1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2022 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <net/mac80211.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <asm/unaligned.h> 25 26 #include "ieee80211_i.h" 27 #include "driver-ops.h" 28 #include "led.h" 29 #include "mesh.h" 30 #include "wep.h" 31 #include "wpa.h" 32 #include "tkip.h" 33 #include "wme.h" 34 #include "rate.h" 35 36 /* 37 * monitor mode reception 38 * 39 * This function cleans up the SKB, i.e. it removes all the stuff 40 * only useful for monitoring. 41 */ 42 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 43 unsigned int present_fcs_len, 44 unsigned int rtap_space) 45 { 46 struct ieee80211_hdr *hdr; 47 unsigned int hdrlen; 48 __le16 fc; 49 50 if (present_fcs_len) 51 __pskb_trim(skb, skb->len - present_fcs_len); 52 pskb_pull(skb, rtap_space); 53 54 hdr = (void *)skb->data; 55 fc = hdr->frame_control; 56 57 /* 58 * Remove the HT-Control field (if present) on management 59 * frames after we've sent the frame to monitoring. We 60 * (currently) don't need it, and don't properly parse 61 * frames with it present, due to the assumption of a 62 * fixed management header length. 63 */ 64 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 65 return skb; 66 67 hdrlen = ieee80211_hdrlen(fc); 68 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 69 70 if (!pskb_may_pull(skb, hdrlen)) { 71 dev_kfree_skb(skb); 72 return NULL; 73 } 74 75 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 76 hdrlen - IEEE80211_HT_CTL_LEN); 77 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 78 79 return skb; 80 } 81 82 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 83 unsigned int rtap_space) 84 { 85 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 86 struct ieee80211_hdr *hdr; 87 88 hdr = (void *)(skb->data + rtap_space); 89 90 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 91 RX_FLAG_FAILED_PLCP_CRC | 92 RX_FLAG_ONLY_MONITOR | 93 RX_FLAG_NO_PSDU)) 94 return true; 95 96 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 97 return true; 98 99 if (ieee80211_is_ctl(hdr->frame_control) && 100 !ieee80211_is_pspoll(hdr->frame_control) && 101 !ieee80211_is_back_req(hdr->frame_control)) 102 return true; 103 104 return false; 105 } 106 107 static int 108 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 109 struct ieee80211_rx_status *status, 110 struct sk_buff *skb) 111 { 112 int len; 113 114 /* always present fields */ 115 len = sizeof(struct ieee80211_radiotap_header) + 8; 116 117 /* allocate extra bitmaps */ 118 if (status->chains) 119 len += 4 * hweight8(status->chains); 120 /* vendor presence bitmap */ 121 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) 122 len += 4; 123 124 if (ieee80211_have_rx_timestamp(status)) { 125 len = ALIGN(len, 8); 126 len += 8; 127 } 128 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 129 len += 1; 130 131 /* antenna field, if we don't have per-chain info */ 132 if (!status->chains) 133 len += 1; 134 135 /* padding for RX_FLAGS if necessary */ 136 len = ALIGN(len, 2); 137 138 if (status->encoding == RX_ENC_HT) /* HT info */ 139 len += 3; 140 141 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 142 len = ALIGN(len, 4); 143 len += 8; 144 } 145 146 if (status->encoding == RX_ENC_VHT) { 147 len = ALIGN(len, 2); 148 len += 12; 149 } 150 151 if (local->hw.radiotap_timestamp.units_pos >= 0) { 152 len = ALIGN(len, 8); 153 len += 12; 154 } 155 156 if (status->encoding == RX_ENC_HE && 157 status->flag & RX_FLAG_RADIOTAP_HE) { 158 len = ALIGN(len, 2); 159 len += 12; 160 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 168 } 169 170 if (status->flag & RX_FLAG_NO_PSDU) 171 len += 1; 172 173 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 174 len = ALIGN(len, 2); 175 len += 4; 176 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 177 } 178 179 if (status->chains) { 180 /* antenna and antenna signal fields */ 181 len += 2 * hweight8(status->chains); 182 } 183 184 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 185 struct ieee80211_vendor_radiotap *rtap; 186 int vendor_data_offset = 0; 187 188 /* 189 * The position to look at depends on the existence (or non- 190 * existence) of other elements, so take that into account... 191 */ 192 if (status->flag & RX_FLAG_RADIOTAP_HE) 193 vendor_data_offset += 194 sizeof(struct ieee80211_radiotap_he); 195 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 196 vendor_data_offset += 197 sizeof(struct ieee80211_radiotap_he_mu); 198 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 199 vendor_data_offset += 200 sizeof(struct ieee80211_radiotap_lsig); 201 202 rtap = (void *)&skb->data[vendor_data_offset]; 203 204 /* alignment for fixed 6-byte vendor data header */ 205 len = ALIGN(len, 2); 206 /* vendor data header */ 207 len += 6; 208 if (WARN_ON(rtap->align == 0)) 209 rtap->align = 1; 210 len = ALIGN(len, rtap->align); 211 len += rtap->len + rtap->pad; 212 } 213 214 return len; 215 } 216 217 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 218 int link_id, 219 struct sta_info *sta, 220 struct sk_buff *skb) 221 { 222 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 223 224 if (link_id >= 0) { 225 status->link_valid = 1; 226 status->link_id = link_id; 227 } else { 228 status->link_valid = 0; 229 } 230 231 skb_queue_tail(&sdata->skb_queue, skb); 232 ieee80211_queue_work(&sdata->local->hw, &sdata->work); 233 if (sta) 234 sta->deflink.rx_stats.packets++; 235 } 236 237 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 238 int link_id, 239 struct sta_info *sta, 240 struct sk_buff *skb) 241 { 242 skb->protocol = 0; 243 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 244 } 245 246 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 247 struct sk_buff *skb, 248 int rtap_space) 249 { 250 struct { 251 struct ieee80211_hdr_3addr hdr; 252 u8 category; 253 u8 action_code; 254 } __packed __aligned(2) action; 255 256 if (!sdata) 257 return; 258 259 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 260 261 if (skb->len < rtap_space + sizeof(action) + 262 VHT_MUMIMO_GROUPS_DATA_LEN) 263 return; 264 265 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 266 return; 267 268 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 269 270 if (!ieee80211_is_action(action.hdr.frame_control)) 271 return; 272 273 if (action.category != WLAN_CATEGORY_VHT) 274 return; 275 276 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 277 return; 278 279 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 280 return; 281 282 skb = skb_copy(skb, GFP_ATOMIC); 283 if (!skb) 284 return; 285 286 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 287 } 288 289 /* 290 * ieee80211_add_rx_radiotap_header - add radiotap header 291 * 292 * add a radiotap header containing all the fields which the hardware provided. 293 */ 294 static void 295 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 296 struct sk_buff *skb, 297 struct ieee80211_rate *rate, 298 int rtap_len, bool has_fcs) 299 { 300 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 301 struct ieee80211_radiotap_header *rthdr; 302 unsigned char *pos; 303 __le32 *it_present; 304 u32 it_present_val; 305 u16 rx_flags = 0; 306 u16 channel_flags = 0; 307 int mpdulen, chain; 308 unsigned long chains = status->chains; 309 struct ieee80211_vendor_radiotap rtap = {}; 310 struct ieee80211_radiotap_he he = {}; 311 struct ieee80211_radiotap_he_mu he_mu = {}; 312 struct ieee80211_radiotap_lsig lsig = {}; 313 314 if (status->flag & RX_FLAG_RADIOTAP_HE) { 315 he = *(struct ieee80211_radiotap_he *)skb->data; 316 skb_pull(skb, sizeof(he)); 317 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 318 } 319 320 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 321 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 322 skb_pull(skb, sizeof(he_mu)); 323 } 324 325 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 326 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 327 skb_pull(skb, sizeof(lsig)); 328 } 329 330 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 331 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 332 /* rtap.len and rtap.pad are undone immediately */ 333 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len); 341 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 364 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 365 BIT(IEEE80211_RADIOTAP_EXT); 366 put_unaligned_le32(it_present_val, it_present); 367 it_present++; 368 it_present_val = rtap.present; 369 } 370 371 put_unaligned_le32(it_present_val, it_present); 372 373 /* This references through an offset into it_optional[] rather 374 * than via it_present otherwise later uses of pos will cause 375 * the compiler to think we have walked past the end of the 376 * struct member. 377 */ 378 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 379 380 /* the order of the following fields is important */ 381 382 /* IEEE80211_RADIOTAP_TSFT */ 383 if (ieee80211_have_rx_timestamp(status)) { 384 /* padding */ 385 while ((pos - (u8 *)rthdr) & 7) 386 *pos++ = 0; 387 put_unaligned_le64( 388 ieee80211_calculate_rx_timestamp(local, status, 389 mpdulen, 0), 390 pos); 391 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 392 pos += 8; 393 } 394 395 /* IEEE80211_RADIOTAP_FLAGS */ 396 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 397 *pos |= IEEE80211_RADIOTAP_F_FCS; 398 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 399 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 400 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 401 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 402 pos++; 403 404 /* IEEE80211_RADIOTAP_RATE */ 405 if (!rate || status->encoding != RX_ENC_LEGACY) { 406 /* 407 * Without rate information don't add it. If we have, 408 * MCS information is a separate field in radiotap, 409 * added below. The byte here is needed as padding 410 * for the channel though, so initialise it to 0. 411 */ 412 *pos = 0; 413 } else { 414 int shift = 0; 415 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 416 if (status->bw == RATE_INFO_BW_10) 417 shift = 1; 418 else if (status->bw == RATE_INFO_BW_5) 419 shift = 2; 420 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 421 } 422 pos++; 423 424 /* IEEE80211_RADIOTAP_CHANNEL */ 425 /* TODO: frequency offset in KHz */ 426 put_unaligned_le16(status->freq, pos); 427 pos += 2; 428 if (status->bw == RATE_INFO_BW_10) 429 channel_flags |= IEEE80211_CHAN_HALF; 430 else if (status->bw == RATE_INFO_BW_5) 431 channel_flags |= IEEE80211_CHAN_QUARTER; 432 433 if (status->band == NL80211_BAND_5GHZ || 434 status->band == NL80211_BAND_6GHZ) 435 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 436 else if (status->encoding != RX_ENC_LEGACY) 437 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 438 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 439 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 440 else if (rate) 441 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 442 else 443 channel_flags |= IEEE80211_CHAN_2GHZ; 444 put_unaligned_le16(channel_flags, pos); 445 pos += 2; 446 447 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 448 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 449 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 450 *pos = status->signal; 451 rthdr->it_present |= 452 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 453 pos++; 454 } 455 456 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 457 458 if (!status->chains) { 459 /* IEEE80211_RADIOTAP_ANTENNA */ 460 *pos = status->antenna; 461 pos++; 462 } 463 464 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 465 466 /* IEEE80211_RADIOTAP_RX_FLAGS */ 467 /* ensure 2 byte alignment for the 2 byte field as required */ 468 if ((pos - (u8 *)rthdr) & 1) 469 *pos++ = 0; 470 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 471 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 472 put_unaligned_le16(rx_flags, pos); 473 pos += 2; 474 475 if (status->encoding == RX_ENC_HT) { 476 unsigned int stbc; 477 478 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 479 *pos = local->hw.radiotap_mcs_details; 480 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 481 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 482 if (status->enc_flags & RX_ENC_FLAG_LDPC) 483 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 484 pos++; 485 *pos = 0; 486 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 487 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 488 if (status->bw == RATE_INFO_BW_40) 489 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 490 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 491 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 492 if (status->enc_flags & RX_ENC_FLAG_LDPC) 493 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 494 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 495 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 496 pos++; 497 *pos++ = status->rate_idx; 498 } 499 500 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 501 u16 flags = 0; 502 503 /* ensure 4 byte alignment */ 504 while ((pos - (u8 *)rthdr) & 3) 505 pos++; 506 rthdr->it_present |= 507 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 508 put_unaligned_le32(status->ampdu_reference, pos); 509 pos += 4; 510 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 511 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 512 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 513 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 514 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 515 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 516 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 517 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 518 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 519 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 520 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 521 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 522 put_unaligned_le16(flags, pos); 523 pos += 2; 524 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 525 *pos++ = status->ampdu_delimiter_crc; 526 else 527 *pos++ = 0; 528 *pos++ = 0; 529 } 530 531 if (status->encoding == RX_ENC_VHT) { 532 u16 known = local->hw.radiotap_vht_details; 533 534 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 535 put_unaligned_le16(known, pos); 536 pos += 2; 537 /* flags */ 538 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 540 /* in VHT, STBC is binary */ 541 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 542 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 543 if (status->enc_flags & RX_ENC_FLAG_BF) 544 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 545 pos++; 546 /* bandwidth */ 547 switch (status->bw) { 548 case RATE_INFO_BW_80: 549 *pos++ = 4; 550 break; 551 case RATE_INFO_BW_160: 552 *pos++ = 11; 553 break; 554 case RATE_INFO_BW_40: 555 *pos++ = 1; 556 break; 557 default: 558 *pos++ = 0; 559 } 560 /* MCS/NSS */ 561 *pos = (status->rate_idx << 4) | status->nss; 562 pos += 4; 563 /* coding field */ 564 if (status->enc_flags & RX_ENC_FLAG_LDPC) 565 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 566 pos++; 567 /* group ID */ 568 pos++; 569 /* partial_aid */ 570 pos += 2; 571 } 572 573 if (local->hw.radiotap_timestamp.units_pos >= 0) { 574 u16 accuracy = 0; 575 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 576 577 rthdr->it_present |= 578 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 579 580 /* ensure 8 byte alignment */ 581 while ((pos - (u8 *)rthdr) & 7) 582 pos++; 583 584 put_unaligned_le64(status->device_timestamp, pos); 585 pos += sizeof(u64); 586 587 if (local->hw.radiotap_timestamp.accuracy >= 0) { 588 accuracy = local->hw.radiotap_timestamp.accuracy; 589 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 590 } 591 put_unaligned_le16(accuracy, pos); 592 pos += sizeof(u16); 593 594 *pos++ = local->hw.radiotap_timestamp.units_pos; 595 *pos++ = flags; 596 } 597 598 if (status->encoding == RX_ENC_HE && 599 status->flag & RX_FLAG_RADIOTAP_HE) { 600 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 601 602 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 603 he.data6 |= HE_PREP(DATA6_NSTS, 604 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 605 status->enc_flags)); 606 he.data3 |= HE_PREP(DATA3_STBC, 1); 607 } else { 608 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 609 } 610 611 #define CHECK_GI(s) \ 612 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 613 (int)NL80211_RATE_INFO_HE_GI_##s) 614 615 CHECK_GI(0_8); 616 CHECK_GI(1_6); 617 CHECK_GI(3_2); 618 619 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 620 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 621 he.data3 |= HE_PREP(DATA3_CODING, 622 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 623 624 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 625 626 switch (status->bw) { 627 case RATE_INFO_BW_20: 628 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 629 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 630 break; 631 case RATE_INFO_BW_40: 632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 634 break; 635 case RATE_INFO_BW_80: 636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 638 break; 639 case RATE_INFO_BW_160: 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 642 break; 643 case RATE_INFO_BW_HE_RU: 644 #define CHECK_RU_ALLOC(s) \ 645 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 646 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 647 648 CHECK_RU_ALLOC(26); 649 CHECK_RU_ALLOC(52); 650 CHECK_RU_ALLOC(106); 651 CHECK_RU_ALLOC(242); 652 CHECK_RU_ALLOC(484); 653 CHECK_RU_ALLOC(996); 654 CHECK_RU_ALLOC(2x996); 655 656 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 657 status->he_ru + 4); 658 break; 659 default: 660 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 661 } 662 663 /* ensure 2 byte alignment */ 664 while ((pos - (u8 *)rthdr) & 1) 665 pos++; 666 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 667 memcpy(pos, &he, sizeof(he)); 668 pos += sizeof(he); 669 } 670 671 if (status->encoding == RX_ENC_HE && 672 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 673 /* ensure 2 byte alignment */ 674 while ((pos - (u8 *)rthdr) & 1) 675 pos++; 676 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 677 memcpy(pos, &he_mu, sizeof(he_mu)); 678 pos += sizeof(he_mu); 679 } 680 681 if (status->flag & RX_FLAG_NO_PSDU) { 682 rthdr->it_present |= 683 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 684 *pos++ = status->zero_length_psdu_type; 685 } 686 687 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 688 /* ensure 2 byte alignment */ 689 while ((pos - (u8 *)rthdr) & 1) 690 pos++; 691 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 692 memcpy(pos, &lsig, sizeof(lsig)); 693 pos += sizeof(lsig); 694 } 695 696 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 697 *pos++ = status->chain_signal[chain]; 698 *pos++ = chain; 699 } 700 701 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 702 /* ensure 2 byte alignment for the vendor field as required */ 703 if ((pos - (u8 *)rthdr) & 1) 704 *pos++ = 0; 705 *pos++ = rtap.oui[0]; 706 *pos++ = rtap.oui[1]; 707 *pos++ = rtap.oui[2]; 708 *pos++ = rtap.subns; 709 put_unaligned_le16(rtap.len, pos); 710 pos += 2; 711 /* align the actual payload as requested */ 712 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 713 *pos++ = 0; 714 /* data (and possible padding) already follows */ 715 } 716 } 717 718 static struct sk_buff * 719 ieee80211_make_monitor_skb(struct ieee80211_local *local, 720 struct sk_buff **origskb, 721 struct ieee80211_rate *rate, 722 int rtap_space, bool use_origskb) 723 { 724 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 725 int rt_hdrlen, needed_headroom; 726 struct sk_buff *skb; 727 728 /* room for the radiotap header based on driver features */ 729 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 730 needed_headroom = rt_hdrlen - rtap_space; 731 732 if (use_origskb) { 733 /* only need to expand headroom if necessary */ 734 skb = *origskb; 735 *origskb = NULL; 736 737 /* 738 * This shouldn't trigger often because most devices have an 739 * RX header they pull before we get here, and that should 740 * be big enough for our radiotap information. We should 741 * probably export the length to drivers so that we can have 742 * them allocate enough headroom to start with. 743 */ 744 if (skb_headroom(skb) < needed_headroom && 745 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 746 dev_kfree_skb(skb); 747 return NULL; 748 } 749 } else { 750 /* 751 * Need to make a copy and possibly remove radiotap header 752 * and FCS from the original. 753 */ 754 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 755 0, GFP_ATOMIC); 756 757 if (!skb) 758 return NULL; 759 } 760 761 /* prepend radiotap information */ 762 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 763 764 skb_reset_mac_header(skb); 765 skb->ip_summed = CHECKSUM_UNNECESSARY; 766 skb->pkt_type = PACKET_OTHERHOST; 767 skb->protocol = htons(ETH_P_802_2); 768 769 return skb; 770 } 771 772 /* 773 * This function copies a received frame to all monitor interfaces and 774 * returns a cleaned-up SKB that no longer includes the FCS nor the 775 * radiotap header the driver might have added. 776 */ 777 static struct sk_buff * 778 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 779 struct ieee80211_rate *rate) 780 { 781 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 782 struct ieee80211_sub_if_data *sdata; 783 struct sk_buff *monskb = NULL; 784 int present_fcs_len = 0; 785 unsigned int rtap_space = 0; 786 struct ieee80211_sub_if_data *monitor_sdata = 787 rcu_dereference(local->monitor_sdata); 788 bool only_monitor = false; 789 unsigned int min_head_len; 790 791 if (status->flag & RX_FLAG_RADIOTAP_HE) 792 rtap_space += sizeof(struct ieee80211_radiotap_he); 793 794 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 795 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 796 797 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 798 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 799 800 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 801 struct ieee80211_vendor_radiotap *rtap = 802 (void *)(origskb->data + rtap_space); 803 804 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad; 805 } 806 807 min_head_len = rtap_space; 808 809 /* 810 * First, we may need to make a copy of the skb because 811 * (1) we need to modify it for radiotap (if not present), and 812 * (2) the other RX handlers will modify the skb we got. 813 * 814 * We don't need to, of course, if we aren't going to return 815 * the SKB because it has a bad FCS/PLCP checksum. 816 */ 817 818 if (!(status->flag & RX_FLAG_NO_PSDU)) { 819 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 820 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 821 /* driver bug */ 822 WARN_ON(1); 823 dev_kfree_skb(origskb); 824 return NULL; 825 } 826 present_fcs_len = FCS_LEN; 827 } 828 829 /* also consider the hdr->frame_control */ 830 min_head_len += 2; 831 } 832 833 /* ensure that the expected data elements are in skb head */ 834 if (!pskb_may_pull(origskb, min_head_len)) { 835 dev_kfree_skb(origskb); 836 return NULL; 837 } 838 839 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 840 841 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 842 if (only_monitor) { 843 dev_kfree_skb(origskb); 844 return NULL; 845 } 846 847 return ieee80211_clean_skb(origskb, present_fcs_len, 848 rtap_space); 849 } 850 851 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 852 853 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 854 bool last_monitor = list_is_last(&sdata->u.mntr.list, 855 &local->mon_list); 856 857 if (!monskb) 858 monskb = ieee80211_make_monitor_skb(local, &origskb, 859 rate, rtap_space, 860 only_monitor && 861 last_monitor); 862 863 if (monskb) { 864 struct sk_buff *skb; 865 866 if (last_monitor) { 867 skb = monskb; 868 monskb = NULL; 869 } else { 870 skb = skb_clone(monskb, GFP_ATOMIC); 871 } 872 873 if (skb) { 874 skb->dev = sdata->dev; 875 dev_sw_netstats_rx_add(skb->dev, skb->len); 876 netif_receive_skb(skb); 877 } 878 } 879 880 if (last_monitor) 881 break; 882 } 883 884 /* this happens if last_monitor was erroneously false */ 885 dev_kfree_skb(monskb); 886 887 /* ditto */ 888 if (!origskb) 889 return NULL; 890 891 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 892 } 893 894 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 895 { 896 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 897 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 898 int tid, seqno_idx, security_idx; 899 900 /* does the frame have a qos control field? */ 901 if (ieee80211_is_data_qos(hdr->frame_control)) { 902 u8 *qc = ieee80211_get_qos_ctl(hdr); 903 /* frame has qos control */ 904 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 905 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 906 status->rx_flags |= IEEE80211_RX_AMSDU; 907 908 seqno_idx = tid; 909 security_idx = tid; 910 } else { 911 /* 912 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 913 * 914 * Sequence numbers for management frames, QoS data 915 * frames with a broadcast/multicast address in the 916 * Address 1 field, and all non-QoS data frames sent 917 * by QoS STAs are assigned using an additional single 918 * modulo-4096 counter, [...] 919 * 920 * We also use that counter for non-QoS STAs. 921 */ 922 seqno_idx = IEEE80211_NUM_TIDS; 923 security_idx = 0; 924 if (ieee80211_is_mgmt(hdr->frame_control)) 925 security_idx = IEEE80211_NUM_TIDS; 926 tid = 0; 927 } 928 929 rx->seqno_idx = seqno_idx; 930 rx->security_idx = security_idx; 931 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 932 * For now, set skb->priority to 0 for other cases. */ 933 rx->skb->priority = (tid > 7) ? 0 : tid; 934 } 935 936 /** 937 * DOC: Packet alignment 938 * 939 * Drivers always need to pass packets that are aligned to two-byte boundaries 940 * to the stack. 941 * 942 * Additionally, should, if possible, align the payload data in a way that 943 * guarantees that the contained IP header is aligned to a four-byte 944 * boundary. In the case of regular frames, this simply means aligning the 945 * payload to a four-byte boundary (because either the IP header is directly 946 * contained, or IV/RFC1042 headers that have a length divisible by four are 947 * in front of it). If the payload data is not properly aligned and the 948 * architecture doesn't support efficient unaligned operations, mac80211 949 * will align the data. 950 * 951 * With A-MSDU frames, however, the payload data address must yield two modulo 952 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 953 * push the IP header further back to a multiple of four again. Thankfully, the 954 * specs were sane enough this time around to require padding each A-MSDU 955 * subframe to a length that is a multiple of four. 956 * 957 * Padding like Atheros hardware adds which is between the 802.11 header and 958 * the payload is not supported, the driver is required to move the 802.11 959 * header to be directly in front of the payload in that case. 960 */ 961 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 962 { 963 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 964 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 965 #endif 966 } 967 968 969 /* rx handlers */ 970 971 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 972 { 973 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 974 975 if (is_multicast_ether_addr(hdr->addr1)) 976 return 0; 977 978 return ieee80211_is_robust_mgmt_frame(skb); 979 } 980 981 982 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 983 { 984 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 985 986 if (!is_multicast_ether_addr(hdr->addr1)) 987 return 0; 988 989 return ieee80211_is_robust_mgmt_frame(skb); 990 } 991 992 993 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 994 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 995 { 996 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 997 struct ieee80211_mmie *mmie; 998 struct ieee80211_mmie_16 *mmie16; 999 1000 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 1001 return -1; 1002 1003 if (!ieee80211_is_robust_mgmt_frame(skb) && 1004 !ieee80211_is_beacon(hdr->frame_control)) 1005 return -1; /* not a robust management frame */ 1006 1007 mmie = (struct ieee80211_mmie *) 1008 (skb->data + skb->len - sizeof(*mmie)); 1009 if (mmie->element_id == WLAN_EID_MMIE && 1010 mmie->length == sizeof(*mmie) - 2) 1011 return le16_to_cpu(mmie->key_id); 1012 1013 mmie16 = (struct ieee80211_mmie_16 *) 1014 (skb->data + skb->len - sizeof(*mmie16)); 1015 if (skb->len >= 24 + sizeof(*mmie16) && 1016 mmie16->element_id == WLAN_EID_MMIE && 1017 mmie16->length == sizeof(*mmie16) - 2) 1018 return le16_to_cpu(mmie16->key_id); 1019 1020 return -1; 1021 } 1022 1023 static int ieee80211_get_keyid(struct sk_buff *skb) 1024 { 1025 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1026 __le16 fc = hdr->frame_control; 1027 int hdrlen = ieee80211_hdrlen(fc); 1028 u8 keyid; 1029 1030 /* WEP, TKIP, CCMP and GCMP */ 1031 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1032 return -EINVAL; 1033 1034 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1035 1036 keyid >>= 6; 1037 1038 return keyid; 1039 } 1040 1041 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1042 { 1043 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1044 char *dev_addr = rx->sdata->vif.addr; 1045 1046 if (ieee80211_is_data(hdr->frame_control)) { 1047 if (is_multicast_ether_addr(hdr->addr1)) { 1048 if (ieee80211_has_tods(hdr->frame_control) || 1049 !ieee80211_has_fromds(hdr->frame_control)) 1050 return RX_DROP_MONITOR; 1051 if (ether_addr_equal(hdr->addr3, dev_addr)) 1052 return RX_DROP_MONITOR; 1053 } else { 1054 if (!ieee80211_has_a4(hdr->frame_control)) 1055 return RX_DROP_MONITOR; 1056 if (ether_addr_equal(hdr->addr4, dev_addr)) 1057 return RX_DROP_MONITOR; 1058 } 1059 } 1060 1061 /* If there is not an established peer link and this is not a peer link 1062 * establisment frame, beacon or probe, drop the frame. 1063 */ 1064 1065 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1066 struct ieee80211_mgmt *mgmt; 1067 1068 if (!ieee80211_is_mgmt(hdr->frame_control)) 1069 return RX_DROP_MONITOR; 1070 1071 if (ieee80211_is_action(hdr->frame_control)) { 1072 u8 category; 1073 1074 /* make sure category field is present */ 1075 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1076 return RX_DROP_MONITOR; 1077 1078 mgmt = (struct ieee80211_mgmt *)hdr; 1079 category = mgmt->u.action.category; 1080 if (category != WLAN_CATEGORY_MESH_ACTION && 1081 category != WLAN_CATEGORY_SELF_PROTECTED) 1082 return RX_DROP_MONITOR; 1083 return RX_CONTINUE; 1084 } 1085 1086 if (ieee80211_is_probe_req(hdr->frame_control) || 1087 ieee80211_is_probe_resp(hdr->frame_control) || 1088 ieee80211_is_beacon(hdr->frame_control) || 1089 ieee80211_is_auth(hdr->frame_control)) 1090 return RX_CONTINUE; 1091 1092 return RX_DROP_MONITOR; 1093 } 1094 1095 return RX_CONTINUE; 1096 } 1097 1098 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1099 int index) 1100 { 1101 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1102 struct sk_buff *tail = skb_peek_tail(frames); 1103 struct ieee80211_rx_status *status; 1104 1105 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1106 return true; 1107 1108 if (!tail) 1109 return false; 1110 1111 status = IEEE80211_SKB_RXCB(tail); 1112 if (status->flag & RX_FLAG_AMSDU_MORE) 1113 return false; 1114 1115 return true; 1116 } 1117 1118 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1119 struct tid_ampdu_rx *tid_agg_rx, 1120 int index, 1121 struct sk_buff_head *frames) 1122 { 1123 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1124 struct sk_buff *skb; 1125 struct ieee80211_rx_status *status; 1126 1127 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1128 1129 if (skb_queue_empty(skb_list)) 1130 goto no_frame; 1131 1132 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1133 __skb_queue_purge(skb_list); 1134 goto no_frame; 1135 } 1136 1137 /* release frames from the reorder ring buffer */ 1138 tid_agg_rx->stored_mpdu_num--; 1139 while ((skb = __skb_dequeue(skb_list))) { 1140 status = IEEE80211_SKB_RXCB(skb); 1141 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1142 __skb_queue_tail(frames, skb); 1143 } 1144 1145 no_frame: 1146 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1147 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1148 } 1149 1150 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1151 struct tid_ampdu_rx *tid_agg_rx, 1152 u16 head_seq_num, 1153 struct sk_buff_head *frames) 1154 { 1155 int index; 1156 1157 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1158 1159 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1160 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1161 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1162 frames); 1163 } 1164 } 1165 1166 /* 1167 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1168 * the skb was added to the buffer longer than this time ago, the earlier 1169 * frames that have not yet been received are assumed to be lost and the skb 1170 * can be released for processing. This may also release other skb's from the 1171 * reorder buffer if there are no additional gaps between the frames. 1172 * 1173 * Callers must hold tid_agg_rx->reorder_lock. 1174 */ 1175 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1176 1177 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1178 struct tid_ampdu_rx *tid_agg_rx, 1179 struct sk_buff_head *frames) 1180 { 1181 int index, i, j; 1182 1183 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1184 1185 /* release the buffer until next missing frame */ 1186 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1187 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1188 tid_agg_rx->stored_mpdu_num) { 1189 /* 1190 * No buffers ready to be released, but check whether any 1191 * frames in the reorder buffer have timed out. 1192 */ 1193 int skipped = 1; 1194 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1195 j = (j + 1) % tid_agg_rx->buf_size) { 1196 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1197 skipped++; 1198 continue; 1199 } 1200 if (skipped && 1201 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1202 HT_RX_REORDER_BUF_TIMEOUT)) 1203 goto set_release_timer; 1204 1205 /* don't leave incomplete A-MSDUs around */ 1206 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1207 i = (i + 1) % tid_agg_rx->buf_size) 1208 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1209 1210 ht_dbg_ratelimited(sdata, 1211 "release an RX reorder frame due to timeout on earlier frames\n"); 1212 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1213 frames); 1214 1215 /* 1216 * Increment the head seq# also for the skipped slots. 1217 */ 1218 tid_agg_rx->head_seq_num = 1219 (tid_agg_rx->head_seq_num + 1220 skipped) & IEEE80211_SN_MASK; 1221 skipped = 0; 1222 } 1223 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1224 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1225 frames); 1226 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1227 } 1228 1229 if (tid_agg_rx->stored_mpdu_num) { 1230 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1231 1232 for (; j != (index - 1) % tid_agg_rx->buf_size; 1233 j = (j + 1) % tid_agg_rx->buf_size) { 1234 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1235 break; 1236 } 1237 1238 set_release_timer: 1239 1240 if (!tid_agg_rx->removed) 1241 mod_timer(&tid_agg_rx->reorder_timer, 1242 tid_agg_rx->reorder_time[j] + 1 + 1243 HT_RX_REORDER_BUF_TIMEOUT); 1244 } else { 1245 del_timer(&tid_agg_rx->reorder_timer); 1246 } 1247 } 1248 1249 /* 1250 * As this function belongs to the RX path it must be under 1251 * rcu_read_lock protection. It returns false if the frame 1252 * can be processed immediately, true if it was consumed. 1253 */ 1254 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1255 struct tid_ampdu_rx *tid_agg_rx, 1256 struct sk_buff *skb, 1257 struct sk_buff_head *frames) 1258 { 1259 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1260 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1261 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1262 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1263 u16 head_seq_num, buf_size; 1264 int index; 1265 bool ret = true; 1266 1267 spin_lock(&tid_agg_rx->reorder_lock); 1268 1269 /* 1270 * Offloaded BA sessions have no known starting sequence number so pick 1271 * one from first Rxed frame for this tid after BA was started. 1272 */ 1273 if (unlikely(tid_agg_rx->auto_seq)) { 1274 tid_agg_rx->auto_seq = false; 1275 tid_agg_rx->ssn = mpdu_seq_num; 1276 tid_agg_rx->head_seq_num = mpdu_seq_num; 1277 } 1278 1279 buf_size = tid_agg_rx->buf_size; 1280 head_seq_num = tid_agg_rx->head_seq_num; 1281 1282 /* 1283 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1284 * be reordered. 1285 */ 1286 if (unlikely(!tid_agg_rx->started)) { 1287 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1288 ret = false; 1289 goto out; 1290 } 1291 tid_agg_rx->started = true; 1292 } 1293 1294 /* frame with out of date sequence number */ 1295 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1296 dev_kfree_skb(skb); 1297 goto out; 1298 } 1299 1300 /* 1301 * If frame the sequence number exceeds our buffering window 1302 * size release some previous frames to make room for this one. 1303 */ 1304 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1305 head_seq_num = ieee80211_sn_inc( 1306 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1307 /* release stored frames up to new head to stack */ 1308 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1309 head_seq_num, frames); 1310 } 1311 1312 /* Now the new frame is always in the range of the reordering buffer */ 1313 1314 index = mpdu_seq_num % tid_agg_rx->buf_size; 1315 1316 /* check if we already stored this frame */ 1317 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1318 dev_kfree_skb(skb); 1319 goto out; 1320 } 1321 1322 /* 1323 * If the current MPDU is in the right order and nothing else 1324 * is stored we can process it directly, no need to buffer it. 1325 * If it is first but there's something stored, we may be able 1326 * to release frames after this one. 1327 */ 1328 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1329 tid_agg_rx->stored_mpdu_num == 0) { 1330 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1331 tid_agg_rx->head_seq_num = 1332 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1333 ret = false; 1334 goto out; 1335 } 1336 1337 /* put the frame in the reordering buffer */ 1338 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1339 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1340 tid_agg_rx->reorder_time[index] = jiffies; 1341 tid_agg_rx->stored_mpdu_num++; 1342 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1343 } 1344 1345 out: 1346 spin_unlock(&tid_agg_rx->reorder_lock); 1347 return ret; 1348 } 1349 1350 /* 1351 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1352 * true if the MPDU was buffered, false if it should be processed. 1353 */ 1354 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1355 struct sk_buff_head *frames) 1356 { 1357 struct sk_buff *skb = rx->skb; 1358 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1359 struct sta_info *sta = rx->sta; 1360 struct tid_ampdu_rx *tid_agg_rx; 1361 u16 sc; 1362 u8 tid, ack_policy; 1363 1364 if (!ieee80211_is_data_qos(hdr->frame_control) || 1365 is_multicast_ether_addr(hdr->addr1)) 1366 goto dont_reorder; 1367 1368 /* 1369 * filter the QoS data rx stream according to 1370 * STA/TID and check if this STA/TID is on aggregation 1371 */ 1372 1373 if (!sta) 1374 goto dont_reorder; 1375 1376 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1377 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1378 tid = ieee80211_get_tid(hdr); 1379 1380 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1381 if (!tid_agg_rx) { 1382 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1383 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1384 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1385 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1386 WLAN_BACK_RECIPIENT, 1387 WLAN_REASON_QSTA_REQUIRE_SETUP); 1388 goto dont_reorder; 1389 } 1390 1391 /* qos null data frames are excluded */ 1392 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1393 goto dont_reorder; 1394 1395 /* not part of a BA session */ 1396 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1397 goto dont_reorder; 1398 1399 /* new, potentially un-ordered, ampdu frame - process it */ 1400 1401 /* reset session timer */ 1402 if (tid_agg_rx->timeout) 1403 tid_agg_rx->last_rx = jiffies; 1404 1405 /* if this mpdu is fragmented - terminate rx aggregation session */ 1406 sc = le16_to_cpu(hdr->seq_ctrl); 1407 if (sc & IEEE80211_SCTL_FRAG) { 1408 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1409 return; 1410 } 1411 1412 /* 1413 * No locking needed -- we will only ever process one 1414 * RX packet at a time, and thus own tid_agg_rx. All 1415 * other code manipulating it needs to (and does) make 1416 * sure that we cannot get to it any more before doing 1417 * anything with it. 1418 */ 1419 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1420 frames)) 1421 return; 1422 1423 dont_reorder: 1424 __skb_queue_tail(frames, skb); 1425 } 1426 1427 static ieee80211_rx_result debug_noinline 1428 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1429 { 1430 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1431 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1432 1433 if (status->flag & RX_FLAG_DUP_VALIDATED) 1434 return RX_CONTINUE; 1435 1436 /* 1437 * Drop duplicate 802.11 retransmissions 1438 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1439 */ 1440 1441 if (rx->skb->len < 24) 1442 return RX_CONTINUE; 1443 1444 if (ieee80211_is_ctl(hdr->frame_control) || 1445 ieee80211_is_any_nullfunc(hdr->frame_control) || 1446 is_multicast_ether_addr(hdr->addr1)) 1447 return RX_CONTINUE; 1448 1449 if (!rx->sta) 1450 return RX_CONTINUE; 1451 1452 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1453 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1454 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1455 rx->link_sta->rx_stats.num_duplicates++; 1456 return RX_DROP_UNUSABLE; 1457 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1458 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1459 } 1460 1461 return RX_CONTINUE; 1462 } 1463 1464 static ieee80211_rx_result debug_noinline 1465 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1466 { 1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1468 1469 /* Drop disallowed frame classes based on STA auth/assoc state; 1470 * IEEE 802.11, Chap 5.5. 1471 * 1472 * mac80211 filters only based on association state, i.e. it drops 1473 * Class 3 frames from not associated stations. hostapd sends 1474 * deauth/disassoc frames when needed. In addition, hostapd is 1475 * responsible for filtering on both auth and assoc states. 1476 */ 1477 1478 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1479 return ieee80211_rx_mesh_check(rx); 1480 1481 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1482 ieee80211_is_pspoll(hdr->frame_control)) && 1483 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1484 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1485 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1486 /* 1487 * accept port control frames from the AP even when it's not 1488 * yet marked ASSOC to prevent a race where we don't set the 1489 * assoc bit quickly enough before it sends the first frame 1490 */ 1491 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1492 ieee80211_is_data_present(hdr->frame_control)) { 1493 unsigned int hdrlen; 1494 __be16 ethertype; 1495 1496 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1497 1498 if (rx->skb->len < hdrlen + 8) 1499 return RX_DROP_MONITOR; 1500 1501 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1502 if (ethertype == rx->sdata->control_port_protocol) 1503 return RX_CONTINUE; 1504 } 1505 1506 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1507 cfg80211_rx_spurious_frame(rx->sdata->dev, 1508 hdr->addr2, 1509 GFP_ATOMIC)) 1510 return RX_DROP_UNUSABLE; 1511 1512 return RX_DROP_MONITOR; 1513 } 1514 1515 return RX_CONTINUE; 1516 } 1517 1518 1519 static ieee80211_rx_result debug_noinline 1520 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1521 { 1522 struct ieee80211_local *local; 1523 struct ieee80211_hdr *hdr; 1524 struct sk_buff *skb; 1525 1526 local = rx->local; 1527 skb = rx->skb; 1528 hdr = (struct ieee80211_hdr *) skb->data; 1529 1530 if (!local->pspolling) 1531 return RX_CONTINUE; 1532 1533 if (!ieee80211_has_fromds(hdr->frame_control)) 1534 /* this is not from AP */ 1535 return RX_CONTINUE; 1536 1537 if (!ieee80211_is_data(hdr->frame_control)) 1538 return RX_CONTINUE; 1539 1540 if (!ieee80211_has_moredata(hdr->frame_control)) { 1541 /* AP has no more frames buffered for us */ 1542 local->pspolling = false; 1543 return RX_CONTINUE; 1544 } 1545 1546 /* more data bit is set, let's request a new frame from the AP */ 1547 ieee80211_send_pspoll(local, rx->sdata); 1548 1549 return RX_CONTINUE; 1550 } 1551 1552 static void sta_ps_start(struct sta_info *sta) 1553 { 1554 struct ieee80211_sub_if_data *sdata = sta->sdata; 1555 struct ieee80211_local *local = sdata->local; 1556 struct ps_data *ps; 1557 int tid; 1558 1559 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1560 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1561 ps = &sdata->bss->ps; 1562 else 1563 return; 1564 1565 atomic_inc(&ps->num_sta_ps); 1566 set_sta_flag(sta, WLAN_STA_PS_STA); 1567 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1568 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1569 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1570 sta->sta.addr, sta->sta.aid); 1571 1572 ieee80211_clear_fast_xmit(sta); 1573 1574 if (!sta->sta.txq[0]) 1575 return; 1576 1577 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1578 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1579 struct txq_info *txqi = to_txq_info(txq); 1580 1581 spin_lock(&local->active_txq_lock[txq->ac]); 1582 if (!list_empty(&txqi->schedule_order)) 1583 list_del_init(&txqi->schedule_order); 1584 spin_unlock(&local->active_txq_lock[txq->ac]); 1585 1586 if (txq_has_queue(txq)) 1587 set_bit(tid, &sta->txq_buffered_tids); 1588 else 1589 clear_bit(tid, &sta->txq_buffered_tids); 1590 } 1591 } 1592 1593 static void sta_ps_end(struct sta_info *sta) 1594 { 1595 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1596 sta->sta.addr, sta->sta.aid); 1597 1598 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1599 /* 1600 * Clear the flag only if the other one is still set 1601 * so that the TX path won't start TX'ing new frames 1602 * directly ... In the case that the driver flag isn't 1603 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1604 */ 1605 clear_sta_flag(sta, WLAN_STA_PS_STA); 1606 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1607 sta->sta.addr, sta->sta.aid); 1608 return; 1609 } 1610 1611 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1612 clear_sta_flag(sta, WLAN_STA_PS_STA); 1613 ieee80211_sta_ps_deliver_wakeup(sta); 1614 } 1615 1616 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1617 { 1618 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1619 bool in_ps; 1620 1621 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1622 1623 /* Don't let the same PS state be set twice */ 1624 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1625 if ((start && in_ps) || (!start && !in_ps)) 1626 return -EINVAL; 1627 1628 if (start) 1629 sta_ps_start(sta); 1630 else 1631 sta_ps_end(sta); 1632 1633 return 0; 1634 } 1635 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1636 1637 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1638 { 1639 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1640 1641 if (test_sta_flag(sta, WLAN_STA_SP)) 1642 return; 1643 1644 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1645 ieee80211_sta_ps_deliver_poll_response(sta); 1646 else 1647 set_sta_flag(sta, WLAN_STA_PSPOLL); 1648 } 1649 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1650 1651 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1652 { 1653 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1654 int ac = ieee80211_ac_from_tid(tid); 1655 1656 /* 1657 * If this AC is not trigger-enabled do nothing unless the 1658 * driver is calling us after it already checked. 1659 * 1660 * NB: This could/should check a separate bitmap of trigger- 1661 * enabled queues, but for now we only implement uAPSD w/o 1662 * TSPEC changes to the ACs, so they're always the same. 1663 */ 1664 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1665 tid != IEEE80211_NUM_TIDS) 1666 return; 1667 1668 /* if we are in a service period, do nothing */ 1669 if (test_sta_flag(sta, WLAN_STA_SP)) 1670 return; 1671 1672 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1673 ieee80211_sta_ps_deliver_uapsd(sta); 1674 else 1675 set_sta_flag(sta, WLAN_STA_UAPSD); 1676 } 1677 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1678 1679 static ieee80211_rx_result debug_noinline 1680 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1681 { 1682 struct ieee80211_sub_if_data *sdata = rx->sdata; 1683 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1684 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1685 1686 if (!rx->sta) 1687 return RX_CONTINUE; 1688 1689 if (sdata->vif.type != NL80211_IFTYPE_AP && 1690 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1691 return RX_CONTINUE; 1692 1693 /* 1694 * The device handles station powersave, so don't do anything about 1695 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1696 * it to mac80211 since they're handled.) 1697 */ 1698 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1699 return RX_CONTINUE; 1700 1701 /* 1702 * Don't do anything if the station isn't already asleep. In 1703 * the uAPSD case, the station will probably be marked asleep, 1704 * in the PS-Poll case the station must be confused ... 1705 */ 1706 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1707 return RX_CONTINUE; 1708 1709 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1710 ieee80211_sta_pspoll(&rx->sta->sta); 1711 1712 /* Free PS Poll skb here instead of returning RX_DROP that would 1713 * count as an dropped frame. */ 1714 dev_kfree_skb(rx->skb); 1715 1716 return RX_QUEUED; 1717 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1718 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1719 ieee80211_has_pm(hdr->frame_control) && 1720 (ieee80211_is_data_qos(hdr->frame_control) || 1721 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1722 u8 tid = ieee80211_get_tid(hdr); 1723 1724 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1725 } 1726 1727 return RX_CONTINUE; 1728 } 1729 1730 static ieee80211_rx_result debug_noinline 1731 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1732 { 1733 struct sta_info *sta = rx->sta; 1734 struct link_sta_info *link_sta = rx->link_sta; 1735 struct sk_buff *skb = rx->skb; 1736 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1737 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1738 int i; 1739 1740 if (!sta || !link_sta) 1741 return RX_CONTINUE; 1742 1743 /* 1744 * Update last_rx only for IBSS packets which are for the current 1745 * BSSID and for station already AUTHORIZED to avoid keeping the 1746 * current IBSS network alive in cases where other STAs start 1747 * using different BSSID. This will also give the station another 1748 * chance to restart the authentication/authorization in case 1749 * something went wrong the first time. 1750 */ 1751 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1752 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1753 NL80211_IFTYPE_ADHOC); 1754 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1755 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1756 link_sta->rx_stats.last_rx = jiffies; 1757 if (ieee80211_is_data(hdr->frame_control) && 1758 !is_multicast_ether_addr(hdr->addr1)) 1759 link_sta->rx_stats.last_rate = 1760 sta_stats_encode_rate(status); 1761 } 1762 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1763 link_sta->rx_stats.last_rx = jiffies; 1764 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1765 !is_multicast_ether_addr(hdr->addr1)) { 1766 /* 1767 * Mesh beacons will update last_rx when if they are found to 1768 * match the current local configuration when processed. 1769 */ 1770 link_sta->rx_stats.last_rx = jiffies; 1771 if (ieee80211_is_data(hdr->frame_control)) 1772 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1773 } 1774 1775 link_sta->rx_stats.fragments++; 1776 1777 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1778 link_sta->rx_stats.bytes += rx->skb->len; 1779 u64_stats_update_end(&link_sta->rx_stats.syncp); 1780 1781 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1782 link_sta->rx_stats.last_signal = status->signal; 1783 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1784 -status->signal); 1785 } 1786 1787 if (status->chains) { 1788 link_sta->rx_stats.chains = status->chains; 1789 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1790 int signal = status->chain_signal[i]; 1791 1792 if (!(status->chains & BIT(i))) 1793 continue; 1794 1795 link_sta->rx_stats.chain_signal_last[i] = signal; 1796 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1797 -signal); 1798 } 1799 } 1800 1801 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1802 return RX_CONTINUE; 1803 1804 /* 1805 * Change STA power saving mode only at the end of a frame 1806 * exchange sequence, and only for a data or management 1807 * frame as specified in IEEE 802.11-2016 11.2.3.2 1808 */ 1809 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1810 !ieee80211_has_morefrags(hdr->frame_control) && 1811 !is_multicast_ether_addr(hdr->addr1) && 1812 (ieee80211_is_mgmt(hdr->frame_control) || 1813 ieee80211_is_data(hdr->frame_control)) && 1814 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1815 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1816 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1817 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1818 if (!ieee80211_has_pm(hdr->frame_control)) 1819 sta_ps_end(sta); 1820 } else { 1821 if (ieee80211_has_pm(hdr->frame_control)) 1822 sta_ps_start(sta); 1823 } 1824 } 1825 1826 /* mesh power save support */ 1827 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1828 ieee80211_mps_rx_h_sta_process(sta, hdr); 1829 1830 /* 1831 * Drop (qos-)data::nullfunc frames silently, since they 1832 * are used only to control station power saving mode. 1833 */ 1834 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1835 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1836 1837 /* 1838 * If we receive a 4-addr nullfunc frame from a STA 1839 * that was not moved to a 4-addr STA vlan yet send 1840 * the event to userspace and for older hostapd drop 1841 * the frame to the monitor interface. 1842 */ 1843 if (ieee80211_has_a4(hdr->frame_control) && 1844 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1845 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1846 !rx->sdata->u.vlan.sta))) { 1847 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1848 cfg80211_rx_unexpected_4addr_frame( 1849 rx->sdata->dev, sta->sta.addr, 1850 GFP_ATOMIC); 1851 return RX_DROP_MONITOR; 1852 } 1853 /* 1854 * Update counter and free packet here to avoid 1855 * counting this as a dropped packed. 1856 */ 1857 link_sta->rx_stats.packets++; 1858 dev_kfree_skb(rx->skb); 1859 return RX_QUEUED; 1860 } 1861 1862 return RX_CONTINUE; 1863 } /* ieee80211_rx_h_sta_process */ 1864 1865 static struct ieee80211_key * 1866 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1867 { 1868 struct ieee80211_key *key = NULL; 1869 int idx2; 1870 1871 /* Make sure key gets set if either BIGTK key index is set so that 1872 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1873 * Beacon frames and Beacon frames that claim to use another BIGTK key 1874 * index (i.e., a key that we do not have). 1875 */ 1876 1877 if (idx < 0) { 1878 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1879 idx2 = idx + 1; 1880 } else { 1881 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1882 idx2 = idx + 1; 1883 else 1884 idx2 = idx - 1; 1885 } 1886 1887 if (rx->link_sta) 1888 key = rcu_dereference(rx->link_sta->gtk[idx]); 1889 if (!key) 1890 key = rcu_dereference(rx->link->gtk[idx]); 1891 if (!key && rx->link_sta) 1892 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1893 if (!key) 1894 key = rcu_dereference(rx->link->gtk[idx2]); 1895 1896 return key; 1897 } 1898 1899 static ieee80211_rx_result debug_noinline 1900 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1901 { 1902 struct sk_buff *skb = rx->skb; 1903 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1904 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1905 int keyidx; 1906 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1907 struct ieee80211_key *sta_ptk = NULL; 1908 struct ieee80211_key *ptk_idx = NULL; 1909 int mmie_keyidx = -1; 1910 __le16 fc; 1911 1912 if (ieee80211_is_ext(hdr->frame_control)) 1913 return RX_CONTINUE; 1914 1915 /* 1916 * Key selection 101 1917 * 1918 * There are five types of keys: 1919 * - GTK (group keys) 1920 * - IGTK (group keys for management frames) 1921 * - BIGTK (group keys for Beacon frames) 1922 * - PTK (pairwise keys) 1923 * - STK (station-to-station pairwise keys) 1924 * 1925 * When selecting a key, we have to distinguish between multicast 1926 * (including broadcast) and unicast frames, the latter can only 1927 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1928 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1929 * then unicast frames can also use key indices like GTKs. Hence, if we 1930 * don't have a PTK/STK we check the key index for a WEP key. 1931 * 1932 * Note that in a regular BSS, multicast frames are sent by the 1933 * AP only, associated stations unicast the frame to the AP first 1934 * which then multicasts it on their behalf. 1935 * 1936 * There is also a slight problem in IBSS mode: GTKs are negotiated 1937 * with each station, that is something we don't currently handle. 1938 * The spec seems to expect that one negotiates the same key with 1939 * every station but there's no such requirement; VLANs could be 1940 * possible. 1941 */ 1942 1943 /* start without a key */ 1944 rx->key = NULL; 1945 fc = hdr->frame_control; 1946 1947 if (rx->sta) { 1948 int keyid = rx->sta->ptk_idx; 1949 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1950 1951 if (ieee80211_has_protected(fc) && 1952 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1953 keyid = ieee80211_get_keyid(rx->skb); 1954 1955 if (unlikely(keyid < 0)) 1956 return RX_DROP_UNUSABLE; 1957 1958 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1959 } 1960 } 1961 1962 if (!ieee80211_has_protected(fc)) 1963 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1964 1965 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1966 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1967 if ((status->flag & RX_FLAG_DECRYPTED) && 1968 (status->flag & RX_FLAG_IV_STRIPPED)) 1969 return RX_CONTINUE; 1970 /* Skip decryption if the frame is not protected. */ 1971 if (!ieee80211_has_protected(fc)) 1972 return RX_CONTINUE; 1973 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1974 /* Broadcast/multicast robust management frame / BIP */ 1975 if ((status->flag & RX_FLAG_DECRYPTED) && 1976 (status->flag & RX_FLAG_IV_STRIPPED)) 1977 return RX_CONTINUE; 1978 1979 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1980 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1981 NUM_DEFAULT_BEACON_KEYS) { 1982 if (rx->sdata->dev) 1983 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1984 skb->data, 1985 skb->len); 1986 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1987 } 1988 1989 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1990 if (!rx->key) 1991 return RX_CONTINUE; /* Beacon protection not in use */ 1992 } else if (mmie_keyidx >= 0) { 1993 /* Broadcast/multicast robust management frame / BIP */ 1994 if ((status->flag & RX_FLAG_DECRYPTED) && 1995 (status->flag & RX_FLAG_IV_STRIPPED)) 1996 return RX_CONTINUE; 1997 1998 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1999 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 2000 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 2001 if (rx->link_sta) { 2002 if (ieee80211_is_group_privacy_action(skb) && 2003 test_sta_flag(rx->sta, WLAN_STA_MFP)) 2004 return RX_DROP_MONITOR; 2005 2006 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 2007 } 2008 if (!rx->key) 2009 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2010 } else if (!ieee80211_has_protected(fc)) { 2011 /* 2012 * The frame was not protected, so skip decryption. However, we 2013 * need to set rx->key if there is a key that could have been 2014 * used so that the frame may be dropped if encryption would 2015 * have been expected. 2016 */ 2017 struct ieee80211_key *key = NULL; 2018 int i; 2019 2020 if (ieee80211_is_beacon(fc)) { 2021 key = ieee80211_rx_get_bigtk(rx, -1); 2022 } else if (ieee80211_is_mgmt(fc) && 2023 is_multicast_ether_addr(hdr->addr1)) { 2024 key = rcu_dereference(rx->link->default_mgmt_key); 2025 } else { 2026 if (rx->link_sta) { 2027 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2028 key = rcu_dereference(rx->link_sta->gtk[i]); 2029 if (key) 2030 break; 2031 } 2032 } 2033 if (!key) { 2034 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2035 key = rcu_dereference(rx->link->gtk[i]); 2036 if (key) 2037 break; 2038 } 2039 } 2040 } 2041 if (key) 2042 rx->key = key; 2043 return RX_CONTINUE; 2044 } else { 2045 /* 2046 * The device doesn't give us the IV so we won't be 2047 * able to look up the key. That's ok though, we 2048 * don't need to decrypt the frame, we just won't 2049 * be able to keep statistics accurate. 2050 * Except for key threshold notifications, should 2051 * we somehow allow the driver to tell us which key 2052 * the hardware used if this flag is set? 2053 */ 2054 if ((status->flag & RX_FLAG_DECRYPTED) && 2055 (status->flag & RX_FLAG_IV_STRIPPED)) 2056 return RX_CONTINUE; 2057 2058 keyidx = ieee80211_get_keyid(rx->skb); 2059 2060 if (unlikely(keyidx < 0)) 2061 return RX_DROP_UNUSABLE; 2062 2063 /* check per-station GTK first, if multicast packet */ 2064 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2065 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2066 2067 /* if not found, try default key */ 2068 if (!rx->key) { 2069 if (is_multicast_ether_addr(hdr->addr1)) 2070 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2071 if (!rx->key) 2072 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2073 2074 /* 2075 * RSNA-protected unicast frames should always be 2076 * sent with pairwise or station-to-station keys, 2077 * but for WEP we allow using a key index as well. 2078 */ 2079 if (rx->key && 2080 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2081 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2082 !is_multicast_ether_addr(hdr->addr1)) 2083 rx->key = NULL; 2084 } 2085 } 2086 2087 if (rx->key) { 2088 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2089 return RX_DROP_MONITOR; 2090 2091 /* TODO: add threshold stuff again */ 2092 } else { 2093 return RX_DROP_MONITOR; 2094 } 2095 2096 switch (rx->key->conf.cipher) { 2097 case WLAN_CIPHER_SUITE_WEP40: 2098 case WLAN_CIPHER_SUITE_WEP104: 2099 result = ieee80211_crypto_wep_decrypt(rx); 2100 break; 2101 case WLAN_CIPHER_SUITE_TKIP: 2102 result = ieee80211_crypto_tkip_decrypt(rx); 2103 break; 2104 case WLAN_CIPHER_SUITE_CCMP: 2105 result = ieee80211_crypto_ccmp_decrypt( 2106 rx, IEEE80211_CCMP_MIC_LEN); 2107 break; 2108 case WLAN_CIPHER_SUITE_CCMP_256: 2109 result = ieee80211_crypto_ccmp_decrypt( 2110 rx, IEEE80211_CCMP_256_MIC_LEN); 2111 break; 2112 case WLAN_CIPHER_SUITE_AES_CMAC: 2113 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2114 break; 2115 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2116 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2117 break; 2118 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2119 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2120 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2121 break; 2122 case WLAN_CIPHER_SUITE_GCMP: 2123 case WLAN_CIPHER_SUITE_GCMP_256: 2124 result = ieee80211_crypto_gcmp_decrypt(rx); 2125 break; 2126 default: 2127 result = RX_DROP_UNUSABLE; 2128 } 2129 2130 /* the hdr variable is invalid after the decrypt handlers */ 2131 2132 /* either the frame has been decrypted or will be dropped */ 2133 status->flag |= RX_FLAG_DECRYPTED; 2134 2135 if (unlikely(ieee80211_is_beacon(fc) && result == RX_DROP_UNUSABLE && 2136 rx->sdata->dev)) 2137 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2138 skb->data, skb->len); 2139 2140 return result; 2141 } 2142 2143 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2144 { 2145 int i; 2146 2147 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2148 skb_queue_head_init(&cache->entries[i].skb_list); 2149 } 2150 2151 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2152 { 2153 int i; 2154 2155 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2156 __skb_queue_purge(&cache->entries[i].skb_list); 2157 } 2158 2159 static inline struct ieee80211_fragment_entry * 2160 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2161 unsigned int frag, unsigned int seq, int rx_queue, 2162 struct sk_buff **skb) 2163 { 2164 struct ieee80211_fragment_entry *entry; 2165 2166 entry = &cache->entries[cache->next++]; 2167 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2168 cache->next = 0; 2169 2170 __skb_queue_purge(&entry->skb_list); 2171 2172 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2173 *skb = NULL; 2174 entry->first_frag_time = jiffies; 2175 entry->seq = seq; 2176 entry->rx_queue = rx_queue; 2177 entry->last_frag = frag; 2178 entry->check_sequential_pn = false; 2179 entry->extra_len = 0; 2180 2181 return entry; 2182 } 2183 2184 static inline struct ieee80211_fragment_entry * 2185 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2186 unsigned int frag, unsigned int seq, 2187 int rx_queue, struct ieee80211_hdr *hdr) 2188 { 2189 struct ieee80211_fragment_entry *entry; 2190 int i, idx; 2191 2192 idx = cache->next; 2193 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2194 struct ieee80211_hdr *f_hdr; 2195 struct sk_buff *f_skb; 2196 2197 idx--; 2198 if (idx < 0) 2199 idx = IEEE80211_FRAGMENT_MAX - 1; 2200 2201 entry = &cache->entries[idx]; 2202 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2203 entry->rx_queue != rx_queue || 2204 entry->last_frag + 1 != frag) 2205 continue; 2206 2207 f_skb = __skb_peek(&entry->skb_list); 2208 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2209 2210 /* 2211 * Check ftype and addresses are equal, else check next fragment 2212 */ 2213 if (((hdr->frame_control ^ f_hdr->frame_control) & 2214 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2215 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2216 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2217 continue; 2218 2219 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2220 __skb_queue_purge(&entry->skb_list); 2221 continue; 2222 } 2223 return entry; 2224 } 2225 2226 return NULL; 2227 } 2228 2229 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2230 { 2231 return rx->key && 2232 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2233 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2234 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2235 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2236 ieee80211_has_protected(fc); 2237 } 2238 2239 static ieee80211_rx_result debug_noinline 2240 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2241 { 2242 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2243 struct ieee80211_hdr *hdr; 2244 u16 sc; 2245 __le16 fc; 2246 unsigned int frag, seq; 2247 struct ieee80211_fragment_entry *entry; 2248 struct sk_buff *skb; 2249 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2250 2251 hdr = (struct ieee80211_hdr *)rx->skb->data; 2252 fc = hdr->frame_control; 2253 2254 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2255 return RX_CONTINUE; 2256 2257 sc = le16_to_cpu(hdr->seq_ctrl); 2258 frag = sc & IEEE80211_SCTL_FRAG; 2259 2260 if (rx->sta) 2261 cache = &rx->sta->frags; 2262 2263 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2264 goto out; 2265 2266 if (is_multicast_ether_addr(hdr->addr1)) 2267 return RX_DROP_MONITOR; 2268 2269 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2270 2271 if (skb_linearize(rx->skb)) 2272 return RX_DROP_UNUSABLE; 2273 2274 /* 2275 * skb_linearize() might change the skb->data and 2276 * previously cached variables (in this case, hdr) need to 2277 * be refreshed with the new data. 2278 */ 2279 hdr = (struct ieee80211_hdr *)rx->skb->data; 2280 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2281 2282 if (frag == 0) { 2283 /* This is the first fragment of a new frame. */ 2284 entry = ieee80211_reassemble_add(cache, frag, seq, 2285 rx->seqno_idx, &(rx->skb)); 2286 if (requires_sequential_pn(rx, fc)) { 2287 int queue = rx->security_idx; 2288 2289 /* Store CCMP/GCMP PN so that we can verify that the 2290 * next fragment has a sequential PN value. 2291 */ 2292 entry->check_sequential_pn = true; 2293 entry->is_protected = true; 2294 entry->key_color = rx->key->color; 2295 memcpy(entry->last_pn, 2296 rx->key->u.ccmp.rx_pn[queue], 2297 IEEE80211_CCMP_PN_LEN); 2298 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2299 u.ccmp.rx_pn) != 2300 offsetof(struct ieee80211_key, 2301 u.gcmp.rx_pn)); 2302 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2303 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2304 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2305 IEEE80211_GCMP_PN_LEN); 2306 } else if (rx->key && 2307 (ieee80211_has_protected(fc) || 2308 (status->flag & RX_FLAG_DECRYPTED))) { 2309 entry->is_protected = true; 2310 entry->key_color = rx->key->color; 2311 } 2312 return RX_QUEUED; 2313 } 2314 2315 /* This is a fragment for a frame that should already be pending in 2316 * fragment cache. Add this fragment to the end of the pending entry. 2317 */ 2318 entry = ieee80211_reassemble_find(cache, frag, seq, 2319 rx->seqno_idx, hdr); 2320 if (!entry) { 2321 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2322 return RX_DROP_MONITOR; 2323 } 2324 2325 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2326 * MPDU PN values are not incrementing in steps of 1." 2327 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2328 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2329 */ 2330 if (entry->check_sequential_pn) { 2331 int i; 2332 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2333 2334 if (!requires_sequential_pn(rx, fc)) 2335 return RX_DROP_UNUSABLE; 2336 2337 /* Prevent mixed key and fragment cache attacks */ 2338 if (entry->key_color != rx->key->color) 2339 return RX_DROP_UNUSABLE; 2340 2341 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2342 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2343 pn[i]++; 2344 if (pn[i]) 2345 break; 2346 } 2347 2348 rpn = rx->ccm_gcm.pn; 2349 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2350 return RX_DROP_UNUSABLE; 2351 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2352 } else if (entry->is_protected && 2353 (!rx->key || 2354 (!ieee80211_has_protected(fc) && 2355 !(status->flag & RX_FLAG_DECRYPTED)) || 2356 rx->key->color != entry->key_color)) { 2357 /* Drop this as a mixed key or fragment cache attack, even 2358 * if for TKIP Michael MIC should protect us, and WEP is a 2359 * lost cause anyway. 2360 */ 2361 return RX_DROP_UNUSABLE; 2362 } else if (entry->is_protected && rx->key && 2363 entry->key_color != rx->key->color && 2364 (status->flag & RX_FLAG_DECRYPTED)) { 2365 return RX_DROP_UNUSABLE; 2366 } 2367 2368 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2369 __skb_queue_tail(&entry->skb_list, rx->skb); 2370 entry->last_frag = frag; 2371 entry->extra_len += rx->skb->len; 2372 if (ieee80211_has_morefrags(fc)) { 2373 rx->skb = NULL; 2374 return RX_QUEUED; 2375 } 2376 2377 rx->skb = __skb_dequeue(&entry->skb_list); 2378 if (skb_tailroom(rx->skb) < entry->extra_len) { 2379 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2380 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2381 GFP_ATOMIC))) { 2382 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2383 __skb_queue_purge(&entry->skb_list); 2384 return RX_DROP_UNUSABLE; 2385 } 2386 } 2387 while ((skb = __skb_dequeue(&entry->skb_list))) { 2388 skb_put_data(rx->skb, skb->data, skb->len); 2389 dev_kfree_skb(skb); 2390 } 2391 2392 out: 2393 ieee80211_led_rx(rx->local); 2394 if (rx->sta) 2395 rx->link_sta->rx_stats.packets++; 2396 return RX_CONTINUE; 2397 } 2398 2399 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2400 { 2401 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2402 return -EACCES; 2403 2404 return 0; 2405 } 2406 2407 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2408 { 2409 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 2410 struct sk_buff *skb = rx->skb; 2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2412 2413 /* 2414 * Pass through unencrypted frames if the hardware has 2415 * decrypted them already. 2416 */ 2417 if (status->flag & RX_FLAG_DECRYPTED) 2418 return 0; 2419 2420 /* check mesh EAPOL frames first */ 2421 if (unlikely(rx->sta && ieee80211_vif_is_mesh(&rx->sdata->vif) && 2422 ieee80211_is_data(fc))) { 2423 struct ieee80211s_hdr *mesh_hdr; 2424 u16 hdr_len = ieee80211_hdrlen(fc); 2425 u16 ethertype_offset; 2426 __be16 ethertype; 2427 2428 if (!ether_addr_equal(hdr->addr1, rx->sdata->vif.addr)) 2429 goto drop_check; 2430 2431 /* make sure fixed part of mesh header is there, also checks skb len */ 2432 if (!pskb_may_pull(rx->skb, hdr_len + 6)) 2433 goto drop_check; 2434 2435 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + hdr_len); 2436 ethertype_offset = hdr_len + ieee80211_get_mesh_hdrlen(mesh_hdr) + 2437 sizeof(rfc1042_header); 2438 2439 if (skb_copy_bits(rx->skb, ethertype_offset, ðertype, 2) == 0 && 2440 ethertype == rx->sdata->control_port_protocol) 2441 return 0; 2442 } 2443 2444 drop_check: 2445 /* Drop unencrypted frames if key is set. */ 2446 if (unlikely(!ieee80211_has_protected(fc) && 2447 !ieee80211_is_any_nullfunc(fc) && 2448 ieee80211_is_data(fc) && rx->key)) 2449 return -EACCES; 2450 2451 return 0; 2452 } 2453 2454 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2455 { 2456 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2457 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2458 __le16 fc = hdr->frame_control; 2459 2460 /* 2461 * Pass through unencrypted frames if the hardware has 2462 * decrypted them already. 2463 */ 2464 if (status->flag & RX_FLAG_DECRYPTED) 2465 return 0; 2466 2467 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2468 if (unlikely(!ieee80211_has_protected(fc) && 2469 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 2470 rx->key)) { 2471 if (ieee80211_is_deauth(fc) || 2472 ieee80211_is_disassoc(fc)) 2473 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2474 rx->skb->data, 2475 rx->skb->len); 2476 return -EACCES; 2477 } 2478 /* BIP does not use Protected field, so need to check MMIE */ 2479 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2480 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2481 if (ieee80211_is_deauth(fc) || 2482 ieee80211_is_disassoc(fc)) 2483 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2484 rx->skb->data, 2485 rx->skb->len); 2486 return -EACCES; 2487 } 2488 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2489 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2490 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2491 rx->skb->data, 2492 rx->skb->len); 2493 return -EACCES; 2494 } 2495 /* 2496 * When using MFP, Action frames are not allowed prior to 2497 * having configured keys. 2498 */ 2499 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2500 ieee80211_is_robust_mgmt_frame(rx->skb))) 2501 return -EACCES; 2502 } 2503 2504 return 0; 2505 } 2506 2507 static int 2508 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2509 { 2510 struct ieee80211_sub_if_data *sdata = rx->sdata; 2511 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2512 bool check_port_control = false; 2513 struct ethhdr *ehdr; 2514 int ret; 2515 2516 *port_control = false; 2517 if (ieee80211_has_a4(hdr->frame_control) && 2518 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2519 return -1; 2520 2521 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2522 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2523 2524 if (!sdata->u.mgd.use_4addr) 2525 return -1; 2526 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2527 check_port_control = true; 2528 } 2529 2530 if (is_multicast_ether_addr(hdr->addr1) && 2531 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2532 return -1; 2533 2534 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2535 if (ret < 0) 2536 return ret; 2537 2538 ehdr = (struct ethhdr *) rx->skb->data; 2539 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2540 *port_control = true; 2541 else if (check_port_control) 2542 return -1; 2543 2544 return 0; 2545 } 2546 2547 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2548 const u8 *addr, int *out_link_id) 2549 { 2550 unsigned int link_id; 2551 2552 /* non-MLO, or MLD address replaced by hardware */ 2553 if (ether_addr_equal(sdata->vif.addr, addr)) 2554 return true; 2555 2556 if (!sdata->vif.valid_links) 2557 return false; 2558 2559 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2560 struct ieee80211_bss_conf *conf; 2561 2562 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2563 2564 if (!conf) 2565 continue; 2566 if (ether_addr_equal(conf->addr, addr)) { 2567 if (out_link_id) 2568 *out_link_id = link_id; 2569 return true; 2570 } 2571 } 2572 2573 return false; 2574 } 2575 2576 /* 2577 * requires that rx->skb is a frame with ethernet header 2578 */ 2579 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2580 { 2581 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2582 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2583 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2584 2585 /* 2586 * Allow EAPOL frames to us/the PAE group address regardless of 2587 * whether the frame was encrypted or not, and always disallow 2588 * all other destination addresses for them. 2589 */ 2590 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2591 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2592 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2593 2594 if (ieee80211_802_1x_port_control(rx) || 2595 ieee80211_drop_unencrypted(rx, fc)) 2596 return false; 2597 2598 return true; 2599 } 2600 2601 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2602 struct ieee80211_rx_data *rx) 2603 { 2604 struct ieee80211_sub_if_data *sdata = rx->sdata; 2605 struct net_device *dev = sdata->dev; 2606 2607 if (unlikely((skb->protocol == sdata->control_port_protocol || 2608 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2609 !sdata->control_port_no_preauth)) && 2610 sdata->control_port_over_nl80211)) { 2611 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2612 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2613 2614 cfg80211_rx_control_port(dev, skb, noencrypt); 2615 dev_kfree_skb(skb); 2616 } else { 2617 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2618 2619 memset(skb->cb, 0, sizeof(skb->cb)); 2620 2621 /* 2622 * 802.1X over 802.11 requires that the authenticator address 2623 * be used for EAPOL frames. However, 802.1X allows the use of 2624 * the PAE group address instead. If the interface is part of 2625 * a bridge and we pass the frame with the PAE group address, 2626 * then the bridge will forward it to the network (even if the 2627 * client was not associated yet), which isn't supposed to 2628 * happen. 2629 * To avoid that, rewrite the destination address to our own 2630 * address, so that the authenticator (e.g. hostapd) will see 2631 * the frame, but bridge won't forward it anywhere else. Note 2632 * that due to earlier filtering, the only other address can 2633 * be the PAE group address, unless the hardware allowed them 2634 * through in 802.3 offloaded mode. 2635 */ 2636 if (unlikely(skb->protocol == sdata->control_port_protocol && 2637 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2638 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2639 2640 /* deliver to local stack */ 2641 if (rx->list) 2642 list_add_tail(&skb->list, rx->list); 2643 else 2644 netif_receive_skb(skb); 2645 } 2646 } 2647 2648 /* 2649 * requires that rx->skb is a frame with ethernet header 2650 */ 2651 static void 2652 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2653 { 2654 struct ieee80211_sub_if_data *sdata = rx->sdata; 2655 struct net_device *dev = sdata->dev; 2656 struct sk_buff *skb, *xmit_skb; 2657 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2658 struct sta_info *dsta; 2659 2660 skb = rx->skb; 2661 xmit_skb = NULL; 2662 2663 dev_sw_netstats_rx_add(dev, skb->len); 2664 2665 if (rx->sta) { 2666 /* The seqno index has the same property as needed 2667 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2668 * for non-QoS-data frames. Here we know it's a data 2669 * frame, so count MSDUs. 2670 */ 2671 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2672 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2673 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2674 } 2675 2676 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2677 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2678 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2679 ehdr->h_proto != rx->sdata->control_port_protocol && 2680 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2681 if (is_multicast_ether_addr(ehdr->h_dest) && 2682 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2683 /* 2684 * send multicast frames both to higher layers in 2685 * local net stack and back to the wireless medium 2686 */ 2687 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2688 if (!xmit_skb) 2689 net_info_ratelimited("%s: failed to clone multicast frame\n", 2690 dev->name); 2691 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2692 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2693 dsta = sta_info_get(sdata, ehdr->h_dest); 2694 if (dsta) { 2695 /* 2696 * The destination station is associated to 2697 * this AP (in this VLAN), so send the frame 2698 * directly to it and do not pass it to local 2699 * net stack. 2700 */ 2701 xmit_skb = skb; 2702 skb = NULL; 2703 } 2704 } 2705 } 2706 2707 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2708 if (skb) { 2709 /* 'align' will only take the values 0 or 2 here since all 2710 * frames are required to be aligned to 2-byte boundaries 2711 * when being passed to mac80211; the code here works just 2712 * as well if that isn't true, but mac80211 assumes it can 2713 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2714 */ 2715 int align; 2716 2717 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2718 if (align) { 2719 if (WARN_ON(skb_headroom(skb) < 3)) { 2720 dev_kfree_skb(skb); 2721 skb = NULL; 2722 } else { 2723 u8 *data = skb->data; 2724 size_t len = skb_headlen(skb); 2725 skb->data -= align; 2726 memmove(skb->data, data, len); 2727 skb_set_tail_pointer(skb, len); 2728 } 2729 } 2730 } 2731 #endif 2732 2733 if (skb) { 2734 skb->protocol = eth_type_trans(skb, dev); 2735 ieee80211_deliver_skb_to_local_stack(skb, rx); 2736 } 2737 2738 if (xmit_skb) { 2739 /* 2740 * Send to wireless media and increase priority by 256 to 2741 * keep the received priority instead of reclassifying 2742 * the frame (see cfg80211_classify8021d). 2743 */ 2744 xmit_skb->priority += 256; 2745 xmit_skb->protocol = htons(ETH_P_802_3); 2746 skb_reset_network_header(xmit_skb); 2747 skb_reset_mac_header(xmit_skb); 2748 dev_queue_xmit(xmit_skb); 2749 } 2750 } 2751 2752 static ieee80211_rx_result debug_noinline 2753 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2754 { 2755 struct net_device *dev = rx->sdata->dev; 2756 struct sk_buff *skb = rx->skb; 2757 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2758 __le16 fc = hdr->frame_control; 2759 struct sk_buff_head frame_list; 2760 struct ethhdr ethhdr; 2761 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2762 2763 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2764 check_da = NULL; 2765 check_sa = NULL; 2766 } else switch (rx->sdata->vif.type) { 2767 case NL80211_IFTYPE_AP: 2768 case NL80211_IFTYPE_AP_VLAN: 2769 check_da = NULL; 2770 break; 2771 case NL80211_IFTYPE_STATION: 2772 if (!rx->sta || 2773 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 2774 check_sa = NULL; 2775 break; 2776 case NL80211_IFTYPE_MESH_POINT: 2777 check_sa = NULL; 2778 break; 2779 default: 2780 break; 2781 } 2782 2783 skb->dev = dev; 2784 __skb_queue_head_init(&frame_list); 2785 2786 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 2787 rx->sdata->vif.addr, 2788 rx->sdata->vif.type, 2789 data_offset, true)) 2790 return RX_DROP_UNUSABLE; 2791 2792 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2793 rx->sdata->vif.type, 2794 rx->local->hw.extra_tx_headroom, 2795 check_da, check_sa); 2796 2797 while (!skb_queue_empty(&frame_list)) { 2798 rx->skb = __skb_dequeue(&frame_list); 2799 2800 if (!ieee80211_frame_allowed(rx, fc)) { 2801 dev_kfree_skb(rx->skb); 2802 continue; 2803 } 2804 2805 ieee80211_deliver_skb(rx); 2806 } 2807 2808 return RX_QUEUED; 2809 } 2810 2811 static ieee80211_rx_result debug_noinline 2812 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2813 { 2814 struct sk_buff *skb = rx->skb; 2815 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2816 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2817 __le16 fc = hdr->frame_control; 2818 2819 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2820 return RX_CONTINUE; 2821 2822 if (unlikely(!ieee80211_is_data(fc))) 2823 return RX_CONTINUE; 2824 2825 if (unlikely(!ieee80211_is_data_present(fc))) 2826 return RX_DROP_MONITOR; 2827 2828 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2829 switch (rx->sdata->vif.type) { 2830 case NL80211_IFTYPE_AP_VLAN: 2831 if (!rx->sdata->u.vlan.sta) 2832 return RX_DROP_UNUSABLE; 2833 break; 2834 case NL80211_IFTYPE_STATION: 2835 if (!rx->sdata->u.mgd.use_4addr) 2836 return RX_DROP_UNUSABLE; 2837 break; 2838 default: 2839 return RX_DROP_UNUSABLE; 2840 } 2841 } 2842 2843 if (is_multicast_ether_addr(hdr->addr1)) 2844 return RX_DROP_UNUSABLE; 2845 2846 if (rx->key) { 2847 /* 2848 * We should not receive A-MSDUs on pre-HT connections, 2849 * and HT connections cannot use old ciphers. Thus drop 2850 * them, as in those cases we couldn't even have SPP 2851 * A-MSDUs or such. 2852 */ 2853 switch (rx->key->conf.cipher) { 2854 case WLAN_CIPHER_SUITE_WEP40: 2855 case WLAN_CIPHER_SUITE_WEP104: 2856 case WLAN_CIPHER_SUITE_TKIP: 2857 return RX_DROP_UNUSABLE; 2858 default: 2859 break; 2860 } 2861 } 2862 2863 return __ieee80211_rx_h_amsdu(rx, 0); 2864 } 2865 2866 #ifdef CONFIG_MAC80211_MESH 2867 static ieee80211_rx_result 2868 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2869 { 2870 struct ieee80211_hdr *fwd_hdr, *hdr; 2871 struct ieee80211_tx_info *info; 2872 struct ieee80211s_hdr *mesh_hdr; 2873 struct sk_buff *skb = rx->skb, *fwd_skb; 2874 struct ieee80211_local *local = rx->local; 2875 struct ieee80211_sub_if_data *sdata = rx->sdata; 2876 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2877 u16 ac, q, hdrlen; 2878 int tailroom = 0; 2879 2880 hdr = (struct ieee80211_hdr *) skb->data; 2881 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2882 2883 /* make sure fixed part of mesh header is there, also checks skb len */ 2884 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2885 return RX_DROP_MONITOR; 2886 2887 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2888 2889 /* make sure full mesh header is there, also checks skb len */ 2890 if (!pskb_may_pull(rx->skb, 2891 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2892 return RX_DROP_MONITOR; 2893 2894 /* reload pointers */ 2895 hdr = (struct ieee80211_hdr *) skb->data; 2896 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2897 2898 if (ieee80211_drop_unencrypted(rx, hdr->frame_control)) 2899 return RX_DROP_MONITOR; 2900 2901 /* frame is in RMC, don't forward */ 2902 if (ieee80211_is_data(hdr->frame_control) && 2903 is_multicast_ether_addr(hdr->addr1) && 2904 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2905 return RX_DROP_MONITOR; 2906 2907 if (!ieee80211_is_data(hdr->frame_control)) 2908 return RX_CONTINUE; 2909 2910 if (!mesh_hdr->ttl) 2911 return RX_DROP_MONITOR; 2912 2913 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2914 struct mesh_path *mppath; 2915 char *proxied_addr; 2916 char *mpp_addr; 2917 2918 if (is_multicast_ether_addr(hdr->addr1)) { 2919 mpp_addr = hdr->addr3; 2920 proxied_addr = mesh_hdr->eaddr1; 2921 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) == 2922 MESH_FLAGS_AE_A5_A6) { 2923 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2924 mpp_addr = hdr->addr4; 2925 proxied_addr = mesh_hdr->eaddr2; 2926 } else { 2927 return RX_DROP_MONITOR; 2928 } 2929 2930 rcu_read_lock(); 2931 mppath = mpp_path_lookup(sdata, proxied_addr); 2932 if (!mppath) { 2933 mpp_path_add(sdata, proxied_addr, mpp_addr); 2934 } else { 2935 spin_lock_bh(&mppath->state_lock); 2936 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2937 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2938 mppath->exp_time = jiffies; 2939 spin_unlock_bh(&mppath->state_lock); 2940 } 2941 rcu_read_unlock(); 2942 } 2943 2944 /* Frame has reached destination. Don't forward */ 2945 if (!is_multicast_ether_addr(hdr->addr1) && 2946 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2947 return RX_CONTINUE; 2948 2949 ac = ieee802_1d_to_ac[skb->priority]; 2950 q = sdata->vif.hw_queue[ac]; 2951 if (ieee80211_queue_stopped(&local->hw, q)) { 2952 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2953 return RX_DROP_MONITOR; 2954 } 2955 skb_set_queue_mapping(skb, ac); 2956 2957 if (!--mesh_hdr->ttl) { 2958 if (!is_multicast_ether_addr(hdr->addr1)) 2959 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, 2960 dropped_frames_ttl); 2961 goto out; 2962 } 2963 2964 if (!ifmsh->mshcfg.dot11MeshForwarding) 2965 goto out; 2966 2967 if (sdata->crypto_tx_tailroom_needed_cnt) 2968 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2969 2970 fwd_skb = skb_copy_expand(skb, local->tx_headroom + 2971 IEEE80211_ENCRYPT_HEADROOM, 2972 tailroom, GFP_ATOMIC); 2973 if (!fwd_skb) 2974 goto out; 2975 2976 fwd_skb->dev = sdata->dev; 2977 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2978 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2979 info = IEEE80211_SKB_CB(fwd_skb); 2980 memset(info, 0, sizeof(*info)); 2981 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2982 info->control.vif = &rx->sdata->vif; 2983 info->control.jiffies = jiffies; 2984 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2985 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2986 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2987 /* update power mode indication when forwarding */ 2988 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2989 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2990 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2991 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2992 } else { 2993 /* unable to resolve next hop */ 2994 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2995 fwd_hdr->addr3, 0, 2996 WLAN_REASON_MESH_PATH_NOFORWARD, 2997 fwd_hdr->addr2); 2998 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2999 kfree_skb(fwd_skb); 3000 return RX_DROP_MONITOR; 3001 } 3002 3003 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 3004 ieee80211_add_pending_skb(local, fwd_skb); 3005 out: 3006 if (is_multicast_ether_addr(hdr->addr1)) 3007 return RX_CONTINUE; 3008 return RX_DROP_MONITOR; 3009 } 3010 #endif 3011 3012 static ieee80211_rx_result debug_noinline 3013 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3014 { 3015 struct ieee80211_sub_if_data *sdata = rx->sdata; 3016 struct ieee80211_local *local = rx->local; 3017 struct net_device *dev = sdata->dev; 3018 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3019 __le16 fc = hdr->frame_control; 3020 bool port_control; 3021 int err; 3022 3023 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3024 return RX_CONTINUE; 3025 3026 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3027 return RX_DROP_MONITOR; 3028 3029 /* 3030 * Send unexpected-4addr-frame event to hostapd. For older versions, 3031 * also drop the frame to cooked monitor interfaces. 3032 */ 3033 if (ieee80211_has_a4(hdr->frame_control) && 3034 sdata->vif.type == NL80211_IFTYPE_AP) { 3035 if (rx->sta && 3036 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3037 cfg80211_rx_unexpected_4addr_frame( 3038 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3039 return RX_DROP_MONITOR; 3040 } 3041 3042 err = __ieee80211_data_to_8023(rx, &port_control); 3043 if (unlikely(err)) 3044 return RX_DROP_UNUSABLE; 3045 3046 if (!ieee80211_frame_allowed(rx, fc)) 3047 return RX_DROP_MONITOR; 3048 3049 /* directly handle TDLS channel switch requests/responses */ 3050 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3051 cpu_to_be16(ETH_P_TDLS))) { 3052 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3053 3054 if (pskb_may_pull(rx->skb, 3055 offsetof(struct ieee80211_tdls_data, u)) && 3056 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3057 tf->category == WLAN_CATEGORY_TDLS && 3058 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3059 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3060 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3061 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3062 rx->sta, rx->skb); 3063 return RX_QUEUED; 3064 } 3065 } 3066 3067 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3068 unlikely(port_control) && sdata->bss) { 3069 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3070 u.ap); 3071 dev = sdata->dev; 3072 rx->sdata = sdata; 3073 } 3074 3075 rx->skb->dev = dev; 3076 3077 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3078 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3079 !is_multicast_ether_addr( 3080 ((struct ethhdr *)rx->skb->data)->h_dest) && 3081 (!local->scanning && 3082 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3083 mod_timer(&local->dynamic_ps_timer, jiffies + 3084 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3085 3086 ieee80211_deliver_skb(rx); 3087 3088 return RX_QUEUED; 3089 } 3090 3091 static ieee80211_rx_result debug_noinline 3092 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3093 { 3094 struct sk_buff *skb = rx->skb; 3095 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3096 struct tid_ampdu_rx *tid_agg_rx; 3097 u16 start_seq_num; 3098 u16 tid; 3099 3100 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3101 return RX_CONTINUE; 3102 3103 if (ieee80211_is_back_req(bar->frame_control)) { 3104 struct { 3105 __le16 control, start_seq_num; 3106 } __packed bar_data; 3107 struct ieee80211_event event = { 3108 .type = BAR_RX_EVENT, 3109 }; 3110 3111 if (!rx->sta) 3112 return RX_DROP_MONITOR; 3113 3114 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3115 &bar_data, sizeof(bar_data))) 3116 return RX_DROP_MONITOR; 3117 3118 tid = le16_to_cpu(bar_data.control) >> 12; 3119 3120 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3121 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3122 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3123 WLAN_BACK_RECIPIENT, 3124 WLAN_REASON_QSTA_REQUIRE_SETUP); 3125 3126 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3127 if (!tid_agg_rx) 3128 return RX_DROP_MONITOR; 3129 3130 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3131 event.u.ba.tid = tid; 3132 event.u.ba.ssn = start_seq_num; 3133 event.u.ba.sta = &rx->sta->sta; 3134 3135 /* reset session timer */ 3136 if (tid_agg_rx->timeout) 3137 mod_timer(&tid_agg_rx->session_timer, 3138 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3139 3140 spin_lock(&tid_agg_rx->reorder_lock); 3141 /* release stored frames up to start of BAR */ 3142 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3143 start_seq_num, frames); 3144 spin_unlock(&tid_agg_rx->reorder_lock); 3145 3146 drv_event_callback(rx->local, rx->sdata, &event); 3147 3148 kfree_skb(skb); 3149 return RX_QUEUED; 3150 } 3151 3152 /* 3153 * After this point, we only want management frames, 3154 * so we can drop all remaining control frames to 3155 * cooked monitor interfaces. 3156 */ 3157 return RX_DROP_MONITOR; 3158 } 3159 3160 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3161 struct ieee80211_mgmt *mgmt, 3162 size_t len) 3163 { 3164 struct ieee80211_local *local = sdata->local; 3165 struct sk_buff *skb; 3166 struct ieee80211_mgmt *resp; 3167 3168 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3169 /* Not to own unicast address */ 3170 return; 3171 } 3172 3173 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3174 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3175 /* Not from the current AP or not associated yet. */ 3176 return; 3177 } 3178 3179 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3180 /* Too short SA Query request frame */ 3181 return; 3182 } 3183 3184 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3185 if (skb == NULL) 3186 return; 3187 3188 skb_reserve(skb, local->hw.extra_tx_headroom); 3189 resp = skb_put_zero(skb, 24); 3190 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3191 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3192 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3193 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3194 IEEE80211_STYPE_ACTION); 3195 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3196 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3197 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3198 memcpy(resp->u.action.u.sa_query.trans_id, 3199 mgmt->u.action.u.sa_query.trans_id, 3200 WLAN_SA_QUERY_TR_ID_LEN); 3201 3202 ieee80211_tx_skb(sdata, skb); 3203 } 3204 3205 static void 3206 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3207 { 3208 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3209 const struct element *ie; 3210 size_t baselen; 3211 3212 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3213 NL80211_EXT_FEATURE_BSS_COLOR)) 3214 return; 3215 3216 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3217 return; 3218 3219 if (rx->sdata->vif.bss_conf.csa_active) 3220 return; 3221 3222 baselen = mgmt->u.beacon.variable - rx->skb->data; 3223 if (baselen > rx->skb->len) 3224 return; 3225 3226 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3227 mgmt->u.beacon.variable, 3228 rx->skb->len - baselen); 3229 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3230 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3231 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3232 const struct ieee80211_he_operation *he_oper; 3233 u8 color; 3234 3235 he_oper = (void *)(ie->data + 1); 3236 if (le32_get_bits(he_oper->he_oper_params, 3237 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3238 return; 3239 3240 color = le32_get_bits(he_oper->he_oper_params, 3241 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3242 if (color == bss_conf->he_bss_color.color) 3243 ieeee80211_obss_color_collision_notify(&rx->sdata->vif, 3244 BIT_ULL(color), 3245 GFP_ATOMIC); 3246 } 3247 } 3248 3249 static ieee80211_rx_result debug_noinline 3250 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3251 { 3252 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3254 3255 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3256 return RX_CONTINUE; 3257 3258 /* 3259 * From here on, look only at management frames. 3260 * Data and control frames are already handled, 3261 * and unknown (reserved) frames are useless. 3262 */ 3263 if (rx->skb->len < 24) 3264 return RX_DROP_MONITOR; 3265 3266 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3267 return RX_DROP_MONITOR; 3268 3269 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3270 ieee80211_is_beacon(mgmt->frame_control) && 3271 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3272 int sig = 0; 3273 3274 /* sw bss color collision detection */ 3275 ieee80211_rx_check_bss_color_collision(rx); 3276 3277 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3278 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3279 sig = status->signal; 3280 3281 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3282 rx->skb->data, rx->skb->len, 3283 ieee80211_rx_status_to_khz(status), 3284 sig); 3285 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3286 } 3287 3288 if (ieee80211_drop_unencrypted_mgmt(rx)) 3289 return RX_DROP_UNUSABLE; 3290 3291 return RX_CONTINUE; 3292 } 3293 3294 static bool 3295 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3296 { 3297 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3298 struct ieee80211_sub_if_data *sdata = rx->sdata; 3299 3300 /* TWT actions are only supported in AP for the moment */ 3301 if (sdata->vif.type != NL80211_IFTYPE_AP) 3302 return false; 3303 3304 if (!rx->local->ops->add_twt_setup) 3305 return false; 3306 3307 if (!sdata->vif.bss_conf.twt_responder) 3308 return false; 3309 3310 if (!rx->sta) 3311 return false; 3312 3313 switch (mgmt->u.action.u.s1g.action_code) { 3314 case WLAN_S1G_TWT_SETUP: { 3315 struct ieee80211_twt_setup *twt; 3316 3317 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3318 1 + /* action code */ 3319 sizeof(struct ieee80211_twt_setup) + 3320 2 /* TWT req_type agrt */) 3321 break; 3322 3323 twt = (void *)mgmt->u.action.u.s1g.variable; 3324 if (twt->element_id != WLAN_EID_S1G_TWT) 3325 break; 3326 3327 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3328 4 + /* action code + token + tlv */ 3329 twt->length) 3330 break; 3331 3332 return true; /* queue the frame */ 3333 } 3334 case WLAN_S1G_TWT_TEARDOWN: 3335 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3336 break; 3337 3338 return true; /* queue the frame */ 3339 default: 3340 break; 3341 } 3342 3343 return false; 3344 } 3345 3346 static ieee80211_rx_result debug_noinline 3347 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3348 { 3349 struct ieee80211_local *local = rx->local; 3350 struct ieee80211_sub_if_data *sdata = rx->sdata; 3351 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3352 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3353 int len = rx->skb->len; 3354 3355 if (!ieee80211_is_action(mgmt->frame_control)) 3356 return RX_CONTINUE; 3357 3358 /* drop too small frames */ 3359 if (len < IEEE80211_MIN_ACTION_SIZE) 3360 return RX_DROP_UNUSABLE; 3361 3362 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3363 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3364 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3365 return RX_DROP_UNUSABLE; 3366 3367 switch (mgmt->u.action.category) { 3368 case WLAN_CATEGORY_HT: 3369 /* reject HT action frames from stations not supporting HT */ 3370 if (!rx->link_sta->pub->ht_cap.ht_supported) 3371 goto invalid; 3372 3373 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3374 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3375 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3376 sdata->vif.type != NL80211_IFTYPE_AP && 3377 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3378 break; 3379 3380 /* verify action & smps_control/chanwidth are present */ 3381 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3382 goto invalid; 3383 3384 switch (mgmt->u.action.u.ht_smps.action) { 3385 case WLAN_HT_ACTION_SMPS: { 3386 struct ieee80211_supported_band *sband; 3387 enum ieee80211_smps_mode smps_mode; 3388 struct sta_opmode_info sta_opmode = {}; 3389 3390 if (sdata->vif.type != NL80211_IFTYPE_AP && 3391 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3392 goto handled; 3393 3394 /* convert to HT capability */ 3395 switch (mgmt->u.action.u.ht_smps.smps_control) { 3396 case WLAN_HT_SMPS_CONTROL_DISABLED: 3397 smps_mode = IEEE80211_SMPS_OFF; 3398 break; 3399 case WLAN_HT_SMPS_CONTROL_STATIC: 3400 smps_mode = IEEE80211_SMPS_STATIC; 3401 break; 3402 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3403 smps_mode = IEEE80211_SMPS_DYNAMIC; 3404 break; 3405 default: 3406 goto invalid; 3407 } 3408 3409 /* if no change do nothing */ 3410 if (rx->link_sta->pub->smps_mode == smps_mode) 3411 goto handled; 3412 rx->link_sta->pub->smps_mode = smps_mode; 3413 sta_opmode.smps_mode = 3414 ieee80211_smps_mode_to_smps_mode(smps_mode); 3415 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3416 3417 sband = rx->local->hw.wiphy->bands[status->band]; 3418 3419 rate_control_rate_update(local, sband, rx->sta, 0, 3420 IEEE80211_RC_SMPS_CHANGED); 3421 cfg80211_sta_opmode_change_notify(sdata->dev, 3422 rx->sta->addr, 3423 &sta_opmode, 3424 GFP_ATOMIC); 3425 goto handled; 3426 } 3427 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3428 struct ieee80211_supported_band *sband; 3429 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3430 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3431 struct sta_opmode_info sta_opmode = {}; 3432 3433 /* If it doesn't support 40 MHz it can't change ... */ 3434 if (!(rx->link_sta->pub->ht_cap.cap & 3435 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3436 goto handled; 3437 3438 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3439 max_bw = IEEE80211_STA_RX_BW_20; 3440 else 3441 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3442 3443 /* set cur_max_bandwidth and recalc sta bw */ 3444 rx->link_sta->cur_max_bandwidth = max_bw; 3445 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3446 3447 if (rx->link_sta->pub->bandwidth == new_bw) 3448 goto handled; 3449 3450 rx->link_sta->pub->bandwidth = new_bw; 3451 sband = rx->local->hw.wiphy->bands[status->band]; 3452 sta_opmode.bw = 3453 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3454 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3455 3456 rate_control_rate_update(local, sband, rx->sta, 0, 3457 IEEE80211_RC_BW_CHANGED); 3458 cfg80211_sta_opmode_change_notify(sdata->dev, 3459 rx->sta->addr, 3460 &sta_opmode, 3461 GFP_ATOMIC); 3462 goto handled; 3463 } 3464 default: 3465 goto invalid; 3466 } 3467 3468 break; 3469 case WLAN_CATEGORY_PUBLIC: 3470 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3471 goto invalid; 3472 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3473 break; 3474 if (!rx->sta) 3475 break; 3476 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3477 break; 3478 if (mgmt->u.action.u.ext_chan_switch.action_code != 3479 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3480 break; 3481 if (len < offsetof(struct ieee80211_mgmt, 3482 u.action.u.ext_chan_switch.variable)) 3483 goto invalid; 3484 goto queue; 3485 case WLAN_CATEGORY_VHT: 3486 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3487 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3488 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3489 sdata->vif.type != NL80211_IFTYPE_AP && 3490 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3491 break; 3492 3493 /* verify action code is present */ 3494 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3495 goto invalid; 3496 3497 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3498 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3499 /* verify opmode is present */ 3500 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3501 goto invalid; 3502 goto queue; 3503 } 3504 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3505 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3506 goto invalid; 3507 goto queue; 3508 } 3509 default: 3510 break; 3511 } 3512 break; 3513 case WLAN_CATEGORY_BACK: 3514 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3515 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3516 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3517 sdata->vif.type != NL80211_IFTYPE_AP && 3518 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3519 break; 3520 3521 /* verify action_code is present */ 3522 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3523 break; 3524 3525 switch (mgmt->u.action.u.addba_req.action_code) { 3526 case WLAN_ACTION_ADDBA_REQ: 3527 if (len < (IEEE80211_MIN_ACTION_SIZE + 3528 sizeof(mgmt->u.action.u.addba_req))) 3529 goto invalid; 3530 break; 3531 case WLAN_ACTION_ADDBA_RESP: 3532 if (len < (IEEE80211_MIN_ACTION_SIZE + 3533 sizeof(mgmt->u.action.u.addba_resp))) 3534 goto invalid; 3535 break; 3536 case WLAN_ACTION_DELBA: 3537 if (len < (IEEE80211_MIN_ACTION_SIZE + 3538 sizeof(mgmt->u.action.u.delba))) 3539 goto invalid; 3540 break; 3541 default: 3542 goto invalid; 3543 } 3544 3545 goto queue; 3546 case WLAN_CATEGORY_SPECTRUM_MGMT: 3547 /* verify action_code is present */ 3548 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3549 break; 3550 3551 switch (mgmt->u.action.u.measurement.action_code) { 3552 case WLAN_ACTION_SPCT_MSR_REQ: 3553 if (status->band != NL80211_BAND_5GHZ) 3554 break; 3555 3556 if (len < (IEEE80211_MIN_ACTION_SIZE + 3557 sizeof(mgmt->u.action.u.measurement))) 3558 break; 3559 3560 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3561 break; 3562 3563 ieee80211_process_measurement_req(sdata, mgmt, len); 3564 goto handled; 3565 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3566 u8 *bssid; 3567 if (len < (IEEE80211_MIN_ACTION_SIZE + 3568 sizeof(mgmt->u.action.u.chan_switch))) 3569 break; 3570 3571 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3572 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3573 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3574 break; 3575 3576 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3577 bssid = sdata->deflink.u.mgd.bssid; 3578 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3579 bssid = sdata->u.ibss.bssid; 3580 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3581 bssid = mgmt->sa; 3582 else 3583 break; 3584 3585 if (!ether_addr_equal(mgmt->bssid, bssid)) 3586 break; 3587 3588 goto queue; 3589 } 3590 } 3591 break; 3592 case WLAN_CATEGORY_SELF_PROTECTED: 3593 if (len < (IEEE80211_MIN_ACTION_SIZE + 3594 sizeof(mgmt->u.action.u.self_prot.action_code))) 3595 break; 3596 3597 switch (mgmt->u.action.u.self_prot.action_code) { 3598 case WLAN_SP_MESH_PEERING_OPEN: 3599 case WLAN_SP_MESH_PEERING_CLOSE: 3600 case WLAN_SP_MESH_PEERING_CONFIRM: 3601 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3602 goto invalid; 3603 if (sdata->u.mesh.user_mpm) 3604 /* userspace handles this frame */ 3605 break; 3606 goto queue; 3607 case WLAN_SP_MGK_INFORM: 3608 case WLAN_SP_MGK_ACK: 3609 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3610 goto invalid; 3611 break; 3612 } 3613 break; 3614 case WLAN_CATEGORY_MESH_ACTION: 3615 if (len < (IEEE80211_MIN_ACTION_SIZE + 3616 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3617 break; 3618 3619 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3620 break; 3621 if (mesh_action_is_path_sel(mgmt) && 3622 !mesh_path_sel_is_hwmp(sdata)) 3623 break; 3624 goto queue; 3625 case WLAN_CATEGORY_S1G: 3626 switch (mgmt->u.action.u.s1g.action_code) { 3627 case WLAN_S1G_TWT_SETUP: 3628 case WLAN_S1G_TWT_TEARDOWN: 3629 if (ieee80211_process_rx_twt_action(rx)) 3630 goto queue; 3631 break; 3632 default: 3633 break; 3634 } 3635 break; 3636 } 3637 3638 return RX_CONTINUE; 3639 3640 invalid: 3641 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3642 /* will return in the next handlers */ 3643 return RX_CONTINUE; 3644 3645 handled: 3646 if (rx->sta) 3647 rx->link_sta->rx_stats.packets++; 3648 dev_kfree_skb(rx->skb); 3649 return RX_QUEUED; 3650 3651 queue: 3652 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3653 return RX_QUEUED; 3654 } 3655 3656 static ieee80211_rx_result debug_noinline 3657 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3658 { 3659 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3660 struct cfg80211_rx_info info = { 3661 .freq = ieee80211_rx_status_to_khz(status), 3662 .buf = rx->skb->data, 3663 .len = rx->skb->len, 3664 .link_id = rx->link_id, 3665 .have_link_id = rx->link_id >= 0, 3666 }; 3667 3668 /* skip known-bad action frames and return them in the next handler */ 3669 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3670 return RX_CONTINUE; 3671 3672 /* 3673 * Getting here means the kernel doesn't know how to handle 3674 * it, but maybe userspace does ... include returned frames 3675 * so userspace can register for those to know whether ones 3676 * it transmitted were processed or returned. 3677 */ 3678 3679 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3680 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3681 info.sig_dbm = status->signal; 3682 3683 if (ieee80211_is_timing_measurement(rx->skb) || 3684 ieee80211_is_ftm(rx->skb)) { 3685 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3686 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3687 } 3688 3689 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3690 if (rx->sta) 3691 rx->link_sta->rx_stats.packets++; 3692 dev_kfree_skb(rx->skb); 3693 return RX_QUEUED; 3694 } 3695 3696 return RX_CONTINUE; 3697 } 3698 3699 static ieee80211_rx_result debug_noinline 3700 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3701 { 3702 struct ieee80211_sub_if_data *sdata = rx->sdata; 3703 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3704 int len = rx->skb->len; 3705 3706 if (!ieee80211_is_action(mgmt->frame_control)) 3707 return RX_CONTINUE; 3708 3709 switch (mgmt->u.action.category) { 3710 case WLAN_CATEGORY_SA_QUERY: 3711 if (len < (IEEE80211_MIN_ACTION_SIZE + 3712 sizeof(mgmt->u.action.u.sa_query))) 3713 break; 3714 3715 switch (mgmt->u.action.u.sa_query.action) { 3716 case WLAN_ACTION_SA_QUERY_REQUEST: 3717 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3718 break; 3719 ieee80211_process_sa_query_req(sdata, mgmt, len); 3720 goto handled; 3721 } 3722 break; 3723 } 3724 3725 return RX_CONTINUE; 3726 3727 handled: 3728 if (rx->sta) 3729 rx->link_sta->rx_stats.packets++; 3730 dev_kfree_skb(rx->skb); 3731 return RX_QUEUED; 3732 } 3733 3734 static ieee80211_rx_result debug_noinline 3735 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3736 { 3737 struct ieee80211_local *local = rx->local; 3738 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3739 struct sk_buff *nskb; 3740 struct ieee80211_sub_if_data *sdata = rx->sdata; 3741 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3742 3743 if (!ieee80211_is_action(mgmt->frame_control)) 3744 return RX_CONTINUE; 3745 3746 /* 3747 * For AP mode, hostapd is responsible for handling any action 3748 * frames that we didn't handle, including returning unknown 3749 * ones. For all other modes we will return them to the sender, 3750 * setting the 0x80 bit in the action category, as required by 3751 * 802.11-2012 9.24.4. 3752 * Newer versions of hostapd shall also use the management frame 3753 * registration mechanisms, but older ones still use cooked 3754 * monitor interfaces so push all frames there. 3755 */ 3756 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3757 (sdata->vif.type == NL80211_IFTYPE_AP || 3758 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3759 return RX_DROP_MONITOR; 3760 3761 if (is_multicast_ether_addr(mgmt->da)) 3762 return RX_DROP_MONITOR; 3763 3764 /* do not return rejected action frames */ 3765 if (mgmt->u.action.category & 0x80) 3766 return RX_DROP_UNUSABLE; 3767 3768 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3769 GFP_ATOMIC); 3770 if (nskb) { 3771 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3772 3773 nmgmt->u.action.category |= 0x80; 3774 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3775 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3776 3777 memset(nskb->cb, 0, sizeof(nskb->cb)); 3778 3779 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3780 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3781 3782 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3783 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3784 IEEE80211_TX_CTL_NO_CCK_RATE; 3785 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3786 info->hw_queue = 3787 local->hw.offchannel_tx_hw_queue; 3788 } 3789 3790 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3791 status->band); 3792 } 3793 dev_kfree_skb(rx->skb); 3794 return RX_QUEUED; 3795 } 3796 3797 static ieee80211_rx_result debug_noinline 3798 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3799 { 3800 struct ieee80211_sub_if_data *sdata = rx->sdata; 3801 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3802 3803 if (!ieee80211_is_ext(hdr->frame_control)) 3804 return RX_CONTINUE; 3805 3806 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3807 return RX_DROP_MONITOR; 3808 3809 /* for now only beacons are ext, so queue them */ 3810 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3811 3812 return RX_QUEUED; 3813 } 3814 3815 static ieee80211_rx_result debug_noinline 3816 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3817 { 3818 struct ieee80211_sub_if_data *sdata = rx->sdata; 3819 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3820 __le16 stype; 3821 3822 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3823 3824 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3825 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3826 sdata->vif.type != NL80211_IFTYPE_OCB && 3827 sdata->vif.type != NL80211_IFTYPE_STATION) 3828 return RX_DROP_MONITOR; 3829 3830 switch (stype) { 3831 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3832 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3833 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3834 /* process for all: mesh, mlme, ibss */ 3835 break; 3836 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3837 if (is_multicast_ether_addr(mgmt->da) && 3838 !is_broadcast_ether_addr(mgmt->da)) 3839 return RX_DROP_MONITOR; 3840 3841 /* process only for station/IBSS */ 3842 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3843 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3844 return RX_DROP_MONITOR; 3845 break; 3846 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3847 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3848 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3849 if (is_multicast_ether_addr(mgmt->da) && 3850 !is_broadcast_ether_addr(mgmt->da)) 3851 return RX_DROP_MONITOR; 3852 3853 /* process only for station */ 3854 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3855 return RX_DROP_MONITOR; 3856 break; 3857 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3858 /* process only for ibss and mesh */ 3859 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3860 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3861 return RX_DROP_MONITOR; 3862 break; 3863 default: 3864 return RX_DROP_MONITOR; 3865 } 3866 3867 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3868 3869 return RX_QUEUED; 3870 } 3871 3872 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 3873 struct ieee80211_rate *rate) 3874 { 3875 struct ieee80211_sub_if_data *sdata; 3876 struct ieee80211_local *local = rx->local; 3877 struct sk_buff *skb = rx->skb, *skb2; 3878 struct net_device *prev_dev = NULL; 3879 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3880 int needed_headroom; 3881 3882 /* 3883 * If cooked monitor has been processed already, then 3884 * don't do it again. If not, set the flag. 3885 */ 3886 if (rx->flags & IEEE80211_RX_CMNTR) 3887 goto out_free_skb; 3888 rx->flags |= IEEE80211_RX_CMNTR; 3889 3890 /* If there are no cooked monitor interfaces, just free the SKB */ 3891 if (!local->cooked_mntrs) 3892 goto out_free_skb; 3893 3894 /* vendor data is long removed here */ 3895 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 3896 /* room for the radiotap header based on driver features */ 3897 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 3898 3899 if (skb_headroom(skb) < needed_headroom && 3900 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 3901 goto out_free_skb; 3902 3903 /* prepend radiotap information */ 3904 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3905 false); 3906 3907 skb_reset_mac_header(skb); 3908 skb->ip_summed = CHECKSUM_UNNECESSARY; 3909 skb->pkt_type = PACKET_OTHERHOST; 3910 skb->protocol = htons(ETH_P_802_2); 3911 3912 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3913 if (!ieee80211_sdata_running(sdata)) 3914 continue; 3915 3916 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3917 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 3918 continue; 3919 3920 if (prev_dev) { 3921 skb2 = skb_clone(skb, GFP_ATOMIC); 3922 if (skb2) { 3923 skb2->dev = prev_dev; 3924 netif_receive_skb(skb2); 3925 } 3926 } 3927 3928 prev_dev = sdata->dev; 3929 dev_sw_netstats_rx_add(sdata->dev, skb->len); 3930 } 3931 3932 if (prev_dev) { 3933 skb->dev = prev_dev; 3934 netif_receive_skb(skb); 3935 return; 3936 } 3937 3938 out_free_skb: 3939 dev_kfree_skb(skb); 3940 } 3941 3942 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3943 ieee80211_rx_result res) 3944 { 3945 switch (res) { 3946 case RX_DROP_MONITOR: 3947 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3948 if (rx->sta) 3949 rx->link_sta->rx_stats.dropped++; 3950 fallthrough; 3951 case RX_CONTINUE: { 3952 struct ieee80211_rate *rate = NULL; 3953 struct ieee80211_supported_band *sband; 3954 struct ieee80211_rx_status *status; 3955 3956 status = IEEE80211_SKB_RXCB((rx->skb)); 3957 3958 sband = rx->local->hw.wiphy->bands[status->band]; 3959 if (status->encoding == RX_ENC_LEGACY) 3960 rate = &sband->bitrates[status->rate_idx]; 3961 3962 ieee80211_rx_cooked_monitor(rx, rate); 3963 break; 3964 } 3965 case RX_DROP_UNUSABLE: 3966 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3967 if (rx->sta) 3968 rx->link_sta->rx_stats.dropped++; 3969 dev_kfree_skb(rx->skb); 3970 break; 3971 case RX_QUEUED: 3972 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3973 break; 3974 } 3975 } 3976 3977 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3978 struct sk_buff_head *frames) 3979 { 3980 ieee80211_rx_result res = RX_DROP_MONITOR; 3981 struct sk_buff *skb; 3982 3983 #define CALL_RXH(rxh) \ 3984 do { \ 3985 res = rxh(rx); \ 3986 if (res != RX_CONTINUE) \ 3987 goto rxh_next; \ 3988 } while (0) 3989 3990 /* Lock here to avoid hitting all of the data used in the RX 3991 * path (e.g. key data, station data, ...) concurrently when 3992 * a frame is released from the reorder buffer due to timeout 3993 * from the timer, potentially concurrently with RX from the 3994 * driver. 3995 */ 3996 spin_lock_bh(&rx->local->rx_path_lock); 3997 3998 while ((skb = __skb_dequeue(frames))) { 3999 /* 4000 * all the other fields are valid across frames 4001 * that belong to an aMPDU since they are on the 4002 * same TID from the same station 4003 */ 4004 rx->skb = skb; 4005 4006 if (WARN_ON_ONCE(!rx->link)) 4007 goto rxh_next; 4008 4009 CALL_RXH(ieee80211_rx_h_check_more_data); 4010 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4011 CALL_RXH(ieee80211_rx_h_sta_process); 4012 CALL_RXH(ieee80211_rx_h_decrypt); 4013 CALL_RXH(ieee80211_rx_h_defragment); 4014 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4015 /* must be after MMIC verify so header is counted in MPDU mic */ 4016 #ifdef CONFIG_MAC80211_MESH 4017 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 4018 CALL_RXH(ieee80211_rx_h_mesh_fwding); 4019 #endif 4020 CALL_RXH(ieee80211_rx_h_amsdu); 4021 CALL_RXH(ieee80211_rx_h_data); 4022 4023 /* special treatment -- needs the queue */ 4024 res = ieee80211_rx_h_ctrl(rx, frames); 4025 if (res != RX_CONTINUE) 4026 goto rxh_next; 4027 4028 CALL_RXH(ieee80211_rx_h_mgmt_check); 4029 CALL_RXH(ieee80211_rx_h_action); 4030 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4031 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4032 CALL_RXH(ieee80211_rx_h_action_return); 4033 CALL_RXH(ieee80211_rx_h_ext); 4034 CALL_RXH(ieee80211_rx_h_mgmt); 4035 4036 rxh_next: 4037 ieee80211_rx_handlers_result(rx, res); 4038 4039 #undef CALL_RXH 4040 } 4041 4042 spin_unlock_bh(&rx->local->rx_path_lock); 4043 } 4044 4045 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4046 { 4047 struct sk_buff_head reorder_release; 4048 ieee80211_rx_result res = RX_DROP_MONITOR; 4049 4050 __skb_queue_head_init(&reorder_release); 4051 4052 #define CALL_RXH(rxh) \ 4053 do { \ 4054 res = rxh(rx); \ 4055 if (res != RX_CONTINUE) \ 4056 goto rxh_next; \ 4057 } while (0) 4058 4059 CALL_RXH(ieee80211_rx_h_check_dup); 4060 CALL_RXH(ieee80211_rx_h_check); 4061 4062 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4063 4064 ieee80211_rx_handlers(rx, &reorder_release); 4065 return; 4066 4067 rxh_next: 4068 ieee80211_rx_handlers_result(rx, res); 4069 4070 #undef CALL_RXH 4071 } 4072 4073 /* 4074 * This function makes calls into the RX path, therefore 4075 * it has to be invoked under RCU read lock. 4076 */ 4077 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4078 { 4079 struct sk_buff_head frames; 4080 struct ieee80211_rx_data rx = { 4081 .sta = sta, 4082 .sdata = sta->sdata, 4083 .local = sta->local, 4084 /* This is OK -- must be QoS data frame */ 4085 .security_idx = tid, 4086 .seqno_idx = tid, 4087 .link_id = -1, 4088 }; 4089 struct tid_ampdu_rx *tid_agg_rx; 4090 u8 link_id; 4091 4092 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4093 if (!tid_agg_rx) 4094 return; 4095 4096 __skb_queue_head_init(&frames); 4097 4098 spin_lock(&tid_agg_rx->reorder_lock); 4099 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4100 spin_unlock(&tid_agg_rx->reorder_lock); 4101 4102 if (!skb_queue_empty(&frames)) { 4103 struct ieee80211_event event = { 4104 .type = BA_FRAME_TIMEOUT, 4105 .u.ba.tid = tid, 4106 .u.ba.sta = &sta->sta, 4107 }; 4108 drv_event_callback(rx.local, rx.sdata, &event); 4109 } 4110 /* FIXME: statistics won't be right with this */ 4111 link_id = sta->sta.valid_links ? ffs(sta->sta.valid_links) - 1 : 0; 4112 rx.link = rcu_dereference(sta->sdata->link[link_id]); 4113 rx.link_sta = rcu_dereference(sta->link[link_id]); 4114 4115 ieee80211_rx_handlers(&rx, &frames); 4116 } 4117 4118 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4119 u16 ssn, u64 filtered, 4120 u16 received_mpdus) 4121 { 4122 struct sta_info *sta; 4123 struct tid_ampdu_rx *tid_agg_rx; 4124 struct sk_buff_head frames; 4125 struct ieee80211_rx_data rx = { 4126 /* This is OK -- must be QoS data frame */ 4127 .security_idx = tid, 4128 .seqno_idx = tid, 4129 .link_id = -1, 4130 }; 4131 int i, diff; 4132 4133 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4134 return; 4135 4136 __skb_queue_head_init(&frames); 4137 4138 sta = container_of(pubsta, struct sta_info, sta); 4139 4140 rx.sta = sta; 4141 rx.sdata = sta->sdata; 4142 rx.link = &rx.sdata->deflink; 4143 rx.local = sta->local; 4144 4145 rcu_read_lock(); 4146 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4147 if (!tid_agg_rx) 4148 goto out; 4149 4150 spin_lock_bh(&tid_agg_rx->reorder_lock); 4151 4152 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4153 int release; 4154 4155 /* release all frames in the reorder buffer */ 4156 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4157 IEEE80211_SN_MODULO; 4158 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4159 release, &frames); 4160 /* update ssn to match received ssn */ 4161 tid_agg_rx->head_seq_num = ssn; 4162 } else { 4163 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4164 &frames); 4165 } 4166 4167 /* handle the case that received ssn is behind the mac ssn. 4168 * it can be tid_agg_rx->buf_size behind and still be valid */ 4169 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4170 if (diff >= tid_agg_rx->buf_size) { 4171 tid_agg_rx->reorder_buf_filtered = 0; 4172 goto release; 4173 } 4174 filtered = filtered >> diff; 4175 ssn += diff; 4176 4177 /* update bitmap */ 4178 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4179 int index = (ssn + i) % tid_agg_rx->buf_size; 4180 4181 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4182 if (filtered & BIT_ULL(i)) 4183 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4184 } 4185 4186 /* now process also frames that the filter marking released */ 4187 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4188 4189 release: 4190 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4191 4192 ieee80211_rx_handlers(&rx, &frames); 4193 4194 out: 4195 rcu_read_unlock(); 4196 } 4197 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4198 4199 /* main receive path */ 4200 4201 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4202 { 4203 return ether_addr_equal(raddr, addr) || 4204 is_broadcast_ether_addr(raddr); 4205 } 4206 4207 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4208 { 4209 struct ieee80211_sub_if_data *sdata = rx->sdata; 4210 struct sk_buff *skb = rx->skb; 4211 struct ieee80211_hdr *hdr = (void *)skb->data; 4212 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4213 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4214 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4215 ieee80211_is_s1g_beacon(hdr->frame_control); 4216 4217 switch (sdata->vif.type) { 4218 case NL80211_IFTYPE_STATION: 4219 if (!bssid && !sdata->u.mgd.use_4addr) 4220 return false; 4221 if (ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4222 return false; 4223 if (multicast) 4224 return true; 4225 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4226 case NL80211_IFTYPE_ADHOC: 4227 if (!bssid) 4228 return false; 4229 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4230 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4231 !is_valid_ether_addr(hdr->addr2)) 4232 return false; 4233 if (ieee80211_is_beacon(hdr->frame_control)) 4234 return true; 4235 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4236 return false; 4237 if (!multicast && 4238 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4239 return false; 4240 if (!rx->sta) { 4241 int rate_idx; 4242 if (status->encoding != RX_ENC_LEGACY) 4243 rate_idx = 0; /* TODO: HT/VHT rates */ 4244 else 4245 rate_idx = status->rate_idx; 4246 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4247 BIT(rate_idx)); 4248 } 4249 return true; 4250 case NL80211_IFTYPE_OCB: 4251 if (!bssid) 4252 return false; 4253 if (!ieee80211_is_data_present(hdr->frame_control)) 4254 return false; 4255 if (!is_broadcast_ether_addr(bssid)) 4256 return false; 4257 if (!multicast && 4258 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4259 return false; 4260 if (!rx->sta) { 4261 int rate_idx; 4262 if (status->encoding != RX_ENC_LEGACY) 4263 rate_idx = 0; /* TODO: HT rates */ 4264 else 4265 rate_idx = status->rate_idx; 4266 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4267 BIT(rate_idx)); 4268 } 4269 return true; 4270 case NL80211_IFTYPE_MESH_POINT: 4271 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4272 return false; 4273 if (multicast) 4274 return true; 4275 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4276 case NL80211_IFTYPE_AP_VLAN: 4277 case NL80211_IFTYPE_AP: 4278 if (!bssid) 4279 return ieee80211_is_our_addr(sdata, hdr->addr1, 4280 &rx->link_id); 4281 4282 if (!is_broadcast_ether_addr(bssid) && 4283 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4284 /* 4285 * Accept public action frames even when the 4286 * BSSID doesn't match, this is used for P2P 4287 * and location updates. Note that mac80211 4288 * itself never looks at these frames. 4289 */ 4290 if (!multicast && 4291 !ieee80211_is_our_addr(sdata, hdr->addr1, 4292 &rx->link_id)) 4293 return false; 4294 if (ieee80211_is_public_action(hdr, skb->len)) 4295 return true; 4296 return ieee80211_is_beacon(hdr->frame_control); 4297 } 4298 4299 if (!ieee80211_has_tods(hdr->frame_control)) { 4300 /* ignore data frames to TDLS-peers */ 4301 if (ieee80211_is_data(hdr->frame_control)) 4302 return false; 4303 /* ignore action frames to TDLS-peers */ 4304 if (ieee80211_is_action(hdr->frame_control) && 4305 !is_broadcast_ether_addr(bssid) && 4306 !ether_addr_equal(bssid, hdr->addr1)) 4307 return false; 4308 } 4309 4310 /* 4311 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4312 * the BSSID - we've checked that already but may have accepted 4313 * the wildcard (ff:ff:ff:ff:ff:ff). 4314 * 4315 * It also says: 4316 * The BSSID of the Data frame is determined as follows: 4317 * a) If the STA is contained within an AP or is associated 4318 * with an AP, the BSSID is the address currently in use 4319 * by the STA contained in the AP. 4320 * 4321 * So we should not accept data frames with an address that's 4322 * multicast. 4323 * 4324 * Accepting it also opens a security problem because stations 4325 * could encrypt it with the GTK and inject traffic that way. 4326 */ 4327 if (ieee80211_is_data(hdr->frame_control) && multicast) 4328 return false; 4329 4330 return true; 4331 case NL80211_IFTYPE_P2P_DEVICE: 4332 return ieee80211_is_public_action(hdr, skb->len) || 4333 ieee80211_is_probe_req(hdr->frame_control) || 4334 ieee80211_is_probe_resp(hdr->frame_control) || 4335 ieee80211_is_beacon(hdr->frame_control); 4336 case NL80211_IFTYPE_NAN: 4337 /* Currently no frames on NAN interface are allowed */ 4338 return false; 4339 default: 4340 break; 4341 } 4342 4343 WARN_ON_ONCE(1); 4344 return false; 4345 } 4346 4347 void ieee80211_check_fast_rx(struct sta_info *sta) 4348 { 4349 struct ieee80211_sub_if_data *sdata = sta->sdata; 4350 struct ieee80211_local *local = sdata->local; 4351 struct ieee80211_key *key; 4352 struct ieee80211_fast_rx fastrx = { 4353 .dev = sdata->dev, 4354 .vif_type = sdata->vif.type, 4355 .control_port_protocol = sdata->control_port_protocol, 4356 }, *old, *new = NULL; 4357 u32 offload_flags; 4358 bool set_offload = false; 4359 bool assign = false; 4360 bool offload; 4361 4362 /* use sparse to check that we don't return without updating */ 4363 __acquire(check_fast_rx); 4364 4365 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4366 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4367 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4368 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4369 4370 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4371 4372 /* fast-rx doesn't do reordering */ 4373 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4374 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4375 goto clear; 4376 4377 switch (sdata->vif.type) { 4378 case NL80211_IFTYPE_STATION: 4379 if (sta->sta.tdls) { 4380 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4381 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4382 fastrx.expected_ds_bits = 0; 4383 } else { 4384 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4385 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4386 fastrx.expected_ds_bits = 4387 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4388 } 4389 4390 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4391 fastrx.expected_ds_bits |= 4392 cpu_to_le16(IEEE80211_FCTL_TODS); 4393 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4394 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4395 } 4396 4397 if (!sdata->u.mgd.powersave) 4398 break; 4399 4400 /* software powersave is a huge mess, avoid all of it */ 4401 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4402 goto clear; 4403 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4404 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4405 goto clear; 4406 break; 4407 case NL80211_IFTYPE_AP_VLAN: 4408 case NL80211_IFTYPE_AP: 4409 /* parallel-rx requires this, at least with calls to 4410 * ieee80211_sta_ps_transition() 4411 */ 4412 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4413 goto clear; 4414 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4415 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4416 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4417 4418 fastrx.internal_forward = 4419 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4420 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4421 !sdata->u.vlan.sta); 4422 4423 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4424 sdata->u.vlan.sta) { 4425 fastrx.expected_ds_bits |= 4426 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4427 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4428 fastrx.internal_forward = 0; 4429 } 4430 4431 break; 4432 default: 4433 goto clear; 4434 } 4435 4436 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4437 goto clear; 4438 4439 rcu_read_lock(); 4440 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4441 if (!key) 4442 key = rcu_dereference(sdata->default_unicast_key); 4443 if (key) { 4444 switch (key->conf.cipher) { 4445 case WLAN_CIPHER_SUITE_TKIP: 4446 /* we don't want to deal with MMIC in fast-rx */ 4447 goto clear_rcu; 4448 case WLAN_CIPHER_SUITE_CCMP: 4449 case WLAN_CIPHER_SUITE_CCMP_256: 4450 case WLAN_CIPHER_SUITE_GCMP: 4451 case WLAN_CIPHER_SUITE_GCMP_256: 4452 break; 4453 default: 4454 /* We also don't want to deal with 4455 * WEP or cipher scheme. 4456 */ 4457 goto clear_rcu; 4458 } 4459 4460 fastrx.key = true; 4461 fastrx.icv_len = key->conf.icv_len; 4462 } 4463 4464 assign = true; 4465 clear_rcu: 4466 rcu_read_unlock(); 4467 clear: 4468 __release(check_fast_rx); 4469 4470 if (assign) 4471 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4472 4473 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4474 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4475 4476 if (assign && offload) 4477 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4478 else 4479 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4480 4481 if (set_offload) 4482 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4483 4484 spin_lock_bh(&sta->lock); 4485 old = rcu_dereference_protected(sta->fast_rx, true); 4486 rcu_assign_pointer(sta->fast_rx, new); 4487 spin_unlock_bh(&sta->lock); 4488 4489 if (old) 4490 kfree_rcu(old, rcu_head); 4491 } 4492 4493 void ieee80211_clear_fast_rx(struct sta_info *sta) 4494 { 4495 struct ieee80211_fast_rx *old; 4496 4497 spin_lock_bh(&sta->lock); 4498 old = rcu_dereference_protected(sta->fast_rx, true); 4499 RCU_INIT_POINTER(sta->fast_rx, NULL); 4500 spin_unlock_bh(&sta->lock); 4501 4502 if (old) 4503 kfree_rcu(old, rcu_head); 4504 } 4505 4506 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4507 { 4508 struct ieee80211_local *local = sdata->local; 4509 struct sta_info *sta; 4510 4511 lockdep_assert_held(&local->sta_mtx); 4512 4513 list_for_each_entry(sta, &local->sta_list, list) { 4514 if (sdata != sta->sdata && 4515 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4516 continue; 4517 ieee80211_check_fast_rx(sta); 4518 } 4519 } 4520 4521 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4522 { 4523 struct ieee80211_local *local = sdata->local; 4524 4525 mutex_lock(&local->sta_mtx); 4526 __ieee80211_check_fast_rx_iface(sdata); 4527 mutex_unlock(&local->sta_mtx); 4528 } 4529 4530 static bool 4531 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4532 { 4533 if (!sta->mlo) 4534 return false; 4535 4536 return !!(sta->valid_links & BIT(link_id)); 4537 } 4538 4539 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4540 struct ieee80211_fast_rx *fast_rx, 4541 int orig_len) 4542 { 4543 struct ieee80211_sta_rx_stats *stats; 4544 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4545 struct sta_info *sta = rx->sta; 4546 struct link_sta_info *link_sta; 4547 struct sk_buff *skb = rx->skb; 4548 void *sa = skb->data + ETH_ALEN; 4549 void *da = skb->data; 4550 4551 if (rx->link_id >= 0) { 4552 link_sta = rcu_dereference(sta->link[rx->link_id]); 4553 if (WARN_ON_ONCE(!link_sta)) { 4554 dev_kfree_skb(rx->skb); 4555 return; 4556 } 4557 } else { 4558 link_sta = &sta->deflink; 4559 } 4560 4561 stats = &link_sta->rx_stats; 4562 if (fast_rx->uses_rss) 4563 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4564 4565 /* statistics part of ieee80211_rx_h_sta_process() */ 4566 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4567 stats->last_signal = status->signal; 4568 if (!fast_rx->uses_rss) 4569 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4570 -status->signal); 4571 } 4572 4573 if (status->chains) { 4574 int i; 4575 4576 stats->chains = status->chains; 4577 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4578 int signal = status->chain_signal[i]; 4579 4580 if (!(status->chains & BIT(i))) 4581 continue; 4582 4583 stats->chain_signal_last[i] = signal; 4584 if (!fast_rx->uses_rss) 4585 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4586 -signal); 4587 } 4588 } 4589 /* end of statistics */ 4590 4591 stats->last_rx = jiffies; 4592 stats->last_rate = sta_stats_encode_rate(status); 4593 4594 stats->fragments++; 4595 stats->packets++; 4596 4597 skb->dev = fast_rx->dev; 4598 4599 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4600 4601 /* The seqno index has the same property as needed 4602 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4603 * for non-QoS-data frames. Here we know it's a data 4604 * frame, so count MSDUs. 4605 */ 4606 u64_stats_update_begin(&stats->syncp); 4607 stats->msdu[rx->seqno_idx]++; 4608 stats->bytes += orig_len; 4609 u64_stats_update_end(&stats->syncp); 4610 4611 if (fast_rx->internal_forward) { 4612 struct sk_buff *xmit_skb = NULL; 4613 if (is_multicast_ether_addr(da)) { 4614 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4615 } else if (!ether_addr_equal(da, sa) && 4616 sta_info_get(rx->sdata, da)) { 4617 xmit_skb = skb; 4618 skb = NULL; 4619 } 4620 4621 if (xmit_skb) { 4622 /* 4623 * Send to wireless media and increase priority by 256 4624 * to keep the received priority instead of 4625 * reclassifying the frame (see cfg80211_classify8021d). 4626 */ 4627 xmit_skb->priority += 256; 4628 xmit_skb->protocol = htons(ETH_P_802_3); 4629 skb_reset_network_header(xmit_skb); 4630 skb_reset_mac_header(xmit_skb); 4631 dev_queue_xmit(xmit_skb); 4632 } 4633 4634 if (!skb) 4635 return; 4636 } 4637 4638 /* deliver to local stack */ 4639 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4640 ieee80211_deliver_skb_to_local_stack(skb, rx); 4641 } 4642 4643 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4644 struct ieee80211_fast_rx *fast_rx) 4645 { 4646 struct sk_buff *skb = rx->skb; 4647 struct ieee80211_hdr *hdr = (void *)skb->data; 4648 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4649 struct sta_info *sta = rx->sta; 4650 int orig_len = skb->len; 4651 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4652 int snap_offs = hdrlen; 4653 struct { 4654 u8 snap[sizeof(rfc1042_header)]; 4655 __be16 proto; 4656 } *payload __aligned(2); 4657 struct { 4658 u8 da[ETH_ALEN]; 4659 u8 sa[ETH_ALEN]; 4660 } addrs __aligned(2); 4661 struct link_sta_info *link_sta; 4662 struct ieee80211_sta_rx_stats *stats; 4663 4664 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4665 * to a common data structure; drivers can implement that per queue 4666 * but we don't have that information in mac80211 4667 */ 4668 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4669 return false; 4670 4671 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4672 4673 /* If using encryption, we also need to have: 4674 * - PN_VALIDATED: similar, but the implementation is tricky 4675 * - DECRYPTED: necessary for PN_VALIDATED 4676 */ 4677 if (fast_rx->key && 4678 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4679 return false; 4680 4681 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4682 return false; 4683 4684 if (unlikely(ieee80211_is_frag(hdr))) 4685 return false; 4686 4687 /* Since our interface address cannot be multicast, this 4688 * implicitly also rejects multicast frames without the 4689 * explicit check. 4690 * 4691 * We shouldn't get any *data* frames not addressed to us 4692 * (AP mode will accept multicast *management* frames), but 4693 * punting here will make it go through the full checks in 4694 * ieee80211_accept_frame(). 4695 */ 4696 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4697 return false; 4698 4699 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4700 IEEE80211_FCTL_TODS)) != 4701 fast_rx->expected_ds_bits) 4702 return false; 4703 4704 /* assign the key to drop unencrypted frames (later) 4705 * and strip the IV/MIC if necessary 4706 */ 4707 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4708 /* GCMP header length is the same */ 4709 snap_offs += IEEE80211_CCMP_HDR_LEN; 4710 } 4711 4712 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) { 4713 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4714 return false; 4715 4716 payload = (void *)(skb->data + snap_offs); 4717 4718 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4719 return false; 4720 4721 /* Don't handle these here since they require special code. 4722 * Accept AARP and IPX even though they should come with a 4723 * bridge-tunnel header - but if we get them this way then 4724 * there's little point in discarding them. 4725 */ 4726 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4727 payload->proto == fast_rx->control_port_protocol)) 4728 return false; 4729 } 4730 4731 /* after this point, don't punt to the slowpath! */ 4732 4733 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4734 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4735 goto drop; 4736 4737 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4738 goto drop; 4739 4740 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4741 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4742 RX_QUEUED) 4743 goto drop; 4744 4745 return true; 4746 } 4747 4748 /* do the header conversion - first grab the addresses */ 4749 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4750 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4751 skb_postpull_rcsum(skb, skb->data + snap_offs, 4752 sizeof(rfc1042_header) + 2); 4753 /* remove the SNAP but leave the ethertype */ 4754 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4755 /* push the addresses in front */ 4756 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4757 4758 ieee80211_rx_8023(rx, fast_rx, orig_len); 4759 4760 return true; 4761 drop: 4762 dev_kfree_skb(skb); 4763 4764 if (rx->link_id >= 0) { 4765 link_sta = rcu_dereference(sta->link[rx->link_id]); 4766 if (!link_sta) 4767 return true; 4768 } else { 4769 link_sta = &sta->deflink; 4770 } 4771 4772 if (fast_rx->uses_rss) 4773 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4774 else 4775 stats = &link_sta->rx_stats; 4776 4777 stats->dropped++; 4778 return true; 4779 } 4780 4781 /* 4782 * This function returns whether or not the SKB 4783 * was destined for RX processing or not, which, 4784 * if consume is true, is equivalent to whether 4785 * or not the skb was consumed. 4786 */ 4787 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4788 struct sk_buff *skb, bool consume) 4789 { 4790 struct ieee80211_local *local = rx->local; 4791 struct ieee80211_sub_if_data *sdata = rx->sdata; 4792 struct ieee80211_hdr *hdr = (void *)skb->data; 4793 struct link_sta_info *link_sta = NULL; 4794 struct ieee80211_link_data *link; 4795 4796 rx->skb = skb; 4797 4798 /* See if we can do fast-rx; if we have to copy we already lost, 4799 * so punt in that case. We should never have to deliver a data 4800 * frame to multiple interfaces anyway. 4801 * 4802 * We skip the ieee80211_accept_frame() call and do the necessary 4803 * checking inside ieee80211_invoke_fast_rx(). 4804 */ 4805 if (consume && rx->sta) { 4806 struct ieee80211_fast_rx *fast_rx; 4807 4808 fast_rx = rcu_dereference(rx->sta->fast_rx); 4809 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4810 return true; 4811 } 4812 4813 if (!ieee80211_accept_frame(rx)) 4814 return false; 4815 4816 if (rx->link_id >= 0) { 4817 link = rcu_dereference(rx->sdata->link[rx->link_id]); 4818 4819 /* we might race link removal */ 4820 if (!link) 4821 return true; 4822 rx->link = link; 4823 4824 if (rx->sta) { 4825 rx->link_sta = 4826 rcu_dereference(rx->sta->link[rx->link_id]); 4827 if (!rx->link_sta) 4828 return true; 4829 } 4830 } else { 4831 if (rx->sta) 4832 rx->link_sta = &rx->sta->deflink; 4833 4834 rx->link = &sdata->deflink; 4835 } 4836 4837 if (unlikely(!is_multicast_ether_addr(hdr->addr1) && 4838 rx->link_id >= 0 && rx->sta && rx->sta->sta.mlo)) { 4839 link_sta = rcu_dereference(rx->sta->link[rx->link_id]); 4840 4841 if (WARN_ON_ONCE(!link_sta)) 4842 return true; 4843 } 4844 4845 if (!consume) { 4846 struct skb_shared_hwtstamps *shwt; 4847 4848 rx->skb = skb_copy(skb, GFP_ATOMIC); 4849 if (!rx->skb) { 4850 if (net_ratelimit()) 4851 wiphy_debug(local->hw.wiphy, 4852 "failed to copy skb for %s\n", 4853 sdata->name); 4854 return true; 4855 } 4856 4857 /* skb_copy() does not copy the hw timestamps, so copy it 4858 * explicitly 4859 */ 4860 shwt = skb_hwtstamps(rx->skb); 4861 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 4862 } 4863 4864 if (unlikely(link_sta)) { 4865 /* translate to MLD addresses */ 4866 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 4867 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 4868 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 4869 ether_addr_copy(hdr->addr2, rx->sta->addr); 4870 /* translate A3 only if it's the BSSID */ 4871 if (!ieee80211_has_tods(hdr->frame_control) && 4872 !ieee80211_has_fromds(hdr->frame_control)) { 4873 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 4874 ether_addr_copy(hdr->addr3, rx->sta->addr); 4875 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 4876 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 4877 } 4878 /* not needed for A4 since it can only carry the SA */ 4879 } 4880 4881 ieee80211_invoke_rx_handlers(rx); 4882 return true; 4883 } 4884 4885 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 4886 struct ieee80211_sta *pubsta, 4887 struct sk_buff *skb, 4888 struct list_head *list) 4889 { 4890 struct ieee80211_local *local = hw_to_local(hw); 4891 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4892 struct ieee80211_fast_rx *fast_rx; 4893 struct ieee80211_rx_data rx; 4894 4895 memset(&rx, 0, sizeof(rx)); 4896 rx.skb = skb; 4897 rx.local = local; 4898 rx.list = list; 4899 rx.link_id = -1; 4900 4901 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 4902 4903 /* drop frame if too short for header */ 4904 if (skb->len < sizeof(struct ethhdr)) 4905 goto drop; 4906 4907 if (!pubsta) 4908 goto drop; 4909 4910 rx.sta = container_of(pubsta, struct sta_info, sta); 4911 rx.sdata = rx.sta->sdata; 4912 4913 if (status->link_valid && 4914 !ieee80211_rx_is_valid_sta_link_id(pubsta, status->link_id)) 4915 goto drop; 4916 4917 /* 4918 * TODO: Should the frame be dropped if the right link_id is not 4919 * available? Or may be it is fine in the current form to proceed with 4920 * the frame processing because with frame being in 802.3 format, 4921 * link_id is used only for stats purpose and updating the stats on 4922 * the deflink is fine? 4923 */ 4924 if (status->link_valid) 4925 rx.link_id = status->link_id; 4926 4927 if (rx.link_id >= 0) { 4928 struct ieee80211_link_data *link; 4929 4930 link = rcu_dereference(rx.sdata->link[rx.link_id]); 4931 if (!link) 4932 goto drop; 4933 rx.link = link; 4934 } else { 4935 rx.link = &rx.sdata->deflink; 4936 } 4937 4938 fast_rx = rcu_dereference(rx.sta->fast_rx); 4939 if (!fast_rx) 4940 goto drop; 4941 4942 ieee80211_rx_8023(&rx, fast_rx, skb->len); 4943 return; 4944 4945 drop: 4946 dev_kfree_skb(skb); 4947 } 4948 4949 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 4950 struct sk_buff *skb, bool consume) 4951 { 4952 struct link_sta_info *link_sta; 4953 struct ieee80211_hdr *hdr = (void *)skb->data; 4954 4955 /* 4956 * Look up link station first, in case there's a 4957 * chance that they might have a link address that 4958 * is identical to the MLD address, that way we'll 4959 * have the link information if needed. 4960 */ 4961 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 4962 if (link_sta) { 4963 rx->sta = link_sta->sta; 4964 rx->link_id = link_sta->link_id; 4965 } else { 4966 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4967 4968 rx->sta = sta_info_get_bss(rx->sdata, hdr->addr2); 4969 if (rx->sta) { 4970 if (status->link_valid && 4971 !ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, 4972 status->link_id)) 4973 return false; 4974 4975 rx->link_id = status->link_valid ? status->link_id : -1; 4976 } else { 4977 rx->link_id = -1; 4978 } 4979 } 4980 4981 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 4982 } 4983 4984 /* 4985 * This is the actual Rx frames handler. as it belongs to Rx path it must 4986 * be called with rcu_read_lock protection. 4987 */ 4988 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 4989 struct ieee80211_sta *pubsta, 4990 struct sk_buff *skb, 4991 struct list_head *list) 4992 { 4993 struct ieee80211_local *local = hw_to_local(hw); 4994 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4995 struct ieee80211_sub_if_data *sdata; 4996 struct ieee80211_hdr *hdr; 4997 __le16 fc; 4998 struct ieee80211_rx_data rx; 4999 struct ieee80211_sub_if_data *prev; 5000 struct rhlist_head *tmp; 5001 int err = 0; 5002 5003 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5004 memset(&rx, 0, sizeof(rx)); 5005 rx.skb = skb; 5006 rx.local = local; 5007 rx.list = list; 5008 rx.link_id = -1; 5009 5010 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5011 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5012 5013 if (ieee80211_is_mgmt(fc)) { 5014 /* drop frame if too short for header */ 5015 if (skb->len < ieee80211_hdrlen(fc)) 5016 err = -ENOBUFS; 5017 else 5018 err = skb_linearize(skb); 5019 } else { 5020 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5021 } 5022 5023 if (err) { 5024 dev_kfree_skb(skb); 5025 return; 5026 } 5027 5028 hdr = (struct ieee80211_hdr *)skb->data; 5029 ieee80211_parse_qos(&rx); 5030 ieee80211_verify_alignment(&rx); 5031 5032 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5033 ieee80211_is_beacon(hdr->frame_control) || 5034 ieee80211_is_s1g_beacon(hdr->frame_control))) 5035 ieee80211_scan_rx(local, skb); 5036 5037 if (ieee80211_is_data(fc)) { 5038 struct sta_info *sta, *prev_sta; 5039 u8 link_id = status->link_id; 5040 5041 if (pubsta) { 5042 rx.sta = container_of(pubsta, struct sta_info, sta); 5043 rx.sdata = rx.sta->sdata; 5044 5045 if (status->link_valid && 5046 !ieee80211_rx_is_valid_sta_link_id(pubsta, link_id)) 5047 goto out; 5048 5049 if (status->link_valid) 5050 rx.link_id = status->link_id; 5051 5052 /* 5053 * In MLO connection, fetch the link_id using addr2 5054 * when the driver does not pass link_id in status. 5055 * When the address translation is already performed by 5056 * driver/hw, the valid link_id must be passed in 5057 * status. 5058 */ 5059 5060 if (!status->link_valid && pubsta->mlo) { 5061 struct ieee80211_hdr *hdr = (void *)skb->data; 5062 struct link_sta_info *link_sta; 5063 5064 link_sta = link_sta_info_get_bss(rx.sdata, 5065 hdr->addr2); 5066 if (!link_sta) 5067 goto out; 5068 5069 rx.link_id = link_sta->link_id; 5070 } 5071 5072 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5073 return; 5074 goto out; 5075 } 5076 5077 prev_sta = NULL; 5078 5079 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5080 if (!prev_sta) { 5081 prev_sta = sta; 5082 continue; 5083 } 5084 5085 if ((status->link_valid && 5086 !ieee80211_rx_is_valid_sta_link_id(&prev_sta->sta, 5087 link_id)) || 5088 (!status->link_valid && prev_sta->sta.mlo)) 5089 continue; 5090 5091 rx.link_id = status->link_valid ? link_id : -1; 5092 rx.sta = prev_sta; 5093 rx.sdata = prev_sta->sdata; 5094 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5095 5096 prev_sta = sta; 5097 } 5098 5099 if (prev_sta) { 5100 if ((status->link_valid && 5101 !ieee80211_rx_is_valid_sta_link_id(&prev_sta->sta, 5102 link_id)) || 5103 (!status->link_valid && prev_sta->sta.mlo)) 5104 goto out; 5105 5106 rx.link_id = status->link_valid ? link_id : -1; 5107 rx.sta = prev_sta; 5108 rx.sdata = prev_sta->sdata; 5109 5110 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5111 return; 5112 goto out; 5113 } 5114 } 5115 5116 prev = NULL; 5117 5118 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5119 if (!ieee80211_sdata_running(sdata)) 5120 continue; 5121 5122 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5123 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5124 continue; 5125 5126 /* 5127 * frame is destined for this interface, but if it's 5128 * not also for the previous one we handle that after 5129 * the loop to avoid copying the SKB once too much 5130 */ 5131 5132 if (!prev) { 5133 prev = sdata; 5134 continue; 5135 } 5136 5137 rx.sdata = prev; 5138 ieee80211_rx_for_interface(&rx, skb, false); 5139 5140 prev = sdata; 5141 } 5142 5143 if (prev) { 5144 rx.sdata = prev; 5145 5146 if (ieee80211_rx_for_interface(&rx, skb, true)) 5147 return; 5148 } 5149 5150 out: 5151 dev_kfree_skb(skb); 5152 } 5153 5154 /* 5155 * This is the receive path handler. It is called by a low level driver when an 5156 * 802.11 MPDU is received from the hardware. 5157 */ 5158 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5159 struct sk_buff *skb, struct list_head *list) 5160 { 5161 struct ieee80211_local *local = hw_to_local(hw); 5162 struct ieee80211_rate *rate = NULL; 5163 struct ieee80211_supported_band *sband; 5164 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5165 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5166 5167 WARN_ON_ONCE(softirq_count() == 0); 5168 5169 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5170 goto drop; 5171 5172 sband = local->hw.wiphy->bands[status->band]; 5173 if (WARN_ON(!sband)) 5174 goto drop; 5175 5176 /* 5177 * If we're suspending, it is possible although not too likely 5178 * that we'd be receiving frames after having already partially 5179 * quiesced the stack. We can't process such frames then since 5180 * that might, for example, cause stations to be added or other 5181 * driver callbacks be invoked. 5182 */ 5183 if (unlikely(local->quiescing || local->suspended)) 5184 goto drop; 5185 5186 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5187 if (unlikely(local->in_reconfig)) 5188 goto drop; 5189 5190 /* 5191 * The same happens when we're not even started, 5192 * but that's worth a warning. 5193 */ 5194 if (WARN_ON(!local->started)) 5195 goto drop; 5196 5197 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5198 /* 5199 * Validate the rate, unless a PLCP error means that 5200 * we probably can't have a valid rate here anyway. 5201 */ 5202 5203 switch (status->encoding) { 5204 case RX_ENC_HT: 5205 /* 5206 * rate_idx is MCS index, which can be [0-76] 5207 * as documented on: 5208 * 5209 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5210 * 5211 * Anything else would be some sort of driver or 5212 * hardware error. The driver should catch hardware 5213 * errors. 5214 */ 5215 if (WARN(status->rate_idx > 76, 5216 "Rate marked as an HT rate but passed " 5217 "status->rate_idx is not " 5218 "an MCS index [0-76]: %d (0x%02x)\n", 5219 status->rate_idx, 5220 status->rate_idx)) 5221 goto drop; 5222 break; 5223 case RX_ENC_VHT: 5224 if (WARN_ONCE(status->rate_idx > 11 || 5225 !status->nss || 5226 status->nss > 8, 5227 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5228 status->rate_idx, status->nss)) 5229 goto drop; 5230 break; 5231 case RX_ENC_HE: 5232 if (WARN_ONCE(status->rate_idx > 11 || 5233 !status->nss || 5234 status->nss > 8, 5235 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5236 status->rate_idx, status->nss)) 5237 goto drop; 5238 break; 5239 default: 5240 WARN_ON_ONCE(1); 5241 fallthrough; 5242 case RX_ENC_LEGACY: 5243 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5244 goto drop; 5245 rate = &sband->bitrates[status->rate_idx]; 5246 } 5247 } 5248 5249 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5250 goto drop; 5251 5252 status->rx_flags = 0; 5253 5254 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5255 5256 /* 5257 * Frames with failed FCS/PLCP checksum are not returned, 5258 * all other frames are returned without radiotap header 5259 * if it was previously present. 5260 * Also, frames with less than 16 bytes are dropped. 5261 */ 5262 if (!(status->flag & RX_FLAG_8023)) 5263 skb = ieee80211_rx_monitor(local, skb, rate); 5264 if (skb) { 5265 if ((status->flag & RX_FLAG_8023) || 5266 ieee80211_is_data_present(hdr->frame_control)) 5267 ieee80211_tpt_led_trig_rx(local, skb->len); 5268 5269 if (status->flag & RX_FLAG_8023) 5270 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5271 else 5272 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5273 } 5274 5275 kcov_remote_stop(); 5276 return; 5277 drop: 5278 kfree_skb(skb); 5279 } 5280 EXPORT_SYMBOL(ieee80211_rx_list); 5281 5282 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5283 struct sk_buff *skb, struct napi_struct *napi) 5284 { 5285 struct sk_buff *tmp; 5286 LIST_HEAD(list); 5287 5288 5289 /* 5290 * key references and virtual interfaces are protected using RCU 5291 * and this requires that we are in a read-side RCU section during 5292 * receive processing 5293 */ 5294 rcu_read_lock(); 5295 ieee80211_rx_list(hw, pubsta, skb, &list); 5296 rcu_read_unlock(); 5297 5298 if (!napi) { 5299 netif_receive_skb_list(&list); 5300 return; 5301 } 5302 5303 list_for_each_entry_safe(skb, tmp, &list, list) { 5304 skb_list_del_init(skb); 5305 napi_gro_receive(napi, skb); 5306 } 5307 } 5308 EXPORT_SYMBOL(ieee80211_rx_napi); 5309 5310 /* This is a version of the rx handler that can be called from hard irq 5311 * context. Post the skb on the queue and schedule the tasklet */ 5312 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5313 { 5314 struct ieee80211_local *local = hw_to_local(hw); 5315 5316 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5317 5318 skb->pkt_type = IEEE80211_RX_MSG; 5319 skb_queue_tail(&local->skb_queue, skb); 5320 tasklet_schedule(&local->tasklet); 5321 } 5322 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5323