1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 #include <asm/unaligned.h> 23 24 #include "ieee80211_i.h" 25 #include "driver-ops.h" 26 #include "led.h" 27 #include "mesh.h" 28 #include "wep.h" 29 #include "wpa.h" 30 #include "tkip.h" 31 #include "wme.h" 32 #include "rate.h" 33 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb) 42 { 43 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 44 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 if (status->vendor_radiotap_len) 57 __pskb_pull(skb, status->vendor_radiotap_len); 58 59 return skb; 60 } 61 62 static inline int should_drop_frame(struct sk_buff *skb, int present_fcs_len) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + status->vendor_radiotap_len); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return 1; 73 if (unlikely(skb->len < 16 + present_fcs_len + 74 status->vendor_radiotap_len)) 75 return 1; 76 if (ieee80211_is_ctl(hdr->frame_control) && 77 !ieee80211_is_pspoll(hdr->frame_control) && 78 !ieee80211_is_back_req(hdr->frame_control)) 79 return 1; 80 return 0; 81 } 82 83 static int 84 ieee80211_rx_radiotap_space(struct ieee80211_local *local, 85 struct ieee80211_rx_status *status) 86 { 87 int len; 88 89 /* always present fields */ 90 len = sizeof(struct ieee80211_radiotap_header) + 9; 91 92 /* allocate extra bitmap */ 93 if (status->vendor_radiotap_len) 94 len += 4; 95 96 if (ieee80211_have_rx_timestamp(status)) { 97 len = ALIGN(len, 8); 98 len += 8; 99 } 100 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 101 len += 1; 102 103 /* padding for RX_FLAGS if necessary */ 104 len = ALIGN(len, 2); 105 106 if (status->flag & RX_FLAG_HT) /* HT info */ 107 len += 3; 108 109 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 110 len = ALIGN(len, 4); 111 len += 8; 112 } 113 114 if (status->flag & RX_FLAG_VHT) { 115 len = ALIGN(len, 2); 116 len += 12; 117 } 118 119 if (status->vendor_radiotap_len) { 120 if (WARN_ON_ONCE(status->vendor_radiotap_align == 0)) 121 status->vendor_radiotap_align = 1; 122 /* align standard part of vendor namespace */ 123 len = ALIGN(len, 2); 124 /* allocate standard part of vendor namespace */ 125 len += 6; 126 /* align vendor-defined part */ 127 len = ALIGN(len, status->vendor_radiotap_align); 128 /* vendor-defined part is already in skb */ 129 } 130 131 return len; 132 } 133 134 /* 135 * ieee80211_add_rx_radiotap_header - add radiotap header 136 * 137 * add a radiotap header containing all the fields which the hardware provided. 138 */ 139 static void 140 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 141 struct sk_buff *skb, 142 struct ieee80211_rate *rate, 143 int rtap_len, bool has_fcs) 144 { 145 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 146 struct ieee80211_radiotap_header *rthdr; 147 unsigned char *pos; 148 u16 rx_flags = 0; 149 int mpdulen; 150 151 mpdulen = skb->len; 152 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 153 mpdulen += FCS_LEN; 154 155 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 156 memset(rthdr, 0, rtap_len); 157 158 /* radiotap header, set always present flags */ 159 rthdr->it_present = 160 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 161 (1 << IEEE80211_RADIOTAP_CHANNEL) | 162 (1 << IEEE80211_RADIOTAP_ANTENNA) | 163 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 164 rthdr->it_len = cpu_to_le16(rtap_len + status->vendor_radiotap_len); 165 166 pos = (unsigned char *)(rthdr + 1); 167 168 if (status->vendor_radiotap_len) { 169 rthdr->it_present |= 170 cpu_to_le32(BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE)) | 171 cpu_to_le32(BIT(IEEE80211_RADIOTAP_EXT)); 172 put_unaligned_le32(status->vendor_radiotap_bitmap, pos); 173 pos += 4; 174 } 175 176 /* the order of the following fields is important */ 177 178 /* IEEE80211_RADIOTAP_TSFT */ 179 if (ieee80211_have_rx_timestamp(status)) { 180 /* padding */ 181 while ((pos - (u8 *)rthdr) & 7) 182 *pos++ = 0; 183 put_unaligned_le64( 184 ieee80211_calculate_rx_timestamp(local, status, 185 mpdulen, 0), 186 pos); 187 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 188 pos += 8; 189 } 190 191 /* IEEE80211_RADIOTAP_FLAGS */ 192 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 193 *pos |= IEEE80211_RADIOTAP_F_FCS; 194 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 195 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 196 if (status->flag & RX_FLAG_SHORTPRE) 197 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 198 pos++; 199 200 /* IEEE80211_RADIOTAP_RATE */ 201 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 202 /* 203 * Without rate information don't add it. If we have, 204 * MCS information is a separate field in radiotap, 205 * added below. The byte here is needed as padding 206 * for the channel though, so initialise it to 0. 207 */ 208 *pos = 0; 209 } else { 210 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 211 *pos = rate->bitrate / 5; 212 } 213 pos++; 214 215 /* IEEE80211_RADIOTAP_CHANNEL */ 216 put_unaligned_le16(status->freq, pos); 217 pos += 2; 218 if (status->band == IEEE80211_BAND_5GHZ) 219 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 220 pos); 221 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 222 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 223 pos); 224 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 225 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 226 pos); 227 else if (rate) 228 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 229 pos); 230 else 231 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 232 pos += 2; 233 234 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 235 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 236 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 237 *pos = status->signal; 238 rthdr->it_present |= 239 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 240 pos++; 241 } 242 243 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 244 245 /* IEEE80211_RADIOTAP_ANTENNA */ 246 *pos = status->antenna; 247 pos++; 248 249 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 250 251 /* IEEE80211_RADIOTAP_RX_FLAGS */ 252 /* ensure 2 byte alignment for the 2 byte field as required */ 253 if ((pos - (u8 *)rthdr) & 1) 254 *pos++ = 0; 255 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 256 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 257 put_unaligned_le16(rx_flags, pos); 258 pos += 2; 259 260 if (status->flag & RX_FLAG_HT) { 261 unsigned int stbc; 262 263 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 264 *pos++ = local->hw.radiotap_mcs_details; 265 *pos = 0; 266 if (status->flag & RX_FLAG_SHORT_GI) 267 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 268 if (status->flag & RX_FLAG_40MHZ) 269 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 270 if (status->flag & RX_FLAG_HT_GF) 271 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 272 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 273 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 274 pos++; 275 *pos++ = status->rate_idx; 276 } 277 278 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 279 u16 flags = 0; 280 281 /* ensure 4 byte alignment */ 282 while ((pos - (u8 *)rthdr) & 3) 283 pos++; 284 rthdr->it_present |= 285 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 286 put_unaligned_le32(status->ampdu_reference, pos); 287 pos += 4; 288 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 289 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 290 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 291 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 292 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 293 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 294 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 295 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 296 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 297 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 298 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 299 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 300 put_unaligned_le16(flags, pos); 301 pos += 2; 302 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 303 *pos++ = status->ampdu_delimiter_crc; 304 else 305 *pos++ = 0; 306 *pos++ = 0; 307 } 308 309 if (status->flag & RX_FLAG_VHT) { 310 u16 known = local->hw.radiotap_vht_details; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 313 /* known field - how to handle 80+80? */ 314 if (status->flag & RX_FLAG_80P80MHZ) 315 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 316 put_unaligned_le16(known, pos); 317 pos += 2; 318 /* flags */ 319 if (status->flag & RX_FLAG_SHORT_GI) 320 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 321 pos++; 322 /* bandwidth */ 323 if (status->flag & RX_FLAG_80MHZ) 324 *pos++ = 4; 325 else if (status->flag & RX_FLAG_80P80MHZ) 326 *pos++ = 0; /* marked not known above */ 327 else if (status->flag & RX_FLAG_160MHZ) 328 *pos++ = 11; 329 else if (status->flag & RX_FLAG_40MHZ) 330 *pos++ = 1; 331 else /* 20 MHz */ 332 *pos++ = 0; 333 /* MCS/NSS */ 334 *pos = (status->rate_idx << 4) | status->vht_nss; 335 pos += 4; 336 /* coding field */ 337 pos++; 338 /* group ID */ 339 pos++; 340 /* partial_aid */ 341 pos += 2; 342 } 343 344 if (status->vendor_radiotap_len) { 345 /* ensure 2 byte alignment for the vendor field as required */ 346 if ((pos - (u8 *)rthdr) & 1) 347 *pos++ = 0; 348 *pos++ = status->vendor_radiotap_oui[0]; 349 *pos++ = status->vendor_radiotap_oui[1]; 350 *pos++ = status->vendor_radiotap_oui[2]; 351 *pos++ = status->vendor_radiotap_subns; 352 put_unaligned_le16(status->vendor_radiotap_len, pos); 353 pos += 2; 354 /* align the actual payload as requested */ 355 while ((pos - (u8 *)rthdr) & (status->vendor_radiotap_align - 1)) 356 *pos++ = 0; 357 } 358 } 359 360 /* 361 * This function copies a received frame to all monitor interfaces and 362 * returns a cleaned-up SKB that no longer includes the FCS nor the 363 * radiotap header the driver might have added. 364 */ 365 static struct sk_buff * 366 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 367 struct ieee80211_rate *rate) 368 { 369 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 370 struct ieee80211_sub_if_data *sdata; 371 int needed_headroom; 372 struct sk_buff *skb, *skb2; 373 struct net_device *prev_dev = NULL; 374 int present_fcs_len = 0; 375 376 /* 377 * First, we may need to make a copy of the skb because 378 * (1) we need to modify it for radiotap (if not present), and 379 * (2) the other RX handlers will modify the skb we got. 380 * 381 * We don't need to, of course, if we aren't going to return 382 * the SKB because it has a bad FCS/PLCP checksum. 383 */ 384 385 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 386 present_fcs_len = FCS_LEN; 387 388 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 389 if (!pskb_may_pull(origskb, 2 + status->vendor_radiotap_len)) { 390 dev_kfree_skb(origskb); 391 return NULL; 392 } 393 394 if (!local->monitors) { 395 if (should_drop_frame(origskb, present_fcs_len)) { 396 dev_kfree_skb(origskb); 397 return NULL; 398 } 399 400 return remove_monitor_info(local, origskb); 401 } 402 403 /* room for the radiotap header based on driver features */ 404 needed_headroom = ieee80211_rx_radiotap_space(local, status); 405 406 if (should_drop_frame(origskb, present_fcs_len)) { 407 /* only need to expand headroom if necessary */ 408 skb = origskb; 409 origskb = NULL; 410 411 /* 412 * This shouldn't trigger often because most devices have an 413 * RX header they pull before we get here, and that should 414 * be big enough for our radiotap information. We should 415 * probably export the length to drivers so that we can have 416 * them allocate enough headroom to start with. 417 */ 418 if (skb_headroom(skb) < needed_headroom && 419 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 420 dev_kfree_skb(skb); 421 return NULL; 422 } 423 } else { 424 /* 425 * Need to make a copy and possibly remove radiotap header 426 * and FCS from the original. 427 */ 428 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 429 430 origskb = remove_monitor_info(local, origskb); 431 432 if (!skb) 433 return origskb; 434 } 435 436 /* prepend radiotap information */ 437 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 438 true); 439 440 skb_reset_mac_header(skb); 441 skb->ip_summed = CHECKSUM_UNNECESSARY; 442 skb->pkt_type = PACKET_OTHERHOST; 443 skb->protocol = htons(ETH_P_802_2); 444 445 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 446 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 447 continue; 448 449 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 450 continue; 451 452 if (!ieee80211_sdata_running(sdata)) 453 continue; 454 455 if (prev_dev) { 456 skb2 = skb_clone(skb, GFP_ATOMIC); 457 if (skb2) { 458 skb2->dev = prev_dev; 459 netif_receive_skb(skb2); 460 } 461 } 462 463 prev_dev = sdata->dev; 464 sdata->dev->stats.rx_packets++; 465 sdata->dev->stats.rx_bytes += skb->len; 466 } 467 468 if (prev_dev) { 469 skb->dev = prev_dev; 470 netif_receive_skb(skb); 471 } else 472 dev_kfree_skb(skb); 473 474 return origskb; 475 } 476 477 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 478 { 479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 480 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 481 int tid, seqno_idx, security_idx; 482 483 /* does the frame have a qos control field? */ 484 if (ieee80211_is_data_qos(hdr->frame_control)) { 485 u8 *qc = ieee80211_get_qos_ctl(hdr); 486 /* frame has qos control */ 487 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 488 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 489 status->rx_flags |= IEEE80211_RX_AMSDU; 490 491 seqno_idx = tid; 492 security_idx = tid; 493 } else { 494 /* 495 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 496 * 497 * Sequence numbers for management frames, QoS data 498 * frames with a broadcast/multicast address in the 499 * Address 1 field, and all non-QoS data frames sent 500 * by QoS STAs are assigned using an additional single 501 * modulo-4096 counter, [...] 502 * 503 * We also use that counter for non-QoS STAs. 504 */ 505 seqno_idx = IEEE80211_NUM_TIDS; 506 security_idx = 0; 507 if (ieee80211_is_mgmt(hdr->frame_control)) 508 security_idx = IEEE80211_NUM_TIDS; 509 tid = 0; 510 } 511 512 rx->seqno_idx = seqno_idx; 513 rx->security_idx = security_idx; 514 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 515 * For now, set skb->priority to 0 for other cases. */ 516 rx->skb->priority = (tid > 7) ? 0 : tid; 517 } 518 519 /** 520 * DOC: Packet alignment 521 * 522 * Drivers always need to pass packets that are aligned to two-byte boundaries 523 * to the stack. 524 * 525 * Additionally, should, if possible, align the payload data in a way that 526 * guarantees that the contained IP header is aligned to a four-byte 527 * boundary. In the case of regular frames, this simply means aligning the 528 * payload to a four-byte boundary (because either the IP header is directly 529 * contained, or IV/RFC1042 headers that have a length divisible by four are 530 * in front of it). If the payload data is not properly aligned and the 531 * architecture doesn't support efficient unaligned operations, mac80211 532 * will align the data. 533 * 534 * With A-MSDU frames, however, the payload data address must yield two modulo 535 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 536 * push the IP header further back to a multiple of four again. Thankfully, the 537 * specs were sane enough this time around to require padding each A-MSDU 538 * subframe to a length that is a multiple of four. 539 * 540 * Padding like Atheros hardware adds which is between the 802.11 header and 541 * the payload is not supported, the driver is required to move the 802.11 542 * header to be directly in front of the payload in that case. 543 */ 544 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 545 { 546 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 547 WARN_ONCE((unsigned long)rx->skb->data & 1, 548 "unaligned packet at 0x%p\n", rx->skb->data); 549 #endif 550 } 551 552 553 /* rx handlers */ 554 555 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 556 { 557 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 558 559 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 560 return 0; 561 562 return ieee80211_is_robust_mgmt_frame(hdr); 563 } 564 565 566 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 567 { 568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 569 570 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 571 return 0; 572 573 return ieee80211_is_robust_mgmt_frame(hdr); 574 } 575 576 577 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 578 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 579 { 580 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 581 struct ieee80211_mmie *mmie; 582 583 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 584 return -1; 585 586 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 587 return -1; /* not a robust management frame */ 588 589 mmie = (struct ieee80211_mmie *) 590 (skb->data + skb->len - sizeof(*mmie)); 591 if (mmie->element_id != WLAN_EID_MMIE || 592 mmie->length != sizeof(*mmie) - 2) 593 return -1; 594 595 return le16_to_cpu(mmie->key_id); 596 } 597 598 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 599 { 600 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 601 char *dev_addr = rx->sdata->vif.addr; 602 603 if (ieee80211_is_data(hdr->frame_control)) { 604 if (is_multicast_ether_addr(hdr->addr1)) { 605 if (ieee80211_has_tods(hdr->frame_control) || 606 !ieee80211_has_fromds(hdr->frame_control)) 607 return RX_DROP_MONITOR; 608 if (ether_addr_equal(hdr->addr3, dev_addr)) 609 return RX_DROP_MONITOR; 610 } else { 611 if (!ieee80211_has_a4(hdr->frame_control)) 612 return RX_DROP_MONITOR; 613 if (ether_addr_equal(hdr->addr4, dev_addr)) 614 return RX_DROP_MONITOR; 615 } 616 } 617 618 /* If there is not an established peer link and this is not a peer link 619 * establisment frame, beacon or probe, drop the frame. 620 */ 621 622 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 623 struct ieee80211_mgmt *mgmt; 624 625 if (!ieee80211_is_mgmt(hdr->frame_control)) 626 return RX_DROP_MONITOR; 627 628 if (ieee80211_is_action(hdr->frame_control)) { 629 u8 category; 630 631 /* make sure category field is present */ 632 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 633 return RX_DROP_MONITOR; 634 635 mgmt = (struct ieee80211_mgmt *)hdr; 636 category = mgmt->u.action.category; 637 if (category != WLAN_CATEGORY_MESH_ACTION && 638 category != WLAN_CATEGORY_SELF_PROTECTED) 639 return RX_DROP_MONITOR; 640 return RX_CONTINUE; 641 } 642 643 if (ieee80211_is_probe_req(hdr->frame_control) || 644 ieee80211_is_probe_resp(hdr->frame_control) || 645 ieee80211_is_beacon(hdr->frame_control) || 646 ieee80211_is_auth(hdr->frame_control)) 647 return RX_CONTINUE; 648 649 return RX_DROP_MONITOR; 650 } 651 652 return RX_CONTINUE; 653 } 654 655 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 656 struct tid_ampdu_rx *tid_agg_rx, 657 int index, 658 struct sk_buff_head *frames) 659 { 660 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 661 struct ieee80211_rx_status *status; 662 663 lockdep_assert_held(&tid_agg_rx->reorder_lock); 664 665 if (!skb) 666 goto no_frame; 667 668 /* release the frame from the reorder ring buffer */ 669 tid_agg_rx->stored_mpdu_num--; 670 tid_agg_rx->reorder_buf[index] = NULL; 671 status = IEEE80211_SKB_RXCB(skb); 672 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 673 __skb_queue_tail(frames, skb); 674 675 no_frame: 676 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 677 } 678 679 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 680 struct tid_ampdu_rx *tid_agg_rx, 681 u16 head_seq_num, 682 struct sk_buff_head *frames) 683 { 684 int index; 685 686 lockdep_assert_held(&tid_agg_rx->reorder_lock); 687 688 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 689 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 690 tid_agg_rx->ssn) % 691 tid_agg_rx->buf_size; 692 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 693 frames); 694 } 695 } 696 697 /* 698 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 699 * the skb was added to the buffer longer than this time ago, the earlier 700 * frames that have not yet been received are assumed to be lost and the skb 701 * can be released for processing. This may also release other skb's from the 702 * reorder buffer if there are no additional gaps between the frames. 703 * 704 * Callers must hold tid_agg_rx->reorder_lock. 705 */ 706 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 707 708 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 709 struct tid_ampdu_rx *tid_agg_rx, 710 struct sk_buff_head *frames) 711 { 712 int index, j; 713 714 lockdep_assert_held(&tid_agg_rx->reorder_lock); 715 716 /* release the buffer until next missing frame */ 717 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 718 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 719 if (!tid_agg_rx->reorder_buf[index] && 720 tid_agg_rx->stored_mpdu_num) { 721 /* 722 * No buffers ready to be released, but check whether any 723 * frames in the reorder buffer have timed out. 724 */ 725 int skipped = 1; 726 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 727 j = (j + 1) % tid_agg_rx->buf_size) { 728 if (!tid_agg_rx->reorder_buf[j]) { 729 skipped++; 730 continue; 731 } 732 if (skipped && 733 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 734 HT_RX_REORDER_BUF_TIMEOUT)) 735 goto set_release_timer; 736 737 ht_dbg_ratelimited(sdata, 738 "release an RX reorder frame due to timeout on earlier frames\n"); 739 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 740 frames); 741 742 /* 743 * Increment the head seq# also for the skipped slots. 744 */ 745 tid_agg_rx->head_seq_num = 746 (tid_agg_rx->head_seq_num + 747 skipped) & IEEE80211_SN_MASK; 748 skipped = 0; 749 } 750 } else while (tid_agg_rx->reorder_buf[index]) { 751 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 752 frames); 753 index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 754 tid_agg_rx->ssn) % 755 tid_agg_rx->buf_size; 756 } 757 758 if (tid_agg_rx->stored_mpdu_num) { 759 j = index = ieee80211_sn_sub(tid_agg_rx->head_seq_num, 760 tid_agg_rx->ssn) % 761 tid_agg_rx->buf_size; 762 763 for (; j != (index - 1) % tid_agg_rx->buf_size; 764 j = (j + 1) % tid_agg_rx->buf_size) { 765 if (tid_agg_rx->reorder_buf[j]) 766 break; 767 } 768 769 set_release_timer: 770 771 mod_timer(&tid_agg_rx->reorder_timer, 772 tid_agg_rx->reorder_time[j] + 1 + 773 HT_RX_REORDER_BUF_TIMEOUT); 774 } else { 775 del_timer(&tid_agg_rx->reorder_timer); 776 } 777 } 778 779 /* 780 * As this function belongs to the RX path it must be under 781 * rcu_read_lock protection. It returns false if the frame 782 * can be processed immediately, true if it was consumed. 783 */ 784 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 785 struct tid_ampdu_rx *tid_agg_rx, 786 struct sk_buff *skb, 787 struct sk_buff_head *frames) 788 { 789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 790 u16 sc = le16_to_cpu(hdr->seq_ctrl); 791 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 792 u16 head_seq_num, buf_size; 793 int index; 794 bool ret = true; 795 796 spin_lock(&tid_agg_rx->reorder_lock); 797 798 buf_size = tid_agg_rx->buf_size; 799 head_seq_num = tid_agg_rx->head_seq_num; 800 801 /* frame with out of date sequence number */ 802 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 803 dev_kfree_skb(skb); 804 goto out; 805 } 806 807 /* 808 * If frame the sequence number exceeds our buffering window 809 * size release some previous frames to make room for this one. 810 */ 811 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 812 head_seq_num = ieee80211_sn_inc( 813 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 814 /* release stored frames up to new head to stack */ 815 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 816 head_seq_num, frames); 817 } 818 819 /* Now the new frame is always in the range of the reordering buffer */ 820 821 index = ieee80211_sn_sub(mpdu_seq_num, 822 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 823 824 /* check if we already stored this frame */ 825 if (tid_agg_rx->reorder_buf[index]) { 826 dev_kfree_skb(skb); 827 goto out; 828 } 829 830 /* 831 * If the current MPDU is in the right order and nothing else 832 * is stored we can process it directly, no need to buffer it. 833 * If it is first but there's something stored, we may be able 834 * to release frames after this one. 835 */ 836 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 837 tid_agg_rx->stored_mpdu_num == 0) { 838 tid_agg_rx->head_seq_num = 839 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 840 ret = false; 841 goto out; 842 } 843 844 /* put the frame in the reordering buffer */ 845 tid_agg_rx->reorder_buf[index] = skb; 846 tid_agg_rx->reorder_time[index] = jiffies; 847 tid_agg_rx->stored_mpdu_num++; 848 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 849 850 out: 851 spin_unlock(&tid_agg_rx->reorder_lock); 852 return ret; 853 } 854 855 /* 856 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 857 * true if the MPDU was buffered, false if it should be processed. 858 */ 859 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 860 struct sk_buff_head *frames) 861 { 862 struct sk_buff *skb = rx->skb; 863 struct ieee80211_local *local = rx->local; 864 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 865 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 866 struct sta_info *sta = rx->sta; 867 struct tid_ampdu_rx *tid_agg_rx; 868 u16 sc; 869 u8 tid, ack_policy; 870 871 if (!ieee80211_is_data_qos(hdr->frame_control)) 872 goto dont_reorder; 873 874 /* 875 * filter the QoS data rx stream according to 876 * STA/TID and check if this STA/TID is on aggregation 877 */ 878 879 if (!sta) 880 goto dont_reorder; 881 882 ack_policy = *ieee80211_get_qos_ctl(hdr) & 883 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 884 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 885 886 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 887 if (!tid_agg_rx) 888 goto dont_reorder; 889 890 /* qos null data frames are excluded */ 891 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 892 goto dont_reorder; 893 894 /* not part of a BA session */ 895 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 896 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 897 goto dont_reorder; 898 899 /* not actually part of this BA session */ 900 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 901 goto dont_reorder; 902 903 /* new, potentially un-ordered, ampdu frame - process it */ 904 905 /* reset session timer */ 906 if (tid_agg_rx->timeout) 907 tid_agg_rx->last_rx = jiffies; 908 909 /* if this mpdu is fragmented - terminate rx aggregation session */ 910 sc = le16_to_cpu(hdr->seq_ctrl); 911 if (sc & IEEE80211_SCTL_FRAG) { 912 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 913 skb_queue_tail(&rx->sdata->skb_queue, skb); 914 ieee80211_queue_work(&local->hw, &rx->sdata->work); 915 return; 916 } 917 918 /* 919 * No locking needed -- we will only ever process one 920 * RX packet at a time, and thus own tid_agg_rx. All 921 * other code manipulating it needs to (and does) make 922 * sure that we cannot get to it any more before doing 923 * anything with it. 924 */ 925 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 926 frames)) 927 return; 928 929 dont_reorder: 930 __skb_queue_tail(frames, skb); 931 } 932 933 static ieee80211_rx_result debug_noinline 934 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 935 { 936 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 937 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 938 939 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 940 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 941 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 942 rx->sta->last_seq_ctrl[rx->seqno_idx] == 943 hdr->seq_ctrl)) { 944 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 945 rx->local->dot11FrameDuplicateCount++; 946 rx->sta->num_duplicates++; 947 } 948 return RX_DROP_UNUSABLE; 949 } else 950 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 951 } 952 953 if (unlikely(rx->skb->len < 16)) { 954 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 955 return RX_DROP_MONITOR; 956 } 957 958 /* Drop disallowed frame classes based on STA auth/assoc state; 959 * IEEE 802.11, Chap 5.5. 960 * 961 * mac80211 filters only based on association state, i.e. it drops 962 * Class 3 frames from not associated stations. hostapd sends 963 * deauth/disassoc frames when needed. In addition, hostapd is 964 * responsible for filtering on both auth and assoc states. 965 */ 966 967 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 968 return ieee80211_rx_mesh_check(rx); 969 970 if (unlikely((ieee80211_is_data(hdr->frame_control) || 971 ieee80211_is_pspoll(hdr->frame_control)) && 972 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 973 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 974 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 975 /* 976 * accept port control frames from the AP even when it's not 977 * yet marked ASSOC to prevent a race where we don't set the 978 * assoc bit quickly enough before it sends the first frame 979 */ 980 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 981 ieee80211_is_data_present(hdr->frame_control)) { 982 unsigned int hdrlen; 983 __be16 ethertype; 984 985 hdrlen = ieee80211_hdrlen(hdr->frame_control); 986 987 if (rx->skb->len < hdrlen + 8) 988 return RX_DROP_MONITOR; 989 990 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 991 if (ethertype == rx->sdata->control_port_protocol) 992 return RX_CONTINUE; 993 } 994 995 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 996 cfg80211_rx_spurious_frame(rx->sdata->dev, 997 hdr->addr2, 998 GFP_ATOMIC)) 999 return RX_DROP_UNUSABLE; 1000 1001 return RX_DROP_MONITOR; 1002 } 1003 1004 return RX_CONTINUE; 1005 } 1006 1007 1008 static ieee80211_rx_result debug_noinline 1009 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1010 { 1011 struct sk_buff *skb = rx->skb; 1012 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1013 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1014 int keyidx; 1015 int hdrlen; 1016 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1017 struct ieee80211_key *sta_ptk = NULL; 1018 int mmie_keyidx = -1; 1019 __le16 fc; 1020 1021 /* 1022 * Key selection 101 1023 * 1024 * There are four types of keys: 1025 * - GTK (group keys) 1026 * - IGTK (group keys for management frames) 1027 * - PTK (pairwise keys) 1028 * - STK (station-to-station pairwise keys) 1029 * 1030 * When selecting a key, we have to distinguish between multicast 1031 * (including broadcast) and unicast frames, the latter can only 1032 * use PTKs and STKs while the former always use GTKs and IGTKs. 1033 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1034 * unicast frames can also use key indices like GTKs. Hence, if we 1035 * don't have a PTK/STK we check the key index for a WEP key. 1036 * 1037 * Note that in a regular BSS, multicast frames are sent by the 1038 * AP only, associated stations unicast the frame to the AP first 1039 * which then multicasts it on their behalf. 1040 * 1041 * There is also a slight problem in IBSS mode: GTKs are negotiated 1042 * with each station, that is something we don't currently handle. 1043 * The spec seems to expect that one negotiates the same key with 1044 * every station but there's no such requirement; VLANs could be 1045 * possible. 1046 */ 1047 1048 /* 1049 * No point in finding a key and decrypting if the frame is neither 1050 * addressed to us nor a multicast frame. 1051 */ 1052 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1053 return RX_CONTINUE; 1054 1055 /* start without a key */ 1056 rx->key = NULL; 1057 1058 if (rx->sta) 1059 sta_ptk = rcu_dereference(rx->sta->ptk); 1060 1061 fc = hdr->frame_control; 1062 1063 if (!ieee80211_has_protected(fc)) 1064 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1065 1066 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1067 rx->key = sta_ptk; 1068 if ((status->flag & RX_FLAG_DECRYPTED) && 1069 (status->flag & RX_FLAG_IV_STRIPPED)) 1070 return RX_CONTINUE; 1071 /* Skip decryption if the frame is not protected. */ 1072 if (!ieee80211_has_protected(fc)) 1073 return RX_CONTINUE; 1074 } else if (mmie_keyidx >= 0) { 1075 /* Broadcast/multicast robust management frame / BIP */ 1076 if ((status->flag & RX_FLAG_DECRYPTED) && 1077 (status->flag & RX_FLAG_IV_STRIPPED)) 1078 return RX_CONTINUE; 1079 1080 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1081 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1082 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1083 if (rx->sta) 1084 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1085 if (!rx->key) 1086 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1087 } else if (!ieee80211_has_protected(fc)) { 1088 /* 1089 * The frame was not protected, so skip decryption. However, we 1090 * need to set rx->key if there is a key that could have been 1091 * used so that the frame may be dropped if encryption would 1092 * have been expected. 1093 */ 1094 struct ieee80211_key *key = NULL; 1095 struct ieee80211_sub_if_data *sdata = rx->sdata; 1096 int i; 1097 1098 if (ieee80211_is_mgmt(fc) && 1099 is_multicast_ether_addr(hdr->addr1) && 1100 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1101 rx->key = key; 1102 else { 1103 if (rx->sta) { 1104 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1105 key = rcu_dereference(rx->sta->gtk[i]); 1106 if (key) 1107 break; 1108 } 1109 } 1110 if (!key) { 1111 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1112 key = rcu_dereference(sdata->keys[i]); 1113 if (key) 1114 break; 1115 } 1116 } 1117 if (key) 1118 rx->key = key; 1119 } 1120 return RX_CONTINUE; 1121 } else { 1122 u8 keyid; 1123 /* 1124 * The device doesn't give us the IV so we won't be 1125 * able to look up the key. That's ok though, we 1126 * don't need to decrypt the frame, we just won't 1127 * be able to keep statistics accurate. 1128 * Except for key threshold notifications, should 1129 * we somehow allow the driver to tell us which key 1130 * the hardware used if this flag is set? 1131 */ 1132 if ((status->flag & RX_FLAG_DECRYPTED) && 1133 (status->flag & RX_FLAG_IV_STRIPPED)) 1134 return RX_CONTINUE; 1135 1136 hdrlen = ieee80211_hdrlen(fc); 1137 1138 if (rx->skb->len < 8 + hdrlen) 1139 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1140 1141 /* 1142 * no need to call ieee80211_wep_get_keyidx, 1143 * it verifies a bunch of things we've done already 1144 */ 1145 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1146 keyidx = keyid >> 6; 1147 1148 /* check per-station GTK first, if multicast packet */ 1149 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1150 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1151 1152 /* if not found, try default key */ 1153 if (!rx->key) { 1154 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1155 1156 /* 1157 * RSNA-protected unicast frames should always be 1158 * sent with pairwise or station-to-station keys, 1159 * but for WEP we allow using a key index as well. 1160 */ 1161 if (rx->key && 1162 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1163 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1164 !is_multicast_ether_addr(hdr->addr1)) 1165 rx->key = NULL; 1166 } 1167 } 1168 1169 if (rx->key) { 1170 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1171 return RX_DROP_MONITOR; 1172 1173 rx->key->tx_rx_count++; 1174 /* TODO: add threshold stuff again */ 1175 } else { 1176 return RX_DROP_MONITOR; 1177 } 1178 1179 switch (rx->key->conf.cipher) { 1180 case WLAN_CIPHER_SUITE_WEP40: 1181 case WLAN_CIPHER_SUITE_WEP104: 1182 result = ieee80211_crypto_wep_decrypt(rx); 1183 break; 1184 case WLAN_CIPHER_SUITE_TKIP: 1185 result = ieee80211_crypto_tkip_decrypt(rx); 1186 break; 1187 case WLAN_CIPHER_SUITE_CCMP: 1188 result = ieee80211_crypto_ccmp_decrypt(rx); 1189 break; 1190 case WLAN_CIPHER_SUITE_AES_CMAC: 1191 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1192 break; 1193 default: 1194 /* 1195 * We can reach here only with HW-only algorithms 1196 * but why didn't it decrypt the frame?! 1197 */ 1198 return RX_DROP_UNUSABLE; 1199 } 1200 1201 /* the hdr variable is invalid after the decrypt handlers */ 1202 1203 /* either the frame has been decrypted or will be dropped */ 1204 status->flag |= RX_FLAG_DECRYPTED; 1205 1206 return result; 1207 } 1208 1209 static ieee80211_rx_result debug_noinline 1210 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1211 { 1212 struct ieee80211_local *local; 1213 struct ieee80211_hdr *hdr; 1214 struct sk_buff *skb; 1215 1216 local = rx->local; 1217 skb = rx->skb; 1218 hdr = (struct ieee80211_hdr *) skb->data; 1219 1220 if (!local->pspolling) 1221 return RX_CONTINUE; 1222 1223 if (!ieee80211_has_fromds(hdr->frame_control)) 1224 /* this is not from AP */ 1225 return RX_CONTINUE; 1226 1227 if (!ieee80211_is_data(hdr->frame_control)) 1228 return RX_CONTINUE; 1229 1230 if (!ieee80211_has_moredata(hdr->frame_control)) { 1231 /* AP has no more frames buffered for us */ 1232 local->pspolling = false; 1233 return RX_CONTINUE; 1234 } 1235 1236 /* more data bit is set, let's request a new frame from the AP */ 1237 ieee80211_send_pspoll(local, rx->sdata); 1238 1239 return RX_CONTINUE; 1240 } 1241 1242 static void sta_ps_start(struct sta_info *sta) 1243 { 1244 struct ieee80211_sub_if_data *sdata = sta->sdata; 1245 struct ieee80211_local *local = sdata->local; 1246 struct ps_data *ps; 1247 1248 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1249 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1250 ps = &sdata->bss->ps; 1251 else 1252 return; 1253 1254 atomic_inc(&ps->num_sta_ps); 1255 set_sta_flag(sta, WLAN_STA_PS_STA); 1256 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1257 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1258 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1259 sta->sta.addr, sta->sta.aid); 1260 } 1261 1262 static void sta_ps_end(struct sta_info *sta) 1263 { 1264 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1265 sta->sta.addr, sta->sta.aid); 1266 1267 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1268 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1269 sta->sta.addr, sta->sta.aid); 1270 return; 1271 } 1272 1273 ieee80211_sta_ps_deliver_wakeup(sta); 1274 } 1275 1276 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1277 { 1278 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1279 bool in_ps; 1280 1281 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1282 1283 /* Don't let the same PS state be set twice */ 1284 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1285 if ((start && in_ps) || (!start && !in_ps)) 1286 return -EINVAL; 1287 1288 if (start) 1289 sta_ps_start(sta_inf); 1290 else 1291 sta_ps_end(sta_inf); 1292 1293 return 0; 1294 } 1295 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1296 1297 static ieee80211_rx_result debug_noinline 1298 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1299 { 1300 struct ieee80211_sub_if_data *sdata = rx->sdata; 1301 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1302 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1303 int tid, ac; 1304 1305 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1306 return RX_CONTINUE; 1307 1308 if (sdata->vif.type != NL80211_IFTYPE_AP && 1309 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1310 return RX_CONTINUE; 1311 1312 /* 1313 * The device handles station powersave, so don't do anything about 1314 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1315 * it to mac80211 since they're handled.) 1316 */ 1317 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1318 return RX_CONTINUE; 1319 1320 /* 1321 * Don't do anything if the station isn't already asleep. In 1322 * the uAPSD case, the station will probably be marked asleep, 1323 * in the PS-Poll case the station must be confused ... 1324 */ 1325 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1326 return RX_CONTINUE; 1327 1328 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1329 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1330 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1331 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1332 else 1333 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1334 } 1335 1336 /* Free PS Poll skb here instead of returning RX_DROP that would 1337 * count as an dropped frame. */ 1338 dev_kfree_skb(rx->skb); 1339 1340 return RX_QUEUED; 1341 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1342 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1343 ieee80211_has_pm(hdr->frame_control) && 1344 (ieee80211_is_data_qos(hdr->frame_control) || 1345 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1346 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1347 ac = ieee802_1d_to_ac[tid & 7]; 1348 1349 /* 1350 * If this AC is not trigger-enabled do nothing. 1351 * 1352 * NB: This could/should check a separate bitmap of trigger- 1353 * enabled queues, but for now we only implement uAPSD w/o 1354 * TSPEC changes to the ACs, so they're always the same. 1355 */ 1356 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1357 return RX_CONTINUE; 1358 1359 /* if we are in a service period, do nothing */ 1360 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1361 return RX_CONTINUE; 1362 1363 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1364 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1365 else 1366 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1367 } 1368 1369 return RX_CONTINUE; 1370 } 1371 1372 static ieee80211_rx_result debug_noinline 1373 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1374 { 1375 struct sta_info *sta = rx->sta; 1376 struct sk_buff *skb = rx->skb; 1377 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1379 int i; 1380 1381 if (!sta) 1382 return RX_CONTINUE; 1383 1384 /* 1385 * Update last_rx only for IBSS packets which are for the current 1386 * BSSID and for station already AUTHORIZED to avoid keeping the 1387 * current IBSS network alive in cases where other STAs start 1388 * using different BSSID. This will also give the station another 1389 * chance to restart the authentication/authorization in case 1390 * something went wrong the first time. 1391 */ 1392 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1393 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1394 NL80211_IFTYPE_ADHOC); 1395 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1396 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1397 sta->last_rx = jiffies; 1398 if (ieee80211_is_data(hdr->frame_control)) { 1399 sta->last_rx_rate_idx = status->rate_idx; 1400 sta->last_rx_rate_flag = status->flag; 1401 sta->last_rx_rate_vht_nss = status->vht_nss; 1402 } 1403 } 1404 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1405 /* 1406 * Mesh beacons will update last_rx when if they are found to 1407 * match the current local configuration when processed. 1408 */ 1409 sta->last_rx = jiffies; 1410 if (ieee80211_is_data(hdr->frame_control)) { 1411 sta->last_rx_rate_idx = status->rate_idx; 1412 sta->last_rx_rate_flag = status->flag; 1413 sta->last_rx_rate_vht_nss = status->vht_nss; 1414 } 1415 } 1416 1417 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1418 return RX_CONTINUE; 1419 1420 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1421 ieee80211_sta_rx_notify(rx->sdata, hdr); 1422 1423 sta->rx_fragments++; 1424 sta->rx_bytes += rx->skb->len; 1425 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1426 sta->last_signal = status->signal; 1427 ewma_add(&sta->avg_signal, -status->signal); 1428 } 1429 1430 if (status->chains) { 1431 sta->chains = status->chains; 1432 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1433 int signal = status->chain_signal[i]; 1434 1435 if (!(status->chains & BIT(i))) 1436 continue; 1437 1438 sta->chain_signal_last[i] = signal; 1439 ewma_add(&sta->chain_signal_avg[i], -signal); 1440 } 1441 } 1442 1443 /* 1444 * Change STA power saving mode only at the end of a frame 1445 * exchange sequence. 1446 */ 1447 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1448 !ieee80211_has_morefrags(hdr->frame_control) && 1449 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1450 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1451 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1452 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1453 /* 1454 * Ignore doze->wake transitions that are 1455 * indicated by non-data frames, the standard 1456 * is unclear here, but for example going to 1457 * PS mode and then scanning would cause a 1458 * doze->wake transition for the probe request, 1459 * and that is clearly undesirable. 1460 */ 1461 if (ieee80211_is_data(hdr->frame_control) && 1462 !ieee80211_has_pm(hdr->frame_control)) 1463 sta_ps_end(sta); 1464 } else { 1465 if (ieee80211_has_pm(hdr->frame_control)) 1466 sta_ps_start(sta); 1467 } 1468 } 1469 1470 /* mesh power save support */ 1471 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1472 ieee80211_mps_rx_h_sta_process(sta, hdr); 1473 1474 /* 1475 * Drop (qos-)data::nullfunc frames silently, since they 1476 * are used only to control station power saving mode. 1477 */ 1478 if (ieee80211_is_nullfunc(hdr->frame_control) || 1479 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1480 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1481 1482 /* 1483 * If we receive a 4-addr nullfunc frame from a STA 1484 * that was not moved to a 4-addr STA vlan yet send 1485 * the event to userspace and for older hostapd drop 1486 * the frame to the monitor interface. 1487 */ 1488 if (ieee80211_has_a4(hdr->frame_control) && 1489 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1490 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1491 !rx->sdata->u.vlan.sta))) { 1492 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1493 cfg80211_rx_unexpected_4addr_frame( 1494 rx->sdata->dev, sta->sta.addr, 1495 GFP_ATOMIC); 1496 return RX_DROP_MONITOR; 1497 } 1498 /* 1499 * Update counter and free packet here to avoid 1500 * counting this as a dropped packed. 1501 */ 1502 sta->rx_packets++; 1503 dev_kfree_skb(rx->skb); 1504 return RX_QUEUED; 1505 } 1506 1507 return RX_CONTINUE; 1508 } /* ieee80211_rx_h_sta_process */ 1509 1510 static inline struct ieee80211_fragment_entry * 1511 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1512 unsigned int frag, unsigned int seq, int rx_queue, 1513 struct sk_buff **skb) 1514 { 1515 struct ieee80211_fragment_entry *entry; 1516 1517 entry = &sdata->fragments[sdata->fragment_next++]; 1518 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1519 sdata->fragment_next = 0; 1520 1521 if (!skb_queue_empty(&entry->skb_list)) 1522 __skb_queue_purge(&entry->skb_list); 1523 1524 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1525 *skb = NULL; 1526 entry->first_frag_time = jiffies; 1527 entry->seq = seq; 1528 entry->rx_queue = rx_queue; 1529 entry->last_frag = frag; 1530 entry->ccmp = 0; 1531 entry->extra_len = 0; 1532 1533 return entry; 1534 } 1535 1536 static inline struct ieee80211_fragment_entry * 1537 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1538 unsigned int frag, unsigned int seq, 1539 int rx_queue, struct ieee80211_hdr *hdr) 1540 { 1541 struct ieee80211_fragment_entry *entry; 1542 int i, idx; 1543 1544 idx = sdata->fragment_next; 1545 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1546 struct ieee80211_hdr *f_hdr; 1547 1548 idx--; 1549 if (idx < 0) 1550 idx = IEEE80211_FRAGMENT_MAX - 1; 1551 1552 entry = &sdata->fragments[idx]; 1553 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1554 entry->rx_queue != rx_queue || 1555 entry->last_frag + 1 != frag) 1556 continue; 1557 1558 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1559 1560 /* 1561 * Check ftype and addresses are equal, else check next fragment 1562 */ 1563 if (((hdr->frame_control ^ f_hdr->frame_control) & 1564 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1565 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1566 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1567 continue; 1568 1569 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1570 __skb_queue_purge(&entry->skb_list); 1571 continue; 1572 } 1573 return entry; 1574 } 1575 1576 return NULL; 1577 } 1578 1579 static ieee80211_rx_result debug_noinline 1580 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1581 { 1582 struct ieee80211_hdr *hdr; 1583 u16 sc; 1584 __le16 fc; 1585 unsigned int frag, seq; 1586 struct ieee80211_fragment_entry *entry; 1587 struct sk_buff *skb; 1588 struct ieee80211_rx_status *status; 1589 1590 hdr = (struct ieee80211_hdr *)rx->skb->data; 1591 fc = hdr->frame_control; 1592 1593 if (ieee80211_is_ctl(fc)) 1594 return RX_CONTINUE; 1595 1596 sc = le16_to_cpu(hdr->seq_ctrl); 1597 frag = sc & IEEE80211_SCTL_FRAG; 1598 1599 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1600 is_multicast_ether_addr(hdr->addr1))) { 1601 /* not fragmented */ 1602 goto out; 1603 } 1604 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1605 1606 if (skb_linearize(rx->skb)) 1607 return RX_DROP_UNUSABLE; 1608 1609 /* 1610 * skb_linearize() might change the skb->data and 1611 * previously cached variables (in this case, hdr) need to 1612 * be refreshed with the new data. 1613 */ 1614 hdr = (struct ieee80211_hdr *)rx->skb->data; 1615 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1616 1617 if (frag == 0) { 1618 /* This is the first fragment of a new frame. */ 1619 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1620 rx->seqno_idx, &(rx->skb)); 1621 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1622 ieee80211_has_protected(fc)) { 1623 int queue = rx->security_idx; 1624 /* Store CCMP PN so that we can verify that the next 1625 * fragment has a sequential PN value. */ 1626 entry->ccmp = 1; 1627 memcpy(entry->last_pn, 1628 rx->key->u.ccmp.rx_pn[queue], 1629 IEEE80211_CCMP_PN_LEN); 1630 } 1631 return RX_QUEUED; 1632 } 1633 1634 /* This is a fragment for a frame that should already be pending in 1635 * fragment cache. Add this fragment to the end of the pending entry. 1636 */ 1637 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1638 rx->seqno_idx, hdr); 1639 if (!entry) { 1640 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1641 return RX_DROP_MONITOR; 1642 } 1643 1644 /* Verify that MPDUs within one MSDU have sequential PN values. 1645 * (IEEE 802.11i, 8.3.3.4.5) */ 1646 if (entry->ccmp) { 1647 int i; 1648 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1649 int queue; 1650 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1651 return RX_DROP_UNUSABLE; 1652 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1653 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1654 pn[i]++; 1655 if (pn[i]) 1656 break; 1657 } 1658 queue = rx->security_idx; 1659 rpn = rx->key->u.ccmp.rx_pn[queue]; 1660 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1661 return RX_DROP_UNUSABLE; 1662 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1663 } 1664 1665 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1666 __skb_queue_tail(&entry->skb_list, rx->skb); 1667 entry->last_frag = frag; 1668 entry->extra_len += rx->skb->len; 1669 if (ieee80211_has_morefrags(fc)) { 1670 rx->skb = NULL; 1671 return RX_QUEUED; 1672 } 1673 1674 rx->skb = __skb_dequeue(&entry->skb_list); 1675 if (skb_tailroom(rx->skb) < entry->extra_len) { 1676 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1677 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1678 GFP_ATOMIC))) { 1679 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1680 __skb_queue_purge(&entry->skb_list); 1681 return RX_DROP_UNUSABLE; 1682 } 1683 } 1684 while ((skb = __skb_dequeue(&entry->skb_list))) { 1685 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1686 dev_kfree_skb(skb); 1687 } 1688 1689 /* Complete frame has been reassembled - process it now */ 1690 status = IEEE80211_SKB_RXCB(rx->skb); 1691 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1692 1693 out: 1694 if (rx->sta) 1695 rx->sta->rx_packets++; 1696 if (is_multicast_ether_addr(hdr->addr1)) 1697 rx->local->dot11MulticastReceivedFrameCount++; 1698 else 1699 ieee80211_led_rx(rx->local); 1700 return RX_CONTINUE; 1701 } 1702 1703 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1704 { 1705 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1706 return -EACCES; 1707 1708 return 0; 1709 } 1710 1711 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1712 { 1713 struct sk_buff *skb = rx->skb; 1714 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1715 1716 /* 1717 * Pass through unencrypted frames if the hardware has 1718 * decrypted them already. 1719 */ 1720 if (status->flag & RX_FLAG_DECRYPTED) 1721 return 0; 1722 1723 /* Drop unencrypted frames if key is set. */ 1724 if (unlikely(!ieee80211_has_protected(fc) && 1725 !ieee80211_is_nullfunc(fc) && 1726 ieee80211_is_data(fc) && 1727 (rx->key || rx->sdata->drop_unencrypted))) 1728 return -EACCES; 1729 1730 return 0; 1731 } 1732 1733 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1734 { 1735 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1736 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1737 __le16 fc = hdr->frame_control; 1738 1739 /* 1740 * Pass through unencrypted frames if the hardware has 1741 * decrypted them already. 1742 */ 1743 if (status->flag & RX_FLAG_DECRYPTED) 1744 return 0; 1745 1746 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1747 if (unlikely(!ieee80211_has_protected(fc) && 1748 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1749 rx->key)) { 1750 if (ieee80211_is_deauth(fc) || 1751 ieee80211_is_disassoc(fc)) 1752 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1753 rx->skb->data, 1754 rx->skb->len); 1755 return -EACCES; 1756 } 1757 /* BIP does not use Protected field, so need to check MMIE */ 1758 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1759 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1760 if (ieee80211_is_deauth(fc) || 1761 ieee80211_is_disassoc(fc)) 1762 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1763 rx->skb->data, 1764 rx->skb->len); 1765 return -EACCES; 1766 } 1767 /* 1768 * When using MFP, Action frames are not allowed prior to 1769 * having configured keys. 1770 */ 1771 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1772 ieee80211_is_robust_mgmt_frame( 1773 (struct ieee80211_hdr *) rx->skb->data))) 1774 return -EACCES; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static int 1781 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1782 { 1783 struct ieee80211_sub_if_data *sdata = rx->sdata; 1784 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1785 bool check_port_control = false; 1786 struct ethhdr *ehdr; 1787 int ret; 1788 1789 *port_control = false; 1790 if (ieee80211_has_a4(hdr->frame_control) && 1791 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1792 return -1; 1793 1794 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1795 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1796 1797 if (!sdata->u.mgd.use_4addr) 1798 return -1; 1799 else 1800 check_port_control = true; 1801 } 1802 1803 if (is_multicast_ether_addr(hdr->addr1) && 1804 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1805 return -1; 1806 1807 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1808 if (ret < 0) 1809 return ret; 1810 1811 ehdr = (struct ethhdr *) rx->skb->data; 1812 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1813 *port_control = true; 1814 else if (check_port_control) 1815 return -1; 1816 1817 return 0; 1818 } 1819 1820 /* 1821 * requires that rx->skb is a frame with ethernet header 1822 */ 1823 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1824 { 1825 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1826 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1827 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1828 1829 /* 1830 * Allow EAPOL frames to us/the PAE group address regardless 1831 * of whether the frame was encrypted or not. 1832 */ 1833 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1834 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1835 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 1836 return true; 1837 1838 if (ieee80211_802_1x_port_control(rx) || 1839 ieee80211_drop_unencrypted(rx, fc)) 1840 return false; 1841 1842 return true; 1843 } 1844 1845 /* 1846 * requires that rx->skb is a frame with ethernet header 1847 */ 1848 static void 1849 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1850 { 1851 struct ieee80211_sub_if_data *sdata = rx->sdata; 1852 struct net_device *dev = sdata->dev; 1853 struct sk_buff *skb, *xmit_skb; 1854 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1855 struct sta_info *dsta; 1856 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1857 1858 skb = rx->skb; 1859 xmit_skb = NULL; 1860 1861 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1862 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1863 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1864 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1865 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1866 if (is_multicast_ether_addr(ehdr->h_dest)) { 1867 /* 1868 * send multicast frames both to higher layers in 1869 * local net stack and back to the wireless medium 1870 */ 1871 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1872 if (!xmit_skb) 1873 net_info_ratelimited("%s: failed to clone multicast frame\n", 1874 dev->name); 1875 } else { 1876 dsta = sta_info_get(sdata, skb->data); 1877 if (dsta) { 1878 /* 1879 * The destination station is associated to 1880 * this AP (in this VLAN), so send the frame 1881 * directly to it and do not pass it to local 1882 * net stack. 1883 */ 1884 xmit_skb = skb; 1885 skb = NULL; 1886 } 1887 } 1888 } 1889 1890 if (skb) { 1891 int align __maybe_unused; 1892 1893 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1894 /* 1895 * 'align' will only take the values 0 or 2 here 1896 * since all frames are required to be aligned 1897 * to 2-byte boundaries when being passed to 1898 * mac80211; the code here works just as well if 1899 * that isn't true, but mac80211 assumes it can 1900 * access fields as 2-byte aligned (e.g. for 1901 * compare_ether_addr) 1902 */ 1903 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1904 if (align) { 1905 if (WARN_ON(skb_headroom(skb) < 3)) { 1906 dev_kfree_skb(skb); 1907 skb = NULL; 1908 } else { 1909 u8 *data = skb->data; 1910 size_t len = skb_headlen(skb); 1911 skb->data -= align; 1912 memmove(skb->data, data, len); 1913 skb_set_tail_pointer(skb, len); 1914 } 1915 } 1916 #endif 1917 1918 if (skb) { 1919 /* deliver to local stack */ 1920 skb->protocol = eth_type_trans(skb, dev); 1921 memset(skb->cb, 0, sizeof(skb->cb)); 1922 netif_receive_skb(skb); 1923 } 1924 } 1925 1926 if (xmit_skb) { 1927 /* 1928 * Send to wireless media and increase priority by 256 to 1929 * keep the received priority instead of reclassifying 1930 * the frame (see cfg80211_classify8021d). 1931 */ 1932 xmit_skb->priority += 256; 1933 xmit_skb->protocol = htons(ETH_P_802_3); 1934 skb_reset_network_header(xmit_skb); 1935 skb_reset_mac_header(xmit_skb); 1936 dev_queue_xmit(xmit_skb); 1937 } 1938 } 1939 1940 static ieee80211_rx_result debug_noinline 1941 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1942 { 1943 struct net_device *dev = rx->sdata->dev; 1944 struct sk_buff *skb = rx->skb; 1945 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1946 __le16 fc = hdr->frame_control; 1947 struct sk_buff_head frame_list; 1948 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1949 1950 if (unlikely(!ieee80211_is_data(fc))) 1951 return RX_CONTINUE; 1952 1953 if (unlikely(!ieee80211_is_data_present(fc))) 1954 return RX_DROP_MONITOR; 1955 1956 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1957 return RX_CONTINUE; 1958 1959 if (ieee80211_has_a4(hdr->frame_control) && 1960 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1961 !rx->sdata->u.vlan.sta) 1962 return RX_DROP_UNUSABLE; 1963 1964 if (is_multicast_ether_addr(hdr->addr1) && 1965 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1966 rx->sdata->u.vlan.sta) || 1967 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1968 rx->sdata->u.mgd.use_4addr))) 1969 return RX_DROP_UNUSABLE; 1970 1971 skb->dev = dev; 1972 __skb_queue_head_init(&frame_list); 1973 1974 if (skb_linearize(skb)) 1975 return RX_DROP_UNUSABLE; 1976 1977 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1978 rx->sdata->vif.type, 1979 rx->local->hw.extra_tx_headroom, true); 1980 1981 while (!skb_queue_empty(&frame_list)) { 1982 rx->skb = __skb_dequeue(&frame_list); 1983 1984 if (!ieee80211_frame_allowed(rx, fc)) { 1985 dev_kfree_skb(rx->skb); 1986 continue; 1987 } 1988 dev->stats.rx_packets++; 1989 dev->stats.rx_bytes += rx->skb->len; 1990 1991 ieee80211_deliver_skb(rx); 1992 } 1993 1994 return RX_QUEUED; 1995 } 1996 1997 #ifdef CONFIG_MAC80211_MESH 1998 static ieee80211_rx_result 1999 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2000 { 2001 struct ieee80211_hdr *fwd_hdr, *hdr; 2002 struct ieee80211_tx_info *info; 2003 struct ieee80211s_hdr *mesh_hdr; 2004 struct sk_buff *skb = rx->skb, *fwd_skb; 2005 struct ieee80211_local *local = rx->local; 2006 struct ieee80211_sub_if_data *sdata = rx->sdata; 2007 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2008 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2009 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 2010 u16 q, hdrlen; 2011 2012 hdr = (struct ieee80211_hdr *) skb->data; 2013 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2014 2015 /* make sure fixed part of mesh header is there, also checks skb len */ 2016 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2017 return RX_DROP_MONITOR; 2018 2019 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2020 2021 /* make sure full mesh header is there, also checks skb len */ 2022 if (!pskb_may_pull(rx->skb, 2023 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2024 return RX_DROP_MONITOR; 2025 2026 /* reload pointers */ 2027 hdr = (struct ieee80211_hdr *) skb->data; 2028 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2029 2030 /* frame is in RMC, don't forward */ 2031 if (ieee80211_is_data(hdr->frame_control) && 2032 is_multicast_ether_addr(hdr->addr1) && 2033 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2034 return RX_DROP_MONITOR; 2035 2036 if (!ieee80211_is_data(hdr->frame_control) || 2037 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2038 return RX_CONTINUE; 2039 2040 if (!mesh_hdr->ttl) 2041 return RX_DROP_MONITOR; 2042 2043 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2044 struct mesh_path *mppath; 2045 char *proxied_addr; 2046 char *mpp_addr; 2047 2048 if (is_multicast_ether_addr(hdr->addr1)) { 2049 mpp_addr = hdr->addr3; 2050 proxied_addr = mesh_hdr->eaddr1; 2051 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2052 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2053 mpp_addr = hdr->addr4; 2054 proxied_addr = mesh_hdr->eaddr2; 2055 } else { 2056 return RX_DROP_MONITOR; 2057 } 2058 2059 rcu_read_lock(); 2060 mppath = mpp_path_lookup(sdata, proxied_addr); 2061 if (!mppath) { 2062 mpp_path_add(sdata, proxied_addr, mpp_addr); 2063 } else { 2064 spin_lock_bh(&mppath->state_lock); 2065 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2066 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2067 spin_unlock_bh(&mppath->state_lock); 2068 } 2069 rcu_read_unlock(); 2070 } 2071 2072 /* Frame has reached destination. Don't forward */ 2073 if (!is_multicast_ether_addr(hdr->addr1) && 2074 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2075 return RX_CONTINUE; 2076 2077 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2078 if (ieee80211_queue_stopped(&local->hw, q)) { 2079 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2080 return RX_DROP_MONITOR; 2081 } 2082 skb_set_queue_mapping(skb, q); 2083 2084 if (!--mesh_hdr->ttl) { 2085 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2086 goto out; 2087 } 2088 2089 if (!ifmsh->mshcfg.dot11MeshForwarding) 2090 goto out; 2091 2092 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2093 if (!fwd_skb) { 2094 net_info_ratelimited("%s: failed to clone mesh frame\n", 2095 sdata->name); 2096 goto out; 2097 } 2098 2099 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2100 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2101 info = IEEE80211_SKB_CB(fwd_skb); 2102 memset(info, 0, sizeof(*info)); 2103 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2104 info->control.vif = &rx->sdata->vif; 2105 info->control.jiffies = jiffies; 2106 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2107 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2108 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2109 /* update power mode indication when forwarding */ 2110 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2111 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2112 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2113 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2114 } else { 2115 /* unable to resolve next hop */ 2116 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2117 fwd_hdr->addr3, 0, reason, fwd_hdr->addr2); 2118 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2119 kfree_skb(fwd_skb); 2120 return RX_DROP_MONITOR; 2121 } 2122 2123 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2124 ieee80211_add_pending_skb(local, fwd_skb); 2125 out: 2126 if (is_multicast_ether_addr(hdr->addr1) || 2127 sdata->dev->flags & IFF_PROMISC) 2128 return RX_CONTINUE; 2129 else 2130 return RX_DROP_MONITOR; 2131 } 2132 #endif 2133 2134 static ieee80211_rx_result debug_noinline 2135 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2136 { 2137 struct ieee80211_sub_if_data *sdata = rx->sdata; 2138 struct ieee80211_local *local = rx->local; 2139 struct net_device *dev = sdata->dev; 2140 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2141 __le16 fc = hdr->frame_control; 2142 bool port_control; 2143 int err; 2144 2145 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2146 return RX_CONTINUE; 2147 2148 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2149 return RX_DROP_MONITOR; 2150 2151 /* 2152 * Send unexpected-4addr-frame event to hostapd. For older versions, 2153 * also drop the frame to cooked monitor interfaces. 2154 */ 2155 if (ieee80211_has_a4(hdr->frame_control) && 2156 sdata->vif.type == NL80211_IFTYPE_AP) { 2157 if (rx->sta && 2158 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2159 cfg80211_rx_unexpected_4addr_frame( 2160 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2161 return RX_DROP_MONITOR; 2162 } 2163 2164 err = __ieee80211_data_to_8023(rx, &port_control); 2165 if (unlikely(err)) 2166 return RX_DROP_UNUSABLE; 2167 2168 if (!ieee80211_frame_allowed(rx, fc)) 2169 return RX_DROP_MONITOR; 2170 2171 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2172 unlikely(port_control) && sdata->bss) { 2173 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2174 u.ap); 2175 dev = sdata->dev; 2176 rx->sdata = sdata; 2177 } 2178 2179 rx->skb->dev = dev; 2180 2181 dev->stats.rx_packets++; 2182 dev->stats.rx_bytes += rx->skb->len; 2183 2184 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2185 !is_multicast_ether_addr( 2186 ((struct ethhdr *)rx->skb->data)->h_dest) && 2187 (!local->scanning && 2188 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2189 mod_timer(&local->dynamic_ps_timer, jiffies + 2190 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2191 } 2192 2193 ieee80211_deliver_skb(rx); 2194 2195 return RX_QUEUED; 2196 } 2197 2198 static ieee80211_rx_result debug_noinline 2199 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2200 { 2201 struct sk_buff *skb = rx->skb; 2202 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2203 struct tid_ampdu_rx *tid_agg_rx; 2204 u16 start_seq_num; 2205 u16 tid; 2206 2207 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2208 return RX_CONTINUE; 2209 2210 if (ieee80211_is_back_req(bar->frame_control)) { 2211 struct { 2212 __le16 control, start_seq_num; 2213 } __packed bar_data; 2214 2215 if (!rx->sta) 2216 return RX_DROP_MONITOR; 2217 2218 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2219 &bar_data, sizeof(bar_data))) 2220 return RX_DROP_MONITOR; 2221 2222 tid = le16_to_cpu(bar_data.control) >> 12; 2223 2224 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2225 if (!tid_agg_rx) 2226 return RX_DROP_MONITOR; 2227 2228 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2229 2230 /* reset session timer */ 2231 if (tid_agg_rx->timeout) 2232 mod_timer(&tid_agg_rx->session_timer, 2233 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2234 2235 spin_lock(&tid_agg_rx->reorder_lock); 2236 /* release stored frames up to start of BAR */ 2237 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2238 start_seq_num, frames); 2239 spin_unlock(&tid_agg_rx->reorder_lock); 2240 2241 kfree_skb(skb); 2242 return RX_QUEUED; 2243 } 2244 2245 /* 2246 * After this point, we only want management frames, 2247 * so we can drop all remaining control frames to 2248 * cooked monitor interfaces. 2249 */ 2250 return RX_DROP_MONITOR; 2251 } 2252 2253 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2254 struct ieee80211_mgmt *mgmt, 2255 size_t len) 2256 { 2257 struct ieee80211_local *local = sdata->local; 2258 struct sk_buff *skb; 2259 struct ieee80211_mgmt *resp; 2260 2261 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2262 /* Not to own unicast address */ 2263 return; 2264 } 2265 2266 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2267 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2268 /* Not from the current AP or not associated yet. */ 2269 return; 2270 } 2271 2272 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2273 /* Too short SA Query request frame */ 2274 return; 2275 } 2276 2277 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2278 if (skb == NULL) 2279 return; 2280 2281 skb_reserve(skb, local->hw.extra_tx_headroom); 2282 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2283 memset(resp, 0, 24); 2284 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2285 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2286 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2287 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2288 IEEE80211_STYPE_ACTION); 2289 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2290 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2291 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2292 memcpy(resp->u.action.u.sa_query.trans_id, 2293 mgmt->u.action.u.sa_query.trans_id, 2294 WLAN_SA_QUERY_TR_ID_LEN); 2295 2296 ieee80211_tx_skb(sdata, skb); 2297 } 2298 2299 static ieee80211_rx_result debug_noinline 2300 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2301 { 2302 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2303 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2304 2305 /* 2306 * From here on, look only at management frames. 2307 * Data and control frames are already handled, 2308 * and unknown (reserved) frames are useless. 2309 */ 2310 if (rx->skb->len < 24) 2311 return RX_DROP_MONITOR; 2312 2313 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2314 return RX_DROP_MONITOR; 2315 2316 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2317 ieee80211_is_beacon(mgmt->frame_control) && 2318 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2319 int sig = 0; 2320 2321 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2322 sig = status->signal; 2323 2324 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2325 rx->skb->data, rx->skb->len, 2326 status->freq, sig); 2327 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2328 } 2329 2330 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2331 return RX_DROP_MONITOR; 2332 2333 if (ieee80211_drop_unencrypted_mgmt(rx)) 2334 return RX_DROP_UNUSABLE; 2335 2336 return RX_CONTINUE; 2337 } 2338 2339 static ieee80211_rx_result debug_noinline 2340 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2341 { 2342 struct ieee80211_local *local = rx->local; 2343 struct ieee80211_sub_if_data *sdata = rx->sdata; 2344 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2345 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2346 int len = rx->skb->len; 2347 2348 if (!ieee80211_is_action(mgmt->frame_control)) 2349 return RX_CONTINUE; 2350 2351 /* drop too small frames */ 2352 if (len < IEEE80211_MIN_ACTION_SIZE) 2353 return RX_DROP_UNUSABLE; 2354 2355 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2356 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED) 2357 return RX_DROP_UNUSABLE; 2358 2359 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2360 return RX_DROP_UNUSABLE; 2361 2362 switch (mgmt->u.action.category) { 2363 case WLAN_CATEGORY_HT: 2364 /* reject HT action frames from stations not supporting HT */ 2365 if (!rx->sta->sta.ht_cap.ht_supported) 2366 goto invalid; 2367 2368 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2369 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2370 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2371 sdata->vif.type != NL80211_IFTYPE_AP && 2372 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2373 break; 2374 2375 /* verify action & smps_control/chanwidth are present */ 2376 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2377 goto invalid; 2378 2379 switch (mgmt->u.action.u.ht_smps.action) { 2380 case WLAN_HT_ACTION_SMPS: { 2381 struct ieee80211_supported_band *sband; 2382 enum ieee80211_smps_mode smps_mode; 2383 2384 /* convert to HT capability */ 2385 switch (mgmt->u.action.u.ht_smps.smps_control) { 2386 case WLAN_HT_SMPS_CONTROL_DISABLED: 2387 smps_mode = IEEE80211_SMPS_OFF; 2388 break; 2389 case WLAN_HT_SMPS_CONTROL_STATIC: 2390 smps_mode = IEEE80211_SMPS_STATIC; 2391 break; 2392 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2393 smps_mode = IEEE80211_SMPS_DYNAMIC; 2394 break; 2395 default: 2396 goto invalid; 2397 } 2398 2399 /* if no change do nothing */ 2400 if (rx->sta->sta.smps_mode == smps_mode) 2401 goto handled; 2402 rx->sta->sta.smps_mode = smps_mode; 2403 2404 sband = rx->local->hw.wiphy->bands[status->band]; 2405 2406 rate_control_rate_update(local, sband, rx->sta, 2407 IEEE80211_RC_SMPS_CHANGED); 2408 goto handled; 2409 } 2410 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2411 struct ieee80211_supported_band *sband; 2412 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2413 enum ieee80211_sta_rx_bandwidth new_bw; 2414 2415 /* If it doesn't support 40 MHz it can't change ... */ 2416 if (!(rx->sta->sta.ht_cap.cap & 2417 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2418 goto handled; 2419 2420 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2421 new_bw = IEEE80211_STA_RX_BW_20; 2422 else 2423 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2424 2425 if (rx->sta->sta.bandwidth == new_bw) 2426 goto handled; 2427 2428 sband = rx->local->hw.wiphy->bands[status->band]; 2429 2430 rate_control_rate_update(local, sband, rx->sta, 2431 IEEE80211_RC_BW_CHANGED); 2432 goto handled; 2433 } 2434 default: 2435 goto invalid; 2436 } 2437 2438 break; 2439 case WLAN_CATEGORY_PUBLIC: 2440 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2441 goto invalid; 2442 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2443 break; 2444 if (!rx->sta) 2445 break; 2446 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2447 break; 2448 if (mgmt->u.action.u.ext_chan_switch.action_code != 2449 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2450 break; 2451 if (len < offsetof(struct ieee80211_mgmt, 2452 u.action.u.ext_chan_switch.variable)) 2453 goto invalid; 2454 goto queue; 2455 case WLAN_CATEGORY_VHT: 2456 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2457 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2458 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2459 sdata->vif.type != NL80211_IFTYPE_AP && 2460 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2461 break; 2462 2463 /* verify action code is present */ 2464 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2465 goto invalid; 2466 2467 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2468 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2469 u8 opmode; 2470 2471 /* verify opmode is present */ 2472 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2473 goto invalid; 2474 2475 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2476 2477 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2478 opmode, status->band, 2479 false); 2480 goto handled; 2481 } 2482 default: 2483 break; 2484 } 2485 break; 2486 case WLAN_CATEGORY_BACK: 2487 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2488 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2489 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2490 sdata->vif.type != NL80211_IFTYPE_AP && 2491 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2492 break; 2493 2494 /* verify action_code is present */ 2495 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2496 break; 2497 2498 switch (mgmt->u.action.u.addba_req.action_code) { 2499 case WLAN_ACTION_ADDBA_REQ: 2500 if (len < (IEEE80211_MIN_ACTION_SIZE + 2501 sizeof(mgmt->u.action.u.addba_req))) 2502 goto invalid; 2503 break; 2504 case WLAN_ACTION_ADDBA_RESP: 2505 if (len < (IEEE80211_MIN_ACTION_SIZE + 2506 sizeof(mgmt->u.action.u.addba_resp))) 2507 goto invalid; 2508 break; 2509 case WLAN_ACTION_DELBA: 2510 if (len < (IEEE80211_MIN_ACTION_SIZE + 2511 sizeof(mgmt->u.action.u.delba))) 2512 goto invalid; 2513 break; 2514 default: 2515 goto invalid; 2516 } 2517 2518 goto queue; 2519 case WLAN_CATEGORY_SPECTRUM_MGMT: 2520 if (status->band != IEEE80211_BAND_5GHZ) 2521 break; 2522 2523 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2524 break; 2525 2526 /* verify action_code is present */ 2527 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2528 break; 2529 2530 switch (mgmt->u.action.u.measurement.action_code) { 2531 case WLAN_ACTION_SPCT_MSR_REQ: 2532 if (len < (IEEE80211_MIN_ACTION_SIZE + 2533 sizeof(mgmt->u.action.u.measurement))) 2534 break; 2535 ieee80211_process_measurement_req(sdata, mgmt, len); 2536 goto handled; 2537 case WLAN_ACTION_SPCT_CHL_SWITCH: 2538 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2539 break; 2540 2541 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2542 break; 2543 2544 goto queue; 2545 } 2546 break; 2547 case WLAN_CATEGORY_SA_QUERY: 2548 if (len < (IEEE80211_MIN_ACTION_SIZE + 2549 sizeof(mgmt->u.action.u.sa_query))) 2550 break; 2551 2552 switch (mgmt->u.action.u.sa_query.action) { 2553 case WLAN_ACTION_SA_QUERY_REQUEST: 2554 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2555 break; 2556 ieee80211_process_sa_query_req(sdata, mgmt, len); 2557 goto handled; 2558 } 2559 break; 2560 case WLAN_CATEGORY_SELF_PROTECTED: 2561 if (len < (IEEE80211_MIN_ACTION_SIZE + 2562 sizeof(mgmt->u.action.u.self_prot.action_code))) 2563 break; 2564 2565 switch (mgmt->u.action.u.self_prot.action_code) { 2566 case WLAN_SP_MESH_PEERING_OPEN: 2567 case WLAN_SP_MESH_PEERING_CLOSE: 2568 case WLAN_SP_MESH_PEERING_CONFIRM: 2569 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2570 goto invalid; 2571 if (sdata->u.mesh.user_mpm) 2572 /* userspace handles this frame */ 2573 break; 2574 goto queue; 2575 case WLAN_SP_MGK_INFORM: 2576 case WLAN_SP_MGK_ACK: 2577 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2578 goto invalid; 2579 break; 2580 } 2581 break; 2582 case WLAN_CATEGORY_MESH_ACTION: 2583 if (len < (IEEE80211_MIN_ACTION_SIZE + 2584 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2585 break; 2586 2587 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2588 break; 2589 if (mesh_action_is_path_sel(mgmt) && 2590 !mesh_path_sel_is_hwmp(sdata)) 2591 break; 2592 goto queue; 2593 } 2594 2595 return RX_CONTINUE; 2596 2597 invalid: 2598 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2599 /* will return in the next handlers */ 2600 return RX_CONTINUE; 2601 2602 handled: 2603 if (rx->sta) 2604 rx->sta->rx_packets++; 2605 dev_kfree_skb(rx->skb); 2606 return RX_QUEUED; 2607 2608 queue: 2609 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2610 skb_queue_tail(&sdata->skb_queue, rx->skb); 2611 ieee80211_queue_work(&local->hw, &sdata->work); 2612 if (rx->sta) 2613 rx->sta->rx_packets++; 2614 return RX_QUEUED; 2615 } 2616 2617 static ieee80211_rx_result debug_noinline 2618 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2619 { 2620 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2621 int sig = 0; 2622 2623 /* skip known-bad action frames and return them in the next handler */ 2624 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2625 return RX_CONTINUE; 2626 2627 /* 2628 * Getting here means the kernel doesn't know how to handle 2629 * it, but maybe userspace does ... include returned frames 2630 * so userspace can register for those to know whether ones 2631 * it transmitted were processed or returned. 2632 */ 2633 2634 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2635 sig = status->signal; 2636 2637 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2638 rx->skb->data, rx->skb->len, 2639 GFP_ATOMIC)) { 2640 if (rx->sta) 2641 rx->sta->rx_packets++; 2642 dev_kfree_skb(rx->skb); 2643 return RX_QUEUED; 2644 } 2645 2646 return RX_CONTINUE; 2647 } 2648 2649 static ieee80211_rx_result debug_noinline 2650 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2651 { 2652 struct ieee80211_local *local = rx->local; 2653 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2654 struct sk_buff *nskb; 2655 struct ieee80211_sub_if_data *sdata = rx->sdata; 2656 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2657 2658 if (!ieee80211_is_action(mgmt->frame_control)) 2659 return RX_CONTINUE; 2660 2661 /* 2662 * For AP mode, hostapd is responsible for handling any action 2663 * frames that we didn't handle, including returning unknown 2664 * ones. For all other modes we will return them to the sender, 2665 * setting the 0x80 bit in the action category, as required by 2666 * 802.11-2012 9.24.4. 2667 * Newer versions of hostapd shall also use the management frame 2668 * registration mechanisms, but older ones still use cooked 2669 * monitor interfaces so push all frames there. 2670 */ 2671 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2672 (sdata->vif.type == NL80211_IFTYPE_AP || 2673 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2674 return RX_DROP_MONITOR; 2675 2676 if (is_multicast_ether_addr(mgmt->da)) 2677 return RX_DROP_MONITOR; 2678 2679 /* do not return rejected action frames */ 2680 if (mgmt->u.action.category & 0x80) 2681 return RX_DROP_UNUSABLE; 2682 2683 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2684 GFP_ATOMIC); 2685 if (nskb) { 2686 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2687 2688 nmgmt->u.action.category |= 0x80; 2689 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2690 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2691 2692 memset(nskb->cb, 0, sizeof(nskb->cb)); 2693 2694 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2695 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2696 2697 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2698 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2699 IEEE80211_TX_CTL_NO_CCK_RATE; 2700 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2701 info->hw_queue = 2702 local->hw.offchannel_tx_hw_queue; 2703 } 2704 2705 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2706 status->band); 2707 } 2708 dev_kfree_skb(rx->skb); 2709 return RX_QUEUED; 2710 } 2711 2712 static ieee80211_rx_result debug_noinline 2713 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2714 { 2715 struct ieee80211_sub_if_data *sdata = rx->sdata; 2716 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2717 __le16 stype; 2718 2719 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2720 2721 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2722 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2723 sdata->vif.type != NL80211_IFTYPE_STATION) 2724 return RX_DROP_MONITOR; 2725 2726 switch (stype) { 2727 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2728 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2729 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2730 /* process for all: mesh, mlme, ibss */ 2731 break; 2732 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2733 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2734 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2735 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2736 if (is_multicast_ether_addr(mgmt->da) && 2737 !is_broadcast_ether_addr(mgmt->da)) 2738 return RX_DROP_MONITOR; 2739 2740 /* process only for station */ 2741 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2742 return RX_DROP_MONITOR; 2743 break; 2744 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2745 /* process only for ibss and mesh */ 2746 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2747 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2748 return RX_DROP_MONITOR; 2749 break; 2750 default: 2751 return RX_DROP_MONITOR; 2752 } 2753 2754 /* queue up frame and kick off work to process it */ 2755 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2756 skb_queue_tail(&sdata->skb_queue, rx->skb); 2757 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2758 if (rx->sta) 2759 rx->sta->rx_packets++; 2760 2761 return RX_QUEUED; 2762 } 2763 2764 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2765 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2766 struct ieee80211_rate *rate) 2767 { 2768 struct ieee80211_sub_if_data *sdata; 2769 struct ieee80211_local *local = rx->local; 2770 struct sk_buff *skb = rx->skb, *skb2; 2771 struct net_device *prev_dev = NULL; 2772 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2773 int needed_headroom; 2774 2775 /* 2776 * If cooked monitor has been processed already, then 2777 * don't do it again. If not, set the flag. 2778 */ 2779 if (rx->flags & IEEE80211_RX_CMNTR) 2780 goto out_free_skb; 2781 rx->flags |= IEEE80211_RX_CMNTR; 2782 2783 /* If there are no cooked monitor interfaces, just free the SKB */ 2784 if (!local->cooked_mntrs) 2785 goto out_free_skb; 2786 2787 /* room for the radiotap header based on driver features */ 2788 needed_headroom = ieee80211_rx_radiotap_space(local, status); 2789 2790 if (skb_headroom(skb) < needed_headroom && 2791 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2792 goto out_free_skb; 2793 2794 /* prepend radiotap information */ 2795 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 2796 false); 2797 2798 skb_set_mac_header(skb, 0); 2799 skb->ip_summed = CHECKSUM_UNNECESSARY; 2800 skb->pkt_type = PACKET_OTHERHOST; 2801 skb->protocol = htons(ETH_P_802_2); 2802 2803 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2804 if (!ieee80211_sdata_running(sdata)) 2805 continue; 2806 2807 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2808 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2809 continue; 2810 2811 if (prev_dev) { 2812 skb2 = skb_clone(skb, GFP_ATOMIC); 2813 if (skb2) { 2814 skb2->dev = prev_dev; 2815 netif_receive_skb(skb2); 2816 } 2817 } 2818 2819 prev_dev = sdata->dev; 2820 sdata->dev->stats.rx_packets++; 2821 sdata->dev->stats.rx_bytes += skb->len; 2822 } 2823 2824 if (prev_dev) { 2825 skb->dev = prev_dev; 2826 netif_receive_skb(skb); 2827 return; 2828 } 2829 2830 out_free_skb: 2831 dev_kfree_skb(skb); 2832 } 2833 2834 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2835 ieee80211_rx_result res) 2836 { 2837 switch (res) { 2838 case RX_DROP_MONITOR: 2839 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2840 if (rx->sta) 2841 rx->sta->rx_dropped++; 2842 /* fall through */ 2843 case RX_CONTINUE: { 2844 struct ieee80211_rate *rate = NULL; 2845 struct ieee80211_supported_band *sband; 2846 struct ieee80211_rx_status *status; 2847 2848 status = IEEE80211_SKB_RXCB((rx->skb)); 2849 2850 sband = rx->local->hw.wiphy->bands[status->band]; 2851 if (!(status->flag & RX_FLAG_HT) && 2852 !(status->flag & RX_FLAG_VHT)) 2853 rate = &sband->bitrates[status->rate_idx]; 2854 2855 ieee80211_rx_cooked_monitor(rx, rate); 2856 break; 2857 } 2858 case RX_DROP_UNUSABLE: 2859 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2860 if (rx->sta) 2861 rx->sta->rx_dropped++; 2862 dev_kfree_skb(rx->skb); 2863 break; 2864 case RX_QUEUED: 2865 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2866 break; 2867 } 2868 } 2869 2870 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 2871 struct sk_buff_head *frames) 2872 { 2873 ieee80211_rx_result res = RX_DROP_MONITOR; 2874 struct sk_buff *skb; 2875 2876 #define CALL_RXH(rxh) \ 2877 do { \ 2878 res = rxh(rx); \ 2879 if (res != RX_CONTINUE) \ 2880 goto rxh_next; \ 2881 } while (0); 2882 2883 spin_lock_bh(&rx->local->rx_path_lock); 2884 2885 while ((skb = __skb_dequeue(frames))) { 2886 /* 2887 * all the other fields are valid across frames 2888 * that belong to an aMPDU since they are on the 2889 * same TID from the same station 2890 */ 2891 rx->skb = skb; 2892 2893 CALL_RXH(ieee80211_rx_h_decrypt) 2894 CALL_RXH(ieee80211_rx_h_check_more_data) 2895 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2896 CALL_RXH(ieee80211_rx_h_sta_process) 2897 CALL_RXH(ieee80211_rx_h_defragment) 2898 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2899 /* must be after MMIC verify so header is counted in MPDU mic */ 2900 #ifdef CONFIG_MAC80211_MESH 2901 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2902 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2903 #endif 2904 CALL_RXH(ieee80211_rx_h_amsdu) 2905 CALL_RXH(ieee80211_rx_h_data) 2906 2907 /* special treatment -- needs the queue */ 2908 res = ieee80211_rx_h_ctrl(rx, frames); 2909 if (res != RX_CONTINUE) 2910 goto rxh_next; 2911 2912 CALL_RXH(ieee80211_rx_h_mgmt_check) 2913 CALL_RXH(ieee80211_rx_h_action) 2914 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2915 CALL_RXH(ieee80211_rx_h_action_return) 2916 CALL_RXH(ieee80211_rx_h_mgmt) 2917 2918 rxh_next: 2919 ieee80211_rx_handlers_result(rx, res); 2920 2921 #undef CALL_RXH 2922 } 2923 2924 spin_unlock_bh(&rx->local->rx_path_lock); 2925 } 2926 2927 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2928 { 2929 struct sk_buff_head reorder_release; 2930 ieee80211_rx_result res = RX_DROP_MONITOR; 2931 2932 __skb_queue_head_init(&reorder_release); 2933 2934 #define CALL_RXH(rxh) \ 2935 do { \ 2936 res = rxh(rx); \ 2937 if (res != RX_CONTINUE) \ 2938 goto rxh_next; \ 2939 } while (0); 2940 2941 CALL_RXH(ieee80211_rx_h_check) 2942 2943 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 2944 2945 ieee80211_rx_handlers(rx, &reorder_release); 2946 return; 2947 2948 rxh_next: 2949 ieee80211_rx_handlers_result(rx, res); 2950 2951 #undef CALL_RXH 2952 } 2953 2954 /* 2955 * This function makes calls into the RX path, therefore 2956 * it has to be invoked under RCU read lock. 2957 */ 2958 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2959 { 2960 struct sk_buff_head frames; 2961 struct ieee80211_rx_data rx = { 2962 .sta = sta, 2963 .sdata = sta->sdata, 2964 .local = sta->local, 2965 /* This is OK -- must be QoS data frame */ 2966 .security_idx = tid, 2967 .seqno_idx = tid, 2968 .flags = 0, 2969 }; 2970 struct tid_ampdu_rx *tid_agg_rx; 2971 2972 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2973 if (!tid_agg_rx) 2974 return; 2975 2976 __skb_queue_head_init(&frames); 2977 2978 spin_lock(&tid_agg_rx->reorder_lock); 2979 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 2980 spin_unlock(&tid_agg_rx->reorder_lock); 2981 2982 ieee80211_rx_handlers(&rx, &frames); 2983 } 2984 2985 /* main receive path */ 2986 2987 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2988 struct ieee80211_hdr *hdr) 2989 { 2990 struct ieee80211_sub_if_data *sdata = rx->sdata; 2991 struct sk_buff *skb = rx->skb; 2992 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2993 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2994 int multicast = is_multicast_ether_addr(hdr->addr1); 2995 2996 switch (sdata->vif.type) { 2997 case NL80211_IFTYPE_STATION: 2998 if (!bssid && !sdata->u.mgd.use_4addr) 2999 return 0; 3000 if (!multicast && 3001 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3002 if (!(sdata->dev->flags & IFF_PROMISC) || 3003 sdata->u.mgd.use_4addr) 3004 return 0; 3005 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3006 } 3007 break; 3008 case NL80211_IFTYPE_ADHOC: 3009 if (!bssid) 3010 return 0; 3011 if (ieee80211_is_beacon(hdr->frame_control)) { 3012 return 1; 3013 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3014 return 0; 3015 } else if (!multicast && 3016 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3017 if (!(sdata->dev->flags & IFF_PROMISC)) 3018 return 0; 3019 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3020 } else if (!rx->sta) { 3021 int rate_idx; 3022 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3023 rate_idx = 0; /* TODO: HT/VHT rates */ 3024 else 3025 rate_idx = status->rate_idx; 3026 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3027 BIT(rate_idx)); 3028 } 3029 break; 3030 case NL80211_IFTYPE_MESH_POINT: 3031 if (!multicast && 3032 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3033 if (!(sdata->dev->flags & IFF_PROMISC)) 3034 return 0; 3035 3036 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3037 } 3038 break; 3039 case NL80211_IFTYPE_AP_VLAN: 3040 case NL80211_IFTYPE_AP: 3041 if (!bssid) { 3042 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3043 return 0; 3044 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3045 /* 3046 * Accept public action frames even when the 3047 * BSSID doesn't match, this is used for P2P 3048 * and location updates. Note that mac80211 3049 * itself never looks at these frames. 3050 */ 3051 if (!multicast && 3052 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3053 return 0; 3054 if (ieee80211_is_public_action(hdr, skb->len)) 3055 return 1; 3056 if (!ieee80211_is_beacon(hdr->frame_control)) 3057 return 0; 3058 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3059 } 3060 break; 3061 case NL80211_IFTYPE_WDS: 3062 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3063 return 0; 3064 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3065 return 0; 3066 break; 3067 case NL80211_IFTYPE_P2P_DEVICE: 3068 if (!ieee80211_is_public_action(hdr, skb->len) && 3069 !ieee80211_is_probe_req(hdr->frame_control) && 3070 !ieee80211_is_probe_resp(hdr->frame_control) && 3071 !ieee80211_is_beacon(hdr->frame_control)) 3072 return 0; 3073 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3074 !multicast) 3075 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3076 break; 3077 default: 3078 /* should never get here */ 3079 WARN_ON_ONCE(1); 3080 break; 3081 } 3082 3083 return 1; 3084 } 3085 3086 /* 3087 * This function returns whether or not the SKB 3088 * was destined for RX processing or not, which, 3089 * if consume is true, is equivalent to whether 3090 * or not the skb was consumed. 3091 */ 3092 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3093 struct sk_buff *skb, bool consume) 3094 { 3095 struct ieee80211_local *local = rx->local; 3096 struct ieee80211_sub_if_data *sdata = rx->sdata; 3097 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3098 struct ieee80211_hdr *hdr = (void *)skb->data; 3099 int prepares; 3100 3101 rx->skb = skb; 3102 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3103 prepares = prepare_for_handlers(rx, hdr); 3104 3105 if (!prepares) 3106 return false; 3107 3108 if (!consume) { 3109 skb = skb_copy(skb, GFP_ATOMIC); 3110 if (!skb) { 3111 if (net_ratelimit()) 3112 wiphy_debug(local->hw.wiphy, 3113 "failed to copy skb for %s\n", 3114 sdata->name); 3115 return true; 3116 } 3117 3118 rx->skb = skb; 3119 } 3120 3121 ieee80211_invoke_rx_handlers(rx); 3122 return true; 3123 } 3124 3125 /* 3126 * This is the actual Rx frames handler. as it blongs to Rx path it must 3127 * be called with rcu_read_lock protection. 3128 */ 3129 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3130 struct sk_buff *skb) 3131 { 3132 struct ieee80211_local *local = hw_to_local(hw); 3133 struct ieee80211_sub_if_data *sdata; 3134 struct ieee80211_hdr *hdr; 3135 __le16 fc; 3136 struct ieee80211_rx_data rx; 3137 struct ieee80211_sub_if_data *prev; 3138 struct sta_info *sta, *tmp, *prev_sta; 3139 int err = 0; 3140 3141 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3142 memset(&rx, 0, sizeof(rx)); 3143 rx.skb = skb; 3144 rx.local = local; 3145 3146 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3147 local->dot11ReceivedFragmentCount++; 3148 3149 if (ieee80211_is_mgmt(fc)) { 3150 /* drop frame if too short for header */ 3151 if (skb->len < ieee80211_hdrlen(fc)) 3152 err = -ENOBUFS; 3153 else 3154 err = skb_linearize(skb); 3155 } else { 3156 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3157 } 3158 3159 if (err) { 3160 dev_kfree_skb(skb); 3161 return; 3162 } 3163 3164 hdr = (struct ieee80211_hdr *)skb->data; 3165 ieee80211_parse_qos(&rx); 3166 ieee80211_verify_alignment(&rx); 3167 3168 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3169 ieee80211_is_beacon(hdr->frame_control))) 3170 ieee80211_scan_rx(local, skb); 3171 3172 if (ieee80211_is_data(fc)) { 3173 prev_sta = NULL; 3174 3175 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3176 if (!prev_sta) { 3177 prev_sta = sta; 3178 continue; 3179 } 3180 3181 rx.sta = prev_sta; 3182 rx.sdata = prev_sta->sdata; 3183 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3184 3185 prev_sta = sta; 3186 } 3187 3188 if (prev_sta) { 3189 rx.sta = prev_sta; 3190 rx.sdata = prev_sta->sdata; 3191 3192 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3193 return; 3194 goto out; 3195 } 3196 } 3197 3198 prev = NULL; 3199 3200 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3201 if (!ieee80211_sdata_running(sdata)) 3202 continue; 3203 3204 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3205 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3206 continue; 3207 3208 /* 3209 * frame is destined for this interface, but if it's 3210 * not also for the previous one we handle that after 3211 * the loop to avoid copying the SKB once too much 3212 */ 3213 3214 if (!prev) { 3215 prev = sdata; 3216 continue; 3217 } 3218 3219 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3220 rx.sdata = prev; 3221 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3222 3223 prev = sdata; 3224 } 3225 3226 if (prev) { 3227 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3228 rx.sdata = prev; 3229 3230 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3231 return; 3232 } 3233 3234 out: 3235 dev_kfree_skb(skb); 3236 } 3237 3238 /* 3239 * This is the receive path handler. It is called by a low level driver when an 3240 * 802.11 MPDU is received from the hardware. 3241 */ 3242 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3243 { 3244 struct ieee80211_local *local = hw_to_local(hw); 3245 struct ieee80211_rate *rate = NULL; 3246 struct ieee80211_supported_band *sband; 3247 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3248 3249 WARN_ON_ONCE(softirq_count() == 0); 3250 3251 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3252 goto drop; 3253 3254 sband = local->hw.wiphy->bands[status->band]; 3255 if (WARN_ON(!sband)) 3256 goto drop; 3257 3258 /* 3259 * If we're suspending, it is possible although not too likely 3260 * that we'd be receiving frames after having already partially 3261 * quiesced the stack. We can't process such frames then since 3262 * that might, for example, cause stations to be added or other 3263 * driver callbacks be invoked. 3264 */ 3265 if (unlikely(local->quiescing || local->suspended)) 3266 goto drop; 3267 3268 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3269 if (unlikely(local->in_reconfig)) 3270 goto drop; 3271 3272 /* 3273 * The same happens when we're not even started, 3274 * but that's worth a warning. 3275 */ 3276 if (WARN_ON(!local->started)) 3277 goto drop; 3278 3279 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3280 /* 3281 * Validate the rate, unless a PLCP error means that 3282 * we probably can't have a valid rate here anyway. 3283 */ 3284 3285 if (status->flag & RX_FLAG_HT) { 3286 /* 3287 * rate_idx is MCS index, which can be [0-76] 3288 * as documented on: 3289 * 3290 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3291 * 3292 * Anything else would be some sort of driver or 3293 * hardware error. The driver should catch hardware 3294 * errors. 3295 */ 3296 if (WARN(status->rate_idx > 76, 3297 "Rate marked as an HT rate but passed " 3298 "status->rate_idx is not " 3299 "an MCS index [0-76]: %d (0x%02x)\n", 3300 status->rate_idx, 3301 status->rate_idx)) 3302 goto drop; 3303 } else if (status->flag & RX_FLAG_VHT) { 3304 if (WARN_ONCE(status->rate_idx > 9 || 3305 !status->vht_nss || 3306 status->vht_nss > 8, 3307 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3308 status->rate_idx, status->vht_nss)) 3309 goto drop; 3310 } else { 3311 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3312 goto drop; 3313 rate = &sband->bitrates[status->rate_idx]; 3314 } 3315 } 3316 3317 status->rx_flags = 0; 3318 3319 /* 3320 * key references and virtual interfaces are protected using RCU 3321 * and this requires that we are in a read-side RCU section during 3322 * receive processing 3323 */ 3324 rcu_read_lock(); 3325 3326 /* 3327 * Frames with failed FCS/PLCP checksum are not returned, 3328 * all other frames are returned without radiotap header 3329 * if it was previously present. 3330 * Also, frames with less than 16 bytes are dropped. 3331 */ 3332 skb = ieee80211_rx_monitor(local, skb, rate); 3333 if (!skb) { 3334 rcu_read_unlock(); 3335 return; 3336 } 3337 3338 ieee80211_tpt_led_trig_rx(local, 3339 ((struct ieee80211_hdr *)skb->data)->frame_control, 3340 skb->len); 3341 __ieee80211_rx_handle_packet(hw, skb); 3342 3343 rcu_read_unlock(); 3344 3345 return; 3346 drop: 3347 kfree_skb(skb); 3348 } 3349 EXPORT_SYMBOL(ieee80211_rx); 3350 3351 /* This is a version of the rx handler that can be called from hard irq 3352 * context. Post the skb on the queue and schedule the tasklet */ 3353 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3354 { 3355 struct ieee80211_local *local = hw_to_local(hw); 3356 3357 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3358 3359 skb->pkt_type = IEEE80211_RX_MSG; 3360 skb_queue_tail(&local->skb_queue, skb); 3361 tasklet_schedule(&local->tasklet); 3362 } 3363 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3364