xref: /linux/net/mac80211/rx.c (revision c4c11dd160a8cc98f402c4e12f94b1572e822ffd)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/jiffies.h>
13 #include <linux/slab.h>
14 #include <linux/kernel.h>
15 #include <linux/skbuff.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/rcupdate.h>
19 #include <linux/export.h>
20 #include <net/mac80211.h>
21 #include <net/ieee80211_radiotap.h>
22 #include <asm/unaligned.h>
23 
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "led.h"
27 #include "mesh.h"
28 #include "wep.h"
29 #include "wpa.h"
30 #include "tkip.h"
31 #include "wme.h"
32 #include "rate.h"
33 
34 /*
35  * monitor mode reception
36  *
37  * This function cleans up the SKB, i.e. it removes all the stuff
38  * only useful for monitoring.
39  */
40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
41 					   struct sk_buff *skb)
42 {
43 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
44 
45 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 		if (likely(skb->len > FCS_LEN))
47 			__pskb_trim(skb, skb->len - FCS_LEN);
48 		else {
49 			/* driver bug */
50 			WARN_ON(1);
51 			dev_kfree_skb(skb);
52 			return NULL;
53 		}
54 	}
55 
56 	if (status->vendor_radiotap_len)
57 		__pskb_pull(skb, status->vendor_radiotap_len);
58 
59 	return skb;
60 }
61 
62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len)
63 {
64 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
65 	struct ieee80211_hdr *hdr;
66 
67 	hdr = (void *)(skb->data + status->vendor_radiotap_len);
68 
69 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
70 			    RX_FLAG_FAILED_PLCP_CRC |
71 			    RX_FLAG_AMPDU_IS_ZEROLEN))
72 		return 1;
73 	if (unlikely(skb->len < 16 + present_fcs_len +
74 				status->vendor_radiotap_len))
75 		return 1;
76 	if (ieee80211_is_ctl(hdr->frame_control) &&
77 	    !ieee80211_is_pspoll(hdr->frame_control) &&
78 	    !ieee80211_is_back_req(hdr->frame_control))
79 		return 1;
80 	return 0;
81 }
82 
83 static int
84 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
85 			    struct ieee80211_rx_status *status)
86 {
87 	int len;
88 
89 	/* always present fields */
90 	len = sizeof(struct ieee80211_radiotap_header) + 9;
91 
92 	/* allocate extra bitmap */
93 	if (status->vendor_radiotap_len)
94 		len += 4;
95 
96 	if (ieee80211_have_rx_timestamp(status)) {
97 		len = ALIGN(len, 8);
98 		len += 8;
99 	}
100 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
101 		len += 1;
102 
103 	/* padding for RX_FLAGS if necessary */
104 	len = ALIGN(len, 2);
105 
106 	if (status->flag & RX_FLAG_HT) /* HT info */
107 		len += 3;
108 
109 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 		len = ALIGN(len, 4);
111 		len += 8;
112 	}
113 
114 	if (status->flag & RX_FLAG_VHT) {
115 		len = ALIGN(len, 2);
116 		len += 12;
117 	}
118 
119 	if (status->vendor_radiotap_len) {
120 		if (WARN_ON_ONCE(status->vendor_radiotap_align == 0))
121 			status->vendor_radiotap_align = 1;
122 		/* align standard part of vendor namespace */
123 		len = ALIGN(len, 2);
124 		/* allocate standard part of vendor namespace */
125 		len += 6;
126 		/* align vendor-defined part */
127 		len = ALIGN(len, status->vendor_radiotap_align);
128 		/* vendor-defined part is already in skb */
129 	}
130 
131 	return len;
132 }
133 
134 /*
135  * ieee80211_add_rx_radiotap_header - add radiotap header
136  *
137  * add a radiotap header containing all the fields which the hardware provided.
138  */
139 static void
140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
141 				 struct sk_buff *skb,
142 				 struct ieee80211_rate *rate,
143 				 int rtap_len, bool has_fcs)
144 {
145 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
146 	struct ieee80211_radiotap_header *rthdr;
147 	unsigned char *pos;
148 	u16 rx_flags = 0;
149 	int mpdulen;
150 
151 	mpdulen = skb->len;
152 	if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
153 		mpdulen += FCS_LEN;
154 
155 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
156 	memset(rthdr, 0, rtap_len);
157 
158 	/* radiotap header, set always present flags */
159 	rthdr->it_present =
160 		cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
161 			    (1 << IEEE80211_RADIOTAP_CHANNEL) |
162 			    (1 << IEEE80211_RADIOTAP_ANTENNA) |
163 			    (1 << IEEE80211_RADIOTAP_RX_FLAGS));
164 	rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len);
165 
166 	pos = (unsigned char *)(rthdr + 1);
167 
168 	if (status->vendor_radiotap_len) {
169 		rthdr->it_present |=
170 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) |
171 			cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT));
172 		put_unaligned_le32(status->vendor_radiotap_bitmap, pos);
173 		pos += 4;
174 	}
175 
176 	/* the order of the following fields is important */
177 
178 	/* IEEE80211_RADIOTAP_TSFT */
179 	if (ieee80211_have_rx_timestamp(status)) {
180 		/* padding */
181 		while ((pos - (u8 *)rthdr) & 7)
182 			*pos++ = 0;
183 		put_unaligned_le64(
184 			ieee80211_calculate_rx_timestamp(local, status,
185 							 mpdulen, 0),
186 			pos);
187 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
188 		pos += 8;
189 	}
190 
191 	/* IEEE80211_RADIOTAP_FLAGS */
192 	if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
193 		*pos |= IEEE80211_RADIOTAP_F_FCS;
194 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
195 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
196 	if (status->flag & RX_FLAG_SHORTPRE)
197 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
198 	pos++;
199 
200 	/* IEEE80211_RADIOTAP_RATE */
201 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
202 		/*
203 		 * Without rate information don't add it. If we have,
204 		 * MCS information is a separate field in radiotap,
205 		 * added below. The byte here is needed as padding
206 		 * for the channel though, so initialise it to 0.
207 		 */
208 		*pos = 0;
209 	} else {
210 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
211 		*pos = rate->bitrate / 5;
212 	}
213 	pos++;
214 
215 	/* IEEE80211_RADIOTAP_CHANNEL */
216 	put_unaligned_le16(status->freq, pos);
217 	pos += 2;
218 	if (status->band == IEEE80211_BAND_5GHZ)
219 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ,
220 				   pos);
221 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
222 		put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ,
223 				   pos);
224 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
225 		put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ,
226 				   pos);
227 	else if (rate)
228 		put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ,
229 				   pos);
230 	else
231 		put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos);
232 	pos += 2;
233 
234 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
235 	if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
236 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
237 		*pos = status->signal;
238 		rthdr->it_present |=
239 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
240 		pos++;
241 	}
242 
243 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
244 
245 	/* IEEE80211_RADIOTAP_ANTENNA */
246 	*pos = status->antenna;
247 	pos++;
248 
249 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
250 
251 	/* IEEE80211_RADIOTAP_RX_FLAGS */
252 	/* ensure 2 byte alignment for the 2 byte field as required */
253 	if ((pos - (u8 *)rthdr) & 1)
254 		*pos++ = 0;
255 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
256 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
257 	put_unaligned_le16(rx_flags, pos);
258 	pos += 2;
259 
260 	if (status->flag & RX_FLAG_HT) {
261 		unsigned int stbc;
262 
263 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
264 		*pos++ = local->hw.radiotap_mcs_details;
265 		*pos = 0;
266 		if (status->flag & RX_FLAG_SHORT_GI)
267 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
268 		if (status->flag & RX_FLAG_40MHZ)
269 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
270 		if (status->flag & RX_FLAG_HT_GF)
271 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
272 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
273 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
274 		pos++;
275 		*pos++ = status->rate_idx;
276 	}
277 
278 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
279 		u16 flags = 0;
280 
281 		/* ensure 4 byte alignment */
282 		while ((pos - (u8 *)rthdr) & 3)
283 			pos++;
284 		rthdr->it_present |=
285 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
286 		put_unaligned_le32(status->ampdu_reference, pos);
287 		pos += 4;
288 		if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
289 			flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
290 		if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
291 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
292 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
293 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
294 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
295 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
296 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
297 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
298 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
299 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
300 		put_unaligned_le16(flags, pos);
301 		pos += 2;
302 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
303 			*pos++ = status->ampdu_delimiter_crc;
304 		else
305 			*pos++ = 0;
306 		*pos++ = 0;
307 	}
308 
309 	if (status->flag & RX_FLAG_VHT) {
310 		u16 known = local->hw.radiotap_vht_details;
311 
312 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
313 		/* known field - how to handle 80+80? */
314 		if (status->flag & RX_FLAG_80P80MHZ)
315 			known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
316 		put_unaligned_le16(known, pos);
317 		pos += 2;
318 		/* flags */
319 		if (status->flag & RX_FLAG_SHORT_GI)
320 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
321 		pos++;
322 		/* bandwidth */
323 		if (status->flag & RX_FLAG_80MHZ)
324 			*pos++ = 4;
325 		else if (status->flag & RX_FLAG_80P80MHZ)
326 			*pos++ = 0; /* marked not known above */
327 		else if (status->flag & RX_FLAG_160MHZ)
328 			*pos++ = 11;
329 		else if (status->flag & RX_FLAG_40MHZ)
330 			*pos++ = 1;
331 		else /* 20 MHz */
332 			*pos++ = 0;
333 		/* MCS/NSS */
334 		*pos = (status->rate_idx << 4) | status->vht_nss;
335 		pos += 4;
336 		/* coding field */
337 		pos++;
338 		/* group ID */
339 		pos++;
340 		/* partial_aid */
341 		pos += 2;
342 	}
343 
344 	if (status->vendor_radiotap_len) {
345 		/* ensure 2 byte alignment for the vendor field as required */
346 		if ((pos - (u8 *)rthdr) & 1)
347 			*pos++ = 0;
348 		*pos++ = status->vendor_radiotap_oui[0];
349 		*pos++ = status->vendor_radiotap_oui[1];
350 		*pos++ = status->vendor_radiotap_oui[2];
351 		*pos++ = status->vendor_radiotap_subns;
352 		put_unaligned_le16(status->vendor_radiotap_len, pos);
353 		pos += 2;
354 		/* align the actual payload as requested */
355 		while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1))
356 			*pos++ = 0;
357 	}
358 }
359 
360 /*
361  * This function copies a received frame to all monitor interfaces and
362  * returns a cleaned-up SKB that no longer includes the FCS nor the
363  * radiotap header the driver might have added.
364  */
365 static struct sk_buff *
366 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
367 		     struct ieee80211_rate *rate)
368 {
369 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
370 	struct ieee80211_sub_if_data *sdata;
371 	int needed_headroom;
372 	struct sk_buff *skb, *skb2;
373 	struct net_device *prev_dev = NULL;
374 	int present_fcs_len = 0;
375 
376 	/*
377 	 * First, we may need to make a copy of the skb because
378 	 *  (1) we need to modify it for radiotap (if not present), and
379 	 *  (2) the other RX handlers will modify the skb we got.
380 	 *
381 	 * We don't need to, of course, if we aren't going to return
382 	 * the SKB because it has a bad FCS/PLCP checksum.
383 	 */
384 
385 	if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
386 		present_fcs_len = FCS_LEN;
387 
388 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
389 	if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) {
390 		dev_kfree_skb(origskb);
391 		return NULL;
392 	}
393 
394 	if (!local->monitors) {
395 		if (should_drop_frame(origskb, present_fcs_len)) {
396 			dev_kfree_skb(origskb);
397 			return NULL;
398 		}
399 
400 		return remove_monitor_info(local, origskb);
401 	}
402 
403 	/* room for the radiotap header based on driver features */
404 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
405 
406 	if (should_drop_frame(origskb, present_fcs_len)) {
407 		/* only need to expand headroom if necessary */
408 		skb = origskb;
409 		origskb = NULL;
410 
411 		/*
412 		 * This shouldn't trigger often because most devices have an
413 		 * RX header they pull before we get here, and that should
414 		 * be big enough for our radiotap information. We should
415 		 * probably export the length to drivers so that we can have
416 		 * them allocate enough headroom to start with.
417 		 */
418 		if (skb_headroom(skb) < needed_headroom &&
419 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
420 			dev_kfree_skb(skb);
421 			return NULL;
422 		}
423 	} else {
424 		/*
425 		 * Need to make a copy and possibly remove radiotap header
426 		 * and FCS from the original.
427 		 */
428 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
429 
430 		origskb = remove_monitor_info(local, origskb);
431 
432 		if (!skb)
433 			return origskb;
434 	}
435 
436 	/* prepend radiotap information */
437 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
438 					 true);
439 
440 	skb_reset_mac_header(skb);
441 	skb->ip_summed = CHECKSUM_UNNECESSARY;
442 	skb->pkt_type = PACKET_OTHERHOST;
443 	skb->protocol = htons(ETH_P_802_2);
444 
445 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
446 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
447 			continue;
448 
449 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
450 			continue;
451 
452 		if (!ieee80211_sdata_running(sdata))
453 			continue;
454 
455 		if (prev_dev) {
456 			skb2 = skb_clone(skb, GFP_ATOMIC);
457 			if (skb2) {
458 				skb2->dev = prev_dev;
459 				netif_receive_skb(skb2);
460 			}
461 		}
462 
463 		prev_dev = sdata->dev;
464 		sdata->dev->stats.rx_packets++;
465 		sdata->dev->stats.rx_bytes += skb->len;
466 	}
467 
468 	if (prev_dev) {
469 		skb->dev = prev_dev;
470 		netif_receive_skb(skb);
471 	} else
472 		dev_kfree_skb(skb);
473 
474 	return origskb;
475 }
476 
477 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
478 {
479 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
480 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
481 	int tid, seqno_idx, security_idx;
482 
483 	/* does the frame have a qos control field? */
484 	if (ieee80211_is_data_qos(hdr->frame_control)) {
485 		u8 *qc = ieee80211_get_qos_ctl(hdr);
486 		/* frame has qos control */
487 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
488 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
489 			status->rx_flags |= IEEE80211_RX_AMSDU;
490 
491 		seqno_idx = tid;
492 		security_idx = tid;
493 	} else {
494 		/*
495 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
496 		 *
497 		 *	Sequence numbers for management frames, QoS data
498 		 *	frames with a broadcast/multicast address in the
499 		 *	Address 1 field, and all non-QoS data frames sent
500 		 *	by QoS STAs are assigned using an additional single
501 		 *	modulo-4096 counter, [...]
502 		 *
503 		 * We also use that counter for non-QoS STAs.
504 		 */
505 		seqno_idx = IEEE80211_NUM_TIDS;
506 		security_idx = 0;
507 		if (ieee80211_is_mgmt(hdr->frame_control))
508 			security_idx = IEEE80211_NUM_TIDS;
509 		tid = 0;
510 	}
511 
512 	rx->seqno_idx = seqno_idx;
513 	rx->security_idx = security_idx;
514 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
515 	 * For now, set skb->priority to 0 for other cases. */
516 	rx->skb->priority = (tid > 7) ? 0 : tid;
517 }
518 
519 /**
520  * DOC: Packet alignment
521  *
522  * Drivers always need to pass packets that are aligned to two-byte boundaries
523  * to the stack.
524  *
525  * Additionally, should, if possible, align the payload data in a way that
526  * guarantees that the contained IP header is aligned to a four-byte
527  * boundary. In the case of regular frames, this simply means aligning the
528  * payload to a four-byte boundary (because either the IP header is directly
529  * contained, or IV/RFC1042 headers that have a length divisible by four are
530  * in front of it).  If the payload data is not properly aligned and the
531  * architecture doesn't support efficient unaligned operations, mac80211
532  * will align the data.
533  *
534  * With A-MSDU frames, however, the payload data address must yield two modulo
535  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
536  * push the IP header further back to a multiple of four again. Thankfully, the
537  * specs were sane enough this time around to require padding each A-MSDU
538  * subframe to a length that is a multiple of four.
539  *
540  * Padding like Atheros hardware adds which is between the 802.11 header and
541  * the payload is not supported, the driver is required to move the 802.11
542  * header to be directly in front of the payload in that case.
543  */
544 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
545 {
546 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
547 	WARN_ONCE((unsigned long)rx->skb->data & 1,
548 		  "unaligned packet at 0x%p\n", rx->skb->data);
549 #endif
550 }
551 
552 
553 /* rx handlers */
554 
555 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
556 {
557 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
558 
559 	if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1))
560 		return 0;
561 
562 	return ieee80211_is_robust_mgmt_frame(hdr);
563 }
564 
565 
566 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
567 {
568 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
569 
570 	if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1))
571 		return 0;
572 
573 	return ieee80211_is_robust_mgmt_frame(hdr);
574 }
575 
576 
577 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
578 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
579 {
580 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
581 	struct ieee80211_mmie *mmie;
582 
583 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
584 		return -1;
585 
586 	if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr))
587 		return -1; /* not a robust management frame */
588 
589 	mmie = (struct ieee80211_mmie *)
590 		(skb->data + skb->len - sizeof(*mmie));
591 	if (mmie->element_id != WLAN_EID_MMIE ||
592 	    mmie->length != sizeof(*mmie) - 2)
593 		return -1;
594 
595 	return le16_to_cpu(mmie->key_id);
596 }
597 
598 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
599 {
600 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
601 	char *dev_addr = rx->sdata->vif.addr;
602 
603 	if (ieee80211_is_data(hdr->frame_control)) {
604 		if (is_multicast_ether_addr(hdr->addr1)) {
605 			if (ieee80211_has_tods(hdr->frame_control) ||
606 			    !ieee80211_has_fromds(hdr->frame_control))
607 				return RX_DROP_MONITOR;
608 			if (ether_addr_equal(hdr->addr3, dev_addr))
609 				return RX_DROP_MONITOR;
610 		} else {
611 			if (!ieee80211_has_a4(hdr->frame_control))
612 				return RX_DROP_MONITOR;
613 			if (ether_addr_equal(hdr->addr4, dev_addr))
614 				return RX_DROP_MONITOR;
615 		}
616 	}
617 
618 	/* If there is not an established peer link and this is not a peer link
619 	 * establisment frame, beacon or probe, drop the frame.
620 	 */
621 
622 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
623 		struct ieee80211_mgmt *mgmt;
624 
625 		if (!ieee80211_is_mgmt(hdr->frame_control))
626 			return RX_DROP_MONITOR;
627 
628 		if (ieee80211_is_action(hdr->frame_control)) {
629 			u8 category;
630 
631 			/* make sure category field is present */
632 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
633 				return RX_DROP_MONITOR;
634 
635 			mgmt = (struct ieee80211_mgmt *)hdr;
636 			category = mgmt->u.action.category;
637 			if (category != WLAN_CATEGORY_MESH_ACTION &&
638 			    category != WLAN_CATEGORY_SELF_PROTECTED)
639 				return RX_DROP_MONITOR;
640 			return RX_CONTINUE;
641 		}
642 
643 		if (ieee80211_is_probe_req(hdr->frame_control) ||
644 		    ieee80211_is_probe_resp(hdr->frame_control) ||
645 		    ieee80211_is_beacon(hdr->frame_control) ||
646 		    ieee80211_is_auth(hdr->frame_control))
647 			return RX_CONTINUE;
648 
649 		return RX_DROP_MONITOR;
650 	}
651 
652 	return RX_CONTINUE;
653 }
654 
655 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
656 					    struct tid_ampdu_rx *tid_agg_rx,
657 					    int index,
658 					    struct sk_buff_head *frames)
659 {
660 	struct sk_buff *skb = tid_agg_rx->reorder_buf[index];
661 	struct ieee80211_rx_status *status;
662 
663 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
664 
665 	if (!skb)
666 		goto no_frame;
667 
668 	/* release the frame from the reorder ring buffer */
669 	tid_agg_rx->stored_mpdu_num--;
670 	tid_agg_rx->reorder_buf[index] = NULL;
671 	status = IEEE80211_SKB_RXCB(skb);
672 	status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
673 	__skb_queue_tail(frames, skb);
674 
675 no_frame:
676 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
677 }
678 
679 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
680 					     struct tid_ampdu_rx *tid_agg_rx,
681 					     u16 head_seq_num,
682 					     struct sk_buff_head *frames)
683 {
684 	int index;
685 
686 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
687 
688 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
689 		index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
690 					 tid_agg_rx->ssn) %
691 							tid_agg_rx->buf_size;
692 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
693 						frames);
694 	}
695 }
696 
697 /*
698  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
699  * the skb was added to the buffer longer than this time ago, the earlier
700  * frames that have not yet been received are assumed to be lost and the skb
701  * can be released for processing. This may also release other skb's from the
702  * reorder buffer if there are no additional gaps between the frames.
703  *
704  * Callers must hold tid_agg_rx->reorder_lock.
705  */
706 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
707 
708 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
709 					  struct tid_ampdu_rx *tid_agg_rx,
710 					  struct sk_buff_head *frames)
711 {
712 	int index, j;
713 
714 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
715 
716 	/* release the buffer until next missing frame */
717 	index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
718 				 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
719 	if (!tid_agg_rx->reorder_buf[index] &&
720 	    tid_agg_rx->stored_mpdu_num) {
721 		/*
722 		 * No buffers ready to be released, but check whether any
723 		 * frames in the reorder buffer have timed out.
724 		 */
725 		int skipped = 1;
726 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
727 		     j = (j + 1) % tid_agg_rx->buf_size) {
728 			if (!tid_agg_rx->reorder_buf[j]) {
729 				skipped++;
730 				continue;
731 			}
732 			if (skipped &&
733 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
734 					HT_RX_REORDER_BUF_TIMEOUT))
735 				goto set_release_timer;
736 
737 			ht_dbg_ratelimited(sdata,
738 					   "release an RX reorder frame due to timeout on earlier frames\n");
739 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
740 							frames);
741 
742 			/*
743 			 * Increment the head seq# also for the skipped slots.
744 			 */
745 			tid_agg_rx->head_seq_num =
746 				(tid_agg_rx->head_seq_num +
747 				 skipped) & IEEE80211_SN_MASK;
748 			skipped = 0;
749 		}
750 	} else while (tid_agg_rx->reorder_buf[index]) {
751 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
752 						frames);
753 		index =	ieee80211_sn_sub(tid_agg_rx->head_seq_num,
754 					 tid_agg_rx->ssn) %
755 							tid_agg_rx->buf_size;
756 	}
757 
758 	if (tid_agg_rx->stored_mpdu_num) {
759 		j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num,
760 					     tid_agg_rx->ssn) %
761 							tid_agg_rx->buf_size;
762 
763 		for (; j != (index - 1) % tid_agg_rx->buf_size;
764 		     j = (j + 1) % tid_agg_rx->buf_size) {
765 			if (tid_agg_rx->reorder_buf[j])
766 				break;
767 		}
768 
769  set_release_timer:
770 
771 		mod_timer(&tid_agg_rx->reorder_timer,
772 			  tid_agg_rx->reorder_time[j] + 1 +
773 			  HT_RX_REORDER_BUF_TIMEOUT);
774 	} else {
775 		del_timer(&tid_agg_rx->reorder_timer);
776 	}
777 }
778 
779 /*
780  * As this function belongs to the RX path it must be under
781  * rcu_read_lock protection. It returns false if the frame
782  * can be processed immediately, true if it was consumed.
783  */
784 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
785 					     struct tid_ampdu_rx *tid_agg_rx,
786 					     struct sk_buff *skb,
787 					     struct sk_buff_head *frames)
788 {
789 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
790 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
791 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
792 	u16 head_seq_num, buf_size;
793 	int index;
794 	bool ret = true;
795 
796 	spin_lock(&tid_agg_rx->reorder_lock);
797 
798 	buf_size = tid_agg_rx->buf_size;
799 	head_seq_num = tid_agg_rx->head_seq_num;
800 
801 	/* frame with out of date sequence number */
802 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
803 		dev_kfree_skb(skb);
804 		goto out;
805 	}
806 
807 	/*
808 	 * If frame the sequence number exceeds our buffering window
809 	 * size release some previous frames to make room for this one.
810 	 */
811 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
812 		head_seq_num = ieee80211_sn_inc(
813 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
814 		/* release stored frames up to new head to stack */
815 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
816 						 head_seq_num, frames);
817 	}
818 
819 	/* Now the new frame is always in the range of the reordering buffer */
820 
821 	index = ieee80211_sn_sub(mpdu_seq_num,
822 				 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
823 
824 	/* check if we already stored this frame */
825 	if (tid_agg_rx->reorder_buf[index]) {
826 		dev_kfree_skb(skb);
827 		goto out;
828 	}
829 
830 	/*
831 	 * If the current MPDU is in the right order and nothing else
832 	 * is stored we can process it directly, no need to buffer it.
833 	 * If it is first but there's something stored, we may be able
834 	 * to release frames after this one.
835 	 */
836 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
837 	    tid_agg_rx->stored_mpdu_num == 0) {
838 		tid_agg_rx->head_seq_num =
839 			ieee80211_sn_inc(tid_agg_rx->head_seq_num);
840 		ret = false;
841 		goto out;
842 	}
843 
844 	/* put the frame in the reordering buffer */
845 	tid_agg_rx->reorder_buf[index] = skb;
846 	tid_agg_rx->reorder_time[index] = jiffies;
847 	tid_agg_rx->stored_mpdu_num++;
848 	ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
849 
850  out:
851 	spin_unlock(&tid_agg_rx->reorder_lock);
852 	return ret;
853 }
854 
855 /*
856  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
857  * true if the MPDU was buffered, false if it should be processed.
858  */
859 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
860 				       struct sk_buff_head *frames)
861 {
862 	struct sk_buff *skb = rx->skb;
863 	struct ieee80211_local *local = rx->local;
864 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
865 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
866 	struct sta_info *sta = rx->sta;
867 	struct tid_ampdu_rx *tid_agg_rx;
868 	u16 sc;
869 	u8 tid, ack_policy;
870 
871 	if (!ieee80211_is_data_qos(hdr->frame_control))
872 		goto dont_reorder;
873 
874 	/*
875 	 * filter the QoS data rx stream according to
876 	 * STA/TID and check if this STA/TID is on aggregation
877 	 */
878 
879 	if (!sta)
880 		goto dont_reorder;
881 
882 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
883 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
884 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
885 
886 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
887 	if (!tid_agg_rx)
888 		goto dont_reorder;
889 
890 	/* qos null data frames are excluded */
891 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
892 		goto dont_reorder;
893 
894 	/* not part of a BA session */
895 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
896 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
897 		goto dont_reorder;
898 
899 	/* not actually part of this BA session */
900 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
901 		goto dont_reorder;
902 
903 	/* new, potentially un-ordered, ampdu frame - process it */
904 
905 	/* reset session timer */
906 	if (tid_agg_rx->timeout)
907 		tid_agg_rx->last_rx = jiffies;
908 
909 	/* if this mpdu is fragmented - terminate rx aggregation session */
910 	sc = le16_to_cpu(hdr->seq_ctrl);
911 	if (sc & IEEE80211_SCTL_FRAG) {
912 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
913 		skb_queue_tail(&rx->sdata->skb_queue, skb);
914 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
915 		return;
916 	}
917 
918 	/*
919 	 * No locking needed -- we will only ever process one
920 	 * RX packet at a time, and thus own tid_agg_rx. All
921 	 * other code manipulating it needs to (and does) make
922 	 * sure that we cannot get to it any more before doing
923 	 * anything with it.
924 	 */
925 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
926 					     frames))
927 		return;
928 
929  dont_reorder:
930 	__skb_queue_tail(frames, skb);
931 }
932 
933 static ieee80211_rx_result debug_noinline
934 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
935 {
936 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
937 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
938 
939 	/* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
940 	if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
941 		if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
942 			     rx->sta->last_seq_ctrl[rx->seqno_idx] ==
943 			     hdr->seq_ctrl)) {
944 			if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
945 				rx->local->dot11FrameDuplicateCount++;
946 				rx->sta->num_duplicates++;
947 			}
948 			return RX_DROP_UNUSABLE;
949 		} else
950 			rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
951 	}
952 
953 	if (unlikely(rx->skb->len < 16)) {
954 		I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
955 		return RX_DROP_MONITOR;
956 	}
957 
958 	/* Drop disallowed frame classes based on STA auth/assoc state;
959 	 * IEEE 802.11, Chap 5.5.
960 	 *
961 	 * mac80211 filters only based on association state, i.e. it drops
962 	 * Class 3 frames from not associated stations. hostapd sends
963 	 * deauth/disassoc frames when needed. In addition, hostapd is
964 	 * responsible for filtering on both auth and assoc states.
965 	 */
966 
967 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
968 		return ieee80211_rx_mesh_check(rx);
969 
970 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
971 		      ieee80211_is_pspoll(hdr->frame_control)) &&
972 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
973 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
974 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
975 		/*
976 		 * accept port control frames from the AP even when it's not
977 		 * yet marked ASSOC to prevent a race where we don't set the
978 		 * assoc bit quickly enough before it sends the first frame
979 		 */
980 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
981 		    ieee80211_is_data_present(hdr->frame_control)) {
982 			unsigned int hdrlen;
983 			__be16 ethertype;
984 
985 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
986 
987 			if (rx->skb->len < hdrlen + 8)
988 				return RX_DROP_MONITOR;
989 
990 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
991 			if (ethertype == rx->sdata->control_port_protocol)
992 				return RX_CONTINUE;
993 		}
994 
995 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
996 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
997 					       hdr->addr2,
998 					       GFP_ATOMIC))
999 			return RX_DROP_UNUSABLE;
1000 
1001 		return RX_DROP_MONITOR;
1002 	}
1003 
1004 	return RX_CONTINUE;
1005 }
1006 
1007 
1008 static ieee80211_rx_result debug_noinline
1009 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1010 {
1011 	struct sk_buff *skb = rx->skb;
1012 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1013 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1014 	int keyidx;
1015 	int hdrlen;
1016 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1017 	struct ieee80211_key *sta_ptk = NULL;
1018 	int mmie_keyidx = -1;
1019 	__le16 fc;
1020 
1021 	/*
1022 	 * Key selection 101
1023 	 *
1024 	 * There are four types of keys:
1025 	 *  - GTK (group keys)
1026 	 *  - IGTK (group keys for management frames)
1027 	 *  - PTK (pairwise keys)
1028 	 *  - STK (station-to-station pairwise keys)
1029 	 *
1030 	 * When selecting a key, we have to distinguish between multicast
1031 	 * (including broadcast) and unicast frames, the latter can only
1032 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1033 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1034 	 * unicast frames can also use key indices like GTKs. Hence, if we
1035 	 * don't have a PTK/STK we check the key index for a WEP key.
1036 	 *
1037 	 * Note that in a regular BSS, multicast frames are sent by the
1038 	 * AP only, associated stations unicast the frame to the AP first
1039 	 * which then multicasts it on their behalf.
1040 	 *
1041 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1042 	 * with each station, that is something we don't currently handle.
1043 	 * The spec seems to expect that one negotiates the same key with
1044 	 * every station but there's no such requirement; VLANs could be
1045 	 * possible.
1046 	 */
1047 
1048 	/*
1049 	 * No point in finding a key and decrypting if the frame is neither
1050 	 * addressed to us nor a multicast frame.
1051 	 */
1052 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1053 		return RX_CONTINUE;
1054 
1055 	/* start without a key */
1056 	rx->key = NULL;
1057 
1058 	if (rx->sta)
1059 		sta_ptk = rcu_dereference(rx->sta->ptk);
1060 
1061 	fc = hdr->frame_control;
1062 
1063 	if (!ieee80211_has_protected(fc))
1064 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1065 
1066 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1067 		rx->key = sta_ptk;
1068 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1069 		    (status->flag & RX_FLAG_IV_STRIPPED))
1070 			return RX_CONTINUE;
1071 		/* Skip decryption if the frame is not protected. */
1072 		if (!ieee80211_has_protected(fc))
1073 			return RX_CONTINUE;
1074 	} else if (mmie_keyidx >= 0) {
1075 		/* Broadcast/multicast robust management frame / BIP */
1076 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1077 		    (status->flag & RX_FLAG_IV_STRIPPED))
1078 			return RX_CONTINUE;
1079 
1080 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1081 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1082 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1083 		if (rx->sta)
1084 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1085 		if (!rx->key)
1086 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1087 	} else if (!ieee80211_has_protected(fc)) {
1088 		/*
1089 		 * The frame was not protected, so skip decryption. However, we
1090 		 * need to set rx->key if there is a key that could have been
1091 		 * used so that the frame may be dropped if encryption would
1092 		 * have been expected.
1093 		 */
1094 		struct ieee80211_key *key = NULL;
1095 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1096 		int i;
1097 
1098 		if (ieee80211_is_mgmt(fc) &&
1099 		    is_multicast_ether_addr(hdr->addr1) &&
1100 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1101 			rx->key = key;
1102 		else {
1103 			if (rx->sta) {
1104 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1105 					key = rcu_dereference(rx->sta->gtk[i]);
1106 					if (key)
1107 						break;
1108 				}
1109 			}
1110 			if (!key) {
1111 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1112 					key = rcu_dereference(sdata->keys[i]);
1113 					if (key)
1114 						break;
1115 				}
1116 			}
1117 			if (key)
1118 				rx->key = key;
1119 		}
1120 		return RX_CONTINUE;
1121 	} else {
1122 		u8 keyid;
1123 		/*
1124 		 * The device doesn't give us the IV so we won't be
1125 		 * able to look up the key. That's ok though, we
1126 		 * don't need to decrypt the frame, we just won't
1127 		 * be able to keep statistics accurate.
1128 		 * Except for key threshold notifications, should
1129 		 * we somehow allow the driver to tell us which key
1130 		 * the hardware used if this flag is set?
1131 		 */
1132 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1133 		    (status->flag & RX_FLAG_IV_STRIPPED))
1134 			return RX_CONTINUE;
1135 
1136 		hdrlen = ieee80211_hdrlen(fc);
1137 
1138 		if (rx->skb->len < 8 + hdrlen)
1139 			return RX_DROP_UNUSABLE; /* TODO: count this? */
1140 
1141 		/*
1142 		 * no need to call ieee80211_wep_get_keyidx,
1143 		 * it verifies a bunch of things we've done already
1144 		 */
1145 		skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1146 		keyidx = keyid >> 6;
1147 
1148 		/* check per-station GTK first, if multicast packet */
1149 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1150 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1151 
1152 		/* if not found, try default key */
1153 		if (!rx->key) {
1154 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1155 
1156 			/*
1157 			 * RSNA-protected unicast frames should always be
1158 			 * sent with pairwise or station-to-station keys,
1159 			 * but for WEP we allow using a key index as well.
1160 			 */
1161 			if (rx->key &&
1162 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1163 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1164 			    !is_multicast_ether_addr(hdr->addr1))
1165 				rx->key = NULL;
1166 		}
1167 	}
1168 
1169 	if (rx->key) {
1170 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1171 			return RX_DROP_MONITOR;
1172 
1173 		rx->key->tx_rx_count++;
1174 		/* TODO: add threshold stuff again */
1175 	} else {
1176 		return RX_DROP_MONITOR;
1177 	}
1178 
1179 	switch (rx->key->conf.cipher) {
1180 	case WLAN_CIPHER_SUITE_WEP40:
1181 	case WLAN_CIPHER_SUITE_WEP104:
1182 		result = ieee80211_crypto_wep_decrypt(rx);
1183 		break;
1184 	case WLAN_CIPHER_SUITE_TKIP:
1185 		result = ieee80211_crypto_tkip_decrypt(rx);
1186 		break;
1187 	case WLAN_CIPHER_SUITE_CCMP:
1188 		result = ieee80211_crypto_ccmp_decrypt(rx);
1189 		break;
1190 	case WLAN_CIPHER_SUITE_AES_CMAC:
1191 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1192 		break;
1193 	default:
1194 		/*
1195 		 * We can reach here only with HW-only algorithms
1196 		 * but why didn't it decrypt the frame?!
1197 		 */
1198 		return RX_DROP_UNUSABLE;
1199 	}
1200 
1201 	/* the hdr variable is invalid after the decrypt handlers */
1202 
1203 	/* either the frame has been decrypted or will be dropped */
1204 	status->flag |= RX_FLAG_DECRYPTED;
1205 
1206 	return result;
1207 }
1208 
1209 static ieee80211_rx_result debug_noinline
1210 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1211 {
1212 	struct ieee80211_local *local;
1213 	struct ieee80211_hdr *hdr;
1214 	struct sk_buff *skb;
1215 
1216 	local = rx->local;
1217 	skb = rx->skb;
1218 	hdr = (struct ieee80211_hdr *) skb->data;
1219 
1220 	if (!local->pspolling)
1221 		return RX_CONTINUE;
1222 
1223 	if (!ieee80211_has_fromds(hdr->frame_control))
1224 		/* this is not from AP */
1225 		return RX_CONTINUE;
1226 
1227 	if (!ieee80211_is_data(hdr->frame_control))
1228 		return RX_CONTINUE;
1229 
1230 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1231 		/* AP has no more frames buffered for us */
1232 		local->pspolling = false;
1233 		return RX_CONTINUE;
1234 	}
1235 
1236 	/* more data bit is set, let's request a new frame from the AP */
1237 	ieee80211_send_pspoll(local, rx->sdata);
1238 
1239 	return RX_CONTINUE;
1240 }
1241 
1242 static void sta_ps_start(struct sta_info *sta)
1243 {
1244 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1245 	struct ieee80211_local *local = sdata->local;
1246 	struct ps_data *ps;
1247 
1248 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1249 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1250 		ps = &sdata->bss->ps;
1251 	else
1252 		return;
1253 
1254 	atomic_inc(&ps->num_sta_ps);
1255 	set_sta_flag(sta, WLAN_STA_PS_STA);
1256 	if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1257 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1258 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1259 	       sta->sta.addr, sta->sta.aid);
1260 }
1261 
1262 static void sta_ps_end(struct sta_info *sta)
1263 {
1264 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1265 	       sta->sta.addr, sta->sta.aid);
1266 
1267 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1268 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1269 		       sta->sta.addr, sta->sta.aid);
1270 		return;
1271 	}
1272 
1273 	ieee80211_sta_ps_deliver_wakeup(sta);
1274 }
1275 
1276 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1277 {
1278 	struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1279 	bool in_ps;
1280 
1281 	WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1282 
1283 	/* Don't let the same PS state be set twice */
1284 	in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1285 	if ((start && in_ps) || (!start && !in_ps))
1286 		return -EINVAL;
1287 
1288 	if (start)
1289 		sta_ps_start(sta_inf);
1290 	else
1291 		sta_ps_end(sta_inf);
1292 
1293 	return 0;
1294 }
1295 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1296 
1297 static ieee80211_rx_result debug_noinline
1298 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1299 {
1300 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1301 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1302 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1303 	int tid, ac;
1304 
1305 	if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1306 		return RX_CONTINUE;
1307 
1308 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1309 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1310 		return RX_CONTINUE;
1311 
1312 	/*
1313 	 * The device handles station powersave, so don't do anything about
1314 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1315 	 * it to mac80211 since they're handled.)
1316 	 */
1317 	if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1318 		return RX_CONTINUE;
1319 
1320 	/*
1321 	 * Don't do anything if the station isn't already asleep. In
1322 	 * the uAPSD case, the station will probably be marked asleep,
1323 	 * in the PS-Poll case the station must be confused ...
1324 	 */
1325 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1326 		return RX_CONTINUE;
1327 
1328 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1329 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1330 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1331 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1332 			else
1333 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1334 		}
1335 
1336 		/* Free PS Poll skb here instead of returning RX_DROP that would
1337 		 * count as an dropped frame. */
1338 		dev_kfree_skb(rx->skb);
1339 
1340 		return RX_QUEUED;
1341 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1342 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1343 		   ieee80211_has_pm(hdr->frame_control) &&
1344 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1345 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1346 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1347 		ac = ieee802_1d_to_ac[tid & 7];
1348 
1349 		/*
1350 		 * If this AC is not trigger-enabled do nothing.
1351 		 *
1352 		 * NB: This could/should check a separate bitmap of trigger-
1353 		 * enabled queues, but for now we only implement uAPSD w/o
1354 		 * TSPEC changes to the ACs, so they're always the same.
1355 		 */
1356 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1357 			return RX_CONTINUE;
1358 
1359 		/* if we are in a service period, do nothing */
1360 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1361 			return RX_CONTINUE;
1362 
1363 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1364 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1365 		else
1366 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1367 	}
1368 
1369 	return RX_CONTINUE;
1370 }
1371 
1372 static ieee80211_rx_result debug_noinline
1373 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1374 {
1375 	struct sta_info *sta = rx->sta;
1376 	struct sk_buff *skb = rx->skb;
1377 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1378 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1379 	int i;
1380 
1381 	if (!sta)
1382 		return RX_CONTINUE;
1383 
1384 	/*
1385 	 * Update last_rx only for IBSS packets which are for the current
1386 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1387 	 * current IBSS network alive in cases where other STAs start
1388 	 * using different BSSID. This will also give the station another
1389 	 * chance to restart the authentication/authorization in case
1390 	 * something went wrong the first time.
1391 	 */
1392 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1393 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1394 						NL80211_IFTYPE_ADHOC);
1395 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1396 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1397 			sta->last_rx = jiffies;
1398 			if (ieee80211_is_data(hdr->frame_control)) {
1399 				sta->last_rx_rate_idx = status->rate_idx;
1400 				sta->last_rx_rate_flag = status->flag;
1401 				sta->last_rx_rate_vht_nss = status->vht_nss;
1402 			}
1403 		}
1404 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1405 		/*
1406 		 * Mesh beacons will update last_rx when if they are found to
1407 		 * match the current local configuration when processed.
1408 		 */
1409 		sta->last_rx = jiffies;
1410 		if (ieee80211_is_data(hdr->frame_control)) {
1411 			sta->last_rx_rate_idx = status->rate_idx;
1412 			sta->last_rx_rate_flag = status->flag;
1413 			sta->last_rx_rate_vht_nss = status->vht_nss;
1414 		}
1415 	}
1416 
1417 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1418 		return RX_CONTINUE;
1419 
1420 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1421 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1422 
1423 	sta->rx_fragments++;
1424 	sta->rx_bytes += rx->skb->len;
1425 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1426 		sta->last_signal = status->signal;
1427 		ewma_add(&sta->avg_signal, -status->signal);
1428 	}
1429 
1430 	if (status->chains) {
1431 		sta->chains = status->chains;
1432 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1433 			int signal = status->chain_signal[i];
1434 
1435 			if (!(status->chains & BIT(i)))
1436 				continue;
1437 
1438 			sta->chain_signal_last[i] = signal;
1439 			ewma_add(&sta->chain_signal_avg[i], -signal);
1440 		}
1441 	}
1442 
1443 	/*
1444 	 * Change STA power saving mode only at the end of a frame
1445 	 * exchange sequence.
1446 	 */
1447 	if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1448 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1449 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1450 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1451 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1452 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1453 			/*
1454 			 * Ignore doze->wake transitions that are
1455 			 * indicated by non-data frames, the standard
1456 			 * is unclear here, but for example going to
1457 			 * PS mode and then scanning would cause a
1458 			 * doze->wake transition for the probe request,
1459 			 * and that is clearly undesirable.
1460 			 */
1461 			if (ieee80211_is_data(hdr->frame_control) &&
1462 			    !ieee80211_has_pm(hdr->frame_control))
1463 				sta_ps_end(sta);
1464 		} else {
1465 			if (ieee80211_has_pm(hdr->frame_control))
1466 				sta_ps_start(sta);
1467 		}
1468 	}
1469 
1470 	/* mesh power save support */
1471 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1472 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1473 
1474 	/*
1475 	 * Drop (qos-)data::nullfunc frames silently, since they
1476 	 * are used only to control station power saving mode.
1477 	 */
1478 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1479 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1480 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1481 
1482 		/*
1483 		 * If we receive a 4-addr nullfunc frame from a STA
1484 		 * that was not moved to a 4-addr STA vlan yet send
1485 		 * the event to userspace and for older hostapd drop
1486 		 * the frame to the monitor interface.
1487 		 */
1488 		if (ieee80211_has_a4(hdr->frame_control) &&
1489 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1490 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1491 		      !rx->sdata->u.vlan.sta))) {
1492 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1493 				cfg80211_rx_unexpected_4addr_frame(
1494 					rx->sdata->dev, sta->sta.addr,
1495 					GFP_ATOMIC);
1496 			return RX_DROP_MONITOR;
1497 		}
1498 		/*
1499 		 * Update counter and free packet here to avoid
1500 		 * counting this as a dropped packed.
1501 		 */
1502 		sta->rx_packets++;
1503 		dev_kfree_skb(rx->skb);
1504 		return RX_QUEUED;
1505 	}
1506 
1507 	return RX_CONTINUE;
1508 } /* ieee80211_rx_h_sta_process */
1509 
1510 static inline struct ieee80211_fragment_entry *
1511 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1512 			 unsigned int frag, unsigned int seq, int rx_queue,
1513 			 struct sk_buff **skb)
1514 {
1515 	struct ieee80211_fragment_entry *entry;
1516 
1517 	entry = &sdata->fragments[sdata->fragment_next++];
1518 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1519 		sdata->fragment_next = 0;
1520 
1521 	if (!skb_queue_empty(&entry->skb_list))
1522 		__skb_queue_purge(&entry->skb_list);
1523 
1524 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1525 	*skb = NULL;
1526 	entry->first_frag_time = jiffies;
1527 	entry->seq = seq;
1528 	entry->rx_queue = rx_queue;
1529 	entry->last_frag = frag;
1530 	entry->ccmp = 0;
1531 	entry->extra_len = 0;
1532 
1533 	return entry;
1534 }
1535 
1536 static inline struct ieee80211_fragment_entry *
1537 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1538 			  unsigned int frag, unsigned int seq,
1539 			  int rx_queue, struct ieee80211_hdr *hdr)
1540 {
1541 	struct ieee80211_fragment_entry *entry;
1542 	int i, idx;
1543 
1544 	idx = sdata->fragment_next;
1545 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1546 		struct ieee80211_hdr *f_hdr;
1547 
1548 		idx--;
1549 		if (idx < 0)
1550 			idx = IEEE80211_FRAGMENT_MAX - 1;
1551 
1552 		entry = &sdata->fragments[idx];
1553 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1554 		    entry->rx_queue != rx_queue ||
1555 		    entry->last_frag + 1 != frag)
1556 			continue;
1557 
1558 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1559 
1560 		/*
1561 		 * Check ftype and addresses are equal, else check next fragment
1562 		 */
1563 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1564 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1565 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1566 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1567 			continue;
1568 
1569 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1570 			__skb_queue_purge(&entry->skb_list);
1571 			continue;
1572 		}
1573 		return entry;
1574 	}
1575 
1576 	return NULL;
1577 }
1578 
1579 static ieee80211_rx_result debug_noinline
1580 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1581 {
1582 	struct ieee80211_hdr *hdr;
1583 	u16 sc;
1584 	__le16 fc;
1585 	unsigned int frag, seq;
1586 	struct ieee80211_fragment_entry *entry;
1587 	struct sk_buff *skb;
1588 	struct ieee80211_rx_status *status;
1589 
1590 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1591 	fc = hdr->frame_control;
1592 
1593 	if (ieee80211_is_ctl(fc))
1594 		return RX_CONTINUE;
1595 
1596 	sc = le16_to_cpu(hdr->seq_ctrl);
1597 	frag = sc & IEEE80211_SCTL_FRAG;
1598 
1599 	if (likely((!ieee80211_has_morefrags(fc) && frag == 0) ||
1600 		   is_multicast_ether_addr(hdr->addr1))) {
1601 		/* not fragmented */
1602 		goto out;
1603 	}
1604 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1605 
1606 	if (skb_linearize(rx->skb))
1607 		return RX_DROP_UNUSABLE;
1608 
1609 	/*
1610 	 *  skb_linearize() might change the skb->data and
1611 	 *  previously cached variables (in this case, hdr) need to
1612 	 *  be refreshed with the new data.
1613 	 */
1614 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1615 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1616 
1617 	if (frag == 0) {
1618 		/* This is the first fragment of a new frame. */
1619 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1620 						 rx->seqno_idx, &(rx->skb));
1621 		if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1622 		    ieee80211_has_protected(fc)) {
1623 			int queue = rx->security_idx;
1624 			/* Store CCMP PN so that we can verify that the next
1625 			 * fragment has a sequential PN value. */
1626 			entry->ccmp = 1;
1627 			memcpy(entry->last_pn,
1628 			       rx->key->u.ccmp.rx_pn[queue],
1629 			       IEEE80211_CCMP_PN_LEN);
1630 		}
1631 		return RX_QUEUED;
1632 	}
1633 
1634 	/* This is a fragment for a frame that should already be pending in
1635 	 * fragment cache. Add this fragment to the end of the pending entry.
1636 	 */
1637 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1638 					  rx->seqno_idx, hdr);
1639 	if (!entry) {
1640 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1641 		return RX_DROP_MONITOR;
1642 	}
1643 
1644 	/* Verify that MPDUs within one MSDU have sequential PN values.
1645 	 * (IEEE 802.11i, 8.3.3.4.5) */
1646 	if (entry->ccmp) {
1647 		int i;
1648 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1649 		int queue;
1650 		if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1651 			return RX_DROP_UNUSABLE;
1652 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1653 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1654 			pn[i]++;
1655 			if (pn[i])
1656 				break;
1657 		}
1658 		queue = rx->security_idx;
1659 		rpn = rx->key->u.ccmp.rx_pn[queue];
1660 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1661 			return RX_DROP_UNUSABLE;
1662 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1663 	}
1664 
1665 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1666 	__skb_queue_tail(&entry->skb_list, rx->skb);
1667 	entry->last_frag = frag;
1668 	entry->extra_len += rx->skb->len;
1669 	if (ieee80211_has_morefrags(fc)) {
1670 		rx->skb = NULL;
1671 		return RX_QUEUED;
1672 	}
1673 
1674 	rx->skb = __skb_dequeue(&entry->skb_list);
1675 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1676 		I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1677 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1678 					      GFP_ATOMIC))) {
1679 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1680 			__skb_queue_purge(&entry->skb_list);
1681 			return RX_DROP_UNUSABLE;
1682 		}
1683 	}
1684 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1685 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1686 		dev_kfree_skb(skb);
1687 	}
1688 
1689 	/* Complete frame has been reassembled - process it now */
1690 	status = IEEE80211_SKB_RXCB(rx->skb);
1691 	status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1692 
1693  out:
1694 	if (rx->sta)
1695 		rx->sta->rx_packets++;
1696 	if (is_multicast_ether_addr(hdr->addr1))
1697 		rx->local->dot11MulticastReceivedFrameCount++;
1698 	else
1699 		ieee80211_led_rx(rx->local);
1700 	return RX_CONTINUE;
1701 }
1702 
1703 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1704 {
1705 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1706 		return -EACCES;
1707 
1708 	return 0;
1709 }
1710 
1711 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1712 {
1713 	struct sk_buff *skb = rx->skb;
1714 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1715 
1716 	/*
1717 	 * Pass through unencrypted frames if the hardware has
1718 	 * decrypted them already.
1719 	 */
1720 	if (status->flag & RX_FLAG_DECRYPTED)
1721 		return 0;
1722 
1723 	/* Drop unencrypted frames if key is set. */
1724 	if (unlikely(!ieee80211_has_protected(fc) &&
1725 		     !ieee80211_is_nullfunc(fc) &&
1726 		     ieee80211_is_data(fc) &&
1727 		     (rx->key || rx->sdata->drop_unencrypted)))
1728 		return -EACCES;
1729 
1730 	return 0;
1731 }
1732 
1733 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1734 {
1735 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1736 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1737 	__le16 fc = hdr->frame_control;
1738 
1739 	/*
1740 	 * Pass through unencrypted frames if the hardware has
1741 	 * decrypted them already.
1742 	 */
1743 	if (status->flag & RX_FLAG_DECRYPTED)
1744 		return 0;
1745 
1746 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1747 		if (unlikely(!ieee80211_has_protected(fc) &&
1748 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1749 			     rx->key)) {
1750 			if (ieee80211_is_deauth(fc) ||
1751 			    ieee80211_is_disassoc(fc))
1752 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1753 							     rx->skb->data,
1754 							     rx->skb->len);
1755 			return -EACCES;
1756 		}
1757 		/* BIP does not use Protected field, so need to check MMIE */
1758 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1759 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1760 			if (ieee80211_is_deauth(fc) ||
1761 			    ieee80211_is_disassoc(fc))
1762 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1763 							     rx->skb->data,
1764 							     rx->skb->len);
1765 			return -EACCES;
1766 		}
1767 		/*
1768 		 * When using MFP, Action frames are not allowed prior to
1769 		 * having configured keys.
1770 		 */
1771 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1772 			     ieee80211_is_robust_mgmt_frame(
1773 				     (struct ieee80211_hdr *) rx->skb->data)))
1774 			return -EACCES;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static int
1781 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1782 {
1783 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1784 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1785 	bool check_port_control = false;
1786 	struct ethhdr *ehdr;
1787 	int ret;
1788 
1789 	*port_control = false;
1790 	if (ieee80211_has_a4(hdr->frame_control) &&
1791 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1792 		return -1;
1793 
1794 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1795 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1796 
1797 		if (!sdata->u.mgd.use_4addr)
1798 			return -1;
1799 		else
1800 			check_port_control = true;
1801 	}
1802 
1803 	if (is_multicast_ether_addr(hdr->addr1) &&
1804 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1805 		return -1;
1806 
1807 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1808 	if (ret < 0)
1809 		return ret;
1810 
1811 	ehdr = (struct ethhdr *) rx->skb->data;
1812 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
1813 		*port_control = true;
1814 	else if (check_port_control)
1815 		return -1;
1816 
1817 	return 0;
1818 }
1819 
1820 /*
1821  * requires that rx->skb is a frame with ethernet header
1822  */
1823 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1824 {
1825 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1826 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1827 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1828 
1829 	/*
1830 	 * Allow EAPOL frames to us/the PAE group address regardless
1831 	 * of whether the frame was encrypted or not.
1832 	 */
1833 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1834 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1835 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1836 		return true;
1837 
1838 	if (ieee80211_802_1x_port_control(rx) ||
1839 	    ieee80211_drop_unencrypted(rx, fc))
1840 		return false;
1841 
1842 	return true;
1843 }
1844 
1845 /*
1846  * requires that rx->skb is a frame with ethernet header
1847  */
1848 static void
1849 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1850 {
1851 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1852 	struct net_device *dev = sdata->dev;
1853 	struct sk_buff *skb, *xmit_skb;
1854 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1855 	struct sta_info *dsta;
1856 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1857 
1858 	skb = rx->skb;
1859 	xmit_skb = NULL;
1860 
1861 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1862 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1863 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1864 	    (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1865 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1866 		if (is_multicast_ether_addr(ehdr->h_dest)) {
1867 			/*
1868 			 * send multicast frames both to higher layers in
1869 			 * local net stack and back to the wireless medium
1870 			 */
1871 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
1872 			if (!xmit_skb)
1873 				net_info_ratelimited("%s: failed to clone multicast frame\n",
1874 						    dev->name);
1875 		} else {
1876 			dsta = sta_info_get(sdata, skb->data);
1877 			if (dsta) {
1878 				/*
1879 				 * The destination station is associated to
1880 				 * this AP (in this VLAN), so send the frame
1881 				 * directly to it and do not pass it to local
1882 				 * net stack.
1883 				 */
1884 				xmit_skb = skb;
1885 				skb = NULL;
1886 			}
1887 		}
1888 	}
1889 
1890 	if (skb) {
1891 		int align __maybe_unused;
1892 
1893 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1894 		/*
1895 		 * 'align' will only take the values 0 or 2 here
1896 		 * since all frames are required to be aligned
1897 		 * to 2-byte boundaries when being passed to
1898 		 * mac80211; the code here works just as well if
1899 		 * that isn't true, but mac80211 assumes it can
1900 		 * access fields as 2-byte aligned (e.g. for
1901 		 * compare_ether_addr)
1902 		 */
1903 		align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3;
1904 		if (align) {
1905 			if (WARN_ON(skb_headroom(skb) < 3)) {
1906 				dev_kfree_skb(skb);
1907 				skb = NULL;
1908 			} else {
1909 				u8 *data = skb->data;
1910 				size_t len = skb_headlen(skb);
1911 				skb->data -= align;
1912 				memmove(skb->data, data, len);
1913 				skb_set_tail_pointer(skb, len);
1914 			}
1915 		}
1916 #endif
1917 
1918 		if (skb) {
1919 			/* deliver to local stack */
1920 			skb->protocol = eth_type_trans(skb, dev);
1921 			memset(skb->cb, 0, sizeof(skb->cb));
1922 			netif_receive_skb(skb);
1923 		}
1924 	}
1925 
1926 	if (xmit_skb) {
1927 		/*
1928 		 * Send to wireless media and increase priority by 256 to
1929 		 * keep the received priority instead of reclassifying
1930 		 * the frame (see cfg80211_classify8021d).
1931 		 */
1932 		xmit_skb->priority += 256;
1933 		xmit_skb->protocol = htons(ETH_P_802_3);
1934 		skb_reset_network_header(xmit_skb);
1935 		skb_reset_mac_header(xmit_skb);
1936 		dev_queue_xmit(xmit_skb);
1937 	}
1938 }
1939 
1940 static ieee80211_rx_result debug_noinline
1941 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1942 {
1943 	struct net_device *dev = rx->sdata->dev;
1944 	struct sk_buff *skb = rx->skb;
1945 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1946 	__le16 fc = hdr->frame_control;
1947 	struct sk_buff_head frame_list;
1948 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1949 
1950 	if (unlikely(!ieee80211_is_data(fc)))
1951 		return RX_CONTINUE;
1952 
1953 	if (unlikely(!ieee80211_is_data_present(fc)))
1954 		return RX_DROP_MONITOR;
1955 
1956 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
1957 		return RX_CONTINUE;
1958 
1959 	if (ieee80211_has_a4(hdr->frame_control) &&
1960 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1961 	    !rx->sdata->u.vlan.sta)
1962 		return RX_DROP_UNUSABLE;
1963 
1964 	if (is_multicast_ether_addr(hdr->addr1) &&
1965 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1966 	      rx->sdata->u.vlan.sta) ||
1967 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1968 	      rx->sdata->u.mgd.use_4addr)))
1969 		return RX_DROP_UNUSABLE;
1970 
1971 	skb->dev = dev;
1972 	__skb_queue_head_init(&frame_list);
1973 
1974 	if (skb_linearize(skb))
1975 		return RX_DROP_UNUSABLE;
1976 
1977 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
1978 				 rx->sdata->vif.type,
1979 				 rx->local->hw.extra_tx_headroom, true);
1980 
1981 	while (!skb_queue_empty(&frame_list)) {
1982 		rx->skb = __skb_dequeue(&frame_list);
1983 
1984 		if (!ieee80211_frame_allowed(rx, fc)) {
1985 			dev_kfree_skb(rx->skb);
1986 			continue;
1987 		}
1988 		dev->stats.rx_packets++;
1989 		dev->stats.rx_bytes += rx->skb->len;
1990 
1991 		ieee80211_deliver_skb(rx);
1992 	}
1993 
1994 	return RX_QUEUED;
1995 }
1996 
1997 #ifdef CONFIG_MAC80211_MESH
1998 static ieee80211_rx_result
1999 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2000 {
2001 	struct ieee80211_hdr *fwd_hdr, *hdr;
2002 	struct ieee80211_tx_info *info;
2003 	struct ieee80211s_hdr *mesh_hdr;
2004 	struct sk_buff *skb = rx->skb, *fwd_skb;
2005 	struct ieee80211_local *local = rx->local;
2006 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2007 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2008 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2009 	__le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD);
2010 	u16 q, hdrlen;
2011 
2012 	hdr = (struct ieee80211_hdr *) skb->data;
2013 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2014 
2015 	/* make sure fixed part of mesh header is there, also checks skb len */
2016 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2017 		return RX_DROP_MONITOR;
2018 
2019 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2020 
2021 	/* make sure full mesh header is there, also checks skb len */
2022 	if (!pskb_may_pull(rx->skb,
2023 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2024 		return RX_DROP_MONITOR;
2025 
2026 	/* reload pointers */
2027 	hdr = (struct ieee80211_hdr *) skb->data;
2028 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2029 
2030 	/* frame is in RMC, don't forward */
2031 	if (ieee80211_is_data(hdr->frame_control) &&
2032 	    is_multicast_ether_addr(hdr->addr1) &&
2033 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2034 		return RX_DROP_MONITOR;
2035 
2036 	if (!ieee80211_is_data(hdr->frame_control) ||
2037 	    !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2038 		return RX_CONTINUE;
2039 
2040 	if (!mesh_hdr->ttl)
2041 		return RX_DROP_MONITOR;
2042 
2043 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2044 		struct mesh_path *mppath;
2045 		char *proxied_addr;
2046 		char *mpp_addr;
2047 
2048 		if (is_multicast_ether_addr(hdr->addr1)) {
2049 			mpp_addr = hdr->addr3;
2050 			proxied_addr = mesh_hdr->eaddr1;
2051 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2052 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2053 			mpp_addr = hdr->addr4;
2054 			proxied_addr = mesh_hdr->eaddr2;
2055 		} else {
2056 			return RX_DROP_MONITOR;
2057 		}
2058 
2059 		rcu_read_lock();
2060 		mppath = mpp_path_lookup(sdata, proxied_addr);
2061 		if (!mppath) {
2062 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2063 		} else {
2064 			spin_lock_bh(&mppath->state_lock);
2065 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2066 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2067 			spin_unlock_bh(&mppath->state_lock);
2068 		}
2069 		rcu_read_unlock();
2070 	}
2071 
2072 	/* Frame has reached destination.  Don't forward */
2073 	if (!is_multicast_ether_addr(hdr->addr1) &&
2074 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2075 		return RX_CONTINUE;
2076 
2077 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2078 	if (ieee80211_queue_stopped(&local->hw, q)) {
2079 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2080 		return RX_DROP_MONITOR;
2081 	}
2082 	skb_set_queue_mapping(skb, q);
2083 
2084 	if (!--mesh_hdr->ttl) {
2085 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2086 		goto out;
2087 	}
2088 
2089 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2090 		goto out;
2091 
2092 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2093 	if (!fwd_skb) {
2094 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2095 				    sdata->name);
2096 		goto out;
2097 	}
2098 
2099 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2100 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2101 	info = IEEE80211_SKB_CB(fwd_skb);
2102 	memset(info, 0, sizeof(*info));
2103 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2104 	info->control.vif = &rx->sdata->vif;
2105 	info->control.jiffies = jiffies;
2106 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2107 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2108 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2109 		/* update power mode indication when forwarding */
2110 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2111 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2112 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2113 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2114 	} else {
2115 		/* unable to resolve next hop */
2116 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2117 				   fwd_hdr->addr3, 0, reason, fwd_hdr->addr2);
2118 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2119 		kfree_skb(fwd_skb);
2120 		return RX_DROP_MONITOR;
2121 	}
2122 
2123 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2124 	ieee80211_add_pending_skb(local, fwd_skb);
2125  out:
2126 	if (is_multicast_ether_addr(hdr->addr1) ||
2127 	    sdata->dev->flags & IFF_PROMISC)
2128 		return RX_CONTINUE;
2129 	else
2130 		return RX_DROP_MONITOR;
2131 }
2132 #endif
2133 
2134 static ieee80211_rx_result debug_noinline
2135 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2136 {
2137 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2138 	struct ieee80211_local *local = rx->local;
2139 	struct net_device *dev = sdata->dev;
2140 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2141 	__le16 fc = hdr->frame_control;
2142 	bool port_control;
2143 	int err;
2144 
2145 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2146 		return RX_CONTINUE;
2147 
2148 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2149 		return RX_DROP_MONITOR;
2150 
2151 	/*
2152 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2153 	 * also drop the frame to cooked monitor interfaces.
2154 	 */
2155 	if (ieee80211_has_a4(hdr->frame_control) &&
2156 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2157 		if (rx->sta &&
2158 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2159 			cfg80211_rx_unexpected_4addr_frame(
2160 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2161 		return RX_DROP_MONITOR;
2162 	}
2163 
2164 	err = __ieee80211_data_to_8023(rx, &port_control);
2165 	if (unlikely(err))
2166 		return RX_DROP_UNUSABLE;
2167 
2168 	if (!ieee80211_frame_allowed(rx, fc))
2169 		return RX_DROP_MONITOR;
2170 
2171 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2172 	    unlikely(port_control) && sdata->bss) {
2173 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2174 				     u.ap);
2175 		dev = sdata->dev;
2176 		rx->sdata = sdata;
2177 	}
2178 
2179 	rx->skb->dev = dev;
2180 
2181 	dev->stats.rx_packets++;
2182 	dev->stats.rx_bytes += rx->skb->len;
2183 
2184 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2185 	    !is_multicast_ether_addr(
2186 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2187 	    (!local->scanning &&
2188 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2189 			mod_timer(&local->dynamic_ps_timer, jiffies +
2190 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2191 	}
2192 
2193 	ieee80211_deliver_skb(rx);
2194 
2195 	return RX_QUEUED;
2196 }
2197 
2198 static ieee80211_rx_result debug_noinline
2199 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2200 {
2201 	struct sk_buff *skb = rx->skb;
2202 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2203 	struct tid_ampdu_rx *tid_agg_rx;
2204 	u16 start_seq_num;
2205 	u16 tid;
2206 
2207 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2208 		return RX_CONTINUE;
2209 
2210 	if (ieee80211_is_back_req(bar->frame_control)) {
2211 		struct {
2212 			__le16 control, start_seq_num;
2213 		} __packed bar_data;
2214 
2215 		if (!rx->sta)
2216 			return RX_DROP_MONITOR;
2217 
2218 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2219 				  &bar_data, sizeof(bar_data)))
2220 			return RX_DROP_MONITOR;
2221 
2222 		tid = le16_to_cpu(bar_data.control) >> 12;
2223 
2224 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2225 		if (!tid_agg_rx)
2226 			return RX_DROP_MONITOR;
2227 
2228 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2229 
2230 		/* reset session timer */
2231 		if (tid_agg_rx->timeout)
2232 			mod_timer(&tid_agg_rx->session_timer,
2233 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2234 
2235 		spin_lock(&tid_agg_rx->reorder_lock);
2236 		/* release stored frames up to start of BAR */
2237 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2238 						 start_seq_num, frames);
2239 		spin_unlock(&tid_agg_rx->reorder_lock);
2240 
2241 		kfree_skb(skb);
2242 		return RX_QUEUED;
2243 	}
2244 
2245 	/*
2246 	 * After this point, we only want management frames,
2247 	 * so we can drop all remaining control frames to
2248 	 * cooked monitor interfaces.
2249 	 */
2250 	return RX_DROP_MONITOR;
2251 }
2252 
2253 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2254 					   struct ieee80211_mgmt *mgmt,
2255 					   size_t len)
2256 {
2257 	struct ieee80211_local *local = sdata->local;
2258 	struct sk_buff *skb;
2259 	struct ieee80211_mgmt *resp;
2260 
2261 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2262 		/* Not to own unicast address */
2263 		return;
2264 	}
2265 
2266 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2267 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2268 		/* Not from the current AP or not associated yet. */
2269 		return;
2270 	}
2271 
2272 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2273 		/* Too short SA Query request frame */
2274 		return;
2275 	}
2276 
2277 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2278 	if (skb == NULL)
2279 		return;
2280 
2281 	skb_reserve(skb, local->hw.extra_tx_headroom);
2282 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2283 	memset(resp, 0, 24);
2284 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2285 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2286 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2287 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2288 					  IEEE80211_STYPE_ACTION);
2289 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2290 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2291 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2292 	memcpy(resp->u.action.u.sa_query.trans_id,
2293 	       mgmt->u.action.u.sa_query.trans_id,
2294 	       WLAN_SA_QUERY_TR_ID_LEN);
2295 
2296 	ieee80211_tx_skb(sdata, skb);
2297 }
2298 
2299 static ieee80211_rx_result debug_noinline
2300 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2301 {
2302 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2303 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2304 
2305 	/*
2306 	 * From here on, look only at management frames.
2307 	 * Data and control frames are already handled,
2308 	 * and unknown (reserved) frames are useless.
2309 	 */
2310 	if (rx->skb->len < 24)
2311 		return RX_DROP_MONITOR;
2312 
2313 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2314 		return RX_DROP_MONITOR;
2315 
2316 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2317 	    ieee80211_is_beacon(mgmt->frame_control) &&
2318 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2319 		int sig = 0;
2320 
2321 		if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2322 			sig = status->signal;
2323 
2324 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2325 					    rx->skb->data, rx->skb->len,
2326 					    status->freq, sig);
2327 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2328 	}
2329 
2330 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2331 		return RX_DROP_MONITOR;
2332 
2333 	if (ieee80211_drop_unencrypted_mgmt(rx))
2334 		return RX_DROP_UNUSABLE;
2335 
2336 	return RX_CONTINUE;
2337 }
2338 
2339 static ieee80211_rx_result debug_noinline
2340 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2341 {
2342 	struct ieee80211_local *local = rx->local;
2343 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2344 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2345 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2346 	int len = rx->skb->len;
2347 
2348 	if (!ieee80211_is_action(mgmt->frame_control))
2349 		return RX_CONTINUE;
2350 
2351 	/* drop too small frames */
2352 	if (len < IEEE80211_MIN_ACTION_SIZE)
2353 		return RX_DROP_UNUSABLE;
2354 
2355 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2356 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED)
2357 		return RX_DROP_UNUSABLE;
2358 
2359 	if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2360 		return RX_DROP_UNUSABLE;
2361 
2362 	switch (mgmt->u.action.category) {
2363 	case WLAN_CATEGORY_HT:
2364 		/* reject HT action frames from stations not supporting HT */
2365 		if (!rx->sta->sta.ht_cap.ht_supported)
2366 			goto invalid;
2367 
2368 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2369 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2370 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2371 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2372 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2373 			break;
2374 
2375 		/* verify action & smps_control/chanwidth are present */
2376 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2377 			goto invalid;
2378 
2379 		switch (mgmt->u.action.u.ht_smps.action) {
2380 		case WLAN_HT_ACTION_SMPS: {
2381 			struct ieee80211_supported_band *sband;
2382 			enum ieee80211_smps_mode smps_mode;
2383 
2384 			/* convert to HT capability */
2385 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2386 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2387 				smps_mode = IEEE80211_SMPS_OFF;
2388 				break;
2389 			case WLAN_HT_SMPS_CONTROL_STATIC:
2390 				smps_mode = IEEE80211_SMPS_STATIC;
2391 				break;
2392 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2393 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2394 				break;
2395 			default:
2396 				goto invalid;
2397 			}
2398 
2399 			/* if no change do nothing */
2400 			if (rx->sta->sta.smps_mode == smps_mode)
2401 				goto handled;
2402 			rx->sta->sta.smps_mode = smps_mode;
2403 
2404 			sband = rx->local->hw.wiphy->bands[status->band];
2405 
2406 			rate_control_rate_update(local, sband, rx->sta,
2407 						 IEEE80211_RC_SMPS_CHANGED);
2408 			goto handled;
2409 		}
2410 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2411 			struct ieee80211_supported_band *sband;
2412 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2413 			enum ieee80211_sta_rx_bandwidth new_bw;
2414 
2415 			/* If it doesn't support 40 MHz it can't change ... */
2416 			if (!(rx->sta->sta.ht_cap.cap &
2417 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2418 				goto handled;
2419 
2420 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2421 				new_bw = IEEE80211_STA_RX_BW_20;
2422 			else
2423 				new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2424 
2425 			if (rx->sta->sta.bandwidth == new_bw)
2426 				goto handled;
2427 
2428 			sband = rx->local->hw.wiphy->bands[status->band];
2429 
2430 			rate_control_rate_update(local, sband, rx->sta,
2431 						 IEEE80211_RC_BW_CHANGED);
2432 			goto handled;
2433 		}
2434 		default:
2435 			goto invalid;
2436 		}
2437 
2438 		break;
2439 	case WLAN_CATEGORY_PUBLIC:
2440 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2441 			goto invalid;
2442 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2443 			break;
2444 		if (!rx->sta)
2445 			break;
2446 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2447 			break;
2448 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2449 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2450 			break;
2451 		if (len < offsetof(struct ieee80211_mgmt,
2452 				   u.action.u.ext_chan_switch.variable))
2453 			goto invalid;
2454 		goto queue;
2455 	case WLAN_CATEGORY_VHT:
2456 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2457 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2458 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2459 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2460 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2461 			break;
2462 
2463 		/* verify action code is present */
2464 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2465 			goto invalid;
2466 
2467 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2468 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2469 			u8 opmode;
2470 
2471 			/* verify opmode is present */
2472 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2473 				goto invalid;
2474 
2475 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2476 
2477 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2478 						    opmode, status->band,
2479 						    false);
2480 			goto handled;
2481 		}
2482 		default:
2483 			break;
2484 		}
2485 		break;
2486 	case WLAN_CATEGORY_BACK:
2487 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2488 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2489 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2490 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2491 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2492 			break;
2493 
2494 		/* verify action_code is present */
2495 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2496 			break;
2497 
2498 		switch (mgmt->u.action.u.addba_req.action_code) {
2499 		case WLAN_ACTION_ADDBA_REQ:
2500 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2501 				   sizeof(mgmt->u.action.u.addba_req)))
2502 				goto invalid;
2503 			break;
2504 		case WLAN_ACTION_ADDBA_RESP:
2505 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2506 				   sizeof(mgmt->u.action.u.addba_resp)))
2507 				goto invalid;
2508 			break;
2509 		case WLAN_ACTION_DELBA:
2510 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2511 				   sizeof(mgmt->u.action.u.delba)))
2512 				goto invalid;
2513 			break;
2514 		default:
2515 			goto invalid;
2516 		}
2517 
2518 		goto queue;
2519 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2520 		if (status->band != IEEE80211_BAND_5GHZ)
2521 			break;
2522 
2523 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2524 			break;
2525 
2526 		/* verify action_code is present */
2527 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2528 			break;
2529 
2530 		switch (mgmt->u.action.u.measurement.action_code) {
2531 		case WLAN_ACTION_SPCT_MSR_REQ:
2532 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2533 				   sizeof(mgmt->u.action.u.measurement)))
2534 				break;
2535 			ieee80211_process_measurement_req(sdata, mgmt, len);
2536 			goto handled;
2537 		case WLAN_ACTION_SPCT_CHL_SWITCH:
2538 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2539 				break;
2540 
2541 			if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2542 				break;
2543 
2544 			goto queue;
2545 		}
2546 		break;
2547 	case WLAN_CATEGORY_SA_QUERY:
2548 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2549 			   sizeof(mgmt->u.action.u.sa_query)))
2550 			break;
2551 
2552 		switch (mgmt->u.action.u.sa_query.action) {
2553 		case WLAN_ACTION_SA_QUERY_REQUEST:
2554 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2555 				break;
2556 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2557 			goto handled;
2558 		}
2559 		break;
2560 	case WLAN_CATEGORY_SELF_PROTECTED:
2561 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2562 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2563 			break;
2564 
2565 		switch (mgmt->u.action.u.self_prot.action_code) {
2566 		case WLAN_SP_MESH_PEERING_OPEN:
2567 		case WLAN_SP_MESH_PEERING_CLOSE:
2568 		case WLAN_SP_MESH_PEERING_CONFIRM:
2569 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2570 				goto invalid;
2571 			if (sdata->u.mesh.user_mpm)
2572 				/* userspace handles this frame */
2573 				break;
2574 			goto queue;
2575 		case WLAN_SP_MGK_INFORM:
2576 		case WLAN_SP_MGK_ACK:
2577 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2578 				goto invalid;
2579 			break;
2580 		}
2581 		break;
2582 	case WLAN_CATEGORY_MESH_ACTION:
2583 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2584 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2585 			break;
2586 
2587 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2588 			break;
2589 		if (mesh_action_is_path_sel(mgmt) &&
2590 		    !mesh_path_sel_is_hwmp(sdata))
2591 			break;
2592 		goto queue;
2593 	}
2594 
2595 	return RX_CONTINUE;
2596 
2597  invalid:
2598 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2599 	/* will return in the next handlers */
2600 	return RX_CONTINUE;
2601 
2602  handled:
2603 	if (rx->sta)
2604 		rx->sta->rx_packets++;
2605 	dev_kfree_skb(rx->skb);
2606 	return RX_QUEUED;
2607 
2608  queue:
2609 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2610 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2611 	ieee80211_queue_work(&local->hw, &sdata->work);
2612 	if (rx->sta)
2613 		rx->sta->rx_packets++;
2614 	return RX_QUEUED;
2615 }
2616 
2617 static ieee80211_rx_result debug_noinline
2618 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2619 {
2620 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2621 	int sig = 0;
2622 
2623 	/* skip known-bad action frames and return them in the next handler */
2624 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2625 		return RX_CONTINUE;
2626 
2627 	/*
2628 	 * Getting here means the kernel doesn't know how to handle
2629 	 * it, but maybe userspace does ... include returned frames
2630 	 * so userspace can register for those to know whether ones
2631 	 * it transmitted were processed or returned.
2632 	 */
2633 
2634 	if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2635 		sig = status->signal;
2636 
2637 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2638 			     rx->skb->data, rx->skb->len,
2639 			     GFP_ATOMIC)) {
2640 		if (rx->sta)
2641 			rx->sta->rx_packets++;
2642 		dev_kfree_skb(rx->skb);
2643 		return RX_QUEUED;
2644 	}
2645 
2646 	return RX_CONTINUE;
2647 }
2648 
2649 static ieee80211_rx_result debug_noinline
2650 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2651 {
2652 	struct ieee80211_local *local = rx->local;
2653 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2654 	struct sk_buff *nskb;
2655 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2656 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2657 
2658 	if (!ieee80211_is_action(mgmt->frame_control))
2659 		return RX_CONTINUE;
2660 
2661 	/*
2662 	 * For AP mode, hostapd is responsible for handling any action
2663 	 * frames that we didn't handle, including returning unknown
2664 	 * ones. For all other modes we will return them to the sender,
2665 	 * setting the 0x80 bit in the action category, as required by
2666 	 * 802.11-2012 9.24.4.
2667 	 * Newer versions of hostapd shall also use the management frame
2668 	 * registration mechanisms, but older ones still use cooked
2669 	 * monitor interfaces so push all frames there.
2670 	 */
2671 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2672 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2673 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2674 		return RX_DROP_MONITOR;
2675 
2676 	if (is_multicast_ether_addr(mgmt->da))
2677 		return RX_DROP_MONITOR;
2678 
2679 	/* do not return rejected action frames */
2680 	if (mgmt->u.action.category & 0x80)
2681 		return RX_DROP_UNUSABLE;
2682 
2683 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2684 			       GFP_ATOMIC);
2685 	if (nskb) {
2686 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2687 
2688 		nmgmt->u.action.category |= 0x80;
2689 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2690 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2691 
2692 		memset(nskb->cb, 0, sizeof(nskb->cb));
2693 
2694 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2695 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2696 
2697 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2698 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2699 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2700 			if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2701 				info->hw_queue =
2702 					local->hw.offchannel_tx_hw_queue;
2703 		}
2704 
2705 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2706 					    status->band);
2707 	}
2708 	dev_kfree_skb(rx->skb);
2709 	return RX_QUEUED;
2710 }
2711 
2712 static ieee80211_rx_result debug_noinline
2713 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2714 {
2715 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2716 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2717 	__le16 stype;
2718 
2719 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2720 
2721 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2722 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2723 	    sdata->vif.type != NL80211_IFTYPE_STATION)
2724 		return RX_DROP_MONITOR;
2725 
2726 	switch (stype) {
2727 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
2728 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
2729 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2730 		/* process for all: mesh, mlme, ibss */
2731 		break;
2732 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2733 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2734 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2735 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2736 		if (is_multicast_ether_addr(mgmt->da) &&
2737 		    !is_broadcast_ether_addr(mgmt->da))
2738 			return RX_DROP_MONITOR;
2739 
2740 		/* process only for station */
2741 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2742 			return RX_DROP_MONITOR;
2743 		break;
2744 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2745 		/* process only for ibss and mesh */
2746 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2747 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2748 			return RX_DROP_MONITOR;
2749 		break;
2750 	default:
2751 		return RX_DROP_MONITOR;
2752 	}
2753 
2754 	/* queue up frame and kick off work to process it */
2755 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2756 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2757 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
2758 	if (rx->sta)
2759 		rx->sta->rx_packets++;
2760 
2761 	return RX_QUEUED;
2762 }
2763 
2764 /* TODO: use IEEE80211_RX_FRAGMENTED */
2765 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2766 					struct ieee80211_rate *rate)
2767 {
2768 	struct ieee80211_sub_if_data *sdata;
2769 	struct ieee80211_local *local = rx->local;
2770 	struct sk_buff *skb = rx->skb, *skb2;
2771 	struct net_device *prev_dev = NULL;
2772 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2773 	int needed_headroom;
2774 
2775 	/*
2776 	 * If cooked monitor has been processed already, then
2777 	 * don't do it again. If not, set the flag.
2778 	 */
2779 	if (rx->flags & IEEE80211_RX_CMNTR)
2780 		goto out_free_skb;
2781 	rx->flags |= IEEE80211_RX_CMNTR;
2782 
2783 	/* If there are no cooked monitor interfaces, just free the SKB */
2784 	if (!local->cooked_mntrs)
2785 		goto out_free_skb;
2786 
2787 	/* room for the radiotap header based on driver features */
2788 	needed_headroom = ieee80211_rx_radiotap_space(local, status);
2789 
2790 	if (skb_headroom(skb) < needed_headroom &&
2791 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2792 		goto out_free_skb;
2793 
2794 	/* prepend radiotap information */
2795 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2796 					 false);
2797 
2798 	skb_set_mac_header(skb, 0);
2799 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2800 	skb->pkt_type = PACKET_OTHERHOST;
2801 	skb->protocol = htons(ETH_P_802_2);
2802 
2803 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2804 		if (!ieee80211_sdata_running(sdata))
2805 			continue;
2806 
2807 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2808 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2809 			continue;
2810 
2811 		if (prev_dev) {
2812 			skb2 = skb_clone(skb, GFP_ATOMIC);
2813 			if (skb2) {
2814 				skb2->dev = prev_dev;
2815 				netif_receive_skb(skb2);
2816 			}
2817 		}
2818 
2819 		prev_dev = sdata->dev;
2820 		sdata->dev->stats.rx_packets++;
2821 		sdata->dev->stats.rx_bytes += skb->len;
2822 	}
2823 
2824 	if (prev_dev) {
2825 		skb->dev = prev_dev;
2826 		netif_receive_skb(skb);
2827 		return;
2828 	}
2829 
2830  out_free_skb:
2831 	dev_kfree_skb(skb);
2832 }
2833 
2834 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2835 					 ieee80211_rx_result res)
2836 {
2837 	switch (res) {
2838 	case RX_DROP_MONITOR:
2839 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2840 		if (rx->sta)
2841 			rx->sta->rx_dropped++;
2842 		/* fall through */
2843 	case RX_CONTINUE: {
2844 		struct ieee80211_rate *rate = NULL;
2845 		struct ieee80211_supported_band *sband;
2846 		struct ieee80211_rx_status *status;
2847 
2848 		status = IEEE80211_SKB_RXCB((rx->skb));
2849 
2850 		sband = rx->local->hw.wiphy->bands[status->band];
2851 		if (!(status->flag & RX_FLAG_HT) &&
2852 		    !(status->flag & RX_FLAG_VHT))
2853 			rate = &sband->bitrates[status->rate_idx];
2854 
2855 		ieee80211_rx_cooked_monitor(rx, rate);
2856 		break;
2857 		}
2858 	case RX_DROP_UNUSABLE:
2859 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2860 		if (rx->sta)
2861 			rx->sta->rx_dropped++;
2862 		dev_kfree_skb(rx->skb);
2863 		break;
2864 	case RX_QUEUED:
2865 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2866 		break;
2867 	}
2868 }
2869 
2870 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2871 				  struct sk_buff_head *frames)
2872 {
2873 	ieee80211_rx_result res = RX_DROP_MONITOR;
2874 	struct sk_buff *skb;
2875 
2876 #define CALL_RXH(rxh)			\
2877 	do {				\
2878 		res = rxh(rx);		\
2879 		if (res != RX_CONTINUE)	\
2880 			goto rxh_next;  \
2881 	} while (0);
2882 
2883 	spin_lock_bh(&rx->local->rx_path_lock);
2884 
2885 	while ((skb = __skb_dequeue(frames))) {
2886 		/*
2887 		 * all the other fields are valid across frames
2888 		 * that belong to an aMPDU since they are on the
2889 		 * same TID from the same station
2890 		 */
2891 		rx->skb = skb;
2892 
2893 		CALL_RXH(ieee80211_rx_h_decrypt)
2894 		CALL_RXH(ieee80211_rx_h_check_more_data)
2895 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
2896 		CALL_RXH(ieee80211_rx_h_sta_process)
2897 		CALL_RXH(ieee80211_rx_h_defragment)
2898 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
2899 		/* must be after MMIC verify so header is counted in MPDU mic */
2900 #ifdef CONFIG_MAC80211_MESH
2901 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
2902 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
2903 #endif
2904 		CALL_RXH(ieee80211_rx_h_amsdu)
2905 		CALL_RXH(ieee80211_rx_h_data)
2906 
2907 		/* special treatment -- needs the queue */
2908 		res = ieee80211_rx_h_ctrl(rx, frames);
2909 		if (res != RX_CONTINUE)
2910 			goto rxh_next;
2911 
2912 		CALL_RXH(ieee80211_rx_h_mgmt_check)
2913 		CALL_RXH(ieee80211_rx_h_action)
2914 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
2915 		CALL_RXH(ieee80211_rx_h_action_return)
2916 		CALL_RXH(ieee80211_rx_h_mgmt)
2917 
2918  rxh_next:
2919 		ieee80211_rx_handlers_result(rx, res);
2920 
2921 #undef CALL_RXH
2922 	}
2923 
2924 	spin_unlock_bh(&rx->local->rx_path_lock);
2925 }
2926 
2927 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
2928 {
2929 	struct sk_buff_head reorder_release;
2930 	ieee80211_rx_result res = RX_DROP_MONITOR;
2931 
2932 	__skb_queue_head_init(&reorder_release);
2933 
2934 #define CALL_RXH(rxh)			\
2935 	do {				\
2936 		res = rxh(rx);		\
2937 		if (res != RX_CONTINUE)	\
2938 			goto rxh_next;  \
2939 	} while (0);
2940 
2941 	CALL_RXH(ieee80211_rx_h_check)
2942 
2943 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
2944 
2945 	ieee80211_rx_handlers(rx, &reorder_release);
2946 	return;
2947 
2948  rxh_next:
2949 	ieee80211_rx_handlers_result(rx, res);
2950 
2951 #undef CALL_RXH
2952 }
2953 
2954 /*
2955  * This function makes calls into the RX path, therefore
2956  * it has to be invoked under RCU read lock.
2957  */
2958 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
2959 {
2960 	struct sk_buff_head frames;
2961 	struct ieee80211_rx_data rx = {
2962 		.sta = sta,
2963 		.sdata = sta->sdata,
2964 		.local = sta->local,
2965 		/* This is OK -- must be QoS data frame */
2966 		.security_idx = tid,
2967 		.seqno_idx = tid,
2968 		.flags = 0,
2969 	};
2970 	struct tid_ampdu_rx *tid_agg_rx;
2971 
2972 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
2973 	if (!tid_agg_rx)
2974 		return;
2975 
2976 	__skb_queue_head_init(&frames);
2977 
2978 	spin_lock(&tid_agg_rx->reorder_lock);
2979 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
2980 	spin_unlock(&tid_agg_rx->reorder_lock);
2981 
2982 	ieee80211_rx_handlers(&rx, &frames);
2983 }
2984 
2985 /* main receive path */
2986 
2987 static int prepare_for_handlers(struct ieee80211_rx_data *rx,
2988 				struct ieee80211_hdr *hdr)
2989 {
2990 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2991 	struct sk_buff *skb = rx->skb;
2992 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2993 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
2994 	int multicast = is_multicast_ether_addr(hdr->addr1);
2995 
2996 	switch (sdata->vif.type) {
2997 	case NL80211_IFTYPE_STATION:
2998 		if (!bssid && !sdata->u.mgd.use_4addr)
2999 			return 0;
3000 		if (!multicast &&
3001 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3002 			if (!(sdata->dev->flags & IFF_PROMISC) ||
3003 			    sdata->u.mgd.use_4addr)
3004 				return 0;
3005 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3006 		}
3007 		break;
3008 	case NL80211_IFTYPE_ADHOC:
3009 		if (!bssid)
3010 			return 0;
3011 		if (ieee80211_is_beacon(hdr->frame_control)) {
3012 			return 1;
3013 		} else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3014 			return 0;
3015 		} else if (!multicast &&
3016 			   !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3017 			if (!(sdata->dev->flags & IFF_PROMISC))
3018 				return 0;
3019 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3020 		} else if (!rx->sta) {
3021 			int rate_idx;
3022 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3023 				rate_idx = 0; /* TODO: HT/VHT rates */
3024 			else
3025 				rate_idx = status->rate_idx;
3026 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3027 						 BIT(rate_idx));
3028 		}
3029 		break;
3030 	case NL80211_IFTYPE_MESH_POINT:
3031 		if (!multicast &&
3032 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3033 			if (!(sdata->dev->flags & IFF_PROMISC))
3034 				return 0;
3035 
3036 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3037 		}
3038 		break;
3039 	case NL80211_IFTYPE_AP_VLAN:
3040 	case NL80211_IFTYPE_AP:
3041 		if (!bssid) {
3042 			if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3043 				return 0;
3044 		} else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3045 			/*
3046 			 * Accept public action frames even when the
3047 			 * BSSID doesn't match, this is used for P2P
3048 			 * and location updates. Note that mac80211
3049 			 * itself never looks at these frames.
3050 			 */
3051 			if (!multicast &&
3052 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3053 				return 0;
3054 			if (ieee80211_is_public_action(hdr, skb->len))
3055 				return 1;
3056 			if (!ieee80211_is_beacon(hdr->frame_control))
3057 				return 0;
3058 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3059 		}
3060 		break;
3061 	case NL80211_IFTYPE_WDS:
3062 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3063 			return 0;
3064 		if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3065 			return 0;
3066 		break;
3067 	case NL80211_IFTYPE_P2P_DEVICE:
3068 		if (!ieee80211_is_public_action(hdr, skb->len) &&
3069 		    !ieee80211_is_probe_req(hdr->frame_control) &&
3070 		    !ieee80211_is_probe_resp(hdr->frame_control) &&
3071 		    !ieee80211_is_beacon(hdr->frame_control))
3072 			return 0;
3073 		if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3074 		    !multicast)
3075 			status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3076 		break;
3077 	default:
3078 		/* should never get here */
3079 		WARN_ON_ONCE(1);
3080 		break;
3081 	}
3082 
3083 	return 1;
3084 }
3085 
3086 /*
3087  * This function returns whether or not the SKB
3088  * was destined for RX processing or not, which,
3089  * if consume is true, is equivalent to whether
3090  * or not the skb was consumed.
3091  */
3092 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3093 					    struct sk_buff *skb, bool consume)
3094 {
3095 	struct ieee80211_local *local = rx->local;
3096 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3097 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3098 	struct ieee80211_hdr *hdr = (void *)skb->data;
3099 	int prepares;
3100 
3101 	rx->skb = skb;
3102 	status->rx_flags |= IEEE80211_RX_RA_MATCH;
3103 	prepares = prepare_for_handlers(rx, hdr);
3104 
3105 	if (!prepares)
3106 		return false;
3107 
3108 	if (!consume) {
3109 		skb = skb_copy(skb, GFP_ATOMIC);
3110 		if (!skb) {
3111 			if (net_ratelimit())
3112 				wiphy_debug(local->hw.wiphy,
3113 					"failed to copy skb for %s\n",
3114 					sdata->name);
3115 			return true;
3116 		}
3117 
3118 		rx->skb = skb;
3119 	}
3120 
3121 	ieee80211_invoke_rx_handlers(rx);
3122 	return true;
3123 }
3124 
3125 /*
3126  * This is the actual Rx frames handler. as it blongs to Rx path it must
3127  * be called with rcu_read_lock protection.
3128  */
3129 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3130 					 struct sk_buff *skb)
3131 {
3132 	struct ieee80211_local *local = hw_to_local(hw);
3133 	struct ieee80211_sub_if_data *sdata;
3134 	struct ieee80211_hdr *hdr;
3135 	__le16 fc;
3136 	struct ieee80211_rx_data rx;
3137 	struct ieee80211_sub_if_data *prev;
3138 	struct sta_info *sta, *tmp, *prev_sta;
3139 	int err = 0;
3140 
3141 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3142 	memset(&rx, 0, sizeof(rx));
3143 	rx.skb = skb;
3144 	rx.local = local;
3145 
3146 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3147 		local->dot11ReceivedFragmentCount++;
3148 
3149 	if (ieee80211_is_mgmt(fc)) {
3150 		/* drop frame if too short for header */
3151 		if (skb->len < ieee80211_hdrlen(fc))
3152 			err = -ENOBUFS;
3153 		else
3154 			err = skb_linearize(skb);
3155 	} else {
3156 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3157 	}
3158 
3159 	if (err) {
3160 		dev_kfree_skb(skb);
3161 		return;
3162 	}
3163 
3164 	hdr = (struct ieee80211_hdr *)skb->data;
3165 	ieee80211_parse_qos(&rx);
3166 	ieee80211_verify_alignment(&rx);
3167 
3168 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3169 		     ieee80211_is_beacon(hdr->frame_control)))
3170 		ieee80211_scan_rx(local, skb);
3171 
3172 	if (ieee80211_is_data(fc)) {
3173 		prev_sta = NULL;
3174 
3175 		for_each_sta_info(local, hdr->addr2, sta, tmp) {
3176 			if (!prev_sta) {
3177 				prev_sta = sta;
3178 				continue;
3179 			}
3180 
3181 			rx.sta = prev_sta;
3182 			rx.sdata = prev_sta->sdata;
3183 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3184 
3185 			prev_sta = sta;
3186 		}
3187 
3188 		if (prev_sta) {
3189 			rx.sta = prev_sta;
3190 			rx.sdata = prev_sta->sdata;
3191 
3192 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3193 				return;
3194 			goto out;
3195 		}
3196 	}
3197 
3198 	prev = NULL;
3199 
3200 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3201 		if (!ieee80211_sdata_running(sdata))
3202 			continue;
3203 
3204 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3205 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3206 			continue;
3207 
3208 		/*
3209 		 * frame is destined for this interface, but if it's
3210 		 * not also for the previous one we handle that after
3211 		 * the loop to avoid copying the SKB once too much
3212 		 */
3213 
3214 		if (!prev) {
3215 			prev = sdata;
3216 			continue;
3217 		}
3218 
3219 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3220 		rx.sdata = prev;
3221 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3222 
3223 		prev = sdata;
3224 	}
3225 
3226 	if (prev) {
3227 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3228 		rx.sdata = prev;
3229 
3230 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3231 			return;
3232 	}
3233 
3234  out:
3235 	dev_kfree_skb(skb);
3236 }
3237 
3238 /*
3239  * This is the receive path handler. It is called by a low level driver when an
3240  * 802.11 MPDU is received from the hardware.
3241  */
3242 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3243 {
3244 	struct ieee80211_local *local = hw_to_local(hw);
3245 	struct ieee80211_rate *rate = NULL;
3246 	struct ieee80211_supported_band *sband;
3247 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3248 
3249 	WARN_ON_ONCE(softirq_count() == 0);
3250 
3251 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3252 		goto drop;
3253 
3254 	sband = local->hw.wiphy->bands[status->band];
3255 	if (WARN_ON(!sband))
3256 		goto drop;
3257 
3258 	/*
3259 	 * If we're suspending, it is possible although not too likely
3260 	 * that we'd be receiving frames after having already partially
3261 	 * quiesced the stack. We can't process such frames then since
3262 	 * that might, for example, cause stations to be added or other
3263 	 * driver callbacks be invoked.
3264 	 */
3265 	if (unlikely(local->quiescing || local->suspended))
3266 		goto drop;
3267 
3268 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3269 	if (unlikely(local->in_reconfig))
3270 		goto drop;
3271 
3272 	/*
3273 	 * The same happens when we're not even started,
3274 	 * but that's worth a warning.
3275 	 */
3276 	if (WARN_ON(!local->started))
3277 		goto drop;
3278 
3279 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3280 		/*
3281 		 * Validate the rate, unless a PLCP error means that
3282 		 * we probably can't have a valid rate here anyway.
3283 		 */
3284 
3285 		if (status->flag & RX_FLAG_HT) {
3286 			/*
3287 			 * rate_idx is MCS index, which can be [0-76]
3288 			 * as documented on:
3289 			 *
3290 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3291 			 *
3292 			 * Anything else would be some sort of driver or
3293 			 * hardware error. The driver should catch hardware
3294 			 * errors.
3295 			 */
3296 			if (WARN(status->rate_idx > 76,
3297 				 "Rate marked as an HT rate but passed "
3298 				 "status->rate_idx is not "
3299 				 "an MCS index [0-76]: %d (0x%02x)\n",
3300 				 status->rate_idx,
3301 				 status->rate_idx))
3302 				goto drop;
3303 		} else if (status->flag & RX_FLAG_VHT) {
3304 			if (WARN_ONCE(status->rate_idx > 9 ||
3305 				      !status->vht_nss ||
3306 				      status->vht_nss > 8,
3307 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3308 				      status->rate_idx, status->vht_nss))
3309 				goto drop;
3310 		} else {
3311 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3312 				goto drop;
3313 			rate = &sband->bitrates[status->rate_idx];
3314 		}
3315 	}
3316 
3317 	status->rx_flags = 0;
3318 
3319 	/*
3320 	 * key references and virtual interfaces are protected using RCU
3321 	 * and this requires that we are in a read-side RCU section during
3322 	 * receive processing
3323 	 */
3324 	rcu_read_lock();
3325 
3326 	/*
3327 	 * Frames with failed FCS/PLCP checksum are not returned,
3328 	 * all other frames are returned without radiotap header
3329 	 * if it was previously present.
3330 	 * Also, frames with less than 16 bytes are dropped.
3331 	 */
3332 	skb = ieee80211_rx_monitor(local, skb, rate);
3333 	if (!skb) {
3334 		rcu_read_unlock();
3335 		return;
3336 	}
3337 
3338 	ieee80211_tpt_led_trig_rx(local,
3339 			((struct ieee80211_hdr *)skb->data)->frame_control,
3340 			skb->len);
3341 	__ieee80211_rx_handle_packet(hw, skb);
3342 
3343 	rcu_read_unlock();
3344 
3345 	return;
3346  drop:
3347 	kfree_skb(skb);
3348 }
3349 EXPORT_SYMBOL(ieee80211_rx);
3350 
3351 /* This is a version of the rx handler that can be called from hard irq
3352  * context. Post the skb on the queue and schedule the tasklet */
3353 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3354 {
3355 	struct ieee80211_local *local = hw_to_local(hw);
3356 
3357 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3358 
3359 	skb->pkt_type = IEEE80211_RX_MSG;
3360 	skb_queue_tail(&local->skb_queue, skb);
3361 	tasklet_schedule(&local->tasklet);
3362 }
3363 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3364