_insert_check(struct sta_info *sta) 536 { 537 struct ieee80211_sub_if_data *sdata = sta->sdata; 538 539 /* 540 * Can't be a WARN_ON because it can be triggered through a race: 541 * something inserts a STA (on one CPU) without holding the RTNL 542 * and another CPU turns off the net device. 543 */ 544 if (unlikely(!ieee80211_sdata_running(sdata))) 545 return -ENETDOWN; 546 547 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 548 !is_valid_ether_addr(sta->sta.addr))) 549 return -EINVAL; 550 551 /* The RCU read lock is required by rhashtable due to 552 * asynchronous resize/rehash. We also require the mutex 553 * for correctness. 554 */ 555 rcu_read_lock(); 556 lockdep_assert_held(&sdata->local->sta_mtx); 557 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 558 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 559 rcu_read_unlock(); 560 return -ENOTUNIQ; 561 } 562 rcu_read_unlock(); 563 564 return 0; 565 } 566 567 static int sta_info_insert_drv_state(struct ieee80211_local *local, 568 struct ieee80211_sub_if_data *sdata, 569 struct sta_info *sta) 570 { 571 enum ieee80211_sta_state state; 572 int err = 0; 573 574 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 575 err = drv_sta_state(local, sdata, sta, state, state + 1); 576 if (err) 577 break; 578 } 579 580 if (!err) { 581 /* 582 * Drivers using legacy sta_add/sta_remove callbacks only 583 * get uploaded set to true after sta_add is called. 584 */ 585 if (!local->ops->sta_add) 586 sta->uploaded = true; 587 return 0; 588 } 589 590 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 591 sdata_info(sdata, 592 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 593 sta->sta.addr, state + 1, err); 594 err = 0; 595 } 596 597 /* unwind on error */ 598 for (; state > IEEE80211_STA_NOTEXIST; state--) 599 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 600 601 return err; 602 } 603 604 static void 605 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 606 { 607 struct ieee80211_local *local = sdata->local; 608 bool allow_p2p_go_ps = sdata->vif.p2p; 609 struct sta_info *sta; 610 611 rcu_read_lock(); 612 list_for_each_entry_rcu(sta, &local->sta_list, list) { 613 if (sdata != sta->sdata || 614 !test_sta_flag(sta, WLAN_STA_ASSOC)) 615 continue; 616 if (!sta->sta.support_p2p_ps) { 617 allow_p2p_go_ps = false; 618 break; 619 } 620 } 621 rcu_read_unlock(); 622 623 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 624 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 625 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 626 } 627 } 628 629 /* 630 * should be called with sta_mtx locked 631 * this function replaces the mutex lock 632 * with a RCU lock 633 */ 634 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 635 { 636 struct ieee80211_local *local = sta->local; 637 struct ieee80211_sub_if_data *sdata = sta->sdata; 638 struct station_info *sinfo = NULL; 639 int err = 0; 640 641 lockdep_assert_held(&local->sta_mtx); 642 643 /* check if STA exists already */ 644 if (sta_info_get_bss(sdata, sta->sta.addr)) { 645 err = -EEXIST; 646 goto out_err; 647 } 648 649 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 650 if (!sinfo) { 651 err = -ENOMEM; 652 goto out_err; 653 } 654 655 local->num_sta++; 656 local->sta_generation++; 657 smp_mb(); 658 659 /* simplify things and don't accept BA sessions yet */ 660 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 661 662 /* make the station visible */ 663 err = sta_info_hash_add(local, sta); 664 if (err) 665 goto out_drop_sta; 666 667 list_add_tail_rcu(&sta->list, &local->sta_list); 668 669 /* notify driver */ 670 err = sta_info_insert_drv_state(local, sdata, sta); 671 if (err) 672 goto out_remove; 673 674 set_sta_flag(sta, WLAN_STA_INSERTED); 675 676 if (sta->sta_state >= IEEE80211_STA_ASSOC) { 677 ieee80211_recalc_min_chandef(sta->sdata); 678 if (!sta->sta.support_p2p_ps) 679 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 680 } 681 682 /* accept BA sessions now */ 683 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 684 685 ieee80211_sta_debugfs_add(sta); 686 rate_control_add_sta_debugfs(sta); 687 688 sinfo->generation = local->sta_generation; 689 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 690 kfree(sinfo); 691 692 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 693 694 /* move reference to rcu-protected */ 695 rcu_read_lock(); 696 mutex_unlock(&local->sta_mtx); 697 698 if (ieee80211_vif_is_mesh(&sdata->vif)) 699 mesh_accept_plinks_update(sdata); 700 701 return 0; 702 out_remove: 703 sta_info_hash_del(local, sta); 704 list_del_rcu(&sta->list); 705 out_drop_sta: 706 local->num_sta--; 707 synchronize_net(); 708 cleanup_single_sta(sta); 709 out_err: 710 mutex_unlock(&local->sta_mtx); 711 kfree(sinfo); 712 rcu_read_lock(); 713 return err; 714 } 715 716 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 717 { 718 struct ieee80211_local *local = sta->local; 719 int err; 720 721 might_sleep(); 722 723 mutex_lock(&local->sta_mtx); 724 725 err = sta_info_insert_check(sta); 726 if (err) { 727 sta_info_free(local, sta); 728 mutex_unlock(&local->sta_mtx); 729 rcu_read_lock(); 730 return err; 731 } 732 733 return sta_info_insert_finish(sta); 734 } 735 736 int sta_info_insert(struct sta_info *sta) 737 { 738 int err = sta_info_insert_rcu(sta); 739 740 rcu_read_unlock(); 741 742 return err; 743 } 744 745 static inline void __bss_tim_set(u8 *tim, u16 id) 746 { 747 /* 748 * This format has been mandated by the IEEE specifications, 749 * so this line may not be changed to use the __set_bit() format. 750 */ 751 tim[id / 8] |= (1 << (id % 8)); 752 } 753 754 static inline void __bss_tim_clear(u8 *tim, u16 id) 755 { 756 /* 757 * This format has been mandated by the IEEE specifications, 758 * so this line may not be changed to use the __clear_bit() format. 759 */ 760 tim[id / 8] &= ~(1 << (id % 8)); 761 } 762 763 static inline bool __bss_tim_get(u8 *tim, u16 id) 764 { 765 /* 766 * This format has been mandated by the IEEE specifications, 767 * so this line may not be changed to use the test_bit() format. 768 */ 769 return tim[id / 8] & (1 << (id % 8)); 770 } 771 772 static unsigned long ieee80211_tids_for_ac(int ac) 773 { 774 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 775 switch (ac) { 776 case IEEE80211_AC_VO: 777 return BIT(6) | BIT(7); 778 case IEEE80211_AC_VI: 779 return BIT(4) | BIT(5); 780 case IEEE80211_AC_BE: 781 return BIT(0) | BIT(3); 782 case IEEE80211_AC_BK: 783 return BIT(1) | BIT(2); 784 default: 785 WARN_ON(1); 786 return 0; 787 } 788 } 789 790 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 791 { 792 struct ieee80211_local *local = sta->local; 793 struct ps_data *ps; 794 bool indicate_tim = false; 795 u8 ignore_for_tim = sta->sta.uapsd_queues; 796 int ac; 797 u16 id = sta->sta.aid; 798 799 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 800 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 801 if (WARN_ON_ONCE(!sta->sdata->bss)) 802 return; 803 804 ps = &sta->sdata->bss->ps; 805 #ifdef CONFIG_MAC80211_MESH 806 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 807 ps = &sta->sdata->u.mesh.ps; 808 #endif 809 } else { 810 return; 811 } 812 813 /* No need to do anything if the driver does all */ 814 if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim) 815 return; 816 817 if (sta->dead) 818 goto done; 819 820 /* 821 * If all ACs are delivery-enabled then we should build 822 * the TIM bit for all ACs anyway; if only some are then 823 * we ignore those and build the TIM bit using only the 824 * non-enabled ones. 825 */ 826 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 827 ignore_for_tim = 0; 828 829 if (ignore_pending) 830 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 831 832 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 833 unsigned long tids; 834 835 if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac]) 836 continue; 837 838 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 839 !skb_queue_empty(&sta->ps_tx_buf[ac]); 840 if (indicate_tim) 841 break; 842 843 tids = ieee80211_tids_for_ac(ac); 844 845 indicate_tim |= 846 sta->driver_buffered_tids & tids; 847 indicate_tim |= 848 sta->txq_buffered_tids & tids; 849 } 850 851 done: 852 spin_lock_bh(&local->tim_lock); 853 854 if (indicate_tim == __bss_tim_get(ps->tim, id)) 855 goto out_unlock; 856 857 if (indicate_tim) 858 __bss_tim_set(ps->tim, id); 859 else 860 __bss_tim_clear(ps->tim, id); 861 862 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 863 local->tim_in_locked_section = true; 864 drv_set_tim(local, &sta->sta, indicate_tim); 865 local->tim_in_locked_section = false; 866 } 867 868 out_unlock: 869 spin_unlock_bh(&local->tim_lock); 870 } 871 872 void sta_info_recalc_tim(struct sta_info *sta) 873 { 874 __sta_info_recalc_tim(sta, false); 875 } 876 877 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 878 { 879 struct ieee80211_tx_info *info; 880 int timeout; 881 882 if (!skb) 883 return false; 884 885 info = IEEE80211_SKB_CB(skb); 886 887 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 888 timeout = (sta->listen_interval * 889 sta->sdata->vif.bss_conf.beacon_int * 890 32 / 15625) * HZ; 891 if (timeout < STA_TX_BUFFER_EXPIRE) 892 timeout = STA_TX_BUFFER_EXPIRE; 893 return time_after(jiffies, info->control.jiffies + timeout); 894 } 895 896 897 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 898 struct sta_info *sta, int ac) 899 { 900 unsigned long flags; 901 struct sk_buff *skb; 902 903 /* 904 * First check for frames that should expire on the filtered 905 * queue. Frames here were rejected by the driver and are on 906 * a separate queue to avoid reordering with normal PS-buffered 907 * frames. They also aren't accounted for right now in the 908 * total_ps_buffered counter. 909 */ 910 for (;;) { 911 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 912 skb = skb_peek(&sta->tx_filtered[ac]); 913 if (sta_info_buffer_expired(sta, skb)) 914 skb = __skb_dequeue(&sta->tx_filtered[ac]); 915 else 916 skb = NULL; 917 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 918 919 /* 920 * Frames are queued in order, so if this one 921 * hasn't expired yet we can stop testing. If 922 * we actually reached the end of the queue we 923 * also need to stop, of course. 924 */ 925 if (!skb) 926 break; 927 ieee80211_free_txskb(&local->hw, skb); 928 } 929 930 /* 931 * Now also check the normal PS-buffered queue, this will 932 * only find something if the filtered queue was emptied 933 * since the filtered frames are all before the normal PS 934 * buffered frames. 935 */ 936 for (;;) { 937 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 938 skb = skb_peek(&sta->ps_tx_buf[ac]); 939 if (sta_info_buffer_expired(sta, skb)) 940 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 941 else 942 skb = NULL; 943 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 944 945 /* 946 * frames are queued in order, so if this one 947 * hasn't expired yet (or we reached the end of 948 * the queue) we can stop testing 949 */ 950 if (!skb) 951 break; 952 953 local->total_ps_buffered--; 954 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 955 sta->sta.addr); 956 ieee80211_free_txskb(&local->hw, skb); 957 } 958 959 /* 960 * Finally, recalculate the TIM bit for this station -- it might 961 * now be clear because the station was too slow to retrieve its 962 * frames. 963 */ 964 sta_info_recalc_tim(sta); 965 966 /* 967 * Return whether there are any frames still buffered, this is 968 * used to check whether the cleanup timer still needs to run, 969 * if there are no frames we don't need to rearm the timer. 970 */ 971 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 972 skb_queue_empty(&sta->tx_filtered[ac])); 973 } 974 975 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 976 struct sta_info *sta) 977 { 978 bool have_buffered = false; 979 int ac; 980 981 /* This is only necessary for stations on BSS/MBSS interfaces */ 982 if (!sta->sdata->bss && 983 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 984 return false; 985 986 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 987 have_buffered |= 988 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 989 990 return have_buffered; 991 } 992 993 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 994 { 995 struct ieee80211_local *local; 996 struct ieee80211_sub_if_data *sdata; 997 int ret; 998 999 might_sleep(); 1000 1001 if (!sta) 1002 return -ENOENT; 1003 1004 local = sta->local; 1005 sdata = sta->sdata; 1006 1007 lockdep_assert_held(&local->sta_mtx); 1008 1009 /* 1010 * Before removing the station from the driver and 1011 * rate control, it might still start new aggregation 1012 * sessions -- block that to make sure the tear-down 1013 * will be sufficient. 1014 */ 1015 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 1016 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 1017 1018 /* 1019 * Before removing the station from the driver there might be pending 1020 * rx frames on RSS queues sent prior to the disassociation - wait for 1021 * all such frames to be processed. 1022 */ 1023 drv_sync_rx_queues(local, sta); 1024 1025 ret = sta_info_hash_del(local, sta); 1026 if (WARN_ON(ret)) 1027 return ret; 1028 1029 /* 1030 * for TDLS peers, make sure to return to the base channel before 1031 * removal. 1032 */ 1033 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 1034 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 1035 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 1036 } 1037 1038 list_del_rcu(&sta->list); 1039 sta->removed = true; 1040 1041 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 1042 1043 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1044 rcu_access_pointer(sdata->u.vlan.sta) == sta) 1045 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 1046 1047 return 0; 1048 } 1049 1050 static void __sta_info_destroy_part2(struct sta_info *sta) 1051 { 1052 struct ieee80211_local *local = sta->local; 1053 struct ieee80211_sub_if_data *sdata = sta->sdata; 1054 struct station_info *sinfo; 1055 int ret; 1056 1057 /* 1058 * NOTE: This assumes at least synchronize_net() was done 1059 * after _part1 and before _part2! 1060 */ 1061 1062 might_sleep(); 1063 lockdep_assert_held(&local->sta_mtx); 1064 1065 if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1066 ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC); 1067 WARN_ON_ONCE(ret); 1068 } 1069 1070 /* now keys can no longer be reached */ 1071 ieee80211_free_sta_keys(local, sta); 1072 1073 /* disable TIM bit - last chance to tell driver */ 1074 __sta_info_recalc_tim(sta, true); 1075 1076 sta->dead = true; 1077 1078 local->num_sta--; 1079 local->sta_generation++; 1080 1081 while (sta->sta_state > IEEE80211_STA_NONE) { 1082 ret = sta_info_move_state(sta, sta->sta_state - 1); 1083 if (ret) { 1084 WARN_ON_ONCE(1); 1085 break; 1086 } 1087 } 1088 1089 if (sta->uploaded) { 1090 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 1091 IEEE80211_STA_NOTEXIST); 1092 WARN_ON_ONCE(ret != 0); 1093 } 1094 1095 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 1096 1097 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 1098 if (sinfo) 1099 sta_set_sinfo(sta, sinfo, true); 1100 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 1101 kfree(sinfo); 1102 1103 ieee80211_sta_debugfs_remove(sta); 1104 1105 ieee80211_destroy_frag_cache(&sta->frags); 1106 1107 cleanup_single_sta(sta); 1108 } 1109 1110 int __must_check __sta_info_destroy(struct sta_info *sta) 1111 { 1112 int err = __sta_info_destroy_part1(sta); 1113 1114 if (err) 1115 return err; 1116 1117 synchronize_net(); 1118 1119 __sta_info_destroy_part2(sta); 1120 1121 return 0; 1122 } 1123 1124 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 1125 { 1126 struct sta_info *sta; 1127 int ret; 1128 1129 mutex_lock(&sdata->local->sta_mtx); 1130 sta = sta_info_get(sdata, addr); 1131 ret = __sta_info_destroy(sta); 1132 mutex_unlock(&sdata->local->sta_mtx); 1133 1134 return ret; 1135 } 1136 1137 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1138 const u8 *addr) 1139 { 1140 struct sta_info *sta; 1141 int ret; 1142 1143 mutex_lock(&sdata->local->sta_mtx); 1144 sta = sta_info_get_bss(sdata, addr); 1145 ret = __sta_info_destroy(sta); 1146 mutex_unlock(&sdata->local->sta_mtx); 1147 1148 return ret; 1149 } 1150 1151 static void sta_info_cleanup(struct timer_list *t) 1152 { 1153 struct ieee80211_local *local = from_timer(local, t, sta_cleanup); 1154 struct sta_info *sta; 1155 bool timer_needed = false; 1156 1157 rcu_read_lock(); 1158 list_for_each_entry_rcu(sta, &local->sta_list, list) 1159 if (sta_info_cleanup_expire_buffered(local, sta)) 1160 timer_needed = true; 1161 rcu_read_unlock(); 1162 1163 if (local->quiescing) 1164 return; 1165 1166 if (!timer_needed) 1167 return; 1168 1169 mod_timer(&local->sta_cleanup, 1170 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1171 } 1172 1173 int sta_info_init(struct ieee80211_local *local) 1174 { 1175 int err; 1176 1177 err = rhltable_init(&local->sta_hash, &sta_rht_params); 1178 if (err) 1179 return err; 1180 1181 spin_lock_init(&local->tim_lock); 1182 mutex_init(&local->sta_mtx); 1183 INIT_LIST_HEAD(&local->sta_list); 1184 1185 timer_setup(&local->sta_cleanup, sta_info_cleanup, 0); 1186 return 0; 1187 } 1188 1189 void sta_info_stop(struct ieee80211_local *local) 1190 { 1191 del_timer_sync(&local->sta_cleanup); 1192 rhltable_destroy(&local->sta_hash); 1193 } 1194 1195 1196 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1197 { 1198 struct ieee80211_local *local = sdata->local; 1199 struct sta_info *sta, *tmp; 1200 LIST_HEAD(free_list); 1201 int ret = 0; 1202 1203 might_sleep(); 1204 1205 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1206 WARN_ON(vlans && !sdata->bss); 1207 1208 mutex_lock(&local->sta_mtx); 1209 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1210 if (sdata == sta->sdata || 1211 (vlans && sdata->bss == sta->sdata->bss)) { 1212 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1213 list_add(&sta->free_list, &free_list); 1214 ret++; 1215 } 1216 } 1217 1218 if (!list_empty(&free_list)) { 1219 synchronize_net(); 1220 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1221 __sta_info_destroy_part2(sta); 1222 } 1223 mutex_unlock(&local->sta_mtx); 1224 1225 return ret; 1226 } 1227 1228 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1229 unsigned long exp_time) 1230 { 1231 struct ieee80211_local *local = sdata->local; 1232 struct sta_info *sta, *tmp; 1233 1234 mutex_lock(&local->sta_mtx); 1235 1236 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1237 unsigned long last_active = ieee80211_sta_last_active(sta); 1238 1239 if (sdata != sta->sdata) 1240 continue; 1241 1242 if (time_is_before_jiffies(last_active + exp_time)) { 1243 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1244 sta->sta.addr); 1245 1246 if (ieee80211_vif_is_mesh(&sdata->vif) && 1247 test_sta_flag(sta, WLAN_STA_PS_STA)) 1248 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1249 1250 WARN_ON(__sta_info_destroy(sta)); 1251 } 1252 } 1253 1254 mutex_unlock(&local->sta_mtx); 1255 } 1256 1257 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1258 const u8 *addr, 1259 const u8 *localaddr) 1260 { 1261 struct ieee80211_local *local = hw_to_local(hw); 1262 struct rhlist_head *tmp; 1263 struct sta_info *sta; 1264 1265 /* 1266 * Just return a random station if localaddr is NULL 1267 * ... first in list. 1268 */ 1269 for_each_sta_info(local, addr, sta, tmp) { 1270 if (localaddr && 1271 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1272 continue; 1273 if (!sta->uploaded) 1274 return NULL; 1275 return &sta->sta; 1276 } 1277 1278 return NULL; 1279 } 1280 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1281 1282 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1283 const u8 *addr) 1284 { 1285 struct sta_info *sta; 1286 1287 if (!vif) 1288 return NULL; 1289 1290 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1291 if (!sta) 1292 return NULL; 1293 1294 if (!sta->uploaded) 1295 return NULL; 1296 1297 return &sta->sta; 1298 } 1299 EXPORT_SYMBOL(ieee80211_find_sta); 1300 1301 /* powersave support code */ 1302 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1303 { 1304 struct ieee80211_sub_if_data *sdata = sta->sdata; 1305 struct ieee80211_local *local = sdata->local; 1306 struct sk_buff_head pending; 1307 int filtered = 0, buffered = 0, ac, i; 1308 unsigned long flags; 1309 struct ps_data *ps; 1310 1311 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1312 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1313 u.ap); 1314 1315 if (sdata->vif.type == NL80211_IFTYPE_AP) 1316 ps = &sdata->bss->ps; 1317 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1318 ps = &sdata->u.mesh.ps; 1319 else 1320 return; 1321 1322 clear_sta_flag(sta, WLAN_STA_SP); 1323 1324 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1325 sta->driver_buffered_tids = 0; 1326 sta->txq_buffered_tids = 0; 1327 1328 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1329 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1330 1331 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1332 if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i])) 1333 continue; 1334 1335 schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i])); 1336 } 1337 1338 skb_queue_head_init(&pending); 1339 1340 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1341 spin_lock(&sta->ps_lock); 1342 /* Send all buffered frames to the station */ 1343 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1344 int count = skb_queue_len(&pending), tmp; 1345 1346 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1347 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1348 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1349 tmp = skb_queue_len(&pending); 1350 filtered += tmp - count; 1351 count = tmp; 1352 1353 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1354 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1355 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1356 tmp = skb_queue_len(&pending); 1357 buffered += tmp - count; 1358 } 1359 1360 ieee80211_add_pending_skbs(local, &pending); 1361 1362 /* now we're no longer in the deliver code */ 1363 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1364 1365 /* The station might have polled and then woken up before we responded, 1366 * so clear these flags now to avoid them sticking around. 1367 */ 1368 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1369 clear_sta_flag(sta, WLAN_STA_UAPSD); 1370 spin_unlock(&sta->ps_lock); 1371 1372 atomic_dec(&ps->num_sta_ps); 1373 1374 local->total_ps_buffered -= buffered; 1375 1376 sta_info_recalc_tim(sta); 1377 1378 ps_dbg(sdata, 1379 "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n", 1380 sta->sta.addr, sta->sta.aid, filtered, buffered); 1381 1382 ieee80211_check_fast_xmit(sta); 1383 } 1384 1385 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1386 enum ieee80211_frame_release_type reason, 1387 bool call_driver, bool more_data) 1388 { 1389 struct ieee80211_sub_if_data *sdata = sta->sdata; 1390 struct ieee80211_local *local = sdata->local; 1391 struct ieee80211_qos_hdr *nullfunc; 1392 struct sk_buff *skb; 1393 int size = sizeof(*nullfunc); 1394 __le16 fc; 1395 bool qos = sta->sta.wme; 1396 struct ieee80211_tx_info *info; 1397 struct ieee80211_chanctx_conf *chanctx_conf; 1398 1399 if (qos) { 1400 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1401 IEEE80211_STYPE_QOS_NULLFUNC | 1402 IEEE80211_FCTL_FROMDS); 1403 } else { 1404 size -= 2; 1405 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1406 IEEE80211_STYPE_NULLFUNC | 1407 IEEE80211_FCTL_FROMDS); 1408 } 1409 1410 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1411 if (!skb) 1412 return; 1413 1414 skb_reserve(skb, local->hw.extra_tx_headroom); 1415 1416 nullfunc = skb_put(skb, size); 1417 nullfunc->frame_control = fc; 1418 nullfunc->duration_id = 0; 1419 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1420 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1421 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1422 nullfunc->seq_ctrl = 0; 1423 1424 skb->priority = tid; 1425 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1426 if (qos) { 1427 nullfunc->qos_ctrl = cpu_to_le16(tid); 1428 1429 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1430 nullfunc->qos_ctrl |= 1431 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1432 if (more_data) 1433 nullfunc->frame_control |= 1434 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1435 } 1436 } 1437 1438 info = IEEE80211_SKB_CB(skb); 1439 1440 /* 1441 * Tell TX path to send this frame even though the 1442 * STA may still remain is PS mode after this frame 1443 * exchange. Also set EOSP to indicate this packet 1444 * ends the poll/service period. 1445 */ 1446 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1447 IEEE80211_TX_STATUS_EOSP | 1448 IEEE80211_TX_CTL_REQ_TX_STATUS; 1449 1450 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1451 1452 if (call_driver) 1453 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1454 reason, false); 1455 1456 skb->dev = sdata->dev; 1457 1458 rcu_read_lock(); 1459 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1460 if (WARN_ON(!chanctx_conf)) { 1461 rcu_read_unlock(); 1462 kfree_skb(skb); 1463 return; 1464 } 1465 1466 info->band = chanctx_conf->def.chan->band; 1467 ieee80211_xmit(sdata, sta, skb); 1468 rcu_read_unlock(); 1469 } 1470 1471 static int find_highest_prio_tid(unsigned long tids) 1472 { 1473 /* lower 3 TIDs aren't ordered perfectly */ 1474 if (tids & 0xF8) 1475 return fls(tids) - 1; 1476 /* TID 0 is BE just like TID 3 */ 1477 if (tids & BIT(0)) 1478 return 0; 1479 return fls(tids) - 1; 1480 } 1481 1482 /* Indicates if the MORE_DATA bit should be set in the last 1483 * frame obtained by ieee80211_sta_ps_get_frames. 1484 * Note that driver_release_tids is relevant only if 1485 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1486 */ 1487 static bool 1488 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1489 enum ieee80211_frame_release_type reason, 1490 unsigned long driver_release_tids) 1491 { 1492 int ac; 1493 1494 /* If the driver has data on more than one TID then 1495 * certainly there's more data if we release just a 1496 * single frame now (from a single TID). This will 1497 * only happen for PS-Poll. 1498 */ 1499 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1500 hweight16(driver_release_tids) > 1) 1501 return true; 1502 1503 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1504 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1505 continue; 1506 1507 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1508 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1509 return true; 1510 } 1511 1512 return false; 1513 } 1514 1515 static void 1516 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1517 enum ieee80211_frame_release_type reason, 1518 struct sk_buff_head *frames, 1519 unsigned long *driver_release_tids) 1520 { 1521 struct ieee80211_sub_if_data *sdata = sta->sdata; 1522 struct ieee80211_local *local = sdata->local; 1523 int ac; 1524 1525 /* Get response frame(s) and more data bit for the last one. */ 1526 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1527 unsigned long tids; 1528 1529 if (ignored_acs & ieee80211_ac_to_qos_mask[ac]) 1530 continue; 1531 1532 tids = ieee80211_tids_for_ac(ac); 1533 1534 /* if we already have frames from software, then we can't also 1535 * release from hardware queues 1536 */ 1537 if (skb_queue_empty(frames)) { 1538 *driver_release_tids |= 1539 sta->driver_buffered_tids & tids; 1540 *driver_release_tids |= sta->txq_buffered_tids & tids; 1541 } 1542 1543 if (!*driver_release_tids) { 1544 struct sk_buff *skb; 1545 1546 while (n_frames > 0) { 1547 skb = skb_dequeue(&sta->tx_filtered[ac]); 1548 if (!skb) { 1549 skb = skb_dequeue( 1550 &sta->ps_tx_buf[ac]); 1551 if (skb) 1552 local->total_ps_buffered--; 1553 } 1554 if (!skb) 1555 break; 1556 n_frames--; 1557 __skb_queue_tail(frames, skb); 1558 } 1559 } 1560 1561 /* If we have more frames buffered on this AC, then abort the 1562 * loop since we can't send more data from other ACs before 1563 * the buffered frames from this. 1564 */ 1565 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1566 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1567 break; 1568 } 1569 } 1570 1571 static void 1572 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1573 int n_frames, u8 ignored_acs, 1574 enum ieee80211_frame_release_type reason) 1575 { 1576 struct ieee80211_sub_if_data *sdata = sta->sdata; 1577 struct ieee80211_local *local = sdata->local; 1578 unsigned long driver_release_tids = 0; 1579 struct sk_buff_head frames; 1580 bool more_data; 1581 1582 /* Service or PS-Poll period starts */ 1583 set_sta_flag(sta, WLAN_STA_SP); 1584 1585 __skb_queue_head_init(&frames); 1586 1587 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1588 &frames, &driver_release_tids); 1589 1590 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1591 1592 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1593 driver_release_tids = 1594 BIT(find_highest_prio_tid(driver_release_tids)); 1595 1596 if (skb_queue_empty(&frames) && !driver_release_tids) { 1597 int tid, ac; 1598 1599 /* 1600 * For PS-Poll, this can only happen due to a race condition 1601 * when we set the TIM bit and the station notices it, but 1602 * before it can poll for the frame we expire it. 1603 * 1604 * For uAPSD, this is said in the standard (11.2.1.5 h): 1605 * At each unscheduled SP for a non-AP STA, the AP shall 1606 * attempt to transmit at least one MSDU or MMPDU, but no 1607 * more than the value specified in the Max SP Length field 1608 * in the QoS Capability element from delivery-enabled ACs, 1609 * that are destined for the non-AP STA. 1610 * 1611 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1612 */ 1613 1614 /* This will evaluate to 1, 3, 5 or 7. */ 1615 for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++) 1616 if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac])) 1617 break; 1618 tid = 7 - 2 * ac; 1619 1620 ieee80211_send_null_response(sta, tid, reason, true, false); 1621 } else if (!driver_release_tids) { 1622 struct sk_buff_head pending; 1623 struct sk_buff *skb; 1624 int num = 0; 1625 u16 tids = 0; 1626 bool need_null = false; 1627 1628 skb_queue_head_init(&pending); 1629 1630 while ((skb = __skb_dequeue(&frames))) { 1631 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1632 struct ieee80211_hdr *hdr = (void *) skb->data; 1633 u8 *qoshdr = NULL; 1634 1635 num++; 1636 1637 /* 1638 * Tell TX path to send this frame even though the 1639 * STA may still remain is PS mode after this frame 1640 * exchange. 1641 */ 1642 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1643 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1644 1645 /* 1646 * Use MoreData flag to indicate whether there are 1647 * more buffered frames for this STA 1648 */ 1649 if (more_data || !skb_queue_empty(&frames)) 1650 hdr->frame_control |= 1651 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1652 else 1653 hdr->frame_control &= 1654 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1655 1656 if (ieee80211_is_data_qos(hdr->frame_control) || 1657 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1658 qoshdr = ieee80211_get_qos_ctl(hdr); 1659 1660 tids |= BIT(skb->priority); 1661 1662 __skb_queue_tail(&pending, skb); 1663 1664 /* end service period after last frame or add one */ 1665 if (!skb_queue_empty(&frames)) 1666 continue; 1667 1668 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1669 /* for PS-Poll, there's only one frame */ 1670 info->flags |= IEEE80211_TX_STATUS_EOSP | 1671 IEEE80211_TX_CTL_REQ_TX_STATUS; 1672 break; 1673 } 1674 1675 /* For uAPSD, things are a bit more complicated. If the 1676 * last frame has a QoS header (i.e. is a QoS-data or 1677 * QoS-nulldata frame) then just set the EOSP bit there 1678 * and be done. 1679 * If the frame doesn't have a QoS header (which means 1680 * it should be a bufferable MMPDU) then we can't set 1681 * the EOSP bit in the QoS header; add a QoS-nulldata 1682 * frame to the list to send it after the MMPDU. 1683 * 1684 * Note that this code is only in the mac80211-release 1685 * code path, we assume that the driver will not buffer 1686 * anything but QoS-data frames, or if it does, will 1687 * create the QoS-nulldata frame by itself if needed. 1688 * 1689 * Cf. 802.11-2012 10.2.1.10 (c). 1690 */ 1691 if (qoshdr) { 1692 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1693 1694 info->flags |= IEEE80211_TX_STATUS_EOSP | 1695 IEEE80211_TX_CTL_REQ_TX_STATUS; 1696 } else { 1697 /* The standard isn't completely clear on this 1698 * as it says the more-data bit should be set 1699 * if there are more BUs. The QoS-Null frame 1700 * we're about to send isn't buffered yet, we 1701 * only create it below, but let's pretend it 1702 * was buffered just in case some clients only 1703 * expect more-data=0 when eosp=1. 1704 */ 1705 hdr->frame_control |= 1706 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1707 need_null = true; 1708 num++; 1709 } 1710 break; 1711 } 1712 1713 drv_allow_buffered_frames(local, sta, tids, num, 1714 reason, more_data); 1715 1716 ieee80211_add_pending_skbs(local, &pending); 1717 1718 if (need_null) 1719 ieee80211_send_null_response( 1720 sta, find_highest_prio_tid(tids), 1721 reason, false, false); 1722 1723 sta_info_recalc_tim(sta); 1724 } else { 1725 int tid; 1726 1727 /* 1728 * We need to release a frame that is buffered somewhere in the 1729 * driver ... it'll have to handle that. 1730 * Note that the driver also has to check the number of frames 1731 * on the TIDs we're releasing from - if there are more than 1732 * n_frames it has to set the more-data bit (if we didn't ask 1733 * it to set it anyway due to other buffered frames); if there 1734 * are fewer than n_frames it has to make sure to adjust that 1735 * to allow the service period to end properly. 1736 */ 1737 drv_release_buffered_frames(local, sta, driver_release_tids, 1738 n_frames, reason, more_data); 1739 1740 /* 1741 * Note that we don't recalculate the TIM bit here as it would 1742 * most likely have no effect at all unless the driver told us 1743 * that the TID(s) became empty before returning here from the 1744 * release function. 1745 * Either way, however, when the driver tells us that the TID(s) 1746 * became empty or we find that a txq became empty, we'll do the 1747 * TIM recalculation. 1748 */ 1749 1750 if (!sta->sta.txq[0]) 1751 return; 1752 1753 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1754 if (!sta->sta.txq[tid] || 1755 !(driver_release_tids & BIT(tid)) || 1756 txq_has_queue(sta->sta.txq[tid])) 1757 continue; 1758 1759 sta_info_recalc_tim(sta); 1760 break; 1761 } 1762 } 1763 } 1764 1765 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1766 { 1767 u8 ignore_for_response = sta->sta.uapsd_queues; 1768 1769 /* 1770 * If all ACs are delivery-enabled then we should reply 1771 * from any of them, if only some are enabled we reply 1772 * only from the non-enabled ones. 1773 */ 1774 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1775 ignore_for_response = 0; 1776 1777 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1778 IEEE80211_FRAME_RELEASE_PSPOLL); 1779 } 1780 1781 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1782 { 1783 int n_frames = sta->sta.max_sp; 1784 u8 delivery_enabled = sta->sta.uapsd_queues; 1785 1786 /* 1787 * If we ever grow support for TSPEC this might happen if 1788 * the TSPEC update from hostapd comes in between a trigger 1789 * frame setting WLAN_STA_UAPSD in the RX path and this 1790 * actually getting called. 1791 */ 1792 if (!delivery_enabled) 1793 return; 1794 1795 switch (sta->sta.max_sp) { 1796 case 1: 1797 n_frames = 2; 1798 break; 1799 case 2: 1800 n_frames = 4; 1801 break; 1802 case 3: 1803 n_frames = 6; 1804 break; 1805 case 0: 1806 /* XXX: what is a good value? */ 1807 n_frames = 128; 1808 break; 1809 } 1810 1811 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1812 IEEE80211_FRAME_RELEASE_UAPSD); 1813 } 1814 1815 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1816 struct ieee80211_sta *pubsta, bool block) 1817 { 1818 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1819 1820 trace_api_sta_block_awake(sta->local, pubsta, block); 1821 1822 if (block) { 1823 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1824 ieee80211_clear_fast_xmit(sta); 1825 return; 1826 } 1827 1828 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1829 return; 1830 1831 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1832 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1833 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1834 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1835 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1836 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1837 /* must be asleep in this case */ 1838 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1839 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1840 } else { 1841 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1842 ieee80211_check_fast_xmit(sta); 1843 } 1844 } 1845 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1846 1847 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1848 { 1849 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1850 struct ieee80211_local *local = sta->local; 1851 1852 trace_api_eosp(local, pubsta); 1853 1854 clear_sta_flag(sta, WLAN_STA_SP); 1855 } 1856 EXPORT_SYMBOL(ieee80211_sta_eosp); 1857 1858 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1859 { 1860 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1861 enum ieee80211_frame_release_type reason; 1862 bool more_data; 1863 1864 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1865 1866 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1867 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1868 reason, 0); 1869 1870 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1871 } 1872 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1873 1874 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1875 u8 tid, bool buffered) 1876 { 1877 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1878 1879 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1880 return; 1881 1882 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1883 1884 if (buffered) 1885 set_bit(tid, &sta->driver_buffered_tids); 1886 else 1887 clear_bit(tid, &sta->driver_buffered_tids); 1888 1889 sta_info_recalc_tim(sta); 1890 } 1891 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1892 1893 void ieee80211_register_airtime(struct ieee80211_txq *txq, 1894 u32 tx_airtime, u32 rx_airtime) 1895 { 1896 struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif); 1897 struct ieee80211_local *local = sdata->local; 1898 u64 weight_sum, weight_sum_reciprocal; 1899 struct airtime_sched_info *air_sched; 1900 struct airtime_info *air_info; 1901 u32 airtime = 0; 1902 1903 air_sched = &local->airtime[txq->ac]; 1904 air_info = to_airtime_info(txq); 1905 1906 if (local->airtime_flags & AIRTIME_USE_TX) 1907 airtime += tx_airtime; 1908 if (local->airtime_flags & AIRTIME_USE_RX) 1909 airtime += rx_airtime; 1910 1911 /* Weights scale so the unit weight is 256 */ 1912 airtime <<= 8; 1913 1914 spin_lock_bh(&air_sched->lock); 1915 1916 air_info->tx_airtime += tx_airtime; 1917 air_info->rx_airtime += rx_airtime; 1918 1919 if (air_sched->weight_sum) { 1920 weight_sum = air_sched->weight_sum; 1921 weight_sum_reciprocal = air_sched->weight_sum_reciprocal; 1922 } else { 1923 weight_sum = air_info->weight; 1924 weight_sum_reciprocal = air_info->weight_reciprocal; 1925 } 1926 1927 /* Round the calculation of global vt */ 1928 air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) * 1929 weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64; 1930 air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) * 1931 air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32; 1932 ieee80211_resort_txq(&local->hw, txq); 1933 1934 spin_unlock_bh(&air_sched->lock); 1935 } 1936 1937 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid, 1938 u32 tx_airtime, u32 rx_airtime) 1939 { 1940 struct ieee80211_txq *txq = pubsta->txq[tid]; 1941 1942 if (!txq) 1943 return; 1944 1945 ieee80211_register_airtime(txq, tx_airtime, rx_airtime); 1946 } 1947 EXPORT_SYMBOL(ieee80211_sta_register_airtime); 1948 1949 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local, 1950 struct sta_info *sta, u8 ac, 1951 u16 tx_airtime, bool tx_completed) 1952 { 1953 int tx_pending; 1954 1955 if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL)) 1956 return; 1957 1958 if (!tx_completed) { 1959 if (sta) 1960 atomic_add(tx_airtime, 1961 &sta->airtime[ac].aql_tx_pending); 1962 1963 atomic_add(tx_airtime, &local->aql_total_pending_airtime); 1964 return; 1965 } 1966 1967 if (sta) { 1968 tx_pending = atomic_sub_return(tx_airtime, 1969 &sta->airtime[ac].aql_tx_pending); 1970 if (tx_pending < 0) 1971 atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending, 1972 tx_pending, 0); 1973 } 1974 1975 tx_pending = atomic_sub_return(tx_airtime, 1976 &local->aql_total_pending_airtime); 1977 if (WARN_ONCE(tx_pending < 0, 1978 "Device %s AC %d pending airtime underflow: %u, %u", 1979 wiphy_name(local->hw.wiphy), ac, tx_pending, 1980 tx_airtime)) 1981 atomic_cmpxchg(&local->aql_total_pending_airtime, 1982 tx_pending, 0); 1983 } 1984 1985 int sta_info_move_state(struct sta_info *sta, 1986 enum ieee80211_sta_state new_state) 1987 { 1988 might_sleep(); 1989 1990 if (sta->sta_state == new_state) 1991 return 0; 1992 1993 /* check allowed transitions first */ 1994 1995 switch (new_state) { 1996 case IEEE80211_STA_NONE: 1997 if (sta->sta_state != IEEE80211_STA_AUTH) 1998 return -EINVAL; 1999 break; 2000 case IEEE80211_STA_AUTH: 2001 if (sta->sta_state != IEEE80211_STA_NONE && 2002 sta->sta_state != IEEE80211_STA_ASSOC) 2003 return -EINVAL; 2004 break; 2005 case IEEE80211_STA_ASSOC: 2006 if (sta->sta_state != IEEE80211_STA_AUTH && 2007 sta->sta_state != IEEE80211_STA_AUTHORIZED) 2008 return -EINVAL; 2009 break; 2010 case IEEE80211_STA_AUTHORIZED: 2011 if (sta->sta_state != IEEE80211_STA_ASSOC) 2012 return -EINVAL; 2013 break; 2014 default: 2015 WARN(1, "invalid state %d", new_state); 2016 return -EINVAL; 2017 } 2018 2019 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 2020 sta->sta.addr, new_state); 2021 2022 /* 2023 * notify the driver before the actual changes so it can 2024 * fail the transition 2025 */ 2026 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 2027 int err = drv_sta_state(sta->local, sta->sdata, sta, 2028 sta->sta_state, new_state); 2029 if (err) 2030 return err; 2031 } 2032 2033 /* reflect the change in all state variables */ 2034 2035 switch (new_state) { 2036 case IEEE80211_STA_NONE: 2037 if (sta->sta_state == IEEE80211_STA_AUTH) 2038 clear_bit(WLAN_STA_AUTH, &sta->_flags); 2039 break; 2040 case IEEE80211_STA_AUTH: 2041 if (sta->sta_state == IEEE80211_STA_NONE) { 2042 set_bit(WLAN_STA_AUTH, &sta->_flags); 2043 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 2044 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 2045 ieee80211_recalc_min_chandef(sta->sdata); 2046 if (!sta->sta.support_p2p_ps) 2047 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2048 } 2049 break; 2050 case IEEE80211_STA_ASSOC: 2051 if (sta->sta_state == IEEE80211_STA_AUTH) { 2052 set_bit(WLAN_STA_ASSOC, &sta->_flags); 2053 sta->assoc_at = ktime_get_boottime_ns(); 2054 ieee80211_recalc_min_chandef(sta->sdata); 2055 if (!sta->sta.support_p2p_ps) 2056 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 2057 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 2058 ieee80211_vif_dec_num_mcast(sta->sdata); 2059 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2060 ieee80211_clear_fast_xmit(sta); 2061 ieee80211_clear_fast_rx(sta); 2062 } 2063 break; 2064 case IEEE80211_STA_AUTHORIZED: 2065 if (sta->sta_state == IEEE80211_STA_ASSOC) { 2066 ieee80211_vif_inc_num_mcast(sta->sdata); 2067 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 2068 ieee80211_check_fast_xmit(sta); 2069 ieee80211_check_fast_rx(sta); 2070 } 2071 if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 2072 sta->sdata->vif.type == NL80211_IFTYPE_AP) 2073 cfg80211_send_layer2_update(sta->sdata->dev, 2074 sta->sta.addr); 2075 break; 2076 default: 2077 break; 2078 } 2079 2080 sta->sta_state = new_state; 2081 2082 return 0; 2083 } 2084 2085 u8 sta_info_tx_streams(struct sta_info *sta) 2086 { 2087 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 2088 u8 rx_streams; 2089 2090 if (!sta->sta.ht_cap.ht_supported) 2091 return 1; 2092 2093 if (sta->sta.vht_cap.vht_supported) { 2094 int i; 2095 u16 tx_mcs_map = 2096 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 2097 2098 for (i = 7; i >= 0; i--) 2099 if ((tx_mcs_map & (0x3 << (i * 2))) != 2100 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2101 return i + 1; 2102 } 2103 2104 if (ht_cap->mcs.rx_mask[3]) 2105 rx_streams = 4; 2106 else if (ht_cap->mcs.rx_mask[2]) 2107 rx_streams = 3; 2108 else if (ht_cap->mcs.rx_mask[1]) 2109 rx_streams = 2; 2110 else 2111 rx_streams = 1; 2112 2113 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 2114 return rx_streams; 2115 2116 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 2117 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 2118 } 2119 2120 static struct ieee80211_sta_rx_stats * 2121 sta_get_last_rx_stats(struct sta_info *sta) 2122 { 2123 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 2124 int cpu; 2125 2126 if (!sta->pcpu_rx_stats) 2127 return stats; 2128 2129 for_each_possible_cpu(cpu) { 2130 struct ieee80211_sta_rx_stats *cpustats; 2131 2132 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2133 2134 if (time_after(cpustats->last_rx, stats->last_rx)) 2135 stats = cpustats; 2136 } 2137 2138 return stats; 2139 } 2140 2141 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate, 2142 struct rate_info *rinfo) 2143 { 2144 rinfo->bw = STA_STATS_GET(BW, rate); 2145 2146 switch (STA_STATS_GET(TYPE, rate)) { 2147 case STA_STATS_RATE_TYPE_VHT: 2148 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 2149 rinfo->mcs = STA_STATS_GET(VHT_MCS, rate); 2150 rinfo->nss = STA_STATS_GET(VHT_NSS, rate); 2151 if (STA_STATS_GET(SGI, rate)) 2152 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2153 break; 2154 case STA_STATS_RATE_TYPE_HT: 2155 rinfo->flags = RATE_INFO_FLAGS_MCS; 2156 rinfo->mcs = STA_STATS_GET(HT_MCS, rate); 2157 if (STA_STATS_GET(SGI, rate)) 2158 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2159 break; 2160 case STA_STATS_RATE_TYPE_LEGACY: { 2161 struct ieee80211_supported_band *sband; 2162 u16 brate; 2163 unsigned int shift; 2164 int band = STA_STATS_GET(LEGACY_BAND, rate); 2165 int rate_idx = STA_STATS_GET(LEGACY_IDX, rate); 2166 2167 sband = local->hw.wiphy->bands[band]; 2168 2169 if (WARN_ON_ONCE(!sband->bitrates)) 2170 break; 2171 2172 brate = sband->bitrates[rate_idx].bitrate; 2173 if (rinfo->bw == RATE_INFO_BW_5) 2174 shift = 2; 2175 else if (rinfo->bw == RATE_INFO_BW_10) 2176 shift = 1; 2177 else 2178 shift = 0; 2179 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 2180 break; 2181 } 2182 case STA_STATS_RATE_TYPE_HE: 2183 rinfo->flags = RATE_INFO_FLAGS_HE_MCS; 2184 rinfo->mcs = STA_STATS_GET(HE_MCS, rate); 2185 rinfo->nss = STA_STATS_GET(HE_NSS, rate); 2186 rinfo->he_gi = STA_STATS_GET(HE_GI, rate); 2187 rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate); 2188 rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate); 2189 break; 2190 } 2191 } 2192 2193 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2194 { 2195 u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2196 2197 if (rate == STA_STATS_RATE_INVALID) 2198 return -EINVAL; 2199 2200 sta_stats_decode_rate(sta->local, rate, rinfo); 2201 return 0; 2202 } 2203 2204 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats, 2205 int tid) 2206 { 2207 unsigned int start; 2208 u64 value; 2209 2210 do { 2211 start = u64_stats_fetch_begin(&rxstats->syncp); 2212 value = rxstats->msdu[tid]; 2213 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2214 2215 return value; 2216 } 2217 2218 static void sta_set_tidstats(struct sta_info *sta, 2219 struct cfg80211_tid_stats *tidstats, 2220 int tid) 2221 { 2222 struct ieee80211_local *local = sta->local; 2223 int cpu; 2224 2225 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2226 tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid); 2227 2228 if (sta->pcpu_rx_stats) { 2229 for_each_possible_cpu(cpu) { 2230 struct ieee80211_sta_rx_stats *cpurxs; 2231 2232 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2233 tidstats->rx_msdu += 2234 sta_get_tidstats_msdu(cpurxs, tid); 2235 } 2236 } 2237 2238 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2239 } 2240 2241 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2242 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2243 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2244 } 2245 2246 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2247 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2248 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2249 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2250 } 2251 2252 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2253 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2254 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2255 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2256 } 2257 2258 if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) { 2259 spin_lock_bh(&local->fq.lock); 2260 rcu_read_lock(); 2261 2262 tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS); 2263 ieee80211_fill_txq_stats(&tidstats->txq_stats, 2264 to_txq_info(sta->sta.txq[tid])); 2265 2266 rcu_read_unlock(); 2267 spin_unlock_bh(&local->fq.lock); 2268 } 2269 } 2270 2271 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2272 { 2273 unsigned int start; 2274 u64 value; 2275 2276 do { 2277 start = u64_stats_fetch_begin(&rxstats->syncp); 2278 value = rxstats->bytes; 2279 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2280 2281 return value; 2282 } 2283 2284 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo, 2285 bool tidstats) 2286 { 2287 struct ieee80211_sub_if_data *sdata = sta->sdata; 2288 struct ieee80211_local *local = sdata->local; 2289 u32 thr = 0; 2290 int i, ac, cpu; 2291 struct ieee80211_sta_rx_stats *last_rxstats; 2292 2293 last_rxstats = sta_get_last_rx_stats(sta); 2294 2295 sinfo->generation = sdata->local->sta_generation; 2296 2297 /* do before driver, so beacon filtering drivers have a 2298 * chance to e.g. just add the number of filtered beacons 2299 * (or just modify the value entirely, of course) 2300 */ 2301 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2302 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2303 2304 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2305 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) | 2306 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) | 2307 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) | 2308 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) | 2309 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) | 2310 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC); 2311 2312 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2313 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2314 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS); 2315 } 2316 2317 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2318 sinfo->assoc_at = sta->assoc_at; 2319 sinfo->inactive_time = 2320 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2321 2322 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) | 2323 BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) { 2324 sinfo->tx_bytes = 0; 2325 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2326 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2327 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64); 2328 } 2329 2330 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) { 2331 sinfo->tx_packets = 0; 2332 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2333 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2334 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS); 2335 } 2336 2337 if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) | 2338 BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) { 2339 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2340 2341 if (sta->pcpu_rx_stats) { 2342 for_each_possible_cpu(cpu) { 2343 struct ieee80211_sta_rx_stats *cpurxs; 2344 2345 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2346 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2347 } 2348 } 2349 2350 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64); 2351 } 2352 2353 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) { 2354 sinfo->rx_packets = sta->rx_stats.packets; 2355 if (sta->pcpu_rx_stats) { 2356 for_each_possible_cpu(cpu) { 2357 struct ieee80211_sta_rx_stats *cpurxs; 2358 2359 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2360 sinfo->rx_packets += cpurxs->packets; 2361 } 2362 } 2363 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS); 2364 } 2365 2366 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) { 2367 sinfo->tx_retries = sta->status_stats.retry_count; 2368 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES); 2369 } 2370 2371 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) { 2372 sinfo->tx_failed = sta->status_stats.retry_failed; 2373 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED); 2374 } 2375 2376 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) { 2377 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2378 sinfo->rx_duration += sta->airtime[ac].rx_airtime; 2379 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 2380 } 2381 2382 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) { 2383 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2384 sinfo->tx_duration += sta->airtime[ac].tx_airtime; 2385 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 2386 } 2387 2388 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) { 2389 sinfo->airtime_weight = sta->airtime[0].weight; 2390 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT); 2391 } 2392 2393 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2394 if (sta->pcpu_rx_stats) { 2395 for_each_possible_cpu(cpu) { 2396 struct ieee80211_sta_rx_stats *cpurxs; 2397 2398 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2399 sinfo->rx_dropped_misc += cpurxs->dropped; 2400 } 2401 } 2402 2403 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2404 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2405 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) | 2406 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2407 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2408 } 2409 2410 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2411 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2412 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) { 2413 sinfo->signal = (s8)last_rxstats->last_signal; 2414 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 2415 } 2416 2417 if (!sta->pcpu_rx_stats && 2418 !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) { 2419 sinfo->signal_avg = 2420 -ewma_signal_read(&sta->rx_stats_avg.signal); 2421 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 2422 } 2423 } 2424 2425 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2426 * the sta->rx_stats struct, so the check here is fine with and without 2427 * pcpu statistics 2428 */ 2429 if (last_rxstats->chains && 2430 !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) | 2431 BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2432 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 2433 if (!sta->pcpu_rx_stats) 2434 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2435 2436 sinfo->chains = last_rxstats->chains; 2437 2438 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2439 sinfo->chain_signal[i] = 2440 last_rxstats->chain_signal_last[i]; 2441 sinfo->chain_signal_avg[i] = 2442 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2443 } 2444 } 2445 2446 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) { 2447 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2448 &sinfo->txrate); 2449 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 2450 } 2451 2452 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) { 2453 if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0) 2454 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE); 2455 } 2456 2457 if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) { 2458 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) 2459 sta_set_tidstats(sta, &sinfo->pertid[i], i); 2460 } 2461 2462 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2463 #ifdef CONFIG_MAC80211_MESH 2464 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) | 2465 BIT_ULL(NL80211_STA_INFO_PLID) | 2466 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) | 2467 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) | 2468 BIT_ULL(NL80211_STA_INFO_PEER_PM) | 2469 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) | 2470 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) | 2471 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS); 2472 2473 sinfo->llid = sta->mesh->llid; 2474 sinfo->plid = sta->mesh->plid; 2475 sinfo->plink_state = sta->mesh->plink_state; 2476 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2477 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET); 2478 sinfo->t_offset = sta->mesh->t_offset; 2479 } 2480 sinfo->local_pm = sta->mesh->local_pm; 2481 sinfo->peer_pm = sta->mesh->peer_pm; 2482 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2483 sinfo->connected_to_gate = sta->mesh->connected_to_gate; 2484 sinfo->connected_to_as = sta->mesh->connected_to_as; 2485 #endif 2486 } 2487 2488 sinfo->bss_param.flags = 0; 2489 if (sdata->vif.bss_conf.use_cts_prot) 2490 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2491 if (sdata->vif.bss_conf.use_short_preamble) 2492 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2493 if (sdata->vif.bss_conf.use_short_slot) 2494 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2495 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2496 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2497 2498 sinfo->sta_flags.set = 0; 2499 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2500 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2501 BIT(NL80211_STA_FLAG_WME) | 2502 BIT(NL80211_STA_FLAG_MFP) | 2503 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2504 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2505 BIT(NL80211_STA_FLAG_TDLS_PEER); 2506 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2507 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2508 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2509 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2510 if (sta->sta.wme) 2511 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2512 if (test_sta_flag(sta, WLAN_STA_MFP)) 2513 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2514 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2515 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2516 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2517 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2518 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2519 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2520 2521 thr = sta_get_expected_throughput(sta); 2522 2523 if (thr != 0) { 2524 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2525 sinfo->expected_throughput = thr; 2526 } 2527 2528 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) && 2529 sta->status_stats.ack_signal_filled) { 2530 sinfo->ack_signal = sta->status_stats.last_ack_signal; 2531 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL); 2532 } 2533 2534 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) && 2535 sta->status_stats.ack_signal_filled) { 2536 sinfo->avg_ack_signal = 2537 -(s8)ewma_avg_signal_read( 2538 &sta->status_stats.avg_ack_signal); 2539 sinfo->filled |= 2540 BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG); 2541 } 2542 2543 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2544 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC); 2545 sinfo->airtime_link_metric = 2546 airtime_link_metric_get(local, sta); 2547 } 2548 } 2549 2550 u32 sta_get_expected_throughput(struct sta_info *sta) 2551 { 2552 struct ieee80211_sub_if_data *sdata = sta->sdata; 2553 struct ieee80211_local *local = sdata->local; 2554 struct rate_control_ref *ref = NULL; 2555 u32 thr = 0; 2556 2557 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2558 ref = local->rate_ctrl; 2559 2560 /* check if the driver has a SW RC implementation */ 2561 if (ref && ref->ops->get_expected_throughput) 2562 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2563 else 2564 thr = drv_get_expected_throughput(local, sta); 2565 2566 return thr; 2567 } 2568 2569 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2570 { 2571 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2572 2573 if (!sta->status_stats.last_ack || 2574 time_after(stats->last_rx, sta->status_stats.last_ack)) 2575 return stats->last_rx; 2576 return sta->status_stats.last_ack; 2577 } 2578 2579 static void sta_update_codel_params(struct sta_info *sta, u32 thr) 2580 { 2581 if (!sta->sdata->local->ops->wake_tx_queue) 2582 return; 2583 2584 if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) { 2585 sta->cparams.target = MS2TIME(50); 2586 sta->cparams.interval = MS2TIME(300); 2587 sta->cparams.ecn = false; 2588 } else { 2589 sta->cparams.target = MS2TIME(20); 2590 sta->cparams.interval = MS2TIME(100); 2591 sta->cparams.ecn = true; 2592 } 2593 } 2594 2595 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta, 2596 u32 thr) 2597 { 2598 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 2599 2600 sta_update_codel_params(sta, thr); 2601 } 2602