1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 47 struct ieee80211_hdr *hdr; 48 unsigned int hdrlen; 49 __le16 fc; 50 51 if (present_fcs_len) 52 __pskb_trim(skb, skb->len - present_fcs_len); 53 pskb_pull(skb, rtap_space); 54 55 /* After pulling radiotap header, clear all flags that indicate 56 * info in skb->data. 57 */ 58 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 59 RX_FLAG_RADIOTAP_LSIG | 60 RX_FLAG_RADIOTAP_HE_MU | 61 RX_FLAG_RADIOTAP_HE); 62 63 hdr = (void *)skb->data; 64 fc = hdr->frame_control; 65 66 /* 67 * Remove the HT-Control field (if present) on management 68 * frames after we've sent the frame to monitoring. We 69 * (currently) don't need it, and don't properly parse 70 * frames with it present, due to the assumption of a 71 * fixed management header length. 72 */ 73 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 74 return skb; 75 76 hdrlen = ieee80211_hdrlen(fc); 77 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 78 79 if (!pskb_may_pull(skb, hdrlen)) { 80 dev_kfree_skb(skb); 81 return NULL; 82 } 83 84 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 85 hdrlen - IEEE80211_HT_CTL_LEN); 86 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 87 88 return skb; 89 } 90 91 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 92 unsigned int rtap_space) 93 { 94 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 95 struct ieee80211_hdr *hdr; 96 97 hdr = (void *)(skb->data + rtap_space); 98 99 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 100 RX_FLAG_FAILED_PLCP_CRC | 101 RX_FLAG_ONLY_MONITOR | 102 RX_FLAG_NO_PSDU)) 103 return true; 104 105 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 106 return true; 107 108 if (ieee80211_is_ctl(hdr->frame_control) && 109 !ieee80211_is_pspoll(hdr->frame_control) && 110 !ieee80211_is_back_req(hdr->frame_control)) 111 return true; 112 113 return false; 114 } 115 116 static int 117 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 118 struct ieee80211_rx_status *status, 119 struct sk_buff *skb) 120 { 121 int len; 122 123 /* always present fields */ 124 len = sizeof(struct ieee80211_radiotap_header) + 8; 125 126 /* allocate extra bitmaps */ 127 if (status->chains) 128 len += 4 * hweight8(status->chains); 129 130 if (ieee80211_have_rx_timestamp(status)) { 131 len = ALIGN(len, 8); 132 len += 8; 133 } 134 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 135 len += 1; 136 137 /* antenna field, if we don't have per-chain info */ 138 if (!status->chains) 139 len += 1; 140 141 /* padding for RX_FLAGS if necessary */ 142 len = ALIGN(len, 2); 143 144 if (status->encoding == RX_ENC_HT) /* HT info */ 145 len += 3; 146 147 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 148 len = ALIGN(len, 4); 149 len += 8; 150 } 151 152 if (status->encoding == RX_ENC_VHT) { 153 len = ALIGN(len, 2); 154 len += 12; 155 } 156 157 if (local->hw.radiotap_timestamp.units_pos >= 0) { 158 len = ALIGN(len, 8); 159 len += 12; 160 } 161 162 if (status->encoding == RX_ENC_HE && 163 status->flag & RX_FLAG_RADIOTAP_HE) { 164 len = ALIGN(len, 2); 165 len += 12; 166 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 167 } 168 169 if (status->encoding == RX_ENC_HE && 170 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 171 len = ALIGN(len, 2); 172 len += 12; 173 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 174 } 175 176 if (status->flag & RX_FLAG_NO_PSDU) 177 len += 1; 178 179 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 180 len = ALIGN(len, 2); 181 len += 4; 182 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 183 } 184 185 if (status->chains) { 186 /* antenna and antenna signal fields */ 187 len += 2 * hweight8(status->chains); 188 } 189 190 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 191 int tlv_offset = 0; 192 193 /* 194 * The position to look at depends on the existence (or non- 195 * existence) of other elements, so take that into account... 196 */ 197 if (status->flag & RX_FLAG_RADIOTAP_HE) 198 tlv_offset += 199 sizeof(struct ieee80211_radiotap_he); 200 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 201 tlv_offset += 202 sizeof(struct ieee80211_radiotap_he_mu); 203 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 204 tlv_offset += 205 sizeof(struct ieee80211_radiotap_lsig); 206 207 /* ensure 4 byte alignment for TLV */ 208 len = ALIGN(len, 4); 209 210 /* TLVs until the mac header */ 211 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 u32 tlvs_len = 0; 308 int mpdulen, chain; 309 unsigned long chains = status->chains; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 331 /* data is pointer at tlv all other info was pulled off */ 332 tlvs_len = skb_mac_header(skb) - skb->data; 333 } 334 335 mpdulen = skb->len; 336 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 337 mpdulen += FCS_LEN; 338 339 rthdr = skb_push(skb, rtap_len - tlvs_len); 340 memset(rthdr, 0, rtap_len - tlvs_len); 341 it_present = &rthdr->it_present; 342 343 /* radiotap header, set always present flags */ 344 rthdr->it_len = cpu_to_le16(rtap_len); 345 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 346 BIT(IEEE80211_RADIOTAP_CHANNEL) | 347 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 348 349 if (!status->chains) 350 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 351 352 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 353 it_present_val |= 354 BIT(IEEE80211_RADIOTAP_EXT) | 355 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 356 put_unaligned_le32(it_present_val, it_present); 357 it_present++; 358 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 359 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 360 } 361 362 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 363 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 364 365 put_unaligned_le32(it_present_val, it_present); 366 367 /* This references through an offset into it_optional[] rather 368 * than via it_present otherwise later uses of pos will cause 369 * the compiler to think we have walked past the end of the 370 * struct member. 371 */ 372 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 373 374 /* the order of the following fields is important */ 375 376 /* IEEE80211_RADIOTAP_TSFT */ 377 if (ieee80211_have_rx_timestamp(status)) { 378 /* padding */ 379 while ((pos - (u8 *)rthdr) & 7) 380 *pos++ = 0; 381 put_unaligned_le64( 382 ieee80211_calculate_rx_timestamp(local, status, 383 mpdulen, 0), 384 pos); 385 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 386 pos += 8; 387 } 388 389 /* IEEE80211_RADIOTAP_FLAGS */ 390 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 391 *pos |= IEEE80211_RADIOTAP_F_FCS; 392 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 393 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 394 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 395 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 396 pos++; 397 398 /* IEEE80211_RADIOTAP_RATE */ 399 if (!rate || status->encoding != RX_ENC_LEGACY) { 400 /* 401 * Without rate information don't add it. If we have, 402 * MCS information is a separate field in radiotap, 403 * added below. The byte here is needed as padding 404 * for the channel though, so initialise it to 0. 405 */ 406 *pos = 0; 407 } else { 408 int shift = 0; 409 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 410 if (status->bw == RATE_INFO_BW_10) 411 shift = 1; 412 else if (status->bw == RATE_INFO_BW_5) 413 shift = 2; 414 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 415 } 416 pos++; 417 418 /* IEEE80211_RADIOTAP_CHANNEL */ 419 /* TODO: frequency offset in KHz */ 420 put_unaligned_le16(status->freq, pos); 421 pos += 2; 422 if (status->bw == RATE_INFO_BW_10) 423 channel_flags |= IEEE80211_CHAN_HALF; 424 else if (status->bw == RATE_INFO_BW_5) 425 channel_flags |= IEEE80211_CHAN_QUARTER; 426 427 if (status->band == NL80211_BAND_5GHZ || 428 status->band == NL80211_BAND_6GHZ) 429 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 430 else if (status->encoding != RX_ENC_LEGACY) 431 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 432 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 433 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 434 else if (rate) 435 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 436 else 437 channel_flags |= IEEE80211_CHAN_2GHZ; 438 put_unaligned_le16(channel_flags, pos); 439 pos += 2; 440 441 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 442 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 443 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 444 *pos = status->signal; 445 rthdr->it_present |= 446 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 447 pos++; 448 } 449 450 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 451 452 if (!status->chains) { 453 /* IEEE80211_RADIOTAP_ANTENNA */ 454 *pos = status->antenna; 455 pos++; 456 } 457 458 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 459 460 /* IEEE80211_RADIOTAP_RX_FLAGS */ 461 /* ensure 2 byte alignment for the 2 byte field as required */ 462 if ((pos - (u8 *)rthdr) & 1) 463 *pos++ = 0; 464 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 465 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 466 put_unaligned_le16(rx_flags, pos); 467 pos += 2; 468 469 if (status->encoding == RX_ENC_HT) { 470 unsigned int stbc; 471 472 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 473 *pos = local->hw.radiotap_mcs_details; 474 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 475 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 476 if (status->enc_flags & RX_ENC_FLAG_LDPC) 477 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 478 pos++; 479 *pos = 0; 480 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 481 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 482 if (status->bw == RATE_INFO_BW_40) 483 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 484 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 485 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 486 if (status->enc_flags & RX_ENC_FLAG_LDPC) 487 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 488 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 489 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 490 pos++; 491 *pos++ = status->rate_idx; 492 } 493 494 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 495 u16 flags = 0; 496 497 /* ensure 4 byte alignment */ 498 while ((pos - (u8 *)rthdr) & 3) 499 pos++; 500 rthdr->it_present |= 501 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 502 put_unaligned_le32(status->ampdu_reference, pos); 503 pos += 4; 504 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 505 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 506 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 507 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 508 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 509 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 510 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 513 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 514 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 515 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 516 put_unaligned_le16(flags, pos); 517 pos += 2; 518 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 519 *pos++ = status->ampdu_delimiter_crc; 520 else 521 *pos++ = 0; 522 *pos++ = 0; 523 } 524 525 if (status->encoding == RX_ENC_VHT) { 526 u16 known = local->hw.radiotap_vht_details; 527 528 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 529 put_unaligned_le16(known, pos); 530 pos += 2; 531 /* flags */ 532 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 533 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 534 /* in VHT, STBC is binary */ 535 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 536 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 537 if (status->enc_flags & RX_ENC_FLAG_BF) 538 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 539 pos++; 540 /* bandwidth */ 541 switch (status->bw) { 542 case RATE_INFO_BW_80: 543 *pos++ = 4; 544 break; 545 case RATE_INFO_BW_160: 546 *pos++ = 11; 547 break; 548 case RATE_INFO_BW_40: 549 *pos++ = 1; 550 break; 551 default: 552 *pos++ = 0; 553 } 554 /* MCS/NSS */ 555 *pos = (status->rate_idx << 4) | status->nss; 556 pos += 4; 557 /* coding field */ 558 if (status->enc_flags & RX_ENC_FLAG_LDPC) 559 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 560 pos++; 561 /* group ID */ 562 pos++; 563 /* partial_aid */ 564 pos += 2; 565 } 566 567 if (local->hw.radiotap_timestamp.units_pos >= 0) { 568 u16 accuracy = 0; 569 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 570 571 rthdr->it_present |= 572 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 573 574 /* ensure 8 byte alignment */ 575 while ((pos - (u8 *)rthdr) & 7) 576 pos++; 577 578 put_unaligned_le64(status->device_timestamp, pos); 579 pos += sizeof(u64); 580 581 if (local->hw.radiotap_timestamp.accuracy >= 0) { 582 accuracy = local->hw.radiotap_timestamp.accuracy; 583 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 584 } 585 put_unaligned_le16(accuracy, pos); 586 pos += sizeof(u16); 587 588 *pos++ = local->hw.radiotap_timestamp.units_pos; 589 *pos++ = flags; 590 } 591 592 if (status->encoding == RX_ENC_HE && 593 status->flag & RX_FLAG_RADIOTAP_HE) { 594 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 595 596 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 597 he.data6 |= HE_PREP(DATA6_NSTS, 598 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 599 status->enc_flags)); 600 he.data3 |= HE_PREP(DATA3_STBC, 1); 601 } else { 602 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 603 } 604 605 #define CHECK_GI(s) \ 606 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 607 (int)NL80211_RATE_INFO_HE_GI_##s) 608 609 CHECK_GI(0_8); 610 CHECK_GI(1_6); 611 CHECK_GI(3_2); 612 613 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 614 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 615 he.data3 |= HE_PREP(DATA3_CODING, 616 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 617 618 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 619 620 switch (status->bw) { 621 case RATE_INFO_BW_20: 622 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 623 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 624 break; 625 case RATE_INFO_BW_40: 626 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 627 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 628 break; 629 case RATE_INFO_BW_80: 630 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 631 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 632 break; 633 case RATE_INFO_BW_160: 634 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 635 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 636 break; 637 case RATE_INFO_BW_HE_RU: 638 #define CHECK_RU_ALLOC(s) \ 639 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 640 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 641 642 CHECK_RU_ALLOC(26); 643 CHECK_RU_ALLOC(52); 644 CHECK_RU_ALLOC(106); 645 CHECK_RU_ALLOC(242); 646 CHECK_RU_ALLOC(484); 647 CHECK_RU_ALLOC(996); 648 CHECK_RU_ALLOC(2x996); 649 650 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 651 status->he_ru + 4); 652 break; 653 default: 654 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 655 } 656 657 /* ensure 2 byte alignment */ 658 while ((pos - (u8 *)rthdr) & 1) 659 pos++; 660 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 661 memcpy(pos, &he, sizeof(he)); 662 pos += sizeof(he); 663 } 664 665 if (status->encoding == RX_ENC_HE && 666 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 671 memcpy(pos, &he_mu, sizeof(he_mu)); 672 pos += sizeof(he_mu); 673 } 674 675 if (status->flag & RX_FLAG_NO_PSDU) { 676 rthdr->it_present |= 677 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 678 *pos++ = status->zero_length_psdu_type; 679 } 680 681 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 682 /* ensure 2 byte alignment */ 683 while ((pos - (u8 *)rthdr) & 1) 684 pos++; 685 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 686 memcpy(pos, &lsig, sizeof(lsig)); 687 pos += sizeof(lsig); 688 } 689 690 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 691 *pos++ = status->chain_signal[chain]; 692 *pos++ = chain; 693 } 694 } 695 696 static struct sk_buff * 697 ieee80211_make_monitor_skb(struct ieee80211_local *local, 698 struct sk_buff **origskb, 699 struct ieee80211_rate *rate, 700 int rtap_space, bool use_origskb) 701 { 702 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 703 int rt_hdrlen, needed_headroom; 704 struct sk_buff *skb; 705 706 /* room for the radiotap header based on driver features */ 707 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 708 needed_headroom = rt_hdrlen - rtap_space; 709 710 if (use_origskb) { 711 /* only need to expand headroom if necessary */ 712 skb = *origskb; 713 *origskb = NULL; 714 715 /* 716 * This shouldn't trigger often because most devices have an 717 * RX header they pull before we get here, and that should 718 * be big enough for our radiotap information. We should 719 * probably export the length to drivers so that we can have 720 * them allocate enough headroom to start with. 721 */ 722 if (skb_headroom(skb) < needed_headroom && 723 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 724 dev_kfree_skb(skb); 725 return NULL; 726 } 727 } else { 728 /* 729 * Need to make a copy and possibly remove radiotap header 730 * and FCS from the original. 731 */ 732 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 733 0, GFP_ATOMIC); 734 735 if (!skb) 736 return NULL; 737 } 738 739 /* prepend radiotap information */ 740 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 741 742 skb_reset_mac_header(skb); 743 skb->ip_summed = CHECKSUM_UNNECESSARY; 744 skb->pkt_type = PACKET_OTHERHOST; 745 skb->protocol = htons(ETH_P_802_2); 746 747 return skb; 748 } 749 750 /* 751 * This function copies a received frame to all monitor interfaces and 752 * returns a cleaned-up SKB that no longer includes the FCS nor the 753 * radiotap header the driver might have added. 754 */ 755 static struct sk_buff * 756 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 757 struct ieee80211_rate *rate) 758 { 759 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 760 struct ieee80211_sub_if_data *sdata; 761 struct sk_buff *monskb = NULL; 762 int present_fcs_len = 0; 763 unsigned int rtap_space = 0; 764 struct ieee80211_sub_if_data *monitor_sdata = 765 rcu_dereference(local->monitor_sdata); 766 bool only_monitor = false; 767 unsigned int min_head_len; 768 769 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 770 !skb_mac_header_was_set(origskb))) { 771 /* with this skb no way to know where frame payload starts */ 772 dev_kfree_skb(origskb); 773 return NULL; 774 } 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE) 777 rtap_space += sizeof(struct ieee80211_radiotap_he); 778 779 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 780 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 781 782 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 783 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 784 785 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 786 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 787 788 min_head_len = rtap_space; 789 790 /* 791 * First, we may need to make a copy of the skb because 792 * (1) we need to modify it for radiotap (if not present), and 793 * (2) the other RX handlers will modify the skb we got. 794 * 795 * We don't need to, of course, if we aren't going to return 796 * the SKB because it has a bad FCS/PLCP checksum. 797 */ 798 799 if (!(status->flag & RX_FLAG_NO_PSDU)) { 800 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 801 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 802 /* driver bug */ 803 WARN_ON(1); 804 dev_kfree_skb(origskb); 805 return NULL; 806 } 807 present_fcs_len = FCS_LEN; 808 } 809 810 /* also consider the hdr->frame_control */ 811 min_head_len += 2; 812 } 813 814 /* ensure that the expected data elements are in skb head */ 815 if (!pskb_may_pull(origskb, min_head_len)) { 816 dev_kfree_skb(origskb); 817 return NULL; 818 } 819 820 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 821 822 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 823 if (only_monitor) { 824 dev_kfree_skb(origskb); 825 return NULL; 826 } 827 828 return ieee80211_clean_skb(origskb, present_fcs_len, 829 rtap_space); 830 } 831 832 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 833 834 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 835 bool last_monitor = list_is_last(&sdata->u.mntr.list, 836 &local->mon_list); 837 838 if (!monskb) 839 monskb = ieee80211_make_monitor_skb(local, &origskb, 840 rate, rtap_space, 841 only_monitor && 842 last_monitor); 843 844 if (monskb) { 845 struct sk_buff *skb; 846 847 if (last_monitor) { 848 skb = monskb; 849 monskb = NULL; 850 } else { 851 skb = skb_clone(monskb, GFP_ATOMIC); 852 } 853 854 if (skb) { 855 skb->dev = sdata->dev; 856 dev_sw_netstats_rx_add(skb->dev, skb->len); 857 netif_receive_skb(skb); 858 } 859 } 860 861 if (last_monitor) 862 break; 863 } 864 865 /* this happens if last_monitor was erroneously false */ 866 dev_kfree_skb(monskb); 867 868 /* ditto */ 869 if (!origskb) 870 return NULL; 871 872 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 873 } 874 875 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 876 { 877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 879 int tid, seqno_idx, security_idx; 880 881 /* does the frame have a qos control field? */ 882 if (ieee80211_is_data_qos(hdr->frame_control)) { 883 u8 *qc = ieee80211_get_qos_ctl(hdr); 884 /* frame has qos control */ 885 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 886 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 887 status->rx_flags |= IEEE80211_RX_AMSDU; 888 889 seqno_idx = tid; 890 security_idx = tid; 891 } else { 892 /* 893 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 894 * 895 * Sequence numbers for management frames, QoS data 896 * frames with a broadcast/multicast address in the 897 * Address 1 field, and all non-QoS data frames sent 898 * by QoS STAs are assigned using an additional single 899 * modulo-4096 counter, [...] 900 * 901 * We also use that counter for non-QoS STAs. 902 */ 903 seqno_idx = IEEE80211_NUM_TIDS; 904 security_idx = 0; 905 if (ieee80211_is_mgmt(hdr->frame_control)) 906 security_idx = IEEE80211_NUM_TIDS; 907 tid = 0; 908 } 909 910 rx->seqno_idx = seqno_idx; 911 rx->security_idx = security_idx; 912 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 913 * For now, set skb->priority to 0 for other cases. */ 914 rx->skb->priority = (tid > 7) ? 0 : tid; 915 } 916 917 /** 918 * DOC: Packet alignment 919 * 920 * Drivers always need to pass packets that are aligned to two-byte boundaries 921 * to the stack. 922 * 923 * Additionally, should, if possible, align the payload data in a way that 924 * guarantees that the contained IP header is aligned to a four-byte 925 * boundary. In the case of regular frames, this simply means aligning the 926 * payload to a four-byte boundary (because either the IP header is directly 927 * contained, or IV/RFC1042 headers that have a length divisible by four are 928 * in front of it). If the payload data is not properly aligned and the 929 * architecture doesn't support efficient unaligned operations, mac80211 930 * will align the data. 931 * 932 * With A-MSDU frames, however, the payload data address must yield two modulo 933 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 934 * push the IP header further back to a multiple of four again. Thankfully, the 935 * specs were sane enough this time around to require padding each A-MSDU 936 * subframe to a length that is a multiple of four. 937 * 938 * Padding like Atheros hardware adds which is between the 802.11 header and 939 * the payload is not supported, the driver is required to move the 802.11 940 * header to be directly in front of the payload in that case. 941 */ 942 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 943 { 944 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 945 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 946 #endif 947 } 948 949 950 /* rx handlers */ 951 952 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 953 { 954 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 955 956 if (is_multicast_ether_addr(hdr->addr1)) 957 return 0; 958 959 return ieee80211_is_robust_mgmt_frame(skb); 960 } 961 962 963 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 964 { 965 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 966 967 if (!is_multicast_ether_addr(hdr->addr1)) 968 return 0; 969 970 return ieee80211_is_robust_mgmt_frame(skb); 971 } 972 973 974 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 975 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 976 { 977 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 978 struct ieee80211_mmie *mmie; 979 struct ieee80211_mmie_16 *mmie16; 980 981 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 982 return -1; 983 984 if (!ieee80211_is_robust_mgmt_frame(skb) && 985 !ieee80211_is_beacon(hdr->frame_control)) 986 return -1; /* not a robust management frame */ 987 988 mmie = (struct ieee80211_mmie *) 989 (skb->data + skb->len - sizeof(*mmie)); 990 if (mmie->element_id == WLAN_EID_MMIE && 991 mmie->length == sizeof(*mmie) - 2) 992 return le16_to_cpu(mmie->key_id); 993 994 mmie16 = (struct ieee80211_mmie_16 *) 995 (skb->data + skb->len - sizeof(*mmie16)); 996 if (skb->len >= 24 + sizeof(*mmie16) && 997 mmie16->element_id == WLAN_EID_MMIE && 998 mmie16->length == sizeof(*mmie16) - 2) 999 return le16_to_cpu(mmie16->key_id); 1000 1001 return -1; 1002 } 1003 1004 static int ieee80211_get_keyid(struct sk_buff *skb) 1005 { 1006 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1007 __le16 fc = hdr->frame_control; 1008 int hdrlen = ieee80211_hdrlen(fc); 1009 u8 keyid; 1010 1011 /* WEP, TKIP, CCMP and GCMP */ 1012 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1013 return -EINVAL; 1014 1015 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1016 1017 keyid >>= 6; 1018 1019 return keyid; 1020 } 1021 1022 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1023 { 1024 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1025 char *dev_addr = rx->sdata->vif.addr; 1026 1027 if (ieee80211_is_data(hdr->frame_control)) { 1028 if (is_multicast_ether_addr(hdr->addr1)) { 1029 if (ieee80211_has_tods(hdr->frame_control) || 1030 !ieee80211_has_fromds(hdr->frame_control)) 1031 return RX_DROP_MONITOR; 1032 if (ether_addr_equal(hdr->addr3, dev_addr)) 1033 return RX_DROP_MONITOR; 1034 } else { 1035 if (!ieee80211_has_a4(hdr->frame_control)) 1036 return RX_DROP_MONITOR; 1037 if (ether_addr_equal(hdr->addr4, dev_addr)) 1038 return RX_DROP_MONITOR; 1039 } 1040 } 1041 1042 /* If there is not an established peer link and this is not a peer link 1043 * establisment frame, beacon or probe, drop the frame. 1044 */ 1045 1046 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1047 struct ieee80211_mgmt *mgmt; 1048 1049 if (!ieee80211_is_mgmt(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 1052 if (ieee80211_is_action(hdr->frame_control)) { 1053 u8 category; 1054 1055 /* make sure category field is present */ 1056 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1057 return RX_DROP_MONITOR; 1058 1059 mgmt = (struct ieee80211_mgmt *)hdr; 1060 category = mgmt->u.action.category; 1061 if (category != WLAN_CATEGORY_MESH_ACTION && 1062 category != WLAN_CATEGORY_SELF_PROTECTED) 1063 return RX_DROP_MONITOR; 1064 return RX_CONTINUE; 1065 } 1066 1067 if (ieee80211_is_probe_req(hdr->frame_control) || 1068 ieee80211_is_probe_resp(hdr->frame_control) || 1069 ieee80211_is_beacon(hdr->frame_control) || 1070 ieee80211_is_auth(hdr->frame_control)) 1071 return RX_CONTINUE; 1072 1073 return RX_DROP_MONITOR; 1074 } 1075 1076 return RX_CONTINUE; 1077 } 1078 1079 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1080 int index) 1081 { 1082 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1083 struct sk_buff *tail = skb_peek_tail(frames); 1084 struct ieee80211_rx_status *status; 1085 1086 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1087 return true; 1088 1089 if (!tail) 1090 return false; 1091 1092 status = IEEE80211_SKB_RXCB(tail); 1093 if (status->flag & RX_FLAG_AMSDU_MORE) 1094 return false; 1095 1096 return true; 1097 } 1098 1099 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1100 struct tid_ampdu_rx *tid_agg_rx, 1101 int index, 1102 struct sk_buff_head *frames) 1103 { 1104 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1105 struct sk_buff *skb; 1106 struct ieee80211_rx_status *status; 1107 1108 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1109 1110 if (skb_queue_empty(skb_list)) 1111 goto no_frame; 1112 1113 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1114 __skb_queue_purge(skb_list); 1115 goto no_frame; 1116 } 1117 1118 /* release frames from the reorder ring buffer */ 1119 tid_agg_rx->stored_mpdu_num--; 1120 while ((skb = __skb_dequeue(skb_list))) { 1121 status = IEEE80211_SKB_RXCB(skb); 1122 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1123 __skb_queue_tail(frames, skb); 1124 } 1125 1126 no_frame: 1127 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1128 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1129 } 1130 1131 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1132 struct tid_ampdu_rx *tid_agg_rx, 1133 u16 head_seq_num, 1134 struct sk_buff_head *frames) 1135 { 1136 int index; 1137 1138 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1139 1140 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1141 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1142 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1143 frames); 1144 } 1145 } 1146 1147 /* 1148 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1149 * the skb was added to the buffer longer than this time ago, the earlier 1150 * frames that have not yet been received are assumed to be lost and the skb 1151 * can be released for processing. This may also release other skb's from the 1152 * reorder buffer if there are no additional gaps between the frames. 1153 * 1154 * Callers must hold tid_agg_rx->reorder_lock. 1155 */ 1156 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1157 1158 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1159 struct tid_ampdu_rx *tid_agg_rx, 1160 struct sk_buff_head *frames) 1161 { 1162 int index, i, j; 1163 1164 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1165 1166 /* release the buffer until next missing frame */ 1167 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1168 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1169 tid_agg_rx->stored_mpdu_num) { 1170 /* 1171 * No buffers ready to be released, but check whether any 1172 * frames in the reorder buffer have timed out. 1173 */ 1174 int skipped = 1; 1175 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1176 j = (j + 1) % tid_agg_rx->buf_size) { 1177 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1178 skipped++; 1179 continue; 1180 } 1181 if (skipped && 1182 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1183 HT_RX_REORDER_BUF_TIMEOUT)) 1184 goto set_release_timer; 1185 1186 /* don't leave incomplete A-MSDUs around */ 1187 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1188 i = (i + 1) % tid_agg_rx->buf_size) 1189 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1190 1191 ht_dbg_ratelimited(sdata, 1192 "release an RX reorder frame due to timeout on earlier frames\n"); 1193 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1194 frames); 1195 1196 /* 1197 * Increment the head seq# also for the skipped slots. 1198 */ 1199 tid_agg_rx->head_seq_num = 1200 (tid_agg_rx->head_seq_num + 1201 skipped) & IEEE80211_SN_MASK; 1202 skipped = 0; 1203 } 1204 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1206 frames); 1207 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1208 } 1209 1210 if (tid_agg_rx->stored_mpdu_num) { 1211 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1212 1213 for (; j != (index - 1) % tid_agg_rx->buf_size; 1214 j = (j + 1) % tid_agg_rx->buf_size) { 1215 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1216 break; 1217 } 1218 1219 set_release_timer: 1220 1221 if (!tid_agg_rx->removed) 1222 mod_timer(&tid_agg_rx->reorder_timer, 1223 tid_agg_rx->reorder_time[j] + 1 + 1224 HT_RX_REORDER_BUF_TIMEOUT); 1225 } else { 1226 del_timer(&tid_agg_rx->reorder_timer); 1227 } 1228 } 1229 1230 /* 1231 * As this function belongs to the RX path it must be under 1232 * rcu_read_lock protection. It returns false if the frame 1233 * can be processed immediately, true if it was consumed. 1234 */ 1235 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1236 struct tid_ampdu_rx *tid_agg_rx, 1237 struct sk_buff *skb, 1238 struct sk_buff_head *frames) 1239 { 1240 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1241 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1242 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1243 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1244 u16 head_seq_num, buf_size; 1245 int index; 1246 bool ret = true; 1247 1248 spin_lock(&tid_agg_rx->reorder_lock); 1249 1250 /* 1251 * Offloaded BA sessions have no known starting sequence number so pick 1252 * one from first Rxed frame for this tid after BA was started. 1253 */ 1254 if (unlikely(tid_agg_rx->auto_seq)) { 1255 tid_agg_rx->auto_seq = false; 1256 tid_agg_rx->ssn = mpdu_seq_num; 1257 tid_agg_rx->head_seq_num = mpdu_seq_num; 1258 } 1259 1260 buf_size = tid_agg_rx->buf_size; 1261 head_seq_num = tid_agg_rx->head_seq_num; 1262 1263 /* 1264 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1265 * be reordered. 1266 */ 1267 if (unlikely(!tid_agg_rx->started)) { 1268 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1269 ret = false; 1270 goto out; 1271 } 1272 tid_agg_rx->started = true; 1273 } 1274 1275 /* frame with out of date sequence number */ 1276 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1277 dev_kfree_skb(skb); 1278 goto out; 1279 } 1280 1281 /* 1282 * If frame the sequence number exceeds our buffering window 1283 * size release some previous frames to make room for this one. 1284 */ 1285 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1286 head_seq_num = ieee80211_sn_inc( 1287 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1288 /* release stored frames up to new head to stack */ 1289 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1290 head_seq_num, frames); 1291 } 1292 1293 /* Now the new frame is always in the range of the reordering buffer */ 1294 1295 index = mpdu_seq_num % tid_agg_rx->buf_size; 1296 1297 /* check if we already stored this frame */ 1298 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1299 dev_kfree_skb(skb); 1300 goto out; 1301 } 1302 1303 /* 1304 * If the current MPDU is in the right order and nothing else 1305 * is stored we can process it directly, no need to buffer it. 1306 * If it is first but there's something stored, we may be able 1307 * to release frames after this one. 1308 */ 1309 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1310 tid_agg_rx->stored_mpdu_num == 0) { 1311 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1312 tid_agg_rx->head_seq_num = 1313 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1314 ret = false; 1315 goto out; 1316 } 1317 1318 /* put the frame in the reordering buffer */ 1319 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1320 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1321 tid_agg_rx->reorder_time[index] = jiffies; 1322 tid_agg_rx->stored_mpdu_num++; 1323 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1324 } 1325 1326 out: 1327 spin_unlock(&tid_agg_rx->reorder_lock); 1328 return ret; 1329 } 1330 1331 /* 1332 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1333 * true if the MPDU was buffered, false if it should be processed. 1334 */ 1335 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1336 struct sk_buff_head *frames) 1337 { 1338 struct sk_buff *skb = rx->skb; 1339 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1340 struct sta_info *sta = rx->sta; 1341 struct tid_ampdu_rx *tid_agg_rx; 1342 u16 sc; 1343 u8 tid, ack_policy; 1344 1345 if (!ieee80211_is_data_qos(hdr->frame_control) || 1346 is_multicast_ether_addr(hdr->addr1)) 1347 goto dont_reorder; 1348 1349 /* 1350 * filter the QoS data rx stream according to 1351 * STA/TID and check if this STA/TID is on aggregation 1352 */ 1353 1354 if (!sta) 1355 goto dont_reorder; 1356 1357 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1358 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1359 tid = ieee80211_get_tid(hdr); 1360 1361 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1362 if (!tid_agg_rx) { 1363 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1364 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1365 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1366 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1367 WLAN_BACK_RECIPIENT, 1368 WLAN_REASON_QSTA_REQUIRE_SETUP); 1369 goto dont_reorder; 1370 } 1371 1372 /* qos null data frames are excluded */ 1373 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1374 goto dont_reorder; 1375 1376 /* not part of a BA session */ 1377 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1378 goto dont_reorder; 1379 1380 /* new, potentially un-ordered, ampdu frame - process it */ 1381 1382 /* reset session timer */ 1383 if (tid_agg_rx->timeout) 1384 tid_agg_rx->last_rx = jiffies; 1385 1386 /* if this mpdu is fragmented - terminate rx aggregation session */ 1387 sc = le16_to_cpu(hdr->seq_ctrl); 1388 if (sc & IEEE80211_SCTL_FRAG) { 1389 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1390 return; 1391 } 1392 1393 /* 1394 * No locking needed -- we will only ever process one 1395 * RX packet at a time, and thus own tid_agg_rx. All 1396 * other code manipulating it needs to (and does) make 1397 * sure that we cannot get to it any more before doing 1398 * anything with it. 1399 */ 1400 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1401 frames)) 1402 return; 1403 1404 dont_reorder: 1405 __skb_queue_tail(frames, skb); 1406 } 1407 1408 static ieee80211_rx_result debug_noinline 1409 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1410 { 1411 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1412 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1413 1414 if (status->flag & RX_FLAG_DUP_VALIDATED) 1415 return RX_CONTINUE; 1416 1417 /* 1418 * Drop duplicate 802.11 retransmissions 1419 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1420 */ 1421 1422 if (rx->skb->len < 24) 1423 return RX_CONTINUE; 1424 1425 if (ieee80211_is_ctl(hdr->frame_control) || 1426 ieee80211_is_any_nullfunc(hdr->frame_control) || 1427 is_multicast_ether_addr(hdr->addr1)) 1428 return RX_CONTINUE; 1429 1430 if (!rx->sta) 1431 return RX_CONTINUE; 1432 1433 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1434 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1435 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1436 rx->link_sta->rx_stats.num_duplicates++; 1437 return RX_DROP_UNUSABLE; 1438 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1439 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1440 } 1441 1442 return RX_CONTINUE; 1443 } 1444 1445 static ieee80211_rx_result debug_noinline 1446 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1447 { 1448 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1449 1450 /* Drop disallowed frame classes based on STA auth/assoc state; 1451 * IEEE 802.11, Chap 5.5. 1452 * 1453 * mac80211 filters only based on association state, i.e. it drops 1454 * Class 3 frames from not associated stations. hostapd sends 1455 * deauth/disassoc frames when needed. In addition, hostapd is 1456 * responsible for filtering on both auth and assoc states. 1457 */ 1458 1459 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1460 return ieee80211_rx_mesh_check(rx); 1461 1462 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1463 ieee80211_is_pspoll(hdr->frame_control)) && 1464 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1465 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1466 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1467 /* 1468 * accept port control frames from the AP even when it's not 1469 * yet marked ASSOC to prevent a race where we don't set the 1470 * assoc bit quickly enough before it sends the first frame 1471 */ 1472 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1473 ieee80211_is_data_present(hdr->frame_control)) { 1474 unsigned int hdrlen; 1475 __be16 ethertype; 1476 1477 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1478 1479 if (rx->skb->len < hdrlen + 8) 1480 return RX_DROP_MONITOR; 1481 1482 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1483 if (ethertype == rx->sdata->control_port_protocol) 1484 return RX_CONTINUE; 1485 } 1486 1487 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1488 cfg80211_rx_spurious_frame(rx->sdata->dev, 1489 hdr->addr2, 1490 GFP_ATOMIC)) 1491 return RX_DROP_UNUSABLE; 1492 1493 return RX_DROP_MONITOR; 1494 } 1495 1496 return RX_CONTINUE; 1497 } 1498 1499 1500 static ieee80211_rx_result debug_noinline 1501 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1502 { 1503 struct ieee80211_local *local; 1504 struct ieee80211_hdr *hdr; 1505 struct sk_buff *skb; 1506 1507 local = rx->local; 1508 skb = rx->skb; 1509 hdr = (struct ieee80211_hdr *) skb->data; 1510 1511 if (!local->pspolling) 1512 return RX_CONTINUE; 1513 1514 if (!ieee80211_has_fromds(hdr->frame_control)) 1515 /* this is not from AP */ 1516 return RX_CONTINUE; 1517 1518 if (!ieee80211_is_data(hdr->frame_control)) 1519 return RX_CONTINUE; 1520 1521 if (!ieee80211_has_moredata(hdr->frame_control)) { 1522 /* AP has no more frames buffered for us */ 1523 local->pspolling = false; 1524 return RX_CONTINUE; 1525 } 1526 1527 /* more data bit is set, let's request a new frame from the AP */ 1528 ieee80211_send_pspoll(local, rx->sdata); 1529 1530 return RX_CONTINUE; 1531 } 1532 1533 static void sta_ps_start(struct sta_info *sta) 1534 { 1535 struct ieee80211_sub_if_data *sdata = sta->sdata; 1536 struct ieee80211_local *local = sdata->local; 1537 struct ps_data *ps; 1538 int tid; 1539 1540 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1541 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1542 ps = &sdata->bss->ps; 1543 else 1544 return; 1545 1546 atomic_inc(&ps->num_sta_ps); 1547 set_sta_flag(sta, WLAN_STA_PS_STA); 1548 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1549 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1550 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1551 sta->sta.addr, sta->sta.aid); 1552 1553 ieee80211_clear_fast_xmit(sta); 1554 1555 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1556 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1557 struct txq_info *txqi = to_txq_info(txq); 1558 1559 spin_lock(&local->active_txq_lock[txq->ac]); 1560 if (!list_empty(&txqi->schedule_order)) 1561 list_del_init(&txqi->schedule_order); 1562 spin_unlock(&local->active_txq_lock[txq->ac]); 1563 1564 if (txq_has_queue(txq)) 1565 set_bit(tid, &sta->txq_buffered_tids); 1566 else 1567 clear_bit(tid, &sta->txq_buffered_tids); 1568 } 1569 } 1570 1571 static void sta_ps_end(struct sta_info *sta) 1572 { 1573 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1574 sta->sta.addr, sta->sta.aid); 1575 1576 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1577 /* 1578 * Clear the flag only if the other one is still set 1579 * so that the TX path won't start TX'ing new frames 1580 * directly ... In the case that the driver flag isn't 1581 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1582 */ 1583 clear_sta_flag(sta, WLAN_STA_PS_STA); 1584 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1585 sta->sta.addr, sta->sta.aid); 1586 return; 1587 } 1588 1589 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1590 clear_sta_flag(sta, WLAN_STA_PS_STA); 1591 ieee80211_sta_ps_deliver_wakeup(sta); 1592 } 1593 1594 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1595 { 1596 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1597 bool in_ps; 1598 1599 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1600 1601 /* Don't let the same PS state be set twice */ 1602 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1603 if ((start && in_ps) || (!start && !in_ps)) 1604 return -EINVAL; 1605 1606 if (start) 1607 sta_ps_start(sta); 1608 else 1609 sta_ps_end(sta); 1610 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1614 1615 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1616 { 1617 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1618 1619 if (test_sta_flag(sta, WLAN_STA_SP)) 1620 return; 1621 1622 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1623 ieee80211_sta_ps_deliver_poll_response(sta); 1624 else 1625 set_sta_flag(sta, WLAN_STA_PSPOLL); 1626 } 1627 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1628 1629 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1630 { 1631 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1632 int ac = ieee80211_ac_from_tid(tid); 1633 1634 /* 1635 * If this AC is not trigger-enabled do nothing unless the 1636 * driver is calling us after it already checked. 1637 * 1638 * NB: This could/should check a separate bitmap of trigger- 1639 * enabled queues, but for now we only implement uAPSD w/o 1640 * TSPEC changes to the ACs, so they're always the same. 1641 */ 1642 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1643 tid != IEEE80211_NUM_TIDS) 1644 return; 1645 1646 /* if we are in a service period, do nothing */ 1647 if (test_sta_flag(sta, WLAN_STA_SP)) 1648 return; 1649 1650 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1651 ieee80211_sta_ps_deliver_uapsd(sta); 1652 else 1653 set_sta_flag(sta, WLAN_STA_UAPSD); 1654 } 1655 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1656 1657 static ieee80211_rx_result debug_noinline 1658 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1659 { 1660 struct ieee80211_sub_if_data *sdata = rx->sdata; 1661 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1662 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1663 1664 if (!rx->sta) 1665 return RX_CONTINUE; 1666 1667 if (sdata->vif.type != NL80211_IFTYPE_AP && 1668 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1669 return RX_CONTINUE; 1670 1671 /* 1672 * The device handles station powersave, so don't do anything about 1673 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1674 * it to mac80211 since they're handled.) 1675 */ 1676 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1677 return RX_CONTINUE; 1678 1679 /* 1680 * Don't do anything if the station isn't already asleep. In 1681 * the uAPSD case, the station will probably be marked asleep, 1682 * in the PS-Poll case the station must be confused ... 1683 */ 1684 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1685 return RX_CONTINUE; 1686 1687 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1688 ieee80211_sta_pspoll(&rx->sta->sta); 1689 1690 /* Free PS Poll skb here instead of returning RX_DROP that would 1691 * count as an dropped frame. */ 1692 dev_kfree_skb(rx->skb); 1693 1694 return RX_QUEUED; 1695 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1696 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1697 ieee80211_has_pm(hdr->frame_control) && 1698 (ieee80211_is_data_qos(hdr->frame_control) || 1699 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1700 u8 tid = ieee80211_get_tid(hdr); 1701 1702 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1703 } 1704 1705 return RX_CONTINUE; 1706 } 1707 1708 static ieee80211_rx_result debug_noinline 1709 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1710 { 1711 struct sta_info *sta = rx->sta; 1712 struct link_sta_info *link_sta = rx->link_sta; 1713 struct sk_buff *skb = rx->skb; 1714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1715 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1716 int i; 1717 1718 if (!sta || !link_sta) 1719 return RX_CONTINUE; 1720 1721 /* 1722 * Update last_rx only for IBSS packets which are for the current 1723 * BSSID and for station already AUTHORIZED to avoid keeping the 1724 * current IBSS network alive in cases where other STAs start 1725 * using different BSSID. This will also give the station another 1726 * chance to restart the authentication/authorization in case 1727 * something went wrong the first time. 1728 */ 1729 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1730 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1731 NL80211_IFTYPE_ADHOC); 1732 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1733 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1734 link_sta->rx_stats.last_rx = jiffies; 1735 if (ieee80211_is_data(hdr->frame_control) && 1736 !is_multicast_ether_addr(hdr->addr1)) 1737 link_sta->rx_stats.last_rate = 1738 sta_stats_encode_rate(status); 1739 } 1740 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1741 link_sta->rx_stats.last_rx = jiffies; 1742 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1743 !is_multicast_ether_addr(hdr->addr1)) { 1744 /* 1745 * Mesh beacons will update last_rx when if they are found to 1746 * match the current local configuration when processed. 1747 */ 1748 link_sta->rx_stats.last_rx = jiffies; 1749 if (ieee80211_is_data(hdr->frame_control)) 1750 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1751 } 1752 1753 link_sta->rx_stats.fragments++; 1754 1755 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1756 link_sta->rx_stats.bytes += rx->skb->len; 1757 u64_stats_update_end(&link_sta->rx_stats.syncp); 1758 1759 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1760 link_sta->rx_stats.last_signal = status->signal; 1761 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1762 -status->signal); 1763 } 1764 1765 if (status->chains) { 1766 link_sta->rx_stats.chains = status->chains; 1767 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1768 int signal = status->chain_signal[i]; 1769 1770 if (!(status->chains & BIT(i))) 1771 continue; 1772 1773 link_sta->rx_stats.chain_signal_last[i] = signal; 1774 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1775 -signal); 1776 } 1777 } 1778 1779 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1780 return RX_CONTINUE; 1781 1782 /* 1783 * Change STA power saving mode only at the end of a frame 1784 * exchange sequence, and only for a data or management 1785 * frame as specified in IEEE 802.11-2016 11.2.3.2 1786 */ 1787 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1788 !ieee80211_has_morefrags(hdr->frame_control) && 1789 !is_multicast_ether_addr(hdr->addr1) && 1790 (ieee80211_is_mgmt(hdr->frame_control) || 1791 ieee80211_is_data(hdr->frame_control)) && 1792 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1793 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1794 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1795 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1796 if (!ieee80211_has_pm(hdr->frame_control)) 1797 sta_ps_end(sta); 1798 } else { 1799 if (ieee80211_has_pm(hdr->frame_control)) 1800 sta_ps_start(sta); 1801 } 1802 } 1803 1804 /* mesh power save support */ 1805 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1806 ieee80211_mps_rx_h_sta_process(sta, hdr); 1807 1808 /* 1809 * Drop (qos-)data::nullfunc frames silently, since they 1810 * are used only to control station power saving mode. 1811 */ 1812 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1813 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1814 1815 /* 1816 * If we receive a 4-addr nullfunc frame from a STA 1817 * that was not moved to a 4-addr STA vlan yet send 1818 * the event to userspace and for older hostapd drop 1819 * the frame to the monitor interface. 1820 */ 1821 if (ieee80211_has_a4(hdr->frame_control) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1824 !rx->sdata->u.vlan.sta))) { 1825 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1826 cfg80211_rx_unexpected_4addr_frame( 1827 rx->sdata->dev, sta->sta.addr, 1828 GFP_ATOMIC); 1829 return RX_DROP_MONITOR; 1830 } 1831 /* 1832 * Update counter and free packet here to avoid 1833 * counting this as a dropped packed. 1834 */ 1835 link_sta->rx_stats.packets++; 1836 dev_kfree_skb(rx->skb); 1837 return RX_QUEUED; 1838 } 1839 1840 return RX_CONTINUE; 1841 } /* ieee80211_rx_h_sta_process */ 1842 1843 static struct ieee80211_key * 1844 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1845 { 1846 struct ieee80211_key *key = NULL; 1847 int idx2; 1848 1849 /* Make sure key gets set if either BIGTK key index is set so that 1850 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1851 * Beacon frames and Beacon frames that claim to use another BIGTK key 1852 * index (i.e., a key that we do not have). 1853 */ 1854 1855 if (idx < 0) { 1856 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1857 idx2 = idx + 1; 1858 } else { 1859 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1860 idx2 = idx + 1; 1861 else 1862 idx2 = idx - 1; 1863 } 1864 1865 if (rx->link_sta) 1866 key = rcu_dereference(rx->link_sta->gtk[idx]); 1867 if (!key) 1868 key = rcu_dereference(rx->link->gtk[idx]); 1869 if (!key && rx->link_sta) 1870 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1871 if (!key) 1872 key = rcu_dereference(rx->link->gtk[idx2]); 1873 1874 return key; 1875 } 1876 1877 static ieee80211_rx_result debug_noinline 1878 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1879 { 1880 struct sk_buff *skb = rx->skb; 1881 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1882 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1883 int keyidx; 1884 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1885 struct ieee80211_key *sta_ptk = NULL; 1886 struct ieee80211_key *ptk_idx = NULL; 1887 int mmie_keyidx = -1; 1888 __le16 fc; 1889 1890 if (ieee80211_is_ext(hdr->frame_control)) 1891 return RX_CONTINUE; 1892 1893 /* 1894 * Key selection 101 1895 * 1896 * There are five types of keys: 1897 * - GTK (group keys) 1898 * - IGTK (group keys for management frames) 1899 * - BIGTK (group keys for Beacon frames) 1900 * - PTK (pairwise keys) 1901 * - STK (station-to-station pairwise keys) 1902 * 1903 * When selecting a key, we have to distinguish between multicast 1904 * (including broadcast) and unicast frames, the latter can only 1905 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1906 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1907 * then unicast frames can also use key indices like GTKs. Hence, if we 1908 * don't have a PTK/STK we check the key index for a WEP key. 1909 * 1910 * Note that in a regular BSS, multicast frames are sent by the 1911 * AP only, associated stations unicast the frame to the AP first 1912 * which then multicasts it on their behalf. 1913 * 1914 * There is also a slight problem in IBSS mode: GTKs are negotiated 1915 * with each station, that is something we don't currently handle. 1916 * The spec seems to expect that one negotiates the same key with 1917 * every station but there's no such requirement; VLANs could be 1918 * possible. 1919 */ 1920 1921 /* start without a key */ 1922 rx->key = NULL; 1923 fc = hdr->frame_control; 1924 1925 if (rx->sta) { 1926 int keyid = rx->sta->ptk_idx; 1927 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1928 1929 if (ieee80211_has_protected(fc) && 1930 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1931 keyid = ieee80211_get_keyid(rx->skb); 1932 1933 if (unlikely(keyid < 0)) 1934 return RX_DROP_UNUSABLE; 1935 1936 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1937 } 1938 } 1939 1940 if (!ieee80211_has_protected(fc)) 1941 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1942 1943 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1944 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1945 if ((status->flag & RX_FLAG_DECRYPTED) && 1946 (status->flag & RX_FLAG_IV_STRIPPED)) 1947 return RX_CONTINUE; 1948 /* Skip decryption if the frame is not protected. */ 1949 if (!ieee80211_has_protected(fc)) 1950 return RX_CONTINUE; 1951 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1952 /* Broadcast/multicast robust management frame / BIP */ 1953 if ((status->flag & RX_FLAG_DECRYPTED) && 1954 (status->flag & RX_FLAG_IV_STRIPPED)) 1955 return RX_CONTINUE; 1956 1957 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1958 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1959 NUM_DEFAULT_BEACON_KEYS) { 1960 if (rx->sdata->dev) 1961 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1962 skb->data, 1963 skb->len); 1964 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1965 } 1966 1967 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1968 if (!rx->key) 1969 return RX_CONTINUE; /* Beacon protection not in use */ 1970 } else if (mmie_keyidx >= 0) { 1971 /* Broadcast/multicast robust management frame / BIP */ 1972 if ((status->flag & RX_FLAG_DECRYPTED) && 1973 (status->flag & RX_FLAG_IV_STRIPPED)) 1974 return RX_CONTINUE; 1975 1976 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1977 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1978 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1979 if (rx->link_sta) { 1980 if (ieee80211_is_group_privacy_action(skb) && 1981 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1982 return RX_DROP_MONITOR; 1983 1984 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1985 } 1986 if (!rx->key) 1987 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 1988 } else if (!ieee80211_has_protected(fc)) { 1989 /* 1990 * The frame was not protected, so skip decryption. However, we 1991 * need to set rx->key if there is a key that could have been 1992 * used so that the frame may be dropped if encryption would 1993 * have been expected. 1994 */ 1995 struct ieee80211_key *key = NULL; 1996 int i; 1997 1998 if (ieee80211_is_beacon(fc)) { 1999 key = ieee80211_rx_get_bigtk(rx, -1); 2000 } else if (ieee80211_is_mgmt(fc) && 2001 is_multicast_ether_addr(hdr->addr1)) { 2002 key = rcu_dereference(rx->link->default_mgmt_key); 2003 } else { 2004 if (rx->link_sta) { 2005 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2006 key = rcu_dereference(rx->link_sta->gtk[i]); 2007 if (key) 2008 break; 2009 } 2010 } 2011 if (!key) { 2012 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2013 key = rcu_dereference(rx->link->gtk[i]); 2014 if (key) 2015 break; 2016 } 2017 } 2018 } 2019 if (key) 2020 rx->key = key; 2021 return RX_CONTINUE; 2022 } else { 2023 /* 2024 * The device doesn't give us the IV so we won't be 2025 * able to look up the key. That's ok though, we 2026 * don't need to decrypt the frame, we just won't 2027 * be able to keep statistics accurate. 2028 * Except for key threshold notifications, should 2029 * we somehow allow the driver to tell us which key 2030 * the hardware used if this flag is set? 2031 */ 2032 if ((status->flag & RX_FLAG_DECRYPTED) && 2033 (status->flag & RX_FLAG_IV_STRIPPED)) 2034 return RX_CONTINUE; 2035 2036 keyidx = ieee80211_get_keyid(rx->skb); 2037 2038 if (unlikely(keyidx < 0)) 2039 return RX_DROP_UNUSABLE; 2040 2041 /* check per-station GTK first, if multicast packet */ 2042 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2043 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2044 2045 /* if not found, try default key */ 2046 if (!rx->key) { 2047 if (is_multicast_ether_addr(hdr->addr1)) 2048 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2049 if (!rx->key) 2050 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2051 2052 /* 2053 * RSNA-protected unicast frames should always be 2054 * sent with pairwise or station-to-station keys, 2055 * but for WEP we allow using a key index as well. 2056 */ 2057 if (rx->key && 2058 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2059 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2060 !is_multicast_ether_addr(hdr->addr1)) 2061 rx->key = NULL; 2062 } 2063 } 2064 2065 if (rx->key) { 2066 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2067 return RX_DROP_MONITOR; 2068 2069 /* TODO: add threshold stuff again */ 2070 } else { 2071 return RX_DROP_MONITOR; 2072 } 2073 2074 switch (rx->key->conf.cipher) { 2075 case WLAN_CIPHER_SUITE_WEP40: 2076 case WLAN_CIPHER_SUITE_WEP104: 2077 result = ieee80211_crypto_wep_decrypt(rx); 2078 break; 2079 case WLAN_CIPHER_SUITE_TKIP: 2080 result = ieee80211_crypto_tkip_decrypt(rx); 2081 break; 2082 case WLAN_CIPHER_SUITE_CCMP: 2083 result = ieee80211_crypto_ccmp_decrypt( 2084 rx, IEEE80211_CCMP_MIC_LEN); 2085 break; 2086 case WLAN_CIPHER_SUITE_CCMP_256: 2087 result = ieee80211_crypto_ccmp_decrypt( 2088 rx, IEEE80211_CCMP_256_MIC_LEN); 2089 break; 2090 case WLAN_CIPHER_SUITE_AES_CMAC: 2091 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2092 break; 2093 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2094 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2095 break; 2096 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2097 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2098 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2099 break; 2100 case WLAN_CIPHER_SUITE_GCMP: 2101 case WLAN_CIPHER_SUITE_GCMP_256: 2102 result = ieee80211_crypto_gcmp_decrypt(rx); 2103 break; 2104 default: 2105 result = RX_DROP_UNUSABLE; 2106 } 2107 2108 /* the hdr variable is invalid after the decrypt handlers */ 2109 2110 /* either the frame has been decrypted or will be dropped */ 2111 status->flag |= RX_FLAG_DECRYPTED; 2112 2113 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE && 2114 rx->sdata->dev)) 2115 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2116 skb->data, skb->len); 2117 2118 return result; 2119 } 2120 2121 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2122 { 2123 int i; 2124 2125 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2126 skb_queue_head_init(&cache->entries[i].skb_list); 2127 } 2128 2129 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2130 { 2131 int i; 2132 2133 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2134 __skb_queue_purge(&cache->entries[i].skb_list); 2135 } 2136 2137 static inline struct ieee80211_fragment_entry * 2138 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2139 unsigned int frag, unsigned int seq, int rx_queue, 2140 struct sk_buff **skb) 2141 { 2142 struct ieee80211_fragment_entry *entry; 2143 2144 entry = &cache->entries[cache->next++]; 2145 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2146 cache->next = 0; 2147 2148 __skb_queue_purge(&entry->skb_list); 2149 2150 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2151 *skb = NULL; 2152 entry->first_frag_time = jiffies; 2153 entry->seq = seq; 2154 entry->rx_queue = rx_queue; 2155 entry->last_frag = frag; 2156 entry->check_sequential_pn = false; 2157 entry->extra_len = 0; 2158 2159 return entry; 2160 } 2161 2162 static inline struct ieee80211_fragment_entry * 2163 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2164 unsigned int frag, unsigned int seq, 2165 int rx_queue, struct ieee80211_hdr *hdr) 2166 { 2167 struct ieee80211_fragment_entry *entry; 2168 int i, idx; 2169 2170 idx = cache->next; 2171 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2172 struct ieee80211_hdr *f_hdr; 2173 struct sk_buff *f_skb; 2174 2175 idx--; 2176 if (idx < 0) 2177 idx = IEEE80211_FRAGMENT_MAX - 1; 2178 2179 entry = &cache->entries[idx]; 2180 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2181 entry->rx_queue != rx_queue || 2182 entry->last_frag + 1 != frag) 2183 continue; 2184 2185 f_skb = __skb_peek(&entry->skb_list); 2186 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2187 2188 /* 2189 * Check ftype and addresses are equal, else check next fragment 2190 */ 2191 if (((hdr->frame_control ^ f_hdr->frame_control) & 2192 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2193 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2194 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2195 continue; 2196 2197 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2198 __skb_queue_purge(&entry->skb_list); 2199 continue; 2200 } 2201 return entry; 2202 } 2203 2204 return NULL; 2205 } 2206 2207 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2208 { 2209 return rx->key && 2210 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2211 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2212 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2213 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2214 ieee80211_has_protected(fc); 2215 } 2216 2217 static ieee80211_rx_result debug_noinline 2218 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2219 { 2220 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2221 struct ieee80211_hdr *hdr; 2222 u16 sc; 2223 __le16 fc; 2224 unsigned int frag, seq; 2225 struct ieee80211_fragment_entry *entry; 2226 struct sk_buff *skb; 2227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2228 2229 hdr = (struct ieee80211_hdr *)rx->skb->data; 2230 fc = hdr->frame_control; 2231 2232 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2233 return RX_CONTINUE; 2234 2235 sc = le16_to_cpu(hdr->seq_ctrl); 2236 frag = sc & IEEE80211_SCTL_FRAG; 2237 2238 if (rx->sta) 2239 cache = &rx->sta->frags; 2240 2241 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2242 goto out; 2243 2244 if (is_multicast_ether_addr(hdr->addr1)) 2245 return RX_DROP_MONITOR; 2246 2247 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2248 2249 if (skb_linearize(rx->skb)) 2250 return RX_DROP_UNUSABLE; 2251 2252 /* 2253 * skb_linearize() might change the skb->data and 2254 * previously cached variables (in this case, hdr) need to 2255 * be refreshed with the new data. 2256 */ 2257 hdr = (struct ieee80211_hdr *)rx->skb->data; 2258 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2259 2260 if (frag == 0) { 2261 /* This is the first fragment of a new frame. */ 2262 entry = ieee80211_reassemble_add(cache, frag, seq, 2263 rx->seqno_idx, &(rx->skb)); 2264 if (requires_sequential_pn(rx, fc)) { 2265 int queue = rx->security_idx; 2266 2267 /* Store CCMP/GCMP PN so that we can verify that the 2268 * next fragment has a sequential PN value. 2269 */ 2270 entry->check_sequential_pn = true; 2271 entry->is_protected = true; 2272 entry->key_color = rx->key->color; 2273 memcpy(entry->last_pn, 2274 rx->key->u.ccmp.rx_pn[queue], 2275 IEEE80211_CCMP_PN_LEN); 2276 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2277 u.ccmp.rx_pn) != 2278 offsetof(struct ieee80211_key, 2279 u.gcmp.rx_pn)); 2280 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2281 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2282 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2283 IEEE80211_GCMP_PN_LEN); 2284 } else if (rx->key && 2285 (ieee80211_has_protected(fc) || 2286 (status->flag & RX_FLAG_DECRYPTED))) { 2287 entry->is_protected = true; 2288 entry->key_color = rx->key->color; 2289 } 2290 return RX_QUEUED; 2291 } 2292 2293 /* This is a fragment for a frame that should already be pending in 2294 * fragment cache. Add this fragment to the end of the pending entry. 2295 */ 2296 entry = ieee80211_reassemble_find(cache, frag, seq, 2297 rx->seqno_idx, hdr); 2298 if (!entry) { 2299 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2300 return RX_DROP_MONITOR; 2301 } 2302 2303 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2304 * MPDU PN values are not incrementing in steps of 1." 2305 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2306 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2307 */ 2308 if (entry->check_sequential_pn) { 2309 int i; 2310 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2311 2312 if (!requires_sequential_pn(rx, fc)) 2313 return RX_DROP_UNUSABLE; 2314 2315 /* Prevent mixed key and fragment cache attacks */ 2316 if (entry->key_color != rx->key->color) 2317 return RX_DROP_UNUSABLE; 2318 2319 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2320 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2321 pn[i]++; 2322 if (pn[i]) 2323 break; 2324 } 2325 2326 rpn = rx->ccm_gcm.pn; 2327 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2328 return RX_DROP_UNUSABLE; 2329 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2330 } else if (entry->is_protected && 2331 (!rx->key || 2332 (!ieee80211_has_protected(fc) && 2333 !(status->flag & RX_FLAG_DECRYPTED)) || 2334 rx->key->color != entry->key_color)) { 2335 /* Drop this as a mixed key or fragment cache attack, even 2336 * if for TKIP Michael MIC should protect us, and WEP is a 2337 * lost cause anyway. 2338 */ 2339 return RX_DROP_UNUSABLE; 2340 } else if (entry->is_protected && rx->key && 2341 entry->key_color != rx->key->color && 2342 (status->flag & RX_FLAG_DECRYPTED)) { 2343 return RX_DROP_UNUSABLE; 2344 } 2345 2346 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2347 __skb_queue_tail(&entry->skb_list, rx->skb); 2348 entry->last_frag = frag; 2349 entry->extra_len += rx->skb->len; 2350 if (ieee80211_has_morefrags(fc)) { 2351 rx->skb = NULL; 2352 return RX_QUEUED; 2353 } 2354 2355 rx->skb = __skb_dequeue(&entry->skb_list); 2356 if (skb_tailroom(rx->skb) < entry->extra_len) { 2357 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2358 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2359 GFP_ATOMIC))) { 2360 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2361 __skb_queue_purge(&entry->skb_list); 2362 return RX_DROP_UNUSABLE; 2363 } 2364 } 2365 while ((skb = __skb_dequeue(&entry->skb_list))) { 2366 skb_put_data(rx->skb, skb->data, skb->len); 2367 dev_kfree_skb(skb); 2368 } 2369 2370 out: 2371 ieee80211_led_rx(rx->local); 2372 if (rx->sta) 2373 rx->link_sta->rx_stats.packets++; 2374 return RX_CONTINUE; 2375 } 2376 2377 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2378 { 2379 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2380 return -EACCES; 2381 2382 return 0; 2383 } 2384 2385 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2386 { 2387 struct sk_buff *skb = rx->skb; 2388 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2389 2390 /* 2391 * Pass through unencrypted frames if the hardware has 2392 * decrypted them already. 2393 */ 2394 if (status->flag & RX_FLAG_DECRYPTED) 2395 return 0; 2396 2397 /* Drop unencrypted frames if key is set. */ 2398 if (unlikely(!ieee80211_has_protected(fc) && 2399 !ieee80211_is_any_nullfunc(fc) && 2400 ieee80211_is_data(fc) && rx->key)) 2401 return -EACCES; 2402 2403 return 0; 2404 } 2405 2406 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2407 { 2408 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2409 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2410 __le16 fc = hdr->frame_control; 2411 2412 /* 2413 * Pass through unencrypted frames if the hardware has 2414 * decrypted them already. 2415 */ 2416 if (status->flag & RX_FLAG_DECRYPTED) 2417 return 0; 2418 2419 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2420 if (unlikely(!ieee80211_has_protected(fc) && 2421 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2422 rx->key)) { 2423 if (ieee80211_is_deauth(fc) || 2424 ieee80211_is_disassoc(fc)) 2425 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2426 rx->skb->data, 2427 rx->skb->len); 2428 return -EACCES; 2429 } 2430 /* BIP does not use Protected field, so need to check MMIE */ 2431 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2432 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2433 if (ieee80211_is_deauth(fc) || 2434 ieee80211_is_disassoc(fc)) 2435 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2436 rx->skb->data, 2437 rx->skb->len); 2438 return -EACCES; 2439 } 2440 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2441 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2442 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2443 rx->skb->data, 2444 rx->skb->len); 2445 return -EACCES; 2446 } 2447 /* 2448 * When using MFP, Action frames are not allowed prior to 2449 * having configured keys. 2450 */ 2451 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2452 ieee80211_is_robust_mgmt_frame(rx->skb))) 2453 return -EACCES; 2454 } 2455 2456 return 0; 2457 } 2458 2459 static int 2460 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2461 { 2462 struct ieee80211_sub_if_data *sdata = rx->sdata; 2463 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2464 bool check_port_control = false; 2465 struct ethhdr *ehdr; 2466 int ret; 2467 2468 *port_control = false; 2469 if (ieee80211_has_a4(hdr->frame_control) && 2470 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2471 return -1; 2472 2473 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2474 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2475 2476 if (!sdata->u.mgd.use_4addr) 2477 return -1; 2478 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2479 check_port_control = true; 2480 } 2481 2482 if (is_multicast_ether_addr(hdr->addr1) && 2483 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2484 return -1; 2485 2486 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2487 if (ret < 0) 2488 return ret; 2489 2490 ehdr = (struct ethhdr *) rx->skb->data; 2491 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2492 *port_control = true; 2493 else if (check_port_control) 2494 return -1; 2495 2496 return 0; 2497 } 2498 2499 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2500 const u8 *addr, int *out_link_id) 2501 { 2502 unsigned int link_id; 2503 2504 /* non-MLO, or MLD address replaced by hardware */ 2505 if (ether_addr_equal(sdata->vif.addr, addr)) 2506 return true; 2507 2508 if (!sdata->vif.valid_links) 2509 return false; 2510 2511 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2512 struct ieee80211_bss_conf *conf; 2513 2514 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2515 2516 if (!conf) 2517 continue; 2518 if (ether_addr_equal(conf->addr, addr)) { 2519 if (out_link_id) 2520 *out_link_id = link_id; 2521 return true; 2522 } 2523 } 2524 2525 return false; 2526 } 2527 2528 /* 2529 * requires that rx->skb is a frame with ethernet header 2530 */ 2531 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2532 { 2533 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2534 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2535 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2536 2537 /* 2538 * Allow EAPOL frames to us/the PAE group address regardless of 2539 * whether the frame was encrypted or not, and always disallow 2540 * all other destination addresses for them. 2541 */ 2542 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2543 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2544 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2545 2546 if (ieee80211_802_1x_port_control(rx) || 2547 ieee80211_drop_unencrypted(rx, fc)) 2548 return false; 2549 2550 return true; 2551 } 2552 2553 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2554 struct ieee80211_rx_data *rx) 2555 { 2556 struct ieee80211_sub_if_data *sdata = rx->sdata; 2557 struct net_device *dev = sdata->dev; 2558 2559 if (unlikely((skb->protocol == sdata->control_port_protocol || 2560 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2561 !sdata->control_port_no_preauth)) && 2562 sdata->control_port_over_nl80211)) { 2563 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2564 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2565 2566 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2567 dev_kfree_skb(skb); 2568 } else { 2569 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2570 2571 memset(skb->cb, 0, sizeof(skb->cb)); 2572 2573 /* 2574 * 802.1X over 802.11 requires that the authenticator address 2575 * be used for EAPOL frames. However, 802.1X allows the use of 2576 * the PAE group address instead. If the interface is part of 2577 * a bridge and we pass the frame with the PAE group address, 2578 * then the bridge will forward it to the network (even if the 2579 * client was not associated yet), which isn't supposed to 2580 * happen. 2581 * To avoid that, rewrite the destination address to our own 2582 * address, so that the authenticator (e.g. hostapd) will see 2583 * the frame, but bridge won't forward it anywhere else. Note 2584 * that due to earlier filtering, the only other address can 2585 * be the PAE group address, unless the hardware allowed them 2586 * through in 802.3 offloaded mode. 2587 */ 2588 if (unlikely(skb->protocol == sdata->control_port_protocol && 2589 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2590 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2591 2592 /* deliver to local stack */ 2593 if (rx->list) 2594 list_add_tail(&skb->list, rx->list); 2595 else 2596 netif_receive_skb(skb); 2597 } 2598 } 2599 2600 /* 2601 * requires that rx->skb is a frame with ethernet header 2602 */ 2603 static void 2604 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2605 { 2606 struct ieee80211_sub_if_data *sdata = rx->sdata; 2607 struct net_device *dev = sdata->dev; 2608 struct sk_buff *skb, *xmit_skb; 2609 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2610 struct sta_info *dsta; 2611 2612 skb = rx->skb; 2613 xmit_skb = NULL; 2614 2615 dev_sw_netstats_rx_add(dev, skb->len); 2616 2617 if (rx->sta) { 2618 /* The seqno index has the same property as needed 2619 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2620 * for non-QoS-data frames. Here we know it's a data 2621 * frame, so count MSDUs. 2622 */ 2623 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2624 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2625 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2626 } 2627 2628 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2629 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2630 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2631 ehdr->h_proto != rx->sdata->control_port_protocol && 2632 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2633 if (is_multicast_ether_addr(ehdr->h_dest) && 2634 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2635 /* 2636 * send multicast frames both to higher layers in 2637 * local net stack and back to the wireless medium 2638 */ 2639 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2640 if (!xmit_skb) 2641 net_info_ratelimited("%s: failed to clone multicast frame\n", 2642 dev->name); 2643 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2644 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2645 dsta = sta_info_get(sdata, ehdr->h_dest); 2646 if (dsta) { 2647 /* 2648 * The destination station is associated to 2649 * this AP (in this VLAN), so send the frame 2650 * directly to it and do not pass it to local 2651 * net stack. 2652 */ 2653 xmit_skb = skb; 2654 skb = NULL; 2655 } 2656 } 2657 } 2658 2659 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2660 if (skb) { 2661 /* 'align' will only take the values 0 or 2 here since all 2662 * frames are required to be aligned to 2-byte boundaries 2663 * when being passed to mac80211; the code here works just 2664 * as well if that isn't true, but mac80211 assumes it can 2665 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2666 */ 2667 int align; 2668 2669 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2670 if (align) { 2671 if (WARN_ON(skb_headroom(skb) < 3)) { 2672 dev_kfree_skb(skb); 2673 skb = NULL; 2674 } else { 2675 u8 *data = skb->data; 2676 size_t len = skb_headlen(skb); 2677 skb->data -= align; 2678 memmove(skb->data, data, len); 2679 skb_set_tail_pointer(skb, len); 2680 } 2681 } 2682 } 2683 #endif 2684 2685 if (skb) { 2686 skb->protocol = eth_type_trans(skb, dev); 2687 ieee80211_deliver_skb_to_local_stack(skb, rx); 2688 } 2689 2690 if (xmit_skb) { 2691 /* 2692 * Send to wireless media and increase priority by 256 to 2693 * keep the received priority instead of reclassifying 2694 * the frame (see cfg80211_classify8021d). 2695 */ 2696 xmit_skb->priority += 256; 2697 xmit_skb->protocol = htons(ETH_P_802_3); 2698 skb_reset_network_header(xmit_skb); 2699 skb_reset_mac_header(xmit_skb); 2700 dev_queue_xmit(xmit_skb); 2701 } 2702 } 2703 2704 static ieee80211_rx_result 2705 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2706 struct sk_buff *skb) 2707 { 2708 #ifdef CONFIG_MAC80211_MESH 2709 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2710 struct ieee80211_local *local = sdata->local; 2711 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2712 struct ieee80211_hdr hdr = { 2713 .frame_control = cpu_to_le16(fc) 2714 }; 2715 struct ieee80211_hdr *fwd_hdr; 2716 struct ieee80211s_hdr *mesh_hdr; 2717 struct ieee80211_tx_info *info; 2718 struct sk_buff *fwd_skb; 2719 struct ethhdr *eth; 2720 bool multicast; 2721 int tailroom = 0; 2722 int hdrlen, mesh_hdrlen; 2723 u8 *qos; 2724 2725 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2726 return RX_CONTINUE; 2727 2728 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2729 return RX_DROP_MONITOR; 2730 2731 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2732 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2733 2734 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2735 return RX_DROP_MONITOR; 2736 2737 eth = (struct ethhdr *)skb->data; 2738 multicast = is_multicast_ether_addr(eth->h_dest); 2739 2740 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2741 if (!mesh_hdr->ttl) 2742 return RX_DROP_MONITOR; 2743 2744 /* frame is in RMC, don't forward */ 2745 if (is_multicast_ether_addr(eth->h_dest) && 2746 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2747 return RX_DROP_MONITOR; 2748 2749 /* Frame has reached destination. Don't forward */ 2750 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2751 goto rx_accept; 2752 2753 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2754 if (is_multicast_ether_addr(eth->h_dest)) 2755 goto rx_accept; 2756 2757 return RX_DROP_MONITOR; 2758 } 2759 2760 /* forward packet */ 2761 if (sdata->crypto_tx_tailroom_needed_cnt) 2762 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2763 2764 if (!--mesh_hdr->ttl) { 2765 if (multicast) 2766 goto rx_accept; 2767 2768 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2769 return RX_DROP_MONITOR; 2770 } 2771 2772 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2773 struct mesh_path *mppath; 2774 char *proxied_addr; 2775 2776 if (multicast) 2777 proxied_addr = mesh_hdr->eaddr1; 2778 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2779 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2780 proxied_addr = mesh_hdr->eaddr2; 2781 else 2782 return RX_DROP_MONITOR; 2783 2784 rcu_read_lock(); 2785 mppath = mpp_path_lookup(sdata, proxied_addr); 2786 if (!mppath) { 2787 mpp_path_add(sdata, proxied_addr, eth->h_source); 2788 } else { 2789 spin_lock_bh(&mppath->state_lock); 2790 if (!ether_addr_equal(mppath->mpp, eth->h_source)) 2791 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2792 mppath->exp_time = jiffies; 2793 spin_unlock_bh(&mppath->state_lock); 2794 } 2795 rcu_read_unlock(); 2796 } 2797 2798 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2799 2800 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2801 eth->h_dest, eth->h_source); 2802 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2803 if (multicast) { 2804 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2805 2806 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2807 IEEE80211_ENCRYPT_HEADROOM, 2808 tailroom, GFP_ATOMIC); 2809 if (!fwd_skb) 2810 goto rx_accept; 2811 } else { 2812 fwd_skb = skb; 2813 skb = NULL; 2814 2815 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2816 return RX_DROP_UNUSABLE; 2817 } 2818 2819 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2820 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2821 qos = ieee80211_get_qos_ctl(fwd_hdr); 2822 qos[0] = qos[1] = 0; 2823 2824 skb_reset_mac_header(fwd_skb); 2825 hdrlen += mesh_hdrlen; 2826 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2827 &fwd_skb->protocol)) 2828 hdrlen += ETH_ALEN; 2829 else 2830 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2831 skb_set_network_header(fwd_skb, hdrlen); 2832 2833 info = IEEE80211_SKB_CB(fwd_skb); 2834 memset(info, 0, sizeof(*info)); 2835 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2836 info->control.vif = &sdata->vif; 2837 info->control.jiffies = jiffies; 2838 if (multicast) { 2839 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2840 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2841 /* update power mode indication when forwarding */ 2842 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2843 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2844 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2845 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2846 } else { 2847 /* unable to resolve next hop */ 2848 if (sta) 2849 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2850 hdr.addr3, 0, 2851 WLAN_REASON_MESH_PATH_NOFORWARD, 2852 sta->sta.addr); 2853 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2854 kfree_skb(fwd_skb); 2855 goto rx_accept; 2856 } 2857 2858 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2859 fwd_skb->dev = sdata->dev; 2860 ieee80211_add_pending_skb(local, fwd_skb); 2861 2862 rx_accept: 2863 if (!skb) 2864 return RX_QUEUED; 2865 2866 ieee80211_strip_8023_mesh_hdr(skb); 2867 #endif 2868 2869 return RX_CONTINUE; 2870 } 2871 2872 static ieee80211_rx_result debug_noinline 2873 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2874 { 2875 struct net_device *dev = rx->sdata->dev; 2876 struct sk_buff *skb = rx->skb; 2877 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2878 __le16 fc = hdr->frame_control; 2879 struct sk_buff_head frame_list; 2880 static ieee80211_rx_result res; 2881 struct ethhdr ethhdr; 2882 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2883 2884 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2885 check_da = NULL; 2886 check_sa = NULL; 2887 } else switch (rx->sdata->vif.type) { 2888 case NL80211_IFTYPE_AP: 2889 case NL80211_IFTYPE_AP_VLAN: 2890 check_da = NULL; 2891 break; 2892 case NL80211_IFTYPE_STATION: 2893 if (!rx->sta || 2894 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2895 check_sa = NULL; 2896 break; 2897 case NL80211_IFTYPE_MESH_POINT: 2898 check_sa = NULL; 2899 check_da = NULL; 2900 break; 2901 default: 2902 break; 2903 } 2904 2905 skb->dev = dev; 2906 __skb_queue_head_init(&frame_list); 2907 2908 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2909 rx->sdata->vif.addr, 2910 rx->sdata->vif.type, 2911 data_offset, true)) 2912 return RX_DROP_UNUSABLE; 2913 2914 if (rx->sta && rx->sta->amsdu_mesh_control < 0) { 2915 bool valid_std = ieee80211_is_valid_amsdu(skb, true); 2916 bool valid_nonstd = ieee80211_is_valid_amsdu(skb, false); 2917 2918 if (valid_std && !valid_nonstd) 2919 rx->sta->amsdu_mesh_control = 1; 2920 else if (valid_nonstd && !valid_std) 2921 rx->sta->amsdu_mesh_control = 0; 2922 } 2923 2924 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2925 rx->sdata->vif.type, 2926 rx->local->hw.extra_tx_headroom, 2927 check_da, check_sa, 2928 rx->sta->amsdu_mesh_control); 2929 2930 while (!skb_queue_empty(&frame_list)) { 2931 rx->skb = __skb_dequeue(&frame_list); 2932 2933 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 2934 switch (res) { 2935 case RX_QUEUED: 2936 continue; 2937 case RX_CONTINUE: 2938 break; 2939 default: 2940 goto free; 2941 } 2942 2943 if (!ieee80211_frame_allowed(rx, fc)) 2944 goto free; 2945 2946 ieee80211_deliver_skb(rx); 2947 continue; 2948 2949 free: 2950 dev_kfree_skb(rx->skb); 2951 } 2952 2953 return RX_QUEUED; 2954 } 2955 2956 static ieee80211_rx_result debug_noinline 2957 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2958 { 2959 struct sk_buff *skb = rx->skb; 2960 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2961 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2962 __le16 fc = hdr->frame_control; 2963 2964 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2965 return RX_CONTINUE; 2966 2967 if (unlikely(!ieee80211_is_data(fc))) 2968 return RX_CONTINUE; 2969 2970 if (unlikely(!ieee80211_is_data_present(fc))) 2971 return RX_DROP_MONITOR; 2972 2973 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2974 switch (rx->sdata->vif.type) { 2975 case NL80211_IFTYPE_AP_VLAN: 2976 if (!rx->sdata->u.vlan.sta) 2977 return RX_DROP_UNUSABLE; 2978 break; 2979 case NL80211_IFTYPE_STATION: 2980 if (!rx->sdata->u.mgd.use_4addr) 2981 return RX_DROP_UNUSABLE; 2982 break; 2983 case NL80211_IFTYPE_MESH_POINT: 2984 break; 2985 default: 2986 return RX_DROP_UNUSABLE; 2987 } 2988 } 2989 2990 if (is_multicast_ether_addr(hdr->addr1)) 2991 return RX_DROP_UNUSABLE; 2992 2993 if (rx->key) { 2994 /* 2995 * We should not receive A-MSDUs on pre-HT connections, 2996 * and HT connections cannot use old ciphers. Thus drop 2997 * them, as in those cases we couldn't even have SPP 2998 * A-MSDUs or such. 2999 */ 3000 switch (rx->key->conf.cipher) { 3001 case WLAN_CIPHER_SUITE_WEP40: 3002 case WLAN_CIPHER_SUITE_WEP104: 3003 case WLAN_CIPHER_SUITE_TKIP: 3004 return RX_DROP_UNUSABLE; 3005 default: 3006 break; 3007 } 3008 } 3009 3010 return __ieee80211_rx_h_amsdu(rx, 0); 3011 } 3012 3013 static ieee80211_rx_result debug_noinline 3014 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3015 { 3016 struct ieee80211_sub_if_data *sdata = rx->sdata; 3017 struct ieee80211_local *local = rx->local; 3018 struct net_device *dev = sdata->dev; 3019 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3020 __le16 fc = hdr->frame_control; 3021 static ieee80211_rx_result res; 3022 bool port_control; 3023 int err; 3024 3025 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3026 return RX_CONTINUE; 3027 3028 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3029 return RX_DROP_MONITOR; 3030 3031 /* 3032 * Send unexpected-4addr-frame event to hostapd. For older versions, 3033 * also drop the frame to cooked monitor interfaces. 3034 */ 3035 if (ieee80211_has_a4(hdr->frame_control) && 3036 sdata->vif.type == NL80211_IFTYPE_AP) { 3037 if (rx->sta && 3038 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3039 cfg80211_rx_unexpected_4addr_frame( 3040 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3041 return RX_DROP_MONITOR; 3042 } 3043 3044 err = __ieee80211_data_to_8023(rx, &port_control); 3045 if (unlikely(err)) 3046 return RX_DROP_UNUSABLE; 3047 3048 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3049 if (res != RX_CONTINUE) 3050 return res; 3051 3052 if (!ieee80211_frame_allowed(rx, fc)) 3053 return RX_DROP_MONITOR; 3054 3055 /* directly handle TDLS channel switch requests/responses */ 3056 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3057 cpu_to_be16(ETH_P_TDLS))) { 3058 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3059 3060 if (pskb_may_pull(rx->skb, 3061 offsetof(struct ieee80211_tdls_data, u)) && 3062 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3063 tf->category == WLAN_CATEGORY_TDLS && 3064 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3065 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3066 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3067 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3068 rx->sta, rx->skb); 3069 return RX_QUEUED; 3070 } 3071 } 3072 3073 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3074 unlikely(port_control) && sdata->bss) { 3075 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3076 u.ap); 3077 dev = sdata->dev; 3078 rx->sdata = sdata; 3079 } 3080 3081 rx->skb->dev = dev; 3082 3083 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3084 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3085 !is_multicast_ether_addr( 3086 ((struct ethhdr *)rx->skb->data)->h_dest) && 3087 (!local->scanning && 3088 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3089 mod_timer(&local->dynamic_ps_timer, jiffies + 3090 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3091 3092 ieee80211_deliver_skb(rx); 3093 3094 return RX_QUEUED; 3095 } 3096 3097 static ieee80211_rx_result debug_noinline 3098 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3099 { 3100 struct sk_buff *skb = rx->skb; 3101 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3102 struct tid_ampdu_rx *tid_agg_rx; 3103 u16 start_seq_num; 3104 u16 tid; 3105 3106 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3107 return RX_CONTINUE; 3108 3109 if (ieee80211_is_back_req(bar->frame_control)) { 3110 struct { 3111 __le16 control, start_seq_num; 3112 } __packed bar_data; 3113 struct ieee80211_event event = { 3114 .type = BAR_RX_EVENT, 3115 }; 3116 3117 if (!rx->sta) 3118 return RX_DROP_MONITOR; 3119 3120 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3121 &bar_data, sizeof(bar_data))) 3122 return RX_DROP_MONITOR; 3123 3124 tid = le16_to_cpu(bar_data.control) >> 12; 3125 3126 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3127 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3128 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3129 WLAN_BACK_RECIPIENT, 3130 WLAN_REASON_QSTA_REQUIRE_SETUP); 3131 3132 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3133 if (!tid_agg_rx) 3134 return RX_DROP_MONITOR; 3135 3136 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3137 event.u.ba.tid = tid; 3138 event.u.ba.ssn = start_seq_num; 3139 event.u.ba.sta = &rx->sta->sta; 3140 3141 /* reset session timer */ 3142 if (tid_agg_rx->timeout) 3143 mod_timer(&tid_agg_rx->session_timer, 3144 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3145 3146 spin_lock(&tid_agg_rx->reorder_lock); 3147 /* release stored frames up to start of BAR */ 3148 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3149 start_seq_num, frames); 3150 spin_unlock(&tid_agg_rx->reorder_lock); 3151 3152 drv_event_callback(rx->local, rx->sdata, &event); 3153 3154 kfree_skb(skb); 3155 return RX_QUEUED; 3156 } 3157 3158 /* 3159 * After this point, we only want management frames, 3160 * so we can drop all remaining control frames to 3161 * cooked monitor interfaces. 3162 */ 3163 return RX_DROP_MONITOR; 3164 } 3165 3166 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3167 struct ieee80211_mgmt *mgmt, 3168 size_t len) 3169 { 3170 struct ieee80211_local *local = sdata->local; 3171 struct sk_buff *skb; 3172 struct ieee80211_mgmt *resp; 3173 3174 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3175 /* Not to own unicast address */ 3176 return; 3177 } 3178 3179 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3180 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3181 /* Not from the current AP or not associated yet. */ 3182 return; 3183 } 3184 3185 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3186 /* Too short SA Query request frame */ 3187 return; 3188 } 3189 3190 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3191 if (skb == NULL) 3192 return; 3193 3194 skb_reserve(skb, local->hw.extra_tx_headroom); 3195 resp = skb_put_zero(skb, 24); 3196 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3197 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3198 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3199 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3200 IEEE80211_STYPE_ACTION); 3201 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3202 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3203 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3204 memcpy(resp->u.action.u.sa_query.trans_id, 3205 mgmt->u.action.u.sa_query.trans_id, 3206 WLAN_SA_QUERY_TR_ID_LEN); 3207 3208 ieee80211_tx_skb(sdata, skb); 3209 } 3210 3211 static void 3212 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3213 { 3214 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3215 const struct element *ie; 3216 size_t baselen; 3217 3218 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3219 NL80211_EXT_FEATURE_BSS_COLOR)) 3220 return; 3221 3222 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3223 return; 3224 3225 if (rx->sdata->vif.bss_conf.csa_active) 3226 return; 3227 3228 baselen = mgmt->u.beacon.variable - rx->skb->data; 3229 if (baselen > rx->skb->len) 3230 return; 3231 3232 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3233 mgmt->u.beacon.variable, 3234 rx->skb->len - baselen); 3235 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3236 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3237 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3238 const struct ieee80211_he_operation *he_oper; 3239 u8 color; 3240 3241 he_oper = (void *)(ie->data + 1); 3242 if (le32_get_bits(he_oper->he_oper_params, 3243 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3244 return; 3245 3246 color = le32_get_bits(he_oper->he_oper_params, 3247 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3248 if (color == bss_conf->he_bss_color.color) 3249 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3250 BIT_ULL(color), 3251 GFP_ATOMIC); 3252 } 3253 } 3254 3255 static ieee80211_rx_result debug_noinline 3256 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3257 { 3258 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3259 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3260 3261 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3262 return RX_CONTINUE; 3263 3264 /* 3265 * From here on, look only at management frames. 3266 * Data and control frames are already handled, 3267 * and unknown (reserved) frames are useless. 3268 */ 3269 if (rx->skb->len < 24) 3270 return RX_DROP_MONITOR; 3271 3272 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3273 return RX_DROP_MONITOR; 3274 3275 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3276 ieee80211_is_beacon(mgmt->frame_control) && 3277 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3278 int sig = 0; 3279 3280 /* sw bss color collision detection */ 3281 ieee80211_rx_check_bss_color_collision(rx); 3282 3283 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3284 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3285 sig = status->signal; 3286 3287 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3288 rx->skb->data, rx->skb->len, 3289 ieee80211_rx_status_to_khz(status), 3290 sig); 3291 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3292 } 3293 3294 if (ieee80211_drop_unencrypted_mgmt(rx)) 3295 return RX_DROP_UNUSABLE; 3296 3297 return RX_CONTINUE; 3298 } 3299 3300 static bool 3301 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3302 { 3303 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3304 struct ieee80211_sub_if_data *sdata = rx->sdata; 3305 3306 /* TWT actions are only supported in AP for the moment */ 3307 if (sdata->vif.type != NL80211_IFTYPE_AP) 3308 return false; 3309 3310 if (!rx->local->ops->add_twt_setup) 3311 return false; 3312 3313 if (!sdata->vif.bss_conf.twt_responder) 3314 return false; 3315 3316 if (!rx->sta) 3317 return false; 3318 3319 switch (mgmt->u.action.u.s1g.action_code) { 3320 case WLAN_S1G_TWT_SETUP: { 3321 struct ieee80211_twt_setup *twt; 3322 3323 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3324 1 + /* action code */ 3325 sizeof(struct ieee80211_twt_setup) + 3326 2 /* TWT req_type agrt */) 3327 break; 3328 3329 twt = (void *)mgmt->u.action.u.s1g.variable; 3330 if (twt->element_id != WLAN_EID_S1G_TWT) 3331 break; 3332 3333 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3334 4 + /* action code + token + tlv */ 3335 twt->length) 3336 break; 3337 3338 return true; /* queue the frame */ 3339 } 3340 case WLAN_S1G_TWT_TEARDOWN: 3341 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3342 break; 3343 3344 return true; /* queue the frame */ 3345 default: 3346 break; 3347 } 3348 3349 return false; 3350 } 3351 3352 static ieee80211_rx_result debug_noinline 3353 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3354 { 3355 struct ieee80211_local *local = rx->local; 3356 struct ieee80211_sub_if_data *sdata = rx->sdata; 3357 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3358 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3359 int len = rx->skb->len; 3360 3361 if (!ieee80211_is_action(mgmt->frame_control)) 3362 return RX_CONTINUE; 3363 3364 /* drop too small frames */ 3365 if (len < IEEE80211_MIN_ACTION_SIZE) 3366 return RX_DROP_UNUSABLE; 3367 3368 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3369 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3370 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3371 return RX_DROP_UNUSABLE; 3372 3373 switch (mgmt->u.action.category) { 3374 case WLAN_CATEGORY_HT: 3375 /* reject HT action frames from stations not supporting HT */ 3376 if (!rx->link_sta->pub->ht_cap.ht_supported) 3377 goto invalid; 3378 3379 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3380 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3381 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3382 sdata->vif.type != NL80211_IFTYPE_AP && 3383 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3384 break; 3385 3386 /* verify action & smps_control/chanwidth are present */ 3387 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3388 goto invalid; 3389 3390 switch (mgmt->u.action.u.ht_smps.action) { 3391 case WLAN_HT_ACTION_SMPS: { 3392 struct ieee80211_supported_band *sband; 3393 enum ieee80211_smps_mode smps_mode; 3394 struct sta_opmode_info sta_opmode = {}; 3395 3396 if (sdata->vif.type != NL80211_IFTYPE_AP && 3397 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3398 goto handled; 3399 3400 /* convert to HT capability */ 3401 switch (mgmt->u.action.u.ht_smps.smps_control) { 3402 case WLAN_HT_SMPS_CONTROL_DISABLED: 3403 smps_mode = IEEE80211_SMPS_OFF; 3404 break; 3405 case WLAN_HT_SMPS_CONTROL_STATIC: 3406 smps_mode = IEEE80211_SMPS_STATIC; 3407 break; 3408 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3409 smps_mode = IEEE80211_SMPS_DYNAMIC; 3410 break; 3411 default: 3412 goto invalid; 3413 } 3414 3415 /* if no change do nothing */ 3416 if (rx->link_sta->pub->smps_mode == smps_mode) 3417 goto handled; 3418 rx->link_sta->pub->smps_mode = smps_mode; 3419 sta_opmode.smps_mode = 3420 ieee80211_smps_mode_to_smps_mode(smps_mode); 3421 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3422 3423 sband = rx->local->hw.wiphy->bands[status->band]; 3424 3425 rate_control_rate_update(local, sband, rx->sta, 0, 3426 IEEE80211_RC_SMPS_CHANGED); 3427 cfg80211_sta_opmode_change_notify(sdata->dev, 3428 rx->sta->addr, 3429 &sta_opmode, 3430 GFP_ATOMIC); 3431 goto handled; 3432 } 3433 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3434 struct ieee80211_supported_band *sband; 3435 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3436 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3437 struct sta_opmode_info sta_opmode = {}; 3438 3439 /* If it doesn't support 40 MHz it can't change ... */ 3440 if (!(rx->link_sta->pub->ht_cap.cap & 3441 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3442 goto handled; 3443 3444 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3445 max_bw = IEEE80211_STA_RX_BW_20; 3446 else 3447 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3448 3449 /* set cur_max_bandwidth and recalc sta bw */ 3450 rx->link_sta->cur_max_bandwidth = max_bw; 3451 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3452 3453 if (rx->link_sta->pub->bandwidth == new_bw) 3454 goto handled; 3455 3456 rx->link_sta->pub->bandwidth = new_bw; 3457 sband = rx->local->hw.wiphy->bands[status->band]; 3458 sta_opmode.bw = 3459 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3460 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3461 3462 rate_control_rate_update(local, sband, rx->sta, 0, 3463 IEEE80211_RC_BW_CHANGED); 3464 cfg80211_sta_opmode_change_notify(sdata->dev, 3465 rx->sta->addr, 3466 &sta_opmode, 3467 GFP_ATOMIC); 3468 goto handled; 3469 } 3470 default: 3471 goto invalid; 3472 } 3473 3474 break; 3475 case WLAN_CATEGORY_PUBLIC: 3476 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3477 goto invalid; 3478 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3479 break; 3480 if (!rx->sta) 3481 break; 3482 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3483 break; 3484 if (mgmt->u.action.u.ext_chan_switch.action_code != 3485 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3486 break; 3487 if (len < offsetof(struct ieee80211_mgmt, 3488 u.action.u.ext_chan_switch.variable)) 3489 goto invalid; 3490 goto queue; 3491 case WLAN_CATEGORY_VHT: 3492 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3493 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3494 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3495 sdata->vif.type != NL80211_IFTYPE_AP && 3496 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3497 break; 3498 3499 /* verify action code is present */ 3500 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3501 goto invalid; 3502 3503 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3504 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3505 /* verify opmode is present */ 3506 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3507 goto invalid; 3508 goto queue; 3509 } 3510 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3511 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3512 goto invalid; 3513 goto queue; 3514 } 3515 default: 3516 break; 3517 } 3518 break; 3519 case WLAN_CATEGORY_BACK: 3520 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3521 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3522 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3523 sdata->vif.type != NL80211_IFTYPE_AP && 3524 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3525 break; 3526 3527 /* verify action_code is present */ 3528 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3529 break; 3530 3531 switch (mgmt->u.action.u.addba_req.action_code) { 3532 case WLAN_ACTION_ADDBA_REQ: 3533 if (len < (IEEE80211_MIN_ACTION_SIZE + 3534 sizeof(mgmt->u.action.u.addba_req))) 3535 goto invalid; 3536 break; 3537 case WLAN_ACTION_ADDBA_RESP: 3538 if (len < (IEEE80211_MIN_ACTION_SIZE + 3539 sizeof(mgmt->u.action.u.addba_resp))) 3540 goto invalid; 3541 break; 3542 case WLAN_ACTION_DELBA: 3543 if (len < (IEEE80211_MIN_ACTION_SIZE + 3544 sizeof(mgmt->u.action.u.delba))) 3545 goto invalid; 3546 break; 3547 default: 3548 goto invalid; 3549 } 3550 3551 goto queue; 3552 case WLAN_CATEGORY_SPECTRUM_MGMT: 3553 /* verify action_code is present */ 3554 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3555 break; 3556 3557 switch (mgmt->u.action.u.measurement.action_code) { 3558 case WLAN_ACTION_SPCT_MSR_REQ: 3559 if (status->band != NL80211_BAND_5GHZ) 3560 break; 3561 3562 if (len < (IEEE80211_MIN_ACTION_SIZE + 3563 sizeof(mgmt->u.action.u.measurement))) 3564 break; 3565 3566 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3567 break; 3568 3569 ieee80211_process_measurement_req(sdata, mgmt, len); 3570 goto handled; 3571 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3572 u8 *bssid; 3573 if (len < (IEEE80211_MIN_ACTION_SIZE + 3574 sizeof(mgmt->u.action.u.chan_switch))) 3575 break; 3576 3577 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3578 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3579 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3580 break; 3581 3582 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3583 bssid = sdata->deflink.u.mgd.bssid; 3584 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3585 bssid = sdata->u.ibss.bssid; 3586 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3587 bssid = mgmt->sa; 3588 else 3589 break; 3590 3591 if (!ether_addr_equal(mgmt->bssid, bssid)) 3592 break; 3593 3594 goto queue; 3595 } 3596 } 3597 break; 3598 case WLAN_CATEGORY_SELF_PROTECTED: 3599 if (len < (IEEE80211_MIN_ACTION_SIZE + 3600 sizeof(mgmt->u.action.u.self_prot.action_code))) 3601 break; 3602 3603 switch (mgmt->u.action.u.self_prot.action_code) { 3604 case WLAN_SP_MESH_PEERING_OPEN: 3605 case WLAN_SP_MESH_PEERING_CLOSE: 3606 case WLAN_SP_MESH_PEERING_CONFIRM: 3607 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3608 goto invalid; 3609 if (sdata->u.mesh.user_mpm) 3610 /* userspace handles this frame */ 3611 break; 3612 goto queue; 3613 case WLAN_SP_MGK_INFORM: 3614 case WLAN_SP_MGK_ACK: 3615 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3616 goto invalid; 3617 break; 3618 } 3619 break; 3620 case WLAN_CATEGORY_MESH_ACTION: 3621 if (len < (IEEE80211_MIN_ACTION_SIZE + 3622 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3623 break; 3624 3625 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3626 break; 3627 if (mesh_action_is_path_sel(mgmt) && 3628 !mesh_path_sel_is_hwmp(sdata)) 3629 break; 3630 goto queue; 3631 case WLAN_CATEGORY_S1G: 3632 switch (mgmt->u.action.u.s1g.action_code) { 3633 case WLAN_S1G_TWT_SETUP: 3634 case WLAN_S1G_TWT_TEARDOWN: 3635 if (ieee80211_process_rx_twt_action(rx)) 3636 goto queue; 3637 break; 3638 default: 3639 break; 3640 } 3641 break; 3642 } 3643 3644 return RX_CONTINUE; 3645 3646 invalid: 3647 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3648 /* will return in the next handlers */ 3649 return RX_CONTINUE; 3650 3651 handled: 3652 if (rx->sta) 3653 rx->link_sta->rx_stats.packets++; 3654 dev_kfree_skb(rx->skb); 3655 return RX_QUEUED; 3656 3657 queue: 3658 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3659 return RX_QUEUED; 3660 } 3661 3662 static ieee80211_rx_result debug_noinline 3663 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3664 { 3665 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3666 struct cfg80211_rx_info info = { 3667 .freq = ieee80211_rx_status_to_khz(status), 3668 .buf = rx->skb->data, 3669 .len = rx->skb->len, 3670 .link_id = rx->link_id, 3671 .have_link_id = rx->link_id >= 0, 3672 }; 3673 3674 /* skip known-bad action frames and return them in the next handler */ 3675 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3676 return RX_CONTINUE; 3677 3678 /* 3679 * Getting here means the kernel doesn't know how to handle 3680 * it, but maybe userspace does ... include returned frames 3681 * so userspace can register for those to know whether ones 3682 * it transmitted were processed or returned. 3683 */ 3684 3685 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3686 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3687 info.sig_dbm = status->signal; 3688 3689 if (ieee80211_is_timing_measurement(rx->skb) || 3690 ieee80211_is_ftm(rx->skb)) { 3691 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3692 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3693 } 3694 3695 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3696 if (rx->sta) 3697 rx->link_sta->rx_stats.packets++; 3698 dev_kfree_skb(rx->skb); 3699 return RX_QUEUED; 3700 } 3701 3702 return RX_CONTINUE; 3703 } 3704 3705 static ieee80211_rx_result debug_noinline 3706 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3707 { 3708 struct ieee80211_sub_if_data *sdata = rx->sdata; 3709 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3710 int len = rx->skb->len; 3711 3712 if (!ieee80211_is_action(mgmt->frame_control)) 3713 return RX_CONTINUE; 3714 3715 switch (mgmt->u.action.category) { 3716 case WLAN_CATEGORY_SA_QUERY: 3717 if (len < (IEEE80211_MIN_ACTION_SIZE + 3718 sizeof(mgmt->u.action.u.sa_query))) 3719 break; 3720 3721 switch (mgmt->u.action.u.sa_query.action) { 3722 case WLAN_ACTION_SA_QUERY_REQUEST: 3723 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3724 break; 3725 ieee80211_process_sa_query_req(sdata, mgmt, len); 3726 goto handled; 3727 } 3728 break; 3729 } 3730 3731 return RX_CONTINUE; 3732 3733 handled: 3734 if (rx->sta) 3735 rx->link_sta->rx_stats.packets++; 3736 dev_kfree_skb(rx->skb); 3737 return RX_QUEUED; 3738 } 3739 3740 static ieee80211_rx_result debug_noinline 3741 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3742 { 3743 struct ieee80211_local *local = rx->local; 3744 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3745 struct sk_buff *nskb; 3746 struct ieee80211_sub_if_data *sdata = rx->sdata; 3747 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3748 3749 if (!ieee80211_is_action(mgmt->frame_control)) 3750 return RX_CONTINUE; 3751 3752 /* 3753 * For AP mode, hostapd is responsible for handling any action 3754 * frames that we didn't handle, including returning unknown 3755 * ones. For all other modes we will return them to the sender, 3756 * setting the 0x80 bit in the action category, as required by 3757 * 802.11-2012 9.24.4. 3758 * Newer versions of hostapd shall also use the management frame 3759 * registration mechanisms, but older ones still use cooked 3760 * monitor interfaces so push all frames there. 3761 */ 3762 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3763 (sdata->vif.type == NL80211_IFTYPE_AP || 3764 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3765 return RX_DROP_MONITOR; 3766 3767 if (is_multicast_ether_addr(mgmt->da)) 3768 return RX_DROP_MONITOR; 3769 3770 /* do not return rejected action frames */ 3771 if (mgmt->u.action.category & 0x80) 3772 return RX_DROP_UNUSABLE; 3773 3774 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3775 GFP_ATOMIC); 3776 if (nskb) { 3777 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3778 3779 nmgmt->u.action.category |= 0x80; 3780 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3781 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3782 3783 memset(nskb->cb, 0, sizeof(nskb->cb)); 3784 3785 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3786 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3787 3788 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3789 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3790 IEEE80211_TX_CTL_NO_CCK_RATE; 3791 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3792 info->hw_queue = 3793 local->hw.offchannel_tx_hw_queue; 3794 } 3795 3796 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3797 status->band); 3798 } 3799 dev_kfree_skb(rx->skb); 3800 return RX_QUEUED; 3801 } 3802 3803 static ieee80211_rx_result debug_noinline 3804 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3805 { 3806 struct ieee80211_sub_if_data *sdata = rx->sdata; 3807 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3808 3809 if (!ieee80211_is_ext(hdr->frame_control)) 3810 return RX_CONTINUE; 3811 3812 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3813 return RX_DROP_MONITOR; 3814 3815 /* for now only beacons are ext, so queue them */ 3816 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3817 3818 return RX_QUEUED; 3819 } 3820 3821 static ieee80211_rx_result debug_noinline 3822 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3823 { 3824 struct ieee80211_sub_if_data *sdata = rx->sdata; 3825 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3826 __le16 stype; 3827 3828 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3829 3830 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3831 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3832 sdata->vif.type != NL80211_IFTYPE_OCB && 3833 sdata->vif.type != NL80211_IFTYPE_STATION) 3834 return RX_DROP_MONITOR; 3835 3836 switch (stype) { 3837 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3838 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3839 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3840 /* process for all: mesh, mlme, ibss */ 3841 break; 3842 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3843 if (is_multicast_ether_addr(mgmt->da) && 3844 !is_broadcast_ether_addr(mgmt->da)) 3845 return RX_DROP_MONITOR; 3846 3847 /* process only for station/IBSS */ 3848 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3849 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3850 return RX_DROP_MONITOR; 3851 break; 3852 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3853 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3854 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3855 if (is_multicast_ether_addr(mgmt->da) && 3856 !is_broadcast_ether_addr(mgmt->da)) 3857 return RX_DROP_MONITOR; 3858 3859 /* process only for station */ 3860 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3861 return RX_DROP_MONITOR; 3862 break; 3863 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3864 /* process only for ibss and mesh */ 3865 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3866 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3867 return RX_DROP_MONITOR; 3868 break; 3869 default: 3870 return RX_DROP_MONITOR; 3871 } 3872 3873 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3874 3875 return RX_QUEUED; 3876 } 3877 3878 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3879 struct ieee80211_rate *rate) 3880 { 3881 struct ieee80211_sub_if_data *sdata; 3882 struct ieee80211_local *local = rx->local; 3883 struct sk_buff *skb = rx->skb, *skb2; 3884 struct net_device *prev_dev = NULL; 3885 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3886 int needed_headroom; 3887 3888 /* 3889 * If cooked monitor has been processed already, then 3890 * don't do it again. If not, set the flag. 3891 */ 3892 if (rx->flags & IEEE80211_RX_CMNTR) 3893 goto out_free_skb; 3894 rx->flags |= IEEE80211_RX_CMNTR; 3895 3896 /* If there are no cooked monitor interfaces, just free the SKB */ 3897 if (!local->cooked_mntrs) 3898 goto out_free_skb; 3899 3900 /* room for the radiotap header based on driver features */ 3901 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3902 3903 if (skb_headroom(skb) < needed_headroom && 3904 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3905 goto out_free_skb; 3906 3907 /* prepend radiotap information */ 3908 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3909 false); 3910 3911 skb_reset_mac_header(skb); 3912 skb->ip_summed = CHECKSUM_UNNECESSARY; 3913 skb->pkt_type = PACKET_OTHERHOST; 3914 skb->protocol = htons(ETH_P_802_2); 3915 3916 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3917 if (!ieee80211_sdata_running(sdata)) 3918 continue; 3919 3920 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3921 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3922 continue; 3923 3924 if (prev_dev) { 3925 skb2 = skb_clone(skb, GFP_ATOMIC); 3926 if (skb2) { 3927 skb2->dev = prev_dev; 3928 netif_receive_skb(skb2); 3929 } 3930 } 3931 3932 prev_dev = sdata->dev; 3933 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3934 } 3935 3936 if (prev_dev) { 3937 skb->dev = prev_dev; 3938 netif_receive_skb(skb); 3939 return; 3940 } 3941 3942 out_free_skb: 3943 dev_kfree_skb(skb); 3944 } 3945 3946 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3947 ieee80211_rx_result res) 3948 { 3949 switch (res) { 3950 case RX_DROP_MONITOR: 3951 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3952 if (rx->sta) 3953 rx->link_sta->rx_stats.dropped++; 3954 fallthrough; 3955 case RX_CONTINUE: { 3956 struct ieee80211_rate *rate = NULL; 3957 struct ieee80211_supported_band *sband; 3958 struct ieee80211_rx_status *status; 3959 3960 status = IEEE80211_SKB_RXCB((rx->skb)); 3961 3962 sband = rx->local->hw.wiphy->bands[status->band]; 3963 if (status->encoding == RX_ENC_LEGACY) 3964 rate = &sband->bitrates[status->rate_idx]; 3965 3966 ieee80211_rx_cooked_monitor(rx, rate); 3967 break; 3968 } 3969 case RX_DROP_UNUSABLE: 3970 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3971 if (rx->sta) 3972 rx->link_sta->rx_stats.dropped++; 3973 dev_kfree_skb(rx->skb); 3974 break; 3975 case RX_QUEUED: 3976 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3977 break; 3978 } 3979 } 3980 3981 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3982 struct sk_buff_head *frames) 3983 { 3984 ieee80211_rx_result res = RX_DROP_MONITOR; 3985 struct sk_buff *skb; 3986 3987 #define CALL_RXH(rxh) \ 3988 do { \ 3989 res = rxh(rx); \ 3990 if (res != RX_CONTINUE) \ 3991 goto rxh_next; \ 3992 } while (0) 3993 3994 /* Lock here to avoid hitting all of the data used in the RX 3995 * path (e.g. key data, station data, ...) concurrently when 3996 * a frame is released from the reorder buffer due to timeout 3997 * from the timer, potentially concurrently with RX from the 3998 * driver. 3999 */ 4000 spin_lock_bh(&rx->local->rx_path_lock); 4001 4002 while ((skb = __skb_dequeue(frames))) { 4003 /* 4004 * all the other fields are valid across frames 4005 * that belong to an aMPDU since they are on the 4006 * same TID from the same station 4007 */ 4008 rx->skb = skb; 4009 4010 if (WARN_ON_ONCE(!rx->link)) 4011 goto rxh_next; 4012 4013 CALL_RXH(ieee80211_rx_h_check_more_data); 4014 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4015 CALL_RXH(ieee80211_rx_h_sta_process); 4016 CALL_RXH(ieee80211_rx_h_decrypt); 4017 CALL_RXH(ieee80211_rx_h_defragment); 4018 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4019 /* must be after MMIC verify so header is counted in MPDU mic */ 4020 CALL_RXH(ieee80211_rx_h_amsdu); 4021 CALL_RXH(ieee80211_rx_h_data); 4022 4023 /* special treatment -- needs the queue */ 4024 res = ieee80211_rx_h_ctrl(rx, frames); 4025 if (res != RX_CONTINUE) 4026 goto rxh_next; 4027 4028 CALL_RXH(ieee80211_rx_h_mgmt_check); 4029 CALL_RXH(ieee80211_rx_h_action); 4030 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4031 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4032 CALL_RXH(ieee80211_rx_h_action_return); 4033 CALL_RXH(ieee80211_rx_h_ext); 4034 CALL_RXH(ieee80211_rx_h_mgmt); 4035 4036 rxh_next: 4037 ieee80211_rx_handlers_result(rx, res); 4038 4039 #undef CALL_RXH 4040 } 4041 4042 spin_unlock_bh(&rx->local->rx_path_lock); 4043 } 4044 4045 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4046 { 4047 struct sk_buff_head reorder_release; 4048 ieee80211_rx_result res = RX_DROP_MONITOR; 4049 4050 __skb_queue_head_init(&reorder_release); 4051 4052 #define CALL_RXH(rxh) \ 4053 do { \ 4054 res = rxh(rx); \ 4055 if (res != RX_CONTINUE) \ 4056 goto rxh_next; \ 4057 } while (0) 4058 4059 CALL_RXH(ieee80211_rx_h_check_dup); 4060 CALL_RXH(ieee80211_rx_h_check); 4061 4062 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4063 4064 ieee80211_rx_handlers(rx, &reorder_release); 4065 return; 4066 4067 rxh_next: 4068 ieee80211_rx_handlers_result(rx, res); 4069 4070 #undef CALL_RXH 4071 } 4072 4073 static bool 4074 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4075 { 4076 return !!(sta->valid_links & BIT(link_id)); 4077 } 4078 4079 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4080 u8 link_id) 4081 { 4082 rx->link_id = link_id; 4083 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4084 4085 if (!rx->sta) 4086 return rx->link; 4087 4088 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4089 return false; 4090 4091 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4092 4093 return rx->link && rx->link_sta; 4094 } 4095 4096 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4097 struct sta_info *sta, int link_id) 4098 { 4099 rx->link_id = link_id; 4100 rx->sta = sta; 4101 4102 if (sta) { 4103 rx->local = sta->sdata->local; 4104 if (!rx->sdata) 4105 rx->sdata = sta->sdata; 4106 rx->link_sta = &sta->deflink; 4107 } else { 4108 rx->link_sta = NULL; 4109 } 4110 4111 if (link_id < 0) 4112 rx->link = &rx->sdata->deflink; 4113 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4114 return false; 4115 4116 return true; 4117 } 4118 4119 /* 4120 * This function makes calls into the RX path, therefore 4121 * it has to be invoked under RCU read lock. 4122 */ 4123 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4124 { 4125 struct sk_buff_head frames; 4126 struct ieee80211_rx_data rx = { 4127 /* This is OK -- must be QoS data frame */ 4128 .security_idx = tid, 4129 .seqno_idx = tid, 4130 }; 4131 struct tid_ampdu_rx *tid_agg_rx; 4132 int link_id = -1; 4133 4134 /* FIXME: statistics won't be right with this */ 4135 if (sta->sta.valid_links) 4136 link_id = ffs(sta->sta.valid_links) - 1; 4137 4138 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4139 return; 4140 4141 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4142 if (!tid_agg_rx) 4143 return; 4144 4145 __skb_queue_head_init(&frames); 4146 4147 spin_lock(&tid_agg_rx->reorder_lock); 4148 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4149 spin_unlock(&tid_agg_rx->reorder_lock); 4150 4151 if (!skb_queue_empty(&frames)) { 4152 struct ieee80211_event event = { 4153 .type = BA_FRAME_TIMEOUT, 4154 .u.ba.tid = tid, 4155 .u.ba.sta = &sta->sta, 4156 }; 4157 drv_event_callback(rx.local, rx.sdata, &event); 4158 } 4159 4160 ieee80211_rx_handlers(&rx, &frames); 4161 } 4162 4163 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4164 u16 ssn, u64 filtered, 4165 u16 received_mpdus) 4166 { 4167 struct sta_info *sta; 4168 struct tid_ampdu_rx *tid_agg_rx; 4169 struct sk_buff_head frames; 4170 struct ieee80211_rx_data rx = { 4171 /* This is OK -- must be QoS data frame */ 4172 .security_idx = tid, 4173 .seqno_idx = tid, 4174 }; 4175 int i, diff; 4176 4177 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4178 return; 4179 4180 __skb_queue_head_init(&frames); 4181 4182 sta = container_of(pubsta, struct sta_info, sta); 4183 4184 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4185 return; 4186 4187 rcu_read_lock(); 4188 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4189 if (!tid_agg_rx) 4190 goto out; 4191 4192 spin_lock_bh(&tid_agg_rx->reorder_lock); 4193 4194 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4195 int release; 4196 4197 /* release all frames in the reorder buffer */ 4198 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4199 IEEE80211_SN_MODULO; 4200 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4201 release, &frames); 4202 /* update ssn to match received ssn */ 4203 tid_agg_rx->head_seq_num = ssn; 4204 } else { 4205 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4206 &frames); 4207 } 4208 4209 /* handle the case that received ssn is behind the mac ssn. 4210 * it can be tid_agg_rx->buf_size behind and still be valid */ 4211 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4212 if (diff >= tid_agg_rx->buf_size) { 4213 tid_agg_rx->reorder_buf_filtered = 0; 4214 goto release; 4215 } 4216 filtered = filtered >> diff; 4217 ssn += diff; 4218 4219 /* update bitmap */ 4220 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4221 int index = (ssn + i) % tid_agg_rx->buf_size; 4222 4223 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4224 if (filtered & BIT_ULL(i)) 4225 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4226 } 4227 4228 /* now process also frames that the filter marking released */ 4229 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4230 4231 release: 4232 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4233 4234 ieee80211_rx_handlers(&rx, &frames); 4235 4236 out: 4237 rcu_read_unlock(); 4238 } 4239 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4240 4241 /* main receive path */ 4242 4243 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4244 { 4245 return ether_addr_equal(raddr, addr) || 4246 is_broadcast_ether_addr(raddr); 4247 } 4248 4249 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4250 { 4251 struct ieee80211_sub_if_data *sdata = rx->sdata; 4252 struct sk_buff *skb = rx->skb; 4253 struct ieee80211_hdr *hdr = (void *)skb->data; 4254 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4255 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4256 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4257 ieee80211_is_s1g_beacon(hdr->frame_control); 4258 4259 switch (sdata->vif.type) { 4260 case NL80211_IFTYPE_STATION: 4261 if (!bssid && !sdata->u.mgd.use_4addr) 4262 return false; 4263 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4264 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4265 return false; 4266 if (multicast) 4267 return true; 4268 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4269 case NL80211_IFTYPE_ADHOC: 4270 if (!bssid) 4271 return false; 4272 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4273 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4274 !is_valid_ether_addr(hdr->addr2)) 4275 return false; 4276 if (ieee80211_is_beacon(hdr->frame_control)) 4277 return true; 4278 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4279 return false; 4280 if (!multicast && 4281 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4282 return false; 4283 if (!rx->sta) { 4284 int rate_idx; 4285 if (status->encoding != RX_ENC_LEGACY) 4286 rate_idx = 0; /* TODO: HT/VHT rates */ 4287 else 4288 rate_idx = status->rate_idx; 4289 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4290 BIT(rate_idx)); 4291 } 4292 return true; 4293 case NL80211_IFTYPE_OCB: 4294 if (!bssid) 4295 return false; 4296 if (!ieee80211_is_data_present(hdr->frame_control)) 4297 return false; 4298 if (!is_broadcast_ether_addr(bssid)) 4299 return false; 4300 if (!multicast && 4301 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4302 return false; 4303 if (!rx->sta) { 4304 int rate_idx; 4305 if (status->encoding != RX_ENC_LEGACY) 4306 rate_idx = 0; /* TODO: HT rates */ 4307 else 4308 rate_idx = status->rate_idx; 4309 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4310 BIT(rate_idx)); 4311 } 4312 return true; 4313 case NL80211_IFTYPE_MESH_POINT: 4314 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4315 return false; 4316 if (multicast) 4317 return true; 4318 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4319 case NL80211_IFTYPE_AP_VLAN: 4320 case NL80211_IFTYPE_AP: 4321 if (!bssid) 4322 return ieee80211_is_our_addr(sdata, hdr->addr1, 4323 &rx->link_id); 4324 4325 if (!is_broadcast_ether_addr(bssid) && 4326 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4327 /* 4328 * Accept public action frames even when the 4329 * BSSID doesn't match, this is used for P2P 4330 * and location updates. Note that mac80211 4331 * itself never looks at these frames. 4332 */ 4333 if (!multicast && 4334 !ieee80211_is_our_addr(sdata, hdr->addr1, 4335 &rx->link_id)) 4336 return false; 4337 if (ieee80211_is_public_action(hdr, skb->len)) 4338 return true; 4339 return ieee80211_is_beacon(hdr->frame_control); 4340 } 4341 4342 if (!ieee80211_has_tods(hdr->frame_control)) { 4343 /* ignore data frames to TDLS-peers */ 4344 if (ieee80211_is_data(hdr->frame_control)) 4345 return false; 4346 /* ignore action frames to TDLS-peers */ 4347 if (ieee80211_is_action(hdr->frame_control) && 4348 !is_broadcast_ether_addr(bssid) && 4349 !ether_addr_equal(bssid, hdr->addr1)) 4350 return false; 4351 } 4352 4353 /* 4354 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4355 * the BSSID - we've checked that already but may have accepted 4356 * the wildcard (ff:ff:ff:ff:ff:ff). 4357 * 4358 * It also says: 4359 * The BSSID of the Data frame is determined as follows: 4360 * a) If the STA is contained within an AP or is associated 4361 * with an AP, the BSSID is the address currently in use 4362 * by the STA contained in the AP. 4363 * 4364 * So we should not accept data frames with an address that's 4365 * multicast. 4366 * 4367 * Accepting it also opens a security problem because stations 4368 * could encrypt it with the GTK and inject traffic that way. 4369 */ 4370 if (ieee80211_is_data(hdr->frame_control) && multicast) 4371 return false; 4372 4373 return true; 4374 case NL80211_IFTYPE_P2P_DEVICE: 4375 return ieee80211_is_public_action(hdr, skb->len) || 4376 ieee80211_is_probe_req(hdr->frame_control) || 4377 ieee80211_is_probe_resp(hdr->frame_control) || 4378 ieee80211_is_beacon(hdr->frame_control); 4379 case NL80211_IFTYPE_NAN: 4380 /* Currently no frames on NAN interface are allowed */ 4381 return false; 4382 default: 4383 break; 4384 } 4385 4386 WARN_ON_ONCE(1); 4387 return false; 4388 } 4389 4390 void ieee80211_check_fast_rx(struct sta_info *sta) 4391 { 4392 struct ieee80211_sub_if_data *sdata = sta->sdata; 4393 struct ieee80211_local *local = sdata->local; 4394 struct ieee80211_key *key; 4395 struct ieee80211_fast_rx fastrx = { 4396 .dev = sdata->dev, 4397 .vif_type = sdata->vif.type, 4398 .control_port_protocol = sdata->control_port_protocol, 4399 }, *old, *new = NULL; 4400 u32 offload_flags; 4401 bool set_offload = false; 4402 bool assign = false; 4403 bool offload; 4404 4405 /* use sparse to check that we don't return without updating */ 4406 __acquire(check_fast_rx); 4407 4408 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4409 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4410 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4411 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4412 4413 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4414 4415 /* fast-rx doesn't do reordering */ 4416 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4417 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4418 goto clear; 4419 4420 switch (sdata->vif.type) { 4421 case NL80211_IFTYPE_STATION: 4422 if (sta->sta.tdls) { 4423 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4424 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4425 fastrx.expected_ds_bits = 0; 4426 } else { 4427 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4428 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4429 fastrx.expected_ds_bits = 4430 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4431 } 4432 4433 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4434 fastrx.expected_ds_bits |= 4435 cpu_to_le16(IEEE80211_FCTL_TODS); 4436 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4437 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4438 } 4439 4440 if (!sdata->u.mgd.powersave) 4441 break; 4442 4443 /* software powersave is a huge mess, avoid all of it */ 4444 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4445 goto clear; 4446 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4447 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4448 goto clear; 4449 break; 4450 case NL80211_IFTYPE_AP_VLAN: 4451 case NL80211_IFTYPE_AP: 4452 /* parallel-rx requires this, at least with calls to 4453 * ieee80211_sta_ps_transition() 4454 */ 4455 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4456 goto clear; 4457 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4458 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4459 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4460 4461 fastrx.internal_forward = 4462 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4463 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4464 !sdata->u.vlan.sta); 4465 4466 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4467 sdata->u.vlan.sta) { 4468 fastrx.expected_ds_bits |= 4469 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4470 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4471 fastrx.internal_forward = 0; 4472 } 4473 4474 break; 4475 default: 4476 goto clear; 4477 } 4478 4479 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4480 goto clear; 4481 4482 rcu_read_lock(); 4483 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4484 if (!key) 4485 key = rcu_dereference(sdata->default_unicast_key); 4486 if (key) { 4487 switch (key->conf.cipher) { 4488 case WLAN_CIPHER_SUITE_TKIP: 4489 /* we don't want to deal with MMIC in fast-rx */ 4490 goto clear_rcu; 4491 case WLAN_CIPHER_SUITE_CCMP: 4492 case WLAN_CIPHER_SUITE_CCMP_256: 4493 case WLAN_CIPHER_SUITE_GCMP: 4494 case WLAN_CIPHER_SUITE_GCMP_256: 4495 break; 4496 default: 4497 /* We also don't want to deal with 4498 * WEP or cipher scheme. 4499 */ 4500 goto clear_rcu; 4501 } 4502 4503 fastrx.key = true; 4504 fastrx.icv_len = key->conf.icv_len; 4505 } 4506 4507 assign = true; 4508 clear_rcu: 4509 rcu_read_unlock(); 4510 clear: 4511 __release(check_fast_rx); 4512 4513 if (assign) 4514 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4515 4516 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4517 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4518 4519 if (assign && offload) 4520 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4521 else 4522 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4523 4524 if (set_offload) 4525 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4526 4527 spin_lock_bh(&sta->lock); 4528 old = rcu_dereference_protected(sta->fast_rx, true); 4529 rcu_assign_pointer(sta->fast_rx, new); 4530 spin_unlock_bh(&sta->lock); 4531 4532 if (old) 4533 kfree_rcu(old, rcu_head); 4534 } 4535 4536 void ieee80211_clear_fast_rx(struct sta_info *sta) 4537 { 4538 struct ieee80211_fast_rx *old; 4539 4540 spin_lock_bh(&sta->lock); 4541 old = rcu_dereference_protected(sta->fast_rx, true); 4542 RCU_INIT_POINTER(sta->fast_rx, NULL); 4543 spin_unlock_bh(&sta->lock); 4544 4545 if (old) 4546 kfree_rcu(old, rcu_head); 4547 } 4548 4549 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4550 { 4551 struct ieee80211_local *local = sdata->local; 4552 struct sta_info *sta; 4553 4554 lockdep_assert_held(&local->sta_mtx); 4555 4556 list_for_each_entry(sta, &local->sta_list, list) { 4557 if (sdata != sta->sdata && 4558 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4559 continue; 4560 ieee80211_check_fast_rx(sta); 4561 } 4562 } 4563 4564 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4565 { 4566 struct ieee80211_local *local = sdata->local; 4567 4568 mutex_lock(&local->sta_mtx); 4569 __ieee80211_check_fast_rx_iface(sdata); 4570 mutex_unlock(&local->sta_mtx); 4571 } 4572 4573 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4574 struct ieee80211_fast_rx *fast_rx, 4575 int orig_len) 4576 { 4577 struct ieee80211_sta_rx_stats *stats; 4578 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4579 struct sta_info *sta = rx->sta; 4580 struct link_sta_info *link_sta; 4581 struct sk_buff *skb = rx->skb; 4582 void *sa = skb->data + ETH_ALEN; 4583 void *da = skb->data; 4584 4585 if (rx->link_id >= 0) { 4586 link_sta = rcu_dereference(sta->link[rx->link_id]); 4587 if (WARN_ON_ONCE(!link_sta)) { 4588 dev_kfree_skb(rx->skb); 4589 return; 4590 } 4591 } else { 4592 link_sta = &sta->deflink; 4593 } 4594 4595 stats = &link_sta->rx_stats; 4596 if (fast_rx->uses_rss) 4597 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4598 4599 /* statistics part of ieee80211_rx_h_sta_process() */ 4600 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4601 stats->last_signal = status->signal; 4602 if (!fast_rx->uses_rss) 4603 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4604 -status->signal); 4605 } 4606 4607 if (status->chains) { 4608 int i; 4609 4610 stats->chains = status->chains; 4611 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4612 int signal = status->chain_signal[i]; 4613 4614 if (!(status->chains & BIT(i))) 4615 continue; 4616 4617 stats->chain_signal_last[i] = signal; 4618 if (!fast_rx->uses_rss) 4619 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4620 -signal); 4621 } 4622 } 4623 /* end of statistics */ 4624 4625 stats->last_rx = jiffies; 4626 stats->last_rate = sta_stats_encode_rate(status); 4627 4628 stats->fragments++; 4629 stats->packets++; 4630 4631 skb->dev = fast_rx->dev; 4632 4633 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4634 4635 /* The seqno index has the same property as needed 4636 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4637 * for non-QoS-data frames. Here we know it's a data 4638 * frame, so count MSDUs. 4639 */ 4640 u64_stats_update_begin(&stats->syncp); 4641 stats->msdu[rx->seqno_idx]++; 4642 stats->bytes += orig_len; 4643 u64_stats_update_end(&stats->syncp); 4644 4645 if (fast_rx->internal_forward) { 4646 struct sk_buff *xmit_skb = NULL; 4647 if (is_multicast_ether_addr(da)) { 4648 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4649 } else if (!ether_addr_equal(da, sa) && 4650 sta_info_get(rx->sdata, da)) { 4651 xmit_skb = skb; 4652 skb = NULL; 4653 } 4654 4655 if (xmit_skb) { 4656 /* 4657 * Send to wireless media and increase priority by 256 4658 * to keep the received priority instead of 4659 * reclassifying the frame (see cfg80211_classify8021d). 4660 */ 4661 xmit_skb->priority += 256; 4662 xmit_skb->protocol = htons(ETH_P_802_3); 4663 skb_reset_network_header(xmit_skb); 4664 skb_reset_mac_header(xmit_skb); 4665 dev_queue_xmit(xmit_skb); 4666 } 4667 4668 if (!skb) 4669 return; 4670 } 4671 4672 /* deliver to local stack */ 4673 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4674 ieee80211_deliver_skb_to_local_stack(skb, rx); 4675 } 4676 4677 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4678 struct ieee80211_fast_rx *fast_rx) 4679 { 4680 struct sk_buff *skb = rx->skb; 4681 struct ieee80211_hdr *hdr = (void *)skb->data; 4682 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4683 int orig_len = skb->len; 4684 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4685 int snap_offs = hdrlen; 4686 struct { 4687 u8 snap[sizeof(rfc1042_header)]; 4688 __be16 proto; 4689 } *payload __aligned(2); 4690 struct { 4691 u8 da[ETH_ALEN]; 4692 u8 sa[ETH_ALEN]; 4693 } addrs __aligned(2); 4694 struct ieee80211_sta_rx_stats *stats; 4695 4696 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4697 * to a common data structure; drivers can implement that per queue 4698 * but we don't have that information in mac80211 4699 */ 4700 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4701 return false; 4702 4703 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4704 4705 /* If using encryption, we also need to have: 4706 * - PN_VALIDATED: similar, but the implementation is tricky 4707 * - DECRYPTED: necessary for PN_VALIDATED 4708 */ 4709 if (fast_rx->key && 4710 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4711 return false; 4712 4713 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4714 return false; 4715 4716 if (unlikely(ieee80211_is_frag(hdr))) 4717 return false; 4718 4719 /* Since our interface address cannot be multicast, this 4720 * implicitly also rejects multicast frames without the 4721 * explicit check. 4722 * 4723 * We shouldn't get any *data* frames not addressed to us 4724 * (AP mode will accept multicast *management* frames), but 4725 * punting here will make it go through the full checks in 4726 * ieee80211_accept_frame(). 4727 */ 4728 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4729 return false; 4730 4731 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4732 IEEE80211_FCTL_TODS)) != 4733 fast_rx->expected_ds_bits) 4734 return false; 4735 4736 /* assign the key to drop unencrypted frames (later) 4737 * and strip the IV/MIC if necessary 4738 */ 4739 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4740 /* GCMP header length is the same */ 4741 snap_offs += IEEE80211_CCMP_HDR_LEN; 4742 } 4743 4744 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4745 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4746 return false; 4747 4748 payload = (void *)(skb->data + snap_offs); 4749 4750 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4751 return false; 4752 4753 /* Don't handle these here since they require special code. 4754 * Accept AARP and IPX even though they should come with a 4755 * bridge-tunnel header - but if we get them this way then 4756 * there's little point in discarding them. 4757 */ 4758 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4759 payload->proto == fast_rx->control_port_protocol)) 4760 return false; 4761 } 4762 4763 /* after this point, don't punt to the slowpath! */ 4764 4765 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4766 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4767 goto drop; 4768 4769 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4770 goto drop; 4771 4772 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4773 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4774 RX_QUEUED) 4775 goto drop; 4776 4777 return true; 4778 } 4779 4780 /* do the header conversion - first grab the addresses */ 4781 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4782 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4783 skb_postpull_rcsum(skb, skb->data + snap_offs, 4784 sizeof(rfc1042_header) + 2); 4785 /* remove the SNAP but leave the ethertype */ 4786 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4787 /* push the addresses in front */ 4788 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4789 4790 ieee80211_rx_8023(rx, fast_rx, orig_len); 4791 4792 return true; 4793 drop: 4794 dev_kfree_skb(skb); 4795 4796 if (fast_rx->uses_rss) 4797 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4798 else 4799 stats = &rx->link_sta->rx_stats; 4800 4801 stats->dropped++; 4802 return true; 4803 } 4804 4805 /* 4806 * This function returns whether or not the SKB 4807 * was destined for RX processing or not, which, 4808 * if consume is true, is equivalent to whether 4809 * or not the skb was consumed. 4810 */ 4811 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4812 struct sk_buff *skb, bool consume) 4813 { 4814 struct ieee80211_local *local = rx->local; 4815 struct ieee80211_sub_if_data *sdata = rx->sdata; 4816 struct ieee80211_hdr *hdr = (void *)skb->data; 4817 struct link_sta_info *link_sta = rx->link_sta; 4818 struct ieee80211_link_data *link = rx->link; 4819 4820 rx->skb = skb; 4821 4822 /* See if we can do fast-rx; if we have to copy we already lost, 4823 * so punt in that case. We should never have to deliver a data 4824 * frame to multiple interfaces anyway. 4825 * 4826 * We skip the ieee80211_accept_frame() call and do the necessary 4827 * checking inside ieee80211_invoke_fast_rx(). 4828 */ 4829 if (consume && rx->sta) { 4830 struct ieee80211_fast_rx *fast_rx; 4831 4832 fast_rx = rcu_dereference(rx->sta->fast_rx); 4833 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4834 return true; 4835 } 4836 4837 if (!ieee80211_accept_frame(rx)) 4838 return false; 4839 4840 if (!consume) { 4841 struct skb_shared_hwtstamps *shwt; 4842 4843 rx->skb = skb_copy(skb, GFP_ATOMIC); 4844 if (!rx->skb) { 4845 if (net_ratelimit()) 4846 wiphy_debug(local->hw.wiphy, 4847 "failed to copy skb for %s\n", 4848 sdata->name); 4849 return true; 4850 } 4851 4852 /* skb_copy() does not copy the hw timestamps, so copy it 4853 * explicitly 4854 */ 4855 shwt = skb_hwtstamps(rx->skb); 4856 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4857 4858 /* Update the hdr pointer to the new skb for translation below */ 4859 hdr = (struct ieee80211_hdr *)rx->skb->data; 4860 } 4861 4862 if (unlikely(rx->sta && rx->sta->sta.mlo) && 4863 is_unicast_ether_addr(hdr->addr1)) { 4864 /* translate to MLD addresses */ 4865 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4866 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4867 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4868 ether_addr_copy(hdr->addr2, rx->sta->addr); 4869 /* translate A3 only if it's the BSSID */ 4870 if (!ieee80211_has_tods(hdr->frame_control) && 4871 !ieee80211_has_fromds(hdr->frame_control)) { 4872 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4873 ether_addr_copy(hdr->addr3, rx->sta->addr); 4874 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 4875 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 4876 } 4877 /* not needed for A4 since it can only carry the SA */ 4878 } 4879 4880 ieee80211_invoke_rx_handlers(rx); 4881 return true; 4882 } 4883 4884 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4885 struct ieee80211_sta *pubsta, 4886 struct sk_buff *skb, 4887 struct list_head *list) 4888 { 4889 struct ieee80211_local *local = hw_to_local(hw); 4890 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4891 struct ieee80211_fast_rx *fast_rx; 4892 struct ieee80211_rx_data rx; 4893 struct sta_info *sta; 4894 int link_id = -1; 4895 4896 memset(&rx, 0, sizeof(rx)); 4897 rx.skb = skb; 4898 rx.local = local; 4899 rx.list = list; 4900 rx.link_id = -1; 4901 4902 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4903 4904 /* drop frame if too short for header */ 4905 if (skb->len < sizeof(struct ethhdr)) 4906 goto drop; 4907 4908 if (!pubsta) 4909 goto drop; 4910 4911 if (status->link_valid) 4912 link_id = status->link_id; 4913 4914 /* 4915 * TODO: Should the frame be dropped if the right link_id is not 4916 * available? Or may be it is fine in the current form to proceed with 4917 * the frame processing because with frame being in 802.3 format, 4918 * link_id is used only for stats purpose and updating the stats on 4919 * the deflink is fine? 4920 */ 4921 sta = container_of(pubsta, struct sta_info, sta); 4922 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4923 goto drop; 4924 4925 fast_rx = rcu_dereference(rx.sta->fast_rx); 4926 if (!fast_rx) 4927 goto drop; 4928 4929 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4930 return; 4931 4932 drop: 4933 dev_kfree_skb(skb); 4934 } 4935 4936 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 4937 struct sk_buff *skb, bool consume) 4938 { 4939 struct link_sta_info *link_sta; 4940 struct ieee80211_hdr *hdr = (void *)skb->data; 4941 struct sta_info *sta; 4942 int link_id = -1; 4943 4944 /* 4945 * Look up link station first, in case there's a 4946 * chance that they might have a link address that 4947 * is identical to the MLD address, that way we'll 4948 * have the link information if needed. 4949 */ 4950 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 4951 if (link_sta) { 4952 sta = link_sta->sta; 4953 link_id = link_sta->link_id; 4954 } else { 4955 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4956 4957 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 4958 if (status->link_valid) 4959 link_id = status->link_id; 4960 } 4961 4962 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 4963 return false; 4964 4965 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 4966 } 4967 4968 /* 4969 * This is the actual Rx frames handler. as it belongs to Rx path it must 4970 * be called with rcu_read_lock protection. 4971 */ 4972 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4973 struct ieee80211_sta *pubsta, 4974 struct sk_buff *skb, 4975 struct list_head *list) 4976 { 4977 struct ieee80211_local *local = hw_to_local(hw); 4978 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4979 struct ieee80211_sub_if_data *sdata; 4980 struct ieee80211_hdr *hdr; 4981 __le16 fc; 4982 struct ieee80211_rx_data rx; 4983 struct ieee80211_sub_if_data *prev; 4984 struct rhlist_head *tmp; 4985 int err = 0; 4986 4987 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4988 memset(&rx, 0, sizeof(rx)); 4989 rx.skb = skb; 4990 rx.local = local; 4991 rx.list = list; 4992 rx.link_id = -1; 4993 4994 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4995 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4996 4997 if (ieee80211_is_mgmt(fc)) { 4998 /* drop frame if too short for header */ 4999 if (skb->len < ieee80211_hdrlen(fc)) 5000 err = -ENOBUFS; 5001 else 5002 err = skb_linearize(skb); 5003 } else { 5004 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5005 } 5006 5007 if (err) { 5008 dev_kfree_skb(skb); 5009 return; 5010 } 5011 5012 hdr = (struct ieee80211_hdr *)skb->data; 5013 ieee80211_parse_qos(&rx); 5014 ieee80211_verify_alignment(&rx); 5015 5016 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5017 ieee80211_is_beacon(hdr->frame_control) || 5018 ieee80211_is_s1g_beacon(hdr->frame_control))) 5019 ieee80211_scan_rx(local, skb); 5020 5021 if (ieee80211_is_data(fc)) { 5022 struct sta_info *sta, *prev_sta; 5023 int link_id = -1; 5024 5025 if (status->link_valid) 5026 link_id = status->link_id; 5027 5028 if (pubsta) { 5029 sta = container_of(pubsta, struct sta_info, sta); 5030 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5031 goto out; 5032 5033 /* 5034 * In MLO connection, fetch the link_id using addr2 5035 * when the driver does not pass link_id in status. 5036 * When the address translation is already performed by 5037 * driver/hw, the valid link_id must be passed in 5038 * status. 5039 */ 5040 5041 if (!status->link_valid && pubsta->mlo) { 5042 struct ieee80211_hdr *hdr = (void *)skb->data; 5043 struct link_sta_info *link_sta; 5044 5045 link_sta = link_sta_info_get_bss(rx.sdata, 5046 hdr->addr2); 5047 if (!link_sta) 5048 goto out; 5049 5050 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5051 } 5052 5053 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5054 return; 5055 goto out; 5056 } 5057 5058 prev_sta = NULL; 5059 5060 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5061 if (!prev_sta) { 5062 prev_sta = sta; 5063 continue; 5064 } 5065 5066 rx.sdata = prev_sta->sdata; 5067 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5068 goto out; 5069 5070 if (!status->link_valid && prev_sta->sta.mlo) 5071 continue; 5072 5073 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5074 5075 prev_sta = sta; 5076 } 5077 5078 if (prev_sta) { 5079 rx.sdata = prev_sta->sdata; 5080 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5081 goto out; 5082 5083 if (!status->link_valid && prev_sta->sta.mlo) 5084 goto out; 5085 5086 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5087 return; 5088 goto out; 5089 } 5090 } 5091 5092 prev = NULL; 5093 5094 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5095 if (!ieee80211_sdata_running(sdata)) 5096 continue; 5097 5098 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5099 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5100 continue; 5101 5102 /* 5103 * frame is destined for this interface, but if it's 5104 * not also for the previous one we handle that after 5105 * the loop to avoid copying the SKB once too much 5106 */ 5107 5108 if (!prev) { 5109 prev = sdata; 5110 continue; 5111 } 5112 5113 rx.sdata = prev; 5114 ieee80211_rx_for_interface(&rx, skb, false); 5115 5116 prev = sdata; 5117 } 5118 5119 if (prev) { 5120 rx.sdata = prev; 5121 5122 if (ieee80211_rx_for_interface(&rx, skb, true)) 5123 return; 5124 } 5125 5126 out: 5127 dev_kfree_skb(skb); 5128 } 5129 5130 /* 5131 * This is the receive path handler. It is called by a low level driver when an 5132 * 802.11 MPDU is received from the hardware. 5133 */ 5134 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5135 struct sk_buff *skb, struct list_head *list) 5136 { 5137 struct ieee80211_local *local = hw_to_local(hw); 5138 struct ieee80211_rate *rate = NULL; 5139 struct ieee80211_supported_band *sband; 5140 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5141 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5142 5143 WARN_ON_ONCE(softirq_count() == 0); 5144 5145 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5146 goto drop; 5147 5148 sband = local->hw.wiphy->bands[status->band]; 5149 if (WARN_ON(!sband)) 5150 goto drop; 5151 5152 /* 5153 * If we're suspending, it is possible although not too likely 5154 * that we'd be receiving frames after having already partially 5155 * quiesced the stack. We can't process such frames then since 5156 * that might, for example, cause stations to be added or other 5157 * driver callbacks be invoked. 5158 */ 5159 if (unlikely(local->quiescing || local->suspended)) 5160 goto drop; 5161 5162 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5163 if (unlikely(local->in_reconfig)) 5164 goto drop; 5165 5166 /* 5167 * The same happens when we're not even started, 5168 * but that's worth a warning. 5169 */ 5170 if (WARN_ON(!local->started)) 5171 goto drop; 5172 5173 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5174 /* 5175 * Validate the rate, unless a PLCP error means that 5176 * we probably can't have a valid rate here anyway. 5177 */ 5178 5179 switch (status->encoding) { 5180 case RX_ENC_HT: 5181 /* 5182 * rate_idx is MCS index, which can be [0-76] 5183 * as documented on: 5184 * 5185 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5186 * 5187 * Anything else would be some sort of driver or 5188 * hardware error. The driver should catch hardware 5189 * errors. 5190 */ 5191 if (WARN(status->rate_idx > 76, 5192 "Rate marked as an HT rate but passed " 5193 "status->rate_idx is not " 5194 "an MCS index [0-76]: %d (0x%02x)\n", 5195 status->rate_idx, 5196 status->rate_idx)) 5197 goto drop; 5198 break; 5199 case RX_ENC_VHT: 5200 if (WARN_ONCE(status->rate_idx > 11 || 5201 !status->nss || 5202 status->nss > 8, 5203 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5204 status->rate_idx, status->nss)) 5205 goto drop; 5206 break; 5207 case RX_ENC_HE: 5208 if (WARN_ONCE(status->rate_idx > 11 || 5209 !status->nss || 5210 status->nss > 8, 5211 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5212 status->rate_idx, status->nss)) 5213 goto drop; 5214 break; 5215 case RX_ENC_EHT: 5216 if (WARN_ONCE(status->rate_idx > 15 || 5217 !status->nss || 5218 status->nss > 8 || 5219 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5220 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5221 status->rate_idx, status->nss, status->eht.gi)) 5222 goto drop; 5223 break; 5224 default: 5225 WARN_ON_ONCE(1); 5226 fallthrough; 5227 case RX_ENC_LEGACY: 5228 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5229 goto drop; 5230 rate = &sband->bitrates[status->rate_idx]; 5231 } 5232 } 5233 5234 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5235 goto drop; 5236 5237 status->rx_flags = 0; 5238 5239 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5240 5241 /* 5242 * Frames with failed FCS/PLCP checksum are not returned, 5243 * all other frames are returned without radiotap header 5244 * if it was previously present. 5245 * Also, frames with less than 16 bytes are dropped. 5246 */ 5247 if (!(status->flag & RX_FLAG_8023)) 5248 skb = ieee80211_rx_monitor(local, skb, rate); 5249 if (skb) { 5250 if ((status->flag & RX_FLAG_8023) || 5251 ieee80211_is_data_present(hdr->frame_control)) 5252 ieee80211_tpt_led_trig_rx(local, skb->len); 5253 5254 if (status->flag & RX_FLAG_8023) 5255 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5256 else 5257 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5258 } 5259 5260 kcov_remote_stop(); 5261 return; 5262 drop: 5263 kfree_skb(skb); 5264 } 5265 EXPORT_SYMBOL(ieee80211_rx_list); 5266 5267 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5268 struct sk_buff *skb, struct napi_struct *napi) 5269 { 5270 struct sk_buff *tmp; 5271 LIST_HEAD(list); 5272 5273 5274 /* 5275 * key references and virtual interfaces are protected using RCU 5276 * and this requires that we are in a read-side RCU section during 5277 * receive processing 5278 */ 5279 rcu_read_lock(); 5280 ieee80211_rx_list(hw, pubsta, skb, &list); 5281 rcu_read_unlock(); 5282 5283 if (!napi) { 5284 netif_receive_skb_list(&list); 5285 return; 5286 } 5287 5288 list_for_each_entry_safe(skb, tmp, &list, list) { 5289 skb_list_del_init(skb); 5290 napi_gro_receive(napi, skb); 5291 } 5292 } 5293 EXPORT_SYMBOL(ieee80211_rx_napi); 5294 5295 /* This is a version of the rx handler that can be called from hard irq 5296 * context. Post the skb on the queue and schedule the tasklet */ 5297 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5298 { 5299 struct ieee80211_local *local = hw_to_local(hw); 5300 5301 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5302 5303 skb->pkt_type = IEEE80211_RX_MSG; 5304 skb_queue_tail(&local->skb_queue, skb); 5305 tasklet_schedule(&local->tasklet); 5306 } 5307 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5308