xref: /linux/net/mac80211/sta_info.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2002-2005, Instant802 Networks, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  * Copyright (C) 2015 - 2017 Intel Deutschland GmbH
7  * Copyright (C) 2018-2021 Intel Corporation
8  */
9 
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/etherdevice.h>
13 #include <linux/netdevice.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/skbuff.h>
17 #include <linux/if_arp.h>
18 #include <linux/timer.h>
19 #include <linux/rtnetlink.h>
20 
21 #include <net/codel.h>
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30 
31 /**
32  * DOC: STA information lifetime rules
33  *
34  * STA info structures (&struct sta_info) are managed in a hash table
35  * for faster lookup and a list for iteration. They are managed using
36  * RCU, i.e. access to the list and hash table is protected by RCU.
37  *
38  * Upon allocating a STA info structure with sta_info_alloc(), the caller
39  * owns that structure. It must then insert it into the hash table using
40  * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41  * case (which acquires an rcu read section but must not be called from
42  * within one) will the pointer still be valid after the call. Note that
43  * the caller may not do much with the STA info before inserting it, in
44  * particular, it may not start any mesh peer link management or add
45  * encryption keys.
46  *
47  * When the insertion fails (sta_info_insert()) returns non-zero), the
48  * structure will have been freed by sta_info_insert()!
49  *
50  * Station entries are added by mac80211 when you establish a link with a
51  * peer. This means different things for the different type of interfaces
52  * we support. For a regular station this mean we add the AP sta when we
53  * receive an association response from the AP. For IBSS this occurs when
54  * get to know about a peer on the same IBSS. For WDS we add the sta for
55  * the peer immediately upon device open. When using AP mode we add stations
56  * for each respective station upon request from userspace through nl80211.
57  *
58  * In order to remove a STA info structure, various sta_info_destroy_*()
59  * calls are available.
60  *
61  * There is no concept of ownership on a STA entry, each structure is
62  * owned by the global hash table/list until it is removed. All users of
63  * the structure need to be RCU protected so that the structure won't be
64  * freed before they are done using it.
65  */
66 
67 static const struct rhashtable_params sta_rht_params = {
68 	.nelem_hint = 3, /* start small */
69 	.automatic_shrinking = true,
70 	.head_offset = offsetof(struct sta_info, hash_node),
71 	.key_offset = offsetof(struct sta_info, addr),
72 	.key_len = ETH_ALEN,
73 	.max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE,
74 };
75 
76 /* Caller must hold local->sta_mtx */
77 static int sta_info_hash_del(struct ieee80211_local *local,
78 			     struct sta_info *sta)
79 {
80 	return rhltable_remove(&local->sta_hash, &sta->hash_node,
81 			       sta_rht_params);
82 }
83 
84 static void __cleanup_single_sta(struct sta_info *sta)
85 {
86 	int ac, i;
87 	struct tid_ampdu_tx *tid_tx;
88 	struct ieee80211_sub_if_data *sdata = sta->sdata;
89 	struct ieee80211_local *local = sdata->local;
90 	struct ps_data *ps;
91 
92 	if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
93 	    test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
94 	    test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
95 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
96 		    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
97 			ps = &sdata->bss->ps;
98 		else if (ieee80211_vif_is_mesh(&sdata->vif))
99 			ps = &sdata->u.mesh.ps;
100 		else
101 			return;
102 
103 		clear_sta_flag(sta, WLAN_STA_PS_STA);
104 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
105 		clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
106 
107 		atomic_dec(&ps->num_sta_ps);
108 	}
109 
110 	if (sta->sta.txq[0]) {
111 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
112 			struct txq_info *txqi;
113 
114 			if (!sta->sta.txq[i])
115 				continue;
116 
117 			txqi = to_txq_info(sta->sta.txq[i]);
118 
119 			ieee80211_txq_purge(local, txqi);
120 		}
121 	}
122 
123 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
124 		local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
125 		ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
126 		ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
127 	}
128 
129 	if (ieee80211_vif_is_mesh(&sdata->vif))
130 		mesh_sta_cleanup(sta);
131 
132 	cancel_work_sync(&sta->drv_deliver_wk);
133 
134 	/*
135 	 * Destroy aggregation state here. It would be nice to wait for the
136 	 * driver to finish aggregation stop and then clean up, but for now
137 	 * drivers have to handle aggregation stop being requested, followed
138 	 * directly by station destruction.
139 	 */
140 	for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
141 		kfree(sta->ampdu_mlme.tid_start_tx[i]);
142 		tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
143 		if (!tid_tx)
144 			continue;
145 		ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
146 		kfree(tid_tx);
147 	}
148 }
149 
150 static void cleanup_single_sta(struct sta_info *sta)
151 {
152 	struct ieee80211_sub_if_data *sdata = sta->sdata;
153 	struct ieee80211_local *local = sdata->local;
154 
155 	__cleanup_single_sta(sta);
156 	sta_info_free(local, sta);
157 }
158 
159 struct rhlist_head *sta_info_hash_lookup(struct ieee80211_local *local,
160 					 const u8 *addr)
161 {
162 	return rhltable_lookup(&local->sta_hash, addr, sta_rht_params);
163 }
164 
165 /* protected by RCU */
166 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
167 			      const u8 *addr)
168 {
169 	struct ieee80211_local *local = sdata->local;
170 	struct rhlist_head *tmp;
171 	struct sta_info *sta;
172 
173 	rcu_read_lock();
174 	for_each_sta_info(local, addr, sta, tmp) {
175 		if (sta->sdata == sdata) {
176 			rcu_read_unlock();
177 			/* this is safe as the caller must already hold
178 			 * another rcu read section or the mutex
179 			 */
180 			return sta;
181 		}
182 	}
183 	rcu_read_unlock();
184 	return NULL;
185 }
186 
187 /*
188  * Get sta info either from the specified interface
189  * or from one of its vlans
190  */
191 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
192 				  const u8 *addr)
193 {
194 	struct ieee80211_local *local = sdata->local;
195 	struct rhlist_head *tmp;
196 	struct sta_info *sta;
197 
198 	rcu_read_lock();
199 	for_each_sta_info(local, addr, sta, tmp) {
200 		if (sta->sdata == sdata ||
201 		    (sta->sdata->bss && sta->sdata->bss == sdata->bss)) {
202 			rcu_read_unlock();
203 			/* this is safe as the caller must already hold
204 			 * another rcu read section or the mutex
205 			 */
206 			return sta;
207 		}
208 	}
209 	rcu_read_unlock();
210 	return NULL;
211 }
212 
213 struct sta_info *sta_info_get_by_addrs(struct ieee80211_local *local,
214 				       const u8 *sta_addr, const u8 *vif_addr)
215 {
216 	struct rhlist_head *tmp;
217 	struct sta_info *sta;
218 
219 	for_each_sta_info(local, sta_addr, sta, tmp) {
220 		if (ether_addr_equal(vif_addr, sta->sdata->vif.addr))
221 			return sta;
222 	}
223 
224 	return NULL;
225 }
226 
227 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
228 				     int idx)
229 {
230 	struct ieee80211_local *local = sdata->local;
231 	struct sta_info *sta;
232 	int i = 0;
233 
234 	list_for_each_entry_rcu(sta, &local->sta_list, list,
235 				lockdep_is_held(&local->sta_mtx)) {
236 		if (sdata != sta->sdata)
237 			continue;
238 		if (i < idx) {
239 			++i;
240 			continue;
241 		}
242 		return sta;
243 	}
244 
245 	return NULL;
246 }
247 
248 /**
249  * sta_info_free - free STA
250  *
251  * @local: pointer to the global information
252  * @sta: STA info to free
253  *
254  * This function must undo everything done by sta_info_alloc()
255  * that may happen before sta_info_insert(). It may only be
256  * called when sta_info_insert() has not been attempted (and
257  * if that fails, the station is freed anyway.)
258  */
259 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
260 {
261 	/*
262 	 * If we had used sta_info_pre_move_state() then we might not
263 	 * have gone through the state transitions down again, so do
264 	 * it here now (and warn if it's inserted).
265 	 *
266 	 * This will clear state such as fast TX/RX that may have been
267 	 * allocated during state transitions.
268 	 */
269 	while (sta->sta_state > IEEE80211_STA_NONE) {
270 		int ret;
271 
272 		WARN_ON_ONCE(test_sta_flag(sta, WLAN_STA_INSERTED));
273 
274 		ret = sta_info_move_state(sta, sta->sta_state - 1);
275 		if (WARN_ONCE(ret, "sta_info_move_state() returned %d\n", ret))
276 			break;
277 	}
278 
279 	if (sta->rate_ctrl)
280 		rate_control_free_sta(sta);
281 
282 	sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
283 
284 	if (sta->sta.txq[0])
285 		kfree(to_txq_info(sta->sta.txq[0]));
286 	kfree(rcu_dereference_raw(sta->sta.rates));
287 #ifdef CONFIG_MAC80211_MESH
288 	kfree(sta->mesh);
289 #endif
290 	free_percpu(sta->pcpu_rx_stats);
291 	kfree(sta);
292 }
293 
294 /* Caller must hold local->sta_mtx */
295 static int sta_info_hash_add(struct ieee80211_local *local,
296 			     struct sta_info *sta)
297 {
298 	return rhltable_insert(&local->sta_hash, &sta->hash_node,
299 			       sta_rht_params);
300 }
301 
302 static void sta_deliver_ps_frames(struct work_struct *wk)
303 {
304 	struct sta_info *sta;
305 
306 	sta = container_of(wk, struct sta_info, drv_deliver_wk);
307 
308 	if (sta->dead)
309 		return;
310 
311 	local_bh_disable();
312 	if (!test_sta_flag(sta, WLAN_STA_PS_STA))
313 		ieee80211_sta_ps_deliver_wakeup(sta);
314 	else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
315 		ieee80211_sta_ps_deliver_poll_response(sta);
316 	else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
317 		ieee80211_sta_ps_deliver_uapsd(sta);
318 	local_bh_enable();
319 }
320 
321 static int sta_prepare_rate_control(struct ieee80211_local *local,
322 				    struct sta_info *sta, gfp_t gfp)
323 {
324 	if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL))
325 		return 0;
326 
327 	sta->rate_ctrl = local->rate_ctrl;
328 	sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
329 						     sta, gfp);
330 	if (!sta->rate_ctrl_priv)
331 		return -ENOMEM;
332 
333 	return 0;
334 }
335 
336 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
337 				const u8 *addr, gfp_t gfp)
338 {
339 	struct ieee80211_local *local = sdata->local;
340 	struct ieee80211_hw *hw = &local->hw;
341 	struct sta_info *sta;
342 	int i;
343 
344 	sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp);
345 	if (!sta)
346 		return NULL;
347 
348 	if (ieee80211_hw_check(hw, USES_RSS)) {
349 		sta->pcpu_rx_stats =
350 			alloc_percpu_gfp(struct ieee80211_sta_rx_stats, gfp);
351 		if (!sta->pcpu_rx_stats)
352 			goto free;
353 	}
354 
355 	spin_lock_init(&sta->lock);
356 	spin_lock_init(&sta->ps_lock);
357 	INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
358 	INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
359 	mutex_init(&sta->ampdu_mlme.mtx);
360 #ifdef CONFIG_MAC80211_MESH
361 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
362 		sta->mesh = kzalloc(sizeof(*sta->mesh), gfp);
363 		if (!sta->mesh)
364 			goto free;
365 		sta->mesh->plink_sta = sta;
366 		spin_lock_init(&sta->mesh->plink_lock);
367 		if (ieee80211_vif_is_mesh(&sdata->vif) &&
368 		    !sdata->u.mesh.user_mpm)
369 			timer_setup(&sta->mesh->plink_timer, mesh_plink_timer,
370 				    0);
371 		sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
372 	}
373 #endif
374 
375 	memcpy(sta->addr, addr, ETH_ALEN);
376 	memcpy(sta->sta.addr, addr, ETH_ALEN);
377 	sta->sta.max_rx_aggregation_subframes =
378 		local->hw.max_rx_aggregation_subframes;
379 
380 	/* Extended Key ID needs to install keys for keyid 0 and 1 Rx-only.
381 	 * The Tx path starts to use a key as soon as the key slot ptk_idx
382 	 * references to is not NULL. To not use the initial Rx-only key
383 	 * prematurely for Tx initialize ptk_idx to an impossible PTK keyid
384 	 * which always will refer to a NULL key.
385 	 */
386 	BUILD_BUG_ON(ARRAY_SIZE(sta->ptk) <= INVALID_PTK_KEYIDX);
387 	sta->ptk_idx = INVALID_PTK_KEYIDX;
388 
389 	sta->local = local;
390 	sta->sdata = sdata;
391 	sta->rx_stats.last_rx = jiffies;
392 
393 	u64_stats_init(&sta->rx_stats.syncp);
394 
395 	ieee80211_init_frag_cache(&sta->frags);
396 
397 	sta->sta_state = IEEE80211_STA_NONE;
398 
399 	/* Mark TID as unreserved */
400 	sta->reserved_tid = IEEE80211_TID_UNRESERVED;
401 
402 	sta->last_connected = ktime_get_seconds();
403 	ewma_signal_init(&sta->rx_stats_avg.signal);
404 	ewma_avg_signal_init(&sta->status_stats.avg_ack_signal);
405 	for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++)
406 		ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]);
407 
408 	if (local->ops->wake_tx_queue) {
409 		void *txq_data;
410 		int size = sizeof(struct txq_info) +
411 			   ALIGN(hw->txq_data_size, sizeof(void *));
412 
413 		txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp);
414 		if (!txq_data)
415 			goto free;
416 
417 		for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
418 			struct txq_info *txq = txq_data + i * size;
419 
420 			/* might not do anything for the bufferable MMPDU TXQ */
421 			ieee80211_txq_init(sdata, sta, txq, i);
422 		}
423 	}
424 
425 	if (sta_prepare_rate_control(local, sta, gfp))
426 		goto free_txq;
427 
428 
429 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
430 		skb_queue_head_init(&sta->ps_tx_buf[i]);
431 		skb_queue_head_init(&sta->tx_filtered[i]);
432 		init_airtime_info(&sta->airtime[i], &local->airtime[i]);
433 	}
434 
435 	for (i = 0; i < IEEE80211_NUM_TIDS; i++)
436 		sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
437 
438 	for (i = 0; i < NUM_NL80211_BANDS; i++) {
439 		u32 mandatory = 0;
440 		int r;
441 
442 		if (!hw->wiphy->bands[i])
443 			continue;
444 
445 		switch (i) {
446 		case NL80211_BAND_2GHZ:
447 			/*
448 			 * We use both here, even if we cannot really know for
449 			 * sure the station will support both, but the only use
450 			 * for this is when we don't know anything yet and send
451 			 * management frames, and then we'll pick the lowest
452 			 * possible rate anyway.
453 			 * If we don't include _G here, we cannot find a rate
454 			 * in P2P, and thus trigger the WARN_ONCE() in rate.c
455 			 */
456 			mandatory = IEEE80211_RATE_MANDATORY_B |
457 				    IEEE80211_RATE_MANDATORY_G;
458 			break;
459 		case NL80211_BAND_5GHZ:
460 			mandatory = IEEE80211_RATE_MANDATORY_A;
461 			break;
462 		case NL80211_BAND_60GHZ:
463 			WARN_ON(1);
464 			mandatory = 0;
465 			break;
466 		}
467 
468 		for (r = 0; r < hw->wiphy->bands[i]->n_bitrates; r++) {
469 			struct ieee80211_rate *rate;
470 
471 			rate = &hw->wiphy->bands[i]->bitrates[r];
472 
473 			if (!(rate->flags & mandatory))
474 				continue;
475 			sta->sta.supp_rates[i] |= BIT(r);
476 		}
477 	}
478 
479 	sta->sta.smps_mode = IEEE80211_SMPS_OFF;
480 	if (sdata->vif.type == NL80211_IFTYPE_AP ||
481 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
482 		struct ieee80211_supported_band *sband;
483 		u8 smps;
484 
485 		sband = ieee80211_get_sband(sdata);
486 		if (!sband)
487 			goto free_txq;
488 
489 		smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
490 			IEEE80211_HT_CAP_SM_PS_SHIFT;
491 		/*
492 		 * Assume that hostapd advertises our caps in the beacon and
493 		 * this is the known_smps_mode for a station that just assciated
494 		 */
495 		switch (smps) {
496 		case WLAN_HT_SMPS_CONTROL_DISABLED:
497 			sta->known_smps_mode = IEEE80211_SMPS_OFF;
498 			break;
499 		case WLAN_HT_SMPS_CONTROL_STATIC:
500 			sta->known_smps_mode = IEEE80211_SMPS_STATIC;
501 			break;
502 		case WLAN_HT_SMPS_CONTROL_DYNAMIC:
503 			sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
504 			break;
505 		default:
506 			WARN_ON(1);
507 		}
508 	}
509 
510 	sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA;
511 
512 	sta->cparams.ce_threshold = CODEL_DISABLED_THRESHOLD;
513 	sta->cparams.target = MS2TIME(20);
514 	sta->cparams.interval = MS2TIME(100);
515 	sta->cparams.ecn = true;
516 
517 	sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
518 
519 	return sta;
520 
521 free_txq:
522 	if (sta->sta.txq[0])
523 		kfree(to_txq_info(sta->sta.txq[0]));
524 free:
525 	free_percpu(sta->pcpu_rx_stats);
526 #ifdef CONFIG_MAC80211_MESH
527 	kfree(sta->mesh);
528 #endif
529 	kfree(sta);
530 	return NULL;
531 }
532 
533 static int sta_info_insert_check(struct sta_info *sta)
534 {
535 	struct ieee80211_sub_if_data *sdata = sta->sdata;
536 
537 	/*
538 	 * Can't be a WARN_ON because it can be triggered through a race:
539 	 * something inserts a STA (on one CPU) without holding the RTNL
540 	 * and another CPU turns off the net device.
541 	 */
542 	if (unlikely(!ieee80211_sdata_running(sdata)))
543 		return -ENETDOWN;
544 
545 	if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
546 		    !is_valid_ether_addr(sta->sta.addr)))
547 		return -EINVAL;
548 
549 	/* The RCU read lock is required by rhashtable due to
550 	 * asynchronous resize/rehash.  We also require the mutex
551 	 * for correctness.
552 	 */
553 	rcu_read_lock();
554 	lockdep_assert_held(&sdata->local->sta_mtx);
555 	if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) &&
556 	    ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) {
557 		rcu_read_unlock();
558 		return -ENOTUNIQ;
559 	}
560 	rcu_read_unlock();
561 
562 	return 0;
563 }
564 
565 static int sta_info_insert_drv_state(struct ieee80211_local *local,
566 				     struct ieee80211_sub_if_data *sdata,
567 				     struct sta_info *sta)
568 {
569 	enum ieee80211_sta_state state;
570 	int err = 0;
571 
572 	for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
573 		err = drv_sta_state(local, sdata, sta, state, state + 1);
574 		if (err)
575 			break;
576 	}
577 
578 	if (!err) {
579 		/*
580 		 * Drivers using legacy sta_add/sta_remove callbacks only
581 		 * get uploaded set to true after sta_add is called.
582 		 */
583 		if (!local->ops->sta_add)
584 			sta->uploaded = true;
585 		return 0;
586 	}
587 
588 	if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
589 		sdata_info(sdata,
590 			   "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
591 			   sta->sta.addr, state + 1, err);
592 		err = 0;
593 	}
594 
595 	/* unwind on error */
596 	for (; state > IEEE80211_STA_NOTEXIST; state--)
597 		WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
598 
599 	return err;
600 }
601 
602 static void
603 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata)
604 {
605 	struct ieee80211_local *local = sdata->local;
606 	bool allow_p2p_go_ps = sdata->vif.p2p;
607 	struct sta_info *sta;
608 
609 	rcu_read_lock();
610 	list_for_each_entry_rcu(sta, &local->sta_list, list) {
611 		if (sdata != sta->sdata ||
612 		    !test_sta_flag(sta, WLAN_STA_ASSOC))
613 			continue;
614 		if (!sta->sta.support_p2p_ps) {
615 			allow_p2p_go_ps = false;
616 			break;
617 		}
618 	}
619 	rcu_read_unlock();
620 
621 	if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) {
622 		sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps;
623 		ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS);
624 	}
625 }
626 
627 /*
628  * should be called with sta_mtx locked
629  * this function replaces the mutex lock
630  * with a RCU lock
631  */
632 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
633 {
634 	struct ieee80211_local *local = sta->local;
635 	struct ieee80211_sub_if_data *sdata = sta->sdata;
636 	struct station_info *sinfo = NULL;
637 	int err = 0;
638 
639 	lockdep_assert_held(&local->sta_mtx);
640 
641 	/* check if STA exists already */
642 	if (sta_info_get_bss(sdata, sta->sta.addr)) {
643 		err = -EEXIST;
644 		goto out_err;
645 	}
646 
647 	sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL);
648 	if (!sinfo) {
649 		err = -ENOMEM;
650 		goto out_err;
651 	}
652 
653 	local->num_sta++;
654 	local->sta_generation++;
655 	smp_mb();
656 
657 	/* simplify things and don't accept BA sessions yet */
658 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
659 
660 	/* make the station visible */
661 	err = sta_info_hash_add(local, sta);
662 	if (err)
663 		goto out_drop_sta;
664 
665 	list_add_tail_rcu(&sta->list, &local->sta_list);
666 
667 	/* notify driver */
668 	err = sta_info_insert_drv_state(local, sdata, sta);
669 	if (err)
670 		goto out_remove;
671 
672 	set_sta_flag(sta, WLAN_STA_INSERTED);
673 
674 	if (sta->sta_state >= IEEE80211_STA_ASSOC) {
675 		ieee80211_recalc_min_chandef(sta->sdata);
676 		if (!sta->sta.support_p2p_ps)
677 			ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
678 	}
679 
680 	/* accept BA sessions now */
681 	clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
682 
683 	ieee80211_sta_debugfs_add(sta);
684 	rate_control_add_sta_debugfs(sta);
685 
686 	sinfo->generation = local->sta_generation;
687 	cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
688 	kfree(sinfo);
689 
690 	sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
691 
692 	/* move reference to rcu-protected */
693 	rcu_read_lock();
694 	mutex_unlock(&local->sta_mtx);
695 
696 	if (ieee80211_vif_is_mesh(&sdata->vif))
697 		mesh_accept_plinks_update(sdata);
698 
699 	return 0;
700  out_remove:
701 	sta_info_hash_del(local, sta);
702 	list_del_rcu(&sta->list);
703  out_drop_sta:
704 	local->num_sta--;
705 	synchronize_net();
706 	cleanup_single_sta(sta);
707  out_err:
708 	mutex_unlock(&local->sta_mtx);
709 	kfree(sinfo);
710 	rcu_read_lock();
711 	return err;
712 }
713 
714 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
715 {
716 	struct ieee80211_local *local = sta->local;
717 	int err;
718 
719 	might_sleep();
720 
721 	mutex_lock(&local->sta_mtx);
722 
723 	err = sta_info_insert_check(sta);
724 	if (err) {
725 		sta_info_free(local, sta);
726 		mutex_unlock(&local->sta_mtx);
727 		rcu_read_lock();
728 		return err;
729 	}
730 
731 	return sta_info_insert_finish(sta);
732 }
733 
734 int sta_info_insert(struct sta_info *sta)
735 {
736 	int err = sta_info_insert_rcu(sta);
737 
738 	rcu_read_unlock();
739 
740 	return err;
741 }
742 
743 static inline void __bss_tim_set(u8 *tim, u16 id)
744 {
745 	/*
746 	 * This format has been mandated by the IEEE specifications,
747 	 * so this line may not be changed to use the __set_bit() format.
748 	 */
749 	tim[id / 8] |= (1 << (id % 8));
750 }
751 
752 static inline void __bss_tim_clear(u8 *tim, u16 id)
753 {
754 	/*
755 	 * This format has been mandated by the IEEE specifications,
756 	 * so this line may not be changed to use the __clear_bit() format.
757 	 */
758 	tim[id / 8] &= ~(1 << (id % 8));
759 }
760 
761 static inline bool __bss_tim_get(u8 *tim, u16 id)
762 {
763 	/*
764 	 * This format has been mandated by the IEEE specifications,
765 	 * so this line may not be changed to use the test_bit() format.
766 	 */
767 	return tim[id / 8] & (1 << (id % 8));
768 }
769 
770 static unsigned long ieee80211_tids_for_ac(int ac)
771 {
772 	/* If we ever support TIDs > 7, this obviously needs to be adjusted */
773 	switch (ac) {
774 	case IEEE80211_AC_VO:
775 		return BIT(6) | BIT(7);
776 	case IEEE80211_AC_VI:
777 		return BIT(4) | BIT(5);
778 	case IEEE80211_AC_BE:
779 		return BIT(0) | BIT(3);
780 	case IEEE80211_AC_BK:
781 		return BIT(1) | BIT(2);
782 	default:
783 		WARN_ON(1);
784 		return 0;
785 	}
786 }
787 
788 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending)
789 {
790 	struct ieee80211_local *local = sta->local;
791 	struct ps_data *ps;
792 	bool indicate_tim = false;
793 	u8 ignore_for_tim = sta->sta.uapsd_queues;
794 	int ac;
795 	u16 id = sta->sta.aid;
796 
797 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
798 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
799 		if (WARN_ON_ONCE(!sta->sdata->bss))
800 			return;
801 
802 		ps = &sta->sdata->bss->ps;
803 #ifdef CONFIG_MAC80211_MESH
804 	} else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
805 		ps = &sta->sdata->u.mesh.ps;
806 #endif
807 	} else {
808 		return;
809 	}
810 
811 	/* No need to do anything if the driver does all */
812 	if (ieee80211_hw_check(&local->hw, AP_LINK_PS) && !local->ops->set_tim)
813 		return;
814 
815 	if (sta->dead)
816 		goto done;
817 
818 	/*
819 	 * If all ACs are delivery-enabled then we should build
820 	 * the TIM bit for all ACs anyway; if only some are then
821 	 * we ignore those and build the TIM bit using only the
822 	 * non-enabled ones.
823 	 */
824 	if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
825 		ignore_for_tim = 0;
826 
827 	if (ignore_pending)
828 		ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1;
829 
830 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
831 		unsigned long tids;
832 
833 		if (ignore_for_tim & ieee80211_ac_to_qos_mask[ac])
834 			continue;
835 
836 		indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
837 				!skb_queue_empty(&sta->ps_tx_buf[ac]);
838 		if (indicate_tim)
839 			break;
840 
841 		tids = ieee80211_tids_for_ac(ac);
842 
843 		indicate_tim |=
844 			sta->driver_buffered_tids & tids;
845 		indicate_tim |=
846 			sta->txq_buffered_tids & tids;
847 	}
848 
849  done:
850 	spin_lock_bh(&local->tim_lock);
851 
852 	if (indicate_tim == __bss_tim_get(ps->tim, id))
853 		goto out_unlock;
854 
855 	if (indicate_tim)
856 		__bss_tim_set(ps->tim, id);
857 	else
858 		__bss_tim_clear(ps->tim, id);
859 
860 	if (local->ops->set_tim && !WARN_ON(sta->dead)) {
861 		local->tim_in_locked_section = true;
862 		drv_set_tim(local, &sta->sta, indicate_tim);
863 		local->tim_in_locked_section = false;
864 	}
865 
866 out_unlock:
867 	spin_unlock_bh(&local->tim_lock);
868 }
869 
870 void sta_info_recalc_tim(struct sta_info *sta)
871 {
872 	__sta_info_recalc_tim(sta, false);
873 }
874 
875 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
876 {
877 	struct ieee80211_tx_info *info;
878 	int timeout;
879 
880 	if (!skb)
881 		return false;
882 
883 	info = IEEE80211_SKB_CB(skb);
884 
885 	/* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
886 	timeout = (sta->listen_interval *
887 		   sta->sdata->vif.bss_conf.beacon_int *
888 		   32 / 15625) * HZ;
889 	if (timeout < STA_TX_BUFFER_EXPIRE)
890 		timeout = STA_TX_BUFFER_EXPIRE;
891 	return time_after(jiffies, info->control.jiffies + timeout);
892 }
893 
894 
895 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
896 						struct sta_info *sta, int ac)
897 {
898 	unsigned long flags;
899 	struct sk_buff *skb;
900 
901 	/*
902 	 * First check for frames that should expire on the filtered
903 	 * queue. Frames here were rejected by the driver and are on
904 	 * a separate queue to avoid reordering with normal PS-buffered
905 	 * frames. They also aren't accounted for right now in the
906 	 * total_ps_buffered counter.
907 	 */
908 	for (;;) {
909 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
910 		skb = skb_peek(&sta->tx_filtered[ac]);
911 		if (sta_info_buffer_expired(sta, skb))
912 			skb = __skb_dequeue(&sta->tx_filtered[ac]);
913 		else
914 			skb = NULL;
915 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
916 
917 		/*
918 		 * Frames are queued in order, so if this one
919 		 * hasn't expired yet we can stop testing. If
920 		 * we actually reached the end of the queue we
921 		 * also need to stop, of course.
922 		 */
923 		if (!skb)
924 			break;
925 		ieee80211_free_txskb(&local->hw, skb);
926 	}
927 
928 	/*
929 	 * Now also check the normal PS-buffered queue, this will
930 	 * only find something if the filtered queue was emptied
931 	 * since the filtered frames are all before the normal PS
932 	 * buffered frames.
933 	 */
934 	for (;;) {
935 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
936 		skb = skb_peek(&sta->ps_tx_buf[ac]);
937 		if (sta_info_buffer_expired(sta, skb))
938 			skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
939 		else
940 			skb = NULL;
941 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
942 
943 		/*
944 		 * frames are queued in order, so if this one
945 		 * hasn't expired yet (or we reached the end of
946 		 * the queue) we can stop testing
947 		 */
948 		if (!skb)
949 			break;
950 
951 		local->total_ps_buffered--;
952 		ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
953 		       sta->sta.addr);
954 		ieee80211_free_txskb(&local->hw, skb);
955 	}
956 
957 	/*
958 	 * Finally, recalculate the TIM bit for this station -- it might
959 	 * now be clear because the station was too slow to retrieve its
960 	 * frames.
961 	 */
962 	sta_info_recalc_tim(sta);
963 
964 	/*
965 	 * Return whether there are any frames still buffered, this is
966 	 * used to check whether the cleanup timer still needs to run,
967 	 * if there are no frames we don't need to rearm the timer.
968 	 */
969 	return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
970 		 skb_queue_empty(&sta->tx_filtered[ac]));
971 }
972 
973 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
974 					     struct sta_info *sta)
975 {
976 	bool have_buffered = false;
977 	int ac;
978 
979 	/* This is only necessary for stations on BSS/MBSS interfaces */
980 	if (!sta->sdata->bss &&
981 	    !ieee80211_vif_is_mesh(&sta->sdata->vif))
982 		return false;
983 
984 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
985 		have_buffered |=
986 			sta_info_cleanup_expire_buffered_ac(local, sta, ac);
987 
988 	return have_buffered;
989 }
990 
991 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
992 {
993 	struct ieee80211_local *local;
994 	struct ieee80211_sub_if_data *sdata;
995 	int ret;
996 
997 	might_sleep();
998 
999 	if (!sta)
1000 		return -ENOENT;
1001 
1002 	local = sta->local;
1003 	sdata = sta->sdata;
1004 
1005 	lockdep_assert_held(&local->sta_mtx);
1006 
1007 	/*
1008 	 * Before removing the station from the driver and
1009 	 * rate control, it might still start new aggregation
1010 	 * sessions -- block that to make sure the tear-down
1011 	 * will be sufficient.
1012 	 */
1013 	set_sta_flag(sta, WLAN_STA_BLOCK_BA);
1014 	ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
1015 
1016 	/*
1017 	 * Before removing the station from the driver there might be pending
1018 	 * rx frames on RSS queues sent prior to the disassociation - wait for
1019 	 * all such frames to be processed.
1020 	 */
1021 	drv_sync_rx_queues(local, sta);
1022 
1023 	ret = sta_info_hash_del(local, sta);
1024 	if (WARN_ON(ret))
1025 		return ret;
1026 
1027 	/*
1028 	 * for TDLS peers, make sure to return to the base channel before
1029 	 * removal.
1030 	 */
1031 	if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) {
1032 		drv_tdls_cancel_channel_switch(local, sdata, &sta->sta);
1033 		clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL);
1034 	}
1035 
1036 	list_del_rcu(&sta->list);
1037 	sta->removed = true;
1038 
1039 	drv_sta_pre_rcu_remove(local, sta->sdata, sta);
1040 
1041 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1042 	    rcu_access_pointer(sdata->u.vlan.sta) == sta)
1043 		RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
1044 
1045 	return 0;
1046 }
1047 
1048 static void __sta_info_destroy_part2(struct sta_info *sta)
1049 {
1050 	struct ieee80211_local *local = sta->local;
1051 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1052 	struct station_info *sinfo;
1053 	int ret;
1054 
1055 	/*
1056 	 * NOTE: This assumes at least synchronize_net() was done
1057 	 *	 after _part1 and before _part2!
1058 	 */
1059 
1060 	might_sleep();
1061 	lockdep_assert_held(&local->sta_mtx);
1062 
1063 	if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1064 		ret = sta_info_move_state(sta, IEEE80211_STA_ASSOC);
1065 		WARN_ON_ONCE(ret);
1066 	}
1067 
1068 	/* now keys can no longer be reached */
1069 	ieee80211_free_sta_keys(local, sta);
1070 
1071 	/* disable TIM bit - last chance to tell driver */
1072 	__sta_info_recalc_tim(sta, true);
1073 
1074 	sta->dead = true;
1075 
1076 	local->num_sta--;
1077 	local->sta_generation++;
1078 
1079 	while (sta->sta_state > IEEE80211_STA_NONE) {
1080 		ret = sta_info_move_state(sta, sta->sta_state - 1);
1081 		if (ret) {
1082 			WARN_ON_ONCE(1);
1083 			break;
1084 		}
1085 	}
1086 
1087 	if (sta->uploaded) {
1088 		ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
1089 				    IEEE80211_STA_NOTEXIST);
1090 		WARN_ON_ONCE(ret != 0);
1091 	}
1092 
1093 	sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
1094 
1095 	sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
1096 	if (sinfo)
1097 		sta_set_sinfo(sta, sinfo, true);
1098 	cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL);
1099 	kfree(sinfo);
1100 
1101 	ieee80211_sta_debugfs_remove(sta);
1102 
1103 	ieee80211_destroy_frag_cache(&sta->frags);
1104 
1105 	cleanup_single_sta(sta);
1106 }
1107 
1108 int __must_check __sta_info_destroy(struct sta_info *sta)
1109 {
1110 	int err = __sta_info_destroy_part1(sta);
1111 
1112 	if (err)
1113 		return err;
1114 
1115 	synchronize_net();
1116 
1117 	__sta_info_destroy_part2(sta);
1118 
1119 	return 0;
1120 }
1121 
1122 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
1123 {
1124 	struct sta_info *sta;
1125 	int ret;
1126 
1127 	mutex_lock(&sdata->local->sta_mtx);
1128 	sta = sta_info_get(sdata, addr);
1129 	ret = __sta_info_destroy(sta);
1130 	mutex_unlock(&sdata->local->sta_mtx);
1131 
1132 	return ret;
1133 }
1134 
1135 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
1136 			      const u8 *addr)
1137 {
1138 	struct sta_info *sta;
1139 	int ret;
1140 
1141 	mutex_lock(&sdata->local->sta_mtx);
1142 	sta = sta_info_get_bss(sdata, addr);
1143 	ret = __sta_info_destroy(sta);
1144 	mutex_unlock(&sdata->local->sta_mtx);
1145 
1146 	return ret;
1147 }
1148 
1149 static void sta_info_cleanup(struct timer_list *t)
1150 {
1151 	struct ieee80211_local *local = from_timer(local, t, sta_cleanup);
1152 	struct sta_info *sta;
1153 	bool timer_needed = false;
1154 
1155 	rcu_read_lock();
1156 	list_for_each_entry_rcu(sta, &local->sta_list, list)
1157 		if (sta_info_cleanup_expire_buffered(local, sta))
1158 			timer_needed = true;
1159 	rcu_read_unlock();
1160 
1161 	if (local->quiescing)
1162 		return;
1163 
1164 	if (!timer_needed)
1165 		return;
1166 
1167 	mod_timer(&local->sta_cleanup,
1168 		  round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
1169 }
1170 
1171 int sta_info_init(struct ieee80211_local *local)
1172 {
1173 	int err;
1174 
1175 	err = rhltable_init(&local->sta_hash, &sta_rht_params);
1176 	if (err)
1177 		return err;
1178 
1179 	spin_lock_init(&local->tim_lock);
1180 	mutex_init(&local->sta_mtx);
1181 	INIT_LIST_HEAD(&local->sta_list);
1182 
1183 	timer_setup(&local->sta_cleanup, sta_info_cleanup, 0);
1184 	return 0;
1185 }
1186 
1187 void sta_info_stop(struct ieee80211_local *local)
1188 {
1189 	del_timer_sync(&local->sta_cleanup);
1190 	rhltable_destroy(&local->sta_hash);
1191 }
1192 
1193 
1194 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
1195 {
1196 	struct ieee80211_local *local = sdata->local;
1197 	struct sta_info *sta, *tmp;
1198 	LIST_HEAD(free_list);
1199 	int ret = 0;
1200 
1201 	might_sleep();
1202 
1203 	WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
1204 	WARN_ON(vlans && !sdata->bss);
1205 
1206 	mutex_lock(&local->sta_mtx);
1207 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1208 		if (sdata == sta->sdata ||
1209 		    (vlans && sdata->bss == sta->sdata->bss)) {
1210 			if (!WARN_ON(__sta_info_destroy_part1(sta)))
1211 				list_add(&sta->free_list, &free_list);
1212 			ret++;
1213 		}
1214 	}
1215 
1216 	if (!list_empty(&free_list)) {
1217 		synchronize_net();
1218 		list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1219 			__sta_info_destroy_part2(sta);
1220 	}
1221 	mutex_unlock(&local->sta_mtx);
1222 
1223 	return ret;
1224 }
1225 
1226 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1227 			  unsigned long exp_time)
1228 {
1229 	struct ieee80211_local *local = sdata->local;
1230 	struct sta_info *sta, *tmp;
1231 
1232 	mutex_lock(&local->sta_mtx);
1233 
1234 	list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1235 		unsigned long last_active = ieee80211_sta_last_active(sta);
1236 
1237 		if (sdata != sta->sdata)
1238 			continue;
1239 
1240 		if (time_is_before_jiffies(last_active + exp_time)) {
1241 			sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1242 				sta->sta.addr);
1243 
1244 			if (ieee80211_vif_is_mesh(&sdata->vif) &&
1245 			    test_sta_flag(sta, WLAN_STA_PS_STA))
1246 				atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1247 
1248 			WARN_ON(__sta_info_destroy(sta));
1249 		}
1250 	}
1251 
1252 	mutex_unlock(&local->sta_mtx);
1253 }
1254 
1255 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1256 						   const u8 *addr,
1257 						   const u8 *localaddr)
1258 {
1259 	struct ieee80211_local *local = hw_to_local(hw);
1260 	struct rhlist_head *tmp;
1261 	struct sta_info *sta;
1262 
1263 	/*
1264 	 * Just return a random station if localaddr is NULL
1265 	 * ... first in list.
1266 	 */
1267 	for_each_sta_info(local, addr, sta, tmp) {
1268 		if (localaddr &&
1269 		    !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1270 			continue;
1271 		if (!sta->uploaded)
1272 			return NULL;
1273 		return &sta->sta;
1274 	}
1275 
1276 	return NULL;
1277 }
1278 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1279 
1280 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1281 					 const u8 *addr)
1282 {
1283 	struct sta_info *sta;
1284 
1285 	if (!vif)
1286 		return NULL;
1287 
1288 	sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1289 	if (!sta)
1290 		return NULL;
1291 
1292 	if (!sta->uploaded)
1293 		return NULL;
1294 
1295 	return &sta->sta;
1296 }
1297 EXPORT_SYMBOL(ieee80211_find_sta);
1298 
1299 /* powersave support code */
1300 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1301 {
1302 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1303 	struct ieee80211_local *local = sdata->local;
1304 	struct sk_buff_head pending;
1305 	int filtered = 0, buffered = 0, ac, i;
1306 	unsigned long flags;
1307 	struct ps_data *ps;
1308 
1309 	if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1310 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1311 				     u.ap);
1312 
1313 	if (sdata->vif.type == NL80211_IFTYPE_AP)
1314 		ps = &sdata->bss->ps;
1315 	else if (ieee80211_vif_is_mesh(&sdata->vif))
1316 		ps = &sdata->u.mesh.ps;
1317 	else
1318 		return;
1319 
1320 	clear_sta_flag(sta, WLAN_STA_SP);
1321 
1322 	BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1323 	sta->driver_buffered_tids = 0;
1324 	sta->txq_buffered_tids = 0;
1325 
1326 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1327 		drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1328 
1329 	for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) {
1330 		if (!sta->sta.txq[i] || !txq_has_queue(sta->sta.txq[i]))
1331 			continue;
1332 
1333 		schedule_and_wake_txq(local, to_txq_info(sta->sta.txq[i]));
1334 	}
1335 
1336 	skb_queue_head_init(&pending);
1337 
1338 	/* sync with ieee80211_tx_h_unicast_ps_buf */
1339 	spin_lock(&sta->ps_lock);
1340 	/* Send all buffered frames to the station */
1341 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1342 		int count = skb_queue_len(&pending), tmp;
1343 
1344 		spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1345 		skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1346 		spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1347 		tmp = skb_queue_len(&pending);
1348 		filtered += tmp - count;
1349 		count = tmp;
1350 
1351 		spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1352 		skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1353 		spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1354 		tmp = skb_queue_len(&pending);
1355 		buffered += tmp - count;
1356 	}
1357 
1358 	ieee80211_add_pending_skbs(local, &pending);
1359 
1360 	/* now we're no longer in the deliver code */
1361 	clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1362 
1363 	/* The station might have polled and then woken up before we responded,
1364 	 * so clear these flags now to avoid them sticking around.
1365 	 */
1366 	clear_sta_flag(sta, WLAN_STA_PSPOLL);
1367 	clear_sta_flag(sta, WLAN_STA_UAPSD);
1368 	spin_unlock(&sta->ps_lock);
1369 
1370 	atomic_dec(&ps->num_sta_ps);
1371 
1372 	local->total_ps_buffered -= buffered;
1373 
1374 	sta_info_recalc_tim(sta);
1375 
1376 	ps_dbg(sdata,
1377 	       "STA %pM aid %d sending %d filtered/%d PS frames since STA woke up\n",
1378 	       sta->sta.addr, sta->sta.aid, filtered, buffered);
1379 
1380 	ieee80211_check_fast_xmit(sta);
1381 }
1382 
1383 static void ieee80211_send_null_response(struct sta_info *sta, int tid,
1384 					 enum ieee80211_frame_release_type reason,
1385 					 bool call_driver, bool more_data)
1386 {
1387 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1388 	struct ieee80211_local *local = sdata->local;
1389 	struct ieee80211_qos_hdr *nullfunc;
1390 	struct sk_buff *skb;
1391 	int size = sizeof(*nullfunc);
1392 	__le16 fc;
1393 	bool qos = sta->sta.wme;
1394 	struct ieee80211_tx_info *info;
1395 	struct ieee80211_chanctx_conf *chanctx_conf;
1396 
1397 	if (qos) {
1398 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1399 				 IEEE80211_STYPE_QOS_NULLFUNC |
1400 				 IEEE80211_FCTL_FROMDS);
1401 	} else {
1402 		size -= 2;
1403 		fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1404 				 IEEE80211_STYPE_NULLFUNC |
1405 				 IEEE80211_FCTL_FROMDS);
1406 	}
1407 
1408 	skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1409 	if (!skb)
1410 		return;
1411 
1412 	skb_reserve(skb, local->hw.extra_tx_headroom);
1413 
1414 	nullfunc = skb_put(skb, size);
1415 	nullfunc->frame_control = fc;
1416 	nullfunc->duration_id = 0;
1417 	memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1418 	memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1419 	memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1420 	nullfunc->seq_ctrl = 0;
1421 
1422 	skb->priority = tid;
1423 	skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1424 	if (qos) {
1425 		nullfunc->qos_ctrl = cpu_to_le16(tid);
1426 
1427 		if (reason == IEEE80211_FRAME_RELEASE_UAPSD) {
1428 			nullfunc->qos_ctrl |=
1429 				cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1430 			if (more_data)
1431 				nullfunc->frame_control |=
1432 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1433 		}
1434 	}
1435 
1436 	info = IEEE80211_SKB_CB(skb);
1437 
1438 	/*
1439 	 * Tell TX path to send this frame even though the
1440 	 * STA may still remain is PS mode after this frame
1441 	 * exchange. Also set EOSP to indicate this packet
1442 	 * ends the poll/service period.
1443 	 */
1444 	info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1445 		       IEEE80211_TX_STATUS_EOSP |
1446 		       IEEE80211_TX_CTL_REQ_TX_STATUS;
1447 
1448 	info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1449 
1450 	if (call_driver)
1451 		drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1452 					  reason, false);
1453 
1454 	skb->dev = sdata->dev;
1455 
1456 	rcu_read_lock();
1457 	chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1458 	if (WARN_ON(!chanctx_conf)) {
1459 		rcu_read_unlock();
1460 		kfree_skb(skb);
1461 		return;
1462 	}
1463 
1464 	info->band = chanctx_conf->def.chan->band;
1465 	ieee80211_xmit(sdata, sta, skb);
1466 	rcu_read_unlock();
1467 }
1468 
1469 static int find_highest_prio_tid(unsigned long tids)
1470 {
1471 	/* lower 3 TIDs aren't ordered perfectly */
1472 	if (tids & 0xF8)
1473 		return fls(tids) - 1;
1474 	/* TID 0 is BE just like TID 3 */
1475 	if (tids & BIT(0))
1476 		return 0;
1477 	return fls(tids) - 1;
1478 }
1479 
1480 /* Indicates if the MORE_DATA bit should be set in the last
1481  * frame obtained by ieee80211_sta_ps_get_frames.
1482  * Note that driver_release_tids is relevant only if
1483  * reason = IEEE80211_FRAME_RELEASE_PSPOLL
1484  */
1485 static bool
1486 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs,
1487 			   enum ieee80211_frame_release_type reason,
1488 			   unsigned long driver_release_tids)
1489 {
1490 	int ac;
1491 
1492 	/* If the driver has data on more than one TID then
1493 	 * certainly there's more data if we release just a
1494 	 * single frame now (from a single TID). This will
1495 	 * only happen for PS-Poll.
1496 	 */
1497 	if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1498 	    hweight16(driver_release_tids) > 1)
1499 		return true;
1500 
1501 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1502 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1503 			continue;
1504 
1505 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1506 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1507 			return true;
1508 	}
1509 
1510 	return false;
1511 }
1512 
1513 static void
1514 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs,
1515 			    enum ieee80211_frame_release_type reason,
1516 			    struct sk_buff_head *frames,
1517 			    unsigned long *driver_release_tids)
1518 {
1519 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1520 	struct ieee80211_local *local = sdata->local;
1521 	int ac;
1522 
1523 	/* Get response frame(s) and more data bit for the last one. */
1524 	for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1525 		unsigned long tids;
1526 
1527 		if (ignored_acs & ieee80211_ac_to_qos_mask[ac])
1528 			continue;
1529 
1530 		tids = ieee80211_tids_for_ac(ac);
1531 
1532 		/* if we already have frames from software, then we can't also
1533 		 * release from hardware queues
1534 		 */
1535 		if (skb_queue_empty(frames)) {
1536 			*driver_release_tids |=
1537 				sta->driver_buffered_tids & tids;
1538 			*driver_release_tids |= sta->txq_buffered_tids & tids;
1539 		}
1540 
1541 		if (!*driver_release_tids) {
1542 			struct sk_buff *skb;
1543 
1544 			while (n_frames > 0) {
1545 				skb = skb_dequeue(&sta->tx_filtered[ac]);
1546 				if (!skb) {
1547 					skb = skb_dequeue(
1548 						&sta->ps_tx_buf[ac]);
1549 					if (skb)
1550 						local->total_ps_buffered--;
1551 				}
1552 				if (!skb)
1553 					break;
1554 				n_frames--;
1555 				__skb_queue_tail(frames, skb);
1556 			}
1557 		}
1558 
1559 		/* If we have more frames buffered on this AC, then abort the
1560 		 * loop since we can't send more data from other ACs before
1561 		 * the buffered frames from this.
1562 		 */
1563 		if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1564 		    !skb_queue_empty(&sta->ps_tx_buf[ac]))
1565 			break;
1566 	}
1567 }
1568 
1569 static void
1570 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1571 				  int n_frames, u8 ignored_acs,
1572 				  enum ieee80211_frame_release_type reason)
1573 {
1574 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1575 	struct ieee80211_local *local = sdata->local;
1576 	unsigned long driver_release_tids = 0;
1577 	struct sk_buff_head frames;
1578 	bool more_data;
1579 
1580 	/* Service or PS-Poll period starts */
1581 	set_sta_flag(sta, WLAN_STA_SP);
1582 
1583 	__skb_queue_head_init(&frames);
1584 
1585 	ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason,
1586 				    &frames, &driver_release_tids);
1587 
1588 	more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids);
1589 
1590 	if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL)
1591 		driver_release_tids =
1592 			BIT(find_highest_prio_tid(driver_release_tids));
1593 
1594 	if (skb_queue_empty(&frames) && !driver_release_tids) {
1595 		int tid, ac;
1596 
1597 		/*
1598 		 * For PS-Poll, this can only happen due to a race condition
1599 		 * when we set the TIM bit and the station notices it, but
1600 		 * before it can poll for the frame we expire it.
1601 		 *
1602 		 * For uAPSD, this is said in the standard (11.2.1.5 h):
1603 		 *	At each unscheduled SP for a non-AP STA, the AP shall
1604 		 *	attempt to transmit at least one MSDU or MMPDU, but no
1605 		 *	more than the value specified in the Max SP Length field
1606 		 *	in the QoS Capability element from delivery-enabled ACs,
1607 		 *	that are destined for the non-AP STA.
1608 		 *
1609 		 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1610 		 */
1611 
1612 		/* This will evaluate to 1, 3, 5 or 7. */
1613 		for (ac = IEEE80211_AC_VO; ac < IEEE80211_NUM_ACS; ac++)
1614 			if (!(ignored_acs & ieee80211_ac_to_qos_mask[ac]))
1615 				break;
1616 		tid = 7 - 2 * ac;
1617 
1618 		ieee80211_send_null_response(sta, tid, reason, true, false);
1619 	} else if (!driver_release_tids) {
1620 		struct sk_buff_head pending;
1621 		struct sk_buff *skb;
1622 		int num = 0;
1623 		u16 tids = 0;
1624 		bool need_null = false;
1625 
1626 		skb_queue_head_init(&pending);
1627 
1628 		while ((skb = __skb_dequeue(&frames))) {
1629 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1630 			struct ieee80211_hdr *hdr = (void *) skb->data;
1631 			u8 *qoshdr = NULL;
1632 
1633 			num++;
1634 
1635 			/*
1636 			 * Tell TX path to send this frame even though the
1637 			 * STA may still remain is PS mode after this frame
1638 			 * exchange.
1639 			 */
1640 			info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER;
1641 			info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE;
1642 
1643 			/*
1644 			 * Use MoreData flag to indicate whether there are
1645 			 * more buffered frames for this STA
1646 			 */
1647 			if (more_data || !skb_queue_empty(&frames))
1648 				hdr->frame_control |=
1649 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1650 			else
1651 				hdr->frame_control &=
1652 					cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1653 
1654 			if (ieee80211_is_data_qos(hdr->frame_control) ||
1655 			    ieee80211_is_qos_nullfunc(hdr->frame_control))
1656 				qoshdr = ieee80211_get_qos_ctl(hdr);
1657 
1658 			tids |= BIT(skb->priority);
1659 
1660 			__skb_queue_tail(&pending, skb);
1661 
1662 			/* end service period after last frame or add one */
1663 			if (!skb_queue_empty(&frames))
1664 				continue;
1665 
1666 			if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1667 				/* for PS-Poll, there's only one frame */
1668 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1669 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1670 				break;
1671 			}
1672 
1673 			/* For uAPSD, things are a bit more complicated. If the
1674 			 * last frame has a QoS header (i.e. is a QoS-data or
1675 			 * QoS-nulldata frame) then just set the EOSP bit there
1676 			 * and be done.
1677 			 * If the frame doesn't have a QoS header (which means
1678 			 * it should be a bufferable MMPDU) then we can't set
1679 			 * the EOSP bit in the QoS header; add a QoS-nulldata
1680 			 * frame to the list to send it after the MMPDU.
1681 			 *
1682 			 * Note that this code is only in the mac80211-release
1683 			 * code path, we assume that the driver will not buffer
1684 			 * anything but QoS-data frames, or if it does, will
1685 			 * create the QoS-nulldata frame by itself if needed.
1686 			 *
1687 			 * Cf. 802.11-2012 10.2.1.10 (c).
1688 			 */
1689 			if (qoshdr) {
1690 				*qoshdr |= IEEE80211_QOS_CTL_EOSP;
1691 
1692 				info->flags |= IEEE80211_TX_STATUS_EOSP |
1693 					       IEEE80211_TX_CTL_REQ_TX_STATUS;
1694 			} else {
1695 				/* The standard isn't completely clear on this
1696 				 * as it says the more-data bit should be set
1697 				 * if there are more BUs. The QoS-Null frame
1698 				 * we're about to send isn't buffered yet, we
1699 				 * only create it below, but let's pretend it
1700 				 * was buffered just in case some clients only
1701 				 * expect more-data=0 when eosp=1.
1702 				 */
1703 				hdr->frame_control |=
1704 					cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1705 				need_null = true;
1706 				num++;
1707 			}
1708 			break;
1709 		}
1710 
1711 		drv_allow_buffered_frames(local, sta, tids, num,
1712 					  reason, more_data);
1713 
1714 		ieee80211_add_pending_skbs(local, &pending);
1715 
1716 		if (need_null)
1717 			ieee80211_send_null_response(
1718 				sta, find_highest_prio_tid(tids),
1719 				reason, false, false);
1720 
1721 		sta_info_recalc_tim(sta);
1722 	} else {
1723 		int tid;
1724 
1725 		/*
1726 		 * We need to release a frame that is buffered somewhere in the
1727 		 * driver ... it'll have to handle that.
1728 		 * Note that the driver also has to check the number of frames
1729 		 * on the TIDs we're releasing from - if there are more than
1730 		 * n_frames it has to set the more-data bit (if we didn't ask
1731 		 * it to set it anyway due to other buffered frames); if there
1732 		 * are fewer than n_frames it has to make sure to adjust that
1733 		 * to allow the service period to end properly.
1734 		 */
1735 		drv_release_buffered_frames(local, sta, driver_release_tids,
1736 					    n_frames, reason, more_data);
1737 
1738 		/*
1739 		 * Note that we don't recalculate the TIM bit here as it would
1740 		 * most likely have no effect at all unless the driver told us
1741 		 * that the TID(s) became empty before returning here from the
1742 		 * release function.
1743 		 * Either way, however, when the driver tells us that the TID(s)
1744 		 * became empty or we find that a txq became empty, we'll do the
1745 		 * TIM recalculation.
1746 		 */
1747 
1748 		if (!sta->sta.txq[0])
1749 			return;
1750 
1751 		for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1752 			if (!sta->sta.txq[tid] ||
1753 			    !(driver_release_tids & BIT(tid)) ||
1754 			    txq_has_queue(sta->sta.txq[tid]))
1755 				continue;
1756 
1757 			sta_info_recalc_tim(sta);
1758 			break;
1759 		}
1760 	}
1761 }
1762 
1763 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1764 {
1765 	u8 ignore_for_response = sta->sta.uapsd_queues;
1766 
1767 	/*
1768 	 * If all ACs are delivery-enabled then we should reply
1769 	 * from any of them, if only some are enabled we reply
1770 	 * only from the non-enabled ones.
1771 	 */
1772 	if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1773 		ignore_for_response = 0;
1774 
1775 	ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1776 					  IEEE80211_FRAME_RELEASE_PSPOLL);
1777 }
1778 
1779 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1780 {
1781 	int n_frames = sta->sta.max_sp;
1782 	u8 delivery_enabled = sta->sta.uapsd_queues;
1783 
1784 	/*
1785 	 * If we ever grow support for TSPEC this might happen if
1786 	 * the TSPEC update from hostapd comes in between a trigger
1787 	 * frame setting WLAN_STA_UAPSD in the RX path and this
1788 	 * actually getting called.
1789 	 */
1790 	if (!delivery_enabled)
1791 		return;
1792 
1793 	switch (sta->sta.max_sp) {
1794 	case 1:
1795 		n_frames = 2;
1796 		break;
1797 	case 2:
1798 		n_frames = 4;
1799 		break;
1800 	case 3:
1801 		n_frames = 6;
1802 		break;
1803 	case 0:
1804 		/* XXX: what is a good value? */
1805 		n_frames = 128;
1806 		break;
1807 	}
1808 
1809 	ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1810 					  IEEE80211_FRAME_RELEASE_UAPSD);
1811 }
1812 
1813 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1814 			       struct ieee80211_sta *pubsta, bool block)
1815 {
1816 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1817 
1818 	trace_api_sta_block_awake(sta->local, pubsta, block);
1819 
1820 	if (block) {
1821 		set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1822 		ieee80211_clear_fast_xmit(sta);
1823 		return;
1824 	}
1825 
1826 	if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1827 		return;
1828 
1829 	if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1830 		set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1831 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1832 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1833 	} else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1834 		   test_sta_flag(sta, WLAN_STA_UAPSD)) {
1835 		/* must be asleep in this case */
1836 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1837 		ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1838 	} else {
1839 		clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1840 		ieee80211_check_fast_xmit(sta);
1841 	}
1842 }
1843 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1844 
1845 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1846 {
1847 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1848 	struct ieee80211_local *local = sta->local;
1849 
1850 	trace_api_eosp(local, pubsta);
1851 
1852 	clear_sta_flag(sta, WLAN_STA_SP);
1853 }
1854 EXPORT_SYMBOL(ieee80211_sta_eosp);
1855 
1856 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid)
1857 {
1858 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1859 	enum ieee80211_frame_release_type reason;
1860 	bool more_data;
1861 
1862 	trace_api_send_eosp_nullfunc(sta->local, pubsta, tid);
1863 
1864 	reason = IEEE80211_FRAME_RELEASE_UAPSD;
1865 	more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues,
1866 					       reason, 0);
1867 
1868 	ieee80211_send_null_response(sta, tid, reason, false, more_data);
1869 }
1870 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc);
1871 
1872 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1873 				u8 tid, bool buffered)
1874 {
1875 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1876 
1877 	if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1878 		return;
1879 
1880 	trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1881 
1882 	if (buffered)
1883 		set_bit(tid, &sta->driver_buffered_tids);
1884 	else
1885 		clear_bit(tid, &sta->driver_buffered_tids);
1886 
1887 	sta_info_recalc_tim(sta);
1888 }
1889 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1890 
1891 void ieee80211_register_airtime(struct ieee80211_txq *txq,
1892 				u32 tx_airtime, u32 rx_airtime)
1893 {
1894 	struct ieee80211_sub_if_data *sdata = vif_to_sdata(txq->vif);
1895 	struct ieee80211_local *local = sdata->local;
1896 	u64 weight_sum, weight_sum_reciprocal;
1897 	struct airtime_sched_info *air_sched;
1898 	struct airtime_info *air_info;
1899 	u32 airtime = 0;
1900 
1901 	air_sched = &local->airtime[txq->ac];
1902 	air_info = to_airtime_info(txq);
1903 
1904 	if (local->airtime_flags & AIRTIME_USE_TX)
1905 		airtime += tx_airtime;
1906 	if (local->airtime_flags & AIRTIME_USE_RX)
1907 		airtime += rx_airtime;
1908 
1909 	/* Weights scale so the unit weight is 256 */
1910 	airtime <<= 8;
1911 
1912 	spin_lock_bh(&air_sched->lock);
1913 
1914 	air_info->tx_airtime += tx_airtime;
1915 	air_info->rx_airtime += rx_airtime;
1916 
1917 	if (air_sched->weight_sum) {
1918 		weight_sum = air_sched->weight_sum;
1919 		weight_sum_reciprocal = air_sched->weight_sum_reciprocal;
1920 	} else {
1921 		weight_sum = air_info->weight;
1922 		weight_sum_reciprocal = air_info->weight_reciprocal;
1923 	}
1924 
1925 	/* Round the calculation of global vt */
1926 	air_sched->v_t += (u64)((airtime + (weight_sum >> 1)) *
1927 				weight_sum_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_64;
1928 	air_info->v_t += (u32)((airtime + (air_info->weight >> 1)) *
1929 			       air_info->weight_reciprocal) >> IEEE80211_RECIPROCAL_SHIFT_32;
1930 	ieee80211_resort_txq(&local->hw, txq);
1931 
1932 	spin_unlock_bh(&air_sched->lock);
1933 }
1934 
1935 void ieee80211_sta_register_airtime(struct ieee80211_sta *pubsta, u8 tid,
1936 				    u32 tx_airtime, u32 rx_airtime)
1937 {
1938 	struct ieee80211_txq *txq = pubsta->txq[tid];
1939 
1940 	if (!txq)
1941 		return;
1942 
1943 	ieee80211_register_airtime(txq, tx_airtime, rx_airtime);
1944 }
1945 EXPORT_SYMBOL(ieee80211_sta_register_airtime);
1946 
1947 void ieee80211_sta_update_pending_airtime(struct ieee80211_local *local,
1948 					  struct sta_info *sta, u8 ac,
1949 					  u16 tx_airtime, bool tx_completed)
1950 {
1951 	int tx_pending;
1952 
1953 	if (!wiphy_ext_feature_isset(local->hw.wiphy, NL80211_EXT_FEATURE_AQL))
1954 		return;
1955 
1956 	if (!tx_completed) {
1957 		if (sta)
1958 			atomic_add(tx_airtime,
1959 				   &sta->airtime[ac].aql_tx_pending);
1960 
1961 		atomic_add(tx_airtime, &local->aql_total_pending_airtime);
1962 		return;
1963 	}
1964 
1965 	if (sta) {
1966 		tx_pending = atomic_sub_return(tx_airtime,
1967 					       &sta->airtime[ac].aql_tx_pending);
1968 		if (tx_pending < 0)
1969 			atomic_cmpxchg(&sta->airtime[ac].aql_tx_pending,
1970 				       tx_pending, 0);
1971 	}
1972 
1973 	tx_pending = atomic_sub_return(tx_airtime,
1974 				       &local->aql_total_pending_airtime);
1975 	if (WARN_ONCE(tx_pending < 0,
1976 		      "Device %s AC %d pending airtime underflow: %u, %u",
1977 		      wiphy_name(local->hw.wiphy), ac, tx_pending,
1978 		      tx_airtime))
1979 		atomic_cmpxchg(&local->aql_total_pending_airtime,
1980 			       tx_pending, 0);
1981 }
1982 
1983 int sta_info_move_state(struct sta_info *sta,
1984 			enum ieee80211_sta_state new_state)
1985 {
1986 	might_sleep();
1987 
1988 	if (sta->sta_state == new_state)
1989 		return 0;
1990 
1991 	/* check allowed transitions first */
1992 
1993 	switch (new_state) {
1994 	case IEEE80211_STA_NONE:
1995 		if (sta->sta_state != IEEE80211_STA_AUTH)
1996 			return -EINVAL;
1997 		break;
1998 	case IEEE80211_STA_AUTH:
1999 		if (sta->sta_state != IEEE80211_STA_NONE &&
2000 		    sta->sta_state != IEEE80211_STA_ASSOC)
2001 			return -EINVAL;
2002 		break;
2003 	case IEEE80211_STA_ASSOC:
2004 		if (sta->sta_state != IEEE80211_STA_AUTH &&
2005 		    sta->sta_state != IEEE80211_STA_AUTHORIZED)
2006 			return -EINVAL;
2007 		break;
2008 	case IEEE80211_STA_AUTHORIZED:
2009 		if (sta->sta_state != IEEE80211_STA_ASSOC)
2010 			return -EINVAL;
2011 		break;
2012 	default:
2013 		WARN(1, "invalid state %d", new_state);
2014 		return -EINVAL;
2015 	}
2016 
2017 	sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
2018 		sta->sta.addr, new_state);
2019 
2020 	/*
2021 	 * notify the driver before the actual changes so it can
2022 	 * fail the transition
2023 	 */
2024 	if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
2025 		int err = drv_sta_state(sta->local, sta->sdata, sta,
2026 					sta->sta_state, new_state);
2027 		if (err)
2028 			return err;
2029 	}
2030 
2031 	/* reflect the change in all state variables */
2032 
2033 	switch (new_state) {
2034 	case IEEE80211_STA_NONE:
2035 		if (sta->sta_state == IEEE80211_STA_AUTH)
2036 			clear_bit(WLAN_STA_AUTH, &sta->_flags);
2037 		break;
2038 	case IEEE80211_STA_AUTH:
2039 		if (sta->sta_state == IEEE80211_STA_NONE) {
2040 			set_bit(WLAN_STA_AUTH, &sta->_flags);
2041 		} else if (sta->sta_state == IEEE80211_STA_ASSOC) {
2042 			clear_bit(WLAN_STA_ASSOC, &sta->_flags);
2043 			ieee80211_recalc_min_chandef(sta->sdata);
2044 			if (!sta->sta.support_p2p_ps)
2045 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2046 		}
2047 		break;
2048 	case IEEE80211_STA_ASSOC:
2049 		if (sta->sta_state == IEEE80211_STA_AUTH) {
2050 			set_bit(WLAN_STA_ASSOC, &sta->_flags);
2051 			sta->assoc_at = ktime_get_boottime_ns();
2052 			ieee80211_recalc_min_chandef(sta->sdata);
2053 			if (!sta->sta.support_p2p_ps)
2054 				ieee80211_recalc_p2p_go_ps_allowed(sta->sdata);
2055 		} else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
2056 			ieee80211_vif_dec_num_mcast(sta->sdata);
2057 			clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2058 			ieee80211_clear_fast_xmit(sta);
2059 			ieee80211_clear_fast_rx(sta);
2060 		}
2061 		break;
2062 	case IEEE80211_STA_AUTHORIZED:
2063 		if (sta->sta_state == IEEE80211_STA_ASSOC) {
2064 			ieee80211_vif_inc_num_mcast(sta->sdata);
2065 			set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
2066 			ieee80211_check_fast_xmit(sta);
2067 			ieee80211_check_fast_rx(sta);
2068 		}
2069 		if (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
2070 		    sta->sdata->vif.type == NL80211_IFTYPE_AP)
2071 			cfg80211_send_layer2_update(sta->sdata->dev,
2072 						    sta->sta.addr);
2073 		break;
2074 	default:
2075 		break;
2076 	}
2077 
2078 	sta->sta_state = new_state;
2079 
2080 	return 0;
2081 }
2082 
2083 u8 sta_info_tx_streams(struct sta_info *sta)
2084 {
2085 	struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
2086 	u8 rx_streams;
2087 
2088 	if (!sta->sta.ht_cap.ht_supported)
2089 		return 1;
2090 
2091 	if (sta->sta.vht_cap.vht_supported) {
2092 		int i;
2093 		u16 tx_mcs_map =
2094 			le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
2095 
2096 		for (i = 7; i >= 0; i--)
2097 			if ((tx_mcs_map & (0x3 << (i * 2))) !=
2098 			    IEEE80211_VHT_MCS_NOT_SUPPORTED)
2099 				return i + 1;
2100 	}
2101 
2102 	if (ht_cap->mcs.rx_mask[3])
2103 		rx_streams = 4;
2104 	else if (ht_cap->mcs.rx_mask[2])
2105 		rx_streams = 3;
2106 	else if (ht_cap->mcs.rx_mask[1])
2107 		rx_streams = 2;
2108 	else
2109 		rx_streams = 1;
2110 
2111 	if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
2112 		return rx_streams;
2113 
2114 	return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
2115 			>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
2116 }
2117 
2118 static struct ieee80211_sta_rx_stats *
2119 sta_get_last_rx_stats(struct sta_info *sta)
2120 {
2121 	struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
2122 	int cpu;
2123 
2124 	if (!sta->pcpu_rx_stats)
2125 		return stats;
2126 
2127 	for_each_possible_cpu(cpu) {
2128 		struct ieee80211_sta_rx_stats *cpustats;
2129 
2130 		cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2131 
2132 		if (time_after(cpustats->last_rx, stats->last_rx))
2133 			stats = cpustats;
2134 	}
2135 
2136 	return stats;
2137 }
2138 
2139 static void sta_stats_decode_rate(struct ieee80211_local *local, u32 rate,
2140 				  struct rate_info *rinfo)
2141 {
2142 	rinfo->bw = STA_STATS_GET(BW, rate);
2143 
2144 	switch (STA_STATS_GET(TYPE, rate)) {
2145 	case STA_STATS_RATE_TYPE_VHT:
2146 		rinfo->flags = RATE_INFO_FLAGS_VHT_MCS;
2147 		rinfo->mcs = STA_STATS_GET(VHT_MCS, rate);
2148 		rinfo->nss = STA_STATS_GET(VHT_NSS, rate);
2149 		if (STA_STATS_GET(SGI, rate))
2150 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2151 		break;
2152 	case STA_STATS_RATE_TYPE_HT:
2153 		rinfo->flags = RATE_INFO_FLAGS_MCS;
2154 		rinfo->mcs = STA_STATS_GET(HT_MCS, rate);
2155 		if (STA_STATS_GET(SGI, rate))
2156 			rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI;
2157 		break;
2158 	case STA_STATS_RATE_TYPE_LEGACY: {
2159 		struct ieee80211_supported_band *sband;
2160 		u16 brate;
2161 		unsigned int shift;
2162 		int band = STA_STATS_GET(LEGACY_BAND, rate);
2163 		int rate_idx = STA_STATS_GET(LEGACY_IDX, rate);
2164 
2165 		sband = local->hw.wiphy->bands[band];
2166 
2167 		if (WARN_ON_ONCE(!sband->bitrates))
2168 			break;
2169 
2170 		brate = sband->bitrates[rate_idx].bitrate;
2171 		if (rinfo->bw == RATE_INFO_BW_5)
2172 			shift = 2;
2173 		else if (rinfo->bw == RATE_INFO_BW_10)
2174 			shift = 1;
2175 		else
2176 			shift = 0;
2177 		rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift);
2178 		break;
2179 		}
2180 	case STA_STATS_RATE_TYPE_HE:
2181 		rinfo->flags = RATE_INFO_FLAGS_HE_MCS;
2182 		rinfo->mcs = STA_STATS_GET(HE_MCS, rate);
2183 		rinfo->nss = STA_STATS_GET(HE_NSS, rate);
2184 		rinfo->he_gi = STA_STATS_GET(HE_GI, rate);
2185 		rinfo->he_ru_alloc = STA_STATS_GET(HE_RU, rate);
2186 		rinfo->he_dcm = STA_STATS_GET(HE_DCM, rate);
2187 		break;
2188 	}
2189 }
2190 
2191 static int sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo)
2192 {
2193 	u16 rate = READ_ONCE(sta_get_last_rx_stats(sta)->last_rate);
2194 
2195 	if (rate == STA_STATS_RATE_INVALID)
2196 		return -EINVAL;
2197 
2198 	sta_stats_decode_rate(sta->local, rate, rinfo);
2199 	return 0;
2200 }
2201 
2202 static inline u64 sta_get_tidstats_msdu(struct ieee80211_sta_rx_stats *rxstats,
2203 					int tid)
2204 {
2205 	unsigned int start;
2206 	u64 value;
2207 
2208 	do {
2209 		start = u64_stats_fetch_begin(&rxstats->syncp);
2210 		value = rxstats->msdu[tid];
2211 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2212 
2213 	return value;
2214 }
2215 
2216 static void sta_set_tidstats(struct sta_info *sta,
2217 			     struct cfg80211_tid_stats *tidstats,
2218 			     int tid)
2219 {
2220 	struct ieee80211_local *local = sta->local;
2221 	int cpu;
2222 
2223 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) {
2224 		tidstats->rx_msdu += sta_get_tidstats_msdu(&sta->rx_stats, tid);
2225 
2226 		if (sta->pcpu_rx_stats) {
2227 			for_each_possible_cpu(cpu) {
2228 				struct ieee80211_sta_rx_stats *cpurxs;
2229 
2230 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2231 				tidstats->rx_msdu +=
2232 					sta_get_tidstats_msdu(cpurxs, tid);
2233 			}
2234 		}
2235 
2236 		tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU);
2237 	}
2238 
2239 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) {
2240 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU);
2241 		tidstats->tx_msdu = sta->tx_stats.msdu[tid];
2242 	}
2243 
2244 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) &&
2245 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2246 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES);
2247 		tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid];
2248 	}
2249 
2250 	if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) &&
2251 	    ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) {
2252 		tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED);
2253 		tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid];
2254 	}
2255 
2256 	if (local->ops->wake_tx_queue && tid < IEEE80211_NUM_TIDS) {
2257 		spin_lock_bh(&local->fq.lock);
2258 		rcu_read_lock();
2259 
2260 		tidstats->filled |= BIT(NL80211_TID_STATS_TXQ_STATS);
2261 		ieee80211_fill_txq_stats(&tidstats->txq_stats,
2262 					 to_txq_info(sta->sta.txq[tid]));
2263 
2264 		rcu_read_unlock();
2265 		spin_unlock_bh(&local->fq.lock);
2266 	}
2267 }
2268 
2269 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats)
2270 {
2271 	unsigned int start;
2272 	u64 value;
2273 
2274 	do {
2275 		start = u64_stats_fetch_begin(&rxstats->syncp);
2276 		value = rxstats->bytes;
2277 	} while (u64_stats_fetch_retry(&rxstats->syncp, start));
2278 
2279 	return value;
2280 }
2281 
2282 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo,
2283 		   bool tidstats)
2284 {
2285 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2286 	struct ieee80211_local *local = sdata->local;
2287 	u32 thr = 0;
2288 	int i, ac, cpu;
2289 	struct ieee80211_sta_rx_stats *last_rxstats;
2290 
2291 	last_rxstats = sta_get_last_rx_stats(sta);
2292 
2293 	sinfo->generation = sdata->local->sta_generation;
2294 
2295 	/* do before driver, so beacon filtering drivers have a
2296 	 * chance to e.g. just add the number of filtered beacons
2297 	 * (or just modify the value entirely, of course)
2298 	 */
2299 	if (sdata->vif.type == NL80211_IFTYPE_STATION)
2300 		sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal;
2301 
2302 	drv_sta_statistics(local, sdata, &sta->sta, sinfo);
2303 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_INACTIVE_TIME) |
2304 			 BIT_ULL(NL80211_STA_INFO_STA_FLAGS) |
2305 			 BIT_ULL(NL80211_STA_INFO_BSS_PARAM) |
2306 			 BIT_ULL(NL80211_STA_INFO_CONNECTED_TIME) |
2307 			 BIT_ULL(NL80211_STA_INFO_ASSOC_AT_BOOTTIME) |
2308 			 BIT_ULL(NL80211_STA_INFO_RX_DROP_MISC);
2309 
2310 	if (sdata->vif.type == NL80211_IFTYPE_STATION) {
2311 		sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count;
2312 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_LOSS);
2313 	}
2314 
2315 	sinfo->connected_time = ktime_get_seconds() - sta->last_connected;
2316 	sinfo->assoc_at = sta->assoc_at;
2317 	sinfo->inactive_time =
2318 		jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta));
2319 
2320 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_TX_BYTES64) |
2321 			       BIT_ULL(NL80211_STA_INFO_TX_BYTES)))) {
2322 		sinfo->tx_bytes = 0;
2323 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2324 			sinfo->tx_bytes += sta->tx_stats.bytes[ac];
2325 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BYTES64);
2326 	}
2327 
2328 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_PACKETS))) {
2329 		sinfo->tx_packets = 0;
2330 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2331 			sinfo->tx_packets += sta->tx_stats.packets[ac];
2332 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_PACKETS);
2333 	}
2334 
2335 	if (!(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_RX_BYTES64) |
2336 			       BIT_ULL(NL80211_STA_INFO_RX_BYTES)))) {
2337 		sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats);
2338 
2339 		if (sta->pcpu_rx_stats) {
2340 			for_each_possible_cpu(cpu) {
2341 				struct ieee80211_sta_rx_stats *cpurxs;
2342 
2343 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2344 				sinfo->rx_bytes += sta_get_stats_bytes(cpurxs);
2345 			}
2346 		}
2347 
2348 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BYTES64);
2349 	}
2350 
2351 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_PACKETS))) {
2352 		sinfo->rx_packets = sta->rx_stats.packets;
2353 		if (sta->pcpu_rx_stats) {
2354 			for_each_possible_cpu(cpu) {
2355 				struct ieee80211_sta_rx_stats *cpurxs;
2356 
2357 				cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2358 				sinfo->rx_packets += cpurxs->packets;
2359 			}
2360 		}
2361 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_PACKETS);
2362 	}
2363 
2364 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_RETRIES))) {
2365 		sinfo->tx_retries = sta->status_stats.retry_count;
2366 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_RETRIES);
2367 	}
2368 
2369 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_FAILED))) {
2370 		sinfo->tx_failed = sta->status_stats.retry_failed;
2371 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_FAILED);
2372 	}
2373 
2374 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_DURATION))) {
2375 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2376 			sinfo->rx_duration += sta->airtime[ac].rx_airtime;
2377 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
2378 	}
2379 
2380 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_DURATION))) {
2381 		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
2382 			sinfo->tx_duration += sta->airtime[ac].tx_airtime;
2383 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
2384 	}
2385 
2386 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT))) {
2387 		sinfo->airtime_weight = sta->airtime[0].weight;
2388 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_WEIGHT);
2389 	}
2390 
2391 	sinfo->rx_dropped_misc = sta->rx_stats.dropped;
2392 	if (sta->pcpu_rx_stats) {
2393 		for_each_possible_cpu(cpu) {
2394 			struct ieee80211_sta_rx_stats *cpurxs;
2395 
2396 			cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu);
2397 			sinfo->rx_dropped_misc += cpurxs->dropped;
2398 		}
2399 	}
2400 
2401 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2402 	    !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) {
2403 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_BEACON_RX) |
2404 				 BIT_ULL(NL80211_STA_INFO_BEACON_SIGNAL_AVG);
2405 		sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif);
2406 	}
2407 
2408 	if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) ||
2409 	    ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) {
2410 		if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL))) {
2411 			sinfo->signal = (s8)last_rxstats->last_signal;
2412 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
2413 		}
2414 
2415 		if (!sta->pcpu_rx_stats &&
2416 		    !(sinfo->filled & BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG))) {
2417 			sinfo->signal_avg =
2418 				-ewma_signal_read(&sta->rx_stats_avg.signal);
2419 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
2420 		}
2421 	}
2422 
2423 	/* for the average - if pcpu_rx_stats isn't set - rxstats must point to
2424 	 * the sta->rx_stats struct, so the check here is fine with and without
2425 	 * pcpu statistics
2426 	 */
2427 	if (last_rxstats->chains &&
2428 	    !(sinfo->filled & (BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL) |
2429 			       BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) {
2430 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
2431 		if (!sta->pcpu_rx_stats)
2432 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL_AVG);
2433 
2434 		sinfo->chains = last_rxstats->chains;
2435 
2436 		for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
2437 			sinfo->chain_signal[i] =
2438 				last_rxstats->chain_signal_last[i];
2439 			sinfo->chain_signal_avg[i] =
2440 				-ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]);
2441 		}
2442 	}
2443 
2444 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_TX_BITRATE))) {
2445 		sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate,
2446 				     &sinfo->txrate);
2447 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
2448 	}
2449 
2450 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_RX_BITRATE))) {
2451 		if (sta_set_rate_info_rx(sta, &sinfo->rxrate) == 0)
2452 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_BITRATE);
2453 	}
2454 
2455 	if (tidstats && !cfg80211_sinfo_alloc_tid_stats(sinfo, GFP_KERNEL)) {
2456 		for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
2457 			sta_set_tidstats(sta, &sinfo->pertid[i], i);
2458 	}
2459 
2460 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2461 #ifdef CONFIG_MAC80211_MESH
2462 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_LLID) |
2463 				 BIT_ULL(NL80211_STA_INFO_PLID) |
2464 				 BIT_ULL(NL80211_STA_INFO_PLINK_STATE) |
2465 				 BIT_ULL(NL80211_STA_INFO_LOCAL_PM) |
2466 				 BIT_ULL(NL80211_STA_INFO_PEER_PM) |
2467 				 BIT_ULL(NL80211_STA_INFO_NONPEER_PM) |
2468 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_GATE) |
2469 				 BIT_ULL(NL80211_STA_INFO_CONNECTED_TO_AS);
2470 
2471 		sinfo->llid = sta->mesh->llid;
2472 		sinfo->plid = sta->mesh->plid;
2473 		sinfo->plink_state = sta->mesh->plink_state;
2474 		if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
2475 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_T_OFFSET);
2476 			sinfo->t_offset = sta->mesh->t_offset;
2477 		}
2478 		sinfo->local_pm = sta->mesh->local_pm;
2479 		sinfo->peer_pm = sta->mesh->peer_pm;
2480 		sinfo->nonpeer_pm = sta->mesh->nonpeer_pm;
2481 		sinfo->connected_to_gate = sta->mesh->connected_to_gate;
2482 		sinfo->connected_to_as = sta->mesh->connected_to_as;
2483 #endif
2484 	}
2485 
2486 	sinfo->bss_param.flags = 0;
2487 	if (sdata->vif.bss_conf.use_cts_prot)
2488 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
2489 	if (sdata->vif.bss_conf.use_short_preamble)
2490 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
2491 	if (sdata->vif.bss_conf.use_short_slot)
2492 		sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
2493 	sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
2494 	sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
2495 
2496 	sinfo->sta_flags.set = 0;
2497 	sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
2498 				BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
2499 				BIT(NL80211_STA_FLAG_WME) |
2500 				BIT(NL80211_STA_FLAG_MFP) |
2501 				BIT(NL80211_STA_FLAG_AUTHENTICATED) |
2502 				BIT(NL80211_STA_FLAG_ASSOCIATED) |
2503 				BIT(NL80211_STA_FLAG_TDLS_PEER);
2504 	if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
2505 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
2506 	if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
2507 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
2508 	if (sta->sta.wme)
2509 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
2510 	if (test_sta_flag(sta, WLAN_STA_MFP))
2511 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
2512 	if (test_sta_flag(sta, WLAN_STA_AUTH))
2513 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
2514 	if (test_sta_flag(sta, WLAN_STA_ASSOC))
2515 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
2516 	if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
2517 		sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
2518 
2519 	thr = sta_get_expected_throughput(sta);
2520 
2521 	if (thr != 0) {
2522 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_EXPECTED_THROUGHPUT);
2523 		sinfo->expected_throughput = thr;
2524 	}
2525 
2526 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL)) &&
2527 	    sta->status_stats.ack_signal_filled) {
2528 		sinfo->ack_signal = sta->status_stats.last_ack_signal;
2529 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL);
2530 	}
2531 
2532 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG)) &&
2533 	    sta->status_stats.ack_signal_filled) {
2534 		sinfo->avg_ack_signal =
2535 			-(s8)ewma_avg_signal_read(
2536 				&sta->status_stats.avg_ack_signal);
2537 		sinfo->filled |=
2538 			BIT_ULL(NL80211_STA_INFO_ACK_SIGNAL_AVG);
2539 	}
2540 
2541 	if (ieee80211_vif_is_mesh(&sdata->vif)) {
2542 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_AIRTIME_LINK_METRIC);
2543 		sinfo->airtime_link_metric =
2544 			airtime_link_metric_get(local, sta);
2545 	}
2546 }
2547 
2548 u32 sta_get_expected_throughput(struct sta_info *sta)
2549 {
2550 	struct ieee80211_sub_if_data *sdata = sta->sdata;
2551 	struct ieee80211_local *local = sdata->local;
2552 	struct rate_control_ref *ref = NULL;
2553 	u32 thr = 0;
2554 
2555 	if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
2556 		ref = local->rate_ctrl;
2557 
2558 	/* check if the driver has a SW RC implementation */
2559 	if (ref && ref->ops->get_expected_throughput)
2560 		thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
2561 	else
2562 		thr = drv_get_expected_throughput(local, sta);
2563 
2564 	return thr;
2565 }
2566 
2567 unsigned long ieee80211_sta_last_active(struct sta_info *sta)
2568 {
2569 	struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta);
2570 
2571 	if (!sta->status_stats.last_ack ||
2572 	    time_after(stats->last_rx, sta->status_stats.last_ack))
2573 		return stats->last_rx;
2574 	return sta->status_stats.last_ack;
2575 }
2576 
2577 static void sta_update_codel_params(struct sta_info *sta, u32 thr)
2578 {
2579 	if (!sta->sdata->local->ops->wake_tx_queue)
2580 		return;
2581 
2582 	if (thr && thr < STA_SLOW_THRESHOLD * sta->local->num_sta) {
2583 		sta->cparams.target = MS2TIME(50);
2584 		sta->cparams.interval = MS2TIME(300);
2585 		sta->cparams.ecn = false;
2586 	} else {
2587 		sta->cparams.target = MS2TIME(20);
2588 		sta->cparams.interval = MS2TIME(100);
2589 		sta->cparams.ecn = true;
2590 	}
2591 }
2592 
2593 void ieee80211_sta_set_expected_throughput(struct ieee80211_sta *pubsta,
2594 					   u32 thr)
2595 {
2596 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
2597 
2598 	sta_update_codel_params(sta, thr);
2599 }
2600