1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 8 * Copyright (C) 2018 Intel Corporation 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 */ 14 15 #include <linux/jiffies.h> 16 #include <linux/slab.h> 17 #include <linux/kernel.h> 18 #include <linux/skbuff.h> 19 #include <linux/netdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/rcupdate.h> 22 #include <linux/export.h> 23 #include <linux/bitops.h> 24 #include <net/mac80211.h> 25 #include <net/ieee80211_radiotap.h> 26 #include <asm/unaligned.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "led.h" 31 #include "mesh.h" 32 #include "wep.h" 33 #include "wpa.h" 34 #include "tkip.h" 35 #include "wme.h" 36 #include "rate.h" 37 38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len) 39 { 40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); 41 42 u64_stats_update_begin(&tstats->syncp); 43 tstats->rx_packets++; 44 tstats->rx_bytes += len; 45 u64_stats_update_end(&tstats->syncp); 46 } 47 48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len, 49 enum nl80211_iftype type) 50 { 51 __le16 fc = hdr->frame_control; 52 53 if (ieee80211_is_data(fc)) { 54 if (len < 24) /* drop incorrect hdr len (data) */ 55 return NULL; 56 57 if (ieee80211_has_a4(fc)) 58 return NULL; 59 if (ieee80211_has_tods(fc)) 60 return hdr->addr1; 61 if (ieee80211_has_fromds(fc)) 62 return hdr->addr2; 63 64 return hdr->addr3; 65 } 66 67 if (ieee80211_is_mgmt(fc)) { 68 if (len < 24) /* drop incorrect hdr len (mgmt) */ 69 return NULL; 70 return hdr->addr3; 71 } 72 73 if (ieee80211_is_ctl(fc)) { 74 if (ieee80211_is_pspoll(fc)) 75 return hdr->addr1; 76 77 if (ieee80211_is_back_req(fc)) { 78 switch (type) { 79 case NL80211_IFTYPE_STATION: 80 return hdr->addr2; 81 case NL80211_IFTYPE_AP: 82 case NL80211_IFTYPE_AP_VLAN: 83 return hdr->addr1; 84 default: 85 break; /* fall through to the return */ 86 } 87 } 88 } 89 90 return NULL; 91 } 92 93 /* 94 * monitor mode reception 95 * 96 * This function cleans up the SKB, i.e. it removes all the stuff 97 * only useful for monitoring. 98 */ 99 static void remove_monitor_info(struct sk_buff *skb, 100 unsigned int present_fcs_len, 101 unsigned int rtap_space) 102 { 103 if (present_fcs_len) 104 __pskb_trim(skb, skb->len - present_fcs_len); 105 __pskb_pull(skb, rtap_space); 106 } 107 108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 109 unsigned int rtap_space) 110 { 111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 112 struct ieee80211_hdr *hdr; 113 114 hdr = (void *)(skb->data + rtap_space); 115 116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 117 RX_FLAG_FAILED_PLCP_CRC | 118 RX_FLAG_ONLY_MONITOR)) 119 return true; 120 121 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 122 return true; 123 124 if (ieee80211_is_ctl(hdr->frame_control) && 125 !ieee80211_is_pspoll(hdr->frame_control) && 126 !ieee80211_is_back_req(hdr->frame_control)) 127 return true; 128 129 return false; 130 } 131 132 static int 133 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 134 struct ieee80211_rx_status *status, 135 struct sk_buff *skb) 136 { 137 int len; 138 139 /* always present fields */ 140 len = sizeof(struct ieee80211_radiotap_header) + 8; 141 142 /* allocate extra bitmaps */ 143 if (status->chains) 144 len += 4 * hweight8(status->chains); 145 146 if (ieee80211_have_rx_timestamp(status)) { 147 len = ALIGN(len, 8); 148 len += 8; 149 } 150 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 151 len += 1; 152 153 /* antenna field, if we don't have per-chain info */ 154 if (!status->chains) 155 len += 1; 156 157 /* padding for RX_FLAGS if necessary */ 158 len = ALIGN(len, 2); 159 160 if (status->encoding == RX_ENC_HT) /* HT info */ 161 len += 3; 162 163 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 164 len = ALIGN(len, 4); 165 len += 8; 166 } 167 168 if (status->encoding == RX_ENC_VHT) { 169 len = ALIGN(len, 2); 170 len += 12; 171 } 172 173 if (local->hw.radiotap_timestamp.units_pos >= 0) { 174 len = ALIGN(len, 8); 175 len += 12; 176 } 177 178 if (status->chains) { 179 /* antenna and antenna signal fields */ 180 len += 2 * hweight8(status->chains); 181 } 182 183 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 184 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 185 186 /* vendor presence bitmap */ 187 len += 4; 188 /* alignment for fixed 6-byte vendor data header */ 189 len = ALIGN(len, 2); 190 /* vendor data header */ 191 len += 6; 192 if (WARN_ON(rtap->align == 0)) 193 rtap->align = 1; 194 len = ALIGN(len, rtap->align); 195 len += rtap->len + rtap->pad; 196 } 197 198 return len; 199 } 200 201 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 202 struct sk_buff *skb, 203 int rtap_space) 204 { 205 struct { 206 struct ieee80211_hdr_3addr hdr; 207 u8 category; 208 u8 action_code; 209 } __packed action; 210 211 if (!sdata) 212 return; 213 214 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 215 216 if (skb->len < rtap_space + sizeof(action) + 217 VHT_MUMIMO_GROUPS_DATA_LEN) 218 return; 219 220 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 221 return; 222 223 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 224 225 if (!ieee80211_is_action(action.hdr.frame_control)) 226 return; 227 228 if (action.category != WLAN_CATEGORY_VHT) 229 return; 230 231 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 232 return; 233 234 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 235 return; 236 237 skb = skb_copy(skb, GFP_ATOMIC); 238 if (!skb) 239 return; 240 241 skb_queue_tail(&sdata->skb_queue, skb); 242 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 243 } 244 245 /* 246 * ieee80211_add_rx_radiotap_header - add radiotap header 247 * 248 * add a radiotap header containing all the fields which the hardware provided. 249 */ 250 static void 251 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 252 struct sk_buff *skb, 253 struct ieee80211_rate *rate, 254 int rtap_len, bool has_fcs) 255 { 256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 257 struct ieee80211_radiotap_header *rthdr; 258 unsigned char *pos; 259 __le32 *it_present; 260 u32 it_present_val; 261 u16 rx_flags = 0; 262 u16 channel_flags = 0; 263 int mpdulen, chain; 264 unsigned long chains = status->chains; 265 struct ieee80211_vendor_radiotap rtap = {}; 266 267 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 268 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 269 /* rtap.len and rtap.pad are undone immediately */ 270 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 271 } 272 273 mpdulen = skb->len; 274 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 275 mpdulen += FCS_LEN; 276 277 rthdr = skb_push(skb, rtap_len); 278 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 279 it_present = &rthdr->it_present; 280 281 /* radiotap header, set always present flags */ 282 rthdr->it_len = cpu_to_le16(rtap_len); 283 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 284 BIT(IEEE80211_RADIOTAP_CHANNEL) | 285 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 286 287 if (!status->chains) 288 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 289 290 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 291 it_present_val |= 292 BIT(IEEE80211_RADIOTAP_EXT) | 293 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 294 put_unaligned_le32(it_present_val, it_present); 295 it_present++; 296 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 297 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 298 } 299 300 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 301 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 302 BIT(IEEE80211_RADIOTAP_EXT); 303 put_unaligned_le32(it_present_val, it_present); 304 it_present++; 305 it_present_val = rtap.present; 306 } 307 308 put_unaligned_le32(it_present_val, it_present); 309 310 pos = (void *)(it_present + 1); 311 312 /* the order of the following fields is important */ 313 314 /* IEEE80211_RADIOTAP_TSFT */ 315 if (ieee80211_have_rx_timestamp(status)) { 316 /* padding */ 317 while ((pos - (u8 *)rthdr) & 7) 318 *pos++ = 0; 319 put_unaligned_le64( 320 ieee80211_calculate_rx_timestamp(local, status, 321 mpdulen, 0), 322 pos); 323 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 324 pos += 8; 325 } 326 327 /* IEEE80211_RADIOTAP_FLAGS */ 328 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 329 *pos |= IEEE80211_RADIOTAP_F_FCS; 330 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 331 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 332 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 333 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 334 pos++; 335 336 /* IEEE80211_RADIOTAP_RATE */ 337 if (!rate || status->encoding != RX_ENC_LEGACY) { 338 /* 339 * Without rate information don't add it. If we have, 340 * MCS information is a separate field in radiotap, 341 * added below. The byte here is needed as padding 342 * for the channel though, so initialise it to 0. 343 */ 344 *pos = 0; 345 } else { 346 int shift = 0; 347 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 348 if (status->bw == RATE_INFO_BW_10) 349 shift = 1; 350 else if (status->bw == RATE_INFO_BW_5) 351 shift = 2; 352 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 353 } 354 pos++; 355 356 /* IEEE80211_RADIOTAP_CHANNEL */ 357 put_unaligned_le16(status->freq, pos); 358 pos += 2; 359 if (status->bw == RATE_INFO_BW_10) 360 channel_flags |= IEEE80211_CHAN_HALF; 361 else if (status->bw == RATE_INFO_BW_5) 362 channel_flags |= IEEE80211_CHAN_QUARTER; 363 364 if (status->band == NL80211_BAND_5GHZ) 365 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 366 else if (status->encoding != RX_ENC_LEGACY) 367 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 368 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 369 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 370 else if (rate) 371 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 372 else 373 channel_flags |= IEEE80211_CHAN_2GHZ; 374 put_unaligned_le16(channel_flags, pos); 375 pos += 2; 376 377 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 378 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 379 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 380 *pos = status->signal; 381 rthdr->it_present |= 382 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 383 pos++; 384 } 385 386 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 387 388 if (!status->chains) { 389 /* IEEE80211_RADIOTAP_ANTENNA */ 390 *pos = status->antenna; 391 pos++; 392 } 393 394 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 395 396 /* IEEE80211_RADIOTAP_RX_FLAGS */ 397 /* ensure 2 byte alignment for the 2 byte field as required */ 398 if ((pos - (u8 *)rthdr) & 1) 399 *pos++ = 0; 400 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 401 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 402 put_unaligned_le16(rx_flags, pos); 403 pos += 2; 404 405 if (status->encoding == RX_ENC_HT) { 406 unsigned int stbc; 407 408 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 409 *pos++ = local->hw.radiotap_mcs_details; 410 *pos = 0; 411 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 412 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 413 if (status->bw == RATE_INFO_BW_40) 414 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 415 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 416 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 417 if (status->enc_flags & RX_ENC_FLAG_LDPC) 418 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 419 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 420 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 421 pos++; 422 *pos++ = status->rate_idx; 423 } 424 425 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 426 u16 flags = 0; 427 428 /* ensure 4 byte alignment */ 429 while ((pos - (u8 *)rthdr) & 3) 430 pos++; 431 rthdr->it_present |= 432 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 433 put_unaligned_le32(status->ampdu_reference, pos); 434 pos += 4; 435 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 436 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 437 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 438 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 439 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 440 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 441 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 442 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 443 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 444 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 445 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 446 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 447 put_unaligned_le16(flags, pos); 448 pos += 2; 449 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 450 *pos++ = status->ampdu_delimiter_crc; 451 else 452 *pos++ = 0; 453 *pos++ = 0; 454 } 455 456 if (status->encoding == RX_ENC_VHT) { 457 u16 known = local->hw.radiotap_vht_details; 458 459 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 460 put_unaligned_le16(known, pos); 461 pos += 2; 462 /* flags */ 463 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 464 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 465 /* in VHT, STBC is binary */ 466 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 467 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 468 if (status->enc_flags & RX_ENC_FLAG_BF) 469 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 470 pos++; 471 /* bandwidth */ 472 switch (status->bw) { 473 case RATE_INFO_BW_80: 474 *pos++ = 4; 475 break; 476 case RATE_INFO_BW_160: 477 *pos++ = 11; 478 break; 479 case RATE_INFO_BW_40: 480 *pos++ = 1; 481 break; 482 default: 483 *pos++ = 0; 484 } 485 /* MCS/NSS */ 486 *pos = (status->rate_idx << 4) | status->nss; 487 pos += 4; 488 /* coding field */ 489 if (status->enc_flags & RX_ENC_FLAG_LDPC) 490 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 491 pos++; 492 /* group ID */ 493 pos++; 494 /* partial_aid */ 495 pos += 2; 496 } 497 498 if (local->hw.radiotap_timestamp.units_pos >= 0) { 499 u16 accuracy = 0; 500 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 501 502 rthdr->it_present |= 503 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP); 504 505 /* ensure 8 byte alignment */ 506 while ((pos - (u8 *)rthdr) & 7) 507 pos++; 508 509 put_unaligned_le64(status->device_timestamp, pos); 510 pos += sizeof(u64); 511 512 if (local->hw.radiotap_timestamp.accuracy >= 0) { 513 accuracy = local->hw.radiotap_timestamp.accuracy; 514 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 515 } 516 put_unaligned_le16(accuracy, pos); 517 pos += sizeof(u16); 518 519 *pos++ = local->hw.radiotap_timestamp.units_pos; 520 *pos++ = flags; 521 } 522 523 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 524 *pos++ = status->chain_signal[chain]; 525 *pos++ = chain; 526 } 527 528 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 529 /* ensure 2 byte alignment for the vendor field as required */ 530 if ((pos - (u8 *)rthdr) & 1) 531 *pos++ = 0; 532 *pos++ = rtap.oui[0]; 533 *pos++ = rtap.oui[1]; 534 *pos++ = rtap.oui[2]; 535 *pos++ = rtap.subns; 536 put_unaligned_le16(rtap.len, pos); 537 pos += 2; 538 /* align the actual payload as requested */ 539 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 540 *pos++ = 0; 541 /* data (and possible padding) already follows */ 542 } 543 } 544 545 static struct sk_buff * 546 ieee80211_make_monitor_skb(struct ieee80211_local *local, 547 struct sk_buff **origskb, 548 struct ieee80211_rate *rate, 549 int rtap_space, bool use_origskb) 550 { 551 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 552 int rt_hdrlen, needed_headroom; 553 struct sk_buff *skb; 554 555 /* room for the radiotap header based on driver features */ 556 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 557 needed_headroom = rt_hdrlen - rtap_space; 558 559 if (use_origskb) { 560 /* only need to expand headroom if necessary */ 561 skb = *origskb; 562 *origskb = NULL; 563 564 /* 565 * This shouldn't trigger often because most devices have an 566 * RX header they pull before we get here, and that should 567 * be big enough for our radiotap information. We should 568 * probably export the length to drivers so that we can have 569 * them allocate enough headroom to start with. 570 */ 571 if (skb_headroom(skb) < needed_headroom && 572 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 573 dev_kfree_skb(skb); 574 return NULL; 575 } 576 } else { 577 /* 578 * Need to make a copy and possibly remove radiotap header 579 * and FCS from the original. 580 */ 581 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC); 582 583 if (!skb) 584 return NULL; 585 } 586 587 /* prepend radiotap information */ 588 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 589 590 skb_reset_mac_header(skb); 591 skb->ip_summed = CHECKSUM_UNNECESSARY; 592 skb->pkt_type = PACKET_OTHERHOST; 593 skb->protocol = htons(ETH_P_802_2); 594 595 return skb; 596 } 597 598 /* 599 * This function copies a received frame to all monitor interfaces and 600 * returns a cleaned-up SKB that no longer includes the FCS nor the 601 * radiotap header the driver might have added. 602 */ 603 static struct sk_buff * 604 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 605 struct ieee80211_rate *rate) 606 { 607 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 608 struct ieee80211_sub_if_data *sdata; 609 struct sk_buff *monskb = NULL; 610 int present_fcs_len = 0; 611 unsigned int rtap_space = 0; 612 struct ieee80211_sub_if_data *monitor_sdata = 613 rcu_dereference(local->monitor_sdata); 614 bool only_monitor = false; 615 616 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 617 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 618 619 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 620 } 621 622 /* 623 * First, we may need to make a copy of the skb because 624 * (1) we need to modify it for radiotap (if not present), and 625 * (2) the other RX handlers will modify the skb we got. 626 * 627 * We don't need to, of course, if we aren't going to return 628 * the SKB because it has a bad FCS/PLCP checksum. 629 */ 630 631 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 632 if (unlikely(origskb->len <= FCS_LEN)) { 633 /* driver bug */ 634 WARN_ON(1); 635 dev_kfree_skb(origskb); 636 return NULL; 637 } 638 present_fcs_len = FCS_LEN; 639 } 640 641 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 642 if (!pskb_may_pull(origskb, 2 + rtap_space)) { 643 dev_kfree_skb(origskb); 644 return NULL; 645 } 646 647 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 648 649 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 650 if (only_monitor) { 651 dev_kfree_skb(origskb); 652 return NULL; 653 } 654 655 remove_monitor_info(origskb, present_fcs_len, rtap_space); 656 return origskb; 657 } 658 659 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 660 661 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 662 bool last_monitor = list_is_last(&sdata->u.mntr.list, 663 &local->mon_list); 664 665 if (!monskb) 666 monskb = ieee80211_make_monitor_skb(local, &origskb, 667 rate, rtap_space, 668 only_monitor && 669 last_monitor); 670 671 if (monskb) { 672 struct sk_buff *skb; 673 674 if (last_monitor) { 675 skb = monskb; 676 monskb = NULL; 677 } else { 678 skb = skb_clone(monskb, GFP_ATOMIC); 679 } 680 681 if (skb) { 682 skb->dev = sdata->dev; 683 ieee80211_rx_stats(skb->dev, skb->len); 684 netif_receive_skb(skb); 685 } 686 } 687 688 if (last_monitor) 689 break; 690 } 691 692 /* this happens if last_monitor was erroneously false */ 693 dev_kfree_skb(monskb); 694 695 /* ditto */ 696 if (!origskb) 697 return NULL; 698 699 remove_monitor_info(origskb, present_fcs_len, rtap_space); 700 return origskb; 701 } 702 703 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 704 { 705 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 706 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 707 int tid, seqno_idx, security_idx; 708 709 /* does the frame have a qos control field? */ 710 if (ieee80211_is_data_qos(hdr->frame_control)) { 711 u8 *qc = ieee80211_get_qos_ctl(hdr); 712 /* frame has qos control */ 713 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 714 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 715 status->rx_flags |= IEEE80211_RX_AMSDU; 716 717 seqno_idx = tid; 718 security_idx = tid; 719 } else { 720 /* 721 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 722 * 723 * Sequence numbers for management frames, QoS data 724 * frames with a broadcast/multicast address in the 725 * Address 1 field, and all non-QoS data frames sent 726 * by QoS STAs are assigned using an additional single 727 * modulo-4096 counter, [...] 728 * 729 * We also use that counter for non-QoS STAs. 730 */ 731 seqno_idx = IEEE80211_NUM_TIDS; 732 security_idx = 0; 733 if (ieee80211_is_mgmt(hdr->frame_control)) 734 security_idx = IEEE80211_NUM_TIDS; 735 tid = 0; 736 } 737 738 rx->seqno_idx = seqno_idx; 739 rx->security_idx = security_idx; 740 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 741 * For now, set skb->priority to 0 for other cases. */ 742 rx->skb->priority = (tid > 7) ? 0 : tid; 743 } 744 745 /** 746 * DOC: Packet alignment 747 * 748 * Drivers always need to pass packets that are aligned to two-byte boundaries 749 * to the stack. 750 * 751 * Additionally, should, if possible, align the payload data in a way that 752 * guarantees that the contained IP header is aligned to a four-byte 753 * boundary. In the case of regular frames, this simply means aligning the 754 * payload to a four-byte boundary (because either the IP header is directly 755 * contained, or IV/RFC1042 headers that have a length divisible by four are 756 * in front of it). If the payload data is not properly aligned and the 757 * architecture doesn't support efficient unaligned operations, mac80211 758 * will align the data. 759 * 760 * With A-MSDU frames, however, the payload data address must yield two modulo 761 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 762 * push the IP header further back to a multiple of four again. Thankfully, the 763 * specs were sane enough this time around to require padding each A-MSDU 764 * subframe to a length that is a multiple of four. 765 * 766 * Padding like Atheros hardware adds which is between the 802.11 header and 767 * the payload is not supported, the driver is required to move the 802.11 768 * header to be directly in front of the payload in that case. 769 */ 770 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 771 { 772 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 773 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 774 #endif 775 } 776 777 778 /* rx handlers */ 779 780 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 781 { 782 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 783 784 if (is_multicast_ether_addr(hdr->addr1)) 785 return 0; 786 787 return ieee80211_is_robust_mgmt_frame(skb); 788 } 789 790 791 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 792 { 793 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 794 795 if (!is_multicast_ether_addr(hdr->addr1)) 796 return 0; 797 798 return ieee80211_is_robust_mgmt_frame(skb); 799 } 800 801 802 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 803 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 804 { 805 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 806 struct ieee80211_mmie *mmie; 807 struct ieee80211_mmie_16 *mmie16; 808 809 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 810 return -1; 811 812 if (!ieee80211_is_robust_mgmt_frame(skb)) 813 return -1; /* not a robust management frame */ 814 815 mmie = (struct ieee80211_mmie *) 816 (skb->data + skb->len - sizeof(*mmie)); 817 if (mmie->element_id == WLAN_EID_MMIE && 818 mmie->length == sizeof(*mmie) - 2) 819 return le16_to_cpu(mmie->key_id); 820 821 mmie16 = (struct ieee80211_mmie_16 *) 822 (skb->data + skb->len - sizeof(*mmie16)); 823 if (skb->len >= 24 + sizeof(*mmie16) && 824 mmie16->element_id == WLAN_EID_MMIE && 825 mmie16->length == sizeof(*mmie16) - 2) 826 return le16_to_cpu(mmie16->key_id); 827 828 return -1; 829 } 830 831 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 832 struct sk_buff *skb) 833 { 834 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 835 __le16 fc; 836 int hdrlen; 837 u8 keyid; 838 839 fc = hdr->frame_control; 840 hdrlen = ieee80211_hdrlen(fc); 841 842 if (skb->len < hdrlen + cs->hdr_len) 843 return -EINVAL; 844 845 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 846 keyid &= cs->key_idx_mask; 847 keyid >>= cs->key_idx_shift; 848 849 return keyid; 850 } 851 852 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 853 { 854 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 855 char *dev_addr = rx->sdata->vif.addr; 856 857 if (ieee80211_is_data(hdr->frame_control)) { 858 if (is_multicast_ether_addr(hdr->addr1)) { 859 if (ieee80211_has_tods(hdr->frame_control) || 860 !ieee80211_has_fromds(hdr->frame_control)) 861 return RX_DROP_MONITOR; 862 if (ether_addr_equal(hdr->addr3, dev_addr)) 863 return RX_DROP_MONITOR; 864 } else { 865 if (!ieee80211_has_a4(hdr->frame_control)) 866 return RX_DROP_MONITOR; 867 if (ether_addr_equal(hdr->addr4, dev_addr)) 868 return RX_DROP_MONITOR; 869 } 870 } 871 872 /* If there is not an established peer link and this is not a peer link 873 * establisment frame, beacon or probe, drop the frame. 874 */ 875 876 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 877 struct ieee80211_mgmt *mgmt; 878 879 if (!ieee80211_is_mgmt(hdr->frame_control)) 880 return RX_DROP_MONITOR; 881 882 if (ieee80211_is_action(hdr->frame_control)) { 883 u8 category; 884 885 /* make sure category field is present */ 886 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 887 return RX_DROP_MONITOR; 888 889 mgmt = (struct ieee80211_mgmt *)hdr; 890 category = mgmt->u.action.category; 891 if (category != WLAN_CATEGORY_MESH_ACTION && 892 category != WLAN_CATEGORY_SELF_PROTECTED) 893 return RX_DROP_MONITOR; 894 return RX_CONTINUE; 895 } 896 897 if (ieee80211_is_probe_req(hdr->frame_control) || 898 ieee80211_is_probe_resp(hdr->frame_control) || 899 ieee80211_is_beacon(hdr->frame_control) || 900 ieee80211_is_auth(hdr->frame_control)) 901 return RX_CONTINUE; 902 903 return RX_DROP_MONITOR; 904 } 905 906 return RX_CONTINUE; 907 } 908 909 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 910 int index) 911 { 912 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 913 struct sk_buff *tail = skb_peek_tail(frames); 914 struct ieee80211_rx_status *status; 915 916 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 917 return true; 918 919 if (!tail) 920 return false; 921 922 status = IEEE80211_SKB_RXCB(tail); 923 if (status->flag & RX_FLAG_AMSDU_MORE) 924 return false; 925 926 return true; 927 } 928 929 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 930 struct tid_ampdu_rx *tid_agg_rx, 931 int index, 932 struct sk_buff_head *frames) 933 { 934 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 935 struct sk_buff *skb; 936 struct ieee80211_rx_status *status; 937 938 lockdep_assert_held(&tid_agg_rx->reorder_lock); 939 940 if (skb_queue_empty(skb_list)) 941 goto no_frame; 942 943 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 944 __skb_queue_purge(skb_list); 945 goto no_frame; 946 } 947 948 /* release frames from the reorder ring buffer */ 949 tid_agg_rx->stored_mpdu_num--; 950 while ((skb = __skb_dequeue(skb_list))) { 951 status = IEEE80211_SKB_RXCB(skb); 952 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 953 __skb_queue_tail(frames, skb); 954 } 955 956 no_frame: 957 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 958 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 959 } 960 961 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 962 struct tid_ampdu_rx *tid_agg_rx, 963 u16 head_seq_num, 964 struct sk_buff_head *frames) 965 { 966 int index; 967 968 lockdep_assert_held(&tid_agg_rx->reorder_lock); 969 970 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 971 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 972 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 973 frames); 974 } 975 } 976 977 /* 978 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 979 * the skb was added to the buffer longer than this time ago, the earlier 980 * frames that have not yet been received are assumed to be lost and the skb 981 * can be released for processing. This may also release other skb's from the 982 * reorder buffer if there are no additional gaps between the frames. 983 * 984 * Callers must hold tid_agg_rx->reorder_lock. 985 */ 986 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 987 988 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 989 struct tid_ampdu_rx *tid_agg_rx, 990 struct sk_buff_head *frames) 991 { 992 int index, i, j; 993 994 lockdep_assert_held(&tid_agg_rx->reorder_lock); 995 996 /* release the buffer until next missing frame */ 997 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 998 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 999 tid_agg_rx->stored_mpdu_num) { 1000 /* 1001 * No buffers ready to be released, but check whether any 1002 * frames in the reorder buffer have timed out. 1003 */ 1004 int skipped = 1; 1005 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1006 j = (j + 1) % tid_agg_rx->buf_size) { 1007 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1008 skipped++; 1009 continue; 1010 } 1011 if (skipped && 1012 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1013 HT_RX_REORDER_BUF_TIMEOUT)) 1014 goto set_release_timer; 1015 1016 /* don't leave incomplete A-MSDUs around */ 1017 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1018 i = (i + 1) % tid_agg_rx->buf_size) 1019 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1020 1021 ht_dbg_ratelimited(sdata, 1022 "release an RX reorder frame due to timeout on earlier frames\n"); 1023 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1024 frames); 1025 1026 /* 1027 * Increment the head seq# also for the skipped slots. 1028 */ 1029 tid_agg_rx->head_seq_num = 1030 (tid_agg_rx->head_seq_num + 1031 skipped) & IEEE80211_SN_MASK; 1032 skipped = 0; 1033 } 1034 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1035 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1036 frames); 1037 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1038 } 1039 1040 if (tid_agg_rx->stored_mpdu_num) { 1041 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1042 1043 for (; j != (index - 1) % tid_agg_rx->buf_size; 1044 j = (j + 1) % tid_agg_rx->buf_size) { 1045 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1046 break; 1047 } 1048 1049 set_release_timer: 1050 1051 if (!tid_agg_rx->removed) 1052 mod_timer(&tid_agg_rx->reorder_timer, 1053 tid_agg_rx->reorder_time[j] + 1 + 1054 HT_RX_REORDER_BUF_TIMEOUT); 1055 } else { 1056 del_timer(&tid_agg_rx->reorder_timer); 1057 } 1058 } 1059 1060 /* 1061 * As this function belongs to the RX path it must be under 1062 * rcu_read_lock protection. It returns false if the frame 1063 * can be processed immediately, true if it was consumed. 1064 */ 1065 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1066 struct tid_ampdu_rx *tid_agg_rx, 1067 struct sk_buff *skb, 1068 struct sk_buff_head *frames) 1069 { 1070 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1071 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1072 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1073 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1074 u16 head_seq_num, buf_size; 1075 int index; 1076 bool ret = true; 1077 1078 spin_lock(&tid_agg_rx->reorder_lock); 1079 1080 /* 1081 * Offloaded BA sessions have no known starting sequence number so pick 1082 * one from first Rxed frame for this tid after BA was started. 1083 */ 1084 if (unlikely(tid_agg_rx->auto_seq)) { 1085 tid_agg_rx->auto_seq = false; 1086 tid_agg_rx->ssn = mpdu_seq_num; 1087 tid_agg_rx->head_seq_num = mpdu_seq_num; 1088 } 1089 1090 buf_size = tid_agg_rx->buf_size; 1091 head_seq_num = tid_agg_rx->head_seq_num; 1092 1093 /* 1094 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1095 * be reordered. 1096 */ 1097 if (unlikely(!tid_agg_rx->started)) { 1098 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1099 ret = false; 1100 goto out; 1101 } 1102 tid_agg_rx->started = true; 1103 } 1104 1105 /* frame with out of date sequence number */ 1106 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1107 dev_kfree_skb(skb); 1108 goto out; 1109 } 1110 1111 /* 1112 * If frame the sequence number exceeds our buffering window 1113 * size release some previous frames to make room for this one. 1114 */ 1115 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1116 head_seq_num = ieee80211_sn_inc( 1117 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1118 /* release stored frames up to new head to stack */ 1119 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1120 head_seq_num, frames); 1121 } 1122 1123 /* Now the new frame is always in the range of the reordering buffer */ 1124 1125 index = mpdu_seq_num % tid_agg_rx->buf_size; 1126 1127 /* check if we already stored this frame */ 1128 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1129 dev_kfree_skb(skb); 1130 goto out; 1131 } 1132 1133 /* 1134 * If the current MPDU is in the right order and nothing else 1135 * is stored we can process it directly, no need to buffer it. 1136 * If it is first but there's something stored, we may be able 1137 * to release frames after this one. 1138 */ 1139 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1140 tid_agg_rx->stored_mpdu_num == 0) { 1141 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1142 tid_agg_rx->head_seq_num = 1143 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1144 ret = false; 1145 goto out; 1146 } 1147 1148 /* put the frame in the reordering buffer */ 1149 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1150 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1151 tid_agg_rx->reorder_time[index] = jiffies; 1152 tid_agg_rx->stored_mpdu_num++; 1153 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1154 } 1155 1156 out: 1157 spin_unlock(&tid_agg_rx->reorder_lock); 1158 return ret; 1159 } 1160 1161 /* 1162 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1163 * true if the MPDU was buffered, false if it should be processed. 1164 */ 1165 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1166 struct sk_buff_head *frames) 1167 { 1168 struct sk_buff *skb = rx->skb; 1169 struct ieee80211_local *local = rx->local; 1170 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1171 struct sta_info *sta = rx->sta; 1172 struct tid_ampdu_rx *tid_agg_rx; 1173 u16 sc; 1174 u8 tid, ack_policy; 1175 1176 if (!ieee80211_is_data_qos(hdr->frame_control) || 1177 is_multicast_ether_addr(hdr->addr1)) 1178 goto dont_reorder; 1179 1180 /* 1181 * filter the QoS data rx stream according to 1182 * STA/TID and check if this STA/TID is on aggregation 1183 */ 1184 1185 if (!sta) 1186 goto dont_reorder; 1187 1188 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1189 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1190 tid = ieee80211_get_tid(hdr); 1191 1192 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1193 if (!tid_agg_rx) { 1194 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1195 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1196 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1197 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1198 WLAN_BACK_RECIPIENT, 1199 WLAN_REASON_QSTA_REQUIRE_SETUP); 1200 goto dont_reorder; 1201 } 1202 1203 /* qos null data frames are excluded */ 1204 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1205 goto dont_reorder; 1206 1207 /* not part of a BA session */ 1208 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1209 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1210 goto dont_reorder; 1211 1212 /* new, potentially un-ordered, ampdu frame - process it */ 1213 1214 /* reset session timer */ 1215 if (tid_agg_rx->timeout) 1216 tid_agg_rx->last_rx = jiffies; 1217 1218 /* if this mpdu is fragmented - terminate rx aggregation session */ 1219 sc = le16_to_cpu(hdr->seq_ctrl); 1220 if (sc & IEEE80211_SCTL_FRAG) { 1221 skb_queue_tail(&rx->sdata->skb_queue, skb); 1222 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1223 return; 1224 } 1225 1226 /* 1227 * No locking needed -- we will only ever process one 1228 * RX packet at a time, and thus own tid_agg_rx. All 1229 * other code manipulating it needs to (and does) make 1230 * sure that we cannot get to it any more before doing 1231 * anything with it. 1232 */ 1233 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1234 frames)) 1235 return; 1236 1237 dont_reorder: 1238 __skb_queue_tail(frames, skb); 1239 } 1240 1241 static ieee80211_rx_result debug_noinline 1242 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1243 { 1244 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1245 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1246 1247 if (status->flag & RX_FLAG_DUP_VALIDATED) 1248 return RX_CONTINUE; 1249 1250 /* 1251 * Drop duplicate 802.11 retransmissions 1252 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1253 */ 1254 1255 if (rx->skb->len < 24) 1256 return RX_CONTINUE; 1257 1258 if (ieee80211_is_ctl(hdr->frame_control) || 1259 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1260 is_multicast_ether_addr(hdr->addr1)) 1261 return RX_CONTINUE; 1262 1263 if (!rx->sta) 1264 return RX_CONTINUE; 1265 1266 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1267 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1268 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1269 rx->sta->rx_stats.num_duplicates++; 1270 return RX_DROP_UNUSABLE; 1271 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1272 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1273 } 1274 1275 return RX_CONTINUE; 1276 } 1277 1278 static ieee80211_rx_result debug_noinline 1279 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1280 { 1281 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1282 1283 /* Drop disallowed frame classes based on STA auth/assoc state; 1284 * IEEE 802.11, Chap 5.5. 1285 * 1286 * mac80211 filters only based on association state, i.e. it drops 1287 * Class 3 frames from not associated stations. hostapd sends 1288 * deauth/disassoc frames when needed. In addition, hostapd is 1289 * responsible for filtering on both auth and assoc states. 1290 */ 1291 1292 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1293 return ieee80211_rx_mesh_check(rx); 1294 1295 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1296 ieee80211_is_pspoll(hdr->frame_control)) && 1297 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1298 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1299 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1300 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1301 /* 1302 * accept port control frames from the AP even when it's not 1303 * yet marked ASSOC to prevent a race where we don't set the 1304 * assoc bit quickly enough before it sends the first frame 1305 */ 1306 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1307 ieee80211_is_data_present(hdr->frame_control)) { 1308 unsigned int hdrlen; 1309 __be16 ethertype; 1310 1311 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1312 1313 if (rx->skb->len < hdrlen + 8) 1314 return RX_DROP_MONITOR; 1315 1316 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1317 if (ethertype == rx->sdata->control_port_protocol) 1318 return RX_CONTINUE; 1319 } 1320 1321 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1322 cfg80211_rx_spurious_frame(rx->sdata->dev, 1323 hdr->addr2, 1324 GFP_ATOMIC)) 1325 return RX_DROP_UNUSABLE; 1326 1327 return RX_DROP_MONITOR; 1328 } 1329 1330 return RX_CONTINUE; 1331 } 1332 1333 1334 static ieee80211_rx_result debug_noinline 1335 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1336 { 1337 struct ieee80211_local *local; 1338 struct ieee80211_hdr *hdr; 1339 struct sk_buff *skb; 1340 1341 local = rx->local; 1342 skb = rx->skb; 1343 hdr = (struct ieee80211_hdr *) skb->data; 1344 1345 if (!local->pspolling) 1346 return RX_CONTINUE; 1347 1348 if (!ieee80211_has_fromds(hdr->frame_control)) 1349 /* this is not from AP */ 1350 return RX_CONTINUE; 1351 1352 if (!ieee80211_is_data(hdr->frame_control)) 1353 return RX_CONTINUE; 1354 1355 if (!ieee80211_has_moredata(hdr->frame_control)) { 1356 /* AP has no more frames buffered for us */ 1357 local->pspolling = false; 1358 return RX_CONTINUE; 1359 } 1360 1361 /* more data bit is set, let's request a new frame from the AP */ 1362 ieee80211_send_pspoll(local, rx->sdata); 1363 1364 return RX_CONTINUE; 1365 } 1366 1367 static void sta_ps_start(struct sta_info *sta) 1368 { 1369 struct ieee80211_sub_if_data *sdata = sta->sdata; 1370 struct ieee80211_local *local = sdata->local; 1371 struct ps_data *ps; 1372 int tid; 1373 1374 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1375 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1376 ps = &sdata->bss->ps; 1377 else 1378 return; 1379 1380 atomic_inc(&ps->num_sta_ps); 1381 set_sta_flag(sta, WLAN_STA_PS_STA); 1382 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1383 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1384 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1385 sta->sta.addr, sta->sta.aid); 1386 1387 ieee80211_clear_fast_xmit(sta); 1388 1389 if (!sta->sta.txq[0]) 1390 return; 1391 1392 for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) { 1393 if (txq_has_queue(sta->sta.txq[tid])) 1394 set_bit(tid, &sta->txq_buffered_tids); 1395 else 1396 clear_bit(tid, &sta->txq_buffered_tids); 1397 } 1398 } 1399 1400 static void sta_ps_end(struct sta_info *sta) 1401 { 1402 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1403 sta->sta.addr, sta->sta.aid); 1404 1405 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1406 /* 1407 * Clear the flag only if the other one is still set 1408 * so that the TX path won't start TX'ing new frames 1409 * directly ... In the case that the driver flag isn't 1410 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1411 */ 1412 clear_sta_flag(sta, WLAN_STA_PS_STA); 1413 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1414 sta->sta.addr, sta->sta.aid); 1415 return; 1416 } 1417 1418 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1419 clear_sta_flag(sta, WLAN_STA_PS_STA); 1420 ieee80211_sta_ps_deliver_wakeup(sta); 1421 } 1422 1423 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1424 { 1425 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1426 bool in_ps; 1427 1428 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1429 1430 /* Don't let the same PS state be set twice */ 1431 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1432 if ((start && in_ps) || (!start && !in_ps)) 1433 return -EINVAL; 1434 1435 if (start) 1436 sta_ps_start(sta); 1437 else 1438 sta_ps_end(sta); 1439 1440 return 0; 1441 } 1442 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1443 1444 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1445 { 1446 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1447 1448 if (test_sta_flag(sta, WLAN_STA_SP)) 1449 return; 1450 1451 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1452 ieee80211_sta_ps_deliver_poll_response(sta); 1453 else 1454 set_sta_flag(sta, WLAN_STA_PSPOLL); 1455 } 1456 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1457 1458 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1459 { 1460 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1461 int ac = ieee80211_ac_from_tid(tid); 1462 1463 /* 1464 * If this AC is not trigger-enabled do nothing unless the 1465 * driver is calling us after it already checked. 1466 * 1467 * NB: This could/should check a separate bitmap of trigger- 1468 * enabled queues, but for now we only implement uAPSD w/o 1469 * TSPEC changes to the ACs, so they're always the same. 1470 */ 1471 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1472 tid != IEEE80211_NUM_TIDS) 1473 return; 1474 1475 /* if we are in a service period, do nothing */ 1476 if (test_sta_flag(sta, WLAN_STA_SP)) 1477 return; 1478 1479 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1480 ieee80211_sta_ps_deliver_uapsd(sta); 1481 else 1482 set_sta_flag(sta, WLAN_STA_UAPSD); 1483 } 1484 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1485 1486 static ieee80211_rx_result debug_noinline 1487 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1488 { 1489 struct ieee80211_sub_if_data *sdata = rx->sdata; 1490 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1492 1493 if (!rx->sta) 1494 return RX_CONTINUE; 1495 1496 if (sdata->vif.type != NL80211_IFTYPE_AP && 1497 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1498 return RX_CONTINUE; 1499 1500 /* 1501 * The device handles station powersave, so don't do anything about 1502 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1503 * it to mac80211 since they're handled.) 1504 */ 1505 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1506 return RX_CONTINUE; 1507 1508 /* 1509 * Don't do anything if the station isn't already asleep. In 1510 * the uAPSD case, the station will probably be marked asleep, 1511 * in the PS-Poll case the station must be confused ... 1512 */ 1513 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1514 return RX_CONTINUE; 1515 1516 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1517 ieee80211_sta_pspoll(&rx->sta->sta); 1518 1519 /* Free PS Poll skb here instead of returning RX_DROP that would 1520 * count as an dropped frame. */ 1521 dev_kfree_skb(rx->skb); 1522 1523 return RX_QUEUED; 1524 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1525 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1526 ieee80211_has_pm(hdr->frame_control) && 1527 (ieee80211_is_data_qos(hdr->frame_control) || 1528 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1529 u8 tid = ieee80211_get_tid(hdr); 1530 1531 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1532 } 1533 1534 return RX_CONTINUE; 1535 } 1536 1537 static ieee80211_rx_result debug_noinline 1538 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1539 { 1540 struct sta_info *sta = rx->sta; 1541 struct sk_buff *skb = rx->skb; 1542 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1543 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1544 int i; 1545 1546 if (!sta) 1547 return RX_CONTINUE; 1548 1549 /* 1550 * Update last_rx only for IBSS packets which are for the current 1551 * BSSID and for station already AUTHORIZED to avoid keeping the 1552 * current IBSS network alive in cases where other STAs start 1553 * using different BSSID. This will also give the station another 1554 * chance to restart the authentication/authorization in case 1555 * something went wrong the first time. 1556 */ 1557 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1558 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1559 NL80211_IFTYPE_ADHOC); 1560 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1561 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1562 sta->rx_stats.last_rx = jiffies; 1563 if (ieee80211_is_data(hdr->frame_control) && 1564 !is_multicast_ether_addr(hdr->addr1)) 1565 sta->rx_stats.last_rate = 1566 sta_stats_encode_rate(status); 1567 } 1568 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1569 sta->rx_stats.last_rx = jiffies; 1570 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1571 /* 1572 * Mesh beacons will update last_rx when if they are found to 1573 * match the current local configuration when processed. 1574 */ 1575 sta->rx_stats.last_rx = jiffies; 1576 if (ieee80211_is_data(hdr->frame_control)) 1577 sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1578 } 1579 1580 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1581 ieee80211_sta_rx_notify(rx->sdata, hdr); 1582 1583 sta->rx_stats.fragments++; 1584 1585 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 1586 sta->rx_stats.bytes += rx->skb->len; 1587 u64_stats_update_end(&rx->sta->rx_stats.syncp); 1588 1589 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1590 sta->rx_stats.last_signal = status->signal; 1591 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal); 1592 } 1593 1594 if (status->chains) { 1595 sta->rx_stats.chains = status->chains; 1596 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1597 int signal = status->chain_signal[i]; 1598 1599 if (!(status->chains & BIT(i))) 1600 continue; 1601 1602 sta->rx_stats.chain_signal_last[i] = signal; 1603 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 1604 -signal); 1605 } 1606 } 1607 1608 /* 1609 * Change STA power saving mode only at the end of a frame 1610 * exchange sequence, and only for a data or management 1611 * frame as specified in IEEE 802.11-2016 11.2.3.2 1612 */ 1613 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1614 !ieee80211_has_morefrags(hdr->frame_control) && 1615 (ieee80211_is_mgmt(hdr->frame_control) || 1616 ieee80211_is_data(hdr->frame_control)) && 1617 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1618 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1619 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1620 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1621 if (!ieee80211_has_pm(hdr->frame_control)) 1622 sta_ps_end(sta); 1623 } else { 1624 if (ieee80211_has_pm(hdr->frame_control)) 1625 sta_ps_start(sta); 1626 } 1627 } 1628 1629 /* mesh power save support */ 1630 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1631 ieee80211_mps_rx_h_sta_process(sta, hdr); 1632 1633 /* 1634 * Drop (qos-)data::nullfunc frames silently, since they 1635 * are used only to control station power saving mode. 1636 */ 1637 if (ieee80211_is_nullfunc(hdr->frame_control) || 1638 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1639 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1640 1641 /* 1642 * If we receive a 4-addr nullfunc frame from a STA 1643 * that was not moved to a 4-addr STA vlan yet send 1644 * the event to userspace and for older hostapd drop 1645 * the frame to the monitor interface. 1646 */ 1647 if (ieee80211_has_a4(hdr->frame_control) && 1648 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1649 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1650 !rx->sdata->u.vlan.sta))) { 1651 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1652 cfg80211_rx_unexpected_4addr_frame( 1653 rx->sdata->dev, sta->sta.addr, 1654 GFP_ATOMIC); 1655 return RX_DROP_MONITOR; 1656 } 1657 /* 1658 * Update counter and free packet here to avoid 1659 * counting this as a dropped packed. 1660 */ 1661 sta->rx_stats.packets++; 1662 dev_kfree_skb(rx->skb); 1663 return RX_QUEUED; 1664 } 1665 1666 return RX_CONTINUE; 1667 } /* ieee80211_rx_h_sta_process */ 1668 1669 static ieee80211_rx_result debug_noinline 1670 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1671 { 1672 struct sk_buff *skb = rx->skb; 1673 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1675 int keyidx; 1676 int hdrlen; 1677 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1678 struct ieee80211_key *sta_ptk = NULL; 1679 int mmie_keyidx = -1; 1680 __le16 fc; 1681 const struct ieee80211_cipher_scheme *cs = NULL; 1682 1683 /* 1684 * Key selection 101 1685 * 1686 * There are four types of keys: 1687 * - GTK (group keys) 1688 * - IGTK (group keys for management frames) 1689 * - PTK (pairwise keys) 1690 * - STK (station-to-station pairwise keys) 1691 * 1692 * When selecting a key, we have to distinguish between multicast 1693 * (including broadcast) and unicast frames, the latter can only 1694 * use PTKs and STKs while the former always use GTKs and IGTKs. 1695 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1696 * unicast frames can also use key indices like GTKs. Hence, if we 1697 * don't have a PTK/STK we check the key index for a WEP key. 1698 * 1699 * Note that in a regular BSS, multicast frames are sent by the 1700 * AP only, associated stations unicast the frame to the AP first 1701 * which then multicasts it on their behalf. 1702 * 1703 * There is also a slight problem in IBSS mode: GTKs are negotiated 1704 * with each station, that is something we don't currently handle. 1705 * The spec seems to expect that one negotiates the same key with 1706 * every station but there's no such requirement; VLANs could be 1707 * possible. 1708 */ 1709 1710 /* start without a key */ 1711 rx->key = NULL; 1712 fc = hdr->frame_control; 1713 1714 if (rx->sta) { 1715 int keyid = rx->sta->ptk_idx; 1716 1717 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1718 cs = rx->sta->cipher_scheme; 1719 keyid = ieee80211_get_cs_keyid(cs, rx->skb); 1720 if (unlikely(keyid < 0)) 1721 return RX_DROP_UNUSABLE; 1722 } 1723 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1724 } 1725 1726 if (!ieee80211_has_protected(fc)) 1727 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1728 1729 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1730 rx->key = sta_ptk; 1731 if ((status->flag & RX_FLAG_DECRYPTED) && 1732 (status->flag & RX_FLAG_IV_STRIPPED)) 1733 return RX_CONTINUE; 1734 /* Skip decryption if the frame is not protected. */ 1735 if (!ieee80211_has_protected(fc)) 1736 return RX_CONTINUE; 1737 } else if (mmie_keyidx >= 0) { 1738 /* Broadcast/multicast robust management frame / BIP */ 1739 if ((status->flag & RX_FLAG_DECRYPTED) && 1740 (status->flag & RX_FLAG_IV_STRIPPED)) 1741 return RX_CONTINUE; 1742 1743 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1744 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1745 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1746 if (rx->sta) { 1747 if (ieee80211_is_group_privacy_action(skb) && 1748 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1749 return RX_DROP_MONITOR; 1750 1751 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1752 } 1753 if (!rx->key) 1754 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1755 } else if (!ieee80211_has_protected(fc)) { 1756 /* 1757 * The frame was not protected, so skip decryption. However, we 1758 * need to set rx->key if there is a key that could have been 1759 * used so that the frame may be dropped if encryption would 1760 * have been expected. 1761 */ 1762 struct ieee80211_key *key = NULL; 1763 struct ieee80211_sub_if_data *sdata = rx->sdata; 1764 int i; 1765 1766 if (ieee80211_is_mgmt(fc) && 1767 is_multicast_ether_addr(hdr->addr1) && 1768 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1769 rx->key = key; 1770 else { 1771 if (rx->sta) { 1772 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1773 key = rcu_dereference(rx->sta->gtk[i]); 1774 if (key) 1775 break; 1776 } 1777 } 1778 if (!key) { 1779 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1780 key = rcu_dereference(sdata->keys[i]); 1781 if (key) 1782 break; 1783 } 1784 } 1785 if (key) 1786 rx->key = key; 1787 } 1788 return RX_CONTINUE; 1789 } else { 1790 u8 keyid; 1791 1792 /* 1793 * The device doesn't give us the IV so we won't be 1794 * able to look up the key. That's ok though, we 1795 * don't need to decrypt the frame, we just won't 1796 * be able to keep statistics accurate. 1797 * Except for key threshold notifications, should 1798 * we somehow allow the driver to tell us which key 1799 * the hardware used if this flag is set? 1800 */ 1801 if ((status->flag & RX_FLAG_DECRYPTED) && 1802 (status->flag & RX_FLAG_IV_STRIPPED)) 1803 return RX_CONTINUE; 1804 1805 hdrlen = ieee80211_hdrlen(fc); 1806 1807 if (cs) { 1808 keyidx = ieee80211_get_cs_keyid(cs, rx->skb); 1809 1810 if (unlikely(keyidx < 0)) 1811 return RX_DROP_UNUSABLE; 1812 } else { 1813 if (rx->skb->len < 8 + hdrlen) 1814 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1815 /* 1816 * no need to call ieee80211_wep_get_keyidx, 1817 * it verifies a bunch of things we've done already 1818 */ 1819 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1820 keyidx = keyid >> 6; 1821 } 1822 1823 /* check per-station GTK first, if multicast packet */ 1824 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1825 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1826 1827 /* if not found, try default key */ 1828 if (!rx->key) { 1829 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1830 1831 /* 1832 * RSNA-protected unicast frames should always be 1833 * sent with pairwise or station-to-station keys, 1834 * but for WEP we allow using a key index as well. 1835 */ 1836 if (rx->key && 1837 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1838 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1839 !is_multicast_ether_addr(hdr->addr1)) 1840 rx->key = NULL; 1841 } 1842 } 1843 1844 if (rx->key) { 1845 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1846 return RX_DROP_MONITOR; 1847 1848 /* TODO: add threshold stuff again */ 1849 } else { 1850 return RX_DROP_MONITOR; 1851 } 1852 1853 switch (rx->key->conf.cipher) { 1854 case WLAN_CIPHER_SUITE_WEP40: 1855 case WLAN_CIPHER_SUITE_WEP104: 1856 result = ieee80211_crypto_wep_decrypt(rx); 1857 break; 1858 case WLAN_CIPHER_SUITE_TKIP: 1859 result = ieee80211_crypto_tkip_decrypt(rx); 1860 break; 1861 case WLAN_CIPHER_SUITE_CCMP: 1862 result = ieee80211_crypto_ccmp_decrypt( 1863 rx, IEEE80211_CCMP_MIC_LEN); 1864 break; 1865 case WLAN_CIPHER_SUITE_CCMP_256: 1866 result = ieee80211_crypto_ccmp_decrypt( 1867 rx, IEEE80211_CCMP_256_MIC_LEN); 1868 break; 1869 case WLAN_CIPHER_SUITE_AES_CMAC: 1870 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1871 break; 1872 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 1873 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 1874 break; 1875 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 1876 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 1877 result = ieee80211_crypto_aes_gmac_decrypt(rx); 1878 break; 1879 case WLAN_CIPHER_SUITE_GCMP: 1880 case WLAN_CIPHER_SUITE_GCMP_256: 1881 result = ieee80211_crypto_gcmp_decrypt(rx); 1882 break; 1883 default: 1884 result = ieee80211_crypto_hw_decrypt(rx); 1885 } 1886 1887 /* the hdr variable is invalid after the decrypt handlers */ 1888 1889 /* either the frame has been decrypted or will be dropped */ 1890 status->flag |= RX_FLAG_DECRYPTED; 1891 1892 return result; 1893 } 1894 1895 static inline struct ieee80211_fragment_entry * 1896 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1897 unsigned int frag, unsigned int seq, int rx_queue, 1898 struct sk_buff **skb) 1899 { 1900 struct ieee80211_fragment_entry *entry; 1901 1902 entry = &sdata->fragments[sdata->fragment_next++]; 1903 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1904 sdata->fragment_next = 0; 1905 1906 if (!skb_queue_empty(&entry->skb_list)) 1907 __skb_queue_purge(&entry->skb_list); 1908 1909 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1910 *skb = NULL; 1911 entry->first_frag_time = jiffies; 1912 entry->seq = seq; 1913 entry->rx_queue = rx_queue; 1914 entry->last_frag = frag; 1915 entry->check_sequential_pn = false; 1916 entry->extra_len = 0; 1917 1918 return entry; 1919 } 1920 1921 static inline struct ieee80211_fragment_entry * 1922 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1923 unsigned int frag, unsigned int seq, 1924 int rx_queue, struct ieee80211_hdr *hdr) 1925 { 1926 struct ieee80211_fragment_entry *entry; 1927 int i, idx; 1928 1929 idx = sdata->fragment_next; 1930 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1931 struct ieee80211_hdr *f_hdr; 1932 1933 idx--; 1934 if (idx < 0) 1935 idx = IEEE80211_FRAGMENT_MAX - 1; 1936 1937 entry = &sdata->fragments[idx]; 1938 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1939 entry->rx_queue != rx_queue || 1940 entry->last_frag + 1 != frag) 1941 continue; 1942 1943 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1944 1945 /* 1946 * Check ftype and addresses are equal, else check next fragment 1947 */ 1948 if (((hdr->frame_control ^ f_hdr->frame_control) & 1949 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1950 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1951 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1952 continue; 1953 1954 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1955 __skb_queue_purge(&entry->skb_list); 1956 continue; 1957 } 1958 return entry; 1959 } 1960 1961 return NULL; 1962 } 1963 1964 static ieee80211_rx_result debug_noinline 1965 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1966 { 1967 struct ieee80211_hdr *hdr; 1968 u16 sc; 1969 __le16 fc; 1970 unsigned int frag, seq; 1971 struct ieee80211_fragment_entry *entry; 1972 struct sk_buff *skb; 1973 1974 hdr = (struct ieee80211_hdr *)rx->skb->data; 1975 fc = hdr->frame_control; 1976 1977 if (ieee80211_is_ctl(fc)) 1978 return RX_CONTINUE; 1979 1980 sc = le16_to_cpu(hdr->seq_ctrl); 1981 frag = sc & IEEE80211_SCTL_FRAG; 1982 1983 if (is_multicast_ether_addr(hdr->addr1)) { 1984 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount); 1985 goto out_no_led; 1986 } 1987 1988 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1989 goto out; 1990 1991 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1992 1993 if (skb_linearize(rx->skb)) 1994 return RX_DROP_UNUSABLE; 1995 1996 /* 1997 * skb_linearize() might change the skb->data and 1998 * previously cached variables (in this case, hdr) need to 1999 * be refreshed with the new data. 2000 */ 2001 hdr = (struct ieee80211_hdr *)rx->skb->data; 2002 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2003 2004 if (frag == 0) { 2005 /* This is the first fragment of a new frame. */ 2006 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 2007 rx->seqno_idx, &(rx->skb)); 2008 if (rx->key && 2009 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2010 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2011 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2012 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2013 ieee80211_has_protected(fc)) { 2014 int queue = rx->security_idx; 2015 2016 /* Store CCMP/GCMP PN so that we can verify that the 2017 * next fragment has a sequential PN value. 2018 */ 2019 entry->check_sequential_pn = true; 2020 memcpy(entry->last_pn, 2021 rx->key->u.ccmp.rx_pn[queue], 2022 IEEE80211_CCMP_PN_LEN); 2023 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2024 u.ccmp.rx_pn) != 2025 offsetof(struct ieee80211_key, 2026 u.gcmp.rx_pn)); 2027 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2028 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2029 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2030 IEEE80211_GCMP_PN_LEN); 2031 } 2032 return RX_QUEUED; 2033 } 2034 2035 /* This is a fragment for a frame that should already be pending in 2036 * fragment cache. Add this fragment to the end of the pending entry. 2037 */ 2038 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 2039 rx->seqno_idx, hdr); 2040 if (!entry) { 2041 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2042 return RX_DROP_MONITOR; 2043 } 2044 2045 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2046 * MPDU PN values are not incrementing in steps of 1." 2047 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2048 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2049 */ 2050 if (entry->check_sequential_pn) { 2051 int i; 2052 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2053 int queue; 2054 2055 if (!rx->key || 2056 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP && 2057 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 && 2058 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP && 2059 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256)) 2060 return RX_DROP_UNUSABLE; 2061 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2062 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2063 pn[i]++; 2064 if (pn[i]) 2065 break; 2066 } 2067 queue = rx->security_idx; 2068 rpn = rx->key->u.ccmp.rx_pn[queue]; 2069 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2070 return RX_DROP_UNUSABLE; 2071 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2072 } 2073 2074 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2075 __skb_queue_tail(&entry->skb_list, rx->skb); 2076 entry->last_frag = frag; 2077 entry->extra_len += rx->skb->len; 2078 if (ieee80211_has_morefrags(fc)) { 2079 rx->skb = NULL; 2080 return RX_QUEUED; 2081 } 2082 2083 rx->skb = __skb_dequeue(&entry->skb_list); 2084 if (skb_tailroom(rx->skb) < entry->extra_len) { 2085 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2086 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2087 GFP_ATOMIC))) { 2088 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2089 __skb_queue_purge(&entry->skb_list); 2090 return RX_DROP_UNUSABLE; 2091 } 2092 } 2093 while ((skb = __skb_dequeue(&entry->skb_list))) { 2094 skb_put_data(rx->skb, skb->data, skb->len); 2095 dev_kfree_skb(skb); 2096 } 2097 2098 out: 2099 ieee80211_led_rx(rx->local); 2100 out_no_led: 2101 if (rx->sta) 2102 rx->sta->rx_stats.packets++; 2103 return RX_CONTINUE; 2104 } 2105 2106 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2107 { 2108 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2109 return -EACCES; 2110 2111 return 0; 2112 } 2113 2114 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2115 { 2116 struct sk_buff *skb = rx->skb; 2117 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2118 2119 /* 2120 * Pass through unencrypted frames if the hardware has 2121 * decrypted them already. 2122 */ 2123 if (status->flag & RX_FLAG_DECRYPTED) 2124 return 0; 2125 2126 /* Drop unencrypted frames if key is set. */ 2127 if (unlikely(!ieee80211_has_protected(fc) && 2128 !ieee80211_is_nullfunc(fc) && 2129 ieee80211_is_data(fc) && rx->key)) 2130 return -EACCES; 2131 2132 return 0; 2133 } 2134 2135 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2136 { 2137 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2139 __le16 fc = hdr->frame_control; 2140 2141 /* 2142 * Pass through unencrypted frames if the hardware has 2143 * decrypted them already. 2144 */ 2145 if (status->flag & RX_FLAG_DECRYPTED) 2146 return 0; 2147 2148 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2149 if (unlikely(!ieee80211_has_protected(fc) && 2150 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2151 rx->key)) { 2152 if (ieee80211_is_deauth(fc) || 2153 ieee80211_is_disassoc(fc)) 2154 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2155 rx->skb->data, 2156 rx->skb->len); 2157 return -EACCES; 2158 } 2159 /* BIP does not use Protected field, so need to check MMIE */ 2160 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2161 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2162 if (ieee80211_is_deauth(fc) || 2163 ieee80211_is_disassoc(fc)) 2164 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2165 rx->skb->data, 2166 rx->skb->len); 2167 return -EACCES; 2168 } 2169 /* 2170 * When using MFP, Action frames are not allowed prior to 2171 * having configured keys. 2172 */ 2173 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2174 ieee80211_is_robust_mgmt_frame(rx->skb))) 2175 return -EACCES; 2176 } 2177 2178 return 0; 2179 } 2180 2181 static int 2182 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2183 { 2184 struct ieee80211_sub_if_data *sdata = rx->sdata; 2185 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2186 bool check_port_control = false; 2187 struct ethhdr *ehdr; 2188 int ret; 2189 2190 *port_control = false; 2191 if (ieee80211_has_a4(hdr->frame_control) && 2192 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2193 return -1; 2194 2195 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2196 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2197 2198 if (!sdata->u.mgd.use_4addr) 2199 return -1; 2200 else 2201 check_port_control = true; 2202 } 2203 2204 if (is_multicast_ether_addr(hdr->addr1) && 2205 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2206 return -1; 2207 2208 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2209 if (ret < 0) 2210 return ret; 2211 2212 ehdr = (struct ethhdr *) rx->skb->data; 2213 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2214 *port_control = true; 2215 else if (check_port_control) 2216 return -1; 2217 2218 return 0; 2219 } 2220 2221 /* 2222 * requires that rx->skb is a frame with ethernet header 2223 */ 2224 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2225 { 2226 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2227 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2228 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2229 2230 /* 2231 * Allow EAPOL frames to us/the PAE group address regardless 2232 * of whether the frame was encrypted or not. 2233 */ 2234 if (ehdr->h_proto == rx->sdata->control_port_protocol && 2235 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 2236 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2237 return true; 2238 2239 if (ieee80211_802_1x_port_control(rx) || 2240 ieee80211_drop_unencrypted(rx, fc)) 2241 return false; 2242 2243 return true; 2244 } 2245 2246 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2247 struct ieee80211_rx_data *rx) 2248 { 2249 struct ieee80211_sub_if_data *sdata = rx->sdata; 2250 struct net_device *dev = sdata->dev; 2251 2252 if (unlikely((skb->protocol == sdata->control_port_protocol || 2253 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) && 2254 sdata->control_port_over_nl80211)) { 2255 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2256 bool noencrypt = status->flag & RX_FLAG_DECRYPTED; 2257 2258 cfg80211_rx_control_port(dev, skb, noencrypt); 2259 dev_kfree_skb(skb); 2260 } else { 2261 /* deliver to local stack */ 2262 if (rx->napi) 2263 napi_gro_receive(rx->napi, skb); 2264 else 2265 netif_receive_skb(skb); 2266 } 2267 } 2268 2269 /* 2270 * requires that rx->skb is a frame with ethernet header 2271 */ 2272 static void 2273 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2274 { 2275 struct ieee80211_sub_if_data *sdata = rx->sdata; 2276 struct net_device *dev = sdata->dev; 2277 struct sk_buff *skb, *xmit_skb; 2278 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2279 struct sta_info *dsta; 2280 2281 skb = rx->skb; 2282 xmit_skb = NULL; 2283 2284 ieee80211_rx_stats(dev, skb->len); 2285 2286 if (rx->sta) { 2287 /* The seqno index has the same property as needed 2288 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2289 * for non-QoS-data frames. Here we know it's a data 2290 * frame, so count MSDUs. 2291 */ 2292 u64_stats_update_begin(&rx->sta->rx_stats.syncp); 2293 rx->sta->rx_stats.msdu[rx->seqno_idx]++; 2294 u64_stats_update_end(&rx->sta->rx_stats.syncp); 2295 } 2296 2297 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2298 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2299 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2300 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2301 if (is_multicast_ether_addr(ehdr->h_dest) && 2302 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2303 /* 2304 * send multicast frames both to higher layers in 2305 * local net stack and back to the wireless medium 2306 */ 2307 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2308 if (!xmit_skb) 2309 net_info_ratelimited("%s: failed to clone multicast frame\n", 2310 dev->name); 2311 } else if (!is_multicast_ether_addr(ehdr->h_dest)) { 2312 dsta = sta_info_get(sdata, skb->data); 2313 if (dsta) { 2314 /* 2315 * The destination station is associated to 2316 * this AP (in this VLAN), so send the frame 2317 * directly to it and do not pass it to local 2318 * net stack. 2319 */ 2320 xmit_skb = skb; 2321 skb = NULL; 2322 } 2323 } 2324 } 2325 2326 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2327 if (skb) { 2328 /* 'align' will only take the values 0 or 2 here since all 2329 * frames are required to be aligned to 2-byte boundaries 2330 * when being passed to mac80211; the code here works just 2331 * as well if that isn't true, but mac80211 assumes it can 2332 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2333 */ 2334 int align; 2335 2336 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2337 if (align) { 2338 if (WARN_ON(skb_headroom(skb) < 3)) { 2339 dev_kfree_skb(skb); 2340 skb = NULL; 2341 } else { 2342 u8 *data = skb->data; 2343 size_t len = skb_headlen(skb); 2344 skb->data -= align; 2345 memmove(skb->data, data, len); 2346 skb_set_tail_pointer(skb, len); 2347 } 2348 } 2349 } 2350 #endif 2351 2352 if (skb) { 2353 skb->protocol = eth_type_trans(skb, dev); 2354 memset(skb->cb, 0, sizeof(skb->cb)); 2355 2356 ieee80211_deliver_skb_to_local_stack(skb, rx); 2357 } 2358 2359 if (xmit_skb) { 2360 /* 2361 * Send to wireless media and increase priority by 256 to 2362 * keep the received priority instead of reclassifying 2363 * the frame (see cfg80211_classify8021d). 2364 */ 2365 xmit_skb->priority += 256; 2366 xmit_skb->protocol = htons(ETH_P_802_3); 2367 skb_reset_network_header(xmit_skb); 2368 skb_reset_mac_header(xmit_skb); 2369 dev_queue_xmit(xmit_skb); 2370 } 2371 } 2372 2373 static ieee80211_rx_result debug_noinline 2374 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2375 { 2376 struct net_device *dev = rx->sdata->dev; 2377 struct sk_buff *skb = rx->skb; 2378 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2379 __le16 fc = hdr->frame_control; 2380 struct sk_buff_head frame_list; 2381 struct ethhdr ethhdr; 2382 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2383 2384 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2385 check_da = NULL; 2386 check_sa = NULL; 2387 } else switch (rx->sdata->vif.type) { 2388 case NL80211_IFTYPE_AP: 2389 case NL80211_IFTYPE_AP_VLAN: 2390 check_da = NULL; 2391 break; 2392 case NL80211_IFTYPE_STATION: 2393 if (!rx->sta || 2394 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2395 check_sa = NULL; 2396 break; 2397 case NL80211_IFTYPE_MESH_POINT: 2398 check_sa = NULL; 2399 break; 2400 default: 2401 break; 2402 } 2403 2404 skb->dev = dev; 2405 __skb_queue_head_init(&frame_list); 2406 2407 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2408 rx->sdata->vif.addr, 2409 rx->sdata->vif.type, 2410 data_offset)) 2411 return RX_DROP_UNUSABLE; 2412 2413 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2414 rx->sdata->vif.type, 2415 rx->local->hw.extra_tx_headroom, 2416 check_da, check_sa); 2417 2418 while (!skb_queue_empty(&frame_list)) { 2419 rx->skb = __skb_dequeue(&frame_list); 2420 2421 if (!ieee80211_frame_allowed(rx, fc)) { 2422 dev_kfree_skb(rx->skb); 2423 continue; 2424 } 2425 2426 ieee80211_deliver_skb(rx); 2427 } 2428 2429 return RX_QUEUED; 2430 } 2431 2432 static ieee80211_rx_result debug_noinline 2433 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2434 { 2435 struct sk_buff *skb = rx->skb; 2436 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2437 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2438 __le16 fc = hdr->frame_control; 2439 2440 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2441 return RX_CONTINUE; 2442 2443 if (unlikely(!ieee80211_is_data(fc))) 2444 return RX_CONTINUE; 2445 2446 if (unlikely(!ieee80211_is_data_present(fc))) 2447 return RX_DROP_MONITOR; 2448 2449 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2450 switch (rx->sdata->vif.type) { 2451 case NL80211_IFTYPE_AP_VLAN: 2452 if (!rx->sdata->u.vlan.sta) 2453 return RX_DROP_UNUSABLE; 2454 break; 2455 case NL80211_IFTYPE_STATION: 2456 if (!rx->sdata->u.mgd.use_4addr) 2457 return RX_DROP_UNUSABLE; 2458 break; 2459 default: 2460 return RX_DROP_UNUSABLE; 2461 } 2462 } 2463 2464 if (is_multicast_ether_addr(hdr->addr1)) 2465 return RX_DROP_UNUSABLE; 2466 2467 return __ieee80211_rx_h_amsdu(rx, 0); 2468 } 2469 2470 #ifdef CONFIG_MAC80211_MESH 2471 static ieee80211_rx_result 2472 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2473 { 2474 struct ieee80211_hdr *fwd_hdr, *hdr; 2475 struct ieee80211_tx_info *info; 2476 struct ieee80211s_hdr *mesh_hdr; 2477 struct sk_buff *skb = rx->skb, *fwd_skb; 2478 struct ieee80211_local *local = rx->local; 2479 struct ieee80211_sub_if_data *sdata = rx->sdata; 2480 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2481 u16 ac, q, hdrlen; 2482 2483 hdr = (struct ieee80211_hdr *) skb->data; 2484 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2485 2486 /* make sure fixed part of mesh header is there, also checks skb len */ 2487 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2488 return RX_DROP_MONITOR; 2489 2490 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2491 2492 /* make sure full mesh header is there, also checks skb len */ 2493 if (!pskb_may_pull(rx->skb, 2494 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2495 return RX_DROP_MONITOR; 2496 2497 /* reload pointers */ 2498 hdr = (struct ieee80211_hdr *) skb->data; 2499 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2500 2501 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2502 return RX_DROP_MONITOR; 2503 2504 /* frame is in RMC, don't forward */ 2505 if (ieee80211_is_data(hdr->frame_control) && 2506 is_multicast_ether_addr(hdr->addr1) && 2507 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2508 return RX_DROP_MONITOR; 2509 2510 if (!ieee80211_is_data(hdr->frame_control)) 2511 return RX_CONTINUE; 2512 2513 if (!mesh_hdr->ttl) 2514 return RX_DROP_MONITOR; 2515 2516 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2517 struct mesh_path *mppath; 2518 char *proxied_addr; 2519 char *mpp_addr; 2520 2521 if (is_multicast_ether_addr(hdr->addr1)) { 2522 mpp_addr = hdr->addr3; 2523 proxied_addr = mesh_hdr->eaddr1; 2524 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2525 MESH_FLAGS_AE_A5_A6) { 2526 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2527 mpp_addr = hdr->addr4; 2528 proxied_addr = mesh_hdr->eaddr2; 2529 } else { 2530 return RX_DROP_MONITOR; 2531 } 2532 2533 rcu_read_lock(); 2534 mppath = mpp_path_lookup(sdata, proxied_addr); 2535 if (!mppath) { 2536 mpp_path_add(sdata, proxied_addr, mpp_addr); 2537 } else { 2538 spin_lock_bh(&mppath->state_lock); 2539 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2540 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2541 mppath->exp_time = jiffies; 2542 spin_unlock_bh(&mppath->state_lock); 2543 } 2544 rcu_read_unlock(); 2545 } 2546 2547 /* Frame has reached destination. Don't forward */ 2548 if (!is_multicast_ether_addr(hdr->addr1) && 2549 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2550 return RX_CONTINUE; 2551 2552 ac = ieee80211_select_queue_80211(sdata, skb, hdr); 2553 q = sdata->vif.hw_queue[ac]; 2554 if (ieee80211_queue_stopped(&local->hw, q)) { 2555 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2556 return RX_DROP_MONITOR; 2557 } 2558 skb_set_queue_mapping(skb, q); 2559 2560 if (!--mesh_hdr->ttl) { 2561 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2562 goto out; 2563 } 2564 2565 if (!ifmsh->mshcfg.dot11MeshForwarding) 2566 goto out; 2567 2568 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2569 sdata->encrypt_headroom, 0, GFP_ATOMIC); 2570 if (!fwd_skb) 2571 goto out; 2572 2573 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2574 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2575 info = IEEE80211_SKB_CB(fwd_skb); 2576 memset(info, 0, sizeof(*info)); 2577 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2578 info->control.vif = &rx->sdata->vif; 2579 info->control.jiffies = jiffies; 2580 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2581 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2582 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2583 /* update power mode indication when forwarding */ 2584 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2585 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2586 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2587 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2588 } else { 2589 /* unable to resolve next hop */ 2590 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2591 fwd_hdr->addr3, 0, 2592 WLAN_REASON_MESH_PATH_NOFORWARD, 2593 fwd_hdr->addr2); 2594 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2595 kfree_skb(fwd_skb); 2596 return RX_DROP_MONITOR; 2597 } 2598 2599 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2600 ieee80211_add_pending_skb(local, fwd_skb); 2601 out: 2602 if (is_multicast_ether_addr(hdr->addr1)) 2603 return RX_CONTINUE; 2604 return RX_DROP_MONITOR; 2605 } 2606 #endif 2607 2608 static ieee80211_rx_result debug_noinline 2609 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2610 { 2611 struct ieee80211_sub_if_data *sdata = rx->sdata; 2612 struct ieee80211_local *local = rx->local; 2613 struct net_device *dev = sdata->dev; 2614 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2615 __le16 fc = hdr->frame_control; 2616 bool port_control; 2617 int err; 2618 2619 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2620 return RX_CONTINUE; 2621 2622 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2623 return RX_DROP_MONITOR; 2624 2625 /* 2626 * Send unexpected-4addr-frame event to hostapd. For older versions, 2627 * also drop the frame to cooked monitor interfaces. 2628 */ 2629 if (ieee80211_has_a4(hdr->frame_control) && 2630 sdata->vif.type == NL80211_IFTYPE_AP) { 2631 if (rx->sta && 2632 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2633 cfg80211_rx_unexpected_4addr_frame( 2634 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2635 return RX_DROP_MONITOR; 2636 } 2637 2638 err = __ieee80211_data_to_8023(rx, &port_control); 2639 if (unlikely(err)) 2640 return RX_DROP_UNUSABLE; 2641 2642 if (!ieee80211_frame_allowed(rx, fc)) 2643 return RX_DROP_MONITOR; 2644 2645 /* directly handle TDLS channel switch requests/responses */ 2646 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2647 cpu_to_be16(ETH_P_TDLS))) { 2648 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2649 2650 if (pskb_may_pull(rx->skb, 2651 offsetof(struct ieee80211_tdls_data, u)) && 2652 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2653 tf->category == WLAN_CATEGORY_TDLS && 2654 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2655 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2656 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb); 2657 schedule_work(&local->tdls_chsw_work); 2658 if (rx->sta) 2659 rx->sta->rx_stats.packets++; 2660 2661 return RX_QUEUED; 2662 } 2663 } 2664 2665 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2666 unlikely(port_control) && sdata->bss) { 2667 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2668 u.ap); 2669 dev = sdata->dev; 2670 rx->sdata = sdata; 2671 } 2672 2673 rx->skb->dev = dev; 2674 2675 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 2676 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2677 !is_multicast_ether_addr( 2678 ((struct ethhdr *)rx->skb->data)->h_dest) && 2679 (!local->scanning && 2680 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 2681 mod_timer(&local->dynamic_ps_timer, jiffies + 2682 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2683 2684 ieee80211_deliver_skb(rx); 2685 2686 return RX_QUEUED; 2687 } 2688 2689 static ieee80211_rx_result debug_noinline 2690 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2691 { 2692 struct sk_buff *skb = rx->skb; 2693 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2694 struct tid_ampdu_rx *tid_agg_rx; 2695 u16 start_seq_num; 2696 u16 tid; 2697 2698 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2699 return RX_CONTINUE; 2700 2701 if (ieee80211_is_back_req(bar->frame_control)) { 2702 struct { 2703 __le16 control, start_seq_num; 2704 } __packed bar_data; 2705 struct ieee80211_event event = { 2706 .type = BAR_RX_EVENT, 2707 }; 2708 2709 if (!rx->sta) 2710 return RX_DROP_MONITOR; 2711 2712 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2713 &bar_data, sizeof(bar_data))) 2714 return RX_DROP_MONITOR; 2715 2716 tid = le16_to_cpu(bar_data.control) >> 12; 2717 2718 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 2719 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 2720 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 2721 WLAN_BACK_RECIPIENT, 2722 WLAN_REASON_QSTA_REQUIRE_SETUP); 2723 2724 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2725 if (!tid_agg_rx) 2726 return RX_DROP_MONITOR; 2727 2728 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2729 event.u.ba.tid = tid; 2730 event.u.ba.ssn = start_seq_num; 2731 event.u.ba.sta = &rx->sta->sta; 2732 2733 /* reset session timer */ 2734 if (tid_agg_rx->timeout) 2735 mod_timer(&tid_agg_rx->session_timer, 2736 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2737 2738 spin_lock(&tid_agg_rx->reorder_lock); 2739 /* release stored frames up to start of BAR */ 2740 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2741 start_seq_num, frames); 2742 spin_unlock(&tid_agg_rx->reorder_lock); 2743 2744 drv_event_callback(rx->local, rx->sdata, &event); 2745 2746 kfree_skb(skb); 2747 return RX_QUEUED; 2748 } 2749 2750 /* 2751 * After this point, we only want management frames, 2752 * so we can drop all remaining control frames to 2753 * cooked monitor interfaces. 2754 */ 2755 return RX_DROP_MONITOR; 2756 } 2757 2758 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2759 struct ieee80211_mgmt *mgmt, 2760 size_t len) 2761 { 2762 struct ieee80211_local *local = sdata->local; 2763 struct sk_buff *skb; 2764 struct ieee80211_mgmt *resp; 2765 2766 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2767 /* Not to own unicast address */ 2768 return; 2769 } 2770 2771 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2772 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2773 /* Not from the current AP or not associated yet. */ 2774 return; 2775 } 2776 2777 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2778 /* Too short SA Query request frame */ 2779 return; 2780 } 2781 2782 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2783 if (skb == NULL) 2784 return; 2785 2786 skb_reserve(skb, local->hw.extra_tx_headroom); 2787 resp = skb_put_zero(skb, 24); 2788 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2789 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2790 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2791 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2792 IEEE80211_STYPE_ACTION); 2793 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2794 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2795 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2796 memcpy(resp->u.action.u.sa_query.trans_id, 2797 mgmt->u.action.u.sa_query.trans_id, 2798 WLAN_SA_QUERY_TR_ID_LEN); 2799 2800 ieee80211_tx_skb(sdata, skb); 2801 } 2802 2803 static ieee80211_rx_result debug_noinline 2804 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2805 { 2806 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2807 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2808 2809 /* 2810 * From here on, look only at management frames. 2811 * Data and control frames are already handled, 2812 * and unknown (reserved) frames are useless. 2813 */ 2814 if (rx->skb->len < 24) 2815 return RX_DROP_MONITOR; 2816 2817 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2818 return RX_DROP_MONITOR; 2819 2820 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2821 ieee80211_is_beacon(mgmt->frame_control) && 2822 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2823 int sig = 0; 2824 2825 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 2826 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 2827 sig = status->signal; 2828 2829 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2830 rx->skb->data, rx->skb->len, 2831 status->freq, sig); 2832 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2833 } 2834 2835 if (ieee80211_drop_unencrypted_mgmt(rx)) 2836 return RX_DROP_UNUSABLE; 2837 2838 return RX_CONTINUE; 2839 } 2840 2841 static ieee80211_rx_result debug_noinline 2842 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2843 { 2844 struct ieee80211_local *local = rx->local; 2845 struct ieee80211_sub_if_data *sdata = rx->sdata; 2846 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2847 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2848 int len = rx->skb->len; 2849 2850 if (!ieee80211_is_action(mgmt->frame_control)) 2851 return RX_CONTINUE; 2852 2853 /* drop too small frames */ 2854 if (len < IEEE80211_MIN_ACTION_SIZE) 2855 return RX_DROP_UNUSABLE; 2856 2857 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2858 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2859 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2860 return RX_DROP_UNUSABLE; 2861 2862 switch (mgmt->u.action.category) { 2863 case WLAN_CATEGORY_HT: 2864 /* reject HT action frames from stations not supporting HT */ 2865 if (!rx->sta->sta.ht_cap.ht_supported) 2866 goto invalid; 2867 2868 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2869 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2870 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2871 sdata->vif.type != NL80211_IFTYPE_AP && 2872 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2873 break; 2874 2875 /* verify action & smps_control/chanwidth are present */ 2876 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2877 goto invalid; 2878 2879 switch (mgmt->u.action.u.ht_smps.action) { 2880 case WLAN_HT_ACTION_SMPS: { 2881 struct ieee80211_supported_band *sband; 2882 enum ieee80211_smps_mode smps_mode; 2883 struct sta_opmode_info sta_opmode = {}; 2884 2885 /* convert to HT capability */ 2886 switch (mgmt->u.action.u.ht_smps.smps_control) { 2887 case WLAN_HT_SMPS_CONTROL_DISABLED: 2888 smps_mode = IEEE80211_SMPS_OFF; 2889 break; 2890 case WLAN_HT_SMPS_CONTROL_STATIC: 2891 smps_mode = IEEE80211_SMPS_STATIC; 2892 break; 2893 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2894 smps_mode = IEEE80211_SMPS_DYNAMIC; 2895 break; 2896 default: 2897 goto invalid; 2898 } 2899 2900 /* if no change do nothing */ 2901 if (rx->sta->sta.smps_mode == smps_mode) 2902 goto handled; 2903 rx->sta->sta.smps_mode = smps_mode; 2904 sta_opmode.smps_mode = 2905 ieee80211_smps_mode_to_smps_mode(smps_mode); 2906 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 2907 2908 sband = rx->local->hw.wiphy->bands[status->band]; 2909 2910 rate_control_rate_update(local, sband, rx->sta, 2911 IEEE80211_RC_SMPS_CHANGED); 2912 cfg80211_sta_opmode_change_notify(sdata->dev, 2913 rx->sta->addr, 2914 &sta_opmode, 2915 GFP_KERNEL); 2916 goto handled; 2917 } 2918 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2919 struct ieee80211_supported_band *sband; 2920 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2921 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 2922 struct sta_opmode_info sta_opmode = {}; 2923 2924 /* If it doesn't support 40 MHz it can't change ... */ 2925 if (!(rx->sta->sta.ht_cap.cap & 2926 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2927 goto handled; 2928 2929 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2930 max_bw = IEEE80211_STA_RX_BW_20; 2931 else 2932 max_bw = ieee80211_sta_cap_rx_bw(rx->sta); 2933 2934 /* set cur_max_bandwidth and recalc sta bw */ 2935 rx->sta->cur_max_bandwidth = max_bw; 2936 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2937 2938 if (rx->sta->sta.bandwidth == new_bw) 2939 goto handled; 2940 2941 rx->sta->sta.bandwidth = new_bw; 2942 sband = rx->local->hw.wiphy->bands[status->band]; 2943 sta_opmode.bw = 2944 ieee80211_sta_rx_bw_to_chan_width(rx->sta); 2945 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 2946 2947 rate_control_rate_update(local, sband, rx->sta, 2948 IEEE80211_RC_BW_CHANGED); 2949 cfg80211_sta_opmode_change_notify(sdata->dev, 2950 rx->sta->addr, 2951 &sta_opmode, 2952 GFP_KERNEL); 2953 goto handled; 2954 } 2955 default: 2956 goto invalid; 2957 } 2958 2959 break; 2960 case WLAN_CATEGORY_PUBLIC: 2961 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2962 goto invalid; 2963 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2964 break; 2965 if (!rx->sta) 2966 break; 2967 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2968 break; 2969 if (mgmt->u.action.u.ext_chan_switch.action_code != 2970 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2971 break; 2972 if (len < offsetof(struct ieee80211_mgmt, 2973 u.action.u.ext_chan_switch.variable)) 2974 goto invalid; 2975 goto queue; 2976 case WLAN_CATEGORY_VHT: 2977 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2978 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2979 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2980 sdata->vif.type != NL80211_IFTYPE_AP && 2981 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2982 break; 2983 2984 /* verify action code is present */ 2985 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2986 goto invalid; 2987 2988 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2989 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2990 /* verify opmode is present */ 2991 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2992 goto invalid; 2993 goto queue; 2994 } 2995 case WLAN_VHT_ACTION_GROUPID_MGMT: { 2996 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 2997 goto invalid; 2998 goto queue; 2999 } 3000 default: 3001 break; 3002 } 3003 break; 3004 case WLAN_CATEGORY_BACK: 3005 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3006 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3007 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3008 sdata->vif.type != NL80211_IFTYPE_AP && 3009 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3010 break; 3011 3012 /* verify action_code is present */ 3013 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3014 break; 3015 3016 switch (mgmt->u.action.u.addba_req.action_code) { 3017 case WLAN_ACTION_ADDBA_REQ: 3018 if (len < (IEEE80211_MIN_ACTION_SIZE + 3019 sizeof(mgmt->u.action.u.addba_req))) 3020 goto invalid; 3021 break; 3022 case WLAN_ACTION_ADDBA_RESP: 3023 if (len < (IEEE80211_MIN_ACTION_SIZE + 3024 sizeof(mgmt->u.action.u.addba_resp))) 3025 goto invalid; 3026 break; 3027 case WLAN_ACTION_DELBA: 3028 if (len < (IEEE80211_MIN_ACTION_SIZE + 3029 sizeof(mgmt->u.action.u.delba))) 3030 goto invalid; 3031 break; 3032 default: 3033 goto invalid; 3034 } 3035 3036 goto queue; 3037 case WLAN_CATEGORY_SPECTRUM_MGMT: 3038 /* verify action_code is present */ 3039 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3040 break; 3041 3042 switch (mgmt->u.action.u.measurement.action_code) { 3043 case WLAN_ACTION_SPCT_MSR_REQ: 3044 if (status->band != NL80211_BAND_5GHZ) 3045 break; 3046 3047 if (len < (IEEE80211_MIN_ACTION_SIZE + 3048 sizeof(mgmt->u.action.u.measurement))) 3049 break; 3050 3051 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3052 break; 3053 3054 ieee80211_process_measurement_req(sdata, mgmt, len); 3055 goto handled; 3056 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3057 u8 *bssid; 3058 if (len < (IEEE80211_MIN_ACTION_SIZE + 3059 sizeof(mgmt->u.action.u.chan_switch))) 3060 break; 3061 3062 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3063 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3064 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3065 break; 3066 3067 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3068 bssid = sdata->u.mgd.bssid; 3069 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3070 bssid = sdata->u.ibss.bssid; 3071 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3072 bssid = mgmt->sa; 3073 else 3074 break; 3075 3076 if (!ether_addr_equal(mgmt->bssid, bssid)) 3077 break; 3078 3079 goto queue; 3080 } 3081 } 3082 break; 3083 case WLAN_CATEGORY_SA_QUERY: 3084 if (len < (IEEE80211_MIN_ACTION_SIZE + 3085 sizeof(mgmt->u.action.u.sa_query))) 3086 break; 3087 3088 switch (mgmt->u.action.u.sa_query.action) { 3089 case WLAN_ACTION_SA_QUERY_REQUEST: 3090 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3091 break; 3092 ieee80211_process_sa_query_req(sdata, mgmt, len); 3093 goto handled; 3094 } 3095 break; 3096 case WLAN_CATEGORY_SELF_PROTECTED: 3097 if (len < (IEEE80211_MIN_ACTION_SIZE + 3098 sizeof(mgmt->u.action.u.self_prot.action_code))) 3099 break; 3100 3101 switch (mgmt->u.action.u.self_prot.action_code) { 3102 case WLAN_SP_MESH_PEERING_OPEN: 3103 case WLAN_SP_MESH_PEERING_CLOSE: 3104 case WLAN_SP_MESH_PEERING_CONFIRM: 3105 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3106 goto invalid; 3107 if (sdata->u.mesh.user_mpm) 3108 /* userspace handles this frame */ 3109 break; 3110 goto queue; 3111 case WLAN_SP_MGK_INFORM: 3112 case WLAN_SP_MGK_ACK: 3113 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3114 goto invalid; 3115 break; 3116 } 3117 break; 3118 case WLAN_CATEGORY_MESH_ACTION: 3119 if (len < (IEEE80211_MIN_ACTION_SIZE + 3120 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3121 break; 3122 3123 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3124 break; 3125 if (mesh_action_is_path_sel(mgmt) && 3126 !mesh_path_sel_is_hwmp(sdata)) 3127 break; 3128 goto queue; 3129 } 3130 3131 return RX_CONTINUE; 3132 3133 invalid: 3134 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3135 /* will return in the next handlers */ 3136 return RX_CONTINUE; 3137 3138 handled: 3139 if (rx->sta) 3140 rx->sta->rx_stats.packets++; 3141 dev_kfree_skb(rx->skb); 3142 return RX_QUEUED; 3143 3144 queue: 3145 skb_queue_tail(&sdata->skb_queue, rx->skb); 3146 ieee80211_queue_work(&local->hw, &sdata->work); 3147 if (rx->sta) 3148 rx->sta->rx_stats.packets++; 3149 return RX_QUEUED; 3150 } 3151 3152 static ieee80211_rx_result debug_noinline 3153 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3154 { 3155 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3156 int sig = 0; 3157 3158 /* skip known-bad action frames and return them in the next handler */ 3159 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3160 return RX_CONTINUE; 3161 3162 /* 3163 * Getting here means the kernel doesn't know how to handle 3164 * it, but maybe userspace does ... include returned frames 3165 * so userspace can register for those to know whether ones 3166 * it transmitted were processed or returned. 3167 */ 3168 3169 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3170 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3171 sig = status->signal; 3172 3173 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 3174 rx->skb->data, rx->skb->len, 0)) { 3175 if (rx->sta) 3176 rx->sta->rx_stats.packets++; 3177 dev_kfree_skb(rx->skb); 3178 return RX_QUEUED; 3179 } 3180 3181 return RX_CONTINUE; 3182 } 3183 3184 static ieee80211_rx_result debug_noinline 3185 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3186 { 3187 struct ieee80211_local *local = rx->local; 3188 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3189 struct sk_buff *nskb; 3190 struct ieee80211_sub_if_data *sdata = rx->sdata; 3191 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3192 3193 if (!ieee80211_is_action(mgmt->frame_control)) 3194 return RX_CONTINUE; 3195 3196 /* 3197 * For AP mode, hostapd is responsible for handling any action 3198 * frames that we didn't handle, including returning unknown 3199 * ones. For all other modes we will return them to the sender, 3200 * setting the 0x80 bit in the action category, as required by 3201 * 802.11-2012 9.24.4. 3202 * Newer versions of hostapd shall also use the management frame 3203 * registration mechanisms, but older ones still use cooked 3204 * monitor interfaces so push all frames there. 3205 */ 3206 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3207 (sdata->vif.type == NL80211_IFTYPE_AP || 3208 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3209 return RX_DROP_MONITOR; 3210 3211 if (is_multicast_ether_addr(mgmt->da)) 3212 return RX_DROP_MONITOR; 3213 3214 /* do not return rejected action frames */ 3215 if (mgmt->u.action.category & 0x80) 3216 return RX_DROP_UNUSABLE; 3217 3218 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3219 GFP_ATOMIC); 3220 if (nskb) { 3221 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3222 3223 nmgmt->u.action.category |= 0x80; 3224 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3225 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3226 3227 memset(nskb->cb, 0, sizeof(nskb->cb)); 3228 3229 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3230 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3231 3232 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3233 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3234 IEEE80211_TX_CTL_NO_CCK_RATE; 3235 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3236 info->hw_queue = 3237 local->hw.offchannel_tx_hw_queue; 3238 } 3239 3240 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 3241 status->band); 3242 } 3243 dev_kfree_skb(rx->skb); 3244 return RX_QUEUED; 3245 } 3246 3247 static ieee80211_rx_result debug_noinline 3248 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3249 { 3250 struct ieee80211_sub_if_data *sdata = rx->sdata; 3251 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3252 __le16 stype; 3253 3254 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3255 3256 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3257 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3258 sdata->vif.type != NL80211_IFTYPE_OCB && 3259 sdata->vif.type != NL80211_IFTYPE_STATION) 3260 return RX_DROP_MONITOR; 3261 3262 switch (stype) { 3263 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3264 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3265 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3266 /* process for all: mesh, mlme, ibss */ 3267 break; 3268 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3269 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3270 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3271 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3272 if (is_multicast_ether_addr(mgmt->da) && 3273 !is_broadcast_ether_addr(mgmt->da)) 3274 return RX_DROP_MONITOR; 3275 3276 /* process only for station */ 3277 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3278 return RX_DROP_MONITOR; 3279 break; 3280 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3281 /* process only for ibss and mesh */ 3282 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3283 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3284 return RX_DROP_MONITOR; 3285 break; 3286 default: 3287 return RX_DROP_MONITOR; 3288 } 3289 3290 /* queue up frame and kick off work to process it */ 3291 skb_queue_tail(&sdata->skb_queue, rx->skb); 3292 ieee80211_queue_work(&rx->local->hw, &sdata->work); 3293 if (rx->sta) 3294 rx->sta->rx_stats.packets++; 3295 3296 return RX_QUEUED; 3297 } 3298 3299 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3300 struct ieee80211_rate *rate) 3301 { 3302 struct ieee80211_sub_if_data *sdata; 3303 struct ieee80211_local *local = rx->local; 3304 struct sk_buff *skb = rx->skb, *skb2; 3305 struct net_device *prev_dev = NULL; 3306 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3307 int needed_headroom; 3308 3309 /* 3310 * If cooked monitor has been processed already, then 3311 * don't do it again. If not, set the flag. 3312 */ 3313 if (rx->flags & IEEE80211_RX_CMNTR) 3314 goto out_free_skb; 3315 rx->flags |= IEEE80211_RX_CMNTR; 3316 3317 /* If there are no cooked monitor interfaces, just free the SKB */ 3318 if (!local->cooked_mntrs) 3319 goto out_free_skb; 3320 3321 /* vendor data is long removed here */ 3322 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3323 /* room for the radiotap header based on driver features */ 3324 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3325 3326 if (skb_headroom(skb) < needed_headroom && 3327 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3328 goto out_free_skb; 3329 3330 /* prepend radiotap information */ 3331 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3332 false); 3333 3334 skb_reset_mac_header(skb); 3335 skb->ip_summed = CHECKSUM_UNNECESSARY; 3336 skb->pkt_type = PACKET_OTHERHOST; 3337 skb->protocol = htons(ETH_P_802_2); 3338 3339 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3340 if (!ieee80211_sdata_running(sdata)) 3341 continue; 3342 3343 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3344 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3345 continue; 3346 3347 if (prev_dev) { 3348 skb2 = skb_clone(skb, GFP_ATOMIC); 3349 if (skb2) { 3350 skb2->dev = prev_dev; 3351 netif_receive_skb(skb2); 3352 } 3353 } 3354 3355 prev_dev = sdata->dev; 3356 ieee80211_rx_stats(sdata->dev, skb->len); 3357 } 3358 3359 if (prev_dev) { 3360 skb->dev = prev_dev; 3361 netif_receive_skb(skb); 3362 return; 3363 } 3364 3365 out_free_skb: 3366 dev_kfree_skb(skb); 3367 } 3368 3369 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3370 ieee80211_rx_result res) 3371 { 3372 switch (res) { 3373 case RX_DROP_MONITOR: 3374 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3375 if (rx->sta) 3376 rx->sta->rx_stats.dropped++; 3377 /* fall through */ 3378 case RX_CONTINUE: { 3379 struct ieee80211_rate *rate = NULL; 3380 struct ieee80211_supported_band *sband; 3381 struct ieee80211_rx_status *status; 3382 3383 status = IEEE80211_SKB_RXCB((rx->skb)); 3384 3385 sband = rx->local->hw.wiphy->bands[status->band]; 3386 if (!(status->encoding == RX_ENC_HT) && 3387 !(status->encoding == RX_ENC_VHT)) 3388 rate = &sband->bitrates[status->rate_idx]; 3389 3390 ieee80211_rx_cooked_monitor(rx, rate); 3391 break; 3392 } 3393 case RX_DROP_UNUSABLE: 3394 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3395 if (rx->sta) 3396 rx->sta->rx_stats.dropped++; 3397 dev_kfree_skb(rx->skb); 3398 break; 3399 case RX_QUEUED: 3400 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3401 break; 3402 } 3403 } 3404 3405 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3406 struct sk_buff_head *frames) 3407 { 3408 ieee80211_rx_result res = RX_DROP_MONITOR; 3409 struct sk_buff *skb; 3410 3411 #define CALL_RXH(rxh) \ 3412 do { \ 3413 res = rxh(rx); \ 3414 if (res != RX_CONTINUE) \ 3415 goto rxh_next; \ 3416 } while (0) 3417 3418 /* Lock here to avoid hitting all of the data used in the RX 3419 * path (e.g. key data, station data, ...) concurrently when 3420 * a frame is released from the reorder buffer due to timeout 3421 * from the timer, potentially concurrently with RX from the 3422 * driver. 3423 */ 3424 spin_lock_bh(&rx->local->rx_path_lock); 3425 3426 while ((skb = __skb_dequeue(frames))) { 3427 /* 3428 * all the other fields are valid across frames 3429 * that belong to an aMPDU since they are on the 3430 * same TID from the same station 3431 */ 3432 rx->skb = skb; 3433 3434 CALL_RXH(ieee80211_rx_h_check_more_data); 3435 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 3436 CALL_RXH(ieee80211_rx_h_sta_process); 3437 CALL_RXH(ieee80211_rx_h_decrypt); 3438 CALL_RXH(ieee80211_rx_h_defragment); 3439 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 3440 /* must be after MMIC verify so header is counted in MPDU mic */ 3441 #ifdef CONFIG_MAC80211_MESH 3442 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3443 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3444 #endif 3445 CALL_RXH(ieee80211_rx_h_amsdu); 3446 CALL_RXH(ieee80211_rx_h_data); 3447 3448 /* special treatment -- needs the queue */ 3449 res = ieee80211_rx_h_ctrl(rx, frames); 3450 if (res != RX_CONTINUE) 3451 goto rxh_next; 3452 3453 CALL_RXH(ieee80211_rx_h_mgmt_check); 3454 CALL_RXH(ieee80211_rx_h_action); 3455 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 3456 CALL_RXH(ieee80211_rx_h_action_return); 3457 CALL_RXH(ieee80211_rx_h_mgmt); 3458 3459 rxh_next: 3460 ieee80211_rx_handlers_result(rx, res); 3461 3462 #undef CALL_RXH 3463 } 3464 3465 spin_unlock_bh(&rx->local->rx_path_lock); 3466 } 3467 3468 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3469 { 3470 struct sk_buff_head reorder_release; 3471 ieee80211_rx_result res = RX_DROP_MONITOR; 3472 3473 __skb_queue_head_init(&reorder_release); 3474 3475 #define CALL_RXH(rxh) \ 3476 do { \ 3477 res = rxh(rx); \ 3478 if (res != RX_CONTINUE) \ 3479 goto rxh_next; \ 3480 } while (0) 3481 3482 CALL_RXH(ieee80211_rx_h_check_dup); 3483 CALL_RXH(ieee80211_rx_h_check); 3484 3485 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3486 3487 ieee80211_rx_handlers(rx, &reorder_release); 3488 return; 3489 3490 rxh_next: 3491 ieee80211_rx_handlers_result(rx, res); 3492 3493 #undef CALL_RXH 3494 } 3495 3496 /* 3497 * This function makes calls into the RX path, therefore 3498 * it has to be invoked under RCU read lock. 3499 */ 3500 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3501 { 3502 struct sk_buff_head frames; 3503 struct ieee80211_rx_data rx = { 3504 .sta = sta, 3505 .sdata = sta->sdata, 3506 .local = sta->local, 3507 /* This is OK -- must be QoS data frame */ 3508 .security_idx = tid, 3509 .seqno_idx = tid, 3510 .napi = NULL, /* must be NULL to not have races */ 3511 }; 3512 struct tid_ampdu_rx *tid_agg_rx; 3513 3514 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3515 if (!tid_agg_rx) 3516 return; 3517 3518 __skb_queue_head_init(&frames); 3519 3520 spin_lock(&tid_agg_rx->reorder_lock); 3521 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3522 spin_unlock(&tid_agg_rx->reorder_lock); 3523 3524 if (!skb_queue_empty(&frames)) { 3525 struct ieee80211_event event = { 3526 .type = BA_FRAME_TIMEOUT, 3527 .u.ba.tid = tid, 3528 .u.ba.sta = &sta->sta, 3529 }; 3530 drv_event_callback(rx.local, rx.sdata, &event); 3531 } 3532 3533 ieee80211_rx_handlers(&rx, &frames); 3534 } 3535 3536 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 3537 u16 ssn, u64 filtered, 3538 u16 received_mpdus) 3539 { 3540 struct sta_info *sta; 3541 struct tid_ampdu_rx *tid_agg_rx; 3542 struct sk_buff_head frames; 3543 struct ieee80211_rx_data rx = { 3544 /* This is OK -- must be QoS data frame */ 3545 .security_idx = tid, 3546 .seqno_idx = tid, 3547 }; 3548 int i, diff; 3549 3550 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 3551 return; 3552 3553 __skb_queue_head_init(&frames); 3554 3555 sta = container_of(pubsta, struct sta_info, sta); 3556 3557 rx.sta = sta; 3558 rx.sdata = sta->sdata; 3559 rx.local = sta->local; 3560 3561 rcu_read_lock(); 3562 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3563 if (!tid_agg_rx) 3564 goto out; 3565 3566 spin_lock_bh(&tid_agg_rx->reorder_lock); 3567 3568 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 3569 int release; 3570 3571 /* release all frames in the reorder buffer */ 3572 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 3573 IEEE80211_SN_MODULO; 3574 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 3575 release, &frames); 3576 /* update ssn to match received ssn */ 3577 tid_agg_rx->head_seq_num = ssn; 3578 } else { 3579 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 3580 &frames); 3581 } 3582 3583 /* handle the case that received ssn is behind the mac ssn. 3584 * it can be tid_agg_rx->buf_size behind and still be valid */ 3585 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 3586 if (diff >= tid_agg_rx->buf_size) { 3587 tid_agg_rx->reorder_buf_filtered = 0; 3588 goto release; 3589 } 3590 filtered = filtered >> diff; 3591 ssn += diff; 3592 3593 /* update bitmap */ 3594 for (i = 0; i < tid_agg_rx->buf_size; i++) { 3595 int index = (ssn + i) % tid_agg_rx->buf_size; 3596 3597 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 3598 if (filtered & BIT_ULL(i)) 3599 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 3600 } 3601 3602 /* now process also frames that the filter marking released */ 3603 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3604 3605 release: 3606 spin_unlock_bh(&tid_agg_rx->reorder_lock); 3607 3608 ieee80211_rx_handlers(&rx, &frames); 3609 3610 out: 3611 rcu_read_unlock(); 3612 } 3613 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 3614 3615 /* main receive path */ 3616 3617 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 3618 { 3619 struct ieee80211_sub_if_data *sdata = rx->sdata; 3620 struct sk_buff *skb = rx->skb; 3621 struct ieee80211_hdr *hdr = (void *)skb->data; 3622 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3623 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3624 bool multicast = is_multicast_ether_addr(hdr->addr1); 3625 3626 switch (sdata->vif.type) { 3627 case NL80211_IFTYPE_STATION: 3628 if (!bssid && !sdata->u.mgd.use_4addr) 3629 return false; 3630 if (multicast) 3631 return true; 3632 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3633 case NL80211_IFTYPE_ADHOC: 3634 if (!bssid) 3635 return false; 3636 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3637 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3638 return false; 3639 if (ieee80211_is_beacon(hdr->frame_control)) 3640 return true; 3641 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 3642 return false; 3643 if (!multicast && 3644 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3645 return false; 3646 if (!rx->sta) { 3647 int rate_idx; 3648 if (status->encoding != RX_ENC_LEGACY) 3649 rate_idx = 0; /* TODO: HT/VHT rates */ 3650 else 3651 rate_idx = status->rate_idx; 3652 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3653 BIT(rate_idx)); 3654 } 3655 return true; 3656 case NL80211_IFTYPE_OCB: 3657 if (!bssid) 3658 return false; 3659 if (!ieee80211_is_data_present(hdr->frame_control)) 3660 return false; 3661 if (!is_broadcast_ether_addr(bssid)) 3662 return false; 3663 if (!multicast && 3664 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 3665 return false; 3666 if (!rx->sta) { 3667 int rate_idx; 3668 if (status->encoding != RX_ENC_LEGACY) 3669 rate_idx = 0; /* TODO: HT rates */ 3670 else 3671 rate_idx = status->rate_idx; 3672 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3673 BIT(rate_idx)); 3674 } 3675 return true; 3676 case NL80211_IFTYPE_MESH_POINT: 3677 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 3678 return false; 3679 if (multicast) 3680 return true; 3681 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3682 case NL80211_IFTYPE_AP_VLAN: 3683 case NL80211_IFTYPE_AP: 3684 if (!bssid) 3685 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 3686 3687 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3688 /* 3689 * Accept public action frames even when the 3690 * BSSID doesn't match, this is used for P2P 3691 * and location updates. Note that mac80211 3692 * itself never looks at these frames. 3693 */ 3694 if (!multicast && 3695 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3696 return false; 3697 if (ieee80211_is_public_action(hdr, skb->len)) 3698 return true; 3699 return ieee80211_is_beacon(hdr->frame_control); 3700 } 3701 3702 if (!ieee80211_has_tods(hdr->frame_control)) { 3703 /* ignore data frames to TDLS-peers */ 3704 if (ieee80211_is_data(hdr->frame_control)) 3705 return false; 3706 /* ignore action frames to TDLS-peers */ 3707 if (ieee80211_is_action(hdr->frame_control) && 3708 !is_broadcast_ether_addr(bssid) && 3709 !ether_addr_equal(bssid, hdr->addr1)) 3710 return false; 3711 } 3712 3713 /* 3714 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 3715 * the BSSID - we've checked that already but may have accepted 3716 * the wildcard (ff:ff:ff:ff:ff:ff). 3717 * 3718 * It also says: 3719 * The BSSID of the Data frame is determined as follows: 3720 * a) If the STA is contained within an AP or is associated 3721 * with an AP, the BSSID is the address currently in use 3722 * by the STA contained in the AP. 3723 * 3724 * So we should not accept data frames with an address that's 3725 * multicast. 3726 * 3727 * Accepting it also opens a security problem because stations 3728 * could encrypt it with the GTK and inject traffic that way. 3729 */ 3730 if (ieee80211_is_data(hdr->frame_control) && multicast) 3731 return false; 3732 3733 return true; 3734 case NL80211_IFTYPE_WDS: 3735 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3736 return false; 3737 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2); 3738 case NL80211_IFTYPE_P2P_DEVICE: 3739 return ieee80211_is_public_action(hdr, skb->len) || 3740 ieee80211_is_probe_req(hdr->frame_control) || 3741 ieee80211_is_probe_resp(hdr->frame_control) || 3742 ieee80211_is_beacon(hdr->frame_control); 3743 case NL80211_IFTYPE_NAN: 3744 /* Currently no frames on NAN interface are allowed */ 3745 return false; 3746 default: 3747 break; 3748 } 3749 3750 WARN_ON_ONCE(1); 3751 return false; 3752 } 3753 3754 void ieee80211_check_fast_rx(struct sta_info *sta) 3755 { 3756 struct ieee80211_sub_if_data *sdata = sta->sdata; 3757 struct ieee80211_local *local = sdata->local; 3758 struct ieee80211_key *key; 3759 struct ieee80211_fast_rx fastrx = { 3760 .dev = sdata->dev, 3761 .vif_type = sdata->vif.type, 3762 .control_port_protocol = sdata->control_port_protocol, 3763 }, *old, *new = NULL; 3764 bool assign = false; 3765 3766 /* use sparse to check that we don't return without updating */ 3767 __acquire(check_fast_rx); 3768 3769 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 3770 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 3771 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 3772 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 3773 3774 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 3775 3776 /* fast-rx doesn't do reordering */ 3777 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 3778 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 3779 goto clear; 3780 3781 switch (sdata->vif.type) { 3782 case NL80211_IFTYPE_STATION: 3783 if (sta->sta.tdls) { 3784 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3785 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3786 fastrx.expected_ds_bits = 0; 3787 } else { 3788 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0; 3789 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 3790 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 3791 fastrx.expected_ds_bits = 3792 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3793 } 3794 3795 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 3796 fastrx.expected_ds_bits |= 3797 cpu_to_le16(IEEE80211_FCTL_TODS); 3798 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3799 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3800 } 3801 3802 if (!sdata->u.mgd.powersave) 3803 break; 3804 3805 /* software powersave is a huge mess, avoid all of it */ 3806 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 3807 goto clear; 3808 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 3809 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 3810 goto clear; 3811 break; 3812 case NL80211_IFTYPE_AP_VLAN: 3813 case NL80211_IFTYPE_AP: 3814 /* parallel-rx requires this, at least with calls to 3815 * ieee80211_sta_ps_transition() 3816 */ 3817 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 3818 goto clear; 3819 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 3820 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 3821 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 3822 3823 fastrx.internal_forward = 3824 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 3825 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 3826 !sdata->u.vlan.sta); 3827 3828 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3829 sdata->u.vlan.sta) { 3830 fastrx.expected_ds_bits |= 3831 cpu_to_le16(IEEE80211_FCTL_FROMDS); 3832 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 3833 fastrx.internal_forward = 0; 3834 } 3835 3836 break; 3837 default: 3838 goto clear; 3839 } 3840 3841 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 3842 goto clear; 3843 3844 rcu_read_lock(); 3845 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 3846 if (key) { 3847 switch (key->conf.cipher) { 3848 case WLAN_CIPHER_SUITE_TKIP: 3849 /* we don't want to deal with MMIC in fast-rx */ 3850 goto clear_rcu; 3851 case WLAN_CIPHER_SUITE_CCMP: 3852 case WLAN_CIPHER_SUITE_CCMP_256: 3853 case WLAN_CIPHER_SUITE_GCMP: 3854 case WLAN_CIPHER_SUITE_GCMP_256: 3855 break; 3856 default: 3857 /* we also don't want to deal with WEP or cipher scheme 3858 * since those require looking up the key idx in the 3859 * frame, rather than assuming the PTK is used 3860 * (we need to revisit this once we implement the real 3861 * PTK index, which is now valid in the spec, but we 3862 * haven't implemented that part yet) 3863 */ 3864 goto clear_rcu; 3865 } 3866 3867 fastrx.key = true; 3868 fastrx.icv_len = key->conf.icv_len; 3869 } 3870 3871 assign = true; 3872 clear_rcu: 3873 rcu_read_unlock(); 3874 clear: 3875 __release(check_fast_rx); 3876 3877 if (assign) 3878 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 3879 3880 spin_lock_bh(&sta->lock); 3881 old = rcu_dereference_protected(sta->fast_rx, true); 3882 rcu_assign_pointer(sta->fast_rx, new); 3883 spin_unlock_bh(&sta->lock); 3884 3885 if (old) 3886 kfree_rcu(old, rcu_head); 3887 } 3888 3889 void ieee80211_clear_fast_rx(struct sta_info *sta) 3890 { 3891 struct ieee80211_fast_rx *old; 3892 3893 spin_lock_bh(&sta->lock); 3894 old = rcu_dereference_protected(sta->fast_rx, true); 3895 RCU_INIT_POINTER(sta->fast_rx, NULL); 3896 spin_unlock_bh(&sta->lock); 3897 3898 if (old) 3899 kfree_rcu(old, rcu_head); 3900 } 3901 3902 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3903 { 3904 struct ieee80211_local *local = sdata->local; 3905 struct sta_info *sta; 3906 3907 lockdep_assert_held(&local->sta_mtx); 3908 3909 list_for_each_entry_rcu(sta, &local->sta_list, list) { 3910 if (sdata != sta->sdata && 3911 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 3912 continue; 3913 ieee80211_check_fast_rx(sta); 3914 } 3915 } 3916 3917 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 3918 { 3919 struct ieee80211_local *local = sdata->local; 3920 3921 mutex_lock(&local->sta_mtx); 3922 __ieee80211_check_fast_rx_iface(sdata); 3923 mutex_unlock(&local->sta_mtx); 3924 } 3925 3926 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 3927 struct ieee80211_fast_rx *fast_rx) 3928 { 3929 struct sk_buff *skb = rx->skb; 3930 struct ieee80211_hdr *hdr = (void *)skb->data; 3931 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3932 struct sta_info *sta = rx->sta; 3933 int orig_len = skb->len; 3934 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 3935 int snap_offs = hdrlen; 3936 struct { 3937 u8 snap[sizeof(rfc1042_header)]; 3938 __be16 proto; 3939 } *payload __aligned(2); 3940 struct { 3941 u8 da[ETH_ALEN]; 3942 u8 sa[ETH_ALEN]; 3943 } addrs __aligned(2); 3944 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats; 3945 3946 if (fast_rx->uses_rss) 3947 stats = this_cpu_ptr(sta->pcpu_rx_stats); 3948 3949 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 3950 * to a common data structure; drivers can implement that per queue 3951 * but we don't have that information in mac80211 3952 */ 3953 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 3954 return false; 3955 3956 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 3957 3958 /* If using encryption, we also need to have: 3959 * - PN_VALIDATED: similar, but the implementation is tricky 3960 * - DECRYPTED: necessary for PN_VALIDATED 3961 */ 3962 if (fast_rx->key && 3963 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 3964 return false; 3965 3966 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3967 return false; 3968 3969 if (unlikely(ieee80211_is_frag(hdr))) 3970 return false; 3971 3972 /* Since our interface address cannot be multicast, this 3973 * implicitly also rejects multicast frames without the 3974 * explicit check. 3975 * 3976 * We shouldn't get any *data* frames not addressed to us 3977 * (AP mode will accept multicast *management* frames), but 3978 * punting here will make it go through the full checks in 3979 * ieee80211_accept_frame(). 3980 */ 3981 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 3982 return false; 3983 3984 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 3985 IEEE80211_FCTL_TODS)) != 3986 fast_rx->expected_ds_bits) 3987 return false; 3988 3989 /* assign the key to drop unencrypted frames (later) 3990 * and strip the IV/MIC if necessary 3991 */ 3992 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 3993 /* GCMP header length is the same */ 3994 snap_offs += IEEE80211_CCMP_HDR_LEN; 3995 } 3996 3997 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 3998 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 3999 goto drop; 4000 4001 payload = (void *)(skb->data + snap_offs); 4002 4003 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4004 return false; 4005 4006 /* Don't handle these here since they require special code. 4007 * Accept AARP and IPX even though they should come with a 4008 * bridge-tunnel header - but if we get them this way then 4009 * there's little point in discarding them. 4010 */ 4011 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4012 payload->proto == fast_rx->control_port_protocol)) 4013 return false; 4014 } 4015 4016 /* after this point, don't punt to the slowpath! */ 4017 4018 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4019 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4020 goto drop; 4021 4022 if (unlikely(fast_rx->sta_notify)) { 4023 ieee80211_sta_rx_notify(rx->sdata, hdr); 4024 fast_rx->sta_notify = false; 4025 } 4026 4027 /* statistics part of ieee80211_rx_h_sta_process() */ 4028 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4029 stats->last_signal = status->signal; 4030 if (!fast_rx->uses_rss) 4031 ewma_signal_add(&sta->rx_stats_avg.signal, 4032 -status->signal); 4033 } 4034 4035 if (status->chains) { 4036 int i; 4037 4038 stats->chains = status->chains; 4039 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4040 int signal = status->chain_signal[i]; 4041 4042 if (!(status->chains & BIT(i))) 4043 continue; 4044 4045 stats->chain_signal_last[i] = signal; 4046 if (!fast_rx->uses_rss) 4047 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i], 4048 -signal); 4049 } 4050 } 4051 /* end of statistics */ 4052 4053 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4054 goto drop; 4055 4056 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4057 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4058 RX_QUEUED) 4059 goto drop; 4060 4061 return true; 4062 } 4063 4064 stats->last_rx = jiffies; 4065 stats->last_rate = sta_stats_encode_rate(status); 4066 4067 stats->fragments++; 4068 stats->packets++; 4069 4070 /* do the header conversion - first grab the addresses */ 4071 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4072 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4073 /* remove the SNAP but leave the ethertype */ 4074 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4075 /* push the addresses in front */ 4076 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4077 4078 skb->dev = fast_rx->dev; 4079 4080 ieee80211_rx_stats(fast_rx->dev, skb->len); 4081 4082 /* The seqno index has the same property as needed 4083 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4084 * for non-QoS-data frames. Here we know it's a data 4085 * frame, so count MSDUs. 4086 */ 4087 u64_stats_update_begin(&stats->syncp); 4088 stats->msdu[rx->seqno_idx]++; 4089 stats->bytes += orig_len; 4090 u64_stats_update_end(&stats->syncp); 4091 4092 if (fast_rx->internal_forward) { 4093 struct sk_buff *xmit_skb = NULL; 4094 bool multicast = is_multicast_ether_addr(skb->data); 4095 4096 if (multicast) { 4097 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4098 } else if (sta_info_get(rx->sdata, skb->data)) { 4099 xmit_skb = skb; 4100 skb = NULL; 4101 } 4102 4103 if (xmit_skb) { 4104 /* 4105 * Send to wireless media and increase priority by 256 4106 * to keep the received priority instead of 4107 * reclassifying the frame (see cfg80211_classify8021d). 4108 */ 4109 xmit_skb->priority += 256; 4110 xmit_skb->protocol = htons(ETH_P_802_3); 4111 skb_reset_network_header(xmit_skb); 4112 skb_reset_mac_header(xmit_skb); 4113 dev_queue_xmit(xmit_skb); 4114 } 4115 4116 if (!skb) 4117 return true; 4118 } 4119 4120 /* deliver to local stack */ 4121 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4122 memset(skb->cb, 0, sizeof(skb->cb)); 4123 if (rx->napi) 4124 napi_gro_receive(rx->napi, skb); 4125 else 4126 netif_receive_skb(skb); 4127 4128 return true; 4129 drop: 4130 dev_kfree_skb(skb); 4131 stats->dropped++; 4132 return true; 4133 } 4134 4135 /* 4136 * This function returns whether or not the SKB 4137 * was destined for RX processing or not, which, 4138 * if consume is true, is equivalent to whether 4139 * or not the skb was consumed. 4140 */ 4141 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4142 struct sk_buff *skb, bool consume) 4143 { 4144 struct ieee80211_local *local = rx->local; 4145 struct ieee80211_sub_if_data *sdata = rx->sdata; 4146 4147 rx->skb = skb; 4148 4149 /* See if we can do fast-rx; if we have to copy we already lost, 4150 * so punt in that case. We should never have to deliver a data 4151 * frame to multiple interfaces anyway. 4152 * 4153 * We skip the ieee80211_accept_frame() call and do the necessary 4154 * checking inside ieee80211_invoke_fast_rx(). 4155 */ 4156 if (consume && rx->sta) { 4157 struct ieee80211_fast_rx *fast_rx; 4158 4159 fast_rx = rcu_dereference(rx->sta->fast_rx); 4160 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4161 return true; 4162 } 4163 4164 if (!ieee80211_accept_frame(rx)) 4165 return false; 4166 4167 if (!consume) { 4168 skb = skb_copy(skb, GFP_ATOMIC); 4169 if (!skb) { 4170 if (net_ratelimit()) 4171 wiphy_debug(local->hw.wiphy, 4172 "failed to copy skb for %s\n", 4173 sdata->name); 4174 return true; 4175 } 4176 4177 rx->skb = skb; 4178 } 4179 4180 ieee80211_invoke_rx_handlers(rx); 4181 return true; 4182 } 4183 4184 /* 4185 * This is the actual Rx frames handler. as it belongs to Rx path it must 4186 * be called with rcu_read_lock protection. 4187 */ 4188 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4189 struct ieee80211_sta *pubsta, 4190 struct sk_buff *skb, 4191 struct napi_struct *napi) 4192 { 4193 struct ieee80211_local *local = hw_to_local(hw); 4194 struct ieee80211_sub_if_data *sdata; 4195 struct ieee80211_hdr *hdr; 4196 __le16 fc; 4197 struct ieee80211_rx_data rx; 4198 struct ieee80211_sub_if_data *prev; 4199 struct rhlist_head *tmp; 4200 int err = 0; 4201 4202 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 4203 memset(&rx, 0, sizeof(rx)); 4204 rx.skb = skb; 4205 rx.local = local; 4206 rx.napi = napi; 4207 4208 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 4209 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4210 4211 if (ieee80211_is_mgmt(fc)) { 4212 /* drop frame if too short for header */ 4213 if (skb->len < ieee80211_hdrlen(fc)) 4214 err = -ENOBUFS; 4215 else 4216 err = skb_linearize(skb); 4217 } else { 4218 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 4219 } 4220 4221 if (err) { 4222 dev_kfree_skb(skb); 4223 return; 4224 } 4225 4226 hdr = (struct ieee80211_hdr *)skb->data; 4227 ieee80211_parse_qos(&rx); 4228 ieee80211_verify_alignment(&rx); 4229 4230 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 4231 ieee80211_is_beacon(hdr->frame_control))) 4232 ieee80211_scan_rx(local, skb); 4233 4234 if (ieee80211_is_data(fc)) { 4235 struct sta_info *sta, *prev_sta; 4236 4237 if (pubsta) { 4238 rx.sta = container_of(pubsta, struct sta_info, sta); 4239 rx.sdata = rx.sta->sdata; 4240 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4241 return; 4242 goto out; 4243 } 4244 4245 prev_sta = NULL; 4246 4247 for_each_sta_info(local, hdr->addr2, sta, tmp) { 4248 if (!prev_sta) { 4249 prev_sta = sta; 4250 continue; 4251 } 4252 4253 rx.sta = prev_sta; 4254 rx.sdata = prev_sta->sdata; 4255 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4256 4257 prev_sta = sta; 4258 } 4259 4260 if (prev_sta) { 4261 rx.sta = prev_sta; 4262 rx.sdata = prev_sta->sdata; 4263 4264 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4265 return; 4266 goto out; 4267 } 4268 } 4269 4270 prev = NULL; 4271 4272 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4273 if (!ieee80211_sdata_running(sdata)) 4274 continue; 4275 4276 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 4277 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 4278 continue; 4279 4280 /* 4281 * frame is destined for this interface, but if it's 4282 * not also for the previous one we handle that after 4283 * the loop to avoid copying the SKB once too much 4284 */ 4285 4286 if (!prev) { 4287 prev = sdata; 4288 continue; 4289 } 4290 4291 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4292 rx.sdata = prev; 4293 ieee80211_prepare_and_rx_handle(&rx, skb, false); 4294 4295 prev = sdata; 4296 } 4297 4298 if (prev) { 4299 rx.sta = sta_info_get_bss(prev, hdr->addr2); 4300 rx.sdata = prev; 4301 4302 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 4303 return; 4304 } 4305 4306 out: 4307 dev_kfree_skb(skb); 4308 } 4309 4310 /* 4311 * This is the receive path handler. It is called by a low level driver when an 4312 * 802.11 MPDU is received from the hardware. 4313 */ 4314 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 4315 struct sk_buff *skb, struct napi_struct *napi) 4316 { 4317 struct ieee80211_local *local = hw_to_local(hw); 4318 struct ieee80211_rate *rate = NULL; 4319 struct ieee80211_supported_band *sband; 4320 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4321 4322 WARN_ON_ONCE(softirq_count() == 0); 4323 4324 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 4325 goto drop; 4326 4327 sband = local->hw.wiphy->bands[status->band]; 4328 if (WARN_ON(!sband)) 4329 goto drop; 4330 4331 /* 4332 * If we're suspending, it is possible although not too likely 4333 * that we'd be receiving frames after having already partially 4334 * quiesced the stack. We can't process such frames then since 4335 * that might, for example, cause stations to be added or other 4336 * driver callbacks be invoked. 4337 */ 4338 if (unlikely(local->quiescing || local->suspended)) 4339 goto drop; 4340 4341 /* We might be during a HW reconfig, prevent Rx for the same reason */ 4342 if (unlikely(local->in_reconfig)) 4343 goto drop; 4344 4345 /* 4346 * The same happens when we're not even started, 4347 * but that's worth a warning. 4348 */ 4349 if (WARN_ON(!local->started)) 4350 goto drop; 4351 4352 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 4353 /* 4354 * Validate the rate, unless a PLCP error means that 4355 * we probably can't have a valid rate here anyway. 4356 */ 4357 4358 switch (status->encoding) { 4359 case RX_ENC_HT: 4360 /* 4361 * rate_idx is MCS index, which can be [0-76] 4362 * as documented on: 4363 * 4364 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 4365 * 4366 * Anything else would be some sort of driver or 4367 * hardware error. The driver should catch hardware 4368 * errors. 4369 */ 4370 if (WARN(status->rate_idx > 76, 4371 "Rate marked as an HT rate but passed " 4372 "status->rate_idx is not " 4373 "an MCS index [0-76]: %d (0x%02x)\n", 4374 status->rate_idx, 4375 status->rate_idx)) 4376 goto drop; 4377 break; 4378 case RX_ENC_VHT: 4379 if (WARN_ONCE(status->rate_idx > 9 || 4380 !status->nss || 4381 status->nss > 8, 4382 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 4383 status->rate_idx, status->nss)) 4384 goto drop; 4385 break; 4386 default: 4387 WARN_ON_ONCE(1); 4388 /* fall through */ 4389 case RX_ENC_LEGACY: 4390 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 4391 goto drop; 4392 rate = &sband->bitrates[status->rate_idx]; 4393 } 4394 } 4395 4396 status->rx_flags = 0; 4397 4398 /* 4399 * key references and virtual interfaces are protected using RCU 4400 * and this requires that we are in a read-side RCU section during 4401 * receive processing 4402 */ 4403 rcu_read_lock(); 4404 4405 /* 4406 * Frames with failed FCS/PLCP checksum are not returned, 4407 * all other frames are returned without radiotap header 4408 * if it was previously present. 4409 * Also, frames with less than 16 bytes are dropped. 4410 */ 4411 skb = ieee80211_rx_monitor(local, skb, rate); 4412 if (!skb) { 4413 rcu_read_unlock(); 4414 return; 4415 } 4416 4417 ieee80211_tpt_led_trig_rx(local, 4418 ((struct ieee80211_hdr *)skb->data)->frame_control, 4419 skb->len); 4420 4421 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi); 4422 4423 rcu_read_unlock(); 4424 4425 return; 4426 drop: 4427 kfree_skb(skb); 4428 } 4429 EXPORT_SYMBOL(ieee80211_rx_napi); 4430 4431 /* This is a version of the rx handler that can be called from hard irq 4432 * context. Post the skb on the queue and schedule the tasklet */ 4433 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 4434 { 4435 struct ieee80211_local *local = hw_to_local(hw); 4436 4437 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 4438 4439 skb->pkt_type = IEEE80211_RX_MSG; 4440 skb_queue_tail(&local->skb_queue, skb); 4441 tasklet_schedule(&local->tasklet); 4442 } 4443 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 4444