1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2019 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static void remove_monitor_info(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 if (present_fcs_len) 101 __pskb_trim(skb, skb->len - present_fcs_len); 102 __pskb_pull(skb, rtap_space); 103 } 104 105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 106 unsigned int rtap_space) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_hdr *hdr; 110 111 hdr = (void *)(skb->data + rtap_space); 112 113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 114 RX_FLAG_FAILED_PLCP_CRC | 115 RX_FLAG_ONLY_MONITOR | 116 RX_FLAG_NO_PSDU)) 117 return true; 118 119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 120 return true; 121 122 if (ieee80211_is_ctl(hdr->frame_control) && 123 !ieee80211_is_pspoll(hdr->frame_control) && 124 !ieee80211_is_back_req(hdr->frame_control)) 125 return true; 126 127 return false; 128 } 129 130 static int 131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 132 struct ieee80211_rx_status *status, 133 struct sk_buff *skb) 134 { 135 int len; 136 137 /* always present fields */ 138 len = sizeof(struct ieee80211_radiotap_header) + 8; 139 140 /* allocate extra bitmaps */ 141 if (status->chains) 142 len += 4 * hweight8(status->chains); 143 /* vendor presence bitmap */ 144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 145 len += 4; 146 147 if (ieee80211_have_rx_timestamp(status)) { 148 len = ALIGN(len, 8); 149 len += 8; 150 } 151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 152 len += 1; 153 154 /* antenna field, if we don't have per-chain info */ 155 if (!status->chains) 156 len += 1; 157 158 /* padding for RX_FLAGS if necessary */ 159 len = ALIGN(len, 2); 160 161 if (status->encoding == RX_ENC_HT) /* HT info */ 162 len += 3; 163 164 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 165 len = ALIGN(len, 4); 166 len += 8; 167 } 168 169 if (status->encoding == RX_ENC_VHT) { 170 len = ALIGN(len, 2); 171 len += 12; 172 } 173 174 if (local->hw.radiotap_timestamp.units_pos >= 0) { 175 len = ALIGN(len, 8); 176 len += 12; 177 } 178 179 if (status->encoding == RX_ENC_HE && 180 status->flag & RX_FLAG_RADIOTAP_HE) { 181 len = ALIGN(len, 2); 182 len += 12; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 184 } 185 186 if (status->encoding == RX_ENC_HE && 187 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 188 len = ALIGN(len, 2); 189 len += 12; 190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 191 } 192 193 if (status->flag & RX_FLAG_NO_PSDU) 194 len += 1; 195 196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 197 len = ALIGN(len, 2); 198 len += 4; 199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 200 } 201 202 if (status->chains) { 203 /* antenna and antenna signal fields */ 204 len += 2 * hweight8(status->chains); 205 } 206 207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 208 struct ieee80211_vendor_radiotap *rtap; 209 int vendor_data_offset = 0; 210 211 /* 212 * The position to look at depends on the existence (or non- 213 * existence) of other elements, so take that into account... 214 */ 215 if (status->flag & RX_FLAG_RADIOTAP_HE) 216 vendor_data_offset += 217 sizeof(struct ieee80211_radiotap_he); 218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 219 vendor_data_offset += 220 sizeof(struct ieee80211_radiotap_he_mu); 221 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 222 vendor_data_offset += 223 sizeof(struct ieee80211_radiotap_lsig); 224 225 rtap = (void *)&skb->data[vendor_data_offset]; 226 227 /* alignment for fixed 6-byte vendor data header */ 228 len = ALIGN(len, 2); 229 /* vendor data header */ 230 len += 6; 231 if (WARN_ON(rtap->align == 0)) 232 rtap->align = 1; 233 len = ALIGN(len, rtap->align); 234 len += rtap->len + rtap->pad; 235 } 236 237 return len; 238 } 239 240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 241 struct sk_buff *skb, 242 int rtap_space) 243 { 244 struct { 245 struct ieee80211_hdr_3addr hdr; 246 u8 category; 247 u8 action_code; 248 } __packed __aligned(2) action; 249 250 if (!sdata) 251 return; 252 253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 254 255 if (skb->len < rtap_space + sizeof(action) + 256 VHT_MUMIMO_GROUPS_DATA_LEN) 257 return; 258 259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 263 264 if (!ieee80211_is_action(action.hdr.frame_control)) 265 return; 266 267 if (action.category != WLAN_CATEGORY_VHT) 268 return; 269 270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 271 return; 272 273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 274 return; 275 276 skb = skb_copy(skb, GFP_ATOMIC); 277 if (!skb) 278 return; 279 280 skb_queue_tail(&sdata->skb_queue, skb); 281 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 282 } 283 284 /* 285 * ieee80211_add_rx_radiotap_header - add radiotap header 286 * 287 * add a radiotap header containing all the fields which the hardware provided. 288 */ 289 static void 290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 291 struct sk_buff *skb, 292 struct ieee80211_rate *rate, 293 int rtap_len, bool has_fcs) 294 { 295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 296 struct ieee80211_radiotap_header *rthdr; 297 unsigned char *pos; 298 __le32 *it_present; 299 u32 it_present_val; 300 u16 rx_flags = 0; 301 u16 channel_flags = 0; 302 int mpdulen, chain; 303 unsigned long chains = status->chains; 304 struct ieee80211_vendor_radiotap rtap = {}; 305 struct ieee80211_radiotap_he he = {}; 306 struct ieee80211_radiotap_he_mu he_mu = {}; 307 struct ieee80211_radiotap_lsig lsig = {}; 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE) { 310 he = *(struct ieee80211_radiotap_he *)skb->data; 311 skb_pull(skb, sizeof(he)); 312 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 313 } 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 317 skb_pull(skb, sizeof(he_mu)); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 322 skb_pull(skb, sizeof(lsig)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 327 /* rtap.len and rtap.pad are undone immediately */ 328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 329 } 330 331 mpdulen = skb->len; 332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 333 mpdulen += FCS_LEN; 334 335 rthdr = skb_push(skb, rtap_len); 336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 337 it_present = &rthdr->it_present; 338 339 /* radiotap header, set always present flags */ 340 rthdr->it_len = cpu_to_le16(rtap_len); 341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 342 BIT(IEEE80211_RADIOTAP_CHANNEL) | 343 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 344 345 if (!status->chains) 346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 347 348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 349 it_present_val |= 350 BIT(IEEE80211_RADIOTAP_EXT) | 351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 352 put_unaligned_le32(it_present_val, it_present); 353 it_present++; 354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 356 } 357 358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 360 BIT(IEEE80211_RADIOTAP_EXT); 361 put_unaligned_le32(it_present_val, it_present); 362 it_present++; 363 it_present_val = rtap.present; 364 } 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 pos = (void *)(it_present + 1); 369 370 /* the order of the following fields is important */ 371 372 /* IEEE80211_RADIOTAP_TSFT */ 373 if (ieee80211_have_rx_timestamp(status)) { 374 /* padding */ 375 while ((pos - (u8 *)rthdr) & 7) 376 *pos++ = 0; 377 put_unaligned_le64( 378 ieee80211_calculate_rx_timestamp(local, status, 379 mpdulen, 0), 380 pos); 381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 382 pos += 8; 383 } 384 385 /* IEEE80211_RADIOTAP_FLAGS */ 386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 387 *pos |= IEEE80211_RADIOTAP_F_FCS; 388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 389 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 392 pos++; 393 394 /* IEEE80211_RADIOTAP_RATE */ 395 if (!rate || status->encoding != RX_ENC_LEGACY) { 396 /* 397 * Without rate information don't add it. If we have, 398 * MCS information is a separate field in radiotap, 399 * added below. The byte here is needed as padding 400 * for the channel though, so initialise it to 0. 401 */ 402 *pos = 0; 403 } else { 404 int shift = 0; 405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 406 if (status->bw == RATE_INFO_BW_10) 407 shift = 1; 408 else if (status->bw == RATE_INFO_BW_5) 409 shift = 2; 410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 411 } 412 pos++; 413 414 /* IEEE80211_RADIOTAP_CHANNEL */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ) 423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 424 else if (status->encoding != RX_ENC_LEGACY) 425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 428 else if (rate) 429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 430 else 431 channel_flags |= IEEE80211_CHAN_2GHZ; 432 put_unaligned_le16(channel_flags, pos); 433 pos += 2; 434 435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 438 *pos = status->signal; 439 rthdr->it_present |= 440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 441 pos++; 442 } 443 444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 445 446 if (!status->chains) { 447 /* IEEE80211_RADIOTAP_ANTENNA */ 448 *pos = status->antenna; 449 pos++; 450 } 451 452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 453 454 /* IEEE80211_RADIOTAP_RX_FLAGS */ 455 /* ensure 2 byte alignment for the 2 byte field as required */ 456 if ((pos - (u8 *)rthdr) & 1) 457 *pos++ = 0; 458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 460 put_unaligned_le16(rx_flags, pos); 461 pos += 2; 462 463 if (status->encoding == RX_ENC_HT) { 464 unsigned int stbc; 465 466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 467 *pos++ = local->hw.radiotap_mcs_details; 468 *pos = 0; 469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 470 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 471 if (status->bw == RATE_INFO_BW_40) 472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 473 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 475 if (status->enc_flags & RX_ENC_FLAG_LDPC) 476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 479 pos++; 480 *pos++ = status->rate_idx; 481 } 482 483 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 484 u16 flags = 0; 485 486 /* ensure 4 byte alignment */ 487 while ((pos - (u8 *)rthdr) & 3) 488 pos++; 489 rthdr->it_present |= 490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 491 put_unaligned_le32(status->ampdu_reference, pos); 492 pos += 4; 493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 495 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 505 put_unaligned_le16(flags, pos); 506 pos += 2; 507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 508 *pos++ = status->ampdu_delimiter_crc; 509 else 510 *pos++ = 0; 511 *pos++ = 0; 512 } 513 514 if (status->encoding == RX_ENC_VHT) { 515 u16 known = local->hw.radiotap_vht_details; 516 517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 518 put_unaligned_le16(known, pos); 519 pos += 2; 520 /* flags */ 521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 523 /* in VHT, STBC is binary */ 524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 526 if (status->enc_flags & RX_ENC_FLAG_BF) 527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 528 pos++; 529 /* bandwidth */ 530 switch (status->bw) { 531 case RATE_INFO_BW_80: 532 *pos++ = 4; 533 break; 534 case RATE_INFO_BW_160: 535 *pos++ = 11; 536 break; 537 case RATE_INFO_BW_40: 538 *pos++ = 1; 539 break; 540 default: 541 *pos++ = 0; 542 } 543 /* MCS/NSS */ 544 *pos = (status->rate_idx << 4) | status->nss; 545 pos += 4; 546 /* coding field */ 547 if (status->enc_flags & RX_ENC_FLAG_LDPC) 548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 549 pos++; 550 /* group ID */ 551 pos++; 552 /* partial_aid */ 553 pos += 2; 554 } 555 556 if (local->hw.radiotap_timestamp.units_pos >= 0) { 557 u16 accuracy = 0; 558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 559 560 rthdr->it_present |= 561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 562 563 /* ensure 8 byte alignment */ 564 while ((pos - (u8 *)rthdr) & 7) 565 pos++; 566 567 put_unaligned_le64(status->device_timestamp, pos); 568 pos += sizeof(u64); 569 570 if (local->hw.radiotap_timestamp.accuracy >= 0) { 571 accuracy = local->hw.radiotap_timestamp.accuracy; 572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 573 } 574 put_unaligned_le16(accuracy, pos); 575 pos += sizeof(u16); 576 577 *pos++ = local->hw.radiotap_timestamp.units_pos; 578 *pos++ = flags; 579 } 580 581 if (status->encoding == RX_ENC_HE && 582 status->flag & RX_FLAG_RADIOTAP_HE) { 583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 584 585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 586 he.data6 |= HE_PREP(DATA6_NSTS, 587 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 588 status->enc_flags)); 589 he.data3 |= HE_PREP(DATA3_STBC, 1); 590 } else { 591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 592 } 593 594 #define CHECK_GI(s) \ 595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 596 (int)NL80211_RATE_INFO_HE_GI_##s) 597 598 CHECK_GI(0_8); 599 CHECK_GI(1_6); 600 CHECK_GI(3_2); 601 602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 604 he.data3 |= HE_PREP(DATA3_CODING, 605 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 606 607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 608 609 switch (status->bw) { 610 case RATE_INFO_BW_20: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 613 break; 614 case RATE_INFO_BW_40: 615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 617 break; 618 case RATE_INFO_BW_80: 619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 621 break; 622 case RATE_INFO_BW_160: 623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 625 break; 626 case RATE_INFO_BW_HE_RU: 627 #define CHECK_RU_ALLOC(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 630 631 CHECK_RU_ALLOC(26); 632 CHECK_RU_ALLOC(52); 633 CHECK_RU_ALLOC(106); 634 CHECK_RU_ALLOC(242); 635 CHECK_RU_ALLOC(484); 636 CHECK_RU_ALLOC(996); 637 CHECK_RU_ALLOC(2x996); 638 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 status->he_ru + 4); 641 break; 642 default: 643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 644 } 645 646 /* ensure 2 byte alignment */ 647 while ((pos - (u8 *)rthdr) & 1) 648 pos++; 649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 650 memcpy(pos, &he, sizeof(he)); 651 pos += sizeof(he); 652 } 653 654 if (status->encoding == RX_ENC_HE && 655 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 656 /* ensure 2 byte alignment */ 657 while ((pos - (u8 *)rthdr) & 1) 658 pos++; 659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 660 memcpy(pos, &he_mu, sizeof(he_mu)); 661 pos += sizeof(he_mu); 662 } 663 664 if (status->flag & RX_FLAG_NO_PSDU) { 665 rthdr->it_present |= 666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 667 *pos++ = status->zero_length_psdu_type; 668 } 669 670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 671 /* ensure 2 byte alignment */ 672 while ((pos - (u8 *)rthdr) & 1) 673 pos++; 674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 675 memcpy(pos, &lsig, sizeof(lsig)); 676 pos += sizeof(lsig); 677 } 678 679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 680 *pos++ = status->chain_signal[chain]; 681 *pos++ = chain; 682 } 683 684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 685 /* ensure 2 byte alignment for the vendor field as required */ 686 if ((pos - (u8 *)rthdr) & 1) 687 *pos++ = 0; 688 *pos++ = rtap.oui[0]; 689 *pos++ = rtap.oui[1]; 690 *pos++ = rtap.oui[2]; 691 *pos++ = rtap.subns; 692 put_unaligned_le16(rtap.len, pos); 693 pos += 2; 694 /* align the actual payload as requested */ 695 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 696 *pos++ = 0; 697 /* data (and possible padding) already follows */ 698 } 699 } 700 701 static struct sk_buff * 702 ieee80211_make_monitor_skb(struct ieee80211_local *local, 703 struct sk_buff **origskb, 704 struct ieee80211_rate *rate, 705 int rtap_space, bool use_origskb) 706 { 707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 708 int rt_hdrlen, needed_headroom; 709 struct sk_buff *skb; 710 711 /* room for the radiotap header based on driver features */ 712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 713 needed_headroom = rt_hdrlen - rtap_space; 714 715 if (use_origskb) { 716 /* only need to expand headroom if necessary */ 717 skb = *origskb; 718 *origskb = NULL; 719 720 /* 721 * This shouldn't trigger often because most devices have an 722 * RX header they pull before we get here, and that should 723 * be big enough for our radiotap information. We should 724 * probably export the length to drivers so that we can have 725 * them allocate enough headroom to start with. 726 */ 727 if (skb_headroom(skb) < needed_headroom && 728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 729 dev_kfree_skb(skb); 730 return NULL; 731 } 732 } else { 733 /* 734 * Need to make a copy and possibly remove radiotap header 735 * and FCS from the original. 736 */ 737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 738 739 if (!skb) 740 return NULL; 741 } 742 743 /* prepend radiotap information */ 744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 745 746 skb_reset_mac_header(skb); 747 skb->ip_summed = CHECKSUM_UNNECESSARY; 748 skb->pkt_type = PACKET_OTHERHOST; 749 skb->protocol = htons(ETH_P_802_2); 750 751 return skb; 752 } 753 754 /* 755 * This function copies a received frame to all monitor interfaces and 756 * returns a cleaned-up SKB that no longer includes the FCS nor the 757 * radiotap header the driver might have added. 758 */ 759 static struct sk_buff * 760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 761 struct ieee80211_rate *rate) 762 { 763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 764 struct ieee80211_sub_if_data *sdata; 765 struct sk_buff *monskb = NULL; 766 int present_fcs_len = 0; 767 unsigned int rtap_space = 0; 768 struct ieee80211_sub_if_data *monitor_sdata = 769 rcu_dereference(local->monitor_sdata); 770 bool only_monitor = false; 771 unsigned int min_head_len; 772 773 if (status->flag & RX_FLAG_RADIOTAP_HE) 774 rtap_space += sizeof(struct ieee80211_radiotap_he); 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 778 779 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 780 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 781 782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 783 struct ieee80211_vendor_radiotap *rtap = 784 (void *)(origskb->data + rtap_space); 785 786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 787 } 788 789 min_head_len = rtap_space; 790 791 /* 792 * First, we may need to make a copy of the skb because 793 * (1) we need to modify it for radiotap (if not present), and 794 * (2) the other RX handlers will modify the skb we got. 795 * 796 * We don't need to, of course, if we aren't going to return 797 * the SKB because it has a bad FCS/PLCP checksum. 798 */ 799 800 if (!(status->flag & RX_FLAG_NO_PSDU)) { 801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 803 /* driver bug */ 804 WARN_ON(1); 805 dev_kfree_skb(origskb); 806 return NULL; 807 } 808 present_fcs_len = FCS_LEN; 809 } 810 811 /* also consider the hdr->frame_control */ 812 min_head_len += 2; 813 } 814 815 /* ensure that the expected data elements are in skb head */ 816 if (!pskb_may_pull(origskb, min_head_len)) { 817 dev_kfree_skb(origskb); 818 return NULL; 819 } 820 821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 822 823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 824 if (only_monitor) { 825 dev_kfree_skb(origskb); 826 return NULL; 827 } 828 829 remove_monitor_info(origskb, present_fcs_len, rtap_space); 830 return origskb; 831 } 832 833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 834 835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 836 bool last_monitor = list_is_last(&sdata->u.mntr.list, 837 &local->mon_list); 838 839 if (!monskb) 840 monskb = ieee80211_make_monitor_skb(local, &origskb, 841 rate, rtap_space, 842 only_monitor && 843 last_monitor); 844 845 if (monskb) { 846 struct sk_buff *skb; 847 848 if (last_monitor) { 849 skb = monskb; 850 monskb = NULL; 851 } else { 852 skb = skb_clone(monskb, GFP_ATOMIC); 853 } 854 855 if (skb) { 856 skb->dev = sdata->dev; 857 ieee80211_rx_stats(skb->dev, skb->len); 858 netif_receive_skb(skb); 859 } 860 } 861 862 if (last_monitor) 863 break; 864 } 865 866 /* this happens if last_monitor was erroneously false */ 867 dev_kfree_skb(monskb); 868 869 /* ditto */ 870 if (!origskb) 871 return NULL; 872 873 remove_monitor_info(origskb, present_fcs_len, rtap_space); 874 return origskb; 875 } 876 877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 878 { 879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 881 int tid, seqno_idx, security_idx; 882 883 /* does the frame have a qos control field? */ 884 if (ieee80211_is_data_qos(hdr->frame_control)) { 885 u8 *qc = ieee80211_get_qos_ctl(hdr); 886 /* frame has qos control */ 887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 889 status->rx_flags |= IEEE80211_RX_AMSDU; 890 891 seqno_idx = tid; 892 security_idx = tid; 893 } else { 894 /* 895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 896 * 897 * Sequence numbers for management frames, QoS data 898 * frames with a broadcast/multicast address in the 899 * Address 1 field, and all non-QoS data frames sent 900 * by QoS STAs are assigned using an additional single 901 * modulo-4096 counter, [...] 902 * 903 * We also use that counter for non-QoS STAs. 904 */ 905 seqno_idx = IEEE80211_NUM_TIDS; 906 security_idx = 0; 907 if (ieee80211_is_mgmt(hdr->frame_control)) 908 security_idx = IEEE80211_NUM_TIDS; 909 tid = 0; 910 } 911 912 rx->seqno_idx = seqno_idx; 913 rx->security_idx = security_idx; 914 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 915 * For now, set skb->priority to 0 for other cases. */ 916 rx->skb->priority = (tid > 7) ? 0 : tid; 917 } 918 919 /** 920 * DOC: Packet alignment 921 * 922 * Drivers always need to pass packets that are aligned to two-byte boundaries 923 * to the stack. 924 * 925 * Additionally, should, if possible, align the payload data in a way that 926 * guarantees that the contained IP header is aligned to a four-byte 927 * boundary. In the case of regular frames, this simply means aligning the 928 * payload to a four-byte boundary (because either the IP header is directly 929 * contained, or IV/RFC1042 headers that have a length divisible by four are 930 * in front of it). If the payload data is not properly aligned and the 931 * architecture doesn't support efficient unaligned operations, mac80211 932 * will align the data. 933 * 934 * With A-MSDU frames, however, the payload data address must yield two modulo 935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 936 * push the IP header further back to a multiple of four again. Thankfully, the 937 * specs were sane enough this time around to require padding each A-MSDU 938 * subframe to a length that is a multiple of four. 939 * 940 * Padding like Atheros hardware adds which is between the 802.11 header and 941 * the payload is not supported, the driver is required to move the 802.11 942 * header to be directly in front of the payload in that case. 943 */ 944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 945 { 946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 948 #endif 949 } 950 951 952 /* rx handlers */ 953 954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 955 { 956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 957 958 if (is_multicast_ether_addr(hdr->addr1)) 959 return 0; 960 961 return ieee80211_is_robust_mgmt_frame(skb); 962 } 963 964 965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 966 { 967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 968 969 if (!is_multicast_ether_addr(hdr->addr1)) 970 return 0; 971 972 return ieee80211_is_robust_mgmt_frame(skb); 973 } 974 975 976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 978 { 979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 980 struct ieee80211_mmie *mmie; 981 struct ieee80211_mmie_16 *mmie16; 982 983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 984 return -1; 985 986 if (!ieee80211_is_robust_mgmt_frame(skb)) 987 return -1; /* not a robust management frame */ 988 989 mmie = (struct ieee80211_mmie *) 990 (skb->data + skb->len - sizeof(*mmie)); 991 if (mmie->element_id == WLAN_EID_MMIE && 992 mmie->length == sizeof(*mmie) - 2) 993 return le16_to_cpu(mmie->key_id); 994 995 mmie16 = (struct ieee80211_mmie_16 *) 996 (skb->data + skb->len - sizeof(*mmie16)); 997 if (skb->len >= 24 + sizeof(*mmie16) && 998 mmie16->element_id == WLAN_EID_MMIE && 999 mmie16->length == sizeof(*mmie16) - 2) 1000 return le16_to_cpu(mmie16->key_id); 1001 1002 return -1; 1003 } 1004 1005 static int ieee80211_get_keyid(struct sk_buff *skb, 1006 const struct ieee80211_cipher_scheme *cs) 1007 { 1008 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1009 __le16 fc; 1010 int hdrlen; 1011 int minlen; 1012 u8 key_idx_off; 1013 u8 key_idx_shift; 1014 u8 keyid; 1015 1016 fc = hdr->frame_control; 1017 hdrlen = ieee80211_hdrlen(fc); 1018 1019 if (cs) { 1020 minlen = hdrlen + cs->hdr_len; 1021 key_idx_off = hdrlen + cs->key_idx_off; 1022 key_idx_shift = cs->key_idx_shift; 1023 } else { 1024 /* WEP, TKIP, CCMP and GCMP */ 1025 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1026 key_idx_off = hdrlen + 3; 1027 key_idx_shift = 6; 1028 } 1029 1030 if (unlikely(skb->len < minlen)) 1031 return -EINVAL; 1032 1033 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1034 1035 if (cs) 1036 keyid &= cs->key_idx_mask; 1037 keyid >>= key_idx_shift; 1038 1039 /* cs could use more than the usual two bits for the keyid */ 1040 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1041 return -EINVAL; 1042 1043 return keyid; 1044 } 1045 1046 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1047 { 1048 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1049 char *dev_addr = rx->sdata->vif.addr; 1050 1051 if (ieee80211_is_data(hdr->frame_control)) { 1052 if (is_multicast_ether_addr(hdr->addr1)) { 1053 if (ieee80211_has_tods(hdr->frame_control) || 1054 !ieee80211_has_fromds(hdr->frame_control)) 1055 return RX_DROP_MONITOR; 1056 if (ether_addr_equal(hdr->addr3, dev_addr)) 1057 return RX_DROP_MONITOR; 1058 } else { 1059 if (!ieee80211_has_a4(hdr->frame_control)) 1060 return RX_DROP_MONITOR; 1061 if (ether_addr_equal(hdr->addr4, dev_addr)) 1062 return RX_DROP_MONITOR; 1063 } 1064 } 1065 1066 /* If there is not an established peer link and this is not a peer link 1067 * establisment frame, beacon or probe, drop the frame. 1068 */ 1069 1070 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1071 struct ieee80211_mgmt *mgmt; 1072 1073 if (!ieee80211_is_mgmt(hdr->frame_control)) 1074 return RX_DROP_MONITOR; 1075 1076 if (ieee80211_is_action(hdr->frame_control)) { 1077 u8 category; 1078 1079 /* make sure category field is present */ 1080 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1081 return RX_DROP_MONITOR; 1082 1083 mgmt = (struct ieee80211_mgmt *)hdr; 1084 category = mgmt->u.action.category; 1085 if (category != WLAN_CATEGORY_MESH_ACTION && 1086 category != WLAN_CATEGORY_SELF_PROTECTED) 1087 return RX_DROP_MONITOR; 1088 return RX_CONTINUE; 1089 } 1090 1091 if (ieee80211_is_probe_req(hdr->frame_control) || 1092 ieee80211_is_probe_resp(hdr->frame_control) || 1093 ieee80211_is_beacon(hdr->frame_control) || 1094 ieee80211_is_auth(hdr->frame_control)) 1095 return RX_CONTINUE; 1096 1097 return RX_DROP_MONITOR; 1098 } 1099 1100 return RX_CONTINUE; 1101 } 1102 1103 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1104 int index) 1105 { 1106 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1107 struct sk_buff *tail = skb_peek_tail(frames); 1108 struct ieee80211_rx_status *status; 1109 1110 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1111 return true; 1112 1113 if (!tail) 1114 return false; 1115 1116 status = IEEE80211_SKB_RXCB(tail); 1117 if (status->flag & RX_FLAG_AMSDU_MORE) 1118 return false; 1119 1120 return true; 1121 } 1122 1123 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1124 struct tid_ampdu_rx *tid_agg_rx, 1125 int index, 1126 struct sk_buff_head *frames) 1127 { 1128 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1129 struct sk_buff *skb; 1130 struct ieee80211_rx_status *status; 1131 1132 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1133 1134 if (skb_queue_empty(skb_list)) 1135 goto no_frame; 1136 1137 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1138 __skb_queue_purge(skb_list); 1139 goto no_frame; 1140 } 1141 1142 /* release frames from the reorder ring buffer */ 1143 tid_agg_rx->stored_mpdu_num--; 1144 while ((skb = __skb_dequeue(skb_list))) { 1145 status = IEEE80211_SKB_RXCB(skb); 1146 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1147 __skb_queue_tail(frames, skb); 1148 } 1149 1150 no_frame: 1151 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1152 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1153 } 1154 1155 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1156 struct tid_ampdu_rx *tid_agg_rx, 1157 u16 head_seq_num, 1158 struct sk_buff_head *frames) 1159 { 1160 int index; 1161 1162 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1163 1164 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1165 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1166 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1167 frames); 1168 } 1169 } 1170 1171 /* 1172 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1173 * the skb was added to the buffer longer than this time ago, the earlier 1174 * frames that have not yet been received are assumed to be lost and the skb 1175 * can be released for processing. This may also release other skb's from the 1176 * reorder buffer if there are no additional gaps between the frames. 1177 * 1178 * Callers must hold tid_agg_rx->reorder_lock. 1179 */ 1180 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1181 1182 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1183 struct tid_ampdu_rx *tid_agg_rx, 1184 struct sk_buff_head *frames) 1185 { 1186 int index, i, j; 1187 1188 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1189 1190 /* release the buffer until next missing frame */ 1191 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1192 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1193 tid_agg_rx->stored_mpdu_num) { 1194 /* 1195 * No buffers ready to be released, but check whether any 1196 * frames in the reorder buffer have timed out. 1197 */ 1198 int skipped = 1; 1199 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1200 j = (j + 1) % tid_agg_rx->buf_size) { 1201 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1202 skipped++; 1203 continue; 1204 } 1205 if (skipped && 1206 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1207 HT_RX_REORDER_BUF_TIMEOUT)) 1208 goto set_release_timer; 1209 1210 /* don't leave incomplete A-MSDUs around */ 1211 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1212 i = (i + 1) % tid_agg_rx->buf_size) 1213 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1214 1215 ht_dbg_ratelimited(sdata, 1216 "release an RX reorder frame due to timeout on earlier frames\n"); 1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1218 frames); 1219 1220 /* 1221 * Increment the head seq# also for the skipped slots. 1222 */ 1223 tid_agg_rx->head_seq_num = 1224 (tid_agg_rx->head_seq_num + 1225 skipped) & IEEE80211_SN_MASK; 1226 skipped = 0; 1227 } 1228 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1229 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1230 frames); 1231 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1232 } 1233 1234 if (tid_agg_rx->stored_mpdu_num) { 1235 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1236 1237 for (; j != (index - 1) % tid_agg_rx->buf_size; 1238 j = (j + 1) % tid_agg_rx->buf_size) { 1239 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1240 break; 1241 } 1242 1243 set_release_timer: 1244 1245 if (!tid_agg_rx->removed) 1246 mod_timer(&tid_agg_rx->reorder_timer, 1247 tid_agg_rx->reorder_time[j] + 1 + 1248 HT_RX_REORDER_BUF_TIMEOUT); 1249 } else { 1250 del_timer(&tid_agg_rx->reorder_timer); 1251 } 1252 } 1253 1254 /* 1255 * As this function belongs to the RX path it must be under 1256 * rcu_read_lock protection. It returns false if the frame 1257 * can be processed immediately, true if it was consumed. 1258 */ 1259 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1260 struct tid_ampdu_rx *tid_agg_rx, 1261 struct sk_buff *skb, 1262 struct sk_buff_head *frames) 1263 { 1264 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1265 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1266 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1267 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1268 u16 head_seq_num, buf_size; 1269 int index; 1270 bool ret = true; 1271 1272 spin_lock(&tid_agg_rx->reorder_lock); 1273 1274 /* 1275 * Offloaded BA sessions have no known starting sequence number so pick 1276 * one from first Rxed frame for this tid after BA was started. 1277 */ 1278 if (unlikely(tid_agg_rx->auto_seq)) { 1279 tid_agg_rx->auto_seq = false; 1280 tid_agg_rx->ssn = mpdu_seq_num; 1281 tid_agg_rx->head_seq_num = mpdu_seq_num; 1282 } 1283 1284 buf_size = tid_agg_rx->buf_size; 1285 head_seq_num = tid_agg_rx->head_seq_num; 1286 1287 /* 1288 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1289 * be reordered. 1290 */ 1291 if (unlikely(!tid_agg_rx->started)) { 1292 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1293 ret = false; 1294 goto out; 1295 } 1296 tid_agg_rx->started = true; 1297 } 1298 1299 /* frame with out of date sequence number */ 1300 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1301 dev_kfree_skb(skb); 1302 goto out; 1303 } 1304 1305 /* 1306 * If frame the sequence number exceeds our buffering window 1307 * size release some previous frames to make room for this one. 1308 */ 1309 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1310 head_seq_num = ieee80211_sn_inc( 1311 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1312 /* release stored frames up to new head to stack */ 1313 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1314 head_seq_num, frames); 1315 } 1316 1317 /* Now the new frame is always in the range of the reordering buffer */ 1318 1319 index = mpdu_seq_num % tid_agg_rx->buf_size; 1320 1321 /* check if we already stored this frame */ 1322 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1323 dev_kfree_skb(skb); 1324 goto out; 1325 } 1326 1327 /* 1328 * If the current MPDU is in the right order and nothing else 1329 * is stored we can process it directly, no need to buffer it. 1330 * If it is first but there's something stored, we may be able 1331 * to release frames after this one. 1332 */ 1333 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1334 tid_agg_rx->stored_mpdu_num == 0) { 1335 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1336 tid_agg_rx->head_seq_num = 1337 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1338 ret = false; 1339 goto out; 1340 } 1341 1342 /* put the frame in the reordering buffer */ 1343 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1344 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1345 tid_agg_rx->reorder_time[index] = jiffies; 1346 tid_agg_rx->stored_mpdu_num++; 1347 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1348 } 1349 1350 out: 1351 spin_unlock(&tid_agg_rx->reorder_lock); 1352 return ret; 1353 } 1354 1355 /* 1356 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1357 * true if the MPDU was buffered, false if it should be processed. 1358 */ 1359 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1360 struct sk_buff_head *frames) 1361 { 1362 struct sk_buff *skb = rx->skb; 1363 struct ieee80211_local *local = rx->local; 1364 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1365 struct sta_info *sta = rx->sta; 1366 struct tid_ampdu_rx *tid_agg_rx; 1367 u16 sc; 1368 u8 tid, ack_policy; 1369 1370 if (!ieee80211_is_data_qos(hdr->frame_control) || 1371 is_multicast_ether_addr(hdr->addr1)) 1372 goto dont_reorder; 1373 1374 /* 1375 * filter the QoS data rx stream according to 1376 * STA/TID and check if this STA/TID is on aggregation 1377 */ 1378 1379 if (!sta) 1380 goto dont_reorder; 1381 1382 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1383 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1384 tid = ieee80211_get_tid(hdr); 1385 1386 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1387 if (!tid_agg_rx) { 1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1389 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1390 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1391 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1392 WLAN_BACK_RECIPIENT, 1393 WLAN_REASON_QSTA_REQUIRE_SETUP); 1394 goto dont_reorder; 1395 } 1396 1397 /* qos null data frames are excluded */ 1398 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1399 goto dont_reorder; 1400 1401 /* not part of a BA session */ 1402 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1403 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1404 goto dont_reorder; 1405 1406 /* new, potentially un-ordered, ampdu frame - process it */ 1407 1408 /* reset session timer */ 1409 if (tid_agg_rx->timeout) 1410 tid_agg_rx->last_rx = jiffies; 1411 1412 /* if this mpdu is fragmented - terminate rx aggregation session */ 1413 sc = le16_to_cpu(hdr->seq_ctrl); 1414 if (sc & IEEE80211_SCTL_FRAG) { 1415 skb_queue_tail(&rx->sdata->skb_queue, skb); 1416 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1417 return; 1418 } 1419 1420 /* 1421 * No locking needed -- we will only ever process one 1422 * RX packet at a time, and thus own tid_agg_rx. All 1423 * other code manipulating it needs to (and does) make 1424 * sure that we cannot get to it any more before doing 1425 * anything with it. 1426 */ 1427 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1428 frames)) 1429 return; 1430 1431 dont_reorder: 1432 __skb_queue_tail(frames, skb); 1433 } 1434 1435 static ieee80211_rx_result debug_noinline 1436 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1437 { 1438 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1439 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1440 1441 if (status->flag & RX_FLAG_DUP_VALIDATED) 1442 return RX_CONTINUE; 1443 1444 /* 1445 * Drop duplicate 802.11 retransmissions 1446 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1447 */ 1448 1449 if (rx->skb->len < 24) 1450 return RX_CONTINUE; 1451 1452 if (ieee80211_is_ctl(hdr->frame_control) || 1453 ieee80211_is_nullfunc(hdr->frame_control) || 1454 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1455 is_multicast_ether_addr(hdr->addr1)) 1456 return RX_CONTINUE; 1457 1458 if (!rx->sta) 1459 return RX_CONTINUE; 1460 1461 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1462 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1463 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1464 rx->sta->rx_stats.num_duplicates++; 1465 return RX_DROP_UNUSABLE; 1466 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1467 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1468 } 1469 1470 return RX_CONTINUE; 1471 } 1472 1473 static ieee80211_rx_result debug_noinline 1474 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1475 { 1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1477 1478 /* Drop disallowed frame classes based on STA auth/assoc state; 1479 * IEEE 802.11, Chap 5.5. 1480 * 1481 * mac80211 filters only based on association state, i.e. it drops 1482 * Class 3 frames from not associated stations. hostapd sends 1483 * deauth/disassoc frames when needed. In addition, hostapd is 1484 * responsible for filtering on both auth and assoc states. 1485 */ 1486 1487 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1488 return ieee80211_rx_mesh_check(rx); 1489 1490 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1491 ieee80211_is_pspoll(hdr->frame_control)) && 1492 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1493 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1496 /* 1497 * accept port control frames from the AP even when it's not 1498 * yet marked ASSOC to prevent a race where we don't set the 1499 * assoc bit quickly enough before it sends the first frame 1500 */ 1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1502 ieee80211_is_data_present(hdr->frame_control)) { 1503 unsigned int hdrlen; 1504 __be16 ethertype; 1505 1506 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1507 1508 if (rx->skb->len < hdrlen + 8) 1509 return RX_DROP_MONITOR; 1510 1511 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1512 if (ethertype == rx->sdata->control_port_protocol) 1513 return RX_CONTINUE; 1514 } 1515 1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1517 cfg80211_rx_spurious_frame(rx->sdata->dev, 1518 hdr->addr2, 1519 GFP_ATOMIC)) 1520 return RX_DROP_UNUSABLE; 1521 1522 return RX_DROP_MONITOR; 1523 } 1524 1525 return RX_CONTINUE; 1526 } 1527 1528 1529 static ieee80211_rx_result debug_noinline 1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1531 { 1532 struct ieee80211_local *local; 1533 struct ieee80211_hdr *hdr; 1534 struct sk_buff *skb; 1535 1536 local = rx->local; 1537 skb = rx->skb; 1538 hdr = (struct ieee80211_hdr *) skb->data; 1539 1540 if (!local->pspolling) 1541 return RX_CONTINUE; 1542 1543 if (!ieee80211_has_fromds(hdr->frame_control)) 1544 /* this is not from AP */ 1545 return RX_CONTINUE; 1546 1547 if (!ieee80211_is_data(hdr->frame_control)) 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_has_moredata(hdr->frame_control)) { 1551 /* AP has no more frames buffered for us */ 1552 local->pspolling = false; 1553 return RX_CONTINUE; 1554 } 1555 1556 /* more data bit is set, let's request a new frame from the AP */ 1557 ieee80211_send_pspoll(local, rx->sdata); 1558 1559 return RX_CONTINUE; 1560 } 1561 1562 static void sta_ps_start(struct sta_info *sta) 1563 { 1564 struct ieee80211_sub_if_data *sdata = sta->sdata; 1565 struct ieee80211_local *local = sdata->local; 1566 struct ps_data *ps; 1567 int tid; 1568 1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1571 ps = &sdata->bss->ps; 1572 else 1573 return; 1574 1575 atomic_inc(&ps->num_sta_ps); 1576 set_sta_flag(sta, WLAN_STA_PS_STA); 1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1578 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1580 sta->sta.addr, sta->sta.aid); 1581 1582 ieee80211_clear_fast_xmit(sta); 1583 1584 if (!sta->sta.txq[0]) 1585 return; 1586 1587 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1588 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1589 struct txq_info *txqi = to_txq_info(txq); 1590 1591 spin_lock(&local->active_txq_lock[txq->ac]); 1592 if (!list_empty(&txqi->schedule_order)) 1593 list_del_init(&txqi->schedule_order); 1594 spin_unlock(&local->active_txq_lock[txq->ac]); 1595 1596 if (txq_has_queue(txq)) 1597 set_bit(tid, &sta->txq_buffered_tids); 1598 else 1599 clear_bit(tid, &sta->txq_buffered_tids); 1600 } 1601 } 1602 1603 static void sta_ps_end(struct sta_info *sta) 1604 { 1605 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1606 sta->sta.addr, sta->sta.aid); 1607 1608 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1609 /* 1610 * Clear the flag only if the other one is still set 1611 * so that the TX path won't start TX'ing new frames 1612 * directly ... In the case that the driver flag isn't 1613 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1614 */ 1615 clear_sta_flag(sta, WLAN_STA_PS_STA); 1616 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1617 sta->sta.addr, sta->sta.aid); 1618 return; 1619 } 1620 1621 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1622 clear_sta_flag(sta, WLAN_STA_PS_STA); 1623 ieee80211_sta_ps_deliver_wakeup(sta); 1624 } 1625 1626 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1627 { 1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1629 bool in_ps; 1630 1631 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1632 1633 /* Don't let the same PS state be set twice */ 1634 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1635 if ((start && in_ps) || (!start && !in_ps)) 1636 return -EINVAL; 1637 1638 if (start) 1639 sta_ps_start(sta); 1640 else 1641 sta_ps_end(sta); 1642 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1646 1647 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1648 { 1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1650 1651 if (test_sta_flag(sta, WLAN_STA_SP)) 1652 return; 1653 1654 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1655 ieee80211_sta_ps_deliver_poll_response(sta); 1656 else 1657 set_sta_flag(sta, WLAN_STA_PSPOLL); 1658 } 1659 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1660 1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1662 { 1663 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1664 int ac = ieee80211_ac_from_tid(tid); 1665 1666 /* 1667 * If this AC is not trigger-enabled do nothing unless the 1668 * driver is calling us after it already checked. 1669 * 1670 * NB: This could/should check a separate bitmap of trigger- 1671 * enabled queues, but for now we only implement uAPSD w/o 1672 * TSPEC changes to the ACs, so they're always the same. 1673 */ 1674 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1675 tid != IEEE80211_NUM_TIDS) 1676 return; 1677 1678 /* if we are in a service period, do nothing */ 1679 if (test_sta_flag(sta, WLAN_STA_SP)) 1680 return; 1681 1682 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1683 ieee80211_sta_ps_deliver_uapsd(sta); 1684 else 1685 set_sta_flag(sta, WLAN_STA_UAPSD); 1686 } 1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1688 1689 static ieee80211_rx_result debug_noinline 1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1691 { 1692 struct ieee80211_sub_if_data *sdata = rx->sdata; 1693 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1695 1696 if (!rx->sta) 1697 return RX_CONTINUE; 1698 1699 if (sdata->vif.type != NL80211_IFTYPE_AP && 1700 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1701 return RX_CONTINUE; 1702 1703 /* 1704 * The device handles station powersave, so don't do anything about 1705 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1706 * it to mac80211 since they're handled.) 1707 */ 1708 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1709 return RX_CONTINUE; 1710 1711 /* 1712 * Don't do anything if the station isn't already asleep. In 1713 * the uAPSD case, the station will probably be marked asleep, 1714 * in the PS-Poll case the station must be confused ... 1715 */ 1716 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1717 return RX_CONTINUE; 1718 1719 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1720 ieee80211_sta_pspoll(&rx->sta->sta); 1721 1722 /* Free PS Poll skb here instead of returning RX_DROP that would 1723 * count as an dropped frame. */ 1724 dev_kfree_skb(rx->skb); 1725 1726 return RX_QUEUED; 1727 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1728 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1729 ieee80211_has_pm(hdr->frame_control) && 1730 (ieee80211_is_data_qos(hdr->frame_control) || 1731 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1732 u8 tid = ieee80211_get_tid(hdr); 1733 1734 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1735 } 1736 1737 return RX_CONTINUE; 1738 } 1739 1740 static ieee80211_rx_result debug_noinline 1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1742 { 1743 struct sta_info *sta = rx->sta; 1744 struct sk_buff *skb = rx->skb; 1745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1747 int i; 1748 1749 if (!sta) 1750 return RX_CONTINUE; 1751 1752 /* 1753 * Update last_rx only for IBSS packets which are for the current 1754 * BSSID and for station already AUTHORIZED to avoid keeping the 1755 * current IBSS network alive in cases where other STAs start 1756 * using different BSSID. This will also give the station another 1757 * chance to restart the authentication/authorization in case 1758 * something went wrong the first time. 1759 */ 1760 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1761 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1762 NL80211_IFTYPE_ADHOC); 1763 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1764 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1765 sta->rx_stats.last_rx = jiffies; 1766 if (ieee80211_is_data(hdr->frame_control) && 1767 !is_multicast_ether_addr(hdr->addr1)) 1768 sta->rx_stats.last_rate = 1769 sta_stats_encode_rate(status); 1770 } 1771 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1772 sta->rx_stats.last_rx = jiffies; 1773 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1774 /* 1775 * Mesh beacons will update last_rx when if they are found to 1776 * match the current local configuration when processed. 1777 */ 1778 sta->rx_stats.last_rx = jiffies; 1779 if (ieee80211_is_data(hdr->frame_control)) 1780 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1781 } 1782 1783 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1784 ieee80211_sta_rx_notify(rx->sdata, hdr); 1785 1786 sta->rx_stats.fragments++; 1787 1788 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1789 sta->rx_stats.bytes += rx->skb->len; 1790 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1791 1792 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1793 sta->rx_stats.last_signal = status->signal; 1794 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1795 } 1796 1797 if (status->chains) { 1798 sta->rx_stats.chains = status->chains; 1799 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1800 int signal = status->chain_signal[i]; 1801 1802 if (!(status->chains & BIT(i))) 1803 continue; 1804 1805 sta->rx_stats.chain_signal_last[i] = signal; 1806 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1807 -signal); 1808 } 1809 } 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_nullfunc(hdr->frame_control) || 1842 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1843 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1844 1845 /* 1846 * If we receive a 4-addr nullfunc frame from a STA 1847 * that was not moved to a 4-addr STA vlan yet send 1848 * the event to userspace and for older hostapd drop 1849 * the frame to the monitor interface. 1850 */ 1851 if (ieee80211_has_a4(hdr->frame_control) && 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1853 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1854 !rx->sdata->u.vlan.sta))) { 1855 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1856 cfg80211_rx_unexpected_4addr_frame( 1857 rx->sdata->dev, sta->sta.addr, 1858 GFP_ATOMIC); 1859 return RX_DROP_MONITOR; 1860 } 1861 /* 1862 * Update counter and free packet here to avoid 1863 * counting this as a dropped packed. 1864 */ 1865 sta->rx_stats.packets++; 1866 dev_kfree_skb(rx->skb); 1867 return RX_QUEUED; 1868 } 1869 1870 return RX_CONTINUE; 1871 } /* ieee80211_rx_h_sta_process */ 1872 1873 static ieee80211_rx_result debug_noinline 1874 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1875 { 1876 struct sk_buff *skb = rx->skb; 1877 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1878 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1879 int keyidx; 1880 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1881 struct ieee80211_key *sta_ptk = NULL; 1882 struct ieee80211_key *ptk_idx = NULL; 1883 int mmie_keyidx = -1; 1884 __le16 fc; 1885 const struct ieee80211_cipher_scheme *cs = NULL; 1886 1887 /* 1888 * Key selection 101 1889 * 1890 * There are four types of keys: 1891 * - GTK (group keys) 1892 * - IGTK (group keys for management frames) 1893 * - PTK (pairwise keys) 1894 * - STK (station-to-station pairwise keys) 1895 * 1896 * When selecting a key, we have to distinguish between multicast 1897 * (including broadcast) and unicast frames, the latter can only 1898 * use PTKs and STKs while the former always use GTKs and IGTKs. 1899 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1900 * unicast frames can also use key indices like GTKs. Hence, if we 1901 * don't have a PTK/STK we check the key index for a WEP key. 1902 * 1903 * Note that in a regular BSS, multicast frames are sent by the 1904 * AP only, associated stations unicast the frame to the AP first 1905 * which then multicasts it on their behalf. 1906 * 1907 * There is also a slight problem in IBSS mode: GTKs are negotiated 1908 * with each station, that is something we don't currently handle. 1909 * The spec seems to expect that one negotiates the same key with 1910 * every station but there's no such requirement; VLANs could be 1911 * possible. 1912 */ 1913 1914 /* start without a key */ 1915 rx->key = NULL; 1916 fc = hdr->frame_control; 1917 1918 if (rx->sta) { 1919 int keyid = rx->sta->ptk_idx; 1920 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1921 1922 if (ieee80211_has_protected(fc)) { 1923 cs = rx->sta->cipher_scheme; 1924 keyid = ieee80211_get_keyid(rx->skb, cs); 1925 1926 if (unlikely(keyid < 0)) 1927 return RX_DROP_UNUSABLE; 1928 1929 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1930 } 1931 } 1932 1933 if (!ieee80211_has_protected(fc)) 1934 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1935 1936 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1937 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1938 if ((status->flag & RX_FLAG_DECRYPTED) && 1939 (status->flag & RX_FLAG_IV_STRIPPED)) 1940 return RX_CONTINUE; 1941 /* Skip decryption if the frame is not protected. */ 1942 if (!ieee80211_has_protected(fc)) 1943 return RX_CONTINUE; 1944 } else if (mmie_keyidx >= 0) { 1945 /* Broadcast/multicast robust management frame / BIP */ 1946 if ((status->flag & RX_FLAG_DECRYPTED) && 1947 (status->flag & RX_FLAG_IV_STRIPPED)) 1948 return RX_CONTINUE; 1949 1950 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1951 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1952 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1953 if (rx->sta) { 1954 if (ieee80211_is_group_privacy_action(skb) && 1955 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1956 return RX_DROP_MONITOR; 1957 1958 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1959 } 1960 if (!rx->key) 1961 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1962 } else if (!ieee80211_has_protected(fc)) { 1963 /* 1964 * The frame was not protected, so skip decryption. However, we 1965 * need to set rx->key if there is a key that could have been 1966 * used so that the frame may be dropped if encryption would 1967 * have been expected. 1968 */ 1969 struct ieee80211_key *key = NULL; 1970 struct ieee80211_sub_if_data *sdata = rx->sdata; 1971 int i; 1972 1973 if (ieee80211_is_mgmt(fc) && 1974 is_multicast_ether_addr(hdr->addr1) && 1975 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1976 rx->key = key; 1977 else { 1978 if (rx->sta) { 1979 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1980 key = rcu_dereference(rx->sta->gtk[i]); 1981 if (key) 1982 break; 1983 } 1984 } 1985 if (!key) { 1986 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1987 key = rcu_dereference(sdata->keys[i]); 1988 if (key) 1989 break; 1990 } 1991 } 1992 if (key) 1993 rx->key = key; 1994 } 1995 return RX_CONTINUE; 1996 } else { 1997 /* 1998 * The device doesn't give us the IV so we won't be 1999 * able to look up the key. That's ok though, we 2000 * don't need to decrypt the frame, we just won't 2001 * be able to keep statistics accurate. 2002 * Except for key threshold notifications, should 2003 * we somehow allow the driver to tell us which key 2004 * the hardware used if this flag is set? 2005 */ 2006 if ((status->flag & RX_FLAG_DECRYPTED) && 2007 (status->flag & RX_FLAG_IV_STRIPPED)) 2008 return RX_CONTINUE; 2009 2010 keyidx = ieee80211_get_keyid(rx->skb, cs); 2011 2012 if (unlikely(keyidx < 0)) 2013 return RX_DROP_UNUSABLE; 2014 2015 /* check per-station GTK first, if multicast packet */ 2016 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2017 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2018 2019 /* if not found, try default key */ 2020 if (!rx->key) { 2021 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2022 2023 /* 2024 * RSNA-protected unicast frames should always be 2025 * sent with pairwise or station-to-station keys, 2026 * but for WEP we allow using a key index as well. 2027 */ 2028 if (rx->key && 2029 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2030 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2031 !is_multicast_ether_addr(hdr->addr1)) 2032 rx->key = NULL; 2033 } 2034 } 2035 2036 if (rx->key) { 2037 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2038 return RX_DROP_MONITOR; 2039 2040 /* TODO: add threshold stuff again */ 2041 } else { 2042 return RX_DROP_MONITOR; 2043 } 2044 2045 switch (rx->key->conf.cipher) { 2046 case WLAN_CIPHER_SUITE_WEP40: 2047 case WLAN_CIPHER_SUITE_WEP104: 2048 result = ieee80211_crypto_wep_decrypt(rx); 2049 break; 2050 case WLAN_CIPHER_SUITE_TKIP: 2051 result = ieee80211_crypto_tkip_decrypt(rx); 2052 break; 2053 case WLAN_CIPHER_SUITE_CCMP: 2054 result = ieee80211_crypto_ccmp_decrypt( 2055 rx, IEEE80211_CCMP_MIC_LEN); 2056 break; 2057 case WLAN_CIPHER_SUITE_CCMP_256: 2058 result = ieee80211_crypto_ccmp_decrypt( 2059 rx, IEEE80211_CCMP_256_MIC_LEN); 2060 break; 2061 case WLAN_CIPHER_SUITE_AES_CMAC: 2062 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2063 break; 2064 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2065 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2066 break; 2067 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2068 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2069 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2070 break; 2071 case WLAN_CIPHER_SUITE_GCMP: 2072 case WLAN_CIPHER_SUITE_GCMP_256: 2073 result = ieee80211_crypto_gcmp_decrypt(rx); 2074 break; 2075 default: 2076 result = ieee80211_crypto_hw_decrypt(rx); 2077 } 2078 2079 /* the hdr variable is invalid after the decrypt handlers */ 2080 2081 /* either the frame has been decrypted or will be dropped */ 2082 status->flag |= RX_FLAG_DECRYPTED; 2083 2084 return result; 2085 } 2086 2087 static inline struct ieee80211_fragment_entry * 2088 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2089 unsigned int frag, unsigned int seq, int rx_queue, 2090 struct sk_buff **skb) 2091 { 2092 struct ieee80211_fragment_entry *entry; 2093 2094 entry = &sdata->fragments[sdata->fragment_next++]; 2095 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2096 sdata->fragment_next = 0; 2097 2098 if (!skb_queue_empty(&entry->skb_list)) 2099 __skb_queue_purge(&entry->skb_list); 2100 2101 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2102 *skb = NULL; 2103 entry->first_frag_time = jiffies; 2104 entry->seq = seq; 2105 entry->rx_queue = rx_queue; 2106 entry->last_frag = frag; 2107 entry->check_sequential_pn = false; 2108 entry->extra_len = 0; 2109 2110 return entry; 2111 } 2112 2113 static inline struct ieee80211_fragment_entry * 2114 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2115 unsigned int frag, unsigned int seq, 2116 int rx_queue, struct ieee80211_hdr *hdr) 2117 { 2118 struct ieee80211_fragment_entry *entry; 2119 int i, idx; 2120 2121 idx = sdata->fragment_next; 2122 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2123 struct ieee80211_hdr *f_hdr; 2124 struct sk_buff *f_skb; 2125 2126 idx--; 2127 if (idx < 0) 2128 idx = IEEE80211_FRAGMENT_MAX - 1; 2129 2130 entry = &sdata->fragments[idx]; 2131 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2132 entry->rx_queue != rx_queue || 2133 entry->last_frag + 1 != frag) 2134 continue; 2135 2136 f_skb = __skb_peek(&entry->skb_list); 2137 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2138 2139 /* 2140 * Check ftype and addresses are equal, else check next fragment 2141 */ 2142 if (((hdr->frame_control ^ f_hdr->frame_control) & 2143 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2144 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2145 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2146 continue; 2147 2148 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2149 __skb_queue_purge(&entry->skb_list); 2150 continue; 2151 } 2152 return entry; 2153 } 2154 2155 return NULL; 2156 } 2157 2158 static ieee80211_rx_result debug_noinline 2159 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2160 { 2161 struct ieee80211_hdr *hdr; 2162 u16 sc; 2163 __le16 fc; 2164 unsigned int frag, seq; 2165 struct ieee80211_fragment_entry *entry; 2166 struct sk_buff *skb; 2167 2168 hdr = (struct ieee80211_hdr *)rx->skb->data; 2169 fc = hdr->frame_control; 2170 2171 if (ieee80211_is_ctl(fc)) 2172 return RX_CONTINUE; 2173 2174 sc = le16_to_cpu(hdr->seq_ctrl); 2175 frag = sc & IEEE80211_SCTL_FRAG; 2176 2177 if (is_multicast_ether_addr(hdr->addr1)) { 2178 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2179 goto out_no_led; 2180 } 2181 2182 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2183 goto out; 2184 2185 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2186 2187 if (skb_linearize(rx->skb)) 2188 return RX_DROP_UNUSABLE; 2189 2190 /* 2191 * skb_linearize() might change the skb->data and 2192 * previously cached variables (in this case, hdr) need to 2193 * be refreshed with the new data. 2194 */ 2195 hdr = (struct ieee80211_hdr *)rx->skb->data; 2196 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2197 2198 if (frag == 0) { 2199 /* This is the first fragment of a new frame. */ 2200 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2201 rx->seqno_idx, &(rx->skb)); 2202 if (rx->key && 2203 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2204 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2205 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2206 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2207 ieee80211_has_protected(fc)) { 2208 int queue = rx->security_idx; 2209 2210 /* Store CCMP/GCMP PN so that we can verify that the 2211 * next fragment has a sequential PN value. 2212 */ 2213 entry->check_sequential_pn = true; 2214 memcpy(entry->last_pn, 2215 rx->key->u.ccmp.rx_pn[queue], 2216 IEEE80211_CCMP_PN_LEN); 2217 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2218 u.ccmp.rx_pn) != 2219 offsetof(struct ieee80211_key, 2220 u.gcmp.rx_pn)); 2221 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2222 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2223 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2224 IEEE80211_GCMP_PN_LEN); 2225 } 2226 return RX_QUEUED; 2227 } 2228 2229 /* This is a fragment for a frame that should already be pending in 2230 * fragment cache. Add this fragment to the end of the pending entry. 2231 */ 2232 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2233 rx->seqno_idx, hdr); 2234 if (!entry) { 2235 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2236 return RX_DROP_MONITOR; 2237 } 2238 2239 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2240 * MPDU PN values are not incrementing in steps of 1." 2241 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2242 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2243 */ 2244 if (entry->check_sequential_pn) { 2245 int i; 2246 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2247 int queue; 2248 2249 if (!rx->key || 2250 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2251 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2252 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2253 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2254 return RX_DROP_UNUSABLE; 2255 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2256 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2257 pn[i]++; 2258 if (pn[i]) 2259 break; 2260 } 2261 queue = rx->security_idx; 2262 rpn = rx->key->u.ccmp.rx_pn[queue]; 2263 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2264 return RX_DROP_UNUSABLE; 2265 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2266 } 2267 2268 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2269 __skb_queue_tail(&entry->skb_list, rx->skb); 2270 entry->last_frag = frag; 2271 entry->extra_len += rx->skb->len; 2272 if (ieee80211_has_morefrags(fc)) { 2273 rx->skb = NULL; 2274 return RX_QUEUED; 2275 } 2276 2277 rx->skb = __skb_dequeue(&entry->skb_list); 2278 if (skb_tailroom(rx->skb) < entry->extra_len) { 2279 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2280 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2281 GFP_ATOMIC))) { 2282 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2283 __skb_queue_purge(&entry->skb_list); 2284 return RX_DROP_UNUSABLE; 2285 } 2286 } 2287 while ((skb = __skb_dequeue(&entry->skb_list))) { 2288 skb_put_data(rx->skb, skb->data, skb->len); 2289 dev_kfree_skb(skb); 2290 } 2291 2292 out: 2293 ieee80211_led_rx(rx->local); 2294 out_no_led: 2295 if (rx->sta) 2296 rx->sta->rx_stats.packets++; 2297 return RX_CONTINUE; 2298 } 2299 2300 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2301 { 2302 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2303 return -EACCES; 2304 2305 return 0; 2306 } 2307 2308 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2309 { 2310 struct sk_buff *skb = rx->skb; 2311 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2312 2313 /* 2314 * Pass through unencrypted frames if the hardware has 2315 * decrypted them already. 2316 */ 2317 if (status->flag & RX_FLAG_DECRYPTED) 2318 return 0; 2319 2320 /* Drop unencrypted frames if key is set. */ 2321 if (unlikely(!ieee80211_has_protected(fc) && 2322 !ieee80211_is_nullfunc(fc) && 2323 ieee80211_is_data(fc) && rx->key)) 2324 return -EACCES; 2325 2326 return 0; 2327 } 2328 2329 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2330 { 2331 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2332 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2333 __le16 fc = hdr->frame_control; 2334 2335 /* 2336 * Pass through unencrypted frames if the hardware has 2337 * decrypted them already. 2338 */ 2339 if (status->flag & RX_FLAG_DECRYPTED) 2340 return 0; 2341 2342 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2343 if (unlikely(!ieee80211_has_protected(fc) && 2344 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2345 rx->key)) { 2346 if (ieee80211_is_deauth(fc) || 2347 ieee80211_is_disassoc(fc)) 2348 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2349 rx->skb->data, 2350 rx->skb->len); 2351 return -EACCES; 2352 } 2353 /* BIP does not use Protected field, so need to check MMIE */ 2354 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2355 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2356 if (ieee80211_is_deauth(fc) || 2357 ieee80211_is_disassoc(fc)) 2358 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2359 rx->skb->data, 2360 rx->skb->len); 2361 return -EACCES; 2362 } 2363 /* 2364 * When using MFP, Action frames are not allowed prior to 2365 * having configured keys. 2366 */ 2367 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2368 ieee80211_is_robust_mgmt_frame(rx->skb))) 2369 return -EACCES; 2370 } 2371 2372 return 0; 2373 } 2374 2375 static int 2376 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2377 { 2378 struct ieee80211_sub_if_data *sdata = rx->sdata; 2379 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2380 bool check_port_control = false; 2381 struct ethhdr *ehdr; 2382 int ret; 2383 2384 *port_control = false; 2385 if (ieee80211_has_a4(hdr->frame_control) && 2386 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2387 return -1; 2388 2389 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2390 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2391 2392 if (!sdata->u.mgd.use_4addr) 2393 return -1; 2394 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2395 check_port_control = true; 2396 } 2397 2398 if (is_multicast_ether_addr(hdr->addr1) && 2399 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2400 return -1; 2401 2402 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2403 if (ret < 0) 2404 return ret; 2405 2406 ehdr = (struct ethhdr *) rx->skb->data; 2407 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2408 *port_control = true; 2409 else if (check_port_control) 2410 return -1; 2411 2412 return 0; 2413 } 2414 2415 /* 2416 * requires that rx->skb is a frame with ethernet header 2417 */ 2418 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2419 { 2420 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2421 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2422 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2423 2424 /* 2425 * Allow EAPOL frames to us/the PAE group address regardless 2426 * of whether the frame was encrypted or not. 2427 */ 2428 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2429 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2430 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2431 return true; 2432 2433 if (ieee80211_802_1x_port_control(rx) || 2434 ieee80211_drop_unencrypted(rx, fc)) 2435 return false; 2436 2437 return true; 2438 } 2439 2440 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2441 struct ieee80211_rx_data *rx) 2442 { 2443 struct ieee80211_sub_if_data *sdata = rx->sdata; 2444 struct net_device *dev = sdata->dev; 2445 2446 if (unlikely((skb->protocol == sdata->control_port_protocol || 2447 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2448 sdata->control_port_over_nl80211)) { 2449 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2450 bool noencrypt = status->flag & RX_FLAG_DECRYPTED; 2451 2452 cfg80211_rx_control_port(dev, skb, noencrypt); 2453 dev_kfree_skb(skb); 2454 } else { 2455 /* deliver to local stack */ 2456 if (rx->napi) 2457 napi_gro_receive(rx->napi, skb); 2458 else 2459 netif_receive_skb(skb); 2460 } 2461 } 2462 2463 /* 2464 * requires that rx->skb is a frame with ethernet header 2465 */ 2466 static void 2467 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2468 { 2469 struct ieee80211_sub_if_data *sdata = rx->sdata; 2470 struct net_device *dev = sdata->dev; 2471 struct sk_buff *skb, *xmit_skb; 2472 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2473 struct sta_info *dsta; 2474 2475 skb = rx->skb; 2476 xmit_skb = NULL; 2477 2478 ieee80211_rx_stats(dev, skb->len); 2479 2480 if (rx->sta) { 2481 /* The seqno index has the same property as needed 2482 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2483 * for non-QoS-data frames. Here we know it's a data 2484 * frame, so count MSDUs. 2485 */ 2486 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2487 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2488 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2489 } 2490 2491 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2492 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2493 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2494 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2495 if (is_multicast_ether_addr(ehdr->h_dest) && 2496 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2497 /* 2498 * send multicast frames both to higher layers in 2499 * local net stack and back to the wireless medium 2500 */ 2501 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2502 if (!xmit_skb) 2503 net_info_ratelimited("%s: failed to clone multicast frame\n", 2504 dev->name); 2505 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2506 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2507 dsta = sta_info_get(sdata, ehdr->h_dest); 2508 if (dsta) { 2509 /* 2510 * The destination station is associated to 2511 * this AP (in this VLAN), so send the frame 2512 * directly to it and do not pass it to local 2513 * net stack. 2514 */ 2515 xmit_skb = skb; 2516 skb = NULL; 2517 } 2518 } 2519 } 2520 2521 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2522 if (skb) { 2523 /* 'align' will only take the values 0 or 2 here since all 2524 * frames are required to be aligned to 2-byte boundaries 2525 * when being passed to mac80211; the code here works just 2526 * as well if that isn't true, but mac80211 assumes it can 2527 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2528 */ 2529 int align; 2530 2531 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2532 if (align) { 2533 if (WARN_ON(skb_headroom(skb) < 3)) { 2534 dev_kfree_skb(skb); 2535 skb = NULL; 2536 } else { 2537 u8 *data = skb->data; 2538 size_t len = skb_headlen(skb); 2539 skb->data -= align; 2540 memmove(skb->data, data, len); 2541 skb_set_tail_pointer(skb, len); 2542 } 2543 } 2544 } 2545 #endif 2546 2547 if (skb) { 2548 skb->protocol = eth_type_trans(skb, dev); 2549 memset(skb->cb, 0, sizeof(skb->cb)); 2550 2551 ieee80211_deliver_skb_to_local_stack(skb, rx); 2552 } 2553 2554 if (xmit_skb) { 2555 /* 2556 * Send to wireless media and increase priority by 256 to 2557 * keep the received priority instead of reclassifying 2558 * the frame (see cfg80211_classify8021d). 2559 */ 2560 xmit_skb->priority += 256; 2561 xmit_skb->protocol = htons(ETH_P_802_3); 2562 skb_reset_network_header(xmit_skb); 2563 skb_reset_mac_header(xmit_skb); 2564 dev_queue_xmit(xmit_skb); 2565 } 2566 } 2567 2568 static ieee80211_rx_result debug_noinline 2569 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2570 { 2571 struct net_device *dev = rx->sdata->dev; 2572 struct sk_buff *skb = rx->skb; 2573 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2574 __le16 fc = hdr->frame_control; 2575 struct sk_buff_head frame_list; 2576 struct ethhdr ethhdr; 2577 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2578 2579 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2580 check_da = NULL; 2581 check_sa = NULL; 2582 } else switch (rx->sdata->vif.type) { 2583 case NL80211_IFTYPE_AP: 2584 case NL80211_IFTYPE_AP_VLAN: 2585 check_da = NULL; 2586 break; 2587 case NL80211_IFTYPE_STATION: 2588 if (!rx->sta || 2589 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2590 check_sa = NULL; 2591 break; 2592 case NL80211_IFTYPE_MESH_POINT: 2593 check_sa = NULL; 2594 break; 2595 default: 2596 break; 2597 } 2598 2599 skb->dev = dev; 2600 __skb_queue_head_init(&frame_list); 2601 2602 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2603 rx->sdata->vif.addr, 2604 rx->sdata->vif.type, 2605 data_offset)) 2606 return RX_DROP_UNUSABLE; 2607 2608 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2609 rx->sdata->vif.type, 2610 rx->local->hw.extra_tx_headroom, 2611 check_da, check_sa); 2612 2613 while (!skb_queue_empty(&frame_list)) { 2614 rx->skb = __skb_dequeue(&frame_list); 2615 2616 if (!ieee80211_frame_allowed(rx, fc)) { 2617 dev_kfree_skb(rx->skb); 2618 continue; 2619 } 2620 2621 ieee80211_deliver_skb(rx); 2622 } 2623 2624 return RX_QUEUED; 2625 } 2626 2627 static ieee80211_rx_result debug_noinline 2628 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2629 { 2630 struct sk_buff *skb = rx->skb; 2631 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2633 __le16 fc = hdr->frame_control; 2634 2635 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2636 return RX_CONTINUE; 2637 2638 if (unlikely(!ieee80211_is_data(fc))) 2639 return RX_CONTINUE; 2640 2641 if (unlikely(!ieee80211_is_data_present(fc))) 2642 return RX_DROP_MONITOR; 2643 2644 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2645 switch (rx->sdata->vif.type) { 2646 case NL80211_IFTYPE_AP_VLAN: 2647 if (!rx->sdata->u.vlan.sta) 2648 return RX_DROP_UNUSABLE; 2649 break; 2650 case NL80211_IFTYPE_STATION: 2651 if (!rx->sdata->u.mgd.use_4addr) 2652 return RX_DROP_UNUSABLE; 2653 break; 2654 default: 2655 return RX_DROP_UNUSABLE; 2656 } 2657 } 2658 2659 if (is_multicast_ether_addr(hdr->addr1)) 2660 return RX_DROP_UNUSABLE; 2661 2662 return __ieee80211_rx_h_amsdu(rx, 0); 2663 } 2664 2665 #ifdef CONFIG_MAC80211_MESH 2666 static ieee80211_rx_result 2667 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2668 { 2669 struct ieee80211_hdr *fwd_hdr, *hdr; 2670 struct ieee80211_tx_info *info; 2671 struct ieee80211s_hdr *mesh_hdr; 2672 struct sk_buff *skb = rx->skb, *fwd_skb; 2673 struct ieee80211_local *local = rx->local; 2674 struct ieee80211_sub_if_data *sdata = rx->sdata; 2675 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2676 u16 ac, q, hdrlen; 2677 int tailroom = 0; 2678 2679 hdr = (struct ieee80211_hdr *) skb->data; 2680 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2681 2682 /* make sure fixed part of mesh header is there, also checks skb len */ 2683 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2684 return RX_DROP_MONITOR; 2685 2686 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2687 2688 /* make sure full mesh header is there, also checks skb len */ 2689 if (!pskb_may_pull(rx->skb, 2690 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2691 return RX_DROP_MONITOR; 2692 2693 /* reload pointers */ 2694 hdr = (struct ieee80211_hdr *) skb->data; 2695 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2696 2697 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2698 return RX_DROP_MONITOR; 2699 2700 /* frame is in RMC, don't forward */ 2701 if (ieee80211_is_data(hdr->frame_control) && 2702 is_multicast_ether_addr(hdr->addr1) && 2703 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2704 return RX_DROP_MONITOR; 2705 2706 if (!ieee80211_is_data(hdr->frame_control)) 2707 return RX_CONTINUE; 2708 2709 if (!mesh_hdr->ttl) 2710 return RX_DROP_MONITOR; 2711 2712 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2713 struct mesh_path *mppath; 2714 char *proxied_addr; 2715 char *mpp_addr; 2716 2717 if (is_multicast_ether_addr(hdr->addr1)) { 2718 mpp_addr = hdr->addr3; 2719 proxied_addr = mesh_hdr->eaddr1; 2720 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2721 MESH_FLAGS_AE_A5_A6) { 2722 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2723 mpp_addr = hdr->addr4; 2724 proxied_addr = mesh_hdr->eaddr2; 2725 } else { 2726 return RX_DROP_MONITOR; 2727 } 2728 2729 rcu_read_lock(); 2730 mppath = mpp_path_lookup(sdata, proxied_addr); 2731 if (!mppath) { 2732 mpp_path_add(sdata, proxied_addr, mpp_addr); 2733 } else { 2734 spin_lock_bh(&mppath->state_lock); 2735 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2736 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2737 mppath->exp_time = jiffies; 2738 spin_unlock_bh(&mppath->state_lock); 2739 } 2740 rcu_read_unlock(); 2741 } 2742 2743 /* Frame has reached destination. Don't forward */ 2744 if (!is_multicast_ether_addr(hdr->addr1) && 2745 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2746 return RX_CONTINUE; 2747 2748 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2749 q = sdata->vif.hw_queue[ac]; 2750 if (ieee80211_queue_stopped(&local->hw, q)) { 2751 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2752 return RX_DROP_MONITOR; 2753 } 2754 skb_set_queue_mapping(skb, q); 2755 2756 if (!--mesh_hdr->ttl) { 2757 if (!is_multicast_ether_addr(hdr->addr1)) 2758 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2759 dropped_frames_ttl); 2760 goto out; 2761 } 2762 2763 if (!ifmsh->mshcfg.dot11MeshForwarding) 2764 goto out; 2765 2766 if (sdata->crypto_tx_tailroom_needed_cnt) 2767 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2768 2769 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2770 sdata->encrypt_headroom, 2771 tailroom, GFP_ATOMIC); 2772 if (!fwd_skb) 2773 goto out; 2774 2775 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2776 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2777 info = IEEE80211_SKB_CB(fwd_skb); 2778 memset(info, 0, sizeof(*info)); 2779 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2780 info->control.vif = &rx->sdata->vif; 2781 info->control.jiffies = jiffies; 2782 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2783 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2784 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2785 /* update power mode indication when forwarding */ 2786 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2787 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2788 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2789 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2790 } else { 2791 /* unable to resolve next hop */ 2792 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2793 fwd_hdr->addr3, 0, 2794 WLAN_REASON_MESH_PATH_NOFORWARD, 2795 fwd_hdr->addr2); 2796 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2797 kfree_skb(fwd_skb); 2798 return RX_DROP_MONITOR; 2799 } 2800 2801 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2802 ieee80211_add_pending_skb(local, fwd_skb); 2803 out: 2804 if (is_multicast_ether_addr(hdr->addr1)) 2805 return RX_CONTINUE; 2806 return RX_DROP_MONITOR; 2807 } 2808 #endif 2809 2810 static ieee80211_rx_result debug_noinline 2811 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2812 { 2813 struct ieee80211_sub_if_data *sdata = rx->sdata; 2814 struct ieee80211_local *local = rx->local; 2815 struct net_device *dev = sdata->dev; 2816 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2817 __le16 fc = hdr->frame_control; 2818 bool port_control; 2819 int err; 2820 2821 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2822 return RX_CONTINUE; 2823 2824 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2825 return RX_DROP_MONITOR; 2826 2827 /* 2828 * Send unexpected-4addr-frame event to hostapd. For older versions, 2829 * also drop the frame to cooked monitor interfaces. 2830 */ 2831 if (ieee80211_has_a4(hdr->frame_control) && 2832 sdata->vif.type == NL80211_IFTYPE_AP) { 2833 if (rx->sta && 2834 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2835 cfg80211_rx_unexpected_4addr_frame( 2836 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2837 return RX_DROP_MONITOR; 2838 } 2839 2840 err = __ieee80211_data_to_8023(rx, &port_control); 2841 if (unlikely(err)) 2842 return RX_DROP_UNUSABLE; 2843 2844 if (!ieee80211_frame_allowed(rx, fc)) 2845 return RX_DROP_MONITOR; 2846 2847 /* directly handle TDLS channel switch requests/responses */ 2848 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2849 cpu_to_be16(ETH_P_TDLS))) { 2850 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2851 2852 if (pskb_may_pull(rx->skb, 2853 offsetof(struct ieee80211_tdls_data, u)) && 2854 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2855 tf->category == WLAN_CATEGORY_TDLS && 2856 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2857 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2858 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2859 schedule_work(&local->tdls_chsw_work); 2860 if (rx->sta) 2861 rx->sta->rx_stats.packets++; 2862 2863 return RX_QUEUED; 2864 } 2865 } 2866 2867 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2868 unlikely(port_control) && sdata->bss) { 2869 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2870 u.ap); 2871 dev = sdata->dev; 2872 rx->sdata = sdata; 2873 } 2874 2875 rx->skb->dev = dev; 2876 2877 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2878 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2879 !is_multicast_ether_addr( 2880 ((struct ethhdr *)rx->skb->data)->h_dest) && 2881 (!local->scanning && 2882 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2883 mod_timer(&local->dynamic_ps_timer, jiffies + 2884 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2885 2886 ieee80211_deliver_skb(rx); 2887 2888 return RX_QUEUED; 2889 } 2890 2891 static ieee80211_rx_result debug_noinline 2892 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2893 { 2894 struct sk_buff *skb = rx->skb; 2895 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2896 struct tid_ampdu_rx *tid_agg_rx; 2897 u16 start_seq_num; 2898 u16 tid; 2899 2900 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2901 return RX_CONTINUE; 2902 2903 if (ieee80211_is_back_req(bar->frame_control)) { 2904 struct { 2905 __le16 control, start_seq_num; 2906 } __packed bar_data; 2907 struct ieee80211_event event = { 2908 .type = BAR_RX_EVENT, 2909 }; 2910 2911 if (!rx->sta) 2912 return RX_DROP_MONITOR; 2913 2914 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2915 &bar_data, sizeof(bar_data))) 2916 return RX_DROP_MONITOR; 2917 2918 tid = le16_to_cpu(bar_data.control) >> 12; 2919 2920 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2921 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2922 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2923 WLAN_BACK_RECIPIENT, 2924 WLAN_REASON_QSTA_REQUIRE_SETUP); 2925 2926 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2927 if (!tid_agg_rx) 2928 return RX_DROP_MONITOR; 2929 2930 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2931 event.u.ba.tid = tid; 2932 event.u.ba.ssn = start_seq_num; 2933 event.u.ba.sta = &rx->sta->sta; 2934 2935 /* reset session timer */ 2936 if (tid_agg_rx->timeout) 2937 mod_timer(&tid_agg_rx->session_timer, 2938 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2939 2940 spin_lock(&tid_agg_rx->reorder_lock); 2941 /* release stored frames up to start of BAR */ 2942 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2943 start_seq_num, frames); 2944 spin_unlock(&tid_agg_rx->reorder_lock); 2945 2946 drv_event_callback(rx->local, rx->sdata, &event); 2947 2948 kfree_skb(skb); 2949 return RX_QUEUED; 2950 } 2951 2952 /* 2953 * After this point, we only want management frames, 2954 * so we can drop all remaining control frames to 2955 * cooked monitor interfaces. 2956 */ 2957 return RX_DROP_MONITOR; 2958 } 2959 2960 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2961 struct ieee80211_mgmt *mgmt, 2962 size_t len) 2963 { 2964 struct ieee80211_local *local = sdata->local; 2965 struct sk_buff *skb; 2966 struct ieee80211_mgmt *resp; 2967 2968 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2969 /* Not to own unicast address */ 2970 return; 2971 } 2972 2973 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2974 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2975 /* Not from the current AP or not associated yet. */ 2976 return; 2977 } 2978 2979 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2980 /* Too short SA Query request frame */ 2981 return; 2982 } 2983 2984 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2985 if (skb == NULL) 2986 return; 2987 2988 skb_reserve(skb, local->hw.extra_tx_headroom); 2989 resp = skb_put_zero(skb, 24); 2990 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2991 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2992 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2993 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2994 IEEE80211_STYPE_ACTION); 2995 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2996 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2997 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2998 memcpy(resp->u.action.u.sa_query.trans_id, 2999 mgmt->u.action.u.sa_query.trans_id, 3000 WLAN_SA_QUERY_TR_ID_LEN); 3001 3002 ieee80211_tx_skb(sdata, skb); 3003 } 3004 3005 static ieee80211_rx_result debug_noinline 3006 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3007 { 3008 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3009 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3010 3011 /* 3012 * From here on, look only at management frames. 3013 * Data and control frames are already handled, 3014 * and unknown (reserved) frames are useless. 3015 */ 3016 if (rx->skb->len < 24) 3017 return RX_DROP_MONITOR; 3018 3019 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3020 return RX_DROP_MONITOR; 3021 3022 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3023 ieee80211_is_beacon(mgmt->frame_control) && 3024 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3025 int sig = 0; 3026 3027 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3028 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3029 sig = status->signal; 3030 3031 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 3032 rx->skb->data, rx->skb->len, 3033 status->freq, sig); 3034 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3035 } 3036 3037 if (ieee80211_drop_unencrypted_mgmt(rx)) 3038 return RX_DROP_UNUSABLE; 3039 3040 return RX_CONTINUE; 3041 } 3042 3043 static ieee80211_rx_result debug_noinline 3044 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3045 { 3046 struct ieee80211_local *local = rx->local; 3047 struct ieee80211_sub_if_data *sdata = rx->sdata; 3048 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3049 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3050 int len = rx->skb->len; 3051 3052 if (!ieee80211_is_action(mgmt->frame_control)) 3053 return RX_CONTINUE; 3054 3055 /* drop too small frames */ 3056 if (len < IEEE80211_MIN_ACTION_SIZE) 3057 return RX_DROP_UNUSABLE; 3058 3059 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3060 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3061 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3062 return RX_DROP_UNUSABLE; 3063 3064 switch (mgmt->u.action.category) { 3065 case WLAN_CATEGORY_HT: 3066 /* reject HT action frames from stations not supporting HT */ 3067 if (!rx->sta->sta.ht_cap.ht_supported) 3068 goto invalid; 3069 3070 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3071 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3072 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3073 sdata->vif.type != NL80211_IFTYPE_AP && 3074 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3075 break; 3076 3077 /* verify action & smps_control/chanwidth are present */ 3078 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3079 goto invalid; 3080 3081 switch (mgmt->u.action.u.ht_smps.action) { 3082 case WLAN_HT_ACTION_SMPS: { 3083 struct ieee80211_supported_band *sband; 3084 enum ieee80211_smps_mode smps_mode; 3085 struct sta_opmode_info sta_opmode = {}; 3086 3087 /* convert to HT capability */ 3088 switch (mgmt->u.action.u.ht_smps.smps_control) { 3089 case WLAN_HT_SMPS_CONTROL_DISABLED: 3090 smps_mode = IEEE80211_SMPS_OFF; 3091 break; 3092 case WLAN_HT_SMPS_CONTROL_STATIC: 3093 smps_mode = IEEE80211_SMPS_STATIC; 3094 break; 3095 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3096 smps_mode = IEEE80211_SMPS_DYNAMIC; 3097 break; 3098 default: 3099 goto invalid; 3100 } 3101 3102 /* if no change do nothing */ 3103 if (rx->sta->sta.smps_mode == smps_mode) 3104 goto handled; 3105 rx->sta->sta.smps_mode = smps_mode; 3106 sta_opmode.smps_mode = 3107 ieee80211_smps_mode_to_smps_mode(smps_mode); 3108 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3109 3110 sband = rx->local->hw.wiphy->bands[status->band]; 3111 3112 rate_control_rate_update(local, sband, rx->sta, 3113 IEEE80211_RC_SMPS_CHANGED); 3114 cfg80211_sta_opmode_change_notify(sdata->dev, 3115 rx->sta->addr, 3116 &sta_opmode, 3117 GFP_ATOMIC); 3118 goto handled; 3119 } 3120 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3121 struct ieee80211_supported_band *sband; 3122 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3123 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3124 struct sta_opmode_info sta_opmode = {}; 3125 3126 /* If it doesn't support 40 MHz it can't change ... */ 3127 if (!(rx->sta->sta.ht_cap.cap & 3128 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3129 goto handled; 3130 3131 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3132 max_bw = IEEE80211_STA_RX_BW_20; 3133 else 3134 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3135 3136 /* set cur_max_bandwidth and recalc sta bw */ 3137 rx->sta->cur_max_bandwidth = max_bw; 3138 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3139 3140 if (rx->sta->sta.bandwidth == new_bw) 3141 goto handled; 3142 3143 rx->sta->sta.bandwidth = new_bw; 3144 sband = rx->local->hw.wiphy->bands[status->band]; 3145 sta_opmode.bw = 3146 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3147 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3148 3149 rate_control_rate_update(local, sband, rx->sta, 3150 IEEE80211_RC_BW_CHANGED); 3151 cfg80211_sta_opmode_change_notify(sdata->dev, 3152 rx->sta->addr, 3153 &sta_opmode, 3154 GFP_ATOMIC); 3155 goto handled; 3156 } 3157 default: 3158 goto invalid; 3159 } 3160 3161 break; 3162 case WLAN_CATEGORY_PUBLIC: 3163 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3164 goto invalid; 3165 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3166 break; 3167 if (!rx->sta) 3168 break; 3169 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3170 break; 3171 if (mgmt->u.action.u.ext_chan_switch.action_code != 3172 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3173 break; 3174 if (len < offsetof(struct ieee80211_mgmt, 3175 u.action.u.ext_chan_switch.variable)) 3176 goto invalid; 3177 goto queue; 3178 case WLAN_CATEGORY_VHT: 3179 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3180 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3181 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3182 sdata->vif.type != NL80211_IFTYPE_AP && 3183 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3184 break; 3185 3186 /* verify action code is present */ 3187 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3188 goto invalid; 3189 3190 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3191 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3192 /* verify opmode is present */ 3193 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3194 goto invalid; 3195 goto queue; 3196 } 3197 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3198 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3199 goto invalid; 3200 goto queue; 3201 } 3202 default: 3203 break; 3204 } 3205 break; 3206 case WLAN_CATEGORY_BACK: 3207 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3208 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3209 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3210 sdata->vif.type != NL80211_IFTYPE_AP && 3211 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3212 break; 3213 3214 /* verify action_code is present */ 3215 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3216 break; 3217 3218 switch (mgmt->u.action.u.addba_req.action_code) { 3219 case WLAN_ACTION_ADDBA_REQ: 3220 if (len < (IEEE80211_MIN_ACTION_SIZE + 3221 sizeof(mgmt->u.action.u.addba_req))) 3222 goto invalid; 3223 break; 3224 case WLAN_ACTION_ADDBA_RESP: 3225 if (len < (IEEE80211_MIN_ACTION_SIZE + 3226 sizeof(mgmt->u.action.u.addba_resp))) 3227 goto invalid; 3228 break; 3229 case WLAN_ACTION_DELBA: 3230 if (len < (IEEE80211_MIN_ACTION_SIZE + 3231 sizeof(mgmt->u.action.u.delba))) 3232 goto invalid; 3233 break; 3234 default: 3235 goto invalid; 3236 } 3237 3238 goto queue; 3239 case WLAN_CATEGORY_SPECTRUM_MGMT: 3240 /* verify action_code is present */ 3241 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3242 break; 3243 3244 switch (mgmt->u.action.u.measurement.action_code) { 3245 case WLAN_ACTION_SPCT_MSR_REQ: 3246 if (status->band != NL80211_BAND_5GHZ) 3247 break; 3248 3249 if (len < (IEEE80211_MIN_ACTION_SIZE + 3250 sizeof(mgmt->u.action.u.measurement))) 3251 break; 3252 3253 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3254 break; 3255 3256 ieee80211_process_measurement_req(sdata, mgmt, len); 3257 goto handled; 3258 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3259 u8 *bssid; 3260 if (len < (IEEE80211_MIN_ACTION_SIZE + 3261 sizeof(mgmt->u.action.u.chan_switch))) 3262 break; 3263 3264 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3265 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3266 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3267 break; 3268 3269 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3270 bssid = sdata->u.mgd.bssid; 3271 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3272 bssid = sdata->u.ibss.bssid; 3273 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3274 bssid = mgmt->sa; 3275 else 3276 break; 3277 3278 if (!ether_addr_equal(mgmt->bssid, bssid)) 3279 break; 3280 3281 goto queue; 3282 } 3283 } 3284 break; 3285 case WLAN_CATEGORY_SA_QUERY: 3286 if (len < (IEEE80211_MIN_ACTION_SIZE + 3287 sizeof(mgmt->u.action.u.sa_query))) 3288 break; 3289 3290 switch (mgmt->u.action.u.sa_query.action) { 3291 case WLAN_ACTION_SA_QUERY_REQUEST: 3292 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3293 break; 3294 ieee80211_process_sa_query_req(sdata, mgmt, len); 3295 goto handled; 3296 } 3297 break; 3298 case WLAN_CATEGORY_SELF_PROTECTED: 3299 if (len < (IEEE80211_MIN_ACTION_SIZE + 3300 sizeof(mgmt->u.action.u.self_prot.action_code))) 3301 break; 3302 3303 switch (mgmt->u.action.u.self_prot.action_code) { 3304 case WLAN_SP_MESH_PEERING_OPEN: 3305 case WLAN_SP_MESH_PEERING_CLOSE: 3306 case WLAN_SP_MESH_PEERING_CONFIRM: 3307 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3308 goto invalid; 3309 if (sdata->u.mesh.user_mpm) 3310 /* userspace handles this frame */ 3311 break; 3312 goto queue; 3313 case WLAN_SP_MGK_INFORM: 3314 case WLAN_SP_MGK_ACK: 3315 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3316 goto invalid; 3317 break; 3318 } 3319 break; 3320 case WLAN_CATEGORY_MESH_ACTION: 3321 if (len < (IEEE80211_MIN_ACTION_SIZE + 3322 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3323 break; 3324 3325 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3326 break; 3327 if (mesh_action_is_path_sel(mgmt) && 3328 !mesh_path_sel_is_hwmp(sdata)) 3329 break; 3330 goto queue; 3331 } 3332 3333 return RX_CONTINUE; 3334 3335 invalid: 3336 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3337 /* will return in the next handlers */ 3338 return RX_CONTINUE; 3339 3340 handled: 3341 if (rx->sta) 3342 rx->sta->rx_stats.packets++; 3343 dev_kfree_skb(rx->skb); 3344 return RX_QUEUED; 3345 3346 queue: 3347 skb_queue_tail(&sdata->skb_queue, rx->skb); 3348 ieee80211_queue_work(&local->hw, &sdata->work); 3349 if (rx->sta) 3350 rx->sta->rx_stats.packets++; 3351 return RX_QUEUED; 3352 } 3353 3354 static ieee80211_rx_result debug_noinline 3355 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3356 { 3357 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3358 int sig = 0; 3359 3360 /* skip known-bad action frames and return them in the next handler */ 3361 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3362 return RX_CONTINUE; 3363 3364 /* 3365 * Getting here means the kernel doesn't know how to handle 3366 * it, but maybe userspace does ... include returned frames 3367 * so userspace can register for those to know whether ones 3368 * it transmitted were processed or returned. 3369 */ 3370 3371 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3372 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3373 sig = status->signal; 3374 3375 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3376 rx->skb->data, rx->skb->len, 0)) { 3377 if (rx->sta) 3378 rx->sta->rx_stats.packets++; 3379 dev_kfree_skb(rx->skb); 3380 return RX_QUEUED; 3381 } 3382 3383 return RX_CONTINUE; 3384 } 3385 3386 static ieee80211_rx_result debug_noinline 3387 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3388 { 3389 struct ieee80211_local *local = rx->local; 3390 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3391 struct sk_buff *nskb; 3392 struct ieee80211_sub_if_data *sdata = rx->sdata; 3393 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3394 3395 if (!ieee80211_is_action(mgmt->frame_control)) 3396 return RX_CONTINUE; 3397 3398 /* 3399 * For AP mode, hostapd is responsible for handling any action 3400 * frames that we didn't handle, including returning unknown 3401 * ones. For all other modes we will return them to the sender, 3402 * setting the 0x80 bit in the action category, as required by 3403 * 802.11-2012 9.24.4. 3404 * Newer versions of hostapd shall also use the management frame 3405 * registration mechanisms, but older ones still use cooked 3406 * monitor interfaces so push all frames there. 3407 */ 3408 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3409 (sdata->vif.type == NL80211_IFTYPE_AP || 3410 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3411 return RX_DROP_MONITOR; 3412 3413 if (is_multicast_ether_addr(mgmt->da)) 3414 return RX_DROP_MONITOR; 3415 3416 /* do not return rejected action frames */ 3417 if (mgmt->u.action.category & 0x80) 3418 return RX_DROP_UNUSABLE; 3419 3420 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3421 GFP_ATOMIC); 3422 if (nskb) { 3423 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3424 3425 nmgmt->u.action.category |= 0x80; 3426 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3427 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3428 3429 memset(nskb->cb, 0, sizeof(nskb->cb)); 3430 3431 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3432 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3433 3434 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3435 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3436 IEEE80211_TX_CTL_NO_CCK_RATE; 3437 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3438 info->hw_queue = 3439 local->hw.offchannel_tx_hw_queue; 3440 } 3441 3442 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3443 status->band, 0); 3444 } 3445 dev_kfree_skb(rx->skb); 3446 return RX_QUEUED; 3447 } 3448 3449 static ieee80211_rx_result debug_noinline 3450 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3451 { 3452 struct ieee80211_sub_if_data *sdata = rx->sdata; 3453 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3454 __le16 stype; 3455 3456 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3457 3458 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3459 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3460 sdata->vif.type != NL80211_IFTYPE_OCB && 3461 sdata->vif.type != NL80211_IFTYPE_STATION) 3462 return RX_DROP_MONITOR; 3463 3464 switch (stype) { 3465 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3466 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3467 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3468 /* process for all: mesh, mlme, ibss */ 3469 break; 3470 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3471 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3472 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3473 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3474 if (is_multicast_ether_addr(mgmt->da) && 3475 !is_broadcast_ether_addr(mgmt->da)) 3476 return RX_DROP_MONITOR; 3477 3478 /* process only for station */ 3479 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3480 return RX_DROP_MONITOR; 3481 break; 3482 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3483 /* process only for ibss and mesh */ 3484 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3485 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3486 return RX_DROP_MONITOR; 3487 break; 3488 default: 3489 return RX_DROP_MONITOR; 3490 } 3491 3492 /* queue up frame and kick off work to process it */ 3493 skb_queue_tail(&sdata->skb_queue, rx->skb); 3494 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3495 if (rx->sta) 3496 rx->sta->rx_stats.packets++; 3497 3498 return RX_QUEUED; 3499 } 3500 3501 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3502 struct ieee80211_rate *rate) 3503 { 3504 struct ieee80211_sub_if_data *sdata; 3505 struct ieee80211_local *local = rx->local; 3506 struct sk_buff *skb = rx->skb, *skb2; 3507 struct net_device *prev_dev = NULL; 3508 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3509 int needed_headroom; 3510 3511 /* 3512 * If cooked monitor has been processed already, then 3513 * don't do it again. If not, set the flag. 3514 */ 3515 if (rx->flags & IEEE80211_RX_CMNTR) 3516 goto out_free_skb; 3517 rx->flags |= IEEE80211_RX_CMNTR; 3518 3519 /* If there are no cooked monitor interfaces, just free the SKB */ 3520 if (!local->cooked_mntrs) 3521 goto out_free_skb; 3522 3523 /* vendor data is long removed here */ 3524 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3525 /* room for the radiotap header based on driver features */ 3526 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3527 3528 if (skb_headroom(skb) < needed_headroom && 3529 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3530 goto out_free_skb; 3531 3532 /* prepend radiotap information */ 3533 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3534 false); 3535 3536 skb_reset_mac_header(skb); 3537 skb->ip_summed = CHECKSUM_UNNECESSARY; 3538 skb->pkt_type = PACKET_OTHERHOST; 3539 skb->protocol = htons(ETH_P_802_2); 3540 3541 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3542 if (!ieee80211_sdata_running(sdata)) 3543 continue; 3544 3545 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3546 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3547 continue; 3548 3549 if (prev_dev) { 3550 skb2 = skb_clone(skb, GFP_ATOMIC); 3551 if (skb2) { 3552 skb2->dev = prev_dev; 3553 netif_receive_skb(skb2); 3554 } 3555 } 3556 3557 prev_dev = sdata->dev; 3558 ieee80211_rx_stats(sdata->dev, skb->len); 3559 } 3560 3561 if (prev_dev) { 3562 skb->dev = prev_dev; 3563 netif_receive_skb(skb); 3564 return; 3565 } 3566 3567 out_free_skb: 3568 dev_kfree_skb(skb); 3569 } 3570 3571 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3572 ieee80211_rx_result res) 3573 { 3574 switch (res) { 3575 case RX_DROP_MONITOR: 3576 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3577 if (rx->sta) 3578 rx->sta->rx_stats.dropped++; 3579 /* fall through */ 3580 case RX_CONTINUE: { 3581 struct ieee80211_rate *rate = NULL; 3582 struct ieee80211_supported_band *sband; 3583 struct ieee80211_rx_status *status; 3584 3585 status = IEEE80211_SKB_RXCB((rx->skb)); 3586 3587 sband = rx->local->hw.wiphy->bands[status->band]; 3588 if (status->encoding == RX_ENC_LEGACY) 3589 rate = &sband->bitrates[status->rate_idx]; 3590 3591 ieee80211_rx_cooked_monitor(rx, rate); 3592 break; 3593 } 3594 case RX_DROP_UNUSABLE: 3595 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3596 if (rx->sta) 3597 rx->sta->rx_stats.dropped++; 3598 dev_kfree_skb(rx->skb); 3599 break; 3600 case RX_QUEUED: 3601 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3602 break; 3603 } 3604 } 3605 3606 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3607 struct sk_buff_head *frames) 3608 { 3609 ieee80211_rx_result res = RX_DROP_MONITOR; 3610 struct sk_buff *skb; 3611 3612 #define CALL_RXH(rxh) \ 3613 do { \ 3614 res = rxh(rx); \ 3615 if (res != RX_CONTINUE) \ 3616 goto rxh_next; \ 3617 } while (0) 3618 3619 /* Lock here to avoid hitting all of the data used in the RX 3620 * path (e.g. key data, station data, ...) concurrently when 3621 * a frame is released from the reorder buffer due to timeout 3622 * from the timer, potentially concurrently with RX from the 3623 * driver. 3624 */ 3625 spin_lock_bh(&rx->local->rx_path_lock); 3626 3627 while ((skb = __skb_dequeue(frames))) { 3628 /* 3629 * all the other fields are valid across frames 3630 * that belong to an aMPDU since they are on the 3631 * same TID from the same station 3632 */ 3633 rx->skb = skb; 3634 3635 CALL_RXH(ieee80211_rx_h_check_more_data); 3636 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3637 CALL_RXH(ieee80211_rx_h_sta_process); 3638 CALL_RXH(ieee80211_rx_h_decrypt); 3639 CALL_RXH(ieee80211_rx_h_defragment); 3640 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3641 /* must be after MMIC verify so header is counted in MPDU mic */ 3642 #ifdef CONFIG_MAC80211_MESH 3643 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3644 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3645 #endif 3646 CALL_RXH(ieee80211_rx_h_amsdu); 3647 CALL_RXH(ieee80211_rx_h_data); 3648 3649 /* special treatment -- needs the queue */ 3650 res = ieee80211_rx_h_ctrl(rx, frames); 3651 if (res != RX_CONTINUE) 3652 goto rxh_next; 3653 3654 CALL_RXH(ieee80211_rx_h_mgmt_check); 3655 CALL_RXH(ieee80211_rx_h_action); 3656 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3657 CALL_RXH(ieee80211_rx_h_action_return); 3658 CALL_RXH(ieee80211_rx_h_mgmt); 3659 3660 rxh_next: 3661 ieee80211_rx_handlers_result(rx, res); 3662 3663 #undef CALL_RXH 3664 } 3665 3666 spin_unlock_bh(&rx->local->rx_path_lock); 3667 } 3668 3669 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3670 { 3671 struct sk_buff_head reorder_release; 3672 ieee80211_rx_result res = RX_DROP_MONITOR; 3673 3674 __skb_queue_head_init(&reorder_release); 3675 3676 #define CALL_RXH(rxh) \ 3677 do { \ 3678 res = rxh(rx); \ 3679 if (res != RX_CONTINUE) \ 3680 goto rxh_next; \ 3681 } while (0) 3682 3683 CALL_RXH(ieee80211_rx_h_check_dup); 3684 CALL_RXH(ieee80211_rx_h_check); 3685 3686 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3687 3688 ieee80211_rx_handlers(rx, &reorder_release); 3689 return; 3690 3691 rxh_next: 3692 ieee80211_rx_handlers_result(rx, res); 3693 3694 #undef CALL_RXH 3695 } 3696 3697 /* 3698 * This function makes calls into the RX path, therefore 3699 * it has to be invoked under RCU read lock. 3700 */ 3701 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3702 { 3703 struct sk_buff_head frames; 3704 struct ieee80211_rx_data rx = { 3705 .sta = sta, 3706 .sdata = sta->sdata, 3707 .local = sta->local, 3708 /* This is OK -- must be QoS data frame */ 3709 .security_idx = tid, 3710 .seqno_idx = tid, 3711 .napi = NULL, /* must be NULL to not have races */ 3712 }; 3713 struct tid_ampdu_rx *tid_agg_rx; 3714 3715 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3716 if (!tid_agg_rx) 3717 return; 3718 3719 __skb_queue_head_init(&frames); 3720 3721 spin_lock(&tid_agg_rx->reorder_lock); 3722 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3723 spin_unlock(&tid_agg_rx->reorder_lock); 3724 3725 if (!skb_queue_empty(&frames)) { 3726 struct ieee80211_event event = { 3727 .type = BA_FRAME_TIMEOUT, 3728 .u.ba.tid = tid, 3729 .u.ba.sta = &sta->sta, 3730 }; 3731 drv_event_callback(rx.local, rx.sdata, &event); 3732 } 3733 3734 ieee80211_rx_handlers(&rx, &frames); 3735 } 3736 3737 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3738 u16 ssn, u64 filtered, 3739 u16 received_mpdus) 3740 { 3741 struct sta_info *sta; 3742 struct tid_ampdu_rx *tid_agg_rx; 3743 struct sk_buff_head frames; 3744 struct ieee80211_rx_data rx = { 3745 /* This is OK -- must be QoS data frame */ 3746 .security_idx = tid, 3747 .seqno_idx = tid, 3748 }; 3749 int i, diff; 3750 3751 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3752 return; 3753 3754 __skb_queue_head_init(&frames); 3755 3756 sta = container_of(pubsta, struct sta_info, sta); 3757 3758 rx.sta = sta; 3759 rx.sdata = sta->sdata; 3760 rx.local = sta->local; 3761 3762 rcu_read_lock(); 3763 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3764 if (!tid_agg_rx) 3765 goto out; 3766 3767 spin_lock_bh(&tid_agg_rx->reorder_lock); 3768 3769 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3770 int release; 3771 3772 /* release all frames in the reorder buffer */ 3773 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3774 IEEE80211_SN_MODULO; 3775 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3776 release, &frames); 3777 /* update ssn to match received ssn */ 3778 tid_agg_rx->head_seq_num = ssn; 3779 } else { 3780 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3781 &frames); 3782 } 3783 3784 /* handle the case that received ssn is behind the mac ssn. 3785 * it can be tid_agg_rx->buf_size behind and still be valid */ 3786 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3787 if (diff >= tid_agg_rx->buf_size) { 3788 tid_agg_rx->reorder_buf_filtered = 0; 3789 goto release; 3790 } 3791 filtered = filtered >> diff; 3792 ssn += diff; 3793 3794 /* update bitmap */ 3795 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3796 int index = (ssn + i) % tid_agg_rx->buf_size; 3797 3798 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3799 if (filtered & BIT_ULL(i)) 3800 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3801 } 3802 3803 /* now process also frames that the filter marking released */ 3804 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3805 3806 release: 3807 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3808 3809 ieee80211_rx_handlers(&rx, &frames); 3810 3811 out: 3812 rcu_read_unlock(); 3813 } 3814 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3815 3816 /* main receive path */ 3817 3818 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3819 { 3820 struct ieee80211_sub_if_data *sdata = rx->sdata; 3821 struct sk_buff *skb = rx->skb; 3822 struct ieee80211_hdr *hdr = (void *)skb->data; 3823 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3824 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3825 bool multicast = is_multicast_ether_addr(hdr->addr1); 3826 3827 switch (sdata->vif.type) { 3828 case NL80211_IFTYPE_STATION: 3829 if (!bssid && !sdata->u.mgd.use_4addr) 3830 return false; 3831 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3832 return false; 3833 if (multicast) 3834 return true; 3835 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3836 case NL80211_IFTYPE_ADHOC: 3837 if (!bssid) 3838 return false; 3839 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3840 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3841 return false; 3842 if (ieee80211_is_beacon(hdr->frame_control)) 3843 return true; 3844 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3845 return false; 3846 if (!multicast && 3847 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3848 return false; 3849 if (!rx->sta) { 3850 int rate_idx; 3851 if (status->encoding != RX_ENC_LEGACY) 3852 rate_idx = 0; /* TODO: HT/VHT rates */ 3853 else 3854 rate_idx = status->rate_idx; 3855 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3856 BIT(rate_idx)); 3857 } 3858 return true; 3859 case NL80211_IFTYPE_OCB: 3860 if (!bssid) 3861 return false; 3862 if (!ieee80211_is_data_present(hdr->frame_control)) 3863 return false; 3864 if (!is_broadcast_ether_addr(bssid)) 3865 return false; 3866 if (!multicast && 3867 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3868 return false; 3869 if (!rx->sta) { 3870 int rate_idx; 3871 if (status->encoding != RX_ENC_LEGACY) 3872 rate_idx = 0; /* TODO: HT rates */ 3873 else 3874 rate_idx = status->rate_idx; 3875 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3876 BIT(rate_idx)); 3877 } 3878 return true; 3879 case NL80211_IFTYPE_MESH_POINT: 3880 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3881 return false; 3882 if (multicast) 3883 return true; 3884 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3885 case NL80211_IFTYPE_AP_VLAN: 3886 case NL80211_IFTYPE_AP: 3887 if (!bssid) 3888 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3889 3890 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3891 /* 3892 * Accept public action frames even when the 3893 * BSSID doesn't match, this is used for P2P 3894 * and location updates. Note that mac80211 3895 * itself never looks at these frames. 3896 */ 3897 if (!multicast && 3898 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3899 return false; 3900 if (ieee80211_is_public_action(hdr, skb->len)) 3901 return true; 3902 return ieee80211_is_beacon(hdr->frame_control); 3903 } 3904 3905 if (!ieee80211_has_tods(hdr->frame_control)) { 3906 /* ignore data frames to TDLS-peers */ 3907 if (ieee80211_is_data(hdr->frame_control)) 3908 return false; 3909 /* ignore action frames to TDLS-peers */ 3910 if (ieee80211_is_action(hdr->frame_control) && 3911 !is_broadcast_ether_addr(bssid) && 3912 !ether_addr_equal(bssid, hdr->addr1)) 3913 return false; 3914 } 3915 3916 /* 3917 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3918 * the BSSID - we've checked that already but may have accepted 3919 * the wildcard (ff:ff:ff:ff:ff:ff). 3920 * 3921 * It also says: 3922 * The BSSID of the Data frame is determined as follows: 3923 * a) If the STA is contained within an AP or is associated 3924 * with an AP, the BSSID is the address currently in use 3925 * by the STA contained in the AP. 3926 * 3927 * So we should not accept data frames with an address that's 3928 * multicast. 3929 * 3930 * Accepting it also opens a security problem because stations 3931 * could encrypt it with the GTK and inject traffic that way. 3932 */ 3933 if (ieee80211_is_data(hdr->frame_control) && multicast) 3934 return false; 3935 3936 return true; 3937 case NL80211_IFTYPE_WDS: 3938 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3939 return false; 3940 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3941 case NL80211_IFTYPE_P2P_DEVICE: 3942 return ieee80211_is_public_action(hdr, skb->len) || 3943 ieee80211_is_probe_req(hdr->frame_control) || 3944 ieee80211_is_probe_resp(hdr->frame_control) || 3945 ieee80211_is_beacon(hdr->frame_control); 3946 case NL80211_IFTYPE_NAN: 3947 /* Currently no frames on NAN interface are allowed */ 3948 return false; 3949 default: 3950 break; 3951 } 3952 3953 WARN_ON_ONCE(1); 3954 return false; 3955 } 3956 3957 void ieee80211_check_fast_rx(struct sta_info *sta) 3958 { 3959 struct ieee80211_sub_if_data *sdata = sta->sdata; 3960 struct ieee80211_local *local = sdata->local; 3961 struct ieee80211_key *key; 3962 struct ieee80211_fast_rx fastrx = { 3963 .dev = sdata->dev, 3964 .vif_type = sdata->vif.type, 3965 .control_port_protocol = sdata->control_port_protocol, 3966 }, *old, *new = NULL; 3967 bool assign = false; 3968 3969 /* use sparse to check that we don't return without updating */ 3970 __acquire(check_fast_rx); 3971 3972 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3973 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3974 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3975 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3976 3977 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3978 3979 /* fast-rx doesn't do reordering */ 3980 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3981 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3982 goto clear; 3983 3984 switch (sdata->vif.type) { 3985 case NL80211_IFTYPE_STATION: 3986 if (sta->sta.tdls) { 3987 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3988 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3989 fastrx.expected_ds_bits = 0; 3990 } else { 3991 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3992 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3993 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3994 fastrx.expected_ds_bits = 3995 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3996 } 3997 3998 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 3999 fastrx.expected_ds_bits |= 4000 cpu_to_le16(IEEE80211_FCTL_TODS); 4001 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4002 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4003 } 4004 4005 if (!sdata->u.mgd.powersave) 4006 break; 4007 4008 /* software powersave is a huge mess, avoid all of it */ 4009 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4010 goto clear; 4011 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4012 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4013 goto clear; 4014 break; 4015 case NL80211_IFTYPE_AP_VLAN: 4016 case NL80211_IFTYPE_AP: 4017 /* parallel-rx requires this, at least with calls to 4018 * ieee80211_sta_ps_transition() 4019 */ 4020 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4021 goto clear; 4022 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4023 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4024 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4025 4026 fastrx.internal_forward = 4027 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4028 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4029 !sdata->u.vlan.sta); 4030 4031 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4032 sdata->u.vlan.sta) { 4033 fastrx.expected_ds_bits |= 4034 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4035 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4036 fastrx.internal_forward = 0; 4037 } 4038 4039 break; 4040 default: 4041 goto clear; 4042 } 4043 4044 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4045 goto clear; 4046 4047 rcu_read_lock(); 4048 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4049 if (key) { 4050 switch (key->conf.cipher) { 4051 case WLAN_CIPHER_SUITE_TKIP: 4052 /* we don't want to deal with MMIC in fast-rx */ 4053 goto clear_rcu; 4054 case WLAN_CIPHER_SUITE_CCMP: 4055 case WLAN_CIPHER_SUITE_CCMP_256: 4056 case WLAN_CIPHER_SUITE_GCMP: 4057 case WLAN_CIPHER_SUITE_GCMP_256: 4058 break; 4059 default: 4060 /* We also don't want to deal with 4061 * WEP or cipher scheme. 4062 */ 4063 goto clear_rcu; 4064 } 4065 4066 fastrx.key = true; 4067 fastrx.icv_len = key->conf.icv_len; 4068 } 4069 4070 assign = true; 4071 clear_rcu: 4072 rcu_read_unlock(); 4073 clear: 4074 __release(check_fast_rx); 4075 4076 if (assign) 4077 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4078 4079 spin_lock_bh(&sta->lock); 4080 old = rcu_dereference_protected(sta->fast_rx, true); 4081 rcu_assign_pointer(sta->fast_rx, new); 4082 spin_unlock_bh(&sta->lock); 4083 4084 if (old) 4085 kfree_rcu(old, rcu_head); 4086 } 4087 4088 void ieee80211_clear_fast_rx(struct sta_info *sta) 4089 { 4090 struct ieee80211_fast_rx *old; 4091 4092 spin_lock_bh(&sta->lock); 4093 old = rcu_dereference_protected(sta->fast_rx, true); 4094 RCU_INIT_POINTER(sta->fast_rx, NULL); 4095 spin_unlock_bh(&sta->lock); 4096 4097 if (old) 4098 kfree_rcu(old, rcu_head); 4099 } 4100 4101 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4102 { 4103 struct ieee80211_local *local = sdata->local; 4104 struct sta_info *sta; 4105 4106 lockdep_assert_held(&local->sta_mtx); 4107 4108 list_for_each_entry_rcu(sta, &local->sta_list, list) { 4109 if (sdata != sta->sdata && 4110 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4111 continue; 4112 ieee80211_check_fast_rx(sta); 4113 } 4114 } 4115 4116 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4117 { 4118 struct ieee80211_local *local = sdata->local; 4119 4120 mutex_lock(&local->sta_mtx); 4121 __ieee80211_check_fast_rx_iface(sdata); 4122 mutex_unlock(&local->sta_mtx); 4123 } 4124 4125 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4126 struct ieee80211_fast_rx *fast_rx) 4127 { 4128 struct sk_buff *skb = rx->skb; 4129 struct ieee80211_hdr *hdr = (void *)skb->data; 4130 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4131 struct sta_info *sta = rx->sta; 4132 int orig_len = skb->len; 4133 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4134 int snap_offs = hdrlen; 4135 struct { 4136 u8 snap[sizeof(rfc1042_header)]; 4137 __be16 proto; 4138 } *payload __aligned(2); 4139 struct { 4140 u8 da[ETH_ALEN]; 4141 u8 sa[ETH_ALEN]; 4142 } addrs __aligned(2); 4143 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4144 4145 if (fast_rx->uses_rss) 4146 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4147 4148 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4149 * to a common data structure; drivers can implement that per queue 4150 * but we don't have that information in mac80211 4151 */ 4152 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4153 return false; 4154 4155 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4156 4157 /* If using encryption, we also need to have: 4158 * - PN_VALIDATED: similar, but the implementation is tricky 4159 * - DECRYPTED: necessary for PN_VALIDATED 4160 */ 4161 if (fast_rx->key && 4162 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4163 return false; 4164 4165 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4166 return false; 4167 4168 if (unlikely(ieee80211_is_frag(hdr))) 4169 return false; 4170 4171 /* Since our interface address cannot be multicast, this 4172 * implicitly also rejects multicast frames without the 4173 * explicit check. 4174 * 4175 * We shouldn't get any *data* frames not addressed to us 4176 * (AP mode will accept multicast *management* frames), but 4177 * punting here will make it go through the full checks in 4178 * ieee80211_accept_frame(). 4179 */ 4180 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4181 return false; 4182 4183 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4184 IEEE80211_FCTL_TODS)) != 4185 fast_rx->expected_ds_bits) 4186 return false; 4187 4188 /* assign the key to drop unencrypted frames (later) 4189 * and strip the IV/MIC if necessary 4190 */ 4191 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4192 /* GCMP header length is the same */ 4193 snap_offs += IEEE80211_CCMP_HDR_LEN; 4194 } 4195 4196 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4197 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4198 goto drop; 4199 4200 payload = (void *)(skb->data + snap_offs); 4201 4202 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4203 return false; 4204 4205 /* Don't handle these here since they require special code. 4206 * Accept AARP and IPX even though they should come with a 4207 * bridge-tunnel header - but if we get them this way then 4208 * there's little point in discarding them. 4209 */ 4210 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4211 payload->proto == fast_rx->control_port_protocol)) 4212 return false; 4213 } 4214 4215 /* after this point, don't punt to the slowpath! */ 4216 4217 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4218 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4219 goto drop; 4220 4221 if (unlikely(fast_rx->sta_notify)) { 4222 ieee80211_sta_rx_notify(rx->sdata, hdr); 4223 fast_rx->sta_notify = false; 4224 } 4225 4226 /* statistics part of ieee80211_rx_h_sta_process() */ 4227 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4228 stats->last_signal = status->signal; 4229 if (!fast_rx->uses_rss) 4230 ewma_signal_add(&sta->rx_stats_avg.signal, 4231 -status->signal); 4232 } 4233 4234 if (status->chains) { 4235 int i; 4236 4237 stats->chains = status->chains; 4238 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4239 int signal = status->chain_signal[i]; 4240 4241 if (!(status->chains & BIT(i))) 4242 continue; 4243 4244 stats->chain_signal_last[i] = signal; 4245 if (!fast_rx->uses_rss) 4246 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4247 -signal); 4248 } 4249 } 4250 /* end of statistics */ 4251 4252 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4253 goto drop; 4254 4255 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4256 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4257 RX_QUEUED) 4258 goto drop; 4259 4260 return true; 4261 } 4262 4263 stats->last_rx = jiffies; 4264 stats->last_rate = sta_stats_encode_rate(status); 4265 4266 stats->fragments++; 4267 stats->packets++; 4268 4269 /* do the header conversion - first grab the addresses */ 4270 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4271 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4272 /* remove the SNAP but leave the ethertype */ 4273 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4274 /* push the addresses in front */ 4275 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4276 4277 skb->dev = fast_rx->dev; 4278 4279 ieee80211_rx_stats(fast_rx->dev, skb->len); 4280 4281 /* The seqno index has the same property as needed 4282 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4283 * for non-QoS-data frames. Here we know it's a data 4284 * frame, so count MSDUs. 4285 */ 4286 u64_stats_update_begin(&stats->syncp); 4287 stats->msdu[rx->seqno_idx]++; 4288 stats->bytes += orig_len; 4289 u64_stats_update_end(&stats->syncp); 4290 4291 if (fast_rx->internal_forward) { 4292 struct sk_buff *xmit_skb = NULL; 4293 if (is_multicast_ether_addr(addrs.da)) { 4294 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4295 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4296 sta_info_get(rx->sdata, addrs.da)) { 4297 xmit_skb = skb; 4298 skb = NULL; 4299 } 4300 4301 if (xmit_skb) { 4302 /* 4303 * Send to wireless media and increase priority by 256 4304 * to keep the received priority instead of 4305 * reclassifying the frame (see cfg80211_classify8021d). 4306 */ 4307 xmit_skb->priority += 256; 4308 xmit_skb->protocol = htons(ETH_P_802_3); 4309 skb_reset_network_header(xmit_skb); 4310 skb_reset_mac_header(xmit_skb); 4311 dev_queue_xmit(xmit_skb); 4312 } 4313 4314 if (!skb) 4315 return true; 4316 } 4317 4318 /* deliver to local stack */ 4319 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4320 memset(skb->cb, 0, sizeof(skb->cb)); 4321 if (rx->napi) 4322 napi_gro_receive(rx->napi, skb); 4323 else 4324 netif_receive_skb(skb); 4325 4326 return true; 4327 drop: 4328 dev_kfree_skb(skb); 4329 stats->dropped++; 4330 return true; 4331 } 4332 4333 /* 4334 * This function returns whether or not the SKB 4335 * was destined for RX processing or not, which, 4336 * if consume is true, is equivalent to whether 4337 * or not the skb was consumed. 4338 */ 4339 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4340 struct sk_buff *skb, bool consume) 4341 { 4342 struct ieee80211_local *local = rx->local; 4343 struct ieee80211_sub_if_data *sdata = rx->sdata; 4344 4345 rx->skb = skb; 4346 4347 /* See if we can do fast-rx; if we have to copy we already lost, 4348 * so punt in that case. We should never have to deliver a data 4349 * frame to multiple interfaces anyway. 4350 * 4351 * We skip the ieee80211_accept_frame() call and do the necessary 4352 * checking inside ieee80211_invoke_fast_rx(). 4353 */ 4354 if (consume && rx->sta) { 4355 struct ieee80211_fast_rx *fast_rx; 4356 4357 fast_rx = rcu_dereference(rx->sta->fast_rx); 4358 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4359 return true; 4360 } 4361 4362 if (!ieee80211_accept_frame(rx)) 4363 return false; 4364 4365 if (!consume) { 4366 skb = skb_copy(skb, GFP_ATOMIC); 4367 if (!skb) { 4368 if (net_ratelimit()) 4369 wiphy_debug(local->hw.wiphy, 4370 "failed to copy skb for %s\n", 4371 sdata->name); 4372 return true; 4373 } 4374 4375 rx->skb = skb; 4376 } 4377 4378 ieee80211_invoke_rx_handlers(rx); 4379 return true; 4380 } 4381 4382 /* 4383 * This is the actual Rx frames handler. as it belongs to Rx path it must 4384 * be called with rcu_read_lock protection. 4385 */ 4386 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4387 struct ieee80211_sta *pubsta, 4388 struct sk_buff *skb, 4389 struct napi_struct *napi) 4390 { 4391 struct ieee80211_local *local = hw_to_local(hw); 4392 struct ieee80211_sub_if_data *sdata; 4393 struct ieee80211_hdr *hdr; 4394 __le16 fc; 4395 struct ieee80211_rx_data rx; 4396 struct ieee80211_sub_if_data *prev; 4397 struct rhlist_head *tmp; 4398 int err = 0; 4399 4400 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4401 memset(&rx, 0, sizeof(rx)); 4402 rx.skb = skb; 4403 rx.local = local; 4404 rx.napi = napi; 4405 4406 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4407 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4408 4409 if (ieee80211_is_mgmt(fc)) { 4410 /* drop frame if too short for header */ 4411 if (skb->len < ieee80211_hdrlen(fc)) 4412 err = -ENOBUFS; 4413 else 4414 err = skb_linearize(skb); 4415 } else { 4416 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4417 } 4418 4419 if (err) { 4420 dev_kfree_skb(skb); 4421 return; 4422 } 4423 4424 hdr = (struct ieee80211_hdr *)skb->data; 4425 ieee80211_parse_qos(&rx); 4426 ieee80211_verify_alignment(&rx); 4427 4428 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4429 ieee80211_is_beacon(hdr->frame_control))) 4430 ieee80211_scan_rx(local, skb); 4431 4432 if (ieee80211_is_data(fc)) { 4433 struct sta_info *sta, *prev_sta; 4434 4435 if (pubsta) { 4436 rx.sta = container_of(pubsta, struct sta_info, sta); 4437 rx.sdata = rx.sta->sdata; 4438 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4439 return; 4440 goto out; 4441 } 4442 4443 prev_sta = NULL; 4444 4445 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4446 if (!prev_sta) { 4447 prev_sta = sta; 4448 continue; 4449 } 4450 4451 rx.sta = prev_sta; 4452 rx.sdata = prev_sta->sdata; 4453 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4454 4455 prev_sta = sta; 4456 } 4457 4458 if (prev_sta) { 4459 rx.sta = prev_sta; 4460 rx.sdata = prev_sta->sdata; 4461 4462 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4463 return; 4464 goto out; 4465 } 4466 } 4467 4468 prev = NULL; 4469 4470 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4471 if (!ieee80211_sdata_running(sdata)) 4472 continue; 4473 4474 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4475 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4476 continue; 4477 4478 /* 4479 * frame is destined for this interface, but if it's 4480 * not also for the previous one we handle that after 4481 * the loop to avoid copying the SKB once too much 4482 */ 4483 4484 if (!prev) { 4485 prev = sdata; 4486 continue; 4487 } 4488 4489 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4490 rx.sdata = prev; 4491 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4492 4493 prev = sdata; 4494 } 4495 4496 if (prev) { 4497 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4498 rx.sdata = prev; 4499 4500 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4501 return; 4502 } 4503 4504 out: 4505 dev_kfree_skb(skb); 4506 } 4507 4508 /* 4509 * This is the receive path handler. It is called by a low level driver when an 4510 * 802.11 MPDU is received from the hardware. 4511 */ 4512 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4513 struct sk_buff *skb, struct napi_struct *napi) 4514 { 4515 struct ieee80211_local *local = hw_to_local(hw); 4516 struct ieee80211_rate *rate = NULL; 4517 struct ieee80211_supported_band *sband; 4518 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4519 4520 WARN_ON_ONCE(softirq_count() == 0); 4521 4522 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4523 goto drop; 4524 4525 sband = local->hw.wiphy->bands[status->band]; 4526 if (WARN_ON(!sband)) 4527 goto drop; 4528 4529 /* 4530 * If we're suspending, it is possible although not too likely 4531 * that we'd be receiving frames after having already partially 4532 * quiesced the stack. We can't process such frames then since 4533 * that might, for example, cause stations to be added or other 4534 * driver callbacks be invoked. 4535 */ 4536 if (unlikely(local->quiescing || local->suspended)) 4537 goto drop; 4538 4539 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4540 if (unlikely(local->in_reconfig)) 4541 goto drop; 4542 4543 /* 4544 * The same happens when we're not even started, 4545 * but that's worth a warning. 4546 */ 4547 if (WARN_ON(!local->started)) 4548 goto drop; 4549 4550 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4551 /* 4552 * Validate the rate, unless a PLCP error means that 4553 * we probably can't have a valid rate here anyway. 4554 */ 4555 4556 switch (status->encoding) { 4557 case RX_ENC_HT: 4558 /* 4559 * rate_idx is MCS index, which can be [0-76] 4560 * as documented on: 4561 * 4562 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4563 * 4564 * Anything else would be some sort of driver or 4565 * hardware error. The driver should catch hardware 4566 * errors. 4567 */ 4568 if (WARN(status->rate_idx > 76, 4569 "Rate marked as an HT rate but passed " 4570 "status->rate_idx is not " 4571 "an MCS index [0-76]: %d (0x%02x)\n", 4572 status->rate_idx, 4573 status->rate_idx)) 4574 goto drop; 4575 break; 4576 case RX_ENC_VHT: 4577 if (WARN_ONCE(status->rate_idx > 9 || 4578 !status->nss || 4579 status->nss > 8, 4580 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4581 status->rate_idx, status->nss)) 4582 goto drop; 4583 break; 4584 case RX_ENC_HE: 4585 if (WARN_ONCE(status->rate_idx > 11 || 4586 !status->nss || 4587 status->nss > 8, 4588 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4589 status->rate_idx, status->nss)) 4590 goto drop; 4591 break; 4592 default: 4593 WARN_ON_ONCE(1); 4594 /* fall through */ 4595 case RX_ENC_LEGACY: 4596 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4597 goto drop; 4598 rate = &sband->bitrates[status->rate_idx]; 4599 } 4600 } 4601 4602 status->rx_flags = 0; 4603 4604 /* 4605 * key references and virtual interfaces are protected using RCU 4606 * and this requires that we are in a read-side RCU section during 4607 * receive processing 4608 */ 4609 rcu_read_lock(); 4610 4611 /* 4612 * Frames with failed FCS/PLCP checksum are not returned, 4613 * all other frames are returned without radiotap header 4614 * if it was previously present. 4615 * Also, frames with less than 16 bytes are dropped. 4616 */ 4617 skb = ieee80211_rx_monitor(local, skb, rate); 4618 if (!skb) { 4619 rcu_read_unlock(); 4620 return; 4621 } 4622 4623 ieee80211_tpt_led_trig_rx(local, 4624 ((struct ieee80211_hdr *)skb->data)->frame_control, 4625 skb->len); 4626 4627 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4628 4629 rcu_read_unlock(); 4630 4631 return; 4632 drop: 4633 kfree_skb(skb); 4634 } 4635 EXPORT_SYMBOL(ieee80211_rx_napi); 4636 4637 /* This is a version of the rx handler that can be called from hard irq 4638 * context. Post the skb on the queue and schedule the tasklet */ 4639 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4640 { 4641 struct ieee80211_local *local = hw_to_local(hw); 4642 4643 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4644 4645 skb->pkt_type = IEEE80211_RX_MSG; 4646 skb_queue_tail(&local->skb_queue, skb); 4647 tasklet_schedule(&local->tasklet); 4648 } 4649 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4650