1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2020 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/bitops.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 36 { 37 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 38 39 u64_stats_update_begin(&tstats->syncp); 40 tstats->rx_packets++; 41 tstats->rx_bytes += len; 42 u64_stats_update_end(&tstats->syncp); 43 } 44 45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 46 enum nl80211_iftype type) 47 { 48 __le16 fc = hdr->frame_control; 49 50 if (ieee80211_is_data(fc)) { 51 if (len < 24) /* drop incorrect hdr len (data) */ 52 return NULL; 53 54 if (ieee80211_has_a4(fc)) 55 return NULL; 56 if (ieee80211_has_tods(fc)) 57 return hdr->addr1; 58 if (ieee80211_has_fromds(fc)) 59 return hdr->addr2; 60 61 return hdr->addr3; 62 } 63 64 if (ieee80211_is_mgmt(fc)) { 65 if (len < 24) /* drop incorrect hdr len (mgmt) */ 66 return NULL; 67 return hdr->addr3; 68 } 69 70 if (ieee80211_is_ctl(fc)) { 71 if (ieee80211_is_pspoll(fc)) 72 return hdr->addr1; 73 74 if (ieee80211_is_back_req(fc)) { 75 switch (type) { 76 case NL80211_IFTYPE_STATION: 77 return hdr->addr2; 78 case NL80211_IFTYPE_AP: 79 case NL80211_IFTYPE_AP_VLAN: 80 return hdr->addr1; 81 default: 82 break; /* fall through to the return */ 83 } 84 } 85 } 86 87 return NULL; 88 } 89 90 /* 91 * monitor mode reception 92 * 93 * This function cleans up the SKB, i.e. it removes all the stuff 94 * only useful for monitoring. 95 */ 96 static void remove_monitor_info(struct sk_buff *skb, 97 unsigned int present_fcs_len, 98 unsigned int rtap_space) 99 { 100 if (present_fcs_len) 101 __pskb_trim(skb, skb->len - present_fcs_len); 102 __pskb_pull(skb, rtap_space); 103 } 104 105 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 106 unsigned int rtap_space) 107 { 108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 109 struct ieee80211_hdr *hdr; 110 111 hdr = (void *)(skb->data + rtap_space); 112 113 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 114 RX_FLAG_FAILED_PLCP_CRC | 115 RX_FLAG_ONLY_MONITOR | 116 RX_FLAG_NO_PSDU)) 117 return true; 118 119 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 120 return true; 121 122 if (ieee80211_is_ctl(hdr->frame_control) && 123 !ieee80211_is_pspoll(hdr->frame_control) && 124 !ieee80211_is_back_req(hdr->frame_control)) 125 return true; 126 127 return false; 128 } 129 130 static int 131 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 132 struct ieee80211_rx_status *status, 133 struct sk_buff *skb) 134 { 135 int len; 136 137 /* always present fields */ 138 len = sizeof(struct ieee80211_radiotap_header) + 8; 139 140 /* allocate extra bitmaps */ 141 if (status->chains) 142 len += 4 * hweight8(status->chains); 143 /* vendor presence bitmap */ 144 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 145 len += 4; 146 147 if (ieee80211_have_rx_timestamp(status)) { 148 len = ALIGN(len, 8); 149 len += 8; 150 } 151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 152 len += 1; 153 154 /* antenna field, if we don't have per-chain info */ 155 if (!status->chains) 156 len += 1; 157 158 /* padding for RX_FLAGS if necessary */ 159 len = ALIGN(len, 2); 160 161 if (status->encoding == RX_ENC_HT) /* HT info */ 162 len += 3; 163 164 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 165 len = ALIGN(len, 4); 166 len += 8; 167 } 168 169 if (status->encoding == RX_ENC_VHT) { 170 len = ALIGN(len, 2); 171 len += 12; 172 } 173 174 if (local->hw.radiotap_timestamp.units_pos >= 0) { 175 len = ALIGN(len, 8); 176 len += 12; 177 } 178 179 if (status->encoding == RX_ENC_HE && 180 status->flag & RX_FLAG_RADIOTAP_HE) { 181 len = ALIGN(len, 2); 182 len += 12; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 184 } 185 186 if (status->encoding == RX_ENC_HE && 187 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 188 len = ALIGN(len, 2); 189 len += 12; 190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 191 } 192 193 if (status->flag & RX_FLAG_NO_PSDU) 194 len += 1; 195 196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 197 len = ALIGN(len, 2); 198 len += 4; 199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 200 } 201 202 if (status->chains) { 203 /* antenna and antenna signal fields */ 204 len += 2 * hweight8(status->chains); 205 } 206 207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 208 struct ieee80211_vendor_radiotap *rtap; 209 int vendor_data_offset = 0; 210 211 /* 212 * The position to look at depends on the existence (or non- 213 * existence) of other elements, so take that into account... 214 */ 215 if (status->flag & RX_FLAG_RADIOTAP_HE) 216 vendor_data_offset += 217 sizeof(struct ieee80211_radiotap_he); 218 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 219 vendor_data_offset += 220 sizeof(struct ieee80211_radiotap_he_mu); 221 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 222 vendor_data_offset += 223 sizeof(struct ieee80211_radiotap_lsig); 224 225 rtap = (void *)&skb->data[vendor_data_offset]; 226 227 /* alignment for fixed 6-byte vendor data header */ 228 len = ALIGN(len, 2); 229 /* vendor data header */ 230 len += 6; 231 if (WARN_ON(rtap->align == 0)) 232 rtap->align = 1; 233 len = ALIGN(len, rtap->align); 234 len += rtap->len + rtap->pad; 235 } 236 237 return len; 238 } 239 240 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 241 struct sk_buff *skb, 242 int rtap_space) 243 { 244 struct { 245 struct ieee80211_hdr_3addr hdr; 246 u8 category; 247 u8 action_code; 248 } __packed __aligned(2) action; 249 250 if (!sdata) 251 return; 252 253 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 254 255 if (skb->len < rtap_space + sizeof(action) + 256 VHT_MUMIMO_GROUPS_DATA_LEN) 257 return; 258 259 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 260 return; 261 262 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 263 264 if (!ieee80211_is_action(action.hdr.frame_control)) 265 return; 266 267 if (action.category != WLAN_CATEGORY_VHT) 268 return; 269 270 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 271 return; 272 273 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 274 return; 275 276 skb = skb_copy(skb, GFP_ATOMIC); 277 if (!skb) 278 return; 279 280 skb_queue_tail(&sdata->skb_queue, skb); 281 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 282 } 283 284 /* 285 * ieee80211_add_rx_radiotap_header - add radiotap header 286 * 287 * add a radiotap header containing all the fields which the hardware provided. 288 */ 289 static void 290 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 291 struct sk_buff *skb, 292 struct ieee80211_rate *rate, 293 int rtap_len, bool has_fcs) 294 { 295 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 296 struct ieee80211_radiotap_header *rthdr; 297 unsigned char *pos; 298 __le32 *it_present; 299 u32 it_present_val; 300 u16 rx_flags = 0; 301 u16 channel_flags = 0; 302 int mpdulen, chain; 303 unsigned long chains = status->chains; 304 struct ieee80211_vendor_radiotap rtap = {}; 305 struct ieee80211_radiotap_he he = {}; 306 struct ieee80211_radiotap_he_mu he_mu = {}; 307 struct ieee80211_radiotap_lsig lsig = {}; 308 309 if (status->flag & RX_FLAG_RADIOTAP_HE) { 310 he = *(struct ieee80211_radiotap_he *)skb->data; 311 skb_pull(skb, sizeof(he)); 312 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 313 } 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 316 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 317 skb_pull(skb, sizeof(he_mu)); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 321 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 322 skb_pull(skb, sizeof(lsig)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 326 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 327 /* rtap.len and rtap.pad are undone immediately */ 328 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 329 } 330 331 mpdulen = skb->len; 332 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 333 mpdulen += FCS_LEN; 334 335 rthdr = skb_push(skb, rtap_len); 336 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 337 it_present = &rthdr->it_present; 338 339 /* radiotap header, set always present flags */ 340 rthdr->it_len = cpu_to_le16(rtap_len); 341 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 342 BIT(IEEE80211_RADIOTAP_CHANNEL) | 343 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 344 345 if (!status->chains) 346 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 347 348 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 349 it_present_val |= 350 BIT(IEEE80211_RADIOTAP_EXT) | 351 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 352 put_unaligned_le32(it_present_val, it_present); 353 it_present++; 354 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 355 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 356 } 357 358 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 359 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 360 BIT(IEEE80211_RADIOTAP_EXT); 361 put_unaligned_le32(it_present_val, it_present); 362 it_present++; 363 it_present_val = rtap.present; 364 } 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 pos = (void *)(it_present + 1); 369 370 /* the order of the following fields is important */ 371 372 /* IEEE80211_RADIOTAP_TSFT */ 373 if (ieee80211_have_rx_timestamp(status)) { 374 /* padding */ 375 while ((pos - (u8 *)rthdr) & 7) 376 *pos++ = 0; 377 put_unaligned_le64( 378 ieee80211_calculate_rx_timestamp(local, status, 379 mpdulen, 0), 380 pos); 381 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 382 pos += 8; 383 } 384 385 /* IEEE80211_RADIOTAP_FLAGS */ 386 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 387 *pos |= IEEE80211_RADIOTAP_F_FCS; 388 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 389 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 390 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 391 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 392 pos++; 393 394 /* IEEE80211_RADIOTAP_RATE */ 395 if (!rate || status->encoding != RX_ENC_LEGACY) { 396 /* 397 * Without rate information don't add it. If we have, 398 * MCS information is a separate field in radiotap, 399 * added below. The byte here is needed as padding 400 * for the channel though, so initialise it to 0. 401 */ 402 *pos = 0; 403 } else { 404 int shift = 0; 405 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 406 if (status->bw == RATE_INFO_BW_10) 407 shift = 1; 408 else if (status->bw == RATE_INFO_BW_5) 409 shift = 2; 410 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 411 } 412 pos++; 413 414 /* IEEE80211_RADIOTAP_CHANNEL */ 415 put_unaligned_le16(status->freq, pos); 416 pos += 2; 417 if (status->bw == RATE_INFO_BW_10) 418 channel_flags |= IEEE80211_CHAN_HALF; 419 else if (status->bw == RATE_INFO_BW_5) 420 channel_flags |= IEEE80211_CHAN_QUARTER; 421 422 if (status->band == NL80211_BAND_5GHZ) 423 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 424 else if (status->encoding != RX_ENC_LEGACY) 425 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 426 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 427 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 428 else if (rate) 429 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 430 else 431 channel_flags |= IEEE80211_CHAN_2GHZ; 432 put_unaligned_le16(channel_flags, pos); 433 pos += 2; 434 435 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 436 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 437 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 438 *pos = status->signal; 439 rthdr->it_present |= 440 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 441 pos++; 442 } 443 444 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 445 446 if (!status->chains) { 447 /* IEEE80211_RADIOTAP_ANTENNA */ 448 *pos = status->antenna; 449 pos++; 450 } 451 452 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 453 454 /* IEEE80211_RADIOTAP_RX_FLAGS */ 455 /* ensure 2 byte alignment for the 2 byte field as required */ 456 if ((pos - (u8 *)rthdr) & 1) 457 *pos++ = 0; 458 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 459 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 460 put_unaligned_le16(rx_flags, pos); 461 pos += 2; 462 463 if (status->encoding == RX_ENC_HT) { 464 unsigned int stbc; 465 466 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 467 *pos++ = local->hw.radiotap_mcs_details; 468 *pos = 0; 469 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 470 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 471 if (status->bw == RATE_INFO_BW_40) 472 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 473 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 474 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 475 if (status->enc_flags & RX_ENC_FLAG_LDPC) 476 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 477 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 478 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 479 pos++; 480 *pos++ = status->rate_idx; 481 } 482 483 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 484 u16 flags = 0; 485 486 /* ensure 4 byte alignment */ 487 while ((pos - (u8 *)rthdr) & 3) 488 pos++; 489 rthdr->it_present |= 490 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 491 put_unaligned_le32(status->ampdu_reference, pos); 492 pos += 4; 493 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 494 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 495 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 496 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 497 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 498 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 499 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 500 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 501 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 502 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 503 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 504 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 505 put_unaligned_le16(flags, pos); 506 pos += 2; 507 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 508 *pos++ = status->ampdu_delimiter_crc; 509 else 510 *pos++ = 0; 511 *pos++ = 0; 512 } 513 514 if (status->encoding == RX_ENC_VHT) { 515 u16 known = local->hw.radiotap_vht_details; 516 517 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 518 put_unaligned_le16(known, pos); 519 pos += 2; 520 /* flags */ 521 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 522 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 523 /* in VHT, STBC is binary */ 524 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 525 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 526 if (status->enc_flags & RX_ENC_FLAG_BF) 527 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 528 pos++; 529 /* bandwidth */ 530 switch (status->bw) { 531 case RATE_INFO_BW_80: 532 *pos++ = 4; 533 break; 534 case RATE_INFO_BW_160: 535 *pos++ = 11; 536 break; 537 case RATE_INFO_BW_40: 538 *pos++ = 1; 539 break; 540 default: 541 *pos++ = 0; 542 } 543 /* MCS/NSS */ 544 *pos = (status->rate_idx << 4) | status->nss; 545 pos += 4; 546 /* coding field */ 547 if (status->enc_flags & RX_ENC_FLAG_LDPC) 548 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 549 pos++; 550 /* group ID */ 551 pos++; 552 /* partial_aid */ 553 pos += 2; 554 } 555 556 if (local->hw.radiotap_timestamp.units_pos >= 0) { 557 u16 accuracy = 0; 558 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 559 560 rthdr->it_present |= 561 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 562 563 /* ensure 8 byte alignment */ 564 while ((pos - (u8 *)rthdr) & 7) 565 pos++; 566 567 put_unaligned_le64(status->device_timestamp, pos); 568 pos += sizeof(u64); 569 570 if (local->hw.radiotap_timestamp.accuracy >= 0) { 571 accuracy = local->hw.radiotap_timestamp.accuracy; 572 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 573 } 574 put_unaligned_le16(accuracy, pos); 575 pos += sizeof(u16); 576 577 *pos++ = local->hw.radiotap_timestamp.units_pos; 578 *pos++ = flags; 579 } 580 581 if (status->encoding == RX_ENC_HE && 582 status->flag & RX_FLAG_RADIOTAP_HE) { 583 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 584 585 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 586 he.data6 |= HE_PREP(DATA6_NSTS, 587 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 588 status->enc_flags)); 589 he.data3 |= HE_PREP(DATA3_STBC, 1); 590 } else { 591 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 592 } 593 594 #define CHECK_GI(s) \ 595 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 596 (int)NL80211_RATE_INFO_HE_GI_##s) 597 598 CHECK_GI(0_8); 599 CHECK_GI(1_6); 600 CHECK_GI(3_2); 601 602 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 603 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 604 he.data3 |= HE_PREP(DATA3_CODING, 605 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 606 607 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 608 609 switch (status->bw) { 610 case RATE_INFO_BW_20: 611 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 612 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 613 break; 614 case RATE_INFO_BW_40: 615 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 616 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 617 break; 618 case RATE_INFO_BW_80: 619 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 620 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 621 break; 622 case RATE_INFO_BW_160: 623 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 624 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 625 break; 626 case RATE_INFO_BW_HE_RU: 627 #define CHECK_RU_ALLOC(s) \ 628 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 629 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 630 631 CHECK_RU_ALLOC(26); 632 CHECK_RU_ALLOC(52); 633 CHECK_RU_ALLOC(106); 634 CHECK_RU_ALLOC(242); 635 CHECK_RU_ALLOC(484); 636 CHECK_RU_ALLOC(996); 637 CHECK_RU_ALLOC(2x996); 638 639 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 640 status->he_ru + 4); 641 break; 642 default: 643 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 644 } 645 646 /* ensure 2 byte alignment */ 647 while ((pos - (u8 *)rthdr) & 1) 648 pos++; 649 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE); 650 memcpy(pos, &he, sizeof(he)); 651 pos += sizeof(he); 652 } 653 654 if (status->encoding == RX_ENC_HE && 655 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 656 /* ensure 2 byte alignment */ 657 while ((pos - (u8 *)rthdr) & 1) 658 pos++; 659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU); 660 memcpy(pos, &he_mu, sizeof(he_mu)); 661 pos += sizeof(he_mu); 662 } 663 664 if (status->flag & RX_FLAG_NO_PSDU) { 665 rthdr->it_present |= 666 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU); 667 *pos++ = status->zero_length_psdu_type; 668 } 669 670 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 671 /* ensure 2 byte alignment */ 672 while ((pos - (u8 *)rthdr) & 1) 673 pos++; 674 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG); 675 memcpy(pos, &lsig, sizeof(lsig)); 676 pos += sizeof(lsig); 677 } 678 679 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 680 *pos++ = status->chain_signal[chain]; 681 *pos++ = chain; 682 } 683 684 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 685 /* ensure 2 byte alignment for the vendor field as required */ 686 if ((pos - (u8 *)rthdr) & 1) 687 *pos++ = 0; 688 *pos++ = rtap.oui[0]; 689 *pos++ = rtap.oui[1]; 690 *pos++ = rtap.oui[2]; 691 *pos++ = rtap.subns; 692 put_unaligned_le16(rtap.len, pos); 693 pos += 2; 694 /* align the actual payload as requested */ 695 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 696 *pos++ = 0; 697 /* data (and possible padding) already follows */ 698 } 699 } 700 701 static struct sk_buff * 702 ieee80211_make_monitor_skb(struct ieee80211_local *local, 703 struct sk_buff **origskb, 704 struct ieee80211_rate *rate, 705 int rtap_space, bool use_origskb) 706 { 707 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 708 int rt_hdrlen, needed_headroom; 709 struct sk_buff *skb; 710 711 /* room for the radiotap header based on driver features */ 712 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 713 needed_headroom = rt_hdrlen - rtap_space; 714 715 if (use_origskb) { 716 /* only need to expand headroom if necessary */ 717 skb = *origskb; 718 *origskb = NULL; 719 720 /* 721 * This shouldn't trigger often because most devices have an 722 * RX header they pull before we get here, and that should 723 * be big enough for our radiotap information. We should 724 * probably export the length to drivers so that we can have 725 * them allocate enough headroom to start with. 726 */ 727 if (skb_headroom(skb) < needed_headroom && 728 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 729 dev_kfree_skb(skb); 730 return NULL; 731 } 732 } else { 733 /* 734 * Need to make a copy and possibly remove radiotap header 735 * and FCS from the original. 736 */ 737 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 738 739 if (!skb) 740 return NULL; 741 } 742 743 /* prepend radiotap information */ 744 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 745 746 skb_reset_mac_header(skb); 747 skb->ip_summed = CHECKSUM_UNNECESSARY; 748 skb->pkt_type = PACKET_OTHERHOST; 749 skb->protocol = htons(ETH_P_802_2); 750 751 return skb; 752 } 753 754 /* 755 * This function copies a received frame to all monitor interfaces and 756 * returns a cleaned-up SKB that no longer includes the FCS nor the 757 * radiotap header the driver might have added. 758 */ 759 static struct sk_buff * 760 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 761 struct ieee80211_rate *rate) 762 { 763 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 764 struct ieee80211_sub_if_data *sdata; 765 struct sk_buff *monskb = NULL; 766 int present_fcs_len = 0; 767 unsigned int rtap_space = 0; 768 struct ieee80211_sub_if_data *monitor_sdata = 769 rcu_dereference(local->monitor_sdata); 770 bool only_monitor = false; 771 unsigned int min_head_len; 772 773 if (status->flag & RX_FLAG_RADIOTAP_HE) 774 rtap_space += sizeof(struct ieee80211_radiotap_he); 775 776 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 777 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 778 779 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 780 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 781 782 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 783 struct ieee80211_vendor_radiotap *rtap = 784 (void *)(origskb->data + rtap_space); 785 786 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 787 } 788 789 min_head_len = rtap_space; 790 791 /* 792 * First, we may need to make a copy of the skb because 793 * (1) we need to modify it for radiotap (if not present), and 794 * (2) the other RX handlers will modify the skb we got. 795 * 796 * We don't need to, of course, if we aren't going to return 797 * the SKB because it has a bad FCS/PLCP checksum. 798 */ 799 800 if (!(status->flag & RX_FLAG_NO_PSDU)) { 801 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 802 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 803 /* driver bug */ 804 WARN_ON(1); 805 dev_kfree_skb(origskb); 806 return NULL; 807 } 808 present_fcs_len = FCS_LEN; 809 } 810 811 /* also consider the hdr->frame_control */ 812 min_head_len += 2; 813 } 814 815 /* ensure that the expected data elements are in skb head */ 816 if (!pskb_may_pull(origskb, min_head_len)) { 817 dev_kfree_skb(origskb); 818 return NULL; 819 } 820 821 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 822 823 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 824 if (only_monitor) { 825 dev_kfree_skb(origskb); 826 return NULL; 827 } 828 829 remove_monitor_info(origskb, present_fcs_len, rtap_space); 830 return origskb; 831 } 832 833 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 834 835 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 836 bool last_monitor = list_is_last(&sdata->u.mntr.list, 837 &local->mon_list); 838 839 if (!monskb) 840 monskb = ieee80211_make_monitor_skb(local, &origskb, 841 rate, rtap_space, 842 only_monitor && 843 last_monitor); 844 845 if (monskb) { 846 struct sk_buff *skb; 847 848 if (last_monitor) { 849 skb = monskb; 850 monskb = NULL; 851 } else { 852 skb = skb_clone(monskb, GFP_ATOMIC); 853 } 854 855 if (skb) { 856 skb->dev = sdata->dev; 857 ieee80211_rx_stats(skb->dev, skb->len); 858 netif_receive_skb(skb); 859 } 860 } 861 862 if (last_monitor) 863 break; 864 } 865 866 /* this happens if last_monitor was erroneously false */ 867 dev_kfree_skb(monskb); 868 869 /* ditto */ 870 if (!origskb) 871 return NULL; 872 873 remove_monitor_info(origskb, present_fcs_len, rtap_space); 874 return origskb; 875 } 876 877 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 878 { 879 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 880 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 881 int tid, seqno_idx, security_idx; 882 883 /* does the frame have a qos control field? */ 884 if (ieee80211_is_data_qos(hdr->frame_control)) { 885 u8 *qc = ieee80211_get_qos_ctl(hdr); 886 /* frame has qos control */ 887 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 888 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 889 status->rx_flags |= IEEE80211_RX_AMSDU; 890 891 seqno_idx = tid; 892 security_idx = tid; 893 } else { 894 /* 895 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 896 * 897 * Sequence numbers for management frames, QoS data 898 * frames with a broadcast/multicast address in the 899 * Address 1 field, and all non-QoS data frames sent 900 * by QoS STAs are assigned using an additional single 901 * modulo-4096 counter, [...] 902 * 903 * We also use that counter for non-QoS STAs. 904 */ 905 seqno_idx = IEEE80211_NUM_TIDS; 906 security_idx = 0; 907 if (ieee80211_is_mgmt(hdr->frame_control)) 908 security_idx = IEEE80211_NUM_TIDS; 909 tid = 0; 910 } 911 912 rx->seqno_idx = seqno_idx; 913 rx->security_idx = security_idx; 914 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 915 * For now, set skb->priority to 0 for other cases. */ 916 rx->skb->priority = (tid > 7) ? 0 : tid; 917 } 918 919 /** 920 * DOC: Packet alignment 921 * 922 * Drivers always need to pass packets that are aligned to two-byte boundaries 923 * to the stack. 924 * 925 * Additionally, should, if possible, align the payload data in a way that 926 * guarantees that the contained IP header is aligned to a four-byte 927 * boundary. In the case of regular frames, this simply means aligning the 928 * payload to a four-byte boundary (because either the IP header is directly 929 * contained, or IV/RFC1042 headers that have a length divisible by four are 930 * in front of it). If the payload data is not properly aligned and the 931 * architecture doesn't support efficient unaligned operations, mac80211 932 * will align the data. 933 * 934 * With A-MSDU frames, however, the payload data address must yield two modulo 935 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 936 * push the IP header further back to a multiple of four again. Thankfully, the 937 * specs were sane enough this time around to require padding each A-MSDU 938 * subframe to a length that is a multiple of four. 939 * 940 * Padding like Atheros hardware adds which is between the 802.11 header and 941 * the payload is not supported, the driver is required to move the 802.11 942 * header to be directly in front of the payload in that case. 943 */ 944 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 945 { 946 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 947 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 948 #endif 949 } 950 951 952 /* rx handlers */ 953 954 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 955 { 956 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 957 958 if (is_multicast_ether_addr(hdr->addr1)) 959 return 0; 960 961 return ieee80211_is_robust_mgmt_frame(skb); 962 } 963 964 965 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 966 { 967 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 968 969 if (!is_multicast_ether_addr(hdr->addr1)) 970 return 0; 971 972 return ieee80211_is_robust_mgmt_frame(skb); 973 } 974 975 976 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 977 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 978 { 979 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 980 struct ieee80211_mmie *mmie; 981 struct ieee80211_mmie_16 *mmie16; 982 983 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 984 return -1; 985 986 if (!ieee80211_is_robust_mgmt_frame(skb) && 987 !ieee80211_is_beacon(hdr->frame_control)) 988 return -1; /* not a robust management frame */ 989 990 mmie = (struct ieee80211_mmie *) 991 (skb->data + skb->len - sizeof(*mmie)); 992 if (mmie->element_id == WLAN_EID_MMIE && 993 mmie->length == sizeof(*mmie) - 2) 994 return le16_to_cpu(mmie->key_id); 995 996 mmie16 = (struct ieee80211_mmie_16 *) 997 (skb->data + skb->len - sizeof(*mmie16)); 998 if (skb->len >= 24 + sizeof(*mmie16) && 999 mmie16->element_id == WLAN_EID_MMIE && 1000 mmie16->length == sizeof(*mmie16) - 2) 1001 return le16_to_cpu(mmie16->key_id); 1002 1003 return -1; 1004 } 1005 1006 static int ieee80211_get_keyid(struct sk_buff *skb, 1007 const struct ieee80211_cipher_scheme *cs) 1008 { 1009 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1010 __le16 fc; 1011 int hdrlen; 1012 int minlen; 1013 u8 key_idx_off; 1014 u8 key_idx_shift; 1015 u8 keyid; 1016 1017 fc = hdr->frame_control; 1018 hdrlen = ieee80211_hdrlen(fc); 1019 1020 if (cs) { 1021 minlen = hdrlen + cs->hdr_len; 1022 key_idx_off = hdrlen + cs->key_idx_off; 1023 key_idx_shift = cs->key_idx_shift; 1024 } else { 1025 /* WEP, TKIP, CCMP and GCMP */ 1026 minlen = hdrlen + IEEE80211_WEP_IV_LEN; 1027 key_idx_off = hdrlen + 3; 1028 key_idx_shift = 6; 1029 } 1030 1031 if (unlikely(skb->len < minlen)) 1032 return -EINVAL; 1033 1034 skb_copy_bits(skb, key_idx_off, &keyid, 1); 1035 1036 if (cs) 1037 keyid &= cs->key_idx_mask; 1038 keyid >>= key_idx_shift; 1039 1040 /* cs could use more than the usual two bits for the keyid */ 1041 if (unlikely(keyid >= NUM_DEFAULT_KEYS)) 1042 return -EINVAL; 1043 1044 return keyid; 1045 } 1046 1047 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1048 { 1049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1050 char *dev_addr = rx->sdata->vif.addr; 1051 1052 if (ieee80211_is_data(hdr->frame_control)) { 1053 if (is_multicast_ether_addr(hdr->addr1)) { 1054 if (ieee80211_has_tods(hdr->frame_control) || 1055 !ieee80211_has_fromds(hdr->frame_control)) 1056 return RX_DROP_MONITOR; 1057 if (ether_addr_equal(hdr->addr3, dev_addr)) 1058 return RX_DROP_MONITOR; 1059 } else { 1060 if (!ieee80211_has_a4(hdr->frame_control)) 1061 return RX_DROP_MONITOR; 1062 if (ether_addr_equal(hdr->addr4, dev_addr)) 1063 return RX_DROP_MONITOR; 1064 } 1065 } 1066 1067 /* If there is not an established peer link and this is not a peer link 1068 * establisment frame, beacon or probe, drop the frame. 1069 */ 1070 1071 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1072 struct ieee80211_mgmt *mgmt; 1073 1074 if (!ieee80211_is_mgmt(hdr->frame_control)) 1075 return RX_DROP_MONITOR; 1076 1077 if (ieee80211_is_action(hdr->frame_control)) { 1078 u8 category; 1079 1080 /* make sure category field is present */ 1081 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1082 return RX_DROP_MONITOR; 1083 1084 mgmt = (struct ieee80211_mgmt *)hdr; 1085 category = mgmt->u.action.category; 1086 if (category != WLAN_CATEGORY_MESH_ACTION && 1087 category != WLAN_CATEGORY_SELF_PROTECTED) 1088 return RX_DROP_MONITOR; 1089 return RX_CONTINUE; 1090 } 1091 1092 if (ieee80211_is_probe_req(hdr->frame_control) || 1093 ieee80211_is_probe_resp(hdr->frame_control) || 1094 ieee80211_is_beacon(hdr->frame_control) || 1095 ieee80211_is_auth(hdr->frame_control)) 1096 return RX_CONTINUE; 1097 1098 return RX_DROP_MONITOR; 1099 } 1100 1101 return RX_CONTINUE; 1102 } 1103 1104 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1105 int index) 1106 { 1107 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1108 struct sk_buff *tail = skb_peek_tail(frames); 1109 struct ieee80211_rx_status *status; 1110 1111 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1112 return true; 1113 1114 if (!tail) 1115 return false; 1116 1117 status = IEEE80211_SKB_RXCB(tail); 1118 if (status->flag & RX_FLAG_AMSDU_MORE) 1119 return false; 1120 1121 return true; 1122 } 1123 1124 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1125 struct tid_ampdu_rx *tid_agg_rx, 1126 int index, 1127 struct sk_buff_head *frames) 1128 { 1129 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1130 struct sk_buff *skb; 1131 struct ieee80211_rx_status *status; 1132 1133 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1134 1135 if (skb_queue_empty(skb_list)) 1136 goto no_frame; 1137 1138 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1139 __skb_queue_purge(skb_list); 1140 goto no_frame; 1141 } 1142 1143 /* release frames from the reorder ring buffer */ 1144 tid_agg_rx->stored_mpdu_num--; 1145 while ((skb = __skb_dequeue(skb_list))) { 1146 status = IEEE80211_SKB_RXCB(skb); 1147 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1148 __skb_queue_tail(frames, skb); 1149 } 1150 1151 no_frame: 1152 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1153 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1154 } 1155 1156 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1157 struct tid_ampdu_rx *tid_agg_rx, 1158 u16 head_seq_num, 1159 struct sk_buff_head *frames) 1160 { 1161 int index; 1162 1163 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1164 1165 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1166 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1167 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1168 frames); 1169 } 1170 } 1171 1172 /* 1173 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1174 * the skb was added to the buffer longer than this time ago, the earlier 1175 * frames that have not yet been received are assumed to be lost and the skb 1176 * can be released for processing. This may also release other skb's from the 1177 * reorder buffer if there are no additional gaps between the frames. 1178 * 1179 * Callers must hold tid_agg_rx->reorder_lock. 1180 */ 1181 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1182 1183 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1184 struct tid_ampdu_rx *tid_agg_rx, 1185 struct sk_buff_head *frames) 1186 { 1187 int index, i, j; 1188 1189 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1190 1191 /* release the buffer until next missing frame */ 1192 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1193 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1194 tid_agg_rx->stored_mpdu_num) { 1195 /* 1196 * No buffers ready to be released, but check whether any 1197 * frames in the reorder buffer have timed out. 1198 */ 1199 int skipped = 1; 1200 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1201 j = (j + 1) % tid_agg_rx->buf_size) { 1202 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1203 skipped++; 1204 continue; 1205 } 1206 if (skipped && 1207 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1208 HT_RX_REORDER_BUF_TIMEOUT)) 1209 goto set_release_timer; 1210 1211 /* don't leave incomplete A-MSDUs around */ 1212 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1213 i = (i + 1) % tid_agg_rx->buf_size) 1214 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1215 1216 ht_dbg_ratelimited(sdata, 1217 "release an RX reorder frame due to timeout on earlier frames\n"); 1218 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1219 frames); 1220 1221 /* 1222 * Increment the head seq# also for the skipped slots. 1223 */ 1224 tid_agg_rx->head_seq_num = 1225 (tid_agg_rx->head_seq_num + 1226 skipped) & IEEE80211_SN_MASK; 1227 skipped = 0; 1228 } 1229 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1230 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1231 frames); 1232 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1233 } 1234 1235 if (tid_agg_rx->stored_mpdu_num) { 1236 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1237 1238 for (; j != (index - 1) % tid_agg_rx->buf_size; 1239 j = (j + 1) % tid_agg_rx->buf_size) { 1240 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1241 break; 1242 } 1243 1244 set_release_timer: 1245 1246 if (!tid_agg_rx->removed) 1247 mod_timer(&tid_agg_rx->reorder_timer, 1248 tid_agg_rx->reorder_time[j] + 1 + 1249 HT_RX_REORDER_BUF_TIMEOUT); 1250 } else { 1251 del_timer(&tid_agg_rx->reorder_timer); 1252 } 1253 } 1254 1255 /* 1256 * As this function belongs to the RX path it must be under 1257 * rcu_read_lock protection. It returns false if the frame 1258 * can be processed immediately, true if it was consumed. 1259 */ 1260 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1261 struct tid_ampdu_rx *tid_agg_rx, 1262 struct sk_buff *skb, 1263 struct sk_buff_head *frames) 1264 { 1265 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1266 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1267 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1268 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1269 u16 head_seq_num, buf_size; 1270 int index; 1271 bool ret = true; 1272 1273 spin_lock(&tid_agg_rx->reorder_lock); 1274 1275 /* 1276 * Offloaded BA sessions have no known starting sequence number so pick 1277 * one from first Rxed frame for this tid after BA was started. 1278 */ 1279 if (unlikely(tid_agg_rx->auto_seq)) { 1280 tid_agg_rx->auto_seq = false; 1281 tid_agg_rx->ssn = mpdu_seq_num; 1282 tid_agg_rx->head_seq_num = mpdu_seq_num; 1283 } 1284 1285 buf_size = tid_agg_rx->buf_size; 1286 head_seq_num = tid_agg_rx->head_seq_num; 1287 1288 /* 1289 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1290 * be reordered. 1291 */ 1292 if (unlikely(!tid_agg_rx->started)) { 1293 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1294 ret = false; 1295 goto out; 1296 } 1297 tid_agg_rx->started = true; 1298 } 1299 1300 /* frame with out of date sequence number */ 1301 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1302 dev_kfree_skb(skb); 1303 goto out; 1304 } 1305 1306 /* 1307 * If frame the sequence number exceeds our buffering window 1308 * size release some previous frames to make room for this one. 1309 */ 1310 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1311 head_seq_num = ieee80211_sn_inc( 1312 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1313 /* release stored frames up to new head to stack */ 1314 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1315 head_seq_num, frames); 1316 } 1317 1318 /* Now the new frame is always in the range of the reordering buffer */ 1319 1320 index = mpdu_seq_num % tid_agg_rx->buf_size; 1321 1322 /* check if we already stored this frame */ 1323 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1324 dev_kfree_skb(skb); 1325 goto out; 1326 } 1327 1328 /* 1329 * If the current MPDU is in the right order and nothing else 1330 * is stored we can process it directly, no need to buffer it. 1331 * If it is first but there's something stored, we may be able 1332 * to release frames after this one. 1333 */ 1334 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1335 tid_agg_rx->stored_mpdu_num == 0) { 1336 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1337 tid_agg_rx->head_seq_num = 1338 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1339 ret = false; 1340 goto out; 1341 } 1342 1343 /* put the frame in the reordering buffer */ 1344 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1345 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1346 tid_agg_rx->reorder_time[index] = jiffies; 1347 tid_agg_rx->stored_mpdu_num++; 1348 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1349 } 1350 1351 out: 1352 spin_unlock(&tid_agg_rx->reorder_lock); 1353 return ret; 1354 } 1355 1356 /* 1357 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1358 * true if the MPDU was buffered, false if it should be processed. 1359 */ 1360 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1361 struct sk_buff_head *frames) 1362 { 1363 struct sk_buff *skb = rx->skb; 1364 struct ieee80211_local *local = rx->local; 1365 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1366 struct sta_info *sta = rx->sta; 1367 struct tid_ampdu_rx *tid_agg_rx; 1368 u16 sc; 1369 u8 tid, ack_policy; 1370 1371 if (!ieee80211_is_data_qos(hdr->frame_control) || 1372 is_multicast_ether_addr(hdr->addr1)) 1373 goto dont_reorder; 1374 1375 /* 1376 * filter the QoS data rx stream according to 1377 * STA/TID and check if this STA/TID is on aggregation 1378 */ 1379 1380 if (!sta) 1381 goto dont_reorder; 1382 1383 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1384 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1385 tid = ieee80211_get_tid(hdr); 1386 1387 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1388 if (!tid_agg_rx) { 1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1390 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1391 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1392 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1393 WLAN_BACK_RECIPIENT, 1394 WLAN_REASON_QSTA_REQUIRE_SETUP); 1395 goto dont_reorder; 1396 } 1397 1398 /* qos null data frames are excluded */ 1399 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1400 goto dont_reorder; 1401 1402 /* not part of a BA session */ 1403 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1404 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1405 goto dont_reorder; 1406 1407 /* new, potentially un-ordered, ampdu frame - process it */ 1408 1409 /* reset session timer */ 1410 if (tid_agg_rx->timeout) 1411 tid_agg_rx->last_rx = jiffies; 1412 1413 /* if this mpdu is fragmented - terminate rx aggregation session */ 1414 sc = le16_to_cpu(hdr->seq_ctrl); 1415 if (sc & IEEE80211_SCTL_FRAG) { 1416 skb_queue_tail(&rx->sdata->skb_queue, skb); 1417 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1418 return; 1419 } 1420 1421 /* 1422 * No locking needed -- we will only ever process one 1423 * RX packet at a time, and thus own tid_agg_rx. All 1424 * other code manipulating it needs to (and does) make 1425 * sure that we cannot get to it any more before doing 1426 * anything with it. 1427 */ 1428 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1429 frames)) 1430 return; 1431 1432 dont_reorder: 1433 __skb_queue_tail(frames, skb); 1434 } 1435 1436 static ieee80211_rx_result debug_noinline 1437 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1438 { 1439 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1440 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1441 1442 if (status->flag & RX_FLAG_DUP_VALIDATED) 1443 return RX_CONTINUE; 1444 1445 /* 1446 * Drop duplicate 802.11 retransmissions 1447 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1448 */ 1449 1450 if (rx->skb->len < 24) 1451 return RX_CONTINUE; 1452 1453 if (ieee80211_is_ctl(hdr->frame_control) || 1454 ieee80211_is_any_nullfunc(hdr->frame_control) || 1455 is_multicast_ether_addr(hdr->addr1)) 1456 return RX_CONTINUE; 1457 1458 if (!rx->sta) 1459 return RX_CONTINUE; 1460 1461 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1462 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1463 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1464 rx->sta->rx_stats.num_duplicates++; 1465 return RX_DROP_UNUSABLE; 1466 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1467 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1468 } 1469 1470 return RX_CONTINUE; 1471 } 1472 1473 static ieee80211_rx_result debug_noinline 1474 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1475 { 1476 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1477 1478 /* Drop disallowed frame classes based on STA auth/assoc state; 1479 * IEEE 802.11, Chap 5.5. 1480 * 1481 * mac80211 filters only based on association state, i.e. it drops 1482 * Class 3 frames from not associated stations. hostapd sends 1483 * deauth/disassoc frames when needed. In addition, hostapd is 1484 * responsible for filtering on both auth and assoc states. 1485 */ 1486 1487 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1488 return ieee80211_rx_mesh_check(rx); 1489 1490 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1491 ieee80211_is_pspoll(hdr->frame_control)) && 1492 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1493 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1496 /* 1497 * accept port control frames from the AP even when it's not 1498 * yet marked ASSOC to prevent a race where we don't set the 1499 * assoc bit quickly enough before it sends the first frame 1500 */ 1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1502 ieee80211_is_data_present(hdr->frame_control)) { 1503 unsigned int hdrlen; 1504 __be16 ethertype; 1505 1506 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1507 1508 if (rx->skb->len < hdrlen + 8) 1509 return RX_DROP_MONITOR; 1510 1511 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1512 if (ethertype == rx->sdata->control_port_protocol) 1513 return RX_CONTINUE; 1514 } 1515 1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1517 cfg80211_rx_spurious_frame(rx->sdata->dev, 1518 hdr->addr2, 1519 GFP_ATOMIC)) 1520 return RX_DROP_UNUSABLE; 1521 1522 return RX_DROP_MONITOR; 1523 } 1524 1525 return RX_CONTINUE; 1526 } 1527 1528 1529 static ieee80211_rx_result debug_noinline 1530 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1531 { 1532 struct ieee80211_local *local; 1533 struct ieee80211_hdr *hdr; 1534 struct sk_buff *skb; 1535 1536 local = rx->local; 1537 skb = rx->skb; 1538 hdr = (struct ieee80211_hdr *) skb->data; 1539 1540 if (!local->pspolling) 1541 return RX_CONTINUE; 1542 1543 if (!ieee80211_has_fromds(hdr->frame_control)) 1544 /* this is not from AP */ 1545 return RX_CONTINUE; 1546 1547 if (!ieee80211_is_data(hdr->frame_control)) 1548 return RX_CONTINUE; 1549 1550 if (!ieee80211_has_moredata(hdr->frame_control)) { 1551 /* AP has no more frames buffered for us */ 1552 local->pspolling = false; 1553 return RX_CONTINUE; 1554 } 1555 1556 /* more data bit is set, let's request a new frame from the AP */ 1557 ieee80211_send_pspoll(local, rx->sdata); 1558 1559 return RX_CONTINUE; 1560 } 1561 1562 static void sta_ps_start(struct sta_info *sta) 1563 { 1564 struct ieee80211_sub_if_data *sdata = sta->sdata; 1565 struct ieee80211_local *local = sdata->local; 1566 struct ps_data *ps; 1567 int tid; 1568 1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1571 ps = &sdata->bss->ps; 1572 else 1573 return; 1574 1575 atomic_inc(&ps->num_sta_ps); 1576 set_sta_flag(sta, WLAN_STA_PS_STA); 1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1578 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1580 sta->sta.addr, sta->sta.aid); 1581 1582 ieee80211_clear_fast_xmit(sta); 1583 1584 if (!sta->sta.txq[0]) 1585 return; 1586 1587 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1588 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1589 struct txq_info *txqi = to_txq_info(txq); 1590 1591 spin_lock(&local->active_txq_lock[txq->ac]); 1592 if (!list_empty(&txqi->schedule_order)) 1593 list_del_init(&txqi->schedule_order); 1594 spin_unlock(&local->active_txq_lock[txq->ac]); 1595 1596 if (txq_has_queue(txq)) 1597 set_bit(tid, &sta->txq_buffered_tids); 1598 else 1599 clear_bit(tid, &sta->txq_buffered_tids); 1600 } 1601 } 1602 1603 static void sta_ps_end(struct sta_info *sta) 1604 { 1605 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1606 sta->sta.addr, sta->sta.aid); 1607 1608 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1609 /* 1610 * Clear the flag only if the other one is still set 1611 * so that the TX path won't start TX'ing new frames 1612 * directly ... In the case that the driver flag isn't 1613 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1614 */ 1615 clear_sta_flag(sta, WLAN_STA_PS_STA); 1616 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1617 sta->sta.addr, sta->sta.aid); 1618 return; 1619 } 1620 1621 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1622 clear_sta_flag(sta, WLAN_STA_PS_STA); 1623 ieee80211_sta_ps_deliver_wakeup(sta); 1624 } 1625 1626 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1627 { 1628 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1629 bool in_ps; 1630 1631 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1632 1633 /* Don't let the same PS state be set twice */ 1634 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1635 if ((start && in_ps) || (!start && !in_ps)) 1636 return -EINVAL; 1637 1638 if (start) 1639 sta_ps_start(sta); 1640 else 1641 sta_ps_end(sta); 1642 1643 return 0; 1644 } 1645 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1646 1647 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1648 { 1649 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1650 1651 if (test_sta_flag(sta, WLAN_STA_SP)) 1652 return; 1653 1654 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1655 ieee80211_sta_ps_deliver_poll_response(sta); 1656 else 1657 set_sta_flag(sta, WLAN_STA_PSPOLL); 1658 } 1659 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1660 1661 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1662 { 1663 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1664 int ac = ieee80211_ac_from_tid(tid); 1665 1666 /* 1667 * If this AC is not trigger-enabled do nothing unless the 1668 * driver is calling us after it already checked. 1669 * 1670 * NB: This could/should check a separate bitmap of trigger- 1671 * enabled queues, but for now we only implement uAPSD w/o 1672 * TSPEC changes to the ACs, so they're always the same. 1673 */ 1674 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1675 tid != IEEE80211_NUM_TIDS) 1676 return; 1677 1678 /* if we are in a service period, do nothing */ 1679 if (test_sta_flag(sta, WLAN_STA_SP)) 1680 return; 1681 1682 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1683 ieee80211_sta_ps_deliver_uapsd(sta); 1684 else 1685 set_sta_flag(sta, WLAN_STA_UAPSD); 1686 } 1687 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1688 1689 static ieee80211_rx_result debug_noinline 1690 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1691 { 1692 struct ieee80211_sub_if_data *sdata = rx->sdata; 1693 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1694 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1695 1696 if (!rx->sta) 1697 return RX_CONTINUE; 1698 1699 if (sdata->vif.type != NL80211_IFTYPE_AP && 1700 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1701 return RX_CONTINUE; 1702 1703 /* 1704 * The device handles station powersave, so don't do anything about 1705 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1706 * it to mac80211 since they're handled.) 1707 */ 1708 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1709 return RX_CONTINUE; 1710 1711 /* 1712 * Don't do anything if the station isn't already asleep. In 1713 * the uAPSD case, the station will probably be marked asleep, 1714 * in the PS-Poll case the station must be confused ... 1715 */ 1716 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1717 return RX_CONTINUE; 1718 1719 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1720 ieee80211_sta_pspoll(&rx->sta->sta); 1721 1722 /* Free PS Poll skb here instead of returning RX_DROP that would 1723 * count as an dropped frame. */ 1724 dev_kfree_skb(rx->skb); 1725 1726 return RX_QUEUED; 1727 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1728 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1729 ieee80211_has_pm(hdr->frame_control) && 1730 (ieee80211_is_data_qos(hdr->frame_control) || 1731 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1732 u8 tid = ieee80211_get_tid(hdr); 1733 1734 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1735 } 1736 1737 return RX_CONTINUE; 1738 } 1739 1740 static ieee80211_rx_result debug_noinline 1741 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1742 { 1743 struct sta_info *sta = rx->sta; 1744 struct sk_buff *skb = rx->skb; 1745 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1746 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1747 int i; 1748 1749 if (!sta) 1750 return RX_CONTINUE; 1751 1752 /* 1753 * Update last_rx only for IBSS packets which are for the current 1754 * BSSID and for station already AUTHORIZED to avoid keeping the 1755 * current IBSS network alive in cases where other STAs start 1756 * using different BSSID. This will also give the station another 1757 * chance to restart the authentication/authorization in case 1758 * something went wrong the first time. 1759 */ 1760 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1761 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1762 NL80211_IFTYPE_ADHOC); 1763 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1764 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1765 sta->rx_stats.last_rx = jiffies; 1766 if (ieee80211_is_data(hdr->frame_control) && 1767 !is_multicast_ether_addr(hdr->addr1)) 1768 sta->rx_stats.last_rate = 1769 sta_stats_encode_rate(status); 1770 } 1771 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1772 sta->rx_stats.last_rx = jiffies; 1773 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1774 /* 1775 * Mesh beacons will update last_rx when if they are found to 1776 * match the current local configuration when processed. 1777 */ 1778 sta->rx_stats.last_rx = jiffies; 1779 if (ieee80211_is_data(hdr->frame_control)) 1780 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1781 } 1782 1783 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1784 ieee80211_sta_rx_notify(rx->sdata, hdr); 1785 1786 sta->rx_stats.fragments++; 1787 1788 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1789 sta->rx_stats.bytes += rx->skb->len; 1790 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1791 1792 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1793 sta->rx_stats.last_signal = status->signal; 1794 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1795 } 1796 1797 if (status->chains) { 1798 sta->rx_stats.chains = status->chains; 1799 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1800 int signal = status->chain_signal[i]; 1801 1802 if (!(status->chains & BIT(i))) 1803 continue; 1804 1805 sta->rx_stats.chain_signal_last[i] = signal; 1806 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1807 -signal); 1808 } 1809 } 1810 1811 /* 1812 * Change STA power saving mode only at the end of a frame 1813 * exchange sequence, and only for a data or management 1814 * frame as specified in IEEE 802.11-2016 11.2.3.2 1815 */ 1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1817 !ieee80211_has_morefrags(hdr->frame_control) && 1818 !is_multicast_ether_addr(hdr->addr1) && 1819 (ieee80211_is_mgmt(hdr->frame_control) || 1820 ieee80211_is_data(hdr->frame_control)) && 1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1824 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1825 if (!ieee80211_has_pm(hdr->frame_control)) 1826 sta_ps_end(sta); 1827 } else { 1828 if (ieee80211_has_pm(hdr->frame_control)) 1829 sta_ps_start(sta); 1830 } 1831 } 1832 1833 /* mesh power save support */ 1834 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1835 ieee80211_mps_rx_h_sta_process(sta, hdr); 1836 1837 /* 1838 * Drop (qos-)data::nullfunc frames silently, since they 1839 * are used only to control station power saving mode. 1840 */ 1841 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1843 1844 /* 1845 * If we receive a 4-addr nullfunc frame from a STA 1846 * that was not moved to a 4-addr STA vlan yet send 1847 * the event to userspace and for older hostapd drop 1848 * the frame to the monitor interface. 1849 */ 1850 if (ieee80211_has_a4(hdr->frame_control) && 1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1853 !rx->sdata->u.vlan.sta))) { 1854 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1855 cfg80211_rx_unexpected_4addr_frame( 1856 rx->sdata->dev, sta->sta.addr, 1857 GFP_ATOMIC); 1858 return RX_DROP_MONITOR; 1859 } 1860 /* 1861 * Update counter and free packet here to avoid 1862 * counting this as a dropped packed. 1863 */ 1864 sta->rx_stats.packets++; 1865 dev_kfree_skb(rx->skb); 1866 return RX_QUEUED; 1867 } 1868 1869 return RX_CONTINUE; 1870 } /* ieee80211_rx_h_sta_process */ 1871 1872 static struct ieee80211_key * 1873 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1874 { 1875 struct ieee80211_key *key = NULL; 1876 struct ieee80211_sub_if_data *sdata = rx->sdata; 1877 int idx2; 1878 1879 /* Make sure key gets set if either BIGTK key index is set so that 1880 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1881 * Beacon frames and Beacon frames that claim to use another BIGTK key 1882 * index (i.e., a key that we do not have). 1883 */ 1884 1885 if (idx < 0) { 1886 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1887 idx2 = idx + 1; 1888 } else { 1889 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1890 idx2 = idx + 1; 1891 else 1892 idx2 = idx - 1; 1893 } 1894 1895 if (rx->sta) 1896 key = rcu_dereference(rx->sta->gtk[idx]); 1897 if (!key) 1898 key = rcu_dereference(sdata->keys[idx]); 1899 if (!key && rx->sta) 1900 key = rcu_dereference(rx->sta->gtk[idx2]); 1901 if (!key) 1902 key = rcu_dereference(sdata->keys[idx2]); 1903 1904 return key; 1905 } 1906 1907 static ieee80211_rx_result debug_noinline 1908 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1909 { 1910 struct sk_buff *skb = rx->skb; 1911 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1912 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1913 int keyidx; 1914 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1915 struct ieee80211_key *sta_ptk = NULL; 1916 struct ieee80211_key *ptk_idx = NULL; 1917 int mmie_keyidx = -1; 1918 __le16 fc; 1919 const struct ieee80211_cipher_scheme *cs = NULL; 1920 1921 /* 1922 * Key selection 101 1923 * 1924 * There are five types of keys: 1925 * - GTK (group keys) 1926 * - IGTK (group keys for management frames) 1927 * - BIGTK (group keys for Beacon frames) 1928 * - PTK (pairwise keys) 1929 * - STK (station-to-station pairwise keys) 1930 * 1931 * When selecting a key, we have to distinguish between multicast 1932 * (including broadcast) and unicast frames, the latter can only 1933 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1934 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1935 * then unicast frames can also use key indices like GTKs. Hence, if we 1936 * don't have a PTK/STK we check the key index for a WEP key. 1937 * 1938 * Note that in a regular BSS, multicast frames are sent by the 1939 * AP only, associated stations unicast the frame to the AP first 1940 * which then multicasts it on their behalf. 1941 * 1942 * There is also a slight problem in IBSS mode: GTKs are negotiated 1943 * with each station, that is something we don't currently handle. 1944 * The spec seems to expect that one negotiates the same key with 1945 * every station but there's no such requirement; VLANs could be 1946 * possible. 1947 */ 1948 1949 /* start without a key */ 1950 rx->key = NULL; 1951 fc = hdr->frame_control; 1952 1953 if (rx->sta) { 1954 int keyid = rx->sta->ptk_idx; 1955 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1956 1957 if (ieee80211_has_protected(fc)) { 1958 cs = rx->sta->cipher_scheme; 1959 keyid = ieee80211_get_keyid(rx->skb, cs); 1960 1961 if (unlikely(keyid < 0)) 1962 return RX_DROP_UNUSABLE; 1963 1964 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1965 } 1966 } 1967 1968 if (!ieee80211_has_protected(fc)) 1969 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1970 1971 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1972 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1973 if ((status->flag & RX_FLAG_DECRYPTED) && 1974 (status->flag & RX_FLAG_IV_STRIPPED)) 1975 return RX_CONTINUE; 1976 /* Skip decryption if the frame is not protected. */ 1977 if (!ieee80211_has_protected(fc)) 1978 return RX_CONTINUE; 1979 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1980 /* Broadcast/multicast robust management frame / BIP */ 1981 if ((status->flag & RX_FLAG_DECRYPTED) && 1982 (status->flag & RX_FLAG_IV_STRIPPED)) 1983 return RX_CONTINUE; 1984 1985 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1986 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1987 NUM_DEFAULT_BEACON_KEYS) 1988 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1989 1990 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1991 if (!rx->key) 1992 return RX_CONTINUE; /* Beacon protection not in use */ 1993 } else if (mmie_keyidx >= 0) { 1994 /* Broadcast/multicast robust management frame / BIP */ 1995 if ((status->flag & RX_FLAG_DECRYPTED) && 1996 (status->flag & RX_FLAG_IV_STRIPPED)) 1997 return RX_CONTINUE; 1998 1999 if (mmie_keyidx < NUM_DEFAULT_KEYS || 2000 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2001 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2002 if (rx->sta) { 2003 if (ieee80211_is_group_privacy_action(skb) && 2004 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2005 return RX_DROP_MONITOR; 2006 2007 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 2008 } 2009 if (!rx->key) 2010 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 2011 } else if (!ieee80211_has_protected(fc)) { 2012 /* 2013 * The frame was not protected, so skip decryption. However, we 2014 * need to set rx->key if there is a key that could have been 2015 * used so that the frame may be dropped if encryption would 2016 * have been expected. 2017 */ 2018 struct ieee80211_key *key = NULL; 2019 struct ieee80211_sub_if_data *sdata = rx->sdata; 2020 int i; 2021 2022 if (ieee80211_is_beacon(fc)) { 2023 key = ieee80211_rx_get_bigtk(rx, -1); 2024 } else if (ieee80211_is_mgmt(fc) && 2025 is_multicast_ether_addr(hdr->addr1)) { 2026 key = rcu_dereference(rx->sdata->default_mgmt_key); 2027 } else { 2028 if (rx->sta) { 2029 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2030 key = rcu_dereference(rx->sta->gtk[i]); 2031 if (key) 2032 break; 2033 } 2034 } 2035 if (!key) { 2036 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2037 key = rcu_dereference(sdata->keys[i]); 2038 if (key) 2039 break; 2040 } 2041 } 2042 } 2043 if (key) 2044 rx->key = key; 2045 return RX_CONTINUE; 2046 } else { 2047 /* 2048 * The device doesn't give us the IV so we won't be 2049 * able to look up the key. That's ok though, we 2050 * don't need to decrypt the frame, we just won't 2051 * be able to keep statistics accurate. 2052 * Except for key threshold notifications, should 2053 * we somehow allow the driver to tell us which key 2054 * the hardware used if this flag is set? 2055 */ 2056 if ((status->flag & RX_FLAG_DECRYPTED) && 2057 (status->flag & RX_FLAG_IV_STRIPPED)) 2058 return RX_CONTINUE; 2059 2060 keyidx = ieee80211_get_keyid(rx->skb, cs); 2061 2062 if (unlikely(keyidx < 0)) 2063 return RX_DROP_UNUSABLE; 2064 2065 /* check per-station GTK first, if multicast packet */ 2066 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 2067 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 2068 2069 /* if not found, try default key */ 2070 if (!rx->key) { 2071 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2072 2073 /* 2074 * RSNA-protected unicast frames should always be 2075 * sent with pairwise or station-to-station keys, 2076 * but for WEP we allow using a key index as well. 2077 */ 2078 if (rx->key && 2079 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2080 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2081 !is_multicast_ether_addr(hdr->addr1)) 2082 rx->key = NULL; 2083 } 2084 } 2085 2086 if (rx->key) { 2087 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2088 return RX_DROP_MONITOR; 2089 2090 /* TODO: add threshold stuff again */ 2091 } else { 2092 return RX_DROP_MONITOR; 2093 } 2094 2095 switch (rx->key->conf.cipher) { 2096 case WLAN_CIPHER_SUITE_WEP40: 2097 case WLAN_CIPHER_SUITE_WEP104: 2098 result = ieee80211_crypto_wep_decrypt(rx); 2099 break; 2100 case WLAN_CIPHER_SUITE_TKIP: 2101 result = ieee80211_crypto_tkip_decrypt(rx); 2102 break; 2103 case WLAN_CIPHER_SUITE_CCMP: 2104 result = ieee80211_crypto_ccmp_decrypt( 2105 rx, IEEE80211_CCMP_MIC_LEN); 2106 break; 2107 case WLAN_CIPHER_SUITE_CCMP_256: 2108 result = ieee80211_crypto_ccmp_decrypt( 2109 rx, IEEE80211_CCMP_256_MIC_LEN); 2110 break; 2111 case WLAN_CIPHER_SUITE_AES_CMAC: 2112 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2113 break; 2114 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2115 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2116 break; 2117 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2118 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2119 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2120 break; 2121 case WLAN_CIPHER_SUITE_GCMP: 2122 case WLAN_CIPHER_SUITE_GCMP_256: 2123 result = ieee80211_crypto_gcmp_decrypt(rx); 2124 break; 2125 default: 2126 result = ieee80211_crypto_hw_decrypt(rx); 2127 } 2128 2129 /* the hdr variable is invalid after the decrypt handlers */ 2130 2131 /* either the frame has been decrypted or will be dropped */ 2132 status->flag |= RX_FLAG_DECRYPTED; 2133 2134 return result; 2135 } 2136 2137 static inline struct ieee80211_fragment_entry * 2138 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 2139 unsigned int frag, unsigned int seq, int rx_queue, 2140 struct sk_buff **skb) 2141 { 2142 struct ieee80211_fragment_entry *entry; 2143 2144 entry = &sdata->fragments[sdata->fragment_next++]; 2145 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 2146 sdata->fragment_next = 0; 2147 2148 if (!skb_queue_empty(&entry->skb_list)) 2149 __skb_queue_purge(&entry->skb_list); 2150 2151 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2152 *skb = NULL; 2153 entry->first_frag_time = jiffies; 2154 entry->seq = seq; 2155 entry->rx_queue = rx_queue; 2156 entry->last_frag = frag; 2157 entry->check_sequential_pn = false; 2158 entry->extra_len = 0; 2159 2160 return entry; 2161 } 2162 2163 static inline struct ieee80211_fragment_entry * 2164 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 2165 unsigned int frag, unsigned int seq, 2166 int rx_queue, struct ieee80211_hdr *hdr) 2167 { 2168 struct ieee80211_fragment_entry *entry; 2169 int i, idx; 2170 2171 idx = sdata->fragment_next; 2172 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2173 struct ieee80211_hdr *f_hdr; 2174 struct sk_buff *f_skb; 2175 2176 idx--; 2177 if (idx < 0) 2178 idx = IEEE80211_FRAGMENT_MAX - 1; 2179 2180 entry = &sdata->fragments[idx]; 2181 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2182 entry->rx_queue != rx_queue || 2183 entry->last_frag + 1 != frag) 2184 continue; 2185 2186 f_skb = __skb_peek(&entry->skb_list); 2187 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2188 2189 /* 2190 * Check ftype and addresses are equal, else check next fragment 2191 */ 2192 if (((hdr->frame_control ^ f_hdr->frame_control) & 2193 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2194 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2195 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2196 continue; 2197 2198 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2199 __skb_queue_purge(&entry->skb_list); 2200 continue; 2201 } 2202 return entry; 2203 } 2204 2205 return NULL; 2206 } 2207 2208 static ieee80211_rx_result debug_noinline 2209 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2210 { 2211 struct ieee80211_hdr *hdr; 2212 u16 sc; 2213 __le16 fc; 2214 unsigned int frag, seq; 2215 struct ieee80211_fragment_entry *entry; 2216 struct sk_buff *skb; 2217 2218 hdr = (struct ieee80211_hdr *)rx->skb->data; 2219 fc = hdr->frame_control; 2220 2221 if (ieee80211_is_ctl(fc)) 2222 return RX_CONTINUE; 2223 2224 sc = le16_to_cpu(hdr->seq_ctrl); 2225 frag = sc & IEEE80211_SCTL_FRAG; 2226 2227 if (is_multicast_ether_addr(hdr->addr1)) { 2228 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 2229 goto out_no_led; 2230 } 2231 2232 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2233 goto out; 2234 2235 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2236 2237 if (skb_linearize(rx->skb)) 2238 return RX_DROP_UNUSABLE; 2239 2240 /* 2241 * skb_linearize() might change the skb->data and 2242 * previously cached variables (in this case, hdr) need to 2243 * be refreshed with the new data. 2244 */ 2245 hdr = (struct ieee80211_hdr *)rx->skb->data; 2246 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2247 2248 if (frag == 0) { 2249 /* This is the first fragment of a new frame. */ 2250 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2251 rx->seqno_idx, &(rx->skb)); 2252 if (rx->key && 2253 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2254 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2255 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2256 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2257 ieee80211_has_protected(fc)) { 2258 int queue = rx->security_idx; 2259 2260 /* Store CCMP/GCMP PN so that we can verify that the 2261 * next fragment has a sequential PN value. 2262 */ 2263 entry->check_sequential_pn = true; 2264 memcpy(entry->last_pn, 2265 rx->key->u.ccmp.rx_pn[queue], 2266 IEEE80211_CCMP_PN_LEN); 2267 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2268 u.ccmp.rx_pn) != 2269 offsetof(struct ieee80211_key, 2270 u.gcmp.rx_pn)); 2271 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2272 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2273 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2274 IEEE80211_GCMP_PN_LEN); 2275 } 2276 return RX_QUEUED; 2277 } 2278 2279 /* This is a fragment for a frame that should already be pending in 2280 * fragment cache. Add this fragment to the end of the pending entry. 2281 */ 2282 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2283 rx->seqno_idx, hdr); 2284 if (!entry) { 2285 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2286 return RX_DROP_MONITOR; 2287 } 2288 2289 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2290 * MPDU PN values are not incrementing in steps of 1." 2291 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2292 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2293 */ 2294 if (entry->check_sequential_pn) { 2295 int i; 2296 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2297 int queue; 2298 2299 if (!rx->key || 2300 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2301 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2302 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2303 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2304 return RX_DROP_UNUSABLE; 2305 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2306 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2307 pn[i]++; 2308 if (pn[i]) 2309 break; 2310 } 2311 queue = rx->security_idx; 2312 rpn = rx->key->u.ccmp.rx_pn[queue]; 2313 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2314 return RX_DROP_UNUSABLE; 2315 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2316 } 2317 2318 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2319 __skb_queue_tail(&entry->skb_list, rx->skb); 2320 entry->last_frag = frag; 2321 entry->extra_len += rx->skb->len; 2322 if (ieee80211_has_morefrags(fc)) { 2323 rx->skb = NULL; 2324 return RX_QUEUED; 2325 } 2326 2327 rx->skb = __skb_dequeue(&entry->skb_list); 2328 if (skb_tailroom(rx->skb) < entry->extra_len) { 2329 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2330 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2331 GFP_ATOMIC))) { 2332 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2333 __skb_queue_purge(&entry->skb_list); 2334 return RX_DROP_UNUSABLE; 2335 } 2336 } 2337 while ((skb = __skb_dequeue(&entry->skb_list))) { 2338 skb_put_data(rx->skb, skb->data, skb->len); 2339 dev_kfree_skb(skb); 2340 } 2341 2342 out: 2343 ieee80211_led_rx(rx->local); 2344 out_no_led: 2345 if (rx->sta) 2346 rx->sta->rx_stats.packets++; 2347 return RX_CONTINUE; 2348 } 2349 2350 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2351 { 2352 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2353 return -EACCES; 2354 2355 return 0; 2356 } 2357 2358 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2359 { 2360 struct sk_buff *skb = rx->skb; 2361 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2362 2363 /* 2364 * Pass through unencrypted frames if the hardware has 2365 * decrypted them already. 2366 */ 2367 if (status->flag & RX_FLAG_DECRYPTED) 2368 return 0; 2369 2370 /* Drop unencrypted frames if key is set. */ 2371 if (unlikely(!ieee80211_has_protected(fc) && 2372 !ieee80211_is_any_nullfunc(fc) && 2373 ieee80211_is_data(fc) && rx->key)) 2374 return -EACCES; 2375 2376 return 0; 2377 } 2378 2379 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2380 { 2381 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2382 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2383 __le16 fc = hdr->frame_control; 2384 2385 /* 2386 * Pass through unencrypted frames if the hardware has 2387 * decrypted them already. 2388 */ 2389 if (status->flag & RX_FLAG_DECRYPTED) 2390 return 0; 2391 2392 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2393 if (unlikely(!ieee80211_has_protected(fc) && 2394 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2395 rx->key)) { 2396 if (ieee80211_is_deauth(fc) || 2397 ieee80211_is_disassoc(fc)) 2398 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2399 rx->skb->data, 2400 rx->skb->len); 2401 return -EACCES; 2402 } 2403 /* BIP does not use Protected field, so need to check MMIE */ 2404 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2405 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2406 if (ieee80211_is_deauth(fc) || 2407 ieee80211_is_disassoc(fc)) 2408 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2409 rx->skb->data, 2410 rx->skb->len); 2411 return -EACCES; 2412 } 2413 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2414 ieee80211_get_mmie_keyidx(rx->skb) < 0)) 2415 return -EACCES; 2416 /* 2417 * When using MFP, Action frames are not allowed prior to 2418 * having configured keys. 2419 */ 2420 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2421 ieee80211_is_robust_mgmt_frame(rx->skb))) 2422 return -EACCES; 2423 } 2424 2425 return 0; 2426 } 2427 2428 static int 2429 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2430 { 2431 struct ieee80211_sub_if_data *sdata = rx->sdata; 2432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2433 bool check_port_control = false; 2434 struct ethhdr *ehdr; 2435 int ret; 2436 2437 *port_control = false; 2438 if (ieee80211_has_a4(hdr->frame_control) && 2439 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2440 return -1; 2441 2442 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2443 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2444 2445 if (!sdata->u.mgd.use_4addr) 2446 return -1; 2447 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2448 check_port_control = true; 2449 } 2450 2451 if (is_multicast_ether_addr(hdr->addr1) && 2452 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2453 return -1; 2454 2455 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2456 if (ret < 0) 2457 return ret; 2458 2459 ehdr = (struct ethhdr *) rx->skb->data; 2460 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2461 *port_control = true; 2462 else if (check_port_control) 2463 return -1; 2464 2465 return 0; 2466 } 2467 2468 /* 2469 * requires that rx->skb is a frame with ethernet header 2470 */ 2471 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2472 { 2473 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2474 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2475 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2476 2477 /* 2478 * Allow EAPOL frames to us/the PAE group address regardless 2479 * of whether the frame was encrypted or not. 2480 */ 2481 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2482 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2483 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2484 return true; 2485 2486 if (ieee80211_802_1x_port_control(rx) || 2487 ieee80211_drop_unencrypted(rx, fc)) 2488 return false; 2489 2490 return true; 2491 } 2492 2493 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2494 struct ieee80211_rx_data *rx) 2495 { 2496 struct ieee80211_sub_if_data *sdata = rx->sdata; 2497 struct net_device *dev = sdata->dev; 2498 2499 if (unlikely((skb->protocol == sdata->control_port_protocol || 2500 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2501 !sdata->control_port_no_preauth)) && 2502 sdata->control_port_over_nl80211)) { 2503 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2504 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2505 2506 cfg80211_rx_control_port(dev, skb, noencrypt); 2507 dev_kfree_skb(skb); 2508 } else { 2509 memset(skb->cb, 0, sizeof(skb->cb)); 2510 2511 /* deliver to local stack */ 2512 if (rx->napi) 2513 napi_gro_receive(rx->napi, skb); 2514 else 2515 netif_receive_skb(skb); 2516 } 2517 } 2518 2519 /* 2520 * requires that rx->skb is a frame with ethernet header 2521 */ 2522 static void 2523 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2524 { 2525 struct ieee80211_sub_if_data *sdata = rx->sdata; 2526 struct net_device *dev = sdata->dev; 2527 struct sk_buff *skb, *xmit_skb; 2528 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2529 struct sta_info *dsta; 2530 2531 skb = rx->skb; 2532 xmit_skb = NULL; 2533 2534 ieee80211_rx_stats(dev, skb->len); 2535 2536 if (rx->sta) { 2537 /* The seqno index has the same property as needed 2538 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2539 * for non-QoS-data frames. Here we know it's a data 2540 * frame, so count MSDUs. 2541 */ 2542 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2543 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2544 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2545 } 2546 2547 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2548 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2549 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2550 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2551 if (is_multicast_ether_addr(ehdr->h_dest) && 2552 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2553 /* 2554 * send multicast frames both to higher layers in 2555 * local net stack and back to the wireless medium 2556 */ 2557 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2558 if (!xmit_skb) 2559 net_info_ratelimited("%s: failed to clone multicast frame\n", 2560 dev->name); 2561 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2562 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2563 dsta = sta_info_get(sdata, ehdr->h_dest); 2564 if (dsta) { 2565 /* 2566 * The destination station is associated to 2567 * this AP (in this VLAN), so send the frame 2568 * directly to it and do not pass it to local 2569 * net stack. 2570 */ 2571 xmit_skb = skb; 2572 skb = NULL; 2573 } 2574 } 2575 } 2576 2577 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2578 if (skb) { 2579 /* 'align' will only take the values 0 or 2 here since all 2580 * frames are required to be aligned to 2-byte boundaries 2581 * when being passed to mac80211; the code here works just 2582 * as well if that isn't true, but mac80211 assumes it can 2583 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2584 */ 2585 int align; 2586 2587 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2588 if (align) { 2589 if (WARN_ON(skb_headroom(skb) < 3)) { 2590 dev_kfree_skb(skb); 2591 skb = NULL; 2592 } else { 2593 u8 *data = skb->data; 2594 size_t len = skb_headlen(skb); 2595 skb->data -= align; 2596 memmove(skb->data, data, len); 2597 skb_set_tail_pointer(skb, len); 2598 } 2599 } 2600 } 2601 #endif 2602 2603 if (skb) { 2604 skb->protocol = eth_type_trans(skb, dev); 2605 ieee80211_deliver_skb_to_local_stack(skb, rx); 2606 } 2607 2608 if (xmit_skb) { 2609 /* 2610 * Send to wireless media and increase priority by 256 to 2611 * keep the received priority instead of reclassifying 2612 * the frame (see cfg80211_classify8021d). 2613 */ 2614 xmit_skb->priority += 256; 2615 xmit_skb->protocol = htons(ETH_P_802_3); 2616 skb_reset_network_header(xmit_skb); 2617 skb_reset_mac_header(xmit_skb); 2618 dev_queue_xmit(xmit_skb); 2619 } 2620 } 2621 2622 static ieee80211_rx_result debug_noinline 2623 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2624 { 2625 struct net_device *dev = rx->sdata->dev; 2626 struct sk_buff *skb = rx->skb; 2627 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2628 __le16 fc = hdr->frame_control; 2629 struct sk_buff_head frame_list; 2630 struct ethhdr ethhdr; 2631 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2632 2633 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2634 check_da = NULL; 2635 check_sa = NULL; 2636 } else switch (rx->sdata->vif.type) { 2637 case NL80211_IFTYPE_AP: 2638 case NL80211_IFTYPE_AP_VLAN: 2639 check_da = NULL; 2640 break; 2641 case NL80211_IFTYPE_STATION: 2642 if (!rx->sta || 2643 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2644 check_sa = NULL; 2645 break; 2646 case NL80211_IFTYPE_MESH_POINT: 2647 check_sa = NULL; 2648 break; 2649 default: 2650 break; 2651 } 2652 2653 skb->dev = dev; 2654 __skb_queue_head_init(&frame_list); 2655 2656 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2657 rx->sdata->vif.addr, 2658 rx->sdata->vif.type, 2659 data_offset)) 2660 return RX_DROP_UNUSABLE; 2661 2662 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2663 rx->sdata->vif.type, 2664 rx->local->hw.extra_tx_headroom, 2665 check_da, check_sa); 2666 2667 while (!skb_queue_empty(&frame_list)) { 2668 rx->skb = __skb_dequeue(&frame_list); 2669 2670 if (!ieee80211_frame_allowed(rx, fc)) { 2671 dev_kfree_skb(rx->skb); 2672 continue; 2673 } 2674 2675 ieee80211_deliver_skb(rx); 2676 } 2677 2678 return RX_QUEUED; 2679 } 2680 2681 static ieee80211_rx_result debug_noinline 2682 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2683 { 2684 struct sk_buff *skb = rx->skb; 2685 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2686 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2687 __le16 fc = hdr->frame_control; 2688 2689 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2690 return RX_CONTINUE; 2691 2692 if (unlikely(!ieee80211_is_data(fc))) 2693 return RX_CONTINUE; 2694 2695 if (unlikely(!ieee80211_is_data_present(fc))) 2696 return RX_DROP_MONITOR; 2697 2698 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2699 switch (rx->sdata->vif.type) { 2700 case NL80211_IFTYPE_AP_VLAN: 2701 if (!rx->sdata->u.vlan.sta) 2702 return RX_DROP_UNUSABLE; 2703 break; 2704 case NL80211_IFTYPE_STATION: 2705 if (!rx->sdata->u.mgd.use_4addr) 2706 return RX_DROP_UNUSABLE; 2707 break; 2708 default: 2709 return RX_DROP_UNUSABLE; 2710 } 2711 } 2712 2713 if (is_multicast_ether_addr(hdr->addr1)) 2714 return RX_DROP_UNUSABLE; 2715 2716 return __ieee80211_rx_h_amsdu(rx, 0); 2717 } 2718 2719 #ifdef CONFIG_MAC80211_MESH 2720 static ieee80211_rx_result 2721 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2722 { 2723 struct ieee80211_hdr *fwd_hdr, *hdr; 2724 struct ieee80211_tx_info *info; 2725 struct ieee80211s_hdr *mesh_hdr; 2726 struct sk_buff *skb = rx->skb, *fwd_skb; 2727 struct ieee80211_local *local = rx->local; 2728 struct ieee80211_sub_if_data *sdata = rx->sdata; 2729 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2730 u16 ac, q, hdrlen; 2731 int tailroom = 0; 2732 2733 hdr = (struct ieee80211_hdr *) skb->data; 2734 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2735 2736 /* make sure fixed part of mesh header is there, also checks skb len */ 2737 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2738 return RX_DROP_MONITOR; 2739 2740 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2741 2742 /* make sure full mesh header is there, also checks skb len */ 2743 if (!pskb_may_pull(rx->skb, 2744 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2745 return RX_DROP_MONITOR; 2746 2747 /* reload pointers */ 2748 hdr = (struct ieee80211_hdr *) skb->data; 2749 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2750 2751 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2752 return RX_DROP_MONITOR; 2753 2754 /* frame is in RMC, don't forward */ 2755 if (ieee80211_is_data(hdr->frame_control) && 2756 is_multicast_ether_addr(hdr->addr1) && 2757 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2758 return RX_DROP_MONITOR; 2759 2760 if (!ieee80211_is_data(hdr->frame_control)) 2761 return RX_CONTINUE; 2762 2763 if (!mesh_hdr->ttl) 2764 return RX_DROP_MONITOR; 2765 2766 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2767 struct mesh_path *mppath; 2768 char *proxied_addr; 2769 char *mpp_addr; 2770 2771 if (is_multicast_ether_addr(hdr->addr1)) { 2772 mpp_addr = hdr->addr3; 2773 proxied_addr = mesh_hdr->eaddr1; 2774 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2775 MESH_FLAGS_AE_A5_A6) { 2776 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2777 mpp_addr = hdr->addr4; 2778 proxied_addr = mesh_hdr->eaddr2; 2779 } else { 2780 return RX_DROP_MONITOR; 2781 } 2782 2783 rcu_read_lock(); 2784 mppath = mpp_path_lookup(sdata, proxied_addr); 2785 if (!mppath) { 2786 mpp_path_add(sdata, proxied_addr, mpp_addr); 2787 } else { 2788 spin_lock_bh(&mppath->state_lock); 2789 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2790 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2791 mppath->exp_time = jiffies; 2792 spin_unlock_bh(&mppath->state_lock); 2793 } 2794 rcu_read_unlock(); 2795 } 2796 2797 /* Frame has reached destination. Don't forward */ 2798 if (!is_multicast_ether_addr(hdr->addr1) && 2799 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2800 return RX_CONTINUE; 2801 2802 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2803 q = sdata->vif.hw_queue[ac]; 2804 if (ieee80211_queue_stopped(&local->hw, q)) { 2805 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2806 return RX_DROP_MONITOR; 2807 } 2808 skb_set_queue_mapping(skb, q); 2809 2810 if (!--mesh_hdr->ttl) { 2811 if (!is_multicast_ether_addr(hdr->addr1)) 2812 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2813 dropped_frames_ttl); 2814 goto out; 2815 } 2816 2817 if (!ifmsh->mshcfg.dot11MeshForwarding) 2818 goto out; 2819 2820 if (sdata->crypto_tx_tailroom_needed_cnt) 2821 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2822 2823 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2824 sdata->encrypt_headroom, 2825 tailroom, GFP_ATOMIC); 2826 if (!fwd_skb) 2827 goto out; 2828 2829 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2830 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2831 info = IEEE80211_SKB_CB(fwd_skb); 2832 memset(info, 0, sizeof(*info)); 2833 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2834 info->control.vif = &rx->sdata->vif; 2835 info->control.jiffies = jiffies; 2836 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2837 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2838 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2839 /* update power mode indication when forwarding */ 2840 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2841 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2842 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2843 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2844 } else { 2845 /* unable to resolve next hop */ 2846 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2847 fwd_hdr->addr3, 0, 2848 WLAN_REASON_MESH_PATH_NOFORWARD, 2849 fwd_hdr->addr2); 2850 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2851 kfree_skb(fwd_skb); 2852 return RX_DROP_MONITOR; 2853 } 2854 2855 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2856 ieee80211_add_pending_skb(local, fwd_skb); 2857 out: 2858 if (is_multicast_ether_addr(hdr->addr1)) 2859 return RX_CONTINUE; 2860 return RX_DROP_MONITOR; 2861 } 2862 #endif 2863 2864 static ieee80211_rx_result debug_noinline 2865 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2866 { 2867 struct ieee80211_sub_if_data *sdata = rx->sdata; 2868 struct ieee80211_local *local = rx->local; 2869 struct net_device *dev = sdata->dev; 2870 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2871 __le16 fc = hdr->frame_control; 2872 bool port_control; 2873 int err; 2874 2875 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2876 return RX_CONTINUE; 2877 2878 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2879 return RX_DROP_MONITOR; 2880 2881 /* 2882 * Send unexpected-4addr-frame event to hostapd. For older versions, 2883 * also drop the frame to cooked monitor interfaces. 2884 */ 2885 if (ieee80211_has_a4(hdr->frame_control) && 2886 sdata->vif.type == NL80211_IFTYPE_AP) { 2887 if (rx->sta && 2888 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2889 cfg80211_rx_unexpected_4addr_frame( 2890 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2891 return RX_DROP_MONITOR; 2892 } 2893 2894 err = __ieee80211_data_to_8023(rx, &port_control); 2895 if (unlikely(err)) 2896 return RX_DROP_UNUSABLE; 2897 2898 if (!ieee80211_frame_allowed(rx, fc)) 2899 return RX_DROP_MONITOR; 2900 2901 /* directly handle TDLS channel switch requests/responses */ 2902 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2903 cpu_to_be16(ETH_P_TDLS))) { 2904 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2905 2906 if (pskb_may_pull(rx->skb, 2907 offsetof(struct ieee80211_tdls_data, u)) && 2908 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2909 tf->category == WLAN_CATEGORY_TDLS && 2910 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2911 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2912 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2913 schedule_work(&local->tdls_chsw_work); 2914 if (rx->sta) 2915 rx->sta->rx_stats.packets++; 2916 2917 return RX_QUEUED; 2918 } 2919 } 2920 2921 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2922 unlikely(port_control) && sdata->bss) { 2923 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2924 u.ap); 2925 dev = sdata->dev; 2926 rx->sdata = sdata; 2927 } 2928 2929 rx->skb->dev = dev; 2930 2931 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2932 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2933 !is_multicast_ether_addr( 2934 ((struct ethhdr *)rx->skb->data)->h_dest) && 2935 (!local->scanning && 2936 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2937 mod_timer(&local->dynamic_ps_timer, jiffies + 2938 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2939 2940 ieee80211_deliver_skb(rx); 2941 2942 return RX_QUEUED; 2943 } 2944 2945 static ieee80211_rx_result debug_noinline 2946 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2947 { 2948 struct sk_buff *skb = rx->skb; 2949 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2950 struct tid_ampdu_rx *tid_agg_rx; 2951 u16 start_seq_num; 2952 u16 tid; 2953 2954 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2955 return RX_CONTINUE; 2956 2957 if (ieee80211_is_back_req(bar->frame_control)) { 2958 struct { 2959 __le16 control, start_seq_num; 2960 } __packed bar_data; 2961 struct ieee80211_event event = { 2962 .type = BAR_RX_EVENT, 2963 }; 2964 2965 if (!rx->sta) 2966 return RX_DROP_MONITOR; 2967 2968 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2969 &bar_data, sizeof(bar_data))) 2970 return RX_DROP_MONITOR; 2971 2972 tid = le16_to_cpu(bar_data.control) >> 12; 2973 2974 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2975 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2976 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2977 WLAN_BACK_RECIPIENT, 2978 WLAN_REASON_QSTA_REQUIRE_SETUP); 2979 2980 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2981 if (!tid_agg_rx) 2982 return RX_DROP_MONITOR; 2983 2984 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2985 event.u.ba.tid = tid; 2986 event.u.ba.ssn = start_seq_num; 2987 event.u.ba.sta = &rx->sta->sta; 2988 2989 /* reset session timer */ 2990 if (tid_agg_rx->timeout) 2991 mod_timer(&tid_agg_rx->session_timer, 2992 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2993 2994 spin_lock(&tid_agg_rx->reorder_lock); 2995 /* release stored frames up to start of BAR */ 2996 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2997 start_seq_num, frames); 2998 spin_unlock(&tid_agg_rx->reorder_lock); 2999 3000 drv_event_callback(rx->local, rx->sdata, &event); 3001 3002 kfree_skb(skb); 3003 return RX_QUEUED; 3004 } 3005 3006 /* 3007 * After this point, we only want management frames, 3008 * so we can drop all remaining control frames to 3009 * cooked monitor interfaces. 3010 */ 3011 return RX_DROP_MONITOR; 3012 } 3013 3014 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3015 struct ieee80211_mgmt *mgmt, 3016 size_t len) 3017 { 3018 struct ieee80211_local *local = sdata->local; 3019 struct sk_buff *skb; 3020 struct ieee80211_mgmt *resp; 3021 3022 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3023 /* Not to own unicast address */ 3024 return; 3025 } 3026 3027 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 3028 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 3029 /* Not from the current AP or not associated yet. */ 3030 return; 3031 } 3032 3033 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3034 /* Too short SA Query request frame */ 3035 return; 3036 } 3037 3038 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3039 if (skb == NULL) 3040 return; 3041 3042 skb_reserve(skb, local->hw.extra_tx_headroom); 3043 resp = skb_put_zero(skb, 24); 3044 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3045 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3046 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 3047 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3048 IEEE80211_STYPE_ACTION); 3049 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3050 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3051 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3052 memcpy(resp->u.action.u.sa_query.trans_id, 3053 mgmt->u.action.u.sa_query.trans_id, 3054 WLAN_SA_QUERY_TR_ID_LEN); 3055 3056 ieee80211_tx_skb(sdata, skb); 3057 } 3058 3059 static ieee80211_rx_result debug_noinline 3060 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3061 { 3062 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3063 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3064 3065 /* 3066 * From here on, look only at management frames. 3067 * Data and control frames are already handled, 3068 * and unknown (reserved) frames are useless. 3069 */ 3070 if (rx->skb->len < 24) 3071 return RX_DROP_MONITOR; 3072 3073 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3074 return RX_DROP_MONITOR; 3075 3076 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3077 ieee80211_is_beacon(mgmt->frame_control) && 3078 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3079 int sig = 0; 3080 3081 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3082 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3083 sig = status->signal; 3084 3085 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 3086 rx->skb->data, rx->skb->len, 3087 status->freq, sig); 3088 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3089 } 3090 3091 if (ieee80211_drop_unencrypted_mgmt(rx)) 3092 return RX_DROP_UNUSABLE; 3093 3094 return RX_CONTINUE; 3095 } 3096 3097 static ieee80211_rx_result debug_noinline 3098 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3099 { 3100 struct ieee80211_local *local = rx->local; 3101 struct ieee80211_sub_if_data *sdata = rx->sdata; 3102 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3103 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3104 int len = rx->skb->len; 3105 3106 if (!ieee80211_is_action(mgmt->frame_control)) 3107 return RX_CONTINUE; 3108 3109 /* drop too small frames */ 3110 if (len < IEEE80211_MIN_ACTION_SIZE) 3111 return RX_DROP_UNUSABLE; 3112 3113 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3114 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3115 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3116 return RX_DROP_UNUSABLE; 3117 3118 switch (mgmt->u.action.category) { 3119 case WLAN_CATEGORY_HT: 3120 /* reject HT action frames from stations not supporting HT */ 3121 if (!rx->sta->sta.ht_cap.ht_supported) 3122 goto invalid; 3123 3124 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3125 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3126 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3127 sdata->vif.type != NL80211_IFTYPE_AP && 3128 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3129 break; 3130 3131 /* verify action & smps_control/chanwidth are present */ 3132 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3133 goto invalid; 3134 3135 switch (mgmt->u.action.u.ht_smps.action) { 3136 case WLAN_HT_ACTION_SMPS: { 3137 struct ieee80211_supported_band *sband; 3138 enum ieee80211_smps_mode smps_mode; 3139 struct sta_opmode_info sta_opmode = {}; 3140 3141 if (sdata->vif.type != NL80211_IFTYPE_AP && 3142 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3143 goto handled; 3144 3145 /* convert to HT capability */ 3146 switch (mgmt->u.action.u.ht_smps.smps_control) { 3147 case WLAN_HT_SMPS_CONTROL_DISABLED: 3148 smps_mode = IEEE80211_SMPS_OFF; 3149 break; 3150 case WLAN_HT_SMPS_CONTROL_STATIC: 3151 smps_mode = IEEE80211_SMPS_STATIC; 3152 break; 3153 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3154 smps_mode = IEEE80211_SMPS_DYNAMIC; 3155 break; 3156 default: 3157 goto invalid; 3158 } 3159 3160 /* if no change do nothing */ 3161 if (rx->sta->sta.smps_mode == smps_mode) 3162 goto handled; 3163 rx->sta->sta.smps_mode = smps_mode; 3164 sta_opmode.smps_mode = 3165 ieee80211_smps_mode_to_smps_mode(smps_mode); 3166 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3167 3168 sband = rx->local->hw.wiphy->bands[status->band]; 3169 3170 rate_control_rate_update(local, sband, rx->sta, 3171 IEEE80211_RC_SMPS_CHANGED); 3172 cfg80211_sta_opmode_change_notify(sdata->dev, 3173 rx->sta->addr, 3174 &sta_opmode, 3175 GFP_ATOMIC); 3176 goto handled; 3177 } 3178 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3179 struct ieee80211_supported_band *sband; 3180 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3181 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3182 struct sta_opmode_info sta_opmode = {}; 3183 3184 /* If it doesn't support 40 MHz it can't change ... */ 3185 if (!(rx->sta->sta.ht_cap.cap & 3186 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3187 goto handled; 3188 3189 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3190 max_bw = IEEE80211_STA_RX_BW_20; 3191 else 3192 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 3193 3194 /* set cur_max_bandwidth and recalc sta bw */ 3195 rx->sta->cur_max_bandwidth = max_bw; 3196 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 3197 3198 if (rx->sta->sta.bandwidth == new_bw) 3199 goto handled; 3200 3201 rx->sta->sta.bandwidth = new_bw; 3202 sband = rx->local->hw.wiphy->bands[status->band]; 3203 sta_opmode.bw = 3204 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 3205 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3206 3207 rate_control_rate_update(local, sband, rx->sta, 3208 IEEE80211_RC_BW_CHANGED); 3209 cfg80211_sta_opmode_change_notify(sdata->dev, 3210 rx->sta->addr, 3211 &sta_opmode, 3212 GFP_ATOMIC); 3213 goto handled; 3214 } 3215 default: 3216 goto invalid; 3217 } 3218 3219 break; 3220 case WLAN_CATEGORY_PUBLIC: 3221 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3222 goto invalid; 3223 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3224 break; 3225 if (!rx->sta) 3226 break; 3227 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 3228 break; 3229 if (mgmt->u.action.u.ext_chan_switch.action_code != 3230 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3231 break; 3232 if (len < offsetof(struct ieee80211_mgmt, 3233 u.action.u.ext_chan_switch.variable)) 3234 goto invalid; 3235 goto queue; 3236 case WLAN_CATEGORY_VHT: 3237 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3238 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3239 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3240 sdata->vif.type != NL80211_IFTYPE_AP && 3241 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3242 break; 3243 3244 /* verify action code is present */ 3245 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3246 goto invalid; 3247 3248 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3249 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3250 /* verify opmode is present */ 3251 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3252 goto invalid; 3253 goto queue; 3254 } 3255 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3256 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3257 goto invalid; 3258 goto queue; 3259 } 3260 default: 3261 break; 3262 } 3263 break; 3264 case WLAN_CATEGORY_BACK: 3265 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3266 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3267 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3268 sdata->vif.type != NL80211_IFTYPE_AP && 3269 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3270 break; 3271 3272 /* verify action_code is present */ 3273 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3274 break; 3275 3276 switch (mgmt->u.action.u.addba_req.action_code) { 3277 case WLAN_ACTION_ADDBA_REQ: 3278 if (len < (IEEE80211_MIN_ACTION_SIZE + 3279 sizeof(mgmt->u.action.u.addba_req))) 3280 goto invalid; 3281 break; 3282 case WLAN_ACTION_ADDBA_RESP: 3283 if (len < (IEEE80211_MIN_ACTION_SIZE + 3284 sizeof(mgmt->u.action.u.addba_resp))) 3285 goto invalid; 3286 break; 3287 case WLAN_ACTION_DELBA: 3288 if (len < (IEEE80211_MIN_ACTION_SIZE + 3289 sizeof(mgmt->u.action.u.delba))) 3290 goto invalid; 3291 break; 3292 default: 3293 goto invalid; 3294 } 3295 3296 goto queue; 3297 case WLAN_CATEGORY_SPECTRUM_MGMT: 3298 /* verify action_code is present */ 3299 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3300 break; 3301 3302 switch (mgmt->u.action.u.measurement.action_code) { 3303 case WLAN_ACTION_SPCT_MSR_REQ: 3304 if (status->band != NL80211_BAND_5GHZ) 3305 break; 3306 3307 if (len < (IEEE80211_MIN_ACTION_SIZE + 3308 sizeof(mgmt->u.action.u.measurement))) 3309 break; 3310 3311 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3312 break; 3313 3314 ieee80211_process_measurement_req(sdata, mgmt, len); 3315 goto handled; 3316 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3317 u8 *bssid; 3318 if (len < (IEEE80211_MIN_ACTION_SIZE + 3319 sizeof(mgmt->u.action.u.chan_switch))) 3320 break; 3321 3322 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3323 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3324 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3325 break; 3326 3327 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3328 bssid = sdata->u.mgd.bssid; 3329 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3330 bssid = sdata->u.ibss.bssid; 3331 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3332 bssid = mgmt->sa; 3333 else 3334 break; 3335 3336 if (!ether_addr_equal(mgmt->bssid, bssid)) 3337 break; 3338 3339 goto queue; 3340 } 3341 } 3342 break; 3343 case WLAN_CATEGORY_SA_QUERY: 3344 if (len < (IEEE80211_MIN_ACTION_SIZE + 3345 sizeof(mgmt->u.action.u.sa_query))) 3346 break; 3347 3348 switch (mgmt->u.action.u.sa_query.action) { 3349 case WLAN_ACTION_SA_QUERY_REQUEST: 3350 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3351 break; 3352 ieee80211_process_sa_query_req(sdata, mgmt, len); 3353 goto handled; 3354 } 3355 break; 3356 case WLAN_CATEGORY_SELF_PROTECTED: 3357 if (len < (IEEE80211_MIN_ACTION_SIZE + 3358 sizeof(mgmt->u.action.u.self_prot.action_code))) 3359 break; 3360 3361 switch (mgmt->u.action.u.self_prot.action_code) { 3362 case WLAN_SP_MESH_PEERING_OPEN: 3363 case WLAN_SP_MESH_PEERING_CLOSE: 3364 case WLAN_SP_MESH_PEERING_CONFIRM: 3365 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3366 goto invalid; 3367 if (sdata->u.mesh.user_mpm) 3368 /* userspace handles this frame */ 3369 break; 3370 goto queue; 3371 case WLAN_SP_MGK_INFORM: 3372 case WLAN_SP_MGK_ACK: 3373 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3374 goto invalid; 3375 break; 3376 } 3377 break; 3378 case WLAN_CATEGORY_MESH_ACTION: 3379 if (len < (IEEE80211_MIN_ACTION_SIZE + 3380 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3381 break; 3382 3383 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3384 break; 3385 if (mesh_action_is_path_sel(mgmt) && 3386 !mesh_path_sel_is_hwmp(sdata)) 3387 break; 3388 goto queue; 3389 } 3390 3391 return RX_CONTINUE; 3392 3393 invalid: 3394 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3395 /* will return in the next handlers */ 3396 return RX_CONTINUE; 3397 3398 handled: 3399 if (rx->sta) 3400 rx->sta->rx_stats.packets++; 3401 dev_kfree_skb(rx->skb); 3402 return RX_QUEUED; 3403 3404 queue: 3405 skb_queue_tail(&sdata->skb_queue, rx->skb); 3406 ieee80211_queue_work(&local->hw, &sdata->work); 3407 if (rx->sta) 3408 rx->sta->rx_stats.packets++; 3409 return RX_QUEUED; 3410 } 3411 3412 static ieee80211_rx_result debug_noinline 3413 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3414 { 3415 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3416 int sig = 0; 3417 3418 /* skip known-bad action frames and return them in the next handler */ 3419 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3420 return RX_CONTINUE; 3421 3422 /* 3423 * Getting here means the kernel doesn't know how to handle 3424 * it, but maybe userspace does ... include returned frames 3425 * so userspace can register for those to know whether ones 3426 * it transmitted were processed or returned. 3427 */ 3428 3429 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3430 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3431 sig = status->signal; 3432 3433 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3434 rx->skb->data, rx->skb->len, 0)) { 3435 if (rx->sta) 3436 rx->sta->rx_stats.packets++; 3437 dev_kfree_skb(rx->skb); 3438 return RX_QUEUED; 3439 } 3440 3441 return RX_CONTINUE; 3442 } 3443 3444 static ieee80211_rx_result debug_noinline 3445 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3446 { 3447 struct ieee80211_local *local = rx->local; 3448 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3449 struct sk_buff *nskb; 3450 struct ieee80211_sub_if_data *sdata = rx->sdata; 3451 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3452 3453 if (!ieee80211_is_action(mgmt->frame_control)) 3454 return RX_CONTINUE; 3455 3456 /* 3457 * For AP mode, hostapd is responsible for handling any action 3458 * frames that we didn't handle, including returning unknown 3459 * ones. For all other modes we will return them to the sender, 3460 * setting the 0x80 bit in the action category, as required by 3461 * 802.11-2012 9.24.4. 3462 * Newer versions of hostapd shall also use the management frame 3463 * registration mechanisms, but older ones still use cooked 3464 * monitor interfaces so push all frames there. 3465 */ 3466 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3467 (sdata->vif.type == NL80211_IFTYPE_AP || 3468 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3469 return RX_DROP_MONITOR; 3470 3471 if (is_multicast_ether_addr(mgmt->da)) 3472 return RX_DROP_MONITOR; 3473 3474 /* do not return rejected action frames */ 3475 if (mgmt->u.action.category & 0x80) 3476 return RX_DROP_UNUSABLE; 3477 3478 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3479 GFP_ATOMIC); 3480 if (nskb) { 3481 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3482 3483 nmgmt->u.action.category |= 0x80; 3484 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3485 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3486 3487 memset(nskb->cb, 0, sizeof(nskb->cb)); 3488 3489 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3490 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3491 3492 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3493 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3494 IEEE80211_TX_CTL_NO_CCK_RATE; 3495 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3496 info->hw_queue = 3497 local->hw.offchannel_tx_hw_queue; 3498 } 3499 3500 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3501 status->band, 0); 3502 } 3503 dev_kfree_skb(rx->skb); 3504 return RX_QUEUED; 3505 } 3506 3507 static ieee80211_rx_result debug_noinline 3508 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3509 { 3510 struct ieee80211_sub_if_data *sdata = rx->sdata; 3511 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3512 __le16 stype; 3513 3514 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3515 3516 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3517 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3518 sdata->vif.type != NL80211_IFTYPE_OCB && 3519 sdata->vif.type != NL80211_IFTYPE_STATION) 3520 return RX_DROP_MONITOR; 3521 3522 switch (stype) { 3523 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3524 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3525 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3526 /* process for all: mesh, mlme, ibss */ 3527 break; 3528 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3529 if (is_multicast_ether_addr(mgmt->da) && 3530 !is_broadcast_ether_addr(mgmt->da)) 3531 return RX_DROP_MONITOR; 3532 3533 /* process only for station/IBSS */ 3534 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3535 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3536 return RX_DROP_MONITOR; 3537 break; 3538 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3539 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3540 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3541 if (is_multicast_ether_addr(mgmt->da) && 3542 !is_broadcast_ether_addr(mgmt->da)) 3543 return RX_DROP_MONITOR; 3544 3545 /* process only for station */ 3546 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3547 return RX_DROP_MONITOR; 3548 break; 3549 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3550 /* process only for ibss and mesh */ 3551 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3552 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3553 return RX_DROP_MONITOR; 3554 break; 3555 default: 3556 return RX_DROP_MONITOR; 3557 } 3558 3559 /* queue up frame and kick off work to process it */ 3560 skb_queue_tail(&sdata->skb_queue, rx->skb); 3561 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3562 if (rx->sta) 3563 rx->sta->rx_stats.packets++; 3564 3565 return RX_QUEUED; 3566 } 3567 3568 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3569 struct ieee80211_rate *rate) 3570 { 3571 struct ieee80211_sub_if_data *sdata; 3572 struct ieee80211_local *local = rx->local; 3573 struct sk_buff *skb = rx->skb, *skb2; 3574 struct net_device *prev_dev = NULL; 3575 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3576 int needed_headroom; 3577 3578 /* 3579 * If cooked monitor has been processed already, then 3580 * don't do it again. If not, set the flag. 3581 */ 3582 if (rx->flags & IEEE80211_RX_CMNTR) 3583 goto out_free_skb; 3584 rx->flags |= IEEE80211_RX_CMNTR; 3585 3586 /* If there are no cooked monitor interfaces, just free the SKB */ 3587 if (!local->cooked_mntrs) 3588 goto out_free_skb; 3589 3590 /* vendor data is long removed here */ 3591 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3592 /* room for the radiotap header based on driver features */ 3593 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3594 3595 if (skb_headroom(skb) < needed_headroom && 3596 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3597 goto out_free_skb; 3598 3599 /* prepend radiotap information */ 3600 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3601 false); 3602 3603 skb_reset_mac_header(skb); 3604 skb->ip_summed = CHECKSUM_UNNECESSARY; 3605 skb->pkt_type = PACKET_OTHERHOST; 3606 skb->protocol = htons(ETH_P_802_2); 3607 3608 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3609 if (!ieee80211_sdata_running(sdata)) 3610 continue; 3611 3612 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3613 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3614 continue; 3615 3616 if (prev_dev) { 3617 skb2 = skb_clone(skb, GFP_ATOMIC); 3618 if (skb2) { 3619 skb2->dev = prev_dev; 3620 netif_receive_skb(skb2); 3621 } 3622 } 3623 3624 prev_dev = sdata->dev; 3625 ieee80211_rx_stats(sdata->dev, skb->len); 3626 } 3627 3628 if (prev_dev) { 3629 skb->dev = prev_dev; 3630 netif_receive_skb(skb); 3631 return; 3632 } 3633 3634 out_free_skb: 3635 dev_kfree_skb(skb); 3636 } 3637 3638 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3639 ieee80211_rx_result res) 3640 { 3641 switch (res) { 3642 case RX_DROP_MONITOR: 3643 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3644 if (rx->sta) 3645 rx->sta->rx_stats.dropped++; 3646 /* fall through */ 3647 case RX_CONTINUE: { 3648 struct ieee80211_rate *rate = NULL; 3649 struct ieee80211_supported_band *sband; 3650 struct ieee80211_rx_status *status; 3651 3652 status = IEEE80211_SKB_RXCB((rx->skb)); 3653 3654 sband = rx->local->hw.wiphy->bands[status->band]; 3655 if (status->encoding == RX_ENC_LEGACY) 3656 rate = &sband->bitrates[status->rate_idx]; 3657 3658 ieee80211_rx_cooked_monitor(rx, rate); 3659 break; 3660 } 3661 case RX_DROP_UNUSABLE: 3662 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3663 if (rx->sta) 3664 rx->sta->rx_stats.dropped++; 3665 dev_kfree_skb(rx->skb); 3666 break; 3667 case RX_QUEUED: 3668 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3669 break; 3670 } 3671 } 3672 3673 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3674 struct sk_buff_head *frames) 3675 { 3676 ieee80211_rx_result res = RX_DROP_MONITOR; 3677 struct sk_buff *skb; 3678 3679 #define CALL_RXH(rxh) \ 3680 do { \ 3681 res = rxh(rx); \ 3682 if (res != RX_CONTINUE) \ 3683 goto rxh_next; \ 3684 } while (0) 3685 3686 /* Lock here to avoid hitting all of the data used in the RX 3687 * path (e.g. key data, station data, ...) concurrently when 3688 * a frame is released from the reorder buffer due to timeout 3689 * from the timer, potentially concurrently with RX from the 3690 * driver. 3691 */ 3692 spin_lock_bh(&rx->local->rx_path_lock); 3693 3694 while ((skb = __skb_dequeue(frames))) { 3695 /* 3696 * all the other fields are valid across frames 3697 * that belong to an aMPDU since they are on the 3698 * same TID from the same station 3699 */ 3700 rx->skb = skb; 3701 3702 CALL_RXH(ieee80211_rx_h_check_more_data); 3703 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3704 CALL_RXH(ieee80211_rx_h_sta_process); 3705 CALL_RXH(ieee80211_rx_h_decrypt); 3706 CALL_RXH(ieee80211_rx_h_defragment); 3707 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3708 /* must be after MMIC verify so header is counted in MPDU mic */ 3709 #ifdef CONFIG_MAC80211_MESH 3710 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3711 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3712 #endif 3713 CALL_RXH(ieee80211_rx_h_amsdu); 3714 CALL_RXH(ieee80211_rx_h_data); 3715 3716 /* special treatment -- needs the queue */ 3717 res = ieee80211_rx_h_ctrl(rx, frames); 3718 if (res != RX_CONTINUE) 3719 goto rxh_next; 3720 3721 CALL_RXH(ieee80211_rx_h_mgmt_check); 3722 CALL_RXH(ieee80211_rx_h_action); 3723 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3724 CALL_RXH(ieee80211_rx_h_action_return); 3725 CALL_RXH(ieee80211_rx_h_mgmt); 3726 3727 rxh_next: 3728 ieee80211_rx_handlers_result(rx, res); 3729 3730 #undef CALL_RXH 3731 } 3732 3733 spin_unlock_bh(&rx->local->rx_path_lock); 3734 } 3735 3736 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3737 { 3738 struct sk_buff_head reorder_release; 3739 ieee80211_rx_result res = RX_DROP_MONITOR; 3740 3741 __skb_queue_head_init(&reorder_release); 3742 3743 #define CALL_RXH(rxh) \ 3744 do { \ 3745 res = rxh(rx); \ 3746 if (res != RX_CONTINUE) \ 3747 goto rxh_next; \ 3748 } while (0) 3749 3750 CALL_RXH(ieee80211_rx_h_check_dup); 3751 CALL_RXH(ieee80211_rx_h_check); 3752 3753 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3754 3755 ieee80211_rx_handlers(rx, &reorder_release); 3756 return; 3757 3758 rxh_next: 3759 ieee80211_rx_handlers_result(rx, res); 3760 3761 #undef CALL_RXH 3762 } 3763 3764 /* 3765 * This function makes calls into the RX path, therefore 3766 * it has to be invoked under RCU read lock. 3767 */ 3768 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3769 { 3770 struct sk_buff_head frames; 3771 struct ieee80211_rx_data rx = { 3772 .sta = sta, 3773 .sdata = sta->sdata, 3774 .local = sta->local, 3775 /* This is OK -- must be QoS data frame */ 3776 .security_idx = tid, 3777 .seqno_idx = tid, 3778 .napi = NULL, /* must be NULL to not have races */ 3779 }; 3780 struct tid_ampdu_rx *tid_agg_rx; 3781 3782 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3783 if (!tid_agg_rx) 3784 return; 3785 3786 __skb_queue_head_init(&frames); 3787 3788 spin_lock(&tid_agg_rx->reorder_lock); 3789 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3790 spin_unlock(&tid_agg_rx->reorder_lock); 3791 3792 if (!skb_queue_empty(&frames)) { 3793 struct ieee80211_event event = { 3794 .type = BA_FRAME_TIMEOUT, 3795 .u.ba.tid = tid, 3796 .u.ba.sta = &sta->sta, 3797 }; 3798 drv_event_callback(rx.local, rx.sdata, &event); 3799 } 3800 3801 ieee80211_rx_handlers(&rx, &frames); 3802 } 3803 3804 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3805 u16 ssn, u64 filtered, 3806 u16 received_mpdus) 3807 { 3808 struct sta_info *sta; 3809 struct tid_ampdu_rx *tid_agg_rx; 3810 struct sk_buff_head frames; 3811 struct ieee80211_rx_data rx = { 3812 /* This is OK -- must be QoS data frame */ 3813 .security_idx = tid, 3814 .seqno_idx = tid, 3815 }; 3816 int i, diff; 3817 3818 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3819 return; 3820 3821 __skb_queue_head_init(&frames); 3822 3823 sta = container_of(pubsta, struct sta_info, sta); 3824 3825 rx.sta = sta; 3826 rx.sdata = sta->sdata; 3827 rx.local = sta->local; 3828 3829 rcu_read_lock(); 3830 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3831 if (!tid_agg_rx) 3832 goto out; 3833 3834 spin_lock_bh(&tid_agg_rx->reorder_lock); 3835 3836 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3837 int release; 3838 3839 /* release all frames in the reorder buffer */ 3840 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3841 IEEE80211_SN_MODULO; 3842 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3843 release, &frames); 3844 /* update ssn to match received ssn */ 3845 tid_agg_rx->head_seq_num = ssn; 3846 } else { 3847 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3848 &frames); 3849 } 3850 3851 /* handle the case that received ssn is behind the mac ssn. 3852 * it can be tid_agg_rx->buf_size behind and still be valid */ 3853 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3854 if (diff >= tid_agg_rx->buf_size) { 3855 tid_agg_rx->reorder_buf_filtered = 0; 3856 goto release; 3857 } 3858 filtered = filtered >> diff; 3859 ssn += diff; 3860 3861 /* update bitmap */ 3862 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3863 int index = (ssn + i) % tid_agg_rx->buf_size; 3864 3865 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3866 if (filtered & BIT_ULL(i)) 3867 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3868 } 3869 3870 /* now process also frames that the filter marking released */ 3871 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3872 3873 release: 3874 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3875 3876 ieee80211_rx_handlers(&rx, &frames); 3877 3878 out: 3879 rcu_read_unlock(); 3880 } 3881 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3882 3883 /* main receive path */ 3884 3885 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3886 { 3887 struct ieee80211_sub_if_data *sdata = rx->sdata; 3888 struct sk_buff *skb = rx->skb; 3889 struct ieee80211_hdr *hdr = (void *)skb->data; 3890 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3891 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3892 bool multicast = is_multicast_ether_addr(hdr->addr1); 3893 3894 switch (sdata->vif.type) { 3895 case NL80211_IFTYPE_STATION: 3896 if (!bssid && !sdata->u.mgd.use_4addr) 3897 return false; 3898 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 3899 return false; 3900 if (multicast) 3901 return true; 3902 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3903 case NL80211_IFTYPE_ADHOC: 3904 if (!bssid) 3905 return false; 3906 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3907 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3908 return false; 3909 if (ieee80211_is_beacon(hdr->frame_control)) 3910 return true; 3911 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3912 return false; 3913 if (!multicast && 3914 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3915 return false; 3916 if (!rx->sta) { 3917 int rate_idx; 3918 if (status->encoding != RX_ENC_LEGACY) 3919 rate_idx = 0; /* TODO: HT/VHT rates */ 3920 else 3921 rate_idx = status->rate_idx; 3922 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3923 BIT(rate_idx)); 3924 } 3925 return true; 3926 case NL80211_IFTYPE_OCB: 3927 if (!bssid) 3928 return false; 3929 if (!ieee80211_is_data_present(hdr->frame_control)) 3930 return false; 3931 if (!is_broadcast_ether_addr(bssid)) 3932 return false; 3933 if (!multicast && 3934 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3935 return false; 3936 if (!rx->sta) { 3937 int rate_idx; 3938 if (status->encoding != RX_ENC_LEGACY) 3939 rate_idx = 0; /* TODO: HT rates */ 3940 else 3941 rate_idx = status->rate_idx; 3942 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3943 BIT(rate_idx)); 3944 } 3945 return true; 3946 case NL80211_IFTYPE_MESH_POINT: 3947 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3948 return false; 3949 if (multicast) 3950 return true; 3951 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3952 case NL80211_IFTYPE_AP_VLAN: 3953 case NL80211_IFTYPE_AP: 3954 if (!bssid) 3955 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3956 3957 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3958 /* 3959 * Accept public action frames even when the 3960 * BSSID doesn't match, this is used for P2P 3961 * and location updates. Note that mac80211 3962 * itself never looks at these frames. 3963 */ 3964 if (!multicast && 3965 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3966 return false; 3967 if (ieee80211_is_public_action(hdr, skb->len)) 3968 return true; 3969 return ieee80211_is_beacon(hdr->frame_control); 3970 } 3971 3972 if (!ieee80211_has_tods(hdr->frame_control)) { 3973 /* ignore data frames to TDLS-peers */ 3974 if (ieee80211_is_data(hdr->frame_control)) 3975 return false; 3976 /* ignore action frames to TDLS-peers */ 3977 if (ieee80211_is_action(hdr->frame_control) && 3978 !is_broadcast_ether_addr(bssid) && 3979 !ether_addr_equal(bssid, hdr->addr1)) 3980 return false; 3981 } 3982 3983 /* 3984 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3985 * the BSSID - we've checked that already but may have accepted 3986 * the wildcard (ff:ff:ff:ff:ff:ff). 3987 * 3988 * It also says: 3989 * The BSSID of the Data frame is determined as follows: 3990 * a) If the STA is contained within an AP or is associated 3991 * with an AP, the BSSID is the address currently in use 3992 * by the STA contained in the AP. 3993 * 3994 * So we should not accept data frames with an address that's 3995 * multicast. 3996 * 3997 * Accepting it also opens a security problem because stations 3998 * could encrypt it with the GTK and inject traffic that way. 3999 */ 4000 if (ieee80211_is_data(hdr->frame_control) && multicast) 4001 return false; 4002 4003 return true; 4004 case NL80211_IFTYPE_WDS: 4005 if (bssid || !ieee80211_is_data(hdr->frame_control)) 4006 return false; 4007 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 4008 case NL80211_IFTYPE_P2P_DEVICE: 4009 return ieee80211_is_public_action(hdr, skb->len) || 4010 ieee80211_is_probe_req(hdr->frame_control) || 4011 ieee80211_is_probe_resp(hdr->frame_control) || 4012 ieee80211_is_beacon(hdr->frame_control); 4013 case NL80211_IFTYPE_NAN: 4014 /* Currently no frames on NAN interface are allowed */ 4015 return false; 4016 default: 4017 break; 4018 } 4019 4020 WARN_ON_ONCE(1); 4021 return false; 4022 } 4023 4024 void ieee80211_check_fast_rx(struct sta_info *sta) 4025 { 4026 struct ieee80211_sub_if_data *sdata = sta->sdata; 4027 struct ieee80211_local *local = sdata->local; 4028 struct ieee80211_key *key; 4029 struct ieee80211_fast_rx fastrx = { 4030 .dev = sdata->dev, 4031 .vif_type = sdata->vif.type, 4032 .control_port_protocol = sdata->control_port_protocol, 4033 }, *old, *new = NULL; 4034 bool assign = false; 4035 4036 /* use sparse to check that we don't return without updating */ 4037 __acquire(check_fast_rx); 4038 4039 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4040 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4041 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4042 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4043 4044 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4045 4046 /* fast-rx doesn't do reordering */ 4047 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4048 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4049 goto clear; 4050 4051 switch (sdata->vif.type) { 4052 case NL80211_IFTYPE_STATION: 4053 if (sta->sta.tdls) { 4054 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4055 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4056 fastrx.expected_ds_bits = 0; 4057 } else { 4058 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 4059 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4060 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4061 fastrx.expected_ds_bits = 4062 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4063 } 4064 4065 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4066 fastrx.expected_ds_bits |= 4067 cpu_to_le16(IEEE80211_FCTL_TODS); 4068 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4069 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4070 } 4071 4072 if (!sdata->u.mgd.powersave) 4073 break; 4074 4075 /* software powersave is a huge mess, avoid all of it */ 4076 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4077 goto clear; 4078 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4079 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4080 goto clear; 4081 break; 4082 case NL80211_IFTYPE_AP_VLAN: 4083 case NL80211_IFTYPE_AP: 4084 /* parallel-rx requires this, at least with calls to 4085 * ieee80211_sta_ps_transition() 4086 */ 4087 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4088 goto clear; 4089 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4090 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4091 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4092 4093 fastrx.internal_forward = 4094 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4095 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4096 !sdata->u.vlan.sta); 4097 4098 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4099 sdata->u.vlan.sta) { 4100 fastrx.expected_ds_bits |= 4101 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4102 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4103 fastrx.internal_forward = 0; 4104 } 4105 4106 break; 4107 default: 4108 goto clear; 4109 } 4110 4111 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4112 goto clear; 4113 4114 rcu_read_lock(); 4115 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4116 if (key) { 4117 switch (key->conf.cipher) { 4118 case WLAN_CIPHER_SUITE_TKIP: 4119 /* we don't want to deal with MMIC in fast-rx */ 4120 goto clear_rcu; 4121 case WLAN_CIPHER_SUITE_CCMP: 4122 case WLAN_CIPHER_SUITE_CCMP_256: 4123 case WLAN_CIPHER_SUITE_GCMP: 4124 case WLAN_CIPHER_SUITE_GCMP_256: 4125 break; 4126 default: 4127 /* We also don't want to deal with 4128 * WEP or cipher scheme. 4129 */ 4130 goto clear_rcu; 4131 } 4132 4133 fastrx.key = true; 4134 fastrx.icv_len = key->conf.icv_len; 4135 } 4136 4137 assign = true; 4138 clear_rcu: 4139 rcu_read_unlock(); 4140 clear: 4141 __release(check_fast_rx); 4142 4143 if (assign) 4144 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4145 4146 spin_lock_bh(&sta->lock); 4147 old = rcu_dereference_protected(sta->fast_rx, true); 4148 rcu_assign_pointer(sta->fast_rx, new); 4149 spin_unlock_bh(&sta->lock); 4150 4151 if (old) 4152 kfree_rcu(old, rcu_head); 4153 } 4154 4155 void ieee80211_clear_fast_rx(struct sta_info *sta) 4156 { 4157 struct ieee80211_fast_rx *old; 4158 4159 spin_lock_bh(&sta->lock); 4160 old = rcu_dereference_protected(sta->fast_rx, true); 4161 RCU_INIT_POINTER(sta->fast_rx, NULL); 4162 spin_unlock_bh(&sta->lock); 4163 4164 if (old) 4165 kfree_rcu(old, rcu_head); 4166 } 4167 4168 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4169 { 4170 struct ieee80211_local *local = sdata->local; 4171 struct sta_info *sta; 4172 4173 lockdep_assert_held(&local->sta_mtx); 4174 4175 list_for_each_entry(sta, &local->sta_list, list) { 4176 if (sdata != sta->sdata && 4177 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4178 continue; 4179 ieee80211_check_fast_rx(sta); 4180 } 4181 } 4182 4183 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4184 { 4185 struct ieee80211_local *local = sdata->local; 4186 4187 mutex_lock(&local->sta_mtx); 4188 __ieee80211_check_fast_rx_iface(sdata); 4189 mutex_unlock(&local->sta_mtx); 4190 } 4191 4192 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4193 struct ieee80211_fast_rx *fast_rx) 4194 { 4195 struct sk_buff *skb = rx->skb; 4196 struct ieee80211_hdr *hdr = (void *)skb->data; 4197 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4198 struct sta_info *sta = rx->sta; 4199 int orig_len = skb->len; 4200 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4201 int snap_offs = hdrlen; 4202 struct { 4203 u8 snap[sizeof(rfc1042_header)]; 4204 __be16 proto; 4205 } *payload __aligned(2); 4206 struct { 4207 u8 da[ETH_ALEN]; 4208 u8 sa[ETH_ALEN]; 4209 } addrs __aligned(2); 4210 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 4211 4212 if (fast_rx->uses_rss) 4213 stats = this_cpu_ptr(sta->pcpu_rx_stats); 4214 4215 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4216 * to a common data structure; drivers can implement that per queue 4217 * but we don't have that information in mac80211 4218 */ 4219 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4220 return false; 4221 4222 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4223 4224 /* If using encryption, we also need to have: 4225 * - PN_VALIDATED: similar, but the implementation is tricky 4226 * - DECRYPTED: necessary for PN_VALIDATED 4227 */ 4228 if (fast_rx->key && 4229 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4230 return false; 4231 4232 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4233 return false; 4234 4235 if (unlikely(ieee80211_is_frag(hdr))) 4236 return false; 4237 4238 /* Since our interface address cannot be multicast, this 4239 * implicitly also rejects multicast frames without the 4240 * explicit check. 4241 * 4242 * We shouldn't get any *data* frames not addressed to us 4243 * (AP mode will accept multicast *management* frames), but 4244 * punting here will make it go through the full checks in 4245 * ieee80211_accept_frame(). 4246 */ 4247 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4248 return false; 4249 4250 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4251 IEEE80211_FCTL_TODS)) != 4252 fast_rx->expected_ds_bits) 4253 return false; 4254 4255 /* assign the key to drop unencrypted frames (later) 4256 * and strip the IV/MIC if necessary 4257 */ 4258 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4259 /* GCMP header length is the same */ 4260 snap_offs += IEEE80211_CCMP_HDR_LEN; 4261 } 4262 4263 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4264 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4265 goto drop; 4266 4267 payload = (void *)(skb->data + snap_offs); 4268 4269 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4270 return false; 4271 4272 /* Don't handle these here since they require special code. 4273 * Accept AARP and IPX even though they should come with a 4274 * bridge-tunnel header - but if we get them this way then 4275 * there's little point in discarding them. 4276 */ 4277 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4278 payload->proto == fast_rx->control_port_protocol)) 4279 return false; 4280 } 4281 4282 /* after this point, don't punt to the slowpath! */ 4283 4284 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4285 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4286 goto drop; 4287 4288 if (unlikely(fast_rx->sta_notify)) { 4289 ieee80211_sta_rx_notify(rx->sdata, hdr); 4290 fast_rx->sta_notify = false; 4291 } 4292 4293 /* statistics part of ieee80211_rx_h_sta_process() */ 4294 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4295 stats->last_signal = status->signal; 4296 if (!fast_rx->uses_rss) 4297 ewma_signal_add(&sta->rx_stats_avg.signal, 4298 -status->signal); 4299 } 4300 4301 if (status->chains) { 4302 int i; 4303 4304 stats->chains = status->chains; 4305 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4306 int signal = status->chain_signal[i]; 4307 4308 if (!(status->chains & BIT(i))) 4309 continue; 4310 4311 stats->chain_signal_last[i] = signal; 4312 if (!fast_rx->uses_rss) 4313 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4314 -signal); 4315 } 4316 } 4317 /* end of statistics */ 4318 4319 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4320 goto drop; 4321 4322 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4323 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4324 RX_QUEUED) 4325 goto drop; 4326 4327 return true; 4328 } 4329 4330 stats->last_rx = jiffies; 4331 stats->last_rate = sta_stats_encode_rate(status); 4332 4333 stats->fragments++; 4334 stats->packets++; 4335 4336 /* do the header conversion - first grab the addresses */ 4337 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4338 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4339 /* remove the SNAP but leave the ethertype */ 4340 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4341 /* push the addresses in front */ 4342 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4343 4344 skb->dev = fast_rx->dev; 4345 4346 ieee80211_rx_stats(fast_rx->dev, skb->len); 4347 4348 /* The seqno index has the same property as needed 4349 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4350 * for non-QoS-data frames. Here we know it's a data 4351 * frame, so count MSDUs. 4352 */ 4353 u64_stats_update_begin(&stats->syncp); 4354 stats->msdu[rx->seqno_idx]++; 4355 stats->bytes += orig_len; 4356 u64_stats_update_end(&stats->syncp); 4357 4358 if (fast_rx->internal_forward) { 4359 struct sk_buff *xmit_skb = NULL; 4360 if (is_multicast_ether_addr(addrs.da)) { 4361 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4362 } else if (!ether_addr_equal(addrs.da, addrs.sa) && 4363 sta_info_get(rx->sdata, addrs.da)) { 4364 xmit_skb = skb; 4365 skb = NULL; 4366 } 4367 4368 if (xmit_skb) { 4369 /* 4370 * Send to wireless media and increase priority by 256 4371 * to keep the received priority instead of 4372 * reclassifying the frame (see cfg80211_classify8021d). 4373 */ 4374 xmit_skb->priority += 256; 4375 xmit_skb->protocol = htons(ETH_P_802_3); 4376 skb_reset_network_header(xmit_skb); 4377 skb_reset_mac_header(xmit_skb); 4378 dev_queue_xmit(xmit_skb); 4379 } 4380 4381 if (!skb) 4382 return true; 4383 } 4384 4385 /* deliver to local stack */ 4386 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4387 memset(skb->cb, 0, sizeof(skb->cb)); 4388 if (rx->napi) 4389 napi_gro_receive(rx->napi, skb); 4390 else 4391 netif_receive_skb(skb); 4392 4393 return true; 4394 drop: 4395 dev_kfree_skb(skb); 4396 stats->dropped++; 4397 return true; 4398 } 4399 4400 /* 4401 * This function returns whether or not the SKB 4402 * was destined for RX processing or not, which, 4403 * if consume is true, is equivalent to whether 4404 * or not the skb was consumed. 4405 */ 4406 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4407 struct sk_buff *skb, bool consume) 4408 { 4409 struct ieee80211_local *local = rx->local; 4410 struct ieee80211_sub_if_data *sdata = rx->sdata; 4411 4412 rx->skb = skb; 4413 4414 /* See if we can do fast-rx; if we have to copy we already lost, 4415 * so punt in that case. We should never have to deliver a data 4416 * frame to multiple interfaces anyway. 4417 * 4418 * We skip the ieee80211_accept_frame() call and do the necessary 4419 * checking inside ieee80211_invoke_fast_rx(). 4420 */ 4421 if (consume && rx->sta) { 4422 struct ieee80211_fast_rx *fast_rx; 4423 4424 fast_rx = rcu_dereference(rx->sta->fast_rx); 4425 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4426 return true; 4427 } 4428 4429 if (!ieee80211_accept_frame(rx)) 4430 return false; 4431 4432 if (!consume) { 4433 skb = skb_copy(skb, GFP_ATOMIC); 4434 if (!skb) { 4435 if (net_ratelimit()) 4436 wiphy_debug(local->hw.wiphy, 4437 "failed to copy skb for %s\n", 4438 sdata->name); 4439 return true; 4440 } 4441 4442 rx->skb = skb; 4443 } 4444 4445 ieee80211_invoke_rx_handlers(rx); 4446 return true; 4447 } 4448 4449 /* 4450 * This is the actual Rx frames handler. as it belongs to Rx path it must 4451 * be called with rcu_read_lock protection. 4452 */ 4453 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4454 struct ieee80211_sta *pubsta, 4455 struct sk_buff *skb, 4456 struct napi_struct *napi) 4457 { 4458 struct ieee80211_local *local = hw_to_local(hw); 4459 struct ieee80211_sub_if_data *sdata; 4460 struct ieee80211_hdr *hdr; 4461 __le16 fc; 4462 struct ieee80211_rx_data rx; 4463 struct ieee80211_sub_if_data *prev; 4464 struct rhlist_head *tmp; 4465 int err = 0; 4466 4467 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4468 memset(&rx, 0, sizeof(rx)); 4469 rx.skb = skb; 4470 rx.local = local; 4471 rx.napi = napi; 4472 4473 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4474 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4475 4476 if (ieee80211_is_mgmt(fc)) { 4477 /* drop frame if too short for header */ 4478 if (skb->len < ieee80211_hdrlen(fc)) 4479 err = -ENOBUFS; 4480 else 4481 err = skb_linearize(skb); 4482 } else { 4483 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4484 } 4485 4486 if (err) { 4487 dev_kfree_skb(skb); 4488 return; 4489 } 4490 4491 hdr = (struct ieee80211_hdr *)skb->data; 4492 ieee80211_parse_qos(&rx); 4493 ieee80211_verify_alignment(&rx); 4494 4495 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4496 ieee80211_is_beacon(hdr->frame_control))) 4497 ieee80211_scan_rx(local, skb); 4498 4499 if (ieee80211_is_data(fc)) { 4500 struct sta_info *sta, *prev_sta; 4501 4502 if (pubsta) { 4503 rx.sta = container_of(pubsta, struct sta_info, sta); 4504 rx.sdata = rx.sta->sdata; 4505 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4506 return; 4507 goto out; 4508 } 4509 4510 prev_sta = NULL; 4511 4512 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4513 if (!prev_sta) { 4514 prev_sta = sta; 4515 continue; 4516 } 4517 4518 rx.sta = prev_sta; 4519 rx.sdata = prev_sta->sdata; 4520 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4521 4522 prev_sta = sta; 4523 } 4524 4525 if (prev_sta) { 4526 rx.sta = prev_sta; 4527 rx.sdata = prev_sta->sdata; 4528 4529 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4530 return; 4531 goto out; 4532 } 4533 } 4534 4535 prev = NULL; 4536 4537 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4538 if (!ieee80211_sdata_running(sdata)) 4539 continue; 4540 4541 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4542 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4543 continue; 4544 4545 /* 4546 * frame is destined for this interface, but if it's 4547 * not also for the previous one we handle that after 4548 * the loop to avoid copying the SKB once too much 4549 */ 4550 4551 if (!prev) { 4552 prev = sdata; 4553 continue; 4554 } 4555 4556 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4557 rx.sdata = prev; 4558 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4559 4560 prev = sdata; 4561 } 4562 4563 if (prev) { 4564 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4565 rx.sdata = prev; 4566 4567 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4568 return; 4569 } 4570 4571 out: 4572 dev_kfree_skb(skb); 4573 } 4574 4575 /* 4576 * This is the receive path handler. It is called by a low level driver when an 4577 * 802.11 MPDU is received from the hardware. 4578 */ 4579 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4580 struct sk_buff *skb, struct napi_struct *napi) 4581 { 4582 struct ieee80211_local *local = hw_to_local(hw); 4583 struct ieee80211_rate *rate = NULL; 4584 struct ieee80211_supported_band *sband; 4585 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4586 4587 WARN_ON_ONCE(softirq_count() == 0); 4588 4589 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4590 goto drop; 4591 4592 sband = local->hw.wiphy->bands[status->band]; 4593 if (WARN_ON(!sband)) 4594 goto drop; 4595 4596 /* 4597 * If we're suspending, it is possible although not too likely 4598 * that we'd be receiving frames after having already partially 4599 * quiesced the stack. We can't process such frames then since 4600 * that might, for example, cause stations to be added or other 4601 * driver callbacks be invoked. 4602 */ 4603 if (unlikely(local->quiescing || local->suspended)) 4604 goto drop; 4605 4606 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4607 if (unlikely(local->in_reconfig)) 4608 goto drop; 4609 4610 /* 4611 * The same happens when we're not even started, 4612 * but that's worth a warning. 4613 */ 4614 if (WARN_ON(!local->started)) 4615 goto drop; 4616 4617 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4618 /* 4619 * Validate the rate, unless a PLCP error means that 4620 * we probably can't have a valid rate here anyway. 4621 */ 4622 4623 switch (status->encoding) { 4624 case RX_ENC_HT: 4625 /* 4626 * rate_idx is MCS index, which can be [0-76] 4627 * as documented on: 4628 * 4629 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4630 * 4631 * Anything else would be some sort of driver or 4632 * hardware error. The driver should catch hardware 4633 * errors. 4634 */ 4635 if (WARN(status->rate_idx > 76, 4636 "Rate marked as an HT rate but passed " 4637 "status->rate_idx is not " 4638 "an MCS index [0-76]: %d (0x%02x)\n", 4639 status->rate_idx, 4640 status->rate_idx)) 4641 goto drop; 4642 break; 4643 case RX_ENC_VHT: 4644 if (WARN_ONCE(status->rate_idx > 9 || 4645 !status->nss || 4646 status->nss > 8, 4647 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4648 status->rate_idx, status->nss)) 4649 goto drop; 4650 break; 4651 case RX_ENC_HE: 4652 if (WARN_ONCE(status->rate_idx > 11 || 4653 !status->nss || 4654 status->nss > 8, 4655 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 4656 status->rate_idx, status->nss)) 4657 goto drop; 4658 break; 4659 default: 4660 WARN_ON_ONCE(1); 4661 /* fall through */ 4662 case RX_ENC_LEGACY: 4663 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4664 goto drop; 4665 rate = &sband->bitrates[status->rate_idx]; 4666 } 4667 } 4668 4669 status->rx_flags = 0; 4670 4671 /* 4672 * key references and virtual interfaces are protected using RCU 4673 * and this requires that we are in a read-side RCU section during 4674 * receive processing 4675 */ 4676 rcu_read_lock(); 4677 4678 /* 4679 * Frames with failed FCS/PLCP checksum are not returned, 4680 * all other frames are returned without radiotap header 4681 * if it was previously present. 4682 * Also, frames with less than 16 bytes are dropped. 4683 */ 4684 skb = ieee80211_rx_monitor(local, skb, rate); 4685 if (!skb) { 4686 rcu_read_unlock(); 4687 return; 4688 } 4689 4690 ieee80211_tpt_led_trig_rx(local, 4691 ((struct ieee80211_hdr *)skb->data)->frame_control, 4692 skb->len); 4693 4694 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4695 4696 rcu_read_unlock(); 4697 4698 return; 4699 drop: 4700 kfree_skb(skb); 4701 } 4702 EXPORT_SYMBOL(ieee80211_rx_napi); 4703 4704 /* This is a version of the rx handler that can be called from hard irq 4705 * context. Post the skb on the queue and schedule the tasklet */ 4706 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4707 { 4708 struct ieee80211_local *local = hw_to_local(hw); 4709 4710 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4711 4712 skb->pkt_type = IEEE80211_RX_MSG; 4713 skb_queue_tail(&local->skb_queue, skb); 4714 tasklet_schedule(&local->tasklet); 4715 } 4716 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4717