xref: /linux/net/mac80211/rx.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <net/mac80211.h>
20 #include <net/ieee80211_radiotap.h>
21 
22 #include "ieee80211_i.h"
23 #include "driver-ops.h"
24 #include "led.h"
25 #include "mesh.h"
26 #include "wep.h"
27 #include "wpa.h"
28 #include "tkip.h"
29 #include "wme.h"
30 
31 /*
32  * monitor mode reception
33  *
34  * This function cleans up the SKB, i.e. it removes all the stuff
35  * only useful for monitoring.
36  */
37 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
38 					   struct sk_buff *skb)
39 {
40 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
41 		if (likely(skb->len > FCS_LEN))
42 			__pskb_trim(skb, skb->len - FCS_LEN);
43 		else {
44 			/* driver bug */
45 			WARN_ON(1);
46 			dev_kfree_skb(skb);
47 			skb = NULL;
48 		}
49 	}
50 
51 	return skb;
52 }
53 
54 static inline int should_drop_frame(struct sk_buff *skb,
55 				    int present_fcs_len)
56 {
57 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
58 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
59 
60 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
61 		return 1;
62 	if (unlikely(skb->len < 16 + present_fcs_len))
63 		return 1;
64 	if (ieee80211_is_ctl(hdr->frame_control) &&
65 	    !ieee80211_is_pspoll(hdr->frame_control) &&
66 	    !ieee80211_is_back_req(hdr->frame_control))
67 		return 1;
68 	return 0;
69 }
70 
71 static int
72 ieee80211_rx_radiotap_len(struct ieee80211_local *local,
73 			  struct ieee80211_rx_status *status)
74 {
75 	int len;
76 
77 	/* always present fields */
78 	len = sizeof(struct ieee80211_radiotap_header) + 9;
79 
80 	if (status->flag & RX_FLAG_TSFT)
81 		len += 8;
82 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
83 		len += 1;
84 
85 	if (len & 1) /* padding for RX_FLAGS if necessary */
86 		len++;
87 
88 	return len;
89 }
90 
91 /*
92  * ieee80211_add_rx_radiotap_header - add radiotap header
93  *
94  * add a radiotap header containing all the fields which the hardware provided.
95  */
96 static void
97 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
98 				 struct sk_buff *skb,
99 				 struct ieee80211_rate *rate,
100 				 int rtap_len)
101 {
102 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
103 	struct ieee80211_radiotap_header *rthdr;
104 	unsigned char *pos;
105 	u16 rx_flags = 0;
106 
107 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
108 	memset(rthdr, 0, rtap_len);
109 
110 	/* radiotap header, set always present flags */
111 	rthdr->it_present =
112 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
113 			    (1 << IEEE80211_RADIOTAP_CHANNEL) |
114 			    (1 << IEEE80211_RADIOTAP_ANTENNA) |
115 			    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
116 	rthdr->it_len = cpu_to_le16(rtap_len);
117 
118 	pos = (unsigned char *)(rthdr+1);
119 
120 	/* the order of the following fields is important */
121 
122 	/* IEEE80211_RADIOTAP_TSFT */
123 	if (status->flag & RX_FLAG_TSFT) {
124 		put_unaligned_le64(status->mactime, pos);
125 		rthdr->it_present |=
126 			cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
127 		pos += 8;
128 	}
129 
130 	/* IEEE80211_RADIOTAP_FLAGS */
131 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
132 		*pos |= IEEE80211_RADIOTAP_F_FCS;
133 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
134 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
135 	if (status->flag & RX_FLAG_SHORTPRE)
136 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
137 	pos++;
138 
139 	/* IEEE80211_RADIOTAP_RATE */
140 	if (status->flag & RX_FLAG_HT) {
141 		/*
142 		 * TODO: add following information into radiotap header once
143 		 * suitable fields are defined for it:
144 		 * - MCS index (status->rate_idx)
145 		 * - HT40 (status->flag & RX_FLAG_40MHZ)
146 		 * - short-GI (status->flag & RX_FLAG_SHORT_GI)
147 		 */
148 		*pos = 0;
149 	} else {
150 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
151 		*pos = rate->bitrate / 5;
152 	}
153 	pos++;
154 
155 	/* IEEE80211_RADIOTAP_CHANNEL */
156 	put_unaligned_le16(status->freq, pos);
157 	pos += 2;
158 	if (status->band == IEEE80211_BAND_5GHZ)
159 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
160 				   pos);
161 	else if (status->flag & RX_FLAG_HT)
162 		put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
163 				   pos);
164 	else if (rate->flags & IEEE80211_RATE_ERP_G)
165 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
166 				   pos);
167 	else
168 		put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
169 				   pos);
170 	pos += 2;
171 
172 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
173 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
174 		*pos = status->signal;
175 		rthdr->it_present |=
176 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
177 		pos++;
178 	}
179 
180 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
181 
182 	/* IEEE80211_RADIOTAP_ANTENNA */
183 	*pos = status->antenna;
184 	pos++;
185 
186 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
187 
188 	/* IEEE80211_RADIOTAP_RX_FLAGS */
189 	/* ensure 2 byte alignment for the 2 byte field as required */
190 	if ((pos - (u8 *)rthdr) & 1)
191 		pos++;
192 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
193 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
194 	put_unaligned_le16(rx_flags, pos);
195 	pos += 2;
196 }
197 
198 /*
199  * This function copies a received frame to all monitor interfaces and
200  * returns a cleaned-up SKB that no longer includes the FCS nor the
201  * radiotap header the driver might have added.
202  */
203 static struct sk_buff *
204 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
205 		     struct ieee80211_rate *rate)
206 {
207 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
208 	struct ieee80211_sub_if_data *sdata;
209 	int needed_headroom = 0;
210 	struct sk_buff *skb, *skb2;
211 	struct net_device *prev_dev = NULL;
212 	int present_fcs_len = 0;
213 
214 	/*
215 	 * First, we may need to make a copy of the skb because
216 	 *  (1) we need to modify it for radiotap (if not present), and
217 	 *  (2) the other RX handlers will modify the skb we got.
218 	 *
219 	 * We don't need to, of course, if we aren't going to return
220 	 * the SKB because it has a bad FCS/PLCP checksum.
221 	 */
222 
223 	/* room for the radiotap header based on driver features */
224 	needed_headroom = ieee80211_rx_radiotap_len(local, status);
225 
226 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
227 		present_fcs_len = FCS_LEN;
228 
229 	/* make sure hdr->frame_control is on the linear part */
230 	if (!pskb_may_pull(origskb, 2)) {
231 		dev_kfree_skb(origskb);
232 		return NULL;
233 	}
234 
235 	if (!local->monitors) {
236 		if (should_drop_frame(origskb, present_fcs_len)) {
237 			dev_kfree_skb(origskb);
238 			return NULL;
239 		}
240 
241 		return remove_monitor_info(local, origskb);
242 	}
243 
244 	if (should_drop_frame(origskb, present_fcs_len)) {
245 		/* only need to expand headroom if necessary */
246 		skb = origskb;
247 		origskb = NULL;
248 
249 		/*
250 		 * This shouldn't trigger often because most devices have an
251 		 * RX header they pull before we get here, and that should
252 		 * be big enough for our radiotap information. We should
253 		 * probably export the length to drivers so that we can have
254 		 * them allocate enough headroom to start with.
255 		 */
256 		if (skb_headroom(skb) < needed_headroom &&
257 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
258 			dev_kfree_skb(skb);
259 			return NULL;
260 		}
261 	} else {
262 		/*
263 		 * Need to make a copy and possibly remove radiotap header
264 		 * and FCS from the original.
265 		 */
266 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
267 
268 		origskb = remove_monitor_info(local, origskb);
269 
270 		if (!skb)
271 			return origskb;
272 	}
273 
274 	/* prepend radiotap information */
275 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom);
276 
277 	skb_reset_mac_header(skb);
278 	skb->ip_summed = CHECKSUM_UNNECESSARY;
279 	skb->pkt_type = PACKET_OTHERHOST;
280 	skb->protocol = htons(ETH_P_802_2);
281 
282 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
283 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
284 			continue;
285 
286 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
287 			continue;
288 
289 		if (!ieee80211_sdata_running(sdata))
290 			continue;
291 
292 		if (prev_dev) {
293 			skb2 = skb_clone(skb, GFP_ATOMIC);
294 			if (skb2) {
295 				skb2->dev = prev_dev;
296 				netif_receive_skb(skb2);
297 			}
298 		}
299 
300 		prev_dev = sdata->dev;
301 		sdata->dev->stats.rx_packets++;
302 		sdata->dev->stats.rx_bytes += skb->len;
303 	}
304 
305 	if (prev_dev) {
306 		skb->dev = prev_dev;
307 		netif_receive_skb(skb);
308 	} else
309 		dev_kfree_skb(skb);
310 
311 	return origskb;
312 }
313 
314 
315 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
316 {
317 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
318 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
319 	int tid;
320 
321 	/* does the frame have a qos control field? */
322 	if (ieee80211_is_data_qos(hdr->frame_control)) {
323 		u8 *qc = ieee80211_get_qos_ctl(hdr);
324 		/* frame has qos control */
325 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
326 		if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
327 			status->rx_flags |= IEEE80211_RX_AMSDU;
328 	} else {
329 		/*
330 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
331 		 *
332 		 *	Sequence numbers for management frames, QoS data
333 		 *	frames with a broadcast/multicast address in the
334 		 *	Address 1 field, and all non-QoS data frames sent
335 		 *	by QoS STAs are assigned using an additional single
336 		 *	modulo-4096 counter, [...]
337 		 *
338 		 * We also use that counter for non-QoS STAs.
339 		 */
340 		tid = NUM_RX_DATA_QUEUES - 1;
341 	}
342 
343 	rx->queue = tid;
344 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
345 	 * For now, set skb->priority to 0 for other cases. */
346 	rx->skb->priority = (tid > 7) ? 0 : tid;
347 }
348 
349 /**
350  * DOC: Packet alignment
351  *
352  * Drivers always need to pass packets that are aligned to two-byte boundaries
353  * to the stack.
354  *
355  * Additionally, should, if possible, align the payload data in a way that
356  * guarantees that the contained IP header is aligned to a four-byte
357  * boundary. In the case of regular frames, this simply means aligning the
358  * payload to a four-byte boundary (because either the IP header is directly
359  * contained, or IV/RFC1042 headers that have a length divisible by four are
360  * in front of it).  If the payload data is not properly aligned and the
361  * architecture doesn't support efficient unaligned operations, mac80211
362  * will align the data.
363  *
364  * With A-MSDU frames, however, the payload data address must yield two modulo
365  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
366  * push the IP header further back to a multiple of four again. Thankfully, the
367  * specs were sane enough this time around to require padding each A-MSDU
368  * subframe to a length that is a multiple of four.
369  *
370  * Padding like Atheros hardware adds which is inbetween the 802.11 header and
371  * the payload is not supported, the driver is required to move the 802.11
372  * header to be directly in front of the payload in that case.
373  */
374 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
375 {
376 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
377 	WARN_ONCE((unsigned long)rx->skb->data & 1,
378 		  "unaligned packet at 0x%p\n", rx->skb->data);
379 #endif
380 }
381 
382 
383 /* rx handlers */
384 
385 static ieee80211_rx_result debug_noinline
386 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
387 {
388 	struct ieee80211_local *local = rx->local;
389 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
390 	struct sk_buff *skb = rx->skb;
391 
392 	if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN)))
393 		return RX_CONTINUE;
394 
395 	if (test_bit(SCAN_HW_SCANNING, &local->scanning))
396 		return ieee80211_scan_rx(rx->sdata, skb);
397 
398 	if (test_bit(SCAN_SW_SCANNING, &local->scanning)) {
399 		/* drop all the other packets during a software scan anyway */
400 		if (ieee80211_scan_rx(rx->sdata, skb) != RX_QUEUED)
401 			dev_kfree_skb(skb);
402 		return RX_QUEUED;
403 	}
404 
405 	/* scanning finished during invoking of handlers */
406 	I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
407 	return RX_DROP_UNUSABLE;
408 }
409 
410 
411 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
412 {
413 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
414 
415 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
416 		return 0;
417 
418 	return ieee80211_is_robust_mgmt_frame(hdr);
419 }
420 
421 
422 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
423 {
424 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
425 
426 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
427 		return 0;
428 
429 	return ieee80211_is_robust_mgmt_frame(hdr);
430 }
431 
432 
433 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
434 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
435 {
436 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
437 	struct ieee80211_mmie *mmie;
438 
439 	if (skb->len < 24 + sizeof(*mmie) ||
440 	    !is_multicast_ether_addr(hdr->da))
441 		return -1;
442 
443 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
444 		return -1; /* not a robust management frame */
445 
446 	mmie = (struct ieee80211_mmie *)
447 		(skb->data + skb->len - sizeof(*mmie));
448 	if (mmie->element_id != WLAN_EID_MMIE ||
449 	    mmie->length != sizeof(*mmie) - 2)
450 		return -1;
451 
452 	return le16_to_cpu(mmie->key_id);
453 }
454 
455 
456 static ieee80211_rx_result
457 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
458 {
459 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
460 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
461 	char *dev_addr = rx->sdata->vif.addr;
462 
463 	if (ieee80211_is_data(hdr->frame_control)) {
464 		if (is_multicast_ether_addr(hdr->addr1)) {
465 			if (ieee80211_has_tods(hdr->frame_control) ||
466 				!ieee80211_has_fromds(hdr->frame_control))
467 				return RX_DROP_MONITOR;
468 			if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0)
469 				return RX_DROP_MONITOR;
470 		} else {
471 			if (!ieee80211_has_a4(hdr->frame_control))
472 				return RX_DROP_MONITOR;
473 			if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0)
474 				return RX_DROP_MONITOR;
475 		}
476 	}
477 
478 	/* If there is not an established peer link and this is not a peer link
479 	 * establisment frame, beacon or probe, drop the frame.
480 	 */
481 
482 	if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
483 		struct ieee80211_mgmt *mgmt;
484 
485 		if (!ieee80211_is_mgmt(hdr->frame_control))
486 			return RX_DROP_MONITOR;
487 
488 		if (ieee80211_is_action(hdr->frame_control)) {
489 			mgmt = (struct ieee80211_mgmt *)hdr;
490 			if (mgmt->u.action.category != WLAN_CATEGORY_MESH_PLINK)
491 				return RX_DROP_MONITOR;
492 			return RX_CONTINUE;
493 		}
494 
495 		if (ieee80211_is_probe_req(hdr->frame_control) ||
496 		    ieee80211_is_probe_resp(hdr->frame_control) ||
497 		    ieee80211_is_beacon(hdr->frame_control))
498 			return RX_CONTINUE;
499 
500 		return RX_DROP_MONITOR;
501 
502 	}
503 
504 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
505 
506 	if (ieee80211_is_data(hdr->frame_control) &&
507 	    is_multicast_ether_addr(hdr->addr1) &&
508 	    mesh_rmc_check(hdr->addr3, msh_h_get(hdr, hdrlen), rx->sdata))
509 		return RX_DROP_MONITOR;
510 #undef msh_h_get
511 
512 	return RX_CONTINUE;
513 }
514 
515 #define SEQ_MODULO 0x1000
516 #define SEQ_MASK   0xfff
517 
518 static inline int seq_less(u16 sq1, u16 sq2)
519 {
520 	return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1);
521 }
522 
523 static inline u16 seq_inc(u16 sq)
524 {
525 	return (sq + 1) & SEQ_MASK;
526 }
527 
528 static inline u16 seq_sub(u16 sq1, u16 sq2)
529 {
530 	return (sq1 - sq2) & SEQ_MASK;
531 }
532 
533 
534 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw,
535 					    struct tid_ampdu_rx *tid_agg_rx,
536 					    int index,
537 					    struct sk_buff_head *frames)
538 {
539 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
540 
541 	if (!skb)
542 		goto no_frame;
543 
544 	/* release the frame from the reorder ring buffer */
545 	tid_agg_rx->stored_mpdu_num--;
546 	tid_agg_rx->reorder_buf[index] = NULL;
547 	__skb_queue_tail(frames, skb);
548 
549 no_frame:
550 	tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
551 }
552 
553 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw,
554 					     struct tid_ampdu_rx *tid_agg_rx,
555 					     u16 head_seq_num,
556 					     struct sk_buff_head *frames)
557 {
558 	int index;
559 
560 	while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
561 		index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
562 							tid_agg_rx->buf_size;
563 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
564 	}
565 }
566 
567 /*
568  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
569  * the skb was added to the buffer longer than this time ago, the earlier
570  * frames that have not yet been received are assumed to be lost and the skb
571  * can be released for processing. This may also release other skb's from the
572  * reorder buffer if there are no additional gaps between the frames.
573  *
574  * Callers must hold tid_agg_rx->reorder_lock.
575  */
576 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
577 
578 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw,
579 					  struct tid_ampdu_rx *tid_agg_rx,
580 					  struct sk_buff_head *frames)
581 {
582 	int index, j;
583 
584 	/* release the buffer until next missing frame */
585 	index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
586 						tid_agg_rx->buf_size;
587 	if (!tid_agg_rx->reorder_buf[index] &&
588 	    tid_agg_rx->stored_mpdu_num > 1) {
589 		/*
590 		 * No buffers ready to be released, but check whether any
591 		 * frames in the reorder buffer have timed out.
592 		 */
593 		int skipped = 1;
594 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
595 		     j = (j + 1) % tid_agg_rx->buf_size) {
596 			if (!tid_agg_rx->reorder_buf[j]) {
597 				skipped++;
598 				continue;
599 			}
600 			if (!time_after(jiffies, tid_agg_rx->reorder_time[j] +
601 					HT_RX_REORDER_BUF_TIMEOUT))
602 				goto set_release_timer;
603 
604 #ifdef CONFIG_MAC80211_HT_DEBUG
605 			if (net_ratelimit())
606 				wiphy_debug(hw->wiphy,
607 					    "release an RX reorder frame due to timeout on earlier frames\n");
608 #endif
609 			ieee80211_release_reorder_frame(hw, tid_agg_rx,
610 							j, frames);
611 
612 			/*
613 			 * Increment the head seq# also for the skipped slots.
614 			 */
615 			tid_agg_rx->head_seq_num =
616 				(tid_agg_rx->head_seq_num + skipped) & SEQ_MASK;
617 			skipped = 0;
618 		}
619 	} else while (tid_agg_rx->reorder_buf[index]) {
620 		ieee80211_release_reorder_frame(hw, tid_agg_rx, index, frames);
621 		index =	seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) %
622 							tid_agg_rx->buf_size;
623 	}
624 
625 	/*
626 	 * Disable the reorder release timer for now.
627 	 *
628 	 * The current implementation lacks a proper locking scheme
629 	 * which would protect vital statistic and debug counters
630 	 * from being updated by two different but concurrent BHs.
631 	 *
632 	 * More information about the topic is available from:
633 	 * - thread: http://marc.info/?t=128635927000001
634 	 *
635 	 * What was wrong:
636 	 * =>  http://marc.info/?l=linux-wireless&m=128636170811964
637 	 * "Basically the thing is that until your patch, the data
638 	 *  in the struct didn't actually need locking because it
639 	 *  was accessed by the RX path only which is not concurrent."
640 	 *
641 	 * List of what needs to be fixed:
642 	 * => http://marc.info/?l=linux-wireless&m=128656352920957
643 	 *
644 
645 	if (tid_agg_rx->stored_mpdu_num) {
646 		j = index = seq_sub(tid_agg_rx->head_seq_num,
647 				    tid_agg_rx->ssn) % tid_agg_rx->buf_size;
648 
649 		for (; j != (index - 1) % tid_agg_rx->buf_size;
650 		     j = (j + 1) % tid_agg_rx->buf_size) {
651 			if (tid_agg_rx->reorder_buf[j])
652 				break;
653 		}
654 
655  set_release_timer:
656 
657 		mod_timer(&tid_agg_rx->reorder_timer,
658 			  tid_agg_rx->reorder_time[j] +
659 			  HT_RX_REORDER_BUF_TIMEOUT);
660 	} else {
661 		del_timer(&tid_agg_rx->reorder_timer);
662 	}
663 	*/
664 
665 set_release_timer:
666 	return;
667 }
668 
669 /*
670  * As this function belongs to the RX path it must be under
671  * rcu_read_lock protection. It returns false if the frame
672  * can be processed immediately, true if it was consumed.
673  */
674 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
675 					     struct tid_ampdu_rx *tid_agg_rx,
676 					     struct sk_buff *skb,
677 					     struct sk_buff_head *frames)
678 {
679 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
680 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
681 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
682 	u16 head_seq_num, buf_size;
683 	int index;
684 	bool ret = true;
685 
686 	buf_size = tid_agg_rx->buf_size;
687 	head_seq_num = tid_agg_rx->head_seq_num;
688 
689 	spin_lock(&tid_agg_rx->reorder_lock);
690 	/* frame with out of date sequence number */
691 	if (seq_less(mpdu_seq_num, head_seq_num)) {
692 		dev_kfree_skb(skb);
693 		goto out;
694 	}
695 
696 	/*
697 	 * If frame the sequence number exceeds our buffering window
698 	 * size release some previous frames to make room for this one.
699 	 */
700 	if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) {
701 		head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size));
702 		/* release stored frames up to new head to stack */
703 		ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num,
704 						 frames);
705 	}
706 
707 	/* Now the new frame is always in the range of the reordering buffer */
708 
709 	index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size;
710 
711 	/* check if we already stored this frame */
712 	if (tid_agg_rx->reorder_buf[index]) {
713 		dev_kfree_skb(skb);
714 		goto out;
715 	}
716 
717 	/*
718 	 * If the current MPDU is in the right order and nothing else
719 	 * is stored we can process it directly, no need to buffer it.
720 	 */
721 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
722 	    tid_agg_rx->stored_mpdu_num == 0) {
723 		tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
724 		ret = false;
725 		goto out;
726 	}
727 
728 	/* put the frame in the reordering buffer */
729 	tid_agg_rx->reorder_buf[index] = skb;
730 	tid_agg_rx->reorder_time[index] = jiffies;
731 	tid_agg_rx->stored_mpdu_num++;
732 	ieee80211_sta_reorder_release(hw, tid_agg_rx, frames);
733 
734  out:
735 	spin_unlock(&tid_agg_rx->reorder_lock);
736 	return ret;
737 }
738 
739 /*
740  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
741  * true if the MPDU was buffered, false if it should be processed.
742  */
743 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
744 				       struct sk_buff_head *frames)
745 {
746 	struct sk_buff *skb = rx->skb;
747 	struct ieee80211_local *local = rx->local;
748 	struct ieee80211_hw *hw = &local->hw;
749 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
750 	struct sta_info *sta = rx->sta;
751 	struct tid_ampdu_rx *tid_agg_rx;
752 	u16 sc;
753 	int tid;
754 
755 	if (!ieee80211_is_data_qos(hdr->frame_control))
756 		goto dont_reorder;
757 
758 	/*
759 	 * filter the QoS data rx stream according to
760 	 * STA/TID and check if this STA/TID is on aggregation
761 	 */
762 
763 	if (!sta)
764 		goto dont_reorder;
765 
766 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
767 
768 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
769 	if (!tid_agg_rx)
770 		goto dont_reorder;
771 
772 	/* qos null data frames are excluded */
773 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
774 		goto dont_reorder;
775 
776 	/* new, potentially un-ordered, ampdu frame - process it */
777 
778 	/* reset session timer */
779 	if (tid_agg_rx->timeout)
780 		mod_timer(&tid_agg_rx->session_timer,
781 			  TU_TO_EXP_TIME(tid_agg_rx->timeout));
782 
783 	/* if this mpdu is fragmented - terminate rx aggregation session */
784 	sc = le16_to_cpu(hdr->seq_ctrl);
785 	if (sc & IEEE80211_SCTL_FRAG) {
786 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
787 		skb_queue_tail(&rx->sdata->skb_queue, skb);
788 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
789 		return;
790 	}
791 
792 	/*
793 	 * No locking needed -- we will only ever process one
794 	 * RX packet at a time, and thus own tid_agg_rx. All
795 	 * other code manipulating it needs to (and does) make
796 	 * sure that we cannot get to it any more before doing
797 	 * anything with it.
798 	 */
799 	if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, frames))
800 		return;
801 
802  dont_reorder:
803 	__skb_queue_tail(frames, skb);
804 }
805 
806 static ieee80211_rx_result debug_noinline
807 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
808 {
809 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
810 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
811 
812 	/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
813 	if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
814 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
815 			     rx->sta->last_seq_ctrl[rx->queue] ==
816 			     hdr->seq_ctrl)) {
817 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
818 				rx->local->dot11FrameDuplicateCount++;
819 				rx->sta->num_duplicates++;
820 			}
821 			return RX_DROP_MONITOR;
822 		} else
823 			rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
824 	}
825 
826 	if (unlikely(rx->skb->len < 16)) {
827 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
828 		return RX_DROP_MONITOR;
829 	}
830 
831 	/* Drop disallowed frame classes based on STA auth/assoc state;
832 	 * IEEE 802.11, Chap 5.5.
833 	 *
834 	 * mac80211 filters only based on association state, i.e. it drops
835 	 * Class 3 frames from not associated stations. hostapd sends
836 	 * deauth/disassoc frames when needed. In addition, hostapd is
837 	 * responsible for filtering on both auth and assoc states.
838 	 */
839 
840 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
841 		return ieee80211_rx_mesh_check(rx);
842 
843 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
844 		      ieee80211_is_pspoll(hdr->frame_control)) &&
845 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
846 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
847 		     (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
848 		if ((!ieee80211_has_fromds(hdr->frame_control) &&
849 		     !ieee80211_has_tods(hdr->frame_control) &&
850 		     ieee80211_is_data(hdr->frame_control)) ||
851 		    !(status->rx_flags & IEEE80211_RX_RA_MATCH)) {
852 			/* Drop IBSS frames and frames for other hosts
853 			 * silently. */
854 			return RX_DROP_MONITOR;
855 		}
856 
857 		return RX_DROP_MONITOR;
858 	}
859 
860 	return RX_CONTINUE;
861 }
862 
863 
864 static ieee80211_rx_result debug_noinline
865 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
866 {
867 	struct sk_buff *skb = rx->skb;
868 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
869 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
870 	int keyidx;
871 	int hdrlen;
872 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
873 	struct ieee80211_key *sta_ptk = NULL;
874 	int mmie_keyidx = -1;
875 	__le16 fc;
876 
877 	/*
878 	 * Key selection 101
879 	 *
880 	 * There are four types of keys:
881 	 *  - GTK (group keys)
882 	 *  - IGTK (group keys for management frames)
883 	 *  - PTK (pairwise keys)
884 	 *  - STK (station-to-station pairwise keys)
885 	 *
886 	 * When selecting a key, we have to distinguish between multicast
887 	 * (including broadcast) and unicast frames, the latter can only
888 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
889 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
890 	 * unicast frames can also use key indices like GTKs. Hence, if we
891 	 * don't have a PTK/STK we check the key index for a WEP key.
892 	 *
893 	 * Note that in a regular BSS, multicast frames are sent by the
894 	 * AP only, associated stations unicast the frame to the AP first
895 	 * which then multicasts it on their behalf.
896 	 *
897 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
898 	 * with each station, that is something we don't currently handle.
899 	 * The spec seems to expect that one negotiates the same key with
900 	 * every station but there's no such requirement; VLANs could be
901 	 * possible.
902 	 */
903 
904 	/*
905 	 * No point in finding a key and decrypting if the frame is neither
906 	 * addressed to us nor a multicast frame.
907 	 */
908 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
909 		return RX_CONTINUE;
910 
911 	/* start without a key */
912 	rx->key = NULL;
913 
914 	if (rx->sta)
915 		sta_ptk = rcu_dereference(rx->sta->ptk);
916 
917 	fc = hdr->frame_control;
918 
919 	if (!ieee80211_has_protected(fc))
920 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
921 
922 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
923 		rx->key = sta_ptk;
924 		if ((status->flag & RX_FLAG_DECRYPTED) &&
925 		    (status->flag & RX_FLAG_IV_STRIPPED))
926 			return RX_CONTINUE;
927 		/* Skip decryption if the frame is not protected. */
928 		if (!ieee80211_has_protected(fc))
929 			return RX_CONTINUE;
930 	} else if (mmie_keyidx >= 0) {
931 		/* Broadcast/multicast robust management frame / BIP */
932 		if ((status->flag & RX_FLAG_DECRYPTED) &&
933 		    (status->flag & RX_FLAG_IV_STRIPPED))
934 			return RX_CONTINUE;
935 
936 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
937 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
938 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
939 		if (rx->sta)
940 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
941 		if (!rx->key)
942 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
943 	} else if (!ieee80211_has_protected(fc)) {
944 		/*
945 		 * The frame was not protected, so skip decryption. However, we
946 		 * need to set rx->key if there is a key that could have been
947 		 * used so that the frame may be dropped if encryption would
948 		 * have been expected.
949 		 */
950 		struct ieee80211_key *key = NULL;
951 		if (ieee80211_is_mgmt(fc) &&
952 		    is_multicast_ether_addr(hdr->addr1) &&
953 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
954 			rx->key = key;
955 		else if ((key = rcu_dereference(rx->sdata->default_key)))
956 			rx->key = key;
957 		return RX_CONTINUE;
958 	} else {
959 		u8 keyid;
960 		/*
961 		 * The device doesn't give us the IV so we won't be
962 		 * able to look up the key. That's ok though, we
963 		 * don't need to decrypt the frame, we just won't
964 		 * be able to keep statistics accurate.
965 		 * Except for key threshold notifications, should
966 		 * we somehow allow the driver to tell us which key
967 		 * the hardware used if this flag is set?
968 		 */
969 		if ((status->flag & RX_FLAG_DECRYPTED) &&
970 		    (status->flag & RX_FLAG_IV_STRIPPED))
971 			return RX_CONTINUE;
972 
973 		hdrlen = ieee80211_hdrlen(fc);
974 
975 		if (rx->skb->len < 8 + hdrlen)
976 			return RX_DROP_UNUSABLE; /* TODO: count this? */
977 
978 		/*
979 		 * no need to call ieee80211_wep_get_keyidx,
980 		 * it verifies a bunch of things we've done already
981 		 */
982 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
983 		keyidx = keyid >> 6;
984 
985 		/* check per-station GTK first, if multicast packet */
986 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
987 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
988 
989 		/* if not found, try default key */
990 		if (!rx->key) {
991 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
992 
993 			/*
994 			 * RSNA-protected unicast frames should always be
995 			 * sent with pairwise or station-to-station keys,
996 			 * but for WEP we allow using a key index as well.
997 			 */
998 			if (rx->key &&
999 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1000 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1001 			    !is_multicast_ether_addr(hdr->addr1))
1002 				rx->key = NULL;
1003 		}
1004 	}
1005 
1006 	if (rx->key) {
1007 		rx->key->tx_rx_count++;
1008 		/* TODO: add threshold stuff again */
1009 	} else {
1010 		return RX_DROP_MONITOR;
1011 	}
1012 
1013 	if (skb_linearize(rx->skb))
1014 		return RX_DROP_UNUSABLE;
1015 	/* the hdr variable is invalid now! */
1016 
1017 	switch (rx->key->conf.cipher) {
1018 	case WLAN_CIPHER_SUITE_WEP40:
1019 	case WLAN_CIPHER_SUITE_WEP104:
1020 		/* Check for weak IVs if possible */
1021 		if (rx->sta && ieee80211_is_data(fc) &&
1022 		    (!(status->flag & RX_FLAG_IV_STRIPPED) ||
1023 		     !(status->flag & RX_FLAG_DECRYPTED)) &&
1024 		    ieee80211_wep_is_weak_iv(rx->skb, rx->key))
1025 			rx->sta->wep_weak_iv_count++;
1026 
1027 		result = ieee80211_crypto_wep_decrypt(rx);
1028 		break;
1029 	case WLAN_CIPHER_SUITE_TKIP:
1030 		result = ieee80211_crypto_tkip_decrypt(rx);
1031 		break;
1032 	case WLAN_CIPHER_SUITE_CCMP:
1033 		result = ieee80211_crypto_ccmp_decrypt(rx);
1034 		break;
1035 	case WLAN_CIPHER_SUITE_AES_CMAC:
1036 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1037 		break;
1038 	default:
1039 		/*
1040 		 * We can reach here only with HW-only algorithms
1041 		 * but why didn't it decrypt the frame?!
1042 		 */
1043 		return RX_DROP_UNUSABLE;
1044 	}
1045 
1046 	/* either the frame has been decrypted or will be dropped */
1047 	status->flag |= RX_FLAG_DECRYPTED;
1048 
1049 	return result;
1050 }
1051 
1052 static ieee80211_rx_result debug_noinline
1053 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1054 {
1055 	struct ieee80211_local *local;
1056 	struct ieee80211_hdr *hdr;
1057 	struct sk_buff *skb;
1058 
1059 	local = rx->local;
1060 	skb = rx->skb;
1061 	hdr = (struct ieee80211_hdr *) skb->data;
1062 
1063 	if (!local->pspolling)
1064 		return RX_CONTINUE;
1065 
1066 	if (!ieee80211_has_fromds(hdr->frame_control))
1067 		/* this is not from AP */
1068 		return RX_CONTINUE;
1069 
1070 	if (!ieee80211_is_data(hdr->frame_control))
1071 		return RX_CONTINUE;
1072 
1073 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1074 		/* AP has no more frames buffered for us */
1075 		local->pspolling = false;
1076 		return RX_CONTINUE;
1077 	}
1078 
1079 	/* more data bit is set, let's request a new frame from the AP */
1080 	ieee80211_send_pspoll(local, rx->sdata);
1081 
1082 	return RX_CONTINUE;
1083 }
1084 
1085 static void ap_sta_ps_start(struct sta_info *sta)
1086 {
1087 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1088 	struct ieee80211_local *local = sdata->local;
1089 
1090 	atomic_inc(&sdata->bss->num_sta_ps);
1091 	set_sta_flags(sta, WLAN_STA_PS_STA);
1092 	drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1093 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1094 	printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n",
1095 	       sdata->name, sta->sta.addr, sta->sta.aid);
1096 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1097 }
1098 
1099 static void ap_sta_ps_end(struct sta_info *sta)
1100 {
1101 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1102 
1103 	atomic_dec(&sdata->bss->num_sta_ps);
1104 
1105 	clear_sta_flags(sta, WLAN_STA_PS_STA);
1106 
1107 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1108 	printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n",
1109 	       sdata->name, sta->sta.addr, sta->sta.aid);
1110 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1111 
1112 	if (test_sta_flags(sta, WLAN_STA_PS_DRIVER)) {
1113 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1114 		printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n",
1115 		       sdata->name, sta->sta.addr, sta->sta.aid);
1116 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1117 		return;
1118 	}
1119 
1120 	ieee80211_sta_ps_deliver_wakeup(sta);
1121 }
1122 
1123 static ieee80211_rx_result debug_noinline
1124 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1125 {
1126 	struct sta_info *sta = rx->sta;
1127 	struct sk_buff *skb = rx->skb;
1128 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1129 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1130 
1131 	if (!sta)
1132 		return RX_CONTINUE;
1133 
1134 	/*
1135 	 * Update last_rx only for IBSS packets which are for the current
1136 	 * BSSID to avoid keeping the current IBSS network alive in cases
1137 	 * where other STAs start using different BSSID.
1138 	 */
1139 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1140 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1141 						NL80211_IFTYPE_ADHOC);
1142 		if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0)
1143 			sta->last_rx = jiffies;
1144 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1145 		/*
1146 		 * Mesh beacons will update last_rx when if they are found to
1147 		 * match the current local configuration when processed.
1148 		 */
1149 		sta->last_rx = jiffies;
1150 	}
1151 
1152 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1153 		return RX_CONTINUE;
1154 
1155 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1156 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1157 
1158 	sta->rx_fragments++;
1159 	sta->rx_bytes += rx->skb->len;
1160 	sta->last_signal = status->signal;
1161 
1162 	/*
1163 	 * Change STA power saving mode only at the end of a frame
1164 	 * exchange sequence.
1165 	 */
1166 	if (!ieee80211_has_morefrags(hdr->frame_control) &&
1167 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1168 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1169 		if (test_sta_flags(sta, WLAN_STA_PS_STA)) {
1170 			/*
1171 			 * Ignore doze->wake transitions that are
1172 			 * indicated by non-data frames, the standard
1173 			 * is unclear here, but for example going to
1174 			 * PS mode and then scanning would cause a
1175 			 * doze->wake transition for the probe request,
1176 			 * and that is clearly undesirable.
1177 			 */
1178 			if (ieee80211_is_data(hdr->frame_control) &&
1179 			    !ieee80211_has_pm(hdr->frame_control))
1180 				ap_sta_ps_end(sta);
1181 		} else {
1182 			if (ieee80211_has_pm(hdr->frame_control))
1183 				ap_sta_ps_start(sta);
1184 		}
1185 	}
1186 
1187 	/*
1188 	 * Drop (qos-)data::nullfunc frames silently, since they
1189 	 * are used only to control station power saving mode.
1190 	 */
1191 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1192 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1193 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1194 
1195 		/*
1196 		 * If we receive a 4-addr nullfunc frame from a STA
1197 		 * that was not moved to a 4-addr STA vlan yet, drop
1198 		 * the frame to the monitor interface, to make sure
1199 		 * that hostapd sees it
1200 		 */
1201 		if (ieee80211_has_a4(hdr->frame_control) &&
1202 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1203 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1204 		      !rx->sdata->u.vlan.sta)))
1205 			return RX_DROP_MONITOR;
1206 		/*
1207 		 * Update counter and free packet here to avoid
1208 		 * counting this as a dropped packed.
1209 		 */
1210 		sta->rx_packets++;
1211 		dev_kfree_skb(rx->skb);
1212 		return RX_QUEUED;
1213 	}
1214 
1215 	return RX_CONTINUE;
1216 } /* ieee80211_rx_h_sta_process */
1217 
1218 static inline struct ieee80211_fragment_entry *
1219 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1220 			 unsigned int frag, unsigned int seq, int rx_queue,
1221 			 struct sk_buff **skb)
1222 {
1223 	struct ieee80211_fragment_entry *entry;
1224 	int idx;
1225 
1226 	idx = sdata->fragment_next;
1227 	entry = &sdata->fragments[sdata->fragment_next++];
1228 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1229 		sdata->fragment_next = 0;
1230 
1231 	if (!skb_queue_empty(&entry->skb_list)) {
1232 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1233 		struct ieee80211_hdr *hdr =
1234 			(struct ieee80211_hdr *) entry->skb_list.next->data;
1235 		printk(KERN_DEBUG "%s: RX reassembly removed oldest "
1236 		       "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
1237 		       "addr1=%pM addr2=%pM\n",
1238 		       sdata->name, idx,
1239 		       jiffies - entry->first_frag_time, entry->seq,
1240 		       entry->last_frag, hdr->addr1, hdr->addr2);
1241 #endif
1242 		__skb_queue_purge(&entry->skb_list);
1243 	}
1244 
1245 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1246 	*skb = NULL;
1247 	entry->first_frag_time = jiffies;
1248 	entry->seq = seq;
1249 	entry->rx_queue = rx_queue;
1250 	entry->last_frag = frag;
1251 	entry->ccmp = 0;
1252 	entry->extra_len = 0;
1253 
1254 	return entry;
1255 }
1256 
1257 static inline struct ieee80211_fragment_entry *
1258 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1259 			  unsigned int frag, unsigned int seq,
1260 			  int rx_queue, struct ieee80211_hdr *hdr)
1261 {
1262 	struct ieee80211_fragment_entry *entry;
1263 	int i, idx;
1264 
1265 	idx = sdata->fragment_next;
1266 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1267 		struct ieee80211_hdr *f_hdr;
1268 
1269 		idx--;
1270 		if (idx < 0)
1271 			idx = IEEE80211_FRAGMENT_MAX - 1;
1272 
1273 		entry = &sdata->fragments[idx];
1274 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1275 		    entry->rx_queue != rx_queue ||
1276 		    entry->last_frag + 1 != frag)
1277 			continue;
1278 
1279 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1280 
1281 		/*
1282 		 * Check ftype and addresses are equal, else check next fragment
1283 		 */
1284 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1285 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1286 		    compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
1287 		    compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
1288 			continue;
1289 
1290 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1291 			__skb_queue_purge(&entry->skb_list);
1292 			continue;
1293 		}
1294 		return entry;
1295 	}
1296 
1297 	return NULL;
1298 }
1299 
1300 static ieee80211_rx_result debug_noinline
1301 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1302 {
1303 	struct ieee80211_hdr *hdr;
1304 	u16 sc;
1305 	__le16 fc;
1306 	unsigned int frag, seq;
1307 	struct ieee80211_fragment_entry *entry;
1308 	struct sk_buff *skb;
1309 	struct ieee80211_rx_status *status;
1310 
1311 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1312 	fc = hdr->frame_control;
1313 	sc = le16_to_cpu(hdr->seq_ctrl);
1314 	frag = sc & IEEE80211_SCTL_FRAG;
1315 
1316 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1317 		   (rx->skb)->len < 24 ||
1318 		   is_multicast_ether_addr(hdr->addr1))) {
1319 		/* not fragmented */
1320 		goto out;
1321 	}
1322 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1323 
1324 	if (skb_linearize(rx->skb))
1325 		return RX_DROP_UNUSABLE;
1326 
1327 	/*
1328 	 *  skb_linearize() might change the skb->data and
1329 	 *  previously cached variables (in this case, hdr) need to
1330 	 *  be refreshed with the new data.
1331 	 */
1332 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1333 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1334 
1335 	if (frag == 0) {
1336 		/* This is the first fragment of a new frame. */
1337 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1338 						 rx->queue, &(rx->skb));
1339 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1340 		    ieee80211_has_protected(fc)) {
1341 			int queue = ieee80211_is_mgmt(fc) ?
1342 				NUM_RX_DATA_QUEUES : rx->queue;
1343 			/* Store CCMP PN so that we can verify that the next
1344 			 * fragment has a sequential PN value. */
1345 			entry->ccmp = 1;
1346 			memcpy(entry->last_pn,
1347 			       rx->key->u.ccmp.rx_pn[queue],
1348 			       CCMP_PN_LEN);
1349 		}
1350 		return RX_QUEUED;
1351 	}
1352 
1353 	/* This is a fragment for a frame that should already be pending in
1354 	 * fragment cache. Add this fragment to the end of the pending entry.
1355 	 */
1356 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr);
1357 	if (!entry) {
1358 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1359 		return RX_DROP_MONITOR;
1360 	}
1361 
1362 	/* Verify that MPDUs within one MSDU have sequential PN values.
1363 	 * (IEEE 802.11i, 8.3.3.4.5) */
1364 	if (entry->ccmp) {
1365 		int i;
1366 		u8 pn[CCMP_PN_LEN], *rpn;
1367 		int queue;
1368 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1369 			return RX_DROP_UNUSABLE;
1370 		memcpy(pn, entry->last_pn, CCMP_PN_LEN);
1371 		for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
1372 			pn[i]++;
1373 			if (pn[i])
1374 				break;
1375 		}
1376 		queue = ieee80211_is_mgmt(fc) ?
1377 			NUM_RX_DATA_QUEUES : rx->queue;
1378 		rpn = rx->key->u.ccmp.rx_pn[queue];
1379 		if (memcmp(pn, rpn, CCMP_PN_LEN))
1380 			return RX_DROP_UNUSABLE;
1381 		memcpy(entry->last_pn, pn, CCMP_PN_LEN);
1382 	}
1383 
1384 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1385 	__skb_queue_tail(&entry->skb_list, rx->skb);
1386 	entry->last_frag = frag;
1387 	entry->extra_len += rx->skb->len;
1388 	if (ieee80211_has_morefrags(fc)) {
1389 		rx->skb = NULL;
1390 		return RX_QUEUED;
1391 	}
1392 
1393 	rx->skb = __skb_dequeue(&entry->skb_list);
1394 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1395 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1396 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1397 					      GFP_ATOMIC))) {
1398 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1399 			__skb_queue_purge(&entry->skb_list);
1400 			return RX_DROP_UNUSABLE;
1401 		}
1402 	}
1403 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1404 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1405 		dev_kfree_skb(skb);
1406 	}
1407 
1408 	/* Complete frame has been reassembled - process it now */
1409 	status = IEEE80211_SKB_RXCB(rx->skb);
1410 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1411 
1412  out:
1413 	if (rx->sta)
1414 		rx->sta->rx_packets++;
1415 	if (is_multicast_ether_addr(hdr->addr1))
1416 		rx->local->dot11MulticastReceivedFrameCount++;
1417 	else
1418 		ieee80211_led_rx(rx->local);
1419 	return RX_CONTINUE;
1420 }
1421 
1422 static ieee80211_rx_result debug_noinline
1423 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
1424 {
1425 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1426 	__le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control;
1427 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1428 
1429 	if (likely(!rx->sta || !ieee80211_is_pspoll(fc) ||
1430 		   !(status->rx_flags & IEEE80211_RX_RA_MATCH)))
1431 		return RX_CONTINUE;
1432 
1433 	if ((sdata->vif.type != NL80211_IFTYPE_AP) &&
1434 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN))
1435 		return RX_DROP_UNUSABLE;
1436 
1437 	if (!test_sta_flags(rx->sta, WLAN_STA_PS_DRIVER))
1438 		ieee80211_sta_ps_deliver_poll_response(rx->sta);
1439 	else
1440 		set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
1441 
1442 	/* Free PS Poll skb here instead of returning RX_DROP that would
1443 	 * count as an dropped frame. */
1444 	dev_kfree_skb(rx->skb);
1445 
1446 	return RX_QUEUED;
1447 }
1448 
1449 static ieee80211_rx_result debug_noinline
1450 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1451 {
1452 	u8 *data = rx->skb->data;
1453 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1454 
1455 	if (!ieee80211_is_data_qos(hdr->frame_control))
1456 		return RX_CONTINUE;
1457 
1458 	/* remove the qos control field, update frame type and meta-data */
1459 	memmove(data + IEEE80211_QOS_CTL_LEN, data,
1460 		ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1461 	hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1462 	/* change frame type to non QOS */
1463 	hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1464 
1465 	return RX_CONTINUE;
1466 }
1467 
1468 static int
1469 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1470 {
1471 	if (unlikely(!rx->sta ||
1472 	    !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1473 		return -EACCES;
1474 
1475 	return 0;
1476 }
1477 
1478 static int
1479 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1480 {
1481 	struct sk_buff *skb = rx->skb;
1482 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1483 
1484 	/*
1485 	 * Pass through unencrypted frames if the hardware has
1486 	 * decrypted them already.
1487 	 */
1488 	if (status->flag & RX_FLAG_DECRYPTED)
1489 		return 0;
1490 
1491 	/* Drop unencrypted frames if key is set. */
1492 	if (unlikely(!ieee80211_has_protected(fc) &&
1493 		     !ieee80211_is_nullfunc(fc) &&
1494 		     ieee80211_is_data(fc) &&
1495 		     (rx->key || rx->sdata->drop_unencrypted)))
1496 		return -EACCES;
1497 
1498 	return 0;
1499 }
1500 
1501 static int
1502 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1503 {
1504 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1505 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1506 	__le16 fc = hdr->frame_control;
1507 
1508 	/*
1509 	 * Pass through unencrypted frames if the hardware has
1510 	 * decrypted them already.
1511 	 */
1512 	if (status->flag & RX_FLAG_DECRYPTED)
1513 		return 0;
1514 
1515 	if (rx->sta && test_sta_flags(rx->sta, WLAN_STA_MFP)) {
1516 		if (unlikely(!ieee80211_has_protected(fc) &&
1517 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1518 			     rx->key))
1519 			return -EACCES;
1520 		/* BIP does not use Protected field, so need to check MMIE */
1521 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1522 			     ieee80211_get_mmie_keyidx(rx->skb) < 0))
1523 			return -EACCES;
1524 		/*
1525 		 * When using MFP, Action frames are not allowed prior to
1526 		 * having configured keys.
1527 		 */
1528 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1529 			     ieee80211_is_robust_mgmt_frame(
1530 				     (struct ieee80211_hdr *) rx->skb->data)))
1531 			return -EACCES;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 static int
1538 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1539 {
1540 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1541 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1542 
1543 	if (ieee80211_has_a4(hdr->frame_control) &&
1544 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1545 		return -1;
1546 
1547 	if (is_multicast_ether_addr(hdr->addr1) &&
1548 	    ((sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) ||
1549 	     (sdata->vif.type == NL80211_IFTYPE_STATION && sdata->u.mgd.use_4addr)))
1550 		return -1;
1551 
1552 	return ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1553 }
1554 
1555 /*
1556  * requires that rx->skb is a frame with ethernet header
1557  */
1558 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1559 {
1560 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1561 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1562 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1563 
1564 	/*
1565 	 * Allow EAPOL frames to us/the PAE group address regardless
1566 	 * of whether the frame was encrypted or not.
1567 	 */
1568 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1569 	    (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 ||
1570 	     compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1571 		return true;
1572 
1573 	if (ieee80211_802_1x_port_control(rx) ||
1574 	    ieee80211_drop_unencrypted(rx, fc))
1575 		return false;
1576 
1577 	return true;
1578 }
1579 
1580 /*
1581  * requires that rx->skb is a frame with ethernet header
1582  */
1583 static void
1584 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1585 {
1586 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1587 	struct net_device *dev = sdata->dev;
1588 	struct sk_buff *skb, *xmit_skb;
1589 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1590 	struct sta_info *dsta;
1591 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1592 
1593 	skb = rx->skb;
1594 	xmit_skb = NULL;
1595 
1596 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1597 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1598 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1599 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1600 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1601 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1602 			/*
1603 			 * send multicast frames both to higher layers in
1604 			 * local net stack and back to the wireless medium
1605 			 */
1606 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1607 			if (!xmit_skb && net_ratelimit())
1608 				printk(KERN_DEBUG "%s: failed to clone "
1609 				       "multicast frame\n", dev->name);
1610 		} else {
1611 			dsta = sta_info_get(sdata, skb->data);
1612 			if (dsta) {
1613 				/*
1614 				 * The destination station is associated to
1615 				 * this AP (in this VLAN), so send the frame
1616 				 * directly to it and do not pass it to local
1617 				 * net stack.
1618 				 */
1619 				xmit_skb = skb;
1620 				skb = NULL;
1621 			}
1622 		}
1623 	}
1624 
1625 	if (skb) {
1626 		int align __maybe_unused;
1627 
1628 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1629 		/*
1630 		 * 'align' will only take the values 0 or 2 here
1631 		 * since all frames are required to be aligned
1632 		 * to 2-byte boundaries when being passed to
1633 		 * mac80211. That also explains the __skb_push()
1634 		 * below.
1635 		 */
1636 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1637 		if (align) {
1638 			if (WARN_ON(skb_headroom(skb) < 3)) {
1639 				dev_kfree_skb(skb);
1640 				skb = NULL;
1641 			} else {
1642 				u8 *data = skb->data;
1643 				size_t len = skb_headlen(skb);
1644 				skb->data -= align;
1645 				memmove(skb->data, data, len);
1646 				skb_set_tail_pointer(skb, len);
1647 			}
1648 		}
1649 #endif
1650 
1651 		if (skb) {
1652 			/* deliver to local stack */
1653 			skb->protocol = eth_type_trans(skb, dev);
1654 			memset(skb->cb, 0, sizeof(skb->cb));
1655 			netif_receive_skb(skb);
1656 		}
1657 	}
1658 
1659 	if (xmit_skb) {
1660 		/* send to wireless media */
1661 		xmit_skb->protocol = htons(ETH_P_802_3);
1662 		skb_reset_network_header(xmit_skb);
1663 		skb_reset_mac_header(xmit_skb);
1664 		dev_queue_xmit(xmit_skb);
1665 	}
1666 }
1667 
1668 static ieee80211_rx_result debug_noinline
1669 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1670 {
1671 	struct net_device *dev = rx->sdata->dev;
1672 	struct sk_buff *skb = rx->skb;
1673 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1674 	__le16 fc = hdr->frame_control;
1675 	struct sk_buff_head frame_list;
1676 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1677 
1678 	if (unlikely(!ieee80211_is_data(fc)))
1679 		return RX_CONTINUE;
1680 
1681 	if (unlikely(!ieee80211_is_data_present(fc)))
1682 		return RX_DROP_MONITOR;
1683 
1684 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1685 		return RX_CONTINUE;
1686 
1687 	if (ieee80211_has_a4(hdr->frame_control) &&
1688 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1689 	    !rx->sdata->u.vlan.sta)
1690 		return RX_DROP_UNUSABLE;
1691 
1692 	if (is_multicast_ether_addr(hdr->addr1) &&
1693 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1694 	      rx->sdata->u.vlan.sta) ||
1695 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1696 	      rx->sdata->u.mgd.use_4addr)))
1697 		return RX_DROP_UNUSABLE;
1698 
1699 	skb->dev = dev;
1700 	__skb_queue_head_init(&frame_list);
1701 
1702 	if (skb_linearize(skb))
1703 		return RX_DROP_UNUSABLE;
1704 
1705 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1706 				 rx->sdata->vif.type,
1707 				 rx->local->hw.extra_tx_headroom);
1708 
1709 	while (!skb_queue_empty(&frame_list)) {
1710 		rx->skb = __skb_dequeue(&frame_list);
1711 
1712 		if (!ieee80211_frame_allowed(rx, fc)) {
1713 			dev_kfree_skb(rx->skb);
1714 			continue;
1715 		}
1716 		dev->stats.rx_packets++;
1717 		dev->stats.rx_bytes += rx->skb->len;
1718 
1719 		ieee80211_deliver_skb(rx);
1720 	}
1721 
1722 	return RX_QUEUED;
1723 }
1724 
1725 #ifdef CONFIG_MAC80211_MESH
1726 static ieee80211_rx_result
1727 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
1728 {
1729 	struct ieee80211_hdr *hdr;
1730 	struct ieee80211s_hdr *mesh_hdr;
1731 	unsigned int hdrlen;
1732 	struct sk_buff *skb = rx->skb, *fwd_skb;
1733 	struct ieee80211_local *local = rx->local;
1734 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1735 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1736 
1737 	hdr = (struct ieee80211_hdr *) skb->data;
1738 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
1739 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
1740 
1741 	if (!ieee80211_is_data(hdr->frame_control))
1742 		return RX_CONTINUE;
1743 
1744 	if (!mesh_hdr->ttl)
1745 		/* illegal frame */
1746 		return RX_DROP_MONITOR;
1747 
1748 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
1749 		struct mesh_path *mppath;
1750 		char *proxied_addr;
1751 		char *mpp_addr;
1752 
1753 		if (is_multicast_ether_addr(hdr->addr1)) {
1754 			mpp_addr = hdr->addr3;
1755 			proxied_addr = mesh_hdr->eaddr1;
1756 		} else {
1757 			mpp_addr = hdr->addr4;
1758 			proxied_addr = mesh_hdr->eaddr2;
1759 		}
1760 
1761 		rcu_read_lock();
1762 		mppath = mpp_path_lookup(proxied_addr, sdata);
1763 		if (!mppath) {
1764 			mpp_path_add(proxied_addr, mpp_addr, sdata);
1765 		} else {
1766 			spin_lock_bh(&mppath->state_lock);
1767 			if (compare_ether_addr(mppath->mpp, mpp_addr) != 0)
1768 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
1769 			spin_unlock_bh(&mppath->state_lock);
1770 		}
1771 		rcu_read_unlock();
1772 	}
1773 
1774 	/* Frame has reached destination.  Don't forward */
1775 	if (!is_multicast_ether_addr(hdr->addr1) &&
1776 	    compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0)
1777 		return RX_CONTINUE;
1778 
1779 	mesh_hdr->ttl--;
1780 
1781 	if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1782 		if (!mesh_hdr->ttl)
1783 			IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh,
1784 						     dropped_frames_ttl);
1785 		else {
1786 			struct ieee80211_hdr *fwd_hdr;
1787 			struct ieee80211_tx_info *info;
1788 
1789 			fwd_skb = skb_copy(skb, GFP_ATOMIC);
1790 
1791 			if (!fwd_skb && net_ratelimit())
1792 				printk(KERN_DEBUG "%s: failed to clone mesh frame\n",
1793 						   sdata->name);
1794 
1795 			fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
1796 			memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
1797 			info = IEEE80211_SKB_CB(fwd_skb);
1798 			memset(info, 0, sizeof(*info));
1799 			info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1800 			info->control.vif = &rx->sdata->vif;
1801 			skb_set_queue_mapping(skb,
1802 				ieee80211_select_queue(rx->sdata, fwd_skb));
1803 			ieee80211_set_qos_hdr(local, skb);
1804 			if (is_multicast_ether_addr(fwd_hdr->addr1))
1805 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1806 								fwded_mcast);
1807 			else {
1808 				int err;
1809 				/*
1810 				 * Save TA to addr1 to send TA a path error if a
1811 				 * suitable next hop is not found
1812 				 */
1813 				memcpy(fwd_hdr->addr1, fwd_hdr->addr2,
1814 						ETH_ALEN);
1815 				err = mesh_nexthop_lookup(fwd_skb, sdata);
1816 				/* Failed to immediately resolve next hop:
1817 				 * fwded frame was dropped or will be added
1818 				 * later to the pending skb queue.  */
1819 				if (err)
1820 					return RX_DROP_MONITOR;
1821 
1822 				IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1823 								fwded_unicast);
1824 			}
1825 			IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.mesh,
1826 						     fwded_frames);
1827 			ieee80211_add_pending_skb(local, fwd_skb);
1828 		}
1829 	}
1830 
1831 	if (is_multicast_ether_addr(hdr->addr1) ||
1832 	    sdata->dev->flags & IFF_PROMISC)
1833 		return RX_CONTINUE;
1834 	else
1835 		return RX_DROP_MONITOR;
1836 }
1837 #endif
1838 
1839 static ieee80211_rx_result debug_noinline
1840 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1841 {
1842 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1843 	struct ieee80211_local *local = rx->local;
1844 	struct net_device *dev = sdata->dev;
1845 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1846 	__le16 fc = hdr->frame_control;
1847 	int err;
1848 
1849 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
1850 		return RX_CONTINUE;
1851 
1852 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
1853 		return RX_DROP_MONITOR;
1854 
1855 	/*
1856 	 * Allow the cooked monitor interface of an AP to see 4-addr frames so
1857 	 * that a 4-addr station can be detected and moved into a separate VLAN
1858 	 */
1859 	if (ieee80211_has_a4(hdr->frame_control) &&
1860 	    sdata->vif.type == NL80211_IFTYPE_AP)
1861 		return RX_DROP_MONITOR;
1862 
1863 	err = __ieee80211_data_to_8023(rx);
1864 	if (unlikely(err))
1865 		return RX_DROP_UNUSABLE;
1866 
1867 	if (!ieee80211_frame_allowed(rx, fc))
1868 		return RX_DROP_MONITOR;
1869 
1870 	rx->skb->dev = dev;
1871 
1872 	dev->stats.rx_packets++;
1873 	dev->stats.rx_bytes += rx->skb->len;
1874 
1875 	if (ieee80211_is_data(hdr->frame_control) &&
1876 	    !is_multicast_ether_addr(hdr->addr1) &&
1877 	    local->hw.conf.dynamic_ps_timeout > 0 && local->ps_sdata) {
1878 			mod_timer(&local->dynamic_ps_timer, jiffies +
1879 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1880 	}
1881 
1882 	ieee80211_deliver_skb(rx);
1883 
1884 	return RX_QUEUED;
1885 }
1886 
1887 static ieee80211_rx_result debug_noinline
1888 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
1889 {
1890 	struct ieee80211_local *local = rx->local;
1891 	struct ieee80211_hw *hw = &local->hw;
1892 	struct sk_buff *skb = rx->skb;
1893 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1894 	struct tid_ampdu_rx *tid_agg_rx;
1895 	u16 start_seq_num;
1896 	u16 tid;
1897 
1898 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
1899 		return RX_CONTINUE;
1900 
1901 	if (ieee80211_is_back_req(bar->frame_control)) {
1902 		struct {
1903 			__le16 control, start_seq_num;
1904 		} __packed bar_data;
1905 
1906 		if (!rx->sta)
1907 			return RX_DROP_MONITOR;
1908 
1909 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
1910 				  &bar_data, sizeof(bar_data)))
1911 			return RX_DROP_MONITOR;
1912 
1913 		tid = le16_to_cpu(bar_data.control) >> 12;
1914 
1915 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
1916 		if (!tid_agg_rx)
1917 			return RX_DROP_MONITOR;
1918 
1919 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
1920 
1921 		/* reset session timer */
1922 		if (tid_agg_rx->timeout)
1923 			mod_timer(&tid_agg_rx->session_timer,
1924 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
1925 
1926 		/* release stored frames up to start of BAR */
1927 		ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num,
1928 						 frames);
1929 		kfree_skb(skb);
1930 		return RX_QUEUED;
1931 	}
1932 
1933 	/*
1934 	 * After this point, we only want management frames,
1935 	 * so we can drop all remaining control frames to
1936 	 * cooked monitor interfaces.
1937 	 */
1938 	return RX_DROP_MONITOR;
1939 }
1940 
1941 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
1942 					   struct ieee80211_mgmt *mgmt,
1943 					   size_t len)
1944 {
1945 	struct ieee80211_local *local = sdata->local;
1946 	struct sk_buff *skb;
1947 	struct ieee80211_mgmt *resp;
1948 
1949 	if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) {
1950 		/* Not to own unicast address */
1951 		return;
1952 	}
1953 
1954 	if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 ||
1955 	    compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) {
1956 		/* Not from the current AP or not associated yet. */
1957 		return;
1958 	}
1959 
1960 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
1961 		/* Too short SA Query request frame */
1962 		return;
1963 	}
1964 
1965 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
1966 	if (skb == NULL)
1967 		return;
1968 
1969 	skb_reserve(skb, local->hw.extra_tx_headroom);
1970 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
1971 	memset(resp, 0, 24);
1972 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
1973 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
1974 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
1975 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1976 					  IEEE80211_STYPE_ACTION);
1977 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
1978 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
1979 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
1980 	memcpy(resp->u.action.u.sa_query.trans_id,
1981 	       mgmt->u.action.u.sa_query.trans_id,
1982 	       WLAN_SA_QUERY_TR_ID_LEN);
1983 
1984 	ieee80211_tx_skb(sdata, skb);
1985 }
1986 
1987 static ieee80211_rx_result debug_noinline
1988 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
1989 {
1990 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
1991 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1992 
1993 	/*
1994 	 * From here on, look only at management frames.
1995 	 * Data and control frames are already handled,
1996 	 * and unknown (reserved) frames are useless.
1997 	 */
1998 	if (rx->skb->len < 24)
1999 		return RX_DROP_MONITOR;
2000 
2001 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2002 		return RX_DROP_MONITOR;
2003 
2004 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2005 		return RX_DROP_MONITOR;
2006 
2007 	if (ieee80211_drop_unencrypted_mgmt(rx))
2008 		return RX_DROP_UNUSABLE;
2009 
2010 	return RX_CONTINUE;
2011 }
2012 
2013 static ieee80211_rx_result debug_noinline
2014 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2015 {
2016 	struct ieee80211_local *local = rx->local;
2017 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2018 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2019 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2020 	int len = rx->skb->len;
2021 
2022 	if (!ieee80211_is_action(mgmt->frame_control))
2023 		return RX_CONTINUE;
2024 
2025 	/* drop too small frames */
2026 	if (len < IEEE80211_MIN_ACTION_SIZE)
2027 		return RX_DROP_UNUSABLE;
2028 
2029 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC)
2030 		return RX_DROP_UNUSABLE;
2031 
2032 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2033 		return RX_DROP_UNUSABLE;
2034 
2035 	switch (mgmt->u.action.category) {
2036 	case WLAN_CATEGORY_BACK:
2037 		/*
2038 		 * The aggregation code is not prepared to handle
2039 		 * anything but STA/AP due to the BSSID handling;
2040 		 * IBSS could work in the code but isn't supported
2041 		 * by drivers or the standard.
2042 		 */
2043 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2044 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2045 		    sdata->vif.type != NL80211_IFTYPE_AP)
2046 			break;
2047 
2048 		/* verify action_code is present */
2049 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2050 			break;
2051 
2052 		switch (mgmt->u.action.u.addba_req.action_code) {
2053 		case WLAN_ACTION_ADDBA_REQ:
2054 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2055 				   sizeof(mgmt->u.action.u.addba_req)))
2056 				goto invalid;
2057 			break;
2058 		case WLAN_ACTION_ADDBA_RESP:
2059 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2060 				   sizeof(mgmt->u.action.u.addba_resp)))
2061 				goto invalid;
2062 			break;
2063 		case WLAN_ACTION_DELBA:
2064 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2065 				   sizeof(mgmt->u.action.u.delba)))
2066 				goto invalid;
2067 			break;
2068 		default:
2069 			goto invalid;
2070 		}
2071 
2072 		goto queue;
2073 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2074 		if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ)
2075 			break;
2076 
2077 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2078 			break;
2079 
2080 		/* verify action_code is present */
2081 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2082 			break;
2083 
2084 		switch (mgmt->u.action.u.measurement.action_code) {
2085 		case WLAN_ACTION_SPCT_MSR_REQ:
2086 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2087 				   sizeof(mgmt->u.action.u.measurement)))
2088 				break;
2089 			ieee80211_process_measurement_req(sdata, mgmt, len);
2090 			goto handled;
2091 		case WLAN_ACTION_SPCT_CHL_SWITCH:
2092 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2093 				   sizeof(mgmt->u.action.u.chan_switch)))
2094 				break;
2095 
2096 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2097 				break;
2098 
2099 			if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN))
2100 				break;
2101 
2102 			goto queue;
2103 		}
2104 		break;
2105 	case WLAN_CATEGORY_SA_QUERY:
2106 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2107 			   sizeof(mgmt->u.action.u.sa_query)))
2108 			break;
2109 
2110 		switch (mgmt->u.action.u.sa_query.action) {
2111 		case WLAN_ACTION_SA_QUERY_REQUEST:
2112 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2113 				break;
2114 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2115 			goto handled;
2116 		}
2117 		break;
2118 	case WLAN_CATEGORY_MESH_PLINK:
2119 	case WLAN_CATEGORY_MESH_PATH_SEL:
2120 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2121 			break;
2122 		goto queue;
2123 	}
2124 
2125 	return RX_CONTINUE;
2126 
2127  invalid:
2128 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2129 	/* will return in the next handlers */
2130 	return RX_CONTINUE;
2131 
2132  handled:
2133 	if (rx->sta)
2134 		rx->sta->rx_packets++;
2135 	dev_kfree_skb(rx->skb);
2136 	return RX_QUEUED;
2137 
2138  queue:
2139 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2140 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2141 	ieee80211_queue_work(&local->hw, &sdata->work);
2142 	if (rx->sta)
2143 		rx->sta->rx_packets++;
2144 	return RX_QUEUED;
2145 }
2146 
2147 static ieee80211_rx_result debug_noinline
2148 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2149 {
2150 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2151 
2152 	/* skip known-bad action frames and return them in the next handler */
2153 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2154 		return RX_CONTINUE;
2155 
2156 	/*
2157 	 * Getting here means the kernel doesn't know how to handle
2158 	 * it, but maybe userspace does ... include returned frames
2159 	 * so userspace can register for those to know whether ones
2160 	 * it transmitted were processed or returned.
2161 	 */
2162 
2163 	if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq,
2164 			     rx->skb->data, rx->skb->len,
2165 			     GFP_ATOMIC)) {
2166 		if (rx->sta)
2167 			rx->sta->rx_packets++;
2168 		dev_kfree_skb(rx->skb);
2169 		return RX_QUEUED;
2170 	}
2171 
2172 
2173 	return RX_CONTINUE;
2174 }
2175 
2176 static ieee80211_rx_result debug_noinline
2177 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2178 {
2179 	struct ieee80211_local *local = rx->local;
2180 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2181 	struct sk_buff *nskb;
2182 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2183 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2184 
2185 	if (!ieee80211_is_action(mgmt->frame_control))
2186 		return RX_CONTINUE;
2187 
2188 	/*
2189 	 * For AP mode, hostapd is responsible for handling any action
2190 	 * frames that we didn't handle, including returning unknown
2191 	 * ones. For all other modes we will return them to the sender,
2192 	 * setting the 0x80 bit in the action category, as required by
2193 	 * 802.11-2007 7.3.1.11.
2194 	 * Newer versions of hostapd shall also use the management frame
2195 	 * registration mechanisms, but older ones still use cooked
2196 	 * monitor interfaces so push all frames there.
2197 	 */
2198 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2199 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2200 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2201 		return RX_DROP_MONITOR;
2202 
2203 	/* do not return rejected action frames */
2204 	if (mgmt->u.action.category & 0x80)
2205 		return RX_DROP_UNUSABLE;
2206 
2207 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2208 			       GFP_ATOMIC);
2209 	if (nskb) {
2210 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2211 
2212 		nmgmt->u.action.category |= 0x80;
2213 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2214 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2215 
2216 		memset(nskb->cb, 0, sizeof(nskb->cb));
2217 
2218 		ieee80211_tx_skb(rx->sdata, nskb);
2219 	}
2220 	dev_kfree_skb(rx->skb);
2221 	return RX_QUEUED;
2222 }
2223 
2224 static ieee80211_rx_result debug_noinline
2225 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2226 {
2227 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2228 	ieee80211_rx_result rxs;
2229 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2230 	__le16 stype;
2231 
2232 	rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb);
2233 	if (rxs != RX_CONTINUE)
2234 		return rxs;
2235 
2236 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2237 
2238 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2239 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2240 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2241 		return RX_DROP_MONITOR;
2242 
2243 	switch (stype) {
2244 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2245 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2246 		/* process for all: mesh, mlme, ibss */
2247 		break;
2248 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2249 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2250 		/* process only for station */
2251 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2252 			return RX_DROP_MONITOR;
2253 		break;
2254 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2255 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2256 		/* process only for ibss */
2257 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC)
2258 			return RX_DROP_MONITOR;
2259 		break;
2260 	default:
2261 		return RX_DROP_MONITOR;
2262 	}
2263 
2264 	/* queue up frame and kick off work to process it */
2265 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2266 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2267 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2268 	if (rx->sta)
2269 		rx->sta->rx_packets++;
2270 
2271 	return RX_QUEUED;
2272 }
2273 
2274 static void ieee80211_rx_michael_mic_report(struct ieee80211_hdr *hdr,
2275 					    struct ieee80211_rx_data *rx)
2276 {
2277 	int keyidx;
2278 	unsigned int hdrlen;
2279 
2280 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2281 	if (rx->skb->len >= hdrlen + 4)
2282 		keyidx = rx->skb->data[hdrlen + 3] >> 6;
2283 	else
2284 		keyidx = -1;
2285 
2286 	if (!rx->sta) {
2287 		/*
2288 		 * Some hardware seem to generate incorrect Michael MIC
2289 		 * reports; ignore them to avoid triggering countermeasures.
2290 		 */
2291 		return;
2292 	}
2293 
2294 	if (!ieee80211_has_protected(hdr->frame_control))
2295 		return;
2296 
2297 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) {
2298 		/*
2299 		 * APs with pairwise keys should never receive Michael MIC
2300 		 * errors for non-zero keyidx because these are reserved for
2301 		 * group keys and only the AP is sending real multicast
2302 		 * frames in the BSS.
2303 		 */
2304 		return;
2305 	}
2306 
2307 	if (!ieee80211_is_data(hdr->frame_control) &&
2308 	    !ieee80211_is_auth(hdr->frame_control))
2309 		return;
2310 
2311 	mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr, NULL,
2312 					GFP_ATOMIC);
2313 }
2314 
2315 /* TODO: use IEEE80211_RX_FRAGMENTED */
2316 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2317 					struct ieee80211_rate *rate)
2318 {
2319 	struct ieee80211_sub_if_data *sdata;
2320 	struct ieee80211_local *local = rx->local;
2321 	struct ieee80211_rtap_hdr {
2322 		struct ieee80211_radiotap_header hdr;
2323 		u8 flags;
2324 		u8 rate_or_pad;
2325 		__le16 chan_freq;
2326 		__le16 chan_flags;
2327 	} __packed *rthdr;
2328 	struct sk_buff *skb = rx->skb, *skb2;
2329 	struct net_device *prev_dev = NULL;
2330 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2331 
2332 	/*
2333 	 * If cooked monitor has been processed already, then
2334 	 * don't do it again. If not, set the flag.
2335 	 */
2336 	if (rx->flags & IEEE80211_RX_CMNTR)
2337 		goto out_free_skb;
2338 	rx->flags |= IEEE80211_RX_CMNTR;
2339 
2340 	if (skb_headroom(skb) < sizeof(*rthdr) &&
2341 	    pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
2342 		goto out_free_skb;
2343 
2344 	rthdr = (void *)skb_push(skb, sizeof(*rthdr));
2345 	memset(rthdr, 0, sizeof(*rthdr));
2346 	rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
2347 	rthdr->hdr.it_present =
2348 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
2349 			    (1 << IEEE80211_RADIOTAP_CHANNEL));
2350 
2351 	if (rate) {
2352 		rthdr->rate_or_pad = rate->bitrate / 5;
2353 		rthdr->hdr.it_present |=
2354 			cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
2355 	}
2356 	rthdr->chan_freq = cpu_to_le16(status->freq);
2357 
2358 	if (status->band == IEEE80211_BAND_5GHZ)
2359 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
2360 						IEEE80211_CHAN_5GHZ);
2361 	else
2362 		rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
2363 						IEEE80211_CHAN_2GHZ);
2364 
2365 	skb_set_mac_header(skb, 0);
2366 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2367 	skb->pkt_type = PACKET_OTHERHOST;
2368 	skb->protocol = htons(ETH_P_802_2);
2369 
2370 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2371 		if (!ieee80211_sdata_running(sdata))
2372 			continue;
2373 
2374 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2375 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2376 			continue;
2377 
2378 		if (prev_dev) {
2379 			skb2 = skb_clone(skb, GFP_ATOMIC);
2380 			if (skb2) {
2381 				skb2->dev = prev_dev;
2382 				netif_receive_skb(skb2);
2383 			}
2384 		}
2385 
2386 		prev_dev = sdata->dev;
2387 		sdata->dev->stats.rx_packets++;
2388 		sdata->dev->stats.rx_bytes += skb->len;
2389 	}
2390 
2391 	if (prev_dev) {
2392 		skb->dev = prev_dev;
2393 		netif_receive_skb(skb);
2394 		return;
2395 	}
2396 
2397  out_free_skb:
2398 	dev_kfree_skb(skb);
2399 }
2400 
2401 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2402 					 ieee80211_rx_result res)
2403 {
2404 	switch (res) {
2405 	case RX_DROP_MONITOR:
2406 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2407 		if (rx->sta)
2408 			rx->sta->rx_dropped++;
2409 		/* fall through */
2410 	case RX_CONTINUE: {
2411 		struct ieee80211_rate *rate = NULL;
2412 		struct ieee80211_supported_band *sband;
2413 		struct ieee80211_rx_status *status;
2414 
2415 		status = IEEE80211_SKB_RXCB((rx->skb));
2416 
2417 		sband = rx->local->hw.wiphy->bands[status->band];
2418 		if (!(status->flag & RX_FLAG_HT))
2419 			rate = &sband->bitrates[status->rate_idx];
2420 
2421 		ieee80211_rx_cooked_monitor(rx, rate);
2422 		break;
2423 		}
2424 	case RX_DROP_UNUSABLE:
2425 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2426 		if (rx->sta)
2427 			rx->sta->rx_dropped++;
2428 		dev_kfree_skb(rx->skb);
2429 		break;
2430 	case RX_QUEUED:
2431 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2432 		break;
2433 	}
2434 }
2435 
2436 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2437 				  struct sk_buff_head *frames)
2438 {
2439 	ieee80211_rx_result res = RX_DROP_MONITOR;
2440 	struct sk_buff *skb;
2441 
2442 #define CALL_RXH(rxh)			\
2443 	do {				\
2444 		res = rxh(rx);		\
2445 		if (res != RX_CONTINUE)	\
2446 			goto rxh_next;  \
2447 	} while (0);
2448 
2449 	while ((skb = __skb_dequeue(frames))) {
2450 		/*
2451 		 * all the other fields are valid across frames
2452 		 * that belong to an aMPDU since they are on the
2453 		 * same TID from the same station
2454 		 */
2455 		rx->skb = skb;
2456 		rx->flags = 0;
2457 
2458 		CALL_RXH(ieee80211_rx_h_decrypt)
2459 		CALL_RXH(ieee80211_rx_h_check_more_data)
2460 		CALL_RXH(ieee80211_rx_h_sta_process)
2461 		CALL_RXH(ieee80211_rx_h_defragment)
2462 		CALL_RXH(ieee80211_rx_h_ps_poll)
2463 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2464 		/* must be after MMIC verify so header is counted in MPDU mic */
2465 		CALL_RXH(ieee80211_rx_h_remove_qos_control)
2466 		CALL_RXH(ieee80211_rx_h_amsdu)
2467 #ifdef CONFIG_MAC80211_MESH
2468 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2469 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2470 #endif
2471 		CALL_RXH(ieee80211_rx_h_data)
2472 
2473 		/* special treatment -- needs the queue */
2474 		res = ieee80211_rx_h_ctrl(rx, frames);
2475 		if (res != RX_CONTINUE)
2476 			goto rxh_next;
2477 
2478 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2479 		CALL_RXH(ieee80211_rx_h_action)
2480 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2481 		CALL_RXH(ieee80211_rx_h_action_return)
2482 		CALL_RXH(ieee80211_rx_h_mgmt)
2483 
2484  rxh_next:
2485 		ieee80211_rx_handlers_result(rx, res);
2486 
2487 #undef CALL_RXH
2488 	}
2489 }
2490 
2491 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2492 {
2493 	struct sk_buff_head reorder_release;
2494 	ieee80211_rx_result res = RX_DROP_MONITOR;
2495 
2496 	__skb_queue_head_init(&reorder_release);
2497 
2498 #define CALL_RXH(rxh)			\
2499 	do {				\
2500 		res = rxh(rx);		\
2501 		if (res != RX_CONTINUE)	\
2502 			goto rxh_next;  \
2503 	} while (0);
2504 
2505 	CALL_RXH(ieee80211_rx_h_passive_scan)
2506 	CALL_RXH(ieee80211_rx_h_check)
2507 
2508 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2509 
2510 	ieee80211_rx_handlers(rx, &reorder_release);
2511 	return;
2512 
2513  rxh_next:
2514 	ieee80211_rx_handlers_result(rx, res);
2515 
2516 #undef CALL_RXH
2517 }
2518 
2519 /*
2520  * This function makes calls into the RX path. Therefore the
2521  * caller must hold the sta_info->lock and everything has to
2522  * be under rcu_read_lock protection as well.
2523  */
2524 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2525 {
2526 	struct sk_buff_head frames;
2527 	struct ieee80211_rx_data rx = {
2528 		.sta = sta,
2529 		.sdata = sta->sdata,
2530 		.local = sta->local,
2531 		.queue = tid,
2532 	};
2533 	struct tid_ampdu_rx *tid_agg_rx;
2534 
2535 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2536 	if (!tid_agg_rx)
2537 		return;
2538 
2539 	__skb_queue_head_init(&frames);
2540 
2541 	spin_lock(&tid_agg_rx->reorder_lock);
2542 	ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx, &frames);
2543 	spin_unlock(&tid_agg_rx->reorder_lock);
2544 
2545 	ieee80211_rx_handlers(&rx, &frames);
2546 }
2547 
2548 /* main receive path */
2549 
2550 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2551 				struct ieee80211_hdr *hdr)
2552 {
2553 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2554 	struct sk_buff *skb = rx->skb;
2555 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2556 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2557 	int multicast = is_multicast_ether_addr(hdr->addr1);
2558 
2559 	switch (sdata->vif.type) {
2560 	case NL80211_IFTYPE_STATION:
2561 		if (!bssid && !sdata->u.mgd.use_4addr)
2562 			return 0;
2563 		if (!multicast &&
2564 		    compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) {
2565 			if (!(sdata->dev->flags & IFF_PROMISC))
2566 				return 0;
2567 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2568 		}
2569 		break;
2570 	case NL80211_IFTYPE_ADHOC:
2571 		if (!bssid)
2572 			return 0;
2573 		if (ieee80211_is_beacon(hdr->frame_control)) {
2574 			return 1;
2575 		}
2576 		else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
2577 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2578 				return 0;
2579 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2580 		} else if (!multicast &&
2581 			   compare_ether_addr(sdata->vif.addr,
2582 					      hdr->addr1) != 0) {
2583 			if (!(sdata->dev->flags & IFF_PROMISC))
2584 				return 0;
2585 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2586 		} else if (!rx->sta) {
2587 			int rate_idx;
2588 			if (status->flag & RX_FLAG_HT)
2589 				rate_idx = 0; /* TODO: HT rates */
2590 			else
2591 				rate_idx = status->rate_idx;
2592 			rx->sta = ieee80211_ibss_add_sta(sdata, bssid,
2593 					hdr->addr2, BIT(rate_idx), GFP_ATOMIC);
2594 		}
2595 		break;
2596 	case NL80211_IFTYPE_MESH_POINT:
2597 		if (!multicast &&
2598 		    compare_ether_addr(sdata->vif.addr,
2599 				       hdr->addr1) != 0) {
2600 			if (!(sdata->dev->flags & IFF_PROMISC))
2601 				return 0;
2602 
2603 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2604 		}
2605 		break;
2606 	case NL80211_IFTYPE_AP_VLAN:
2607 	case NL80211_IFTYPE_AP:
2608 		if (!bssid) {
2609 			if (compare_ether_addr(sdata->vif.addr,
2610 					       hdr->addr1))
2611 				return 0;
2612 		} else if (!ieee80211_bssid_match(bssid,
2613 					sdata->vif.addr)) {
2614 			if (!(status->rx_flags & IEEE80211_RX_IN_SCAN))
2615 				return 0;
2616 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
2617 		}
2618 		break;
2619 	case NL80211_IFTYPE_WDS:
2620 		if (bssid || !ieee80211_is_data(hdr->frame_control))
2621 			return 0;
2622 		if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
2623 			return 0;
2624 		break;
2625 	default:
2626 		/* should never get here */
2627 		WARN_ON(1);
2628 		break;
2629 	}
2630 
2631 	return 1;
2632 }
2633 
2634 /*
2635  * This function returns whether or not the SKB
2636  * was destined for RX processing or not, which,
2637  * if consume is true, is equivalent to whether
2638  * or not the skb was consumed.
2639  */
2640 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
2641 					    struct sk_buff *skb, bool consume)
2642 {
2643 	struct ieee80211_local *local = rx->local;
2644 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2645 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2646 	struct ieee80211_hdr *hdr = (void *)skb->data;
2647 	int prepares;
2648 
2649 	rx->skb = skb;
2650 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
2651 	prepares = prepare_for_handlers(rx, hdr);
2652 
2653 	if (!prepares)
2654 		return false;
2655 
2656 	if (status->flag & RX_FLAG_MMIC_ERROR) {
2657 		if (status->rx_flags & IEEE80211_RX_RA_MATCH)
2658 			ieee80211_rx_michael_mic_report(hdr, rx);
2659 		return false;
2660 	}
2661 
2662 	if (!consume) {
2663 		skb = skb_copy(skb, GFP_ATOMIC);
2664 		if (!skb) {
2665 			if (net_ratelimit())
2666 				wiphy_debug(local->hw.wiphy,
2667 					"failed to copy multicast frame for %s\n",
2668 					sdata->name);
2669 			return true;
2670 		}
2671 
2672 		rx->skb = skb;
2673 	}
2674 
2675 	ieee80211_invoke_rx_handlers(rx);
2676 	return true;
2677 }
2678 
2679 /*
2680  * This is the actual Rx frames handler. as it blongs to Rx path it must
2681  * be called with rcu_read_lock protection.
2682  */
2683 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
2684 					 struct sk_buff *skb)
2685 {
2686 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2687 	struct ieee80211_local *local = hw_to_local(hw);
2688 	struct ieee80211_sub_if_data *sdata;
2689 	struct ieee80211_hdr *hdr;
2690 	__le16 fc;
2691 	struct ieee80211_rx_data rx;
2692 	struct ieee80211_sub_if_data *prev;
2693 	struct sta_info *sta, *tmp, *prev_sta;
2694 	int err = 0;
2695 
2696 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
2697 	memset(&rx, 0, sizeof(rx));
2698 	rx.skb = skb;
2699 	rx.local = local;
2700 
2701 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
2702 		local->dot11ReceivedFragmentCount++;
2703 
2704 	if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) ||
2705 		     test_bit(SCAN_OFF_CHANNEL, &local->scanning)))
2706 		status->rx_flags |= IEEE80211_RX_IN_SCAN;
2707 
2708 	if (ieee80211_is_mgmt(fc))
2709 		err = skb_linearize(skb);
2710 	else
2711 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
2712 
2713 	if (err) {
2714 		dev_kfree_skb(skb);
2715 		return;
2716 	}
2717 
2718 	hdr = (struct ieee80211_hdr *)skb->data;
2719 	ieee80211_parse_qos(&rx);
2720 	ieee80211_verify_alignment(&rx);
2721 
2722 	if (ieee80211_is_data(fc)) {
2723 		prev_sta = NULL;
2724 
2725 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
2726 			if (!prev_sta) {
2727 				prev_sta = sta;
2728 				continue;
2729 			}
2730 
2731 			rx.sta = prev_sta;
2732 			rx.sdata = prev_sta->sdata;
2733 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
2734 
2735 			prev_sta = sta;
2736 		}
2737 
2738 		if (prev_sta) {
2739 			rx.sta = prev_sta;
2740 			rx.sdata = prev_sta->sdata;
2741 
2742 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2743 				return;
2744 		}
2745 	}
2746 
2747 	prev = NULL;
2748 
2749 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2750 		if (!ieee80211_sdata_running(sdata))
2751 			continue;
2752 
2753 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
2754 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
2755 			continue;
2756 
2757 		/*
2758 		 * frame is destined for this interface, but if it's
2759 		 * not also for the previous one we handle that after
2760 		 * the loop to avoid copying the SKB once too much
2761 		 */
2762 
2763 		if (!prev) {
2764 			prev = sdata;
2765 			continue;
2766 		}
2767 
2768 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2769 		rx.sdata = prev;
2770 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
2771 
2772 		prev = sdata;
2773 	}
2774 
2775 	if (prev) {
2776 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
2777 		rx.sdata = prev;
2778 
2779 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
2780 			return;
2781 	}
2782 
2783 	dev_kfree_skb(skb);
2784 }
2785 
2786 /*
2787  * This is the receive path handler. It is called by a low level driver when an
2788  * 802.11 MPDU is received from the hardware.
2789  */
2790 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
2791 {
2792 	struct ieee80211_local *local = hw_to_local(hw);
2793 	struct ieee80211_rate *rate = NULL;
2794 	struct ieee80211_supported_band *sband;
2795 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2796 
2797 	WARN_ON_ONCE(softirq_count() == 0);
2798 
2799 	if (WARN_ON(status->band < 0 ||
2800 		    status->band >= IEEE80211_NUM_BANDS))
2801 		goto drop;
2802 
2803 	sband = local->hw.wiphy->bands[status->band];
2804 	if (WARN_ON(!sband))
2805 		goto drop;
2806 
2807 	/*
2808 	 * If we're suspending, it is possible although not too likely
2809 	 * that we'd be receiving frames after having already partially
2810 	 * quiesced the stack. We can't process such frames then since
2811 	 * that might, for example, cause stations to be added or other
2812 	 * driver callbacks be invoked.
2813 	 */
2814 	if (unlikely(local->quiescing || local->suspended))
2815 		goto drop;
2816 
2817 	/*
2818 	 * The same happens when we're not even started,
2819 	 * but that's worth a warning.
2820 	 */
2821 	if (WARN_ON(!local->started))
2822 		goto drop;
2823 
2824 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
2825 		/*
2826 		 * Validate the rate, unless a PLCP error means that
2827 		 * we probably can't have a valid rate here anyway.
2828 		 */
2829 
2830 		if (status->flag & RX_FLAG_HT) {
2831 			/*
2832 			 * rate_idx is MCS index, which can be [0-76]
2833 			 * as documented on:
2834 			 *
2835 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
2836 			 *
2837 			 * Anything else would be some sort of driver or
2838 			 * hardware error. The driver should catch hardware
2839 			 * errors.
2840 			 */
2841 			if (WARN((status->rate_idx < 0 ||
2842 				 status->rate_idx > 76),
2843 				 "Rate marked as an HT rate but passed "
2844 				 "status->rate_idx is not "
2845 				 "an MCS index [0-76]: %d (0x%02x)\n",
2846 				 status->rate_idx,
2847 				 status->rate_idx))
2848 				goto drop;
2849 		} else {
2850 			if (WARN_ON(status->rate_idx < 0 ||
2851 				    status->rate_idx >= sband->n_bitrates))
2852 				goto drop;
2853 			rate = &sband->bitrates[status->rate_idx];
2854 		}
2855 	}
2856 
2857 	status->rx_flags = 0;
2858 
2859 	/*
2860 	 * key references and virtual interfaces are protected using RCU
2861 	 * and this requires that we are in a read-side RCU section during
2862 	 * receive processing
2863 	 */
2864 	rcu_read_lock();
2865 
2866 	/*
2867 	 * Frames with failed FCS/PLCP checksum are not returned,
2868 	 * all other frames are returned without radiotap header
2869 	 * if it was previously present.
2870 	 * Also, frames with less than 16 bytes are dropped.
2871 	 */
2872 	skb = ieee80211_rx_monitor(local, skb, rate);
2873 	if (!skb) {
2874 		rcu_read_unlock();
2875 		return;
2876 	}
2877 
2878 	__ieee80211_rx_handle_packet(hw, skb);
2879 
2880 	rcu_read_unlock();
2881 
2882 	return;
2883  drop:
2884 	kfree_skb(skb);
2885 }
2886 EXPORT_SYMBOL(ieee80211_rx);
2887 
2888 /* This is a version of the rx handler that can be called from hard irq
2889  * context. Post the skb on the queue and schedule the tasklet */
2890 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
2891 {
2892 	struct ieee80211_local *local = hw_to_local(hw);
2893 
2894 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2895 
2896 	skb->pkt_type = IEEE80211_RX_MSG;
2897 	skb_queue_tail(&local->skb_queue, skb);
2898 	tasklet_schedule(&local->tasklet);
2899 }
2900 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
2901