1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 4 * Copyright 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015 - 2016 Intel Deutschland GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/etherdevice.h> 15 #include <linux/netdevice.h> 16 #include <linux/types.h> 17 #include <linux/slab.h> 18 #include <linux/skbuff.h> 19 #include <linux/if_arp.h> 20 #include <linux/timer.h> 21 #include <linux/rtnetlink.h> 22 23 #include <net/mac80211.h> 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "rate.h" 27 #include "sta_info.h" 28 #include "debugfs_sta.h" 29 #include "mesh.h" 30 #include "wme.h" 31 32 /** 33 * DOC: STA information lifetime rules 34 * 35 * STA info structures (&struct sta_info) are managed in a hash table 36 * for faster lookup and a list for iteration. They are managed using 37 * RCU, i.e. access to the list and hash table is protected by RCU. 38 * 39 * Upon allocating a STA info structure with sta_info_alloc(), the caller 40 * owns that structure. It must then insert it into the hash table using 41 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter 42 * case (which acquires an rcu read section but must not be called from 43 * within one) will the pointer still be valid after the call. Note that 44 * the caller may not do much with the STA info before inserting it, in 45 * particular, it may not start any mesh peer link management or add 46 * encryption keys. 47 * 48 * When the insertion fails (sta_info_insert()) returns non-zero), the 49 * structure will have been freed by sta_info_insert()! 50 * 51 * Station entries are added by mac80211 when you establish a link with a 52 * peer. This means different things for the different type of interfaces 53 * we support. For a regular station this mean we add the AP sta when we 54 * receive an association response from the AP. For IBSS this occurs when 55 * get to know about a peer on the same IBSS. For WDS we add the sta for 56 * the peer immediately upon device open. When using AP mode we add stations 57 * for each respective station upon request from userspace through nl80211. 58 * 59 * In order to remove a STA info structure, various sta_info_destroy_*() 60 * calls are available. 61 * 62 * There is no concept of ownership on a STA entry, each structure is 63 * owned by the global hash table/list until it is removed. All users of 64 * the structure need to be RCU protected so that the structure won't be 65 * freed before they are done using it. 66 */ 67 68 static const struct rhashtable_params sta_rht_params = { 69 .nelem_hint = 3, /* start small */ 70 .insecure_elasticity = true, /* Disable chain-length checks. */ 71 .automatic_shrinking = true, 72 .head_offset = offsetof(struct sta_info, hash_node), 73 .key_offset = offsetof(struct sta_info, addr), 74 .key_len = ETH_ALEN, 75 .hashfn = sta_addr_hash, 76 .max_size = CONFIG_MAC80211_STA_HASH_MAX_SIZE, 77 }; 78 79 /* Caller must hold local->sta_mtx */ 80 static int sta_info_hash_del(struct ieee80211_local *local, 81 struct sta_info *sta) 82 { 83 return rhashtable_remove_fast(&local->sta_hash, &sta->hash_node, 84 sta_rht_params); 85 } 86 87 static void __cleanup_single_sta(struct sta_info *sta) 88 { 89 int ac, i; 90 struct tid_ampdu_tx *tid_tx; 91 struct ieee80211_sub_if_data *sdata = sta->sdata; 92 struct ieee80211_local *local = sdata->local; 93 struct ps_data *ps; 94 95 if (test_sta_flag(sta, WLAN_STA_PS_STA) || 96 test_sta_flag(sta, WLAN_STA_PS_DRIVER) || 97 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { 98 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 99 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 100 ps = &sdata->bss->ps; 101 else if (ieee80211_vif_is_mesh(&sdata->vif)) 102 ps = &sdata->u.mesh.ps; 103 else 104 return; 105 106 clear_sta_flag(sta, WLAN_STA_PS_STA); 107 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 108 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 109 110 atomic_dec(&ps->num_sta_ps); 111 } 112 113 if (sta->sta.txq[0]) { 114 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 115 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 116 int n = skb_queue_len(&txqi->queue); 117 118 ieee80211_purge_tx_queue(&local->hw, &txqi->queue); 119 atomic_sub(n, &sdata->txqs_len[txqi->txq.ac]); 120 txqi->byte_cnt = 0; 121 } 122 } 123 124 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 125 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]); 126 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]); 127 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]); 128 } 129 130 if (ieee80211_vif_is_mesh(&sdata->vif)) 131 mesh_sta_cleanup(sta); 132 133 cancel_work_sync(&sta->drv_deliver_wk); 134 135 /* 136 * Destroy aggregation state here. It would be nice to wait for the 137 * driver to finish aggregation stop and then clean up, but for now 138 * drivers have to handle aggregation stop being requested, followed 139 * directly by station destruction. 140 */ 141 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 142 kfree(sta->ampdu_mlme.tid_start_tx[i]); 143 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]); 144 if (!tid_tx) 145 continue; 146 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending); 147 kfree(tid_tx); 148 } 149 } 150 151 static void cleanup_single_sta(struct sta_info *sta) 152 { 153 struct ieee80211_sub_if_data *sdata = sta->sdata; 154 struct ieee80211_local *local = sdata->local; 155 156 __cleanup_single_sta(sta); 157 sta_info_free(local, sta); 158 } 159 160 /* protected by RCU */ 161 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata, 162 const u8 *addr) 163 { 164 struct ieee80211_local *local = sdata->local; 165 struct sta_info *sta; 166 struct rhash_head *tmp; 167 const struct bucket_table *tbl; 168 169 rcu_read_lock(); 170 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 171 172 for_each_sta_info(local, tbl, addr, sta, tmp) { 173 if (sta->sdata == sdata) { 174 rcu_read_unlock(); 175 /* this is safe as the caller must already hold 176 * another rcu read section or the mutex 177 */ 178 return sta; 179 } 180 } 181 rcu_read_unlock(); 182 return NULL; 183 } 184 185 /* 186 * Get sta info either from the specified interface 187 * or from one of its vlans 188 */ 189 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata, 190 const u8 *addr) 191 { 192 struct ieee80211_local *local = sdata->local; 193 struct sta_info *sta; 194 struct rhash_head *tmp; 195 const struct bucket_table *tbl; 196 197 rcu_read_lock(); 198 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 199 200 for_each_sta_info(local, tbl, addr, sta, tmp) { 201 if (sta->sdata == sdata || 202 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) { 203 rcu_read_unlock(); 204 /* this is safe as the caller must already hold 205 * another rcu read section or the mutex 206 */ 207 return sta; 208 } 209 } 210 rcu_read_unlock(); 211 return NULL; 212 } 213 214 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata, 215 int idx) 216 { 217 struct ieee80211_local *local = sdata->local; 218 struct sta_info *sta; 219 int i = 0; 220 221 list_for_each_entry_rcu(sta, &local->sta_list, list) { 222 if (sdata != sta->sdata) 223 continue; 224 if (i < idx) { 225 ++i; 226 continue; 227 } 228 return sta; 229 } 230 231 return NULL; 232 } 233 234 /** 235 * sta_info_free - free STA 236 * 237 * @local: pointer to the global information 238 * @sta: STA info to free 239 * 240 * This function must undo everything done by sta_info_alloc() 241 * that may happen before sta_info_insert(). It may only be 242 * called when sta_info_insert() has not been attempted (and 243 * if that fails, the station is freed anyway.) 244 */ 245 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta) 246 { 247 if (sta->rate_ctrl) 248 rate_control_free_sta(sta); 249 250 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr); 251 252 if (sta->sta.txq[0]) 253 kfree(to_txq_info(sta->sta.txq[0])); 254 kfree(rcu_dereference_raw(sta->sta.rates)); 255 #ifdef CONFIG_MAC80211_MESH 256 kfree(sta->mesh); 257 #endif 258 free_percpu(sta->pcpu_rx_stats); 259 kfree(sta); 260 } 261 262 /* Caller must hold local->sta_mtx */ 263 static int sta_info_hash_add(struct ieee80211_local *local, 264 struct sta_info *sta) 265 { 266 return rhashtable_insert_fast(&local->sta_hash, &sta->hash_node, 267 sta_rht_params); 268 } 269 270 static void sta_deliver_ps_frames(struct work_struct *wk) 271 { 272 struct sta_info *sta; 273 274 sta = container_of(wk, struct sta_info, drv_deliver_wk); 275 276 if (sta->dead) 277 return; 278 279 local_bh_disable(); 280 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) 281 ieee80211_sta_ps_deliver_wakeup(sta); 282 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL)) 283 ieee80211_sta_ps_deliver_poll_response(sta); 284 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD)) 285 ieee80211_sta_ps_deliver_uapsd(sta); 286 local_bh_enable(); 287 } 288 289 static int sta_prepare_rate_control(struct ieee80211_local *local, 290 struct sta_info *sta, gfp_t gfp) 291 { 292 if (ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) 293 return 0; 294 295 sta->rate_ctrl = local->rate_ctrl; 296 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl, 297 sta, gfp); 298 if (!sta->rate_ctrl_priv) 299 return -ENOMEM; 300 301 return 0; 302 } 303 304 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata, 305 const u8 *addr, gfp_t gfp) 306 { 307 struct ieee80211_local *local = sdata->local; 308 struct ieee80211_hw *hw = &local->hw; 309 struct sta_info *sta; 310 int i; 311 312 sta = kzalloc(sizeof(*sta) + hw->sta_data_size, gfp); 313 if (!sta) 314 return NULL; 315 316 if (ieee80211_hw_check(hw, USES_RSS)) { 317 sta->pcpu_rx_stats = 318 alloc_percpu(struct ieee80211_sta_rx_stats); 319 if (!sta->pcpu_rx_stats) 320 goto free; 321 } 322 323 spin_lock_init(&sta->lock); 324 spin_lock_init(&sta->ps_lock); 325 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames); 326 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work); 327 mutex_init(&sta->ampdu_mlme.mtx); 328 #ifdef CONFIG_MAC80211_MESH 329 if (ieee80211_vif_is_mesh(&sdata->vif)) { 330 sta->mesh = kzalloc(sizeof(*sta->mesh), gfp); 331 if (!sta->mesh) 332 goto free; 333 spin_lock_init(&sta->mesh->plink_lock); 334 if (ieee80211_vif_is_mesh(&sdata->vif) && 335 !sdata->u.mesh.user_mpm) 336 init_timer(&sta->mesh->plink_timer); 337 sta->mesh->nonpeer_pm = NL80211_MESH_POWER_ACTIVE; 338 } 339 #endif 340 341 memcpy(sta->addr, addr, ETH_ALEN); 342 memcpy(sta->sta.addr, addr, ETH_ALEN); 343 sta->local = local; 344 sta->sdata = sdata; 345 sta->rx_stats.last_rx = jiffies; 346 347 u64_stats_init(&sta->rx_stats.syncp); 348 349 sta->sta_state = IEEE80211_STA_NONE; 350 351 /* Mark TID as unreserved */ 352 sta->reserved_tid = IEEE80211_TID_UNRESERVED; 353 354 sta->last_connected = ktime_get_seconds(); 355 ewma_signal_init(&sta->rx_stats_avg.signal); 356 for (i = 0; i < ARRAY_SIZE(sta->rx_stats_avg.chain_signal); i++) 357 ewma_signal_init(&sta->rx_stats_avg.chain_signal[i]); 358 359 if (local->ops->wake_tx_queue) { 360 void *txq_data; 361 int size = sizeof(struct txq_info) + 362 ALIGN(hw->txq_data_size, sizeof(void *)); 363 364 txq_data = kcalloc(ARRAY_SIZE(sta->sta.txq), size, gfp); 365 if (!txq_data) 366 goto free; 367 368 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 369 struct txq_info *txq = txq_data + i * size; 370 371 ieee80211_init_tx_queue(sdata, sta, txq, i); 372 } 373 } 374 375 if (sta_prepare_rate_control(local, sta, gfp)) 376 goto free_txq; 377 378 for (i = 0; i < IEEE80211_NUM_TIDS; i++) { 379 /* 380 * timer_to_tid must be initialized with identity mapping 381 * to enable session_timer's data differentiation. See 382 * sta_rx_agg_session_timer_expired for usage. 383 */ 384 sta->timer_to_tid[i] = i; 385 } 386 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 387 skb_queue_head_init(&sta->ps_tx_buf[i]); 388 skb_queue_head_init(&sta->tx_filtered[i]); 389 } 390 391 for (i = 0; i < IEEE80211_NUM_TIDS; i++) 392 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX); 393 394 sta->sta.smps_mode = IEEE80211_SMPS_OFF; 395 if (sdata->vif.type == NL80211_IFTYPE_AP || 396 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 397 struct ieee80211_supported_band *sband = 398 hw->wiphy->bands[ieee80211_get_sdata_band(sdata)]; 399 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >> 400 IEEE80211_HT_CAP_SM_PS_SHIFT; 401 /* 402 * Assume that hostapd advertises our caps in the beacon and 403 * this is the known_smps_mode for a station that just assciated 404 */ 405 switch (smps) { 406 case WLAN_HT_SMPS_CONTROL_DISABLED: 407 sta->known_smps_mode = IEEE80211_SMPS_OFF; 408 break; 409 case WLAN_HT_SMPS_CONTROL_STATIC: 410 sta->known_smps_mode = IEEE80211_SMPS_STATIC; 411 break; 412 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 413 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC; 414 break; 415 default: 416 WARN_ON(1); 417 } 418 } 419 420 sta->sta.max_rc_amsdu_len = IEEE80211_MAX_MPDU_LEN_HT_BA; 421 422 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr); 423 424 return sta; 425 426 free_txq: 427 if (sta->sta.txq[0]) 428 kfree(to_txq_info(sta->sta.txq[0])); 429 free: 430 #ifdef CONFIG_MAC80211_MESH 431 kfree(sta->mesh); 432 #endif 433 kfree(sta); 434 return NULL; 435 } 436 437 static int sta_info_insert_check(struct sta_info *sta) 438 { 439 struct ieee80211_sub_if_data *sdata = sta->sdata; 440 441 /* 442 * Can't be a WARN_ON because it can be triggered through a race: 443 * something inserts a STA (on one CPU) without holding the RTNL 444 * and another CPU turns off the net device. 445 */ 446 if (unlikely(!ieee80211_sdata_running(sdata))) 447 return -ENETDOWN; 448 449 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) || 450 is_multicast_ether_addr(sta->sta.addr))) 451 return -EINVAL; 452 453 /* Strictly speaking this isn't necessary as we hold the mutex, but 454 * the rhashtable code can't really deal with that distinction. We 455 * do require the mutex for correctness though. 456 */ 457 rcu_read_lock(); 458 lockdep_assert_held(&sdata->local->sta_mtx); 459 if (ieee80211_hw_check(&sdata->local->hw, NEEDS_UNIQUE_STA_ADDR) && 460 ieee80211_find_sta_by_ifaddr(&sdata->local->hw, sta->addr, NULL)) { 461 rcu_read_unlock(); 462 return -ENOTUNIQ; 463 } 464 rcu_read_unlock(); 465 466 return 0; 467 } 468 469 static int sta_info_insert_drv_state(struct ieee80211_local *local, 470 struct ieee80211_sub_if_data *sdata, 471 struct sta_info *sta) 472 { 473 enum ieee80211_sta_state state; 474 int err = 0; 475 476 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) { 477 err = drv_sta_state(local, sdata, sta, state, state + 1); 478 if (err) 479 break; 480 } 481 482 if (!err) { 483 /* 484 * Drivers using legacy sta_add/sta_remove callbacks only 485 * get uploaded set to true after sta_add is called. 486 */ 487 if (!local->ops->sta_add) 488 sta->uploaded = true; 489 return 0; 490 } 491 492 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 493 sdata_info(sdata, 494 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n", 495 sta->sta.addr, state + 1, err); 496 err = 0; 497 } 498 499 /* unwind on error */ 500 for (; state > IEEE80211_STA_NOTEXIST; state--) 501 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1)); 502 503 return err; 504 } 505 506 /* 507 * should be called with sta_mtx locked 508 * this function replaces the mutex lock 509 * with a RCU lock 510 */ 511 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU) 512 { 513 struct ieee80211_local *local = sta->local; 514 struct ieee80211_sub_if_data *sdata = sta->sdata; 515 struct station_info *sinfo; 516 int err = 0; 517 518 lockdep_assert_held(&local->sta_mtx); 519 520 sinfo = kzalloc(sizeof(struct station_info), GFP_KERNEL); 521 if (!sinfo) { 522 err = -ENOMEM; 523 goto out_err; 524 } 525 526 /* check if STA exists already */ 527 if (sta_info_get_bss(sdata, sta->sta.addr)) { 528 err = -EEXIST; 529 goto out_err; 530 } 531 532 local->num_sta++; 533 local->sta_generation++; 534 smp_mb(); 535 536 /* simplify things and don't accept BA sessions yet */ 537 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 538 539 /* make the station visible */ 540 err = sta_info_hash_add(local, sta); 541 if (err) 542 goto out_drop_sta; 543 544 list_add_tail_rcu(&sta->list, &local->sta_list); 545 546 /* notify driver */ 547 err = sta_info_insert_drv_state(local, sdata, sta); 548 if (err) 549 goto out_remove; 550 551 set_sta_flag(sta, WLAN_STA_INSERTED); 552 /* accept BA sessions now */ 553 clear_sta_flag(sta, WLAN_STA_BLOCK_BA); 554 555 ieee80211_sta_debugfs_add(sta); 556 rate_control_add_sta_debugfs(sta); 557 558 sinfo->generation = local->sta_generation; 559 cfg80211_new_sta(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 560 kfree(sinfo); 561 562 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr); 563 564 /* move reference to rcu-protected */ 565 rcu_read_lock(); 566 mutex_unlock(&local->sta_mtx); 567 568 if (ieee80211_vif_is_mesh(&sdata->vif)) 569 mesh_accept_plinks_update(sdata); 570 571 return 0; 572 out_remove: 573 sta_info_hash_del(local, sta); 574 list_del_rcu(&sta->list); 575 out_drop_sta: 576 local->num_sta--; 577 synchronize_net(); 578 __cleanup_single_sta(sta); 579 out_err: 580 mutex_unlock(&local->sta_mtx); 581 kfree(sinfo); 582 rcu_read_lock(); 583 return err; 584 } 585 586 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU) 587 { 588 struct ieee80211_local *local = sta->local; 589 int err; 590 591 might_sleep(); 592 593 mutex_lock(&local->sta_mtx); 594 595 err = sta_info_insert_check(sta); 596 if (err) { 597 mutex_unlock(&local->sta_mtx); 598 rcu_read_lock(); 599 goto out_free; 600 } 601 602 err = sta_info_insert_finish(sta); 603 if (err) 604 goto out_free; 605 606 return 0; 607 out_free: 608 sta_info_free(local, sta); 609 return err; 610 } 611 612 int sta_info_insert(struct sta_info *sta) 613 { 614 int err = sta_info_insert_rcu(sta); 615 616 rcu_read_unlock(); 617 618 return err; 619 } 620 621 static inline void __bss_tim_set(u8 *tim, u16 id) 622 { 623 /* 624 * This format has been mandated by the IEEE specifications, 625 * so this line may not be changed to use the __set_bit() format. 626 */ 627 tim[id / 8] |= (1 << (id % 8)); 628 } 629 630 static inline void __bss_tim_clear(u8 *tim, u16 id) 631 { 632 /* 633 * This format has been mandated by the IEEE specifications, 634 * so this line may not be changed to use the __clear_bit() format. 635 */ 636 tim[id / 8] &= ~(1 << (id % 8)); 637 } 638 639 static inline bool __bss_tim_get(u8 *tim, u16 id) 640 { 641 /* 642 * This format has been mandated by the IEEE specifications, 643 * so this line may not be changed to use the test_bit() format. 644 */ 645 return tim[id / 8] & (1 << (id % 8)); 646 } 647 648 static unsigned long ieee80211_tids_for_ac(int ac) 649 { 650 /* If we ever support TIDs > 7, this obviously needs to be adjusted */ 651 switch (ac) { 652 case IEEE80211_AC_VO: 653 return BIT(6) | BIT(7); 654 case IEEE80211_AC_VI: 655 return BIT(4) | BIT(5); 656 case IEEE80211_AC_BE: 657 return BIT(0) | BIT(3); 658 case IEEE80211_AC_BK: 659 return BIT(1) | BIT(2); 660 default: 661 WARN_ON(1); 662 return 0; 663 } 664 } 665 666 static void __sta_info_recalc_tim(struct sta_info *sta, bool ignore_pending) 667 { 668 struct ieee80211_local *local = sta->local; 669 struct ps_data *ps; 670 bool indicate_tim = false; 671 u8 ignore_for_tim = sta->sta.uapsd_queues; 672 int ac; 673 u16 id = sta->sta.aid; 674 675 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 676 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 677 if (WARN_ON_ONCE(!sta->sdata->bss)) 678 return; 679 680 ps = &sta->sdata->bss->ps; 681 #ifdef CONFIG_MAC80211_MESH 682 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) { 683 ps = &sta->sdata->u.mesh.ps; 684 #endif 685 } else { 686 return; 687 } 688 689 /* No need to do anything if the driver does all */ 690 if (ieee80211_hw_check(&local->hw, AP_LINK_PS)) 691 return; 692 693 if (sta->dead) 694 goto done; 695 696 /* 697 * If all ACs are delivery-enabled then we should build 698 * the TIM bit for all ACs anyway; if only some are then 699 * we ignore those and build the TIM bit using only the 700 * non-enabled ones. 701 */ 702 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1) 703 ignore_for_tim = 0; 704 705 if (ignore_pending) 706 ignore_for_tim = BIT(IEEE80211_NUM_ACS) - 1; 707 708 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 709 unsigned long tids; 710 711 if (ignore_for_tim & BIT(ac)) 712 continue; 713 714 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) || 715 !skb_queue_empty(&sta->ps_tx_buf[ac]); 716 if (indicate_tim) 717 break; 718 719 tids = ieee80211_tids_for_ac(ac); 720 721 indicate_tim |= 722 sta->driver_buffered_tids & tids; 723 indicate_tim |= 724 sta->txq_buffered_tids & tids; 725 } 726 727 done: 728 spin_lock_bh(&local->tim_lock); 729 730 if (indicate_tim == __bss_tim_get(ps->tim, id)) 731 goto out_unlock; 732 733 if (indicate_tim) 734 __bss_tim_set(ps->tim, id); 735 else 736 __bss_tim_clear(ps->tim, id); 737 738 if (local->ops->set_tim && !WARN_ON(sta->dead)) { 739 local->tim_in_locked_section = true; 740 drv_set_tim(local, &sta->sta, indicate_tim); 741 local->tim_in_locked_section = false; 742 } 743 744 out_unlock: 745 spin_unlock_bh(&local->tim_lock); 746 } 747 748 void sta_info_recalc_tim(struct sta_info *sta) 749 { 750 __sta_info_recalc_tim(sta, false); 751 } 752 753 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb) 754 { 755 struct ieee80211_tx_info *info; 756 int timeout; 757 758 if (!skb) 759 return false; 760 761 info = IEEE80211_SKB_CB(skb); 762 763 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */ 764 timeout = (sta->listen_interval * 765 sta->sdata->vif.bss_conf.beacon_int * 766 32 / 15625) * HZ; 767 if (timeout < STA_TX_BUFFER_EXPIRE) 768 timeout = STA_TX_BUFFER_EXPIRE; 769 return time_after(jiffies, info->control.jiffies + timeout); 770 } 771 772 773 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local, 774 struct sta_info *sta, int ac) 775 { 776 unsigned long flags; 777 struct sk_buff *skb; 778 779 /* 780 * First check for frames that should expire on the filtered 781 * queue. Frames here were rejected by the driver and are on 782 * a separate queue to avoid reordering with normal PS-buffered 783 * frames. They also aren't accounted for right now in the 784 * total_ps_buffered counter. 785 */ 786 for (;;) { 787 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 788 skb = skb_peek(&sta->tx_filtered[ac]); 789 if (sta_info_buffer_expired(sta, skb)) 790 skb = __skb_dequeue(&sta->tx_filtered[ac]); 791 else 792 skb = NULL; 793 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 794 795 /* 796 * Frames are queued in order, so if this one 797 * hasn't expired yet we can stop testing. If 798 * we actually reached the end of the queue we 799 * also need to stop, of course. 800 */ 801 if (!skb) 802 break; 803 ieee80211_free_txskb(&local->hw, skb); 804 } 805 806 /* 807 * Now also check the normal PS-buffered queue, this will 808 * only find something if the filtered queue was emptied 809 * since the filtered frames are all before the normal PS 810 * buffered frames. 811 */ 812 for (;;) { 813 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 814 skb = skb_peek(&sta->ps_tx_buf[ac]); 815 if (sta_info_buffer_expired(sta, skb)) 816 skb = __skb_dequeue(&sta->ps_tx_buf[ac]); 817 else 818 skb = NULL; 819 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 820 821 /* 822 * frames are queued in order, so if this one 823 * hasn't expired yet (or we reached the end of 824 * the queue) we can stop testing 825 */ 826 if (!skb) 827 break; 828 829 local->total_ps_buffered--; 830 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n", 831 sta->sta.addr); 832 ieee80211_free_txskb(&local->hw, skb); 833 } 834 835 /* 836 * Finally, recalculate the TIM bit for this station -- it might 837 * now be clear because the station was too slow to retrieve its 838 * frames. 839 */ 840 sta_info_recalc_tim(sta); 841 842 /* 843 * Return whether there are any frames still buffered, this is 844 * used to check whether the cleanup timer still needs to run, 845 * if there are no frames we don't need to rearm the timer. 846 */ 847 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) && 848 skb_queue_empty(&sta->tx_filtered[ac])); 849 } 850 851 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local, 852 struct sta_info *sta) 853 { 854 bool have_buffered = false; 855 int ac; 856 857 /* This is only necessary for stations on BSS/MBSS interfaces */ 858 if (!sta->sdata->bss && 859 !ieee80211_vif_is_mesh(&sta->sdata->vif)) 860 return false; 861 862 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 863 have_buffered |= 864 sta_info_cleanup_expire_buffered_ac(local, sta, ac); 865 866 return have_buffered; 867 } 868 869 static int __must_check __sta_info_destroy_part1(struct sta_info *sta) 870 { 871 struct ieee80211_local *local; 872 struct ieee80211_sub_if_data *sdata; 873 int ret; 874 875 might_sleep(); 876 877 if (!sta) 878 return -ENOENT; 879 880 local = sta->local; 881 sdata = sta->sdata; 882 883 lockdep_assert_held(&local->sta_mtx); 884 885 /* 886 * Before removing the station from the driver and 887 * rate control, it might still start new aggregation 888 * sessions -- block that to make sure the tear-down 889 * will be sufficient. 890 */ 891 set_sta_flag(sta, WLAN_STA_BLOCK_BA); 892 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA); 893 894 /* 895 * Before removing the station from the driver there might be pending 896 * rx frames on RSS queues sent prior to the disassociation - wait for 897 * all such frames to be processed. 898 */ 899 drv_sync_rx_queues(local, sta); 900 901 ret = sta_info_hash_del(local, sta); 902 if (WARN_ON(ret)) 903 return ret; 904 905 /* 906 * for TDLS peers, make sure to return to the base channel before 907 * removal. 908 */ 909 if (test_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL)) { 910 drv_tdls_cancel_channel_switch(local, sdata, &sta->sta); 911 clear_sta_flag(sta, WLAN_STA_TDLS_OFF_CHANNEL); 912 } 913 914 list_del_rcu(&sta->list); 915 sta->removed = true; 916 917 drv_sta_pre_rcu_remove(local, sta->sdata, sta); 918 919 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 920 rcu_access_pointer(sdata->u.vlan.sta) == sta) 921 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL); 922 923 return 0; 924 } 925 926 static void __sta_info_destroy_part2(struct sta_info *sta) 927 { 928 struct ieee80211_local *local = sta->local; 929 struct ieee80211_sub_if_data *sdata = sta->sdata; 930 struct station_info *sinfo; 931 int ret; 932 933 /* 934 * NOTE: This assumes at least synchronize_net() was done 935 * after _part1 and before _part2! 936 */ 937 938 might_sleep(); 939 lockdep_assert_held(&local->sta_mtx); 940 941 /* now keys can no longer be reached */ 942 ieee80211_free_sta_keys(local, sta); 943 944 /* disable TIM bit - last chance to tell driver */ 945 __sta_info_recalc_tim(sta, true); 946 947 sta->dead = true; 948 949 local->num_sta--; 950 local->sta_generation++; 951 952 while (sta->sta_state > IEEE80211_STA_NONE) { 953 ret = sta_info_move_state(sta, sta->sta_state - 1); 954 if (ret) { 955 WARN_ON_ONCE(1); 956 break; 957 } 958 } 959 960 if (sta->uploaded) { 961 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE, 962 IEEE80211_STA_NOTEXIST); 963 WARN_ON_ONCE(ret != 0); 964 } 965 966 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr); 967 968 sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); 969 if (sinfo) 970 sta_set_sinfo(sta, sinfo); 971 cfg80211_del_sta_sinfo(sdata->dev, sta->sta.addr, sinfo, GFP_KERNEL); 972 kfree(sinfo); 973 974 rate_control_remove_sta_debugfs(sta); 975 ieee80211_sta_debugfs_remove(sta); 976 977 cleanup_single_sta(sta); 978 } 979 980 int __must_check __sta_info_destroy(struct sta_info *sta) 981 { 982 int err = __sta_info_destroy_part1(sta); 983 984 if (err) 985 return err; 986 987 synchronize_net(); 988 989 __sta_info_destroy_part2(sta); 990 991 return 0; 992 } 993 994 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr) 995 { 996 struct sta_info *sta; 997 int ret; 998 999 mutex_lock(&sdata->local->sta_mtx); 1000 sta = sta_info_get(sdata, addr); 1001 ret = __sta_info_destroy(sta); 1002 mutex_unlock(&sdata->local->sta_mtx); 1003 1004 return ret; 1005 } 1006 1007 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata, 1008 const u8 *addr) 1009 { 1010 struct sta_info *sta; 1011 int ret; 1012 1013 mutex_lock(&sdata->local->sta_mtx); 1014 sta = sta_info_get_bss(sdata, addr); 1015 ret = __sta_info_destroy(sta); 1016 mutex_unlock(&sdata->local->sta_mtx); 1017 1018 return ret; 1019 } 1020 1021 static void sta_info_cleanup(unsigned long data) 1022 { 1023 struct ieee80211_local *local = (struct ieee80211_local *) data; 1024 struct sta_info *sta; 1025 bool timer_needed = false; 1026 1027 rcu_read_lock(); 1028 list_for_each_entry_rcu(sta, &local->sta_list, list) 1029 if (sta_info_cleanup_expire_buffered(local, sta)) 1030 timer_needed = true; 1031 rcu_read_unlock(); 1032 1033 if (local->quiescing) 1034 return; 1035 1036 if (!timer_needed) 1037 return; 1038 1039 mod_timer(&local->sta_cleanup, 1040 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); 1041 } 1042 1043 u32 sta_addr_hash(const void *key, u32 length, u32 seed) 1044 { 1045 return jhash(key, ETH_ALEN, seed); 1046 } 1047 1048 int sta_info_init(struct ieee80211_local *local) 1049 { 1050 int err; 1051 1052 err = rhashtable_init(&local->sta_hash, &sta_rht_params); 1053 if (err) 1054 return err; 1055 1056 spin_lock_init(&local->tim_lock); 1057 mutex_init(&local->sta_mtx); 1058 INIT_LIST_HEAD(&local->sta_list); 1059 1060 setup_timer(&local->sta_cleanup, sta_info_cleanup, 1061 (unsigned long)local); 1062 return 0; 1063 } 1064 1065 void sta_info_stop(struct ieee80211_local *local) 1066 { 1067 del_timer_sync(&local->sta_cleanup); 1068 rhashtable_destroy(&local->sta_hash); 1069 } 1070 1071 1072 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans) 1073 { 1074 struct ieee80211_local *local = sdata->local; 1075 struct sta_info *sta, *tmp; 1076 LIST_HEAD(free_list); 1077 int ret = 0; 1078 1079 might_sleep(); 1080 1081 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP); 1082 WARN_ON(vlans && !sdata->bss); 1083 1084 mutex_lock(&local->sta_mtx); 1085 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1086 if (sdata == sta->sdata || 1087 (vlans && sdata->bss == sta->sdata->bss)) { 1088 if (!WARN_ON(__sta_info_destroy_part1(sta))) 1089 list_add(&sta->free_list, &free_list); 1090 ret++; 1091 } 1092 } 1093 1094 if (!list_empty(&free_list)) { 1095 synchronize_net(); 1096 list_for_each_entry_safe(sta, tmp, &free_list, free_list) 1097 __sta_info_destroy_part2(sta); 1098 } 1099 mutex_unlock(&local->sta_mtx); 1100 1101 return ret; 1102 } 1103 1104 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata, 1105 unsigned long exp_time) 1106 { 1107 struct ieee80211_local *local = sdata->local; 1108 struct sta_info *sta, *tmp; 1109 1110 mutex_lock(&local->sta_mtx); 1111 1112 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) { 1113 unsigned long last_active = ieee80211_sta_last_active(sta); 1114 1115 if (sdata != sta->sdata) 1116 continue; 1117 1118 if (time_is_before_jiffies(last_active + exp_time)) { 1119 sta_dbg(sta->sdata, "expiring inactive STA %pM\n", 1120 sta->sta.addr); 1121 1122 if (ieee80211_vif_is_mesh(&sdata->vif) && 1123 test_sta_flag(sta, WLAN_STA_PS_STA)) 1124 atomic_dec(&sdata->u.mesh.ps.num_sta_ps); 1125 1126 WARN_ON(__sta_info_destroy(sta)); 1127 } 1128 } 1129 1130 mutex_unlock(&local->sta_mtx); 1131 } 1132 1133 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw, 1134 const u8 *addr, 1135 const u8 *localaddr) 1136 { 1137 struct ieee80211_local *local = hw_to_local(hw); 1138 struct sta_info *sta; 1139 struct rhash_head *tmp; 1140 const struct bucket_table *tbl; 1141 1142 tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash); 1143 1144 /* 1145 * Just return a random station if localaddr is NULL 1146 * ... first in list. 1147 */ 1148 for_each_sta_info(local, tbl, addr, sta, tmp) { 1149 if (localaddr && 1150 !ether_addr_equal(sta->sdata->vif.addr, localaddr)) 1151 continue; 1152 if (!sta->uploaded) 1153 return NULL; 1154 return &sta->sta; 1155 } 1156 1157 return NULL; 1158 } 1159 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr); 1160 1161 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif, 1162 const u8 *addr) 1163 { 1164 struct sta_info *sta; 1165 1166 if (!vif) 1167 return NULL; 1168 1169 sta = sta_info_get_bss(vif_to_sdata(vif), addr); 1170 if (!sta) 1171 return NULL; 1172 1173 if (!sta->uploaded) 1174 return NULL; 1175 1176 return &sta->sta; 1177 } 1178 EXPORT_SYMBOL(ieee80211_find_sta); 1179 1180 /* powersave support code */ 1181 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta) 1182 { 1183 struct ieee80211_sub_if_data *sdata = sta->sdata; 1184 struct ieee80211_local *local = sdata->local; 1185 struct sk_buff_head pending; 1186 int filtered = 0, buffered = 0, ac, i; 1187 unsigned long flags; 1188 struct ps_data *ps; 1189 1190 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1191 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 1192 u.ap); 1193 1194 if (sdata->vif.type == NL80211_IFTYPE_AP) 1195 ps = &sdata->bss->ps; 1196 else if (ieee80211_vif_is_mesh(&sdata->vif)) 1197 ps = &sdata->u.mesh.ps; 1198 else 1199 return; 1200 1201 clear_sta_flag(sta, WLAN_STA_SP); 1202 1203 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1); 1204 sta->driver_buffered_tids = 0; 1205 sta->txq_buffered_tids = 0; 1206 1207 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1208 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta); 1209 1210 if (sta->sta.txq[0]) { 1211 for (i = 0; i < ARRAY_SIZE(sta->sta.txq); i++) { 1212 struct txq_info *txqi = to_txq_info(sta->sta.txq[i]); 1213 1214 if (!skb_queue_len(&txqi->queue)) 1215 continue; 1216 1217 drv_wake_tx_queue(local, txqi); 1218 } 1219 } 1220 1221 skb_queue_head_init(&pending); 1222 1223 /* sync with ieee80211_tx_h_unicast_ps_buf */ 1224 spin_lock(&sta->ps_lock); 1225 /* Send all buffered frames to the station */ 1226 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1227 int count = skb_queue_len(&pending), tmp; 1228 1229 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags); 1230 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending); 1231 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags); 1232 tmp = skb_queue_len(&pending); 1233 filtered += tmp - count; 1234 count = tmp; 1235 1236 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags); 1237 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending); 1238 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags); 1239 tmp = skb_queue_len(&pending); 1240 buffered += tmp - count; 1241 } 1242 1243 ieee80211_add_pending_skbs(local, &pending); 1244 1245 /* now we're no longer in the deliver code */ 1246 clear_sta_flag(sta, WLAN_STA_PS_DELIVER); 1247 1248 /* The station might have polled and then woken up before we responded, 1249 * so clear these flags now to avoid them sticking around. 1250 */ 1251 clear_sta_flag(sta, WLAN_STA_PSPOLL); 1252 clear_sta_flag(sta, WLAN_STA_UAPSD); 1253 spin_unlock(&sta->ps_lock); 1254 1255 atomic_dec(&ps->num_sta_ps); 1256 1257 /* This station just woke up and isn't aware of our SMPS state */ 1258 if (!ieee80211_vif_is_mesh(&sdata->vif) && 1259 !ieee80211_smps_is_restrictive(sta->known_smps_mode, 1260 sdata->smps_mode) && 1261 sta->known_smps_mode != sdata->bss->req_smps && 1262 sta_info_tx_streams(sta) != 1) { 1263 ht_dbg(sdata, 1264 "%pM just woke up and MIMO capable - update SMPS\n", 1265 sta->sta.addr); 1266 ieee80211_send_smps_action(sdata, sdata->bss->req_smps, 1267 sta->sta.addr, 1268 sdata->vif.bss_conf.bssid); 1269 } 1270 1271 local->total_ps_buffered -= buffered; 1272 1273 sta_info_recalc_tim(sta); 1274 1275 ps_dbg(sdata, 1276 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n", 1277 sta->sta.addr, sta->sta.aid, filtered, buffered); 1278 1279 ieee80211_check_fast_xmit(sta); 1280 } 1281 1282 static void ieee80211_send_null_response(struct sta_info *sta, int tid, 1283 enum ieee80211_frame_release_type reason, 1284 bool call_driver, bool more_data) 1285 { 1286 struct ieee80211_sub_if_data *sdata = sta->sdata; 1287 struct ieee80211_local *local = sdata->local; 1288 struct ieee80211_qos_hdr *nullfunc; 1289 struct sk_buff *skb; 1290 int size = sizeof(*nullfunc); 1291 __le16 fc; 1292 bool qos = sta->sta.wme; 1293 struct ieee80211_tx_info *info; 1294 struct ieee80211_chanctx_conf *chanctx_conf; 1295 1296 if (qos) { 1297 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1298 IEEE80211_STYPE_QOS_NULLFUNC | 1299 IEEE80211_FCTL_FROMDS); 1300 } else { 1301 size -= 2; 1302 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | 1303 IEEE80211_STYPE_NULLFUNC | 1304 IEEE80211_FCTL_FROMDS); 1305 } 1306 1307 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size); 1308 if (!skb) 1309 return; 1310 1311 skb_reserve(skb, local->hw.extra_tx_headroom); 1312 1313 nullfunc = (void *) skb_put(skb, size); 1314 nullfunc->frame_control = fc; 1315 nullfunc->duration_id = 0; 1316 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN); 1317 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN); 1318 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN); 1319 nullfunc->seq_ctrl = 0; 1320 1321 skb->priority = tid; 1322 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 1323 if (qos) { 1324 nullfunc->qos_ctrl = cpu_to_le16(tid); 1325 1326 if (reason == IEEE80211_FRAME_RELEASE_UAPSD) { 1327 nullfunc->qos_ctrl |= 1328 cpu_to_le16(IEEE80211_QOS_CTL_EOSP); 1329 if (more_data) 1330 nullfunc->frame_control |= 1331 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1332 } 1333 } 1334 1335 info = IEEE80211_SKB_CB(skb); 1336 1337 /* 1338 * Tell TX path to send this frame even though the 1339 * STA may still remain is PS mode after this frame 1340 * exchange. Also set EOSP to indicate this packet 1341 * ends the poll/service period. 1342 */ 1343 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER | 1344 IEEE80211_TX_STATUS_EOSP | 1345 IEEE80211_TX_CTL_REQ_TX_STATUS; 1346 1347 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1348 1349 if (call_driver) 1350 drv_allow_buffered_frames(local, sta, BIT(tid), 1, 1351 reason, false); 1352 1353 skb->dev = sdata->dev; 1354 1355 rcu_read_lock(); 1356 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); 1357 if (WARN_ON(!chanctx_conf)) { 1358 rcu_read_unlock(); 1359 kfree_skb(skb); 1360 return; 1361 } 1362 1363 info->band = chanctx_conf->def.chan->band; 1364 ieee80211_xmit(sdata, sta, skb); 1365 rcu_read_unlock(); 1366 } 1367 1368 static int find_highest_prio_tid(unsigned long tids) 1369 { 1370 /* lower 3 TIDs aren't ordered perfectly */ 1371 if (tids & 0xF8) 1372 return fls(tids) - 1; 1373 /* TID 0 is BE just like TID 3 */ 1374 if (tids & BIT(0)) 1375 return 0; 1376 return fls(tids) - 1; 1377 } 1378 1379 /* Indicates if the MORE_DATA bit should be set in the last 1380 * frame obtained by ieee80211_sta_ps_get_frames. 1381 * Note that driver_release_tids is relevant only if 1382 * reason = IEEE80211_FRAME_RELEASE_PSPOLL 1383 */ 1384 static bool 1385 ieee80211_sta_ps_more_data(struct sta_info *sta, u8 ignored_acs, 1386 enum ieee80211_frame_release_type reason, 1387 unsigned long driver_release_tids) 1388 { 1389 int ac; 1390 1391 /* If the driver has data on more than one TID then 1392 * certainly there's more data if we release just a 1393 * single frame now (from a single TID). This will 1394 * only happen for PS-Poll. 1395 */ 1396 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL && 1397 hweight16(driver_release_tids) > 1) 1398 return true; 1399 1400 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1401 if (ignored_acs & BIT(ac)) 1402 continue; 1403 1404 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1405 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1406 return true; 1407 } 1408 1409 return false; 1410 } 1411 1412 static void 1413 ieee80211_sta_ps_get_frames(struct sta_info *sta, int n_frames, u8 ignored_acs, 1414 enum ieee80211_frame_release_type reason, 1415 struct sk_buff_head *frames, 1416 unsigned long *driver_release_tids) 1417 { 1418 struct ieee80211_sub_if_data *sdata = sta->sdata; 1419 struct ieee80211_local *local = sdata->local; 1420 int ac; 1421 1422 /* Get response frame(s) and more data bit for the last one. */ 1423 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) { 1424 unsigned long tids; 1425 1426 if (ignored_acs & BIT(ac)) 1427 continue; 1428 1429 tids = ieee80211_tids_for_ac(ac); 1430 1431 /* if we already have frames from software, then we can't also 1432 * release from hardware queues 1433 */ 1434 if (skb_queue_empty(frames)) { 1435 *driver_release_tids |= 1436 sta->driver_buffered_tids & tids; 1437 *driver_release_tids |= sta->txq_buffered_tids & tids; 1438 } 1439 1440 if (!*driver_release_tids) { 1441 struct sk_buff *skb; 1442 1443 while (n_frames > 0) { 1444 skb = skb_dequeue(&sta->tx_filtered[ac]); 1445 if (!skb) { 1446 skb = skb_dequeue( 1447 &sta->ps_tx_buf[ac]); 1448 if (skb) 1449 local->total_ps_buffered--; 1450 } 1451 if (!skb) 1452 break; 1453 n_frames--; 1454 __skb_queue_tail(frames, skb); 1455 } 1456 } 1457 1458 /* If we have more frames buffered on this AC, then abort the 1459 * loop since we can't send more data from other ACs before 1460 * the buffered frames from this. 1461 */ 1462 if (!skb_queue_empty(&sta->tx_filtered[ac]) || 1463 !skb_queue_empty(&sta->ps_tx_buf[ac])) 1464 break; 1465 } 1466 } 1467 1468 static void 1469 ieee80211_sta_ps_deliver_response(struct sta_info *sta, 1470 int n_frames, u8 ignored_acs, 1471 enum ieee80211_frame_release_type reason) 1472 { 1473 struct ieee80211_sub_if_data *sdata = sta->sdata; 1474 struct ieee80211_local *local = sdata->local; 1475 unsigned long driver_release_tids = 0; 1476 struct sk_buff_head frames; 1477 bool more_data; 1478 1479 /* Service or PS-Poll period starts */ 1480 set_sta_flag(sta, WLAN_STA_SP); 1481 1482 __skb_queue_head_init(&frames); 1483 1484 ieee80211_sta_ps_get_frames(sta, n_frames, ignored_acs, reason, 1485 &frames, &driver_release_tids); 1486 1487 more_data = ieee80211_sta_ps_more_data(sta, ignored_acs, reason, driver_release_tids); 1488 1489 if (driver_release_tids && reason == IEEE80211_FRAME_RELEASE_PSPOLL) 1490 driver_release_tids = 1491 BIT(find_highest_prio_tid(driver_release_tids)); 1492 1493 if (skb_queue_empty(&frames) && !driver_release_tids) { 1494 int tid; 1495 1496 /* 1497 * For PS-Poll, this can only happen due to a race condition 1498 * when we set the TIM bit and the station notices it, but 1499 * before it can poll for the frame we expire it. 1500 * 1501 * For uAPSD, this is said in the standard (11.2.1.5 h): 1502 * At each unscheduled SP for a non-AP STA, the AP shall 1503 * attempt to transmit at least one MSDU or MMPDU, but no 1504 * more than the value specified in the Max SP Length field 1505 * in the QoS Capability element from delivery-enabled ACs, 1506 * that are destined for the non-AP STA. 1507 * 1508 * Since we have no other MSDU/MMPDU, transmit a QoS null frame. 1509 */ 1510 1511 /* This will evaluate to 1, 3, 5 or 7. */ 1512 tid = 7 - ((ffs(~ignored_acs) - 1) << 1); 1513 1514 ieee80211_send_null_response(sta, tid, reason, true, false); 1515 } else if (!driver_release_tids) { 1516 struct sk_buff_head pending; 1517 struct sk_buff *skb; 1518 int num = 0; 1519 u16 tids = 0; 1520 bool need_null = false; 1521 1522 skb_queue_head_init(&pending); 1523 1524 while ((skb = __skb_dequeue(&frames))) { 1525 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1526 struct ieee80211_hdr *hdr = (void *) skb->data; 1527 u8 *qoshdr = NULL; 1528 1529 num++; 1530 1531 /* 1532 * Tell TX path to send this frame even though the 1533 * STA may still remain is PS mode after this frame 1534 * exchange. 1535 */ 1536 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; 1537 info->control.flags |= IEEE80211_TX_CTRL_PS_RESPONSE; 1538 1539 /* 1540 * Use MoreData flag to indicate whether there are 1541 * more buffered frames for this STA 1542 */ 1543 if (more_data || !skb_queue_empty(&frames)) 1544 hdr->frame_control |= 1545 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1546 else 1547 hdr->frame_control &= 1548 cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1549 1550 if (ieee80211_is_data_qos(hdr->frame_control) || 1551 ieee80211_is_qos_nullfunc(hdr->frame_control)) 1552 qoshdr = ieee80211_get_qos_ctl(hdr); 1553 1554 tids |= BIT(skb->priority); 1555 1556 __skb_queue_tail(&pending, skb); 1557 1558 /* end service period after last frame or add one */ 1559 if (!skb_queue_empty(&frames)) 1560 continue; 1561 1562 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) { 1563 /* for PS-Poll, there's only one frame */ 1564 info->flags |= IEEE80211_TX_STATUS_EOSP | 1565 IEEE80211_TX_CTL_REQ_TX_STATUS; 1566 break; 1567 } 1568 1569 /* For uAPSD, things are a bit more complicated. If the 1570 * last frame has a QoS header (i.e. is a QoS-data or 1571 * QoS-nulldata frame) then just set the EOSP bit there 1572 * and be done. 1573 * If the frame doesn't have a QoS header (which means 1574 * it should be a bufferable MMPDU) then we can't set 1575 * the EOSP bit in the QoS header; add a QoS-nulldata 1576 * frame to the list to send it after the MMPDU. 1577 * 1578 * Note that this code is only in the mac80211-release 1579 * code path, we assume that the driver will not buffer 1580 * anything but QoS-data frames, or if it does, will 1581 * create the QoS-nulldata frame by itself if needed. 1582 * 1583 * Cf. 802.11-2012 10.2.1.10 (c). 1584 */ 1585 if (qoshdr) { 1586 *qoshdr |= IEEE80211_QOS_CTL_EOSP; 1587 1588 info->flags |= IEEE80211_TX_STATUS_EOSP | 1589 IEEE80211_TX_CTL_REQ_TX_STATUS; 1590 } else { 1591 /* The standard isn't completely clear on this 1592 * as it says the more-data bit should be set 1593 * if there are more BUs. The QoS-Null frame 1594 * we're about to send isn't buffered yet, we 1595 * only create it below, but let's pretend it 1596 * was buffered just in case some clients only 1597 * expect more-data=0 when eosp=1. 1598 */ 1599 hdr->frame_control |= 1600 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1601 need_null = true; 1602 num++; 1603 } 1604 break; 1605 } 1606 1607 drv_allow_buffered_frames(local, sta, tids, num, 1608 reason, more_data); 1609 1610 ieee80211_add_pending_skbs(local, &pending); 1611 1612 if (need_null) 1613 ieee80211_send_null_response( 1614 sta, find_highest_prio_tid(tids), 1615 reason, false, false); 1616 1617 sta_info_recalc_tim(sta); 1618 } else { 1619 unsigned long tids = sta->txq_buffered_tids & driver_release_tids; 1620 int tid; 1621 1622 /* 1623 * We need to release a frame that is buffered somewhere in the 1624 * driver ... it'll have to handle that. 1625 * Note that the driver also has to check the number of frames 1626 * on the TIDs we're releasing from - if there are more than 1627 * n_frames it has to set the more-data bit (if we didn't ask 1628 * it to set it anyway due to other buffered frames); if there 1629 * are fewer than n_frames it has to make sure to adjust that 1630 * to allow the service period to end properly. 1631 */ 1632 drv_release_buffered_frames(local, sta, driver_release_tids, 1633 n_frames, reason, more_data); 1634 1635 /* 1636 * Note that we don't recalculate the TIM bit here as it would 1637 * most likely have no effect at all unless the driver told us 1638 * that the TID(s) became empty before returning here from the 1639 * release function. 1640 * Either way, however, when the driver tells us that the TID(s) 1641 * became empty or we find that a txq became empty, we'll do the 1642 * TIM recalculation. 1643 */ 1644 1645 if (!sta->sta.txq[0]) 1646 return; 1647 1648 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1649 struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]); 1650 1651 if (!(tids & BIT(tid)) || skb_queue_len(&txqi->queue)) 1652 continue; 1653 1654 sta_info_recalc_tim(sta); 1655 break; 1656 } 1657 } 1658 } 1659 1660 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta) 1661 { 1662 u8 ignore_for_response = sta->sta.uapsd_queues; 1663 1664 /* 1665 * If all ACs are delivery-enabled then we should reply 1666 * from any of them, if only some are enabled we reply 1667 * only from the non-enabled ones. 1668 */ 1669 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1) 1670 ignore_for_response = 0; 1671 1672 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response, 1673 IEEE80211_FRAME_RELEASE_PSPOLL); 1674 } 1675 1676 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta) 1677 { 1678 int n_frames = sta->sta.max_sp; 1679 u8 delivery_enabled = sta->sta.uapsd_queues; 1680 1681 /* 1682 * If we ever grow support for TSPEC this might happen if 1683 * the TSPEC update from hostapd comes in between a trigger 1684 * frame setting WLAN_STA_UAPSD in the RX path and this 1685 * actually getting called. 1686 */ 1687 if (!delivery_enabled) 1688 return; 1689 1690 switch (sta->sta.max_sp) { 1691 case 1: 1692 n_frames = 2; 1693 break; 1694 case 2: 1695 n_frames = 4; 1696 break; 1697 case 3: 1698 n_frames = 6; 1699 break; 1700 case 0: 1701 /* XXX: what is a good value? */ 1702 n_frames = 128; 1703 break; 1704 } 1705 1706 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled, 1707 IEEE80211_FRAME_RELEASE_UAPSD); 1708 } 1709 1710 void ieee80211_sta_block_awake(struct ieee80211_hw *hw, 1711 struct ieee80211_sta *pubsta, bool block) 1712 { 1713 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1714 1715 trace_api_sta_block_awake(sta->local, pubsta, block); 1716 1717 if (block) { 1718 set_sta_flag(sta, WLAN_STA_PS_DRIVER); 1719 ieee80211_clear_fast_xmit(sta); 1720 return; 1721 } 1722 1723 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1724 return; 1725 1726 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) { 1727 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1728 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1729 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1730 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) || 1731 test_sta_flag(sta, WLAN_STA_UAPSD)) { 1732 /* must be asleep in this case */ 1733 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1734 ieee80211_queue_work(hw, &sta->drv_deliver_wk); 1735 } else { 1736 clear_sta_flag(sta, WLAN_STA_PS_DRIVER); 1737 ieee80211_check_fast_xmit(sta); 1738 } 1739 } 1740 EXPORT_SYMBOL(ieee80211_sta_block_awake); 1741 1742 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta) 1743 { 1744 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1745 struct ieee80211_local *local = sta->local; 1746 1747 trace_api_eosp(local, pubsta); 1748 1749 clear_sta_flag(sta, WLAN_STA_SP); 1750 } 1751 EXPORT_SYMBOL(ieee80211_sta_eosp); 1752 1753 void ieee80211_send_eosp_nullfunc(struct ieee80211_sta *pubsta, int tid) 1754 { 1755 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1756 enum ieee80211_frame_release_type reason; 1757 bool more_data; 1758 1759 trace_api_send_eosp_nullfunc(sta->local, pubsta, tid); 1760 1761 reason = IEEE80211_FRAME_RELEASE_UAPSD; 1762 more_data = ieee80211_sta_ps_more_data(sta, ~sta->sta.uapsd_queues, 1763 reason, 0); 1764 1765 ieee80211_send_null_response(sta, tid, reason, false, more_data); 1766 } 1767 EXPORT_SYMBOL(ieee80211_send_eosp_nullfunc); 1768 1769 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta, 1770 u8 tid, bool buffered) 1771 { 1772 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1773 1774 if (WARN_ON(tid >= IEEE80211_NUM_TIDS)) 1775 return; 1776 1777 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered); 1778 1779 if (buffered) 1780 set_bit(tid, &sta->driver_buffered_tids); 1781 else 1782 clear_bit(tid, &sta->driver_buffered_tids); 1783 1784 sta_info_recalc_tim(sta); 1785 } 1786 EXPORT_SYMBOL(ieee80211_sta_set_buffered); 1787 1788 static void 1789 ieee80211_recalc_p2p_go_ps_allowed(struct ieee80211_sub_if_data *sdata) 1790 { 1791 struct ieee80211_local *local = sdata->local; 1792 bool allow_p2p_go_ps = sdata->vif.p2p; 1793 struct sta_info *sta; 1794 1795 rcu_read_lock(); 1796 list_for_each_entry_rcu(sta, &local->sta_list, list) { 1797 if (sdata != sta->sdata || 1798 !test_sta_flag(sta, WLAN_STA_ASSOC)) 1799 continue; 1800 if (!sta->sta.support_p2p_ps) { 1801 allow_p2p_go_ps = false; 1802 break; 1803 } 1804 } 1805 rcu_read_unlock(); 1806 1807 if (allow_p2p_go_ps != sdata->vif.bss_conf.allow_p2p_go_ps) { 1808 sdata->vif.bss_conf.allow_p2p_go_ps = allow_p2p_go_ps; 1809 ieee80211_bss_info_change_notify(sdata, BSS_CHANGED_P2P_PS); 1810 } 1811 } 1812 1813 int sta_info_move_state(struct sta_info *sta, 1814 enum ieee80211_sta_state new_state) 1815 { 1816 might_sleep(); 1817 1818 if (sta->sta_state == new_state) 1819 return 0; 1820 1821 /* check allowed transitions first */ 1822 1823 switch (new_state) { 1824 case IEEE80211_STA_NONE: 1825 if (sta->sta_state != IEEE80211_STA_AUTH) 1826 return -EINVAL; 1827 break; 1828 case IEEE80211_STA_AUTH: 1829 if (sta->sta_state != IEEE80211_STA_NONE && 1830 sta->sta_state != IEEE80211_STA_ASSOC) 1831 return -EINVAL; 1832 break; 1833 case IEEE80211_STA_ASSOC: 1834 if (sta->sta_state != IEEE80211_STA_AUTH && 1835 sta->sta_state != IEEE80211_STA_AUTHORIZED) 1836 return -EINVAL; 1837 break; 1838 case IEEE80211_STA_AUTHORIZED: 1839 if (sta->sta_state != IEEE80211_STA_ASSOC) 1840 return -EINVAL; 1841 break; 1842 default: 1843 WARN(1, "invalid state %d", new_state); 1844 return -EINVAL; 1845 } 1846 1847 sta_dbg(sta->sdata, "moving STA %pM to state %d\n", 1848 sta->sta.addr, new_state); 1849 1850 /* 1851 * notify the driver before the actual changes so it can 1852 * fail the transition 1853 */ 1854 if (test_sta_flag(sta, WLAN_STA_INSERTED)) { 1855 int err = drv_sta_state(sta->local, sta->sdata, sta, 1856 sta->sta_state, new_state); 1857 if (err) 1858 return err; 1859 } 1860 1861 /* reflect the change in all state variables */ 1862 1863 switch (new_state) { 1864 case IEEE80211_STA_NONE: 1865 if (sta->sta_state == IEEE80211_STA_AUTH) 1866 clear_bit(WLAN_STA_AUTH, &sta->_flags); 1867 break; 1868 case IEEE80211_STA_AUTH: 1869 if (sta->sta_state == IEEE80211_STA_NONE) { 1870 set_bit(WLAN_STA_AUTH, &sta->_flags); 1871 } else if (sta->sta_state == IEEE80211_STA_ASSOC) { 1872 clear_bit(WLAN_STA_ASSOC, &sta->_flags); 1873 ieee80211_recalc_min_chandef(sta->sdata); 1874 if (!sta->sta.support_p2p_ps) 1875 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1876 } 1877 break; 1878 case IEEE80211_STA_ASSOC: 1879 if (sta->sta_state == IEEE80211_STA_AUTH) { 1880 set_bit(WLAN_STA_ASSOC, &sta->_flags); 1881 ieee80211_recalc_min_chandef(sta->sdata); 1882 if (!sta->sta.support_p2p_ps) 1883 ieee80211_recalc_p2p_go_ps_allowed(sta->sdata); 1884 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) { 1885 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1886 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1887 !sta->sdata->u.vlan.sta)) 1888 atomic_dec(&sta->sdata->bss->num_mcast_sta); 1889 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1890 ieee80211_clear_fast_xmit(sta); 1891 ieee80211_clear_fast_rx(sta); 1892 } 1893 break; 1894 case IEEE80211_STA_AUTHORIZED: 1895 if (sta->sta_state == IEEE80211_STA_ASSOC) { 1896 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1897 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1898 !sta->sdata->u.vlan.sta)) 1899 atomic_inc(&sta->sdata->bss->num_mcast_sta); 1900 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags); 1901 ieee80211_check_fast_xmit(sta); 1902 ieee80211_check_fast_rx(sta); 1903 } 1904 break; 1905 default: 1906 break; 1907 } 1908 1909 sta->sta_state = new_state; 1910 1911 return 0; 1912 } 1913 1914 u8 sta_info_tx_streams(struct sta_info *sta) 1915 { 1916 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap; 1917 u8 rx_streams; 1918 1919 if (!sta->sta.ht_cap.ht_supported) 1920 return 1; 1921 1922 if (sta->sta.vht_cap.vht_supported) { 1923 int i; 1924 u16 tx_mcs_map = 1925 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map); 1926 1927 for (i = 7; i >= 0; i--) 1928 if ((tx_mcs_map & (0x3 << (i * 2))) != 1929 IEEE80211_VHT_MCS_NOT_SUPPORTED) 1930 return i + 1; 1931 } 1932 1933 if (ht_cap->mcs.rx_mask[3]) 1934 rx_streams = 4; 1935 else if (ht_cap->mcs.rx_mask[2]) 1936 rx_streams = 3; 1937 else if (ht_cap->mcs.rx_mask[1]) 1938 rx_streams = 2; 1939 else 1940 rx_streams = 1; 1941 1942 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF)) 1943 return rx_streams; 1944 1945 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK) 1946 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1; 1947 } 1948 1949 static struct ieee80211_sta_rx_stats * 1950 sta_get_last_rx_stats(struct sta_info *sta) 1951 { 1952 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 1953 struct ieee80211_local *local = sta->local; 1954 int cpu; 1955 1956 if (!ieee80211_hw_check(&local->hw, USES_RSS)) 1957 return stats; 1958 1959 for_each_possible_cpu(cpu) { 1960 struct ieee80211_sta_rx_stats *cpustats; 1961 1962 cpustats = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 1963 1964 if (time_after(cpustats->last_rx, stats->last_rx)) 1965 stats = cpustats; 1966 } 1967 1968 return stats; 1969 } 1970 1971 static void sta_stats_decode_rate(struct ieee80211_local *local, u16 rate, 1972 struct rate_info *rinfo) 1973 { 1974 rinfo->bw = (rate & STA_STATS_RATE_BW_MASK) >> 1975 STA_STATS_RATE_BW_SHIFT; 1976 1977 if (rate & STA_STATS_RATE_VHT) { 1978 rinfo->flags = RATE_INFO_FLAGS_VHT_MCS; 1979 rinfo->mcs = rate & 0xf; 1980 rinfo->nss = (rate & 0xf0) >> 4; 1981 } else if (rate & STA_STATS_RATE_HT) { 1982 rinfo->flags = RATE_INFO_FLAGS_MCS; 1983 rinfo->mcs = rate & 0xff; 1984 } else if (rate & STA_STATS_RATE_LEGACY) { 1985 struct ieee80211_supported_band *sband; 1986 u16 brate; 1987 unsigned int shift; 1988 1989 sband = local->hw.wiphy->bands[(rate >> 4) & 0xf]; 1990 brate = sband->bitrates[rate & 0xf].bitrate; 1991 if (rinfo->bw == RATE_INFO_BW_5) 1992 shift = 2; 1993 else if (rinfo->bw == RATE_INFO_BW_10) 1994 shift = 1; 1995 else 1996 shift = 0; 1997 rinfo->legacy = DIV_ROUND_UP(brate, 1 << shift); 1998 } 1999 2000 if (rate & STA_STATS_RATE_SGI) 2001 rinfo->flags |= RATE_INFO_FLAGS_SHORT_GI; 2002 } 2003 2004 static void sta_set_rate_info_rx(struct sta_info *sta, struct rate_info *rinfo) 2005 { 2006 u16 rate = ACCESS_ONCE(sta_get_last_rx_stats(sta)->last_rate); 2007 2008 if (rate == STA_STATS_RATE_INVALID) 2009 rinfo->flags = 0; 2010 else 2011 sta_stats_decode_rate(sta->local, rate, rinfo); 2012 } 2013 2014 static void sta_set_tidstats(struct sta_info *sta, 2015 struct cfg80211_tid_stats *tidstats, 2016 int tid) 2017 { 2018 struct ieee80211_local *local = sta->local; 2019 2020 if (!(tidstats->filled & BIT(NL80211_TID_STATS_RX_MSDU))) { 2021 unsigned int start; 2022 2023 do { 2024 start = u64_stats_fetch_begin(&sta->rx_stats.syncp); 2025 tidstats->rx_msdu = sta->rx_stats.msdu[tid]; 2026 } while (u64_stats_fetch_retry(&sta->rx_stats.syncp, start)); 2027 2028 tidstats->filled |= BIT(NL80211_TID_STATS_RX_MSDU); 2029 } 2030 2031 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU))) { 2032 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU); 2033 tidstats->tx_msdu = sta->tx_stats.msdu[tid]; 2034 } 2035 2036 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_RETRIES)) && 2037 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2038 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_RETRIES); 2039 tidstats->tx_msdu_retries = sta->status_stats.msdu_retries[tid]; 2040 } 2041 2042 if (!(tidstats->filled & BIT(NL80211_TID_STATS_TX_MSDU_FAILED)) && 2043 ieee80211_hw_check(&local->hw, REPORTS_TX_ACK_STATUS)) { 2044 tidstats->filled |= BIT(NL80211_TID_STATS_TX_MSDU_FAILED); 2045 tidstats->tx_msdu_failed = sta->status_stats.msdu_failed[tid]; 2046 } 2047 } 2048 2049 static inline u64 sta_get_stats_bytes(struct ieee80211_sta_rx_stats *rxstats) 2050 { 2051 unsigned int start; 2052 u64 value; 2053 2054 do { 2055 start = u64_stats_fetch_begin(&rxstats->syncp); 2056 value = rxstats->bytes; 2057 } while (u64_stats_fetch_retry(&rxstats->syncp, start)); 2058 2059 return value; 2060 } 2061 2062 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo) 2063 { 2064 struct ieee80211_sub_if_data *sdata = sta->sdata; 2065 struct ieee80211_local *local = sdata->local; 2066 struct rate_control_ref *ref = NULL; 2067 u32 thr = 0; 2068 int i, ac, cpu; 2069 struct ieee80211_sta_rx_stats *last_rxstats; 2070 2071 last_rxstats = sta_get_last_rx_stats(sta); 2072 2073 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL)) 2074 ref = local->rate_ctrl; 2075 2076 sinfo->generation = sdata->local->sta_generation; 2077 2078 /* do before driver, so beacon filtering drivers have a 2079 * chance to e.g. just add the number of filtered beacons 2080 * (or just modify the value entirely, of course) 2081 */ 2082 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2083 sinfo->rx_beacon = sdata->u.mgd.count_beacon_signal; 2084 2085 drv_sta_statistics(local, sdata, &sta->sta, sinfo); 2086 2087 sinfo->filled |= BIT(NL80211_STA_INFO_INACTIVE_TIME) | 2088 BIT(NL80211_STA_INFO_STA_FLAGS) | 2089 BIT(NL80211_STA_INFO_BSS_PARAM) | 2090 BIT(NL80211_STA_INFO_CONNECTED_TIME) | 2091 BIT(NL80211_STA_INFO_RX_DROP_MISC); 2092 2093 if (sdata->vif.type == NL80211_IFTYPE_STATION) { 2094 sinfo->beacon_loss_count = sdata->u.mgd.beacon_loss_count; 2095 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_LOSS); 2096 } 2097 2098 sinfo->connected_time = ktime_get_seconds() - sta->last_connected; 2099 sinfo->inactive_time = 2100 jiffies_to_msecs(jiffies - ieee80211_sta_last_active(sta)); 2101 2102 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_TX_BYTES64) | 2103 BIT(NL80211_STA_INFO_TX_BYTES)))) { 2104 sinfo->tx_bytes = 0; 2105 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2106 sinfo->tx_bytes += sta->tx_stats.bytes[ac]; 2107 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BYTES64); 2108 } 2109 2110 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_PACKETS))) { 2111 sinfo->tx_packets = 0; 2112 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) 2113 sinfo->tx_packets += sta->tx_stats.packets[ac]; 2114 sinfo->filled |= BIT(NL80211_STA_INFO_TX_PACKETS); 2115 } 2116 2117 if (!(sinfo->filled & (BIT(NL80211_STA_INFO_RX_BYTES64) | 2118 BIT(NL80211_STA_INFO_RX_BYTES)))) { 2119 sinfo->rx_bytes += sta_get_stats_bytes(&sta->rx_stats); 2120 2121 if (sta->pcpu_rx_stats) { 2122 for_each_possible_cpu(cpu) { 2123 struct ieee80211_sta_rx_stats *cpurxs; 2124 2125 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2126 sinfo->rx_bytes += sta_get_stats_bytes(cpurxs); 2127 } 2128 } 2129 2130 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BYTES64); 2131 } 2132 2133 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_PACKETS))) { 2134 sinfo->rx_packets = sta->rx_stats.packets; 2135 if (sta->pcpu_rx_stats) { 2136 for_each_possible_cpu(cpu) { 2137 struct ieee80211_sta_rx_stats *cpurxs; 2138 2139 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2140 sinfo->rx_packets += cpurxs->packets; 2141 } 2142 } 2143 sinfo->filled |= BIT(NL80211_STA_INFO_RX_PACKETS); 2144 } 2145 2146 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_RETRIES))) { 2147 sinfo->tx_retries = sta->status_stats.retry_count; 2148 sinfo->filled |= BIT(NL80211_STA_INFO_TX_RETRIES); 2149 } 2150 2151 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_FAILED))) { 2152 sinfo->tx_failed = sta->status_stats.retry_failed; 2153 sinfo->filled |= BIT(NL80211_STA_INFO_TX_FAILED); 2154 } 2155 2156 sinfo->rx_dropped_misc = sta->rx_stats.dropped; 2157 if (sta->pcpu_rx_stats) { 2158 for_each_possible_cpu(cpu) { 2159 struct ieee80211_sta_rx_stats *cpurxs; 2160 2161 cpurxs = per_cpu_ptr(sta->pcpu_rx_stats, cpu); 2162 sinfo->rx_packets += cpurxs->dropped; 2163 } 2164 } 2165 2166 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2167 !(sdata->vif.driver_flags & IEEE80211_VIF_BEACON_FILTER)) { 2168 sinfo->filled |= BIT(NL80211_STA_INFO_BEACON_RX) | 2169 BIT(NL80211_STA_INFO_BEACON_SIGNAL_AVG); 2170 sinfo->rx_beacon_signal_avg = ieee80211_ave_rssi(&sdata->vif); 2171 } 2172 2173 if (ieee80211_hw_check(&sta->local->hw, SIGNAL_DBM) || 2174 ieee80211_hw_check(&sta->local->hw, SIGNAL_UNSPEC)) { 2175 if (!(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL))) { 2176 sinfo->signal = (s8)last_rxstats->last_signal; 2177 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); 2178 } 2179 2180 if (!sta->pcpu_rx_stats && 2181 !(sinfo->filled & BIT(NL80211_STA_INFO_SIGNAL_AVG))) { 2182 sinfo->signal_avg = 2183 -ewma_signal_read(&sta->rx_stats_avg.signal); 2184 sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL_AVG); 2185 } 2186 } 2187 2188 /* for the average - if pcpu_rx_stats isn't set - rxstats must point to 2189 * the sta->rx_stats struct, so the check here is fine with and without 2190 * pcpu statistics 2191 */ 2192 if (last_rxstats->chains && 2193 !(sinfo->filled & (BIT(NL80211_STA_INFO_CHAIN_SIGNAL) | 2194 BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG)))) { 2195 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL); 2196 if (!sta->pcpu_rx_stats) 2197 sinfo->filled |= BIT(NL80211_STA_INFO_CHAIN_SIGNAL_AVG); 2198 2199 sinfo->chains = last_rxstats->chains; 2200 2201 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 2202 sinfo->chain_signal[i] = 2203 last_rxstats->chain_signal_last[i]; 2204 sinfo->chain_signal_avg[i] = 2205 -ewma_signal_read(&sta->rx_stats_avg.chain_signal[i]); 2206 } 2207 } 2208 2209 if (!(sinfo->filled & BIT(NL80211_STA_INFO_TX_BITRATE))) { 2210 sta_set_rate_info_tx(sta, &sta->tx_stats.last_rate, 2211 &sinfo->txrate); 2212 sinfo->filled |= BIT(NL80211_STA_INFO_TX_BITRATE); 2213 } 2214 2215 if (!(sinfo->filled & BIT(NL80211_STA_INFO_RX_BITRATE))) { 2216 sta_set_rate_info_rx(sta, &sinfo->rxrate); 2217 sinfo->filled |= BIT(NL80211_STA_INFO_RX_BITRATE); 2218 } 2219 2220 sinfo->filled |= BIT(NL80211_STA_INFO_TID_STATS); 2221 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++) { 2222 struct cfg80211_tid_stats *tidstats = &sinfo->pertid[i]; 2223 2224 sta_set_tidstats(sta, tidstats, i); 2225 } 2226 2227 if (ieee80211_vif_is_mesh(&sdata->vif)) { 2228 #ifdef CONFIG_MAC80211_MESH 2229 sinfo->filled |= BIT(NL80211_STA_INFO_LLID) | 2230 BIT(NL80211_STA_INFO_PLID) | 2231 BIT(NL80211_STA_INFO_PLINK_STATE) | 2232 BIT(NL80211_STA_INFO_LOCAL_PM) | 2233 BIT(NL80211_STA_INFO_PEER_PM) | 2234 BIT(NL80211_STA_INFO_NONPEER_PM); 2235 2236 sinfo->llid = sta->mesh->llid; 2237 sinfo->plid = sta->mesh->plid; 2238 sinfo->plink_state = sta->mesh->plink_state; 2239 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) { 2240 sinfo->filled |= BIT(NL80211_STA_INFO_T_OFFSET); 2241 sinfo->t_offset = sta->mesh->t_offset; 2242 } 2243 sinfo->local_pm = sta->mesh->local_pm; 2244 sinfo->peer_pm = sta->mesh->peer_pm; 2245 sinfo->nonpeer_pm = sta->mesh->nonpeer_pm; 2246 #endif 2247 } 2248 2249 sinfo->bss_param.flags = 0; 2250 if (sdata->vif.bss_conf.use_cts_prot) 2251 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT; 2252 if (sdata->vif.bss_conf.use_short_preamble) 2253 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE; 2254 if (sdata->vif.bss_conf.use_short_slot) 2255 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME; 2256 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period; 2257 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int; 2258 2259 sinfo->sta_flags.set = 0; 2260 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) | 2261 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) | 2262 BIT(NL80211_STA_FLAG_WME) | 2263 BIT(NL80211_STA_FLAG_MFP) | 2264 BIT(NL80211_STA_FLAG_AUTHENTICATED) | 2265 BIT(NL80211_STA_FLAG_ASSOCIATED) | 2266 BIT(NL80211_STA_FLAG_TDLS_PEER); 2267 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 2268 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED); 2269 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE)) 2270 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE); 2271 if (sta->sta.wme) 2272 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME); 2273 if (test_sta_flag(sta, WLAN_STA_MFP)) 2274 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP); 2275 if (test_sta_flag(sta, WLAN_STA_AUTH)) 2276 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED); 2277 if (test_sta_flag(sta, WLAN_STA_ASSOC)) 2278 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED); 2279 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) 2280 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER); 2281 2282 /* check if the driver has a SW RC implementation */ 2283 if (ref && ref->ops->get_expected_throughput) 2284 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv); 2285 else 2286 thr = drv_get_expected_throughput(local, &sta->sta); 2287 2288 if (thr != 0) { 2289 sinfo->filled |= BIT(NL80211_STA_INFO_EXPECTED_THROUGHPUT); 2290 sinfo->expected_throughput = thr; 2291 } 2292 } 2293 2294 unsigned long ieee80211_sta_last_active(struct sta_info *sta) 2295 { 2296 struct ieee80211_sta_rx_stats *stats = sta_get_last_rx_stats(sta); 2297 2298 if (time_after(stats->last_rx, sta->status_stats.last_ack)) 2299 return stats->last_rx; 2300 return sta->status_stats.last_ack; 2301 } 2302