1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <net/mac80211.h> 21 #include <net/ieee80211_radiotap.h> 22 23 #include "ieee80211_i.h" 24 #include "driver-ops.h" 25 #include "led.h" 26 #include "mesh.h" 27 #include "wep.h" 28 #include "wpa.h" 29 #include "tkip.h" 30 #include "wme.h" 31 #include "rate.h" 32 33 /* 34 * monitor mode reception 35 * 36 * This function cleans up the SKB, i.e. it removes all the stuff 37 * only useful for monitoring. 38 */ 39 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 40 struct sk_buff *skb) 41 { 42 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 43 if (likely(skb->len > FCS_LEN)) 44 __pskb_trim(skb, skb->len - FCS_LEN); 45 else { 46 /* driver bug */ 47 WARN_ON(1); 48 dev_kfree_skb(skb); 49 skb = NULL; 50 } 51 } 52 53 return skb; 54 } 55 56 static inline int should_drop_frame(struct sk_buff *skb, 57 int present_fcs_len) 58 { 59 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 60 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 61 62 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 63 return 1; 64 if (unlikely(skb->len < 16 + present_fcs_len)) 65 return 1; 66 if (ieee80211_is_ctl(hdr->frame_control) && 67 !ieee80211_is_pspoll(hdr->frame_control) && 68 !ieee80211_is_back_req(hdr->frame_control)) 69 return 1; 70 return 0; 71 } 72 73 static int 74 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 75 struct ieee80211_rx_status *status) 76 { 77 int len; 78 79 /* always present fields */ 80 len = sizeof(struct ieee80211_radiotap_header) + 9; 81 82 if (status->flag & RX_FLAG_MACTIME_MPDU) 83 len += 8; 84 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 85 len += 1; 86 87 if (len & 1) /* padding for RX_FLAGS if necessary */ 88 len++; 89 90 if (status->flag & RX_FLAG_HT) /* HT info */ 91 len += 3; 92 93 return len; 94 } 95 96 /* 97 * ieee80211_add_rx_radiotap_header - add radiotap header 98 * 99 * add a radiotap header containing all the fields which the hardware provided. 100 */ 101 static void 102 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 103 struct sk_buff *skb, 104 struct ieee80211_rate *rate, 105 int rtap_len) 106 { 107 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 108 struct ieee80211_radiotap_header *rthdr; 109 unsigned char *pos; 110 u16 rx_flags = 0; 111 112 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 113 memset(rthdr, 0, rtap_len); 114 115 /* radiotap header, set always present flags */ 116 rthdr->it_present = 117 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 118 (1 << IEEE80211_RADIOTAP_CHANNEL) | 119 (1 << IEEE80211_RADIOTAP_ANTENNA) | 120 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 121 rthdr->it_len = cpu_to_le16(rtap_len); 122 123 pos = (unsigned char *)(rthdr+1); 124 125 /* the order of the following fields is important */ 126 127 /* IEEE80211_RADIOTAP_TSFT */ 128 if (status->flag & RX_FLAG_MACTIME_MPDU) { 129 put_unaligned_le64(status->mactime, pos); 130 rthdr->it_present |= 131 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 132 pos += 8; 133 } 134 135 /* IEEE80211_RADIOTAP_FLAGS */ 136 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 137 *pos |= IEEE80211_RADIOTAP_F_FCS; 138 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 139 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 140 if (status->flag & RX_FLAG_SHORTPRE) 141 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 142 pos++; 143 144 /* IEEE80211_RADIOTAP_RATE */ 145 if (!rate || status->flag & RX_FLAG_HT) { 146 /* 147 * Without rate information don't add it. If we have, 148 * MCS information is a separate field in radiotap, 149 * added below. The byte here is needed as padding 150 * for the channel though, so initialise it to 0. 151 */ 152 *pos = 0; 153 } else { 154 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 155 *pos = rate->bitrate / 5; 156 } 157 pos++; 158 159 /* IEEE80211_RADIOTAP_CHANNEL */ 160 put_unaligned_le16(status->freq, pos); 161 pos += 2; 162 if (status->band == IEEE80211_BAND_5GHZ) 163 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ, 164 pos); 165 else if (status->flag & RX_FLAG_HT) 166 put_unaligned_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ, 167 pos); 168 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 169 put_unaligned_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ, 170 pos); 171 else if (rate) 172 put_unaligned_le16(IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ, 173 pos); 174 else 175 put_unaligned_le16(IEEE80211_CHAN_2GHZ, pos); 176 pos += 2; 177 178 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 179 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 180 *pos = status->signal; 181 rthdr->it_present |= 182 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 183 pos++; 184 } 185 186 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 187 188 /* IEEE80211_RADIOTAP_ANTENNA */ 189 *pos = status->antenna; 190 pos++; 191 192 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 193 194 /* IEEE80211_RADIOTAP_RX_FLAGS */ 195 /* ensure 2 byte alignment for the 2 byte field as required */ 196 if ((pos - (u8 *)rthdr) & 1) 197 pos++; 198 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 199 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 200 put_unaligned_le16(rx_flags, pos); 201 pos += 2; 202 203 if (status->flag & RX_FLAG_HT) { 204 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 205 *pos++ = IEEE80211_RADIOTAP_MCS_HAVE_MCS | 206 IEEE80211_RADIOTAP_MCS_HAVE_GI | 207 IEEE80211_RADIOTAP_MCS_HAVE_BW; 208 *pos = 0; 209 if (status->flag & RX_FLAG_SHORT_GI) 210 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 211 if (status->flag & RX_FLAG_40MHZ) 212 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 213 pos++; 214 *pos++ = status->rate_idx; 215 } 216 } 217 218 /* 219 * This function copies a received frame to all monitor interfaces and 220 * returns a cleaned-up SKB that no longer includes the FCS nor the 221 * radiotap header the driver might have added. 222 */ 223 static struct sk_buff * 224 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 225 struct ieee80211_rate *rate) 226 { 227 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 228 struct ieee80211_sub_if_data *sdata; 229 int needed_headroom = 0; 230 struct sk_buff *skb, *skb2; 231 struct net_device *prev_dev = NULL; 232 int present_fcs_len = 0; 233 234 /* 235 * First, we may need to make a copy of the skb because 236 * (1) we need to modify it for radiotap (if not present), and 237 * (2) the other RX handlers will modify the skb we got. 238 * 239 * We don't need to, of course, if we aren't going to return 240 * the SKB because it has a bad FCS/PLCP checksum. 241 */ 242 243 /* room for the radiotap header based on driver features */ 244 needed_headroom = ieee80211_rx_radiotap_len(local, status); 245 246 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 247 present_fcs_len = FCS_LEN; 248 249 /* make sure hdr->frame_control is on the linear part */ 250 if (!pskb_may_pull(origskb, 2)) { 251 dev_kfree_skb(origskb); 252 return NULL; 253 } 254 255 if (!local->monitors) { 256 if (should_drop_frame(origskb, present_fcs_len)) { 257 dev_kfree_skb(origskb); 258 return NULL; 259 } 260 261 return remove_monitor_info(local, origskb); 262 } 263 264 if (should_drop_frame(origskb, present_fcs_len)) { 265 /* only need to expand headroom if necessary */ 266 skb = origskb; 267 origskb = NULL; 268 269 /* 270 * This shouldn't trigger often because most devices have an 271 * RX header they pull before we get here, and that should 272 * be big enough for our radiotap information. We should 273 * probably export the length to drivers so that we can have 274 * them allocate enough headroom to start with. 275 */ 276 if (skb_headroom(skb) < needed_headroom && 277 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 278 dev_kfree_skb(skb); 279 return NULL; 280 } 281 } else { 282 /* 283 * Need to make a copy and possibly remove radiotap header 284 * and FCS from the original. 285 */ 286 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 287 288 origskb = remove_monitor_info(local, origskb); 289 290 if (!skb) 291 return origskb; 292 } 293 294 /* prepend radiotap information */ 295 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom); 296 297 skb_reset_mac_header(skb); 298 skb->ip_summed = CHECKSUM_UNNECESSARY; 299 skb->pkt_type = PACKET_OTHERHOST; 300 skb->protocol = htons(ETH_P_802_2); 301 302 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 303 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 304 continue; 305 306 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 307 continue; 308 309 if (!ieee80211_sdata_running(sdata)) 310 continue; 311 312 if (prev_dev) { 313 skb2 = skb_clone(skb, GFP_ATOMIC); 314 if (skb2) { 315 skb2->dev = prev_dev; 316 netif_receive_skb(skb2); 317 } 318 } 319 320 prev_dev = sdata->dev; 321 sdata->dev->stats.rx_packets++; 322 sdata->dev->stats.rx_bytes += skb->len; 323 } 324 325 if (prev_dev) { 326 skb->dev = prev_dev; 327 netif_receive_skb(skb); 328 } else 329 dev_kfree_skb(skb); 330 331 return origskb; 332 } 333 334 335 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 336 { 337 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 338 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 339 int tid, seqno_idx, security_idx; 340 341 /* does the frame have a qos control field? */ 342 if (ieee80211_is_data_qos(hdr->frame_control)) { 343 u8 *qc = ieee80211_get_qos_ctl(hdr); 344 /* frame has qos control */ 345 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 346 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 347 status->rx_flags |= IEEE80211_RX_AMSDU; 348 349 seqno_idx = tid; 350 security_idx = tid; 351 } else { 352 /* 353 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 354 * 355 * Sequence numbers for management frames, QoS data 356 * frames with a broadcast/multicast address in the 357 * Address 1 field, and all non-QoS data frames sent 358 * by QoS STAs are assigned using an additional single 359 * modulo-4096 counter, [...] 360 * 361 * We also use that counter for non-QoS STAs. 362 */ 363 seqno_idx = NUM_RX_DATA_QUEUES; 364 security_idx = 0; 365 if (ieee80211_is_mgmt(hdr->frame_control)) 366 security_idx = NUM_RX_DATA_QUEUES; 367 tid = 0; 368 } 369 370 rx->seqno_idx = seqno_idx; 371 rx->security_idx = security_idx; 372 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 373 * For now, set skb->priority to 0 for other cases. */ 374 rx->skb->priority = (tid > 7) ? 0 : tid; 375 } 376 377 /** 378 * DOC: Packet alignment 379 * 380 * Drivers always need to pass packets that are aligned to two-byte boundaries 381 * to the stack. 382 * 383 * Additionally, should, if possible, align the payload data in a way that 384 * guarantees that the contained IP header is aligned to a four-byte 385 * boundary. In the case of regular frames, this simply means aligning the 386 * payload to a four-byte boundary (because either the IP header is directly 387 * contained, or IV/RFC1042 headers that have a length divisible by four are 388 * in front of it). If the payload data is not properly aligned and the 389 * architecture doesn't support efficient unaligned operations, mac80211 390 * will align the data. 391 * 392 * With A-MSDU frames, however, the payload data address must yield two modulo 393 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 394 * push the IP header further back to a multiple of four again. Thankfully, the 395 * specs were sane enough this time around to require padding each A-MSDU 396 * subframe to a length that is a multiple of four. 397 * 398 * Padding like Atheros hardware adds which is between the 802.11 header and 399 * the payload is not supported, the driver is required to move the 802.11 400 * header to be directly in front of the payload in that case. 401 */ 402 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 403 { 404 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 405 WARN_ONCE((unsigned long)rx->skb->data & 1, 406 "unaligned packet at 0x%p\n", rx->skb->data); 407 #endif 408 } 409 410 411 /* rx handlers */ 412 413 static ieee80211_rx_result debug_noinline 414 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 415 { 416 struct ieee80211_local *local = rx->local; 417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 418 struct sk_buff *skb = rx->skb; 419 420 if (likely(!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 421 !local->sched_scanning)) 422 return RX_CONTINUE; 423 424 if (test_bit(SCAN_HW_SCANNING, &local->scanning) || 425 test_bit(SCAN_SW_SCANNING, &local->scanning) || 426 local->sched_scanning) 427 return ieee80211_scan_rx(rx->sdata, skb); 428 429 /* scanning finished during invoking of handlers */ 430 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 431 return RX_DROP_UNUSABLE; 432 } 433 434 435 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 436 { 437 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 438 439 if (skb->len < 24 || is_multicast_ether_addr(hdr->addr1)) 440 return 0; 441 442 return ieee80211_is_robust_mgmt_frame(hdr); 443 } 444 445 446 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 447 { 448 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 449 450 if (skb->len < 24 || !is_multicast_ether_addr(hdr->addr1)) 451 return 0; 452 453 return ieee80211_is_robust_mgmt_frame(hdr); 454 } 455 456 457 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 458 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 459 { 460 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 461 struct ieee80211_mmie *mmie; 462 463 if (skb->len < 24 + sizeof(*mmie) || 464 !is_multicast_ether_addr(hdr->da)) 465 return -1; 466 467 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) hdr)) 468 return -1; /* not a robust management frame */ 469 470 mmie = (struct ieee80211_mmie *) 471 (skb->data + skb->len - sizeof(*mmie)); 472 if (mmie->element_id != WLAN_EID_MMIE || 473 mmie->length != sizeof(*mmie) - 2) 474 return -1; 475 476 return le16_to_cpu(mmie->key_id); 477 } 478 479 480 static ieee80211_rx_result 481 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 482 { 483 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 484 char *dev_addr = rx->sdata->vif.addr; 485 486 if (ieee80211_is_data(hdr->frame_control)) { 487 if (is_multicast_ether_addr(hdr->addr1)) { 488 if (ieee80211_has_tods(hdr->frame_control) || 489 !ieee80211_has_fromds(hdr->frame_control)) 490 return RX_DROP_MONITOR; 491 if (memcmp(hdr->addr3, dev_addr, ETH_ALEN) == 0) 492 return RX_DROP_MONITOR; 493 } else { 494 if (!ieee80211_has_a4(hdr->frame_control)) 495 return RX_DROP_MONITOR; 496 if (memcmp(hdr->addr4, dev_addr, ETH_ALEN) == 0) 497 return RX_DROP_MONITOR; 498 } 499 } 500 501 /* If there is not an established peer link and this is not a peer link 502 * establisment frame, beacon or probe, drop the frame. 503 */ 504 505 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 506 struct ieee80211_mgmt *mgmt; 507 508 if (!ieee80211_is_mgmt(hdr->frame_control)) 509 return RX_DROP_MONITOR; 510 511 if (ieee80211_is_action(hdr->frame_control)) { 512 u8 category; 513 mgmt = (struct ieee80211_mgmt *)hdr; 514 category = mgmt->u.action.category; 515 if (category != WLAN_CATEGORY_MESH_ACTION && 516 category != WLAN_CATEGORY_SELF_PROTECTED) 517 return RX_DROP_MONITOR; 518 return RX_CONTINUE; 519 } 520 521 if (ieee80211_is_probe_req(hdr->frame_control) || 522 ieee80211_is_probe_resp(hdr->frame_control) || 523 ieee80211_is_beacon(hdr->frame_control) || 524 ieee80211_is_auth(hdr->frame_control)) 525 return RX_CONTINUE; 526 527 return RX_DROP_MONITOR; 528 529 } 530 531 return RX_CONTINUE; 532 } 533 534 #define SEQ_MODULO 0x1000 535 #define SEQ_MASK 0xfff 536 537 static inline int seq_less(u16 sq1, u16 sq2) 538 { 539 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 540 } 541 542 static inline u16 seq_inc(u16 sq) 543 { 544 return (sq + 1) & SEQ_MASK; 545 } 546 547 static inline u16 seq_sub(u16 sq1, u16 sq2) 548 { 549 return (sq1 - sq2) & SEQ_MASK; 550 } 551 552 553 static void ieee80211_release_reorder_frame(struct ieee80211_hw *hw, 554 struct tid_ampdu_rx *tid_agg_rx, 555 int index) 556 { 557 struct ieee80211_local *local = hw_to_local(hw); 558 struct sk_buff *skb = tid_agg_rx->reorder_buf[index]; 559 struct ieee80211_rx_status *status; 560 561 lockdep_assert_held(&tid_agg_rx->reorder_lock); 562 563 if (!skb) 564 goto no_frame; 565 566 /* release the frame from the reorder ring buffer */ 567 tid_agg_rx->stored_mpdu_num--; 568 tid_agg_rx->reorder_buf[index] = NULL; 569 status = IEEE80211_SKB_RXCB(skb); 570 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 571 skb_queue_tail(&local->rx_skb_queue, skb); 572 573 no_frame: 574 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 575 } 576 577 static void ieee80211_release_reorder_frames(struct ieee80211_hw *hw, 578 struct tid_ampdu_rx *tid_agg_rx, 579 u16 head_seq_num) 580 { 581 int index; 582 583 lockdep_assert_held(&tid_agg_rx->reorder_lock); 584 585 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 586 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 587 tid_agg_rx->buf_size; 588 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 589 } 590 } 591 592 /* 593 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 594 * the skb was added to the buffer longer than this time ago, the earlier 595 * frames that have not yet been received are assumed to be lost and the skb 596 * can be released for processing. This may also release other skb's from the 597 * reorder buffer if there are no additional gaps between the frames. 598 * 599 * Callers must hold tid_agg_rx->reorder_lock. 600 */ 601 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 602 603 static void ieee80211_sta_reorder_release(struct ieee80211_hw *hw, 604 struct tid_ampdu_rx *tid_agg_rx) 605 { 606 int index, j; 607 608 lockdep_assert_held(&tid_agg_rx->reorder_lock); 609 610 /* release the buffer until next missing frame */ 611 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 612 tid_agg_rx->buf_size; 613 if (!tid_agg_rx->reorder_buf[index] && 614 tid_agg_rx->stored_mpdu_num > 1) { 615 /* 616 * No buffers ready to be released, but check whether any 617 * frames in the reorder buffer have timed out. 618 */ 619 int skipped = 1; 620 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 621 j = (j + 1) % tid_agg_rx->buf_size) { 622 if (!tid_agg_rx->reorder_buf[j]) { 623 skipped++; 624 continue; 625 } 626 if (skipped && 627 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 628 HT_RX_REORDER_BUF_TIMEOUT)) 629 goto set_release_timer; 630 631 #ifdef CONFIG_MAC80211_HT_DEBUG 632 if (net_ratelimit()) 633 wiphy_debug(hw->wiphy, 634 "release an RX reorder frame due to timeout on earlier frames\n"); 635 #endif 636 ieee80211_release_reorder_frame(hw, tid_agg_rx, j); 637 638 /* 639 * Increment the head seq# also for the skipped slots. 640 */ 641 tid_agg_rx->head_seq_num = 642 (tid_agg_rx->head_seq_num + skipped) & SEQ_MASK; 643 skipped = 0; 644 } 645 } else while (tid_agg_rx->reorder_buf[index]) { 646 ieee80211_release_reorder_frame(hw, tid_agg_rx, index); 647 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) % 648 tid_agg_rx->buf_size; 649 } 650 651 if (tid_agg_rx->stored_mpdu_num) { 652 j = index = seq_sub(tid_agg_rx->head_seq_num, 653 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 654 655 for (; j != (index - 1) % tid_agg_rx->buf_size; 656 j = (j + 1) % tid_agg_rx->buf_size) { 657 if (tid_agg_rx->reorder_buf[j]) 658 break; 659 } 660 661 set_release_timer: 662 663 mod_timer(&tid_agg_rx->reorder_timer, 664 tid_agg_rx->reorder_time[j] + 1 + 665 HT_RX_REORDER_BUF_TIMEOUT); 666 } else { 667 del_timer(&tid_agg_rx->reorder_timer); 668 } 669 } 670 671 /* 672 * As this function belongs to the RX path it must be under 673 * rcu_read_lock protection. It returns false if the frame 674 * can be processed immediately, true if it was consumed. 675 */ 676 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 677 struct tid_ampdu_rx *tid_agg_rx, 678 struct sk_buff *skb) 679 { 680 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 681 u16 sc = le16_to_cpu(hdr->seq_ctrl); 682 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 683 u16 head_seq_num, buf_size; 684 int index; 685 bool ret = true; 686 687 spin_lock(&tid_agg_rx->reorder_lock); 688 689 buf_size = tid_agg_rx->buf_size; 690 head_seq_num = tid_agg_rx->head_seq_num; 691 692 /* frame with out of date sequence number */ 693 if (seq_less(mpdu_seq_num, head_seq_num)) { 694 dev_kfree_skb(skb); 695 goto out; 696 } 697 698 /* 699 * If frame the sequence number exceeds our buffering window 700 * size release some previous frames to make room for this one. 701 */ 702 if (!seq_less(mpdu_seq_num, head_seq_num + buf_size)) { 703 head_seq_num = seq_inc(seq_sub(mpdu_seq_num, buf_size)); 704 /* release stored frames up to new head to stack */ 705 ieee80211_release_reorder_frames(hw, tid_agg_rx, head_seq_num); 706 } 707 708 /* Now the new frame is always in the range of the reordering buffer */ 709 710 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) % tid_agg_rx->buf_size; 711 712 /* check if we already stored this frame */ 713 if (tid_agg_rx->reorder_buf[index]) { 714 dev_kfree_skb(skb); 715 goto out; 716 } 717 718 /* 719 * If the current MPDU is in the right order and nothing else 720 * is stored we can process it directly, no need to buffer it. 721 * If it is first but there's something stored, we may be able 722 * to release frames after this one. 723 */ 724 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 725 tid_agg_rx->stored_mpdu_num == 0) { 726 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 727 ret = false; 728 goto out; 729 } 730 731 /* put the frame in the reordering buffer */ 732 tid_agg_rx->reorder_buf[index] = skb; 733 tid_agg_rx->reorder_time[index] = jiffies; 734 tid_agg_rx->stored_mpdu_num++; 735 ieee80211_sta_reorder_release(hw, tid_agg_rx); 736 737 out: 738 spin_unlock(&tid_agg_rx->reorder_lock); 739 return ret; 740 } 741 742 /* 743 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 744 * true if the MPDU was buffered, false if it should be processed. 745 */ 746 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx) 747 { 748 struct sk_buff *skb = rx->skb; 749 struct ieee80211_local *local = rx->local; 750 struct ieee80211_hw *hw = &local->hw; 751 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 752 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 753 struct sta_info *sta = rx->sta; 754 struct tid_ampdu_rx *tid_agg_rx; 755 u16 sc; 756 u8 tid, ack_policy; 757 758 if (!ieee80211_is_data_qos(hdr->frame_control)) 759 goto dont_reorder; 760 761 /* 762 * filter the QoS data rx stream according to 763 * STA/TID and check if this STA/TID is on aggregation 764 */ 765 766 if (!sta) 767 goto dont_reorder; 768 769 ack_policy = *ieee80211_get_qos_ctl(hdr) & 770 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 771 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 772 773 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 774 if (!tid_agg_rx) 775 goto dont_reorder; 776 777 /* qos null data frames are excluded */ 778 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 779 goto dont_reorder; 780 781 /* not part of a BA session */ 782 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 783 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 784 goto dont_reorder; 785 786 /* not actually part of this BA session */ 787 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 788 goto dont_reorder; 789 790 /* new, potentially un-ordered, ampdu frame - process it */ 791 792 /* reset session timer */ 793 if (tid_agg_rx->timeout) 794 mod_timer(&tid_agg_rx->session_timer, 795 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 796 797 /* if this mpdu is fragmented - terminate rx aggregation session */ 798 sc = le16_to_cpu(hdr->seq_ctrl); 799 if (sc & IEEE80211_SCTL_FRAG) { 800 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 801 skb_queue_tail(&rx->sdata->skb_queue, skb); 802 ieee80211_queue_work(&local->hw, &rx->sdata->work); 803 return; 804 } 805 806 /* 807 * No locking needed -- we will only ever process one 808 * RX packet at a time, and thus own tid_agg_rx. All 809 * other code manipulating it needs to (and does) make 810 * sure that we cannot get to it any more before doing 811 * anything with it. 812 */ 813 if (ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb)) 814 return; 815 816 dont_reorder: 817 skb_queue_tail(&local->rx_skb_queue, skb); 818 } 819 820 static ieee80211_rx_result debug_noinline 821 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 822 { 823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 824 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 825 826 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 827 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 828 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 829 rx->sta->last_seq_ctrl[rx->seqno_idx] == 830 hdr->seq_ctrl)) { 831 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 832 rx->local->dot11FrameDuplicateCount++; 833 rx->sta->num_duplicates++; 834 } 835 return RX_DROP_UNUSABLE; 836 } else 837 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 838 } 839 840 if (unlikely(rx->skb->len < 16)) { 841 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 842 return RX_DROP_MONITOR; 843 } 844 845 /* Drop disallowed frame classes based on STA auth/assoc state; 846 * IEEE 802.11, Chap 5.5. 847 * 848 * mac80211 filters only based on association state, i.e. it drops 849 * Class 3 frames from not associated stations. hostapd sends 850 * deauth/disassoc frames when needed. In addition, hostapd is 851 * responsible for filtering on both auth and assoc states. 852 */ 853 854 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 855 return ieee80211_rx_mesh_check(rx); 856 857 if (unlikely((ieee80211_is_data(hdr->frame_control) || 858 ieee80211_is_pspoll(hdr->frame_control)) && 859 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 860 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 861 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 862 if (rx->sta && rx->sta->dummy && 863 ieee80211_is_data_present(hdr->frame_control)) { 864 u16 ethertype; 865 u8 *payload; 866 867 payload = rx->skb->data + 868 ieee80211_hdrlen(hdr->frame_control); 869 ethertype = (payload[6] << 8) | payload[7]; 870 if (cpu_to_be16(ethertype) == 871 rx->sdata->control_port_protocol) 872 return RX_CONTINUE; 873 } 874 875 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 876 cfg80211_rx_spurious_frame(rx->sdata->dev, 877 hdr->addr2, 878 GFP_ATOMIC)) 879 return RX_DROP_UNUSABLE; 880 881 return RX_DROP_MONITOR; 882 } 883 884 return RX_CONTINUE; 885 } 886 887 888 static ieee80211_rx_result debug_noinline 889 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 890 { 891 struct sk_buff *skb = rx->skb; 892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 893 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 894 int keyidx; 895 int hdrlen; 896 ieee80211_rx_result result = RX_DROP_UNUSABLE; 897 struct ieee80211_key *sta_ptk = NULL; 898 int mmie_keyidx = -1; 899 __le16 fc; 900 901 /* 902 * Key selection 101 903 * 904 * There are four types of keys: 905 * - GTK (group keys) 906 * - IGTK (group keys for management frames) 907 * - PTK (pairwise keys) 908 * - STK (station-to-station pairwise keys) 909 * 910 * When selecting a key, we have to distinguish between multicast 911 * (including broadcast) and unicast frames, the latter can only 912 * use PTKs and STKs while the former always use GTKs and IGTKs. 913 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 914 * unicast frames can also use key indices like GTKs. Hence, if we 915 * don't have a PTK/STK we check the key index for a WEP key. 916 * 917 * Note that in a regular BSS, multicast frames are sent by the 918 * AP only, associated stations unicast the frame to the AP first 919 * which then multicasts it on their behalf. 920 * 921 * There is also a slight problem in IBSS mode: GTKs are negotiated 922 * with each station, that is something we don't currently handle. 923 * The spec seems to expect that one negotiates the same key with 924 * every station but there's no such requirement; VLANs could be 925 * possible. 926 */ 927 928 /* 929 * No point in finding a key and decrypting if the frame is neither 930 * addressed to us nor a multicast frame. 931 */ 932 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 933 return RX_CONTINUE; 934 935 /* start without a key */ 936 rx->key = NULL; 937 938 if (rx->sta) 939 sta_ptk = rcu_dereference(rx->sta->ptk); 940 941 fc = hdr->frame_control; 942 943 if (!ieee80211_has_protected(fc)) 944 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 945 946 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 947 rx->key = sta_ptk; 948 if ((status->flag & RX_FLAG_DECRYPTED) && 949 (status->flag & RX_FLAG_IV_STRIPPED)) 950 return RX_CONTINUE; 951 /* Skip decryption if the frame is not protected. */ 952 if (!ieee80211_has_protected(fc)) 953 return RX_CONTINUE; 954 } else if (mmie_keyidx >= 0) { 955 /* Broadcast/multicast robust management frame / BIP */ 956 if ((status->flag & RX_FLAG_DECRYPTED) && 957 (status->flag & RX_FLAG_IV_STRIPPED)) 958 return RX_CONTINUE; 959 960 if (mmie_keyidx < NUM_DEFAULT_KEYS || 961 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 962 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 963 if (rx->sta) 964 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 965 if (!rx->key) 966 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 967 } else if (!ieee80211_has_protected(fc)) { 968 /* 969 * The frame was not protected, so skip decryption. However, we 970 * need to set rx->key if there is a key that could have been 971 * used so that the frame may be dropped if encryption would 972 * have been expected. 973 */ 974 struct ieee80211_key *key = NULL; 975 struct ieee80211_sub_if_data *sdata = rx->sdata; 976 int i; 977 978 if (ieee80211_is_mgmt(fc) && 979 is_multicast_ether_addr(hdr->addr1) && 980 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 981 rx->key = key; 982 else { 983 if (rx->sta) { 984 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 985 key = rcu_dereference(rx->sta->gtk[i]); 986 if (key) 987 break; 988 } 989 } 990 if (!key) { 991 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 992 key = rcu_dereference(sdata->keys[i]); 993 if (key) 994 break; 995 } 996 } 997 if (key) 998 rx->key = key; 999 } 1000 return RX_CONTINUE; 1001 } else { 1002 u8 keyid; 1003 /* 1004 * The device doesn't give us the IV so we won't be 1005 * able to look up the key. That's ok though, we 1006 * don't need to decrypt the frame, we just won't 1007 * be able to keep statistics accurate. 1008 * Except for key threshold notifications, should 1009 * we somehow allow the driver to tell us which key 1010 * the hardware used if this flag is set? 1011 */ 1012 if ((status->flag & RX_FLAG_DECRYPTED) && 1013 (status->flag & RX_FLAG_IV_STRIPPED)) 1014 return RX_CONTINUE; 1015 1016 hdrlen = ieee80211_hdrlen(fc); 1017 1018 if (rx->skb->len < 8 + hdrlen) 1019 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1020 1021 /* 1022 * no need to call ieee80211_wep_get_keyidx, 1023 * it verifies a bunch of things we've done already 1024 */ 1025 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1026 keyidx = keyid >> 6; 1027 1028 /* check per-station GTK first, if multicast packet */ 1029 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1030 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1031 1032 /* if not found, try default key */ 1033 if (!rx->key) { 1034 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1035 1036 /* 1037 * RSNA-protected unicast frames should always be 1038 * sent with pairwise or station-to-station keys, 1039 * but for WEP we allow using a key index as well. 1040 */ 1041 if (rx->key && 1042 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1043 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1044 !is_multicast_ether_addr(hdr->addr1)) 1045 rx->key = NULL; 1046 } 1047 } 1048 1049 if (rx->key) { 1050 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1051 return RX_DROP_MONITOR; 1052 1053 rx->key->tx_rx_count++; 1054 /* TODO: add threshold stuff again */ 1055 } else { 1056 return RX_DROP_MONITOR; 1057 } 1058 1059 if (skb_linearize(rx->skb)) 1060 return RX_DROP_UNUSABLE; 1061 /* the hdr variable is invalid now! */ 1062 1063 switch (rx->key->conf.cipher) { 1064 case WLAN_CIPHER_SUITE_WEP40: 1065 case WLAN_CIPHER_SUITE_WEP104: 1066 /* Check for weak IVs if possible */ 1067 if (rx->sta && ieee80211_is_data(fc) && 1068 (!(status->flag & RX_FLAG_IV_STRIPPED) || 1069 !(status->flag & RX_FLAG_DECRYPTED)) && 1070 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 1071 rx->sta->wep_weak_iv_count++; 1072 1073 result = ieee80211_crypto_wep_decrypt(rx); 1074 break; 1075 case WLAN_CIPHER_SUITE_TKIP: 1076 result = ieee80211_crypto_tkip_decrypt(rx); 1077 break; 1078 case WLAN_CIPHER_SUITE_CCMP: 1079 result = ieee80211_crypto_ccmp_decrypt(rx); 1080 break; 1081 case WLAN_CIPHER_SUITE_AES_CMAC: 1082 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1083 break; 1084 default: 1085 /* 1086 * We can reach here only with HW-only algorithms 1087 * but why didn't it decrypt the frame?! 1088 */ 1089 return RX_DROP_UNUSABLE; 1090 } 1091 1092 /* either the frame has been decrypted or will be dropped */ 1093 status->flag |= RX_FLAG_DECRYPTED; 1094 1095 return result; 1096 } 1097 1098 static ieee80211_rx_result debug_noinline 1099 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1100 { 1101 struct ieee80211_local *local; 1102 struct ieee80211_hdr *hdr; 1103 struct sk_buff *skb; 1104 1105 local = rx->local; 1106 skb = rx->skb; 1107 hdr = (struct ieee80211_hdr *) skb->data; 1108 1109 if (!local->pspolling) 1110 return RX_CONTINUE; 1111 1112 if (!ieee80211_has_fromds(hdr->frame_control)) 1113 /* this is not from AP */ 1114 return RX_CONTINUE; 1115 1116 if (!ieee80211_is_data(hdr->frame_control)) 1117 return RX_CONTINUE; 1118 1119 if (!ieee80211_has_moredata(hdr->frame_control)) { 1120 /* AP has no more frames buffered for us */ 1121 local->pspolling = false; 1122 return RX_CONTINUE; 1123 } 1124 1125 /* more data bit is set, let's request a new frame from the AP */ 1126 ieee80211_send_pspoll(local, rx->sdata); 1127 1128 return RX_CONTINUE; 1129 } 1130 1131 static void ap_sta_ps_start(struct sta_info *sta) 1132 { 1133 struct ieee80211_sub_if_data *sdata = sta->sdata; 1134 struct ieee80211_local *local = sdata->local; 1135 1136 atomic_inc(&sdata->bss->num_sta_ps); 1137 set_sta_flag(sta, WLAN_STA_PS_STA); 1138 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1139 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1140 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1141 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 1142 sdata->name, sta->sta.addr, sta->sta.aid); 1143 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1144 } 1145 1146 static void ap_sta_ps_end(struct sta_info *sta) 1147 { 1148 struct ieee80211_sub_if_data *sdata = sta->sdata; 1149 1150 atomic_dec(&sdata->bss->num_sta_ps); 1151 1152 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1153 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 1154 sdata->name, sta->sta.addr, sta->sta.aid); 1155 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1156 1157 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1158 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1159 printk(KERN_DEBUG "%s: STA %pM aid %d driver-ps-blocked\n", 1160 sdata->name, sta->sta.addr, sta->sta.aid); 1161 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1162 return; 1163 } 1164 1165 ieee80211_sta_ps_deliver_wakeup(sta); 1166 } 1167 1168 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1169 { 1170 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1171 bool in_ps; 1172 1173 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1174 1175 /* Don't let the same PS state be set twice */ 1176 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1177 if ((start && in_ps) || (!start && !in_ps)) 1178 return -EINVAL; 1179 1180 if (start) 1181 ap_sta_ps_start(sta_inf); 1182 else 1183 ap_sta_ps_end(sta_inf); 1184 1185 return 0; 1186 } 1187 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1188 1189 static ieee80211_rx_result debug_noinline 1190 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1191 { 1192 struct ieee80211_sub_if_data *sdata = rx->sdata; 1193 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1194 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1195 int tid, ac; 1196 1197 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1198 return RX_CONTINUE; 1199 1200 if (sdata->vif.type != NL80211_IFTYPE_AP && 1201 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1202 return RX_CONTINUE; 1203 1204 /* 1205 * The device handles station powersave, so don't do anything about 1206 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1207 * it to mac80211 since they're handled.) 1208 */ 1209 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1210 return RX_CONTINUE; 1211 1212 /* 1213 * Don't do anything if the station isn't already asleep. In 1214 * the uAPSD case, the station will probably be marked asleep, 1215 * in the PS-Poll case the station must be confused ... 1216 */ 1217 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1218 return RX_CONTINUE; 1219 1220 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1221 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1222 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1223 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1224 else 1225 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1226 } 1227 1228 /* Free PS Poll skb here instead of returning RX_DROP that would 1229 * count as an dropped frame. */ 1230 dev_kfree_skb(rx->skb); 1231 1232 return RX_QUEUED; 1233 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1234 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1235 ieee80211_has_pm(hdr->frame_control) && 1236 (ieee80211_is_data_qos(hdr->frame_control) || 1237 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1238 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1239 ac = ieee802_1d_to_ac[tid & 7]; 1240 1241 /* 1242 * If this AC is not trigger-enabled do nothing. 1243 * 1244 * NB: This could/should check a separate bitmap of trigger- 1245 * enabled queues, but for now we only implement uAPSD w/o 1246 * TSPEC changes to the ACs, so they're always the same. 1247 */ 1248 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1249 return RX_CONTINUE; 1250 1251 /* if we are in a service period, do nothing */ 1252 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1253 return RX_CONTINUE; 1254 1255 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1256 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1257 else 1258 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1259 } 1260 1261 return RX_CONTINUE; 1262 } 1263 1264 static ieee80211_rx_result debug_noinline 1265 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1266 { 1267 struct sta_info *sta = rx->sta; 1268 struct sk_buff *skb = rx->skb; 1269 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1270 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1271 1272 if (!sta) 1273 return RX_CONTINUE; 1274 1275 /* 1276 * Update last_rx only for IBSS packets which are for the current 1277 * BSSID to avoid keeping the current IBSS network alive in cases 1278 * where other STAs start using different BSSID. 1279 */ 1280 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1281 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1282 NL80211_IFTYPE_ADHOC); 1283 if (compare_ether_addr(bssid, rx->sdata->u.ibss.bssid) == 0) { 1284 sta->last_rx = jiffies; 1285 if (ieee80211_is_data(hdr->frame_control)) { 1286 sta->last_rx_rate_idx = status->rate_idx; 1287 sta->last_rx_rate_flag = status->flag; 1288 } 1289 } 1290 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1291 /* 1292 * Mesh beacons will update last_rx when if they are found to 1293 * match the current local configuration when processed. 1294 */ 1295 sta->last_rx = jiffies; 1296 if (ieee80211_is_data(hdr->frame_control)) { 1297 sta->last_rx_rate_idx = status->rate_idx; 1298 sta->last_rx_rate_flag = status->flag; 1299 } 1300 } 1301 1302 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1303 return RX_CONTINUE; 1304 1305 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1306 ieee80211_sta_rx_notify(rx->sdata, hdr); 1307 1308 sta->rx_fragments++; 1309 sta->rx_bytes += rx->skb->len; 1310 sta->last_signal = status->signal; 1311 ewma_add(&sta->avg_signal, -status->signal); 1312 1313 /* 1314 * Change STA power saving mode only at the end of a frame 1315 * exchange sequence. 1316 */ 1317 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1318 !ieee80211_has_morefrags(hdr->frame_control) && 1319 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1320 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1321 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1322 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1323 /* 1324 * Ignore doze->wake transitions that are 1325 * indicated by non-data frames, the standard 1326 * is unclear here, but for example going to 1327 * PS mode and then scanning would cause a 1328 * doze->wake transition for the probe request, 1329 * and that is clearly undesirable. 1330 */ 1331 if (ieee80211_is_data(hdr->frame_control) && 1332 !ieee80211_has_pm(hdr->frame_control)) 1333 ap_sta_ps_end(sta); 1334 } else { 1335 if (ieee80211_has_pm(hdr->frame_control)) 1336 ap_sta_ps_start(sta); 1337 } 1338 } 1339 1340 /* 1341 * Drop (qos-)data::nullfunc frames silently, since they 1342 * are used only to control station power saving mode. 1343 */ 1344 if (ieee80211_is_nullfunc(hdr->frame_control) || 1345 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1346 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1347 1348 /* 1349 * If we receive a 4-addr nullfunc frame from a STA 1350 * that was not moved to a 4-addr STA vlan yet send 1351 * the event to userspace and for older hostapd drop 1352 * the frame to the monitor interface. 1353 */ 1354 if (ieee80211_has_a4(hdr->frame_control) && 1355 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1356 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1357 !rx->sdata->u.vlan.sta))) { 1358 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1359 cfg80211_rx_unexpected_4addr_frame( 1360 rx->sdata->dev, sta->sta.addr, 1361 GFP_ATOMIC); 1362 return RX_DROP_MONITOR; 1363 } 1364 /* 1365 * Update counter and free packet here to avoid 1366 * counting this as a dropped packed. 1367 */ 1368 sta->rx_packets++; 1369 dev_kfree_skb(rx->skb); 1370 return RX_QUEUED; 1371 } 1372 1373 return RX_CONTINUE; 1374 } /* ieee80211_rx_h_sta_process */ 1375 1376 static inline struct ieee80211_fragment_entry * 1377 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1378 unsigned int frag, unsigned int seq, int rx_queue, 1379 struct sk_buff **skb) 1380 { 1381 struct ieee80211_fragment_entry *entry; 1382 int idx; 1383 1384 idx = sdata->fragment_next; 1385 entry = &sdata->fragments[sdata->fragment_next++]; 1386 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1387 sdata->fragment_next = 0; 1388 1389 if (!skb_queue_empty(&entry->skb_list)) { 1390 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1391 struct ieee80211_hdr *hdr = 1392 (struct ieee80211_hdr *) entry->skb_list.next->data; 1393 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 1394 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 1395 "addr1=%pM addr2=%pM\n", 1396 sdata->name, idx, 1397 jiffies - entry->first_frag_time, entry->seq, 1398 entry->last_frag, hdr->addr1, hdr->addr2); 1399 #endif 1400 __skb_queue_purge(&entry->skb_list); 1401 } 1402 1403 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1404 *skb = NULL; 1405 entry->first_frag_time = jiffies; 1406 entry->seq = seq; 1407 entry->rx_queue = rx_queue; 1408 entry->last_frag = frag; 1409 entry->ccmp = 0; 1410 entry->extra_len = 0; 1411 1412 return entry; 1413 } 1414 1415 static inline struct ieee80211_fragment_entry * 1416 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1417 unsigned int frag, unsigned int seq, 1418 int rx_queue, struct ieee80211_hdr *hdr) 1419 { 1420 struct ieee80211_fragment_entry *entry; 1421 int i, idx; 1422 1423 idx = sdata->fragment_next; 1424 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1425 struct ieee80211_hdr *f_hdr; 1426 1427 idx--; 1428 if (idx < 0) 1429 idx = IEEE80211_FRAGMENT_MAX - 1; 1430 1431 entry = &sdata->fragments[idx]; 1432 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1433 entry->rx_queue != rx_queue || 1434 entry->last_frag + 1 != frag) 1435 continue; 1436 1437 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1438 1439 /* 1440 * Check ftype and addresses are equal, else check next fragment 1441 */ 1442 if (((hdr->frame_control ^ f_hdr->frame_control) & 1443 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1444 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 1445 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 1446 continue; 1447 1448 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1449 __skb_queue_purge(&entry->skb_list); 1450 continue; 1451 } 1452 return entry; 1453 } 1454 1455 return NULL; 1456 } 1457 1458 static ieee80211_rx_result debug_noinline 1459 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1460 { 1461 struct ieee80211_hdr *hdr; 1462 u16 sc; 1463 __le16 fc; 1464 unsigned int frag, seq; 1465 struct ieee80211_fragment_entry *entry; 1466 struct sk_buff *skb; 1467 struct ieee80211_rx_status *status; 1468 1469 hdr = (struct ieee80211_hdr *)rx->skb->data; 1470 fc = hdr->frame_control; 1471 sc = le16_to_cpu(hdr->seq_ctrl); 1472 frag = sc & IEEE80211_SCTL_FRAG; 1473 1474 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 1475 (rx->skb)->len < 24 || 1476 is_multicast_ether_addr(hdr->addr1))) { 1477 /* not fragmented */ 1478 goto out; 1479 } 1480 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1481 1482 if (skb_linearize(rx->skb)) 1483 return RX_DROP_UNUSABLE; 1484 1485 /* 1486 * skb_linearize() might change the skb->data and 1487 * previously cached variables (in this case, hdr) need to 1488 * be refreshed with the new data. 1489 */ 1490 hdr = (struct ieee80211_hdr *)rx->skb->data; 1491 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1492 1493 if (frag == 0) { 1494 /* This is the first fragment of a new frame. */ 1495 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1496 rx->seqno_idx, &(rx->skb)); 1497 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1498 ieee80211_has_protected(fc)) { 1499 int queue = rx->security_idx; 1500 /* Store CCMP PN so that we can verify that the next 1501 * fragment has a sequential PN value. */ 1502 entry->ccmp = 1; 1503 memcpy(entry->last_pn, 1504 rx->key->u.ccmp.rx_pn[queue], 1505 CCMP_PN_LEN); 1506 } 1507 return RX_QUEUED; 1508 } 1509 1510 /* This is a fragment for a frame that should already be pending in 1511 * fragment cache. Add this fragment to the end of the pending entry. 1512 */ 1513 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1514 rx->seqno_idx, hdr); 1515 if (!entry) { 1516 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1517 return RX_DROP_MONITOR; 1518 } 1519 1520 /* Verify that MPDUs within one MSDU have sequential PN values. 1521 * (IEEE 802.11i, 8.3.3.4.5) */ 1522 if (entry->ccmp) { 1523 int i; 1524 u8 pn[CCMP_PN_LEN], *rpn; 1525 int queue; 1526 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1527 return RX_DROP_UNUSABLE; 1528 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 1529 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 1530 pn[i]++; 1531 if (pn[i]) 1532 break; 1533 } 1534 queue = rx->security_idx; 1535 rpn = rx->key->u.ccmp.rx_pn[queue]; 1536 if (memcmp(pn, rpn, CCMP_PN_LEN)) 1537 return RX_DROP_UNUSABLE; 1538 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 1539 } 1540 1541 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1542 __skb_queue_tail(&entry->skb_list, rx->skb); 1543 entry->last_frag = frag; 1544 entry->extra_len += rx->skb->len; 1545 if (ieee80211_has_morefrags(fc)) { 1546 rx->skb = NULL; 1547 return RX_QUEUED; 1548 } 1549 1550 rx->skb = __skb_dequeue(&entry->skb_list); 1551 if (skb_tailroom(rx->skb) < entry->extra_len) { 1552 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1553 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1554 GFP_ATOMIC))) { 1555 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1556 __skb_queue_purge(&entry->skb_list); 1557 return RX_DROP_UNUSABLE; 1558 } 1559 } 1560 while ((skb = __skb_dequeue(&entry->skb_list))) { 1561 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1562 dev_kfree_skb(skb); 1563 } 1564 1565 /* Complete frame has been reassembled - process it now */ 1566 status = IEEE80211_SKB_RXCB(rx->skb); 1567 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1568 1569 out: 1570 if (rx->sta) 1571 rx->sta->rx_packets++; 1572 if (is_multicast_ether_addr(hdr->addr1)) 1573 rx->local->dot11MulticastReceivedFrameCount++; 1574 else 1575 ieee80211_led_rx(rx->local); 1576 return RX_CONTINUE; 1577 } 1578 1579 static int 1580 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1581 { 1582 if (unlikely(!rx->sta || 1583 !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1584 return -EACCES; 1585 1586 return 0; 1587 } 1588 1589 static int 1590 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1591 { 1592 struct sk_buff *skb = rx->skb; 1593 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1594 1595 /* 1596 * Pass through unencrypted frames if the hardware has 1597 * decrypted them already. 1598 */ 1599 if (status->flag & RX_FLAG_DECRYPTED) 1600 return 0; 1601 1602 /* Drop unencrypted frames if key is set. */ 1603 if (unlikely(!ieee80211_has_protected(fc) && 1604 !ieee80211_is_nullfunc(fc) && 1605 ieee80211_is_data(fc) && 1606 (rx->key || rx->sdata->drop_unencrypted))) 1607 return -EACCES; 1608 1609 return 0; 1610 } 1611 1612 static int 1613 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1614 { 1615 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1616 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1617 __le16 fc = hdr->frame_control; 1618 1619 /* 1620 * Pass through unencrypted frames if the hardware has 1621 * decrypted them already. 1622 */ 1623 if (status->flag & RX_FLAG_DECRYPTED) 1624 return 0; 1625 1626 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1627 if (unlikely(!ieee80211_has_protected(fc) && 1628 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1629 rx->key)) { 1630 if (ieee80211_is_deauth(fc)) 1631 cfg80211_send_unprot_deauth(rx->sdata->dev, 1632 rx->skb->data, 1633 rx->skb->len); 1634 else if (ieee80211_is_disassoc(fc)) 1635 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1636 rx->skb->data, 1637 rx->skb->len); 1638 return -EACCES; 1639 } 1640 /* BIP does not use Protected field, so need to check MMIE */ 1641 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1642 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1643 if (ieee80211_is_deauth(fc)) 1644 cfg80211_send_unprot_deauth(rx->sdata->dev, 1645 rx->skb->data, 1646 rx->skb->len); 1647 else if (ieee80211_is_disassoc(fc)) 1648 cfg80211_send_unprot_disassoc(rx->sdata->dev, 1649 rx->skb->data, 1650 rx->skb->len); 1651 return -EACCES; 1652 } 1653 /* 1654 * When using MFP, Action frames are not allowed prior to 1655 * having configured keys. 1656 */ 1657 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1658 ieee80211_is_robust_mgmt_frame( 1659 (struct ieee80211_hdr *) rx->skb->data))) 1660 return -EACCES; 1661 } 1662 1663 return 0; 1664 } 1665 1666 static int 1667 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1668 { 1669 struct ieee80211_sub_if_data *sdata = rx->sdata; 1670 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1671 bool check_port_control = false; 1672 struct ethhdr *ehdr; 1673 int ret; 1674 1675 *port_control = false; 1676 if (ieee80211_has_a4(hdr->frame_control) && 1677 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1678 return -1; 1679 1680 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1681 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1682 1683 if (!sdata->u.mgd.use_4addr) 1684 return -1; 1685 else 1686 check_port_control = true; 1687 } 1688 1689 if (is_multicast_ether_addr(hdr->addr1) && 1690 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1691 return -1; 1692 1693 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1694 if (ret < 0) 1695 return ret; 1696 1697 ehdr = (struct ethhdr *) rx->skb->data; 1698 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1699 *port_control = true; 1700 else if (check_port_control) 1701 return -1; 1702 1703 return 0; 1704 } 1705 1706 /* 1707 * requires that rx->skb is a frame with ethernet header 1708 */ 1709 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1710 { 1711 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1712 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1713 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1714 1715 /* 1716 * Allow EAPOL frames to us/the PAE group address regardless 1717 * of whether the frame was encrypted or not. 1718 */ 1719 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1720 (compare_ether_addr(ehdr->h_dest, rx->sdata->vif.addr) == 0 || 1721 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1722 return true; 1723 1724 if (ieee80211_802_1x_port_control(rx) || 1725 ieee80211_drop_unencrypted(rx, fc)) 1726 return false; 1727 1728 return true; 1729 } 1730 1731 /* 1732 * requires that rx->skb is a frame with ethernet header 1733 */ 1734 static void 1735 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1736 { 1737 struct ieee80211_sub_if_data *sdata = rx->sdata; 1738 struct net_device *dev = sdata->dev; 1739 struct sk_buff *skb, *xmit_skb; 1740 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1741 struct sta_info *dsta; 1742 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1743 1744 skb = rx->skb; 1745 xmit_skb = NULL; 1746 1747 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1748 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1749 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1750 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 1751 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 1752 if (is_multicast_ether_addr(ehdr->h_dest)) { 1753 /* 1754 * send multicast frames both to higher layers in 1755 * local net stack and back to the wireless medium 1756 */ 1757 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1758 if (!xmit_skb && net_ratelimit()) 1759 printk(KERN_DEBUG "%s: failed to clone " 1760 "multicast frame\n", dev->name); 1761 } else { 1762 dsta = sta_info_get(sdata, skb->data); 1763 if (dsta) { 1764 /* 1765 * The destination station is associated to 1766 * this AP (in this VLAN), so send the frame 1767 * directly to it and do not pass it to local 1768 * net stack. 1769 */ 1770 xmit_skb = skb; 1771 skb = NULL; 1772 } 1773 } 1774 } 1775 1776 if (skb) { 1777 int align __maybe_unused; 1778 1779 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1780 /* 1781 * 'align' will only take the values 0 or 2 here 1782 * since all frames are required to be aligned 1783 * to 2-byte boundaries when being passed to 1784 * mac80211. That also explains the __skb_push() 1785 * below. 1786 */ 1787 align = ((unsigned long)(skb->data + sizeof(struct ethhdr))) & 3; 1788 if (align) { 1789 if (WARN_ON(skb_headroom(skb) < 3)) { 1790 dev_kfree_skb(skb); 1791 skb = NULL; 1792 } else { 1793 u8 *data = skb->data; 1794 size_t len = skb_headlen(skb); 1795 skb->data -= align; 1796 memmove(skb->data, data, len); 1797 skb_set_tail_pointer(skb, len); 1798 } 1799 } 1800 #endif 1801 1802 if (skb) { 1803 /* deliver to local stack */ 1804 skb->protocol = eth_type_trans(skb, dev); 1805 memset(skb->cb, 0, sizeof(skb->cb)); 1806 netif_receive_skb(skb); 1807 } 1808 } 1809 1810 if (xmit_skb) { 1811 /* 1812 * Send to wireless media and increase priority by 256 to 1813 * keep the received priority instead of reclassifying 1814 * the frame (see cfg80211_classify8021d). 1815 */ 1816 xmit_skb->priority += 256; 1817 xmit_skb->protocol = htons(ETH_P_802_3); 1818 skb_reset_network_header(xmit_skb); 1819 skb_reset_mac_header(xmit_skb); 1820 dev_queue_xmit(xmit_skb); 1821 } 1822 } 1823 1824 static ieee80211_rx_result debug_noinline 1825 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1826 { 1827 struct net_device *dev = rx->sdata->dev; 1828 struct sk_buff *skb = rx->skb; 1829 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1830 __le16 fc = hdr->frame_control; 1831 struct sk_buff_head frame_list; 1832 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1833 1834 if (unlikely(!ieee80211_is_data(fc))) 1835 return RX_CONTINUE; 1836 1837 if (unlikely(!ieee80211_is_data_present(fc))) 1838 return RX_DROP_MONITOR; 1839 1840 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 1841 return RX_CONTINUE; 1842 1843 if (ieee80211_has_a4(hdr->frame_control) && 1844 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1845 !rx->sdata->u.vlan.sta) 1846 return RX_DROP_UNUSABLE; 1847 1848 if (is_multicast_ether_addr(hdr->addr1) && 1849 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1850 rx->sdata->u.vlan.sta) || 1851 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1852 rx->sdata->u.mgd.use_4addr))) 1853 return RX_DROP_UNUSABLE; 1854 1855 skb->dev = dev; 1856 __skb_queue_head_init(&frame_list); 1857 1858 if (skb_linearize(skb)) 1859 return RX_DROP_UNUSABLE; 1860 1861 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 1862 rx->sdata->vif.type, 1863 rx->local->hw.extra_tx_headroom, true); 1864 1865 while (!skb_queue_empty(&frame_list)) { 1866 rx->skb = __skb_dequeue(&frame_list); 1867 1868 if (!ieee80211_frame_allowed(rx, fc)) { 1869 dev_kfree_skb(rx->skb); 1870 continue; 1871 } 1872 dev->stats.rx_packets++; 1873 dev->stats.rx_bytes += rx->skb->len; 1874 1875 ieee80211_deliver_skb(rx); 1876 } 1877 1878 return RX_QUEUED; 1879 } 1880 1881 #ifdef CONFIG_MAC80211_MESH 1882 static ieee80211_rx_result 1883 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1884 { 1885 struct ieee80211_hdr *fwd_hdr, *hdr; 1886 struct ieee80211_tx_info *info; 1887 struct ieee80211s_hdr *mesh_hdr; 1888 struct sk_buff *skb = rx->skb, *fwd_skb; 1889 struct ieee80211_local *local = rx->local; 1890 struct ieee80211_sub_if_data *sdata = rx->sdata; 1891 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1892 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 1893 __le16 reason = cpu_to_le16(WLAN_REASON_MESH_PATH_NOFORWARD); 1894 u16 q, hdrlen; 1895 1896 hdr = (struct ieee80211_hdr *) skb->data; 1897 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1898 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1899 1900 /* frame is in RMC, don't forward */ 1901 if (ieee80211_is_data(hdr->frame_control) && 1902 is_multicast_ether_addr(hdr->addr1) && 1903 mesh_rmc_check(hdr->addr3, mesh_hdr, rx->sdata)) 1904 return RX_DROP_MONITOR; 1905 1906 if (!ieee80211_is_data(hdr->frame_control)) 1907 return RX_CONTINUE; 1908 1909 if (!mesh_hdr->ttl) 1910 return RX_DROP_MONITOR; 1911 1912 if (mesh_hdr->flags & MESH_FLAGS_AE) { 1913 struct mesh_path *mppath; 1914 char *proxied_addr; 1915 char *mpp_addr; 1916 1917 if (is_multicast_ether_addr(hdr->addr1)) { 1918 mpp_addr = hdr->addr3; 1919 proxied_addr = mesh_hdr->eaddr1; 1920 } else { 1921 mpp_addr = hdr->addr4; 1922 proxied_addr = mesh_hdr->eaddr2; 1923 } 1924 1925 rcu_read_lock(); 1926 mppath = mpp_path_lookup(proxied_addr, sdata); 1927 if (!mppath) { 1928 mpp_path_add(proxied_addr, mpp_addr, sdata); 1929 } else { 1930 spin_lock_bh(&mppath->state_lock); 1931 if (compare_ether_addr(mppath->mpp, mpp_addr) != 0) 1932 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 1933 spin_unlock_bh(&mppath->state_lock); 1934 } 1935 rcu_read_unlock(); 1936 } 1937 1938 /* Frame has reached destination. Don't forward */ 1939 if (!is_multicast_ether_addr(hdr->addr1) && 1940 compare_ether_addr(sdata->vif.addr, hdr->addr3) == 0) 1941 return RX_CONTINUE; 1942 1943 q = ieee80211_select_queue_80211(local, skb, hdr); 1944 if (ieee80211_queue_stopped(&local->hw, q)) { 1945 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 1946 return RX_DROP_MONITOR; 1947 } 1948 skb_set_queue_mapping(skb, q); 1949 1950 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1951 goto out; 1952 1953 if (!--mesh_hdr->ttl) { 1954 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 1955 return RX_DROP_MONITOR; 1956 } 1957 1958 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1959 if (!fwd_skb) { 1960 if (net_ratelimit()) 1961 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1962 sdata->name); 1963 goto out; 1964 } 1965 1966 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1967 info = IEEE80211_SKB_CB(fwd_skb); 1968 memset(info, 0, sizeof(*info)); 1969 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1970 info->control.vif = &rx->sdata->vif; 1971 info->control.jiffies = jiffies; 1972 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 1973 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 1974 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 1975 } else if (!mesh_nexthop_lookup(fwd_skb, sdata)) { 1976 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 1977 } else { 1978 /* unable to resolve next hop */ 1979 mesh_path_error_tx(ifmsh->mshcfg.element_ttl, fwd_hdr->addr3, 1980 0, reason, fwd_hdr->addr2, sdata); 1981 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 1982 kfree_skb(fwd_skb); 1983 return RX_DROP_MONITOR; 1984 } 1985 1986 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 1987 ieee80211_add_pending_skb(local, fwd_skb); 1988 out: 1989 if (is_multicast_ether_addr(hdr->addr1) || 1990 sdata->dev->flags & IFF_PROMISC) 1991 return RX_CONTINUE; 1992 else 1993 return RX_DROP_MONITOR; 1994 } 1995 #endif 1996 1997 static ieee80211_rx_result debug_noinline 1998 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1999 { 2000 struct ieee80211_sub_if_data *sdata = rx->sdata; 2001 struct ieee80211_local *local = rx->local; 2002 struct net_device *dev = sdata->dev; 2003 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2004 __le16 fc = hdr->frame_control; 2005 bool port_control; 2006 int err; 2007 2008 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2009 return RX_CONTINUE; 2010 2011 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2012 return RX_DROP_MONITOR; 2013 2014 /* 2015 * Send unexpected-4addr-frame event to hostapd. For older versions, 2016 * also drop the frame to cooked monitor interfaces. 2017 */ 2018 if (ieee80211_has_a4(hdr->frame_control) && 2019 sdata->vif.type == NL80211_IFTYPE_AP) { 2020 if (rx->sta && 2021 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2022 cfg80211_rx_unexpected_4addr_frame( 2023 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2024 return RX_DROP_MONITOR; 2025 } 2026 2027 err = __ieee80211_data_to_8023(rx, &port_control); 2028 if (unlikely(err)) 2029 return RX_DROP_UNUSABLE; 2030 2031 if (!ieee80211_frame_allowed(rx, fc)) 2032 return RX_DROP_MONITOR; 2033 2034 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2035 unlikely(port_control) && sdata->bss) { 2036 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2037 u.ap); 2038 dev = sdata->dev; 2039 rx->sdata = sdata; 2040 } 2041 2042 rx->skb->dev = dev; 2043 2044 dev->stats.rx_packets++; 2045 dev->stats.rx_bytes += rx->skb->len; 2046 2047 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2048 !is_multicast_ether_addr( 2049 ((struct ethhdr *)rx->skb->data)->h_dest) && 2050 (!local->scanning && 2051 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2052 mod_timer(&local->dynamic_ps_timer, jiffies + 2053 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2054 } 2055 2056 ieee80211_deliver_skb(rx); 2057 2058 return RX_QUEUED; 2059 } 2060 2061 static ieee80211_rx_result debug_noinline 2062 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 2063 { 2064 struct ieee80211_local *local = rx->local; 2065 struct ieee80211_hw *hw = &local->hw; 2066 struct sk_buff *skb = rx->skb; 2067 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2068 struct tid_ampdu_rx *tid_agg_rx; 2069 u16 start_seq_num; 2070 u16 tid; 2071 2072 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2073 return RX_CONTINUE; 2074 2075 if (ieee80211_is_back_req(bar->frame_control)) { 2076 struct { 2077 __le16 control, start_seq_num; 2078 } __packed bar_data; 2079 2080 if (!rx->sta) 2081 return RX_DROP_MONITOR; 2082 2083 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2084 &bar_data, sizeof(bar_data))) 2085 return RX_DROP_MONITOR; 2086 2087 tid = le16_to_cpu(bar_data.control) >> 12; 2088 2089 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2090 if (!tid_agg_rx) 2091 return RX_DROP_MONITOR; 2092 2093 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2094 2095 /* reset session timer */ 2096 if (tid_agg_rx->timeout) 2097 mod_timer(&tid_agg_rx->session_timer, 2098 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2099 2100 spin_lock(&tid_agg_rx->reorder_lock); 2101 /* release stored frames up to start of BAR */ 2102 ieee80211_release_reorder_frames(hw, tid_agg_rx, start_seq_num); 2103 spin_unlock(&tid_agg_rx->reorder_lock); 2104 2105 kfree_skb(skb); 2106 return RX_QUEUED; 2107 } 2108 2109 /* 2110 * After this point, we only want management frames, 2111 * so we can drop all remaining control frames to 2112 * cooked monitor interfaces. 2113 */ 2114 return RX_DROP_MONITOR; 2115 } 2116 2117 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2118 struct ieee80211_mgmt *mgmt, 2119 size_t len) 2120 { 2121 struct ieee80211_local *local = sdata->local; 2122 struct sk_buff *skb; 2123 struct ieee80211_mgmt *resp; 2124 2125 if (compare_ether_addr(mgmt->da, sdata->vif.addr) != 0) { 2126 /* Not to own unicast address */ 2127 return; 2128 } 2129 2130 if (compare_ether_addr(mgmt->sa, sdata->u.mgd.bssid) != 0 || 2131 compare_ether_addr(mgmt->bssid, sdata->u.mgd.bssid) != 0) { 2132 /* Not from the current AP or not associated yet. */ 2133 return; 2134 } 2135 2136 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2137 /* Too short SA Query request frame */ 2138 return; 2139 } 2140 2141 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2142 if (skb == NULL) 2143 return; 2144 2145 skb_reserve(skb, local->hw.extra_tx_headroom); 2146 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2147 memset(resp, 0, 24); 2148 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2149 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2150 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2151 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2152 IEEE80211_STYPE_ACTION); 2153 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2154 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2155 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2156 memcpy(resp->u.action.u.sa_query.trans_id, 2157 mgmt->u.action.u.sa_query.trans_id, 2158 WLAN_SA_QUERY_TR_ID_LEN); 2159 2160 ieee80211_tx_skb(sdata, skb); 2161 } 2162 2163 static ieee80211_rx_result debug_noinline 2164 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2165 { 2166 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2167 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2168 2169 /* 2170 * From here on, look only at management frames. 2171 * Data and control frames are already handled, 2172 * and unknown (reserved) frames are useless. 2173 */ 2174 if (rx->skb->len < 24) 2175 return RX_DROP_MONITOR; 2176 2177 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2178 return RX_DROP_MONITOR; 2179 2180 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2181 ieee80211_is_beacon(mgmt->frame_control) && 2182 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2183 struct ieee80211_rx_status *status; 2184 2185 status = IEEE80211_SKB_RXCB(rx->skb); 2186 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2187 rx->skb->data, rx->skb->len, 2188 status->freq, GFP_ATOMIC); 2189 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2190 } 2191 2192 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2193 return RX_DROP_MONITOR; 2194 2195 if (ieee80211_drop_unencrypted_mgmt(rx)) 2196 return RX_DROP_UNUSABLE; 2197 2198 return RX_CONTINUE; 2199 } 2200 2201 static ieee80211_rx_result debug_noinline 2202 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2203 { 2204 struct ieee80211_local *local = rx->local; 2205 struct ieee80211_sub_if_data *sdata = rx->sdata; 2206 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2207 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2208 int len = rx->skb->len; 2209 2210 if (!ieee80211_is_action(mgmt->frame_control)) 2211 return RX_CONTINUE; 2212 2213 /* drop too small frames */ 2214 if (len < IEEE80211_MIN_ACTION_SIZE) 2215 return RX_DROP_UNUSABLE; 2216 2217 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC) 2218 return RX_DROP_UNUSABLE; 2219 2220 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2221 return RX_DROP_UNUSABLE; 2222 2223 switch (mgmt->u.action.category) { 2224 case WLAN_CATEGORY_HT: 2225 /* reject HT action frames from stations not supporting HT */ 2226 if (!rx->sta->sta.ht_cap.ht_supported) 2227 goto invalid; 2228 2229 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2230 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2231 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2232 sdata->vif.type != NL80211_IFTYPE_AP && 2233 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2234 break; 2235 2236 /* verify action & smps_control are present */ 2237 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2238 goto invalid; 2239 2240 switch (mgmt->u.action.u.ht_smps.action) { 2241 case WLAN_HT_ACTION_SMPS: { 2242 struct ieee80211_supported_band *sband; 2243 u8 smps; 2244 2245 /* convert to HT capability */ 2246 switch (mgmt->u.action.u.ht_smps.smps_control) { 2247 case WLAN_HT_SMPS_CONTROL_DISABLED: 2248 smps = WLAN_HT_CAP_SM_PS_DISABLED; 2249 break; 2250 case WLAN_HT_SMPS_CONTROL_STATIC: 2251 smps = WLAN_HT_CAP_SM_PS_STATIC; 2252 break; 2253 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2254 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 2255 break; 2256 default: 2257 goto invalid; 2258 } 2259 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 2260 2261 /* if no change do nothing */ 2262 if ((rx->sta->sta.ht_cap.cap & 2263 IEEE80211_HT_CAP_SM_PS) == smps) 2264 goto handled; 2265 2266 rx->sta->sta.ht_cap.cap &= ~IEEE80211_HT_CAP_SM_PS; 2267 rx->sta->sta.ht_cap.cap |= smps; 2268 2269 sband = rx->local->hw.wiphy->bands[status->band]; 2270 2271 rate_control_rate_update(local, sband, rx->sta, 2272 IEEE80211_RC_SMPS_CHANGED, 2273 local->_oper_channel_type); 2274 goto handled; 2275 } 2276 default: 2277 goto invalid; 2278 } 2279 2280 break; 2281 case WLAN_CATEGORY_BACK: 2282 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2283 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2284 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2285 sdata->vif.type != NL80211_IFTYPE_AP && 2286 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2287 break; 2288 2289 /* verify action_code is present */ 2290 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2291 break; 2292 2293 switch (mgmt->u.action.u.addba_req.action_code) { 2294 case WLAN_ACTION_ADDBA_REQ: 2295 if (len < (IEEE80211_MIN_ACTION_SIZE + 2296 sizeof(mgmt->u.action.u.addba_req))) 2297 goto invalid; 2298 break; 2299 case WLAN_ACTION_ADDBA_RESP: 2300 if (len < (IEEE80211_MIN_ACTION_SIZE + 2301 sizeof(mgmt->u.action.u.addba_resp))) 2302 goto invalid; 2303 break; 2304 case WLAN_ACTION_DELBA: 2305 if (len < (IEEE80211_MIN_ACTION_SIZE + 2306 sizeof(mgmt->u.action.u.delba))) 2307 goto invalid; 2308 break; 2309 default: 2310 goto invalid; 2311 } 2312 2313 goto queue; 2314 case WLAN_CATEGORY_SPECTRUM_MGMT: 2315 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 2316 break; 2317 2318 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2319 break; 2320 2321 /* verify action_code is present */ 2322 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2323 break; 2324 2325 switch (mgmt->u.action.u.measurement.action_code) { 2326 case WLAN_ACTION_SPCT_MSR_REQ: 2327 if (len < (IEEE80211_MIN_ACTION_SIZE + 2328 sizeof(mgmt->u.action.u.measurement))) 2329 break; 2330 ieee80211_process_measurement_req(sdata, mgmt, len); 2331 goto handled; 2332 case WLAN_ACTION_SPCT_CHL_SWITCH: 2333 if (len < (IEEE80211_MIN_ACTION_SIZE + 2334 sizeof(mgmt->u.action.u.chan_switch))) 2335 break; 2336 2337 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2338 break; 2339 2340 if (memcmp(mgmt->bssid, sdata->u.mgd.bssid, ETH_ALEN)) 2341 break; 2342 2343 goto queue; 2344 } 2345 break; 2346 case WLAN_CATEGORY_SA_QUERY: 2347 if (len < (IEEE80211_MIN_ACTION_SIZE + 2348 sizeof(mgmt->u.action.u.sa_query))) 2349 break; 2350 2351 switch (mgmt->u.action.u.sa_query.action) { 2352 case WLAN_ACTION_SA_QUERY_REQUEST: 2353 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2354 break; 2355 ieee80211_process_sa_query_req(sdata, mgmt, len); 2356 goto handled; 2357 } 2358 break; 2359 case WLAN_CATEGORY_SELF_PROTECTED: 2360 switch (mgmt->u.action.u.self_prot.action_code) { 2361 case WLAN_SP_MESH_PEERING_OPEN: 2362 case WLAN_SP_MESH_PEERING_CLOSE: 2363 case WLAN_SP_MESH_PEERING_CONFIRM: 2364 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2365 goto invalid; 2366 if (sdata->u.mesh.security != IEEE80211_MESH_SEC_NONE) 2367 /* userspace handles this frame */ 2368 break; 2369 goto queue; 2370 case WLAN_SP_MGK_INFORM: 2371 case WLAN_SP_MGK_ACK: 2372 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2373 goto invalid; 2374 break; 2375 } 2376 break; 2377 case WLAN_CATEGORY_MESH_ACTION: 2378 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2379 break; 2380 if (mesh_action_is_path_sel(mgmt) && 2381 (!mesh_path_sel_is_hwmp(sdata))) 2382 break; 2383 goto queue; 2384 } 2385 2386 return RX_CONTINUE; 2387 2388 invalid: 2389 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2390 /* will return in the next handlers */ 2391 return RX_CONTINUE; 2392 2393 handled: 2394 if (rx->sta) 2395 rx->sta->rx_packets++; 2396 dev_kfree_skb(rx->skb); 2397 return RX_QUEUED; 2398 2399 queue: 2400 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2401 skb_queue_tail(&sdata->skb_queue, rx->skb); 2402 ieee80211_queue_work(&local->hw, &sdata->work); 2403 if (rx->sta) 2404 rx->sta->rx_packets++; 2405 return RX_QUEUED; 2406 } 2407 2408 static ieee80211_rx_result debug_noinline 2409 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2410 { 2411 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2412 2413 /* skip known-bad action frames and return them in the next handler */ 2414 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2415 return RX_CONTINUE; 2416 2417 /* 2418 * Getting here means the kernel doesn't know how to handle 2419 * it, but maybe userspace does ... include returned frames 2420 * so userspace can register for those to know whether ones 2421 * it transmitted were processed or returned. 2422 */ 2423 2424 if (cfg80211_rx_mgmt(rx->sdata->dev, status->freq, 2425 rx->skb->data, rx->skb->len, 2426 GFP_ATOMIC)) { 2427 if (rx->sta) 2428 rx->sta->rx_packets++; 2429 dev_kfree_skb(rx->skb); 2430 return RX_QUEUED; 2431 } 2432 2433 2434 return RX_CONTINUE; 2435 } 2436 2437 static ieee80211_rx_result debug_noinline 2438 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2439 { 2440 struct ieee80211_local *local = rx->local; 2441 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2442 struct sk_buff *nskb; 2443 struct ieee80211_sub_if_data *sdata = rx->sdata; 2444 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2445 2446 if (!ieee80211_is_action(mgmt->frame_control)) 2447 return RX_CONTINUE; 2448 2449 /* 2450 * For AP mode, hostapd is responsible for handling any action 2451 * frames that we didn't handle, including returning unknown 2452 * ones. For all other modes we will return them to the sender, 2453 * setting the 0x80 bit in the action category, as required by 2454 * 802.11-2007 7.3.1.11. 2455 * Newer versions of hostapd shall also use the management frame 2456 * registration mechanisms, but older ones still use cooked 2457 * monitor interfaces so push all frames there. 2458 */ 2459 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2460 (sdata->vif.type == NL80211_IFTYPE_AP || 2461 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2462 return RX_DROP_MONITOR; 2463 2464 /* do not return rejected action frames */ 2465 if (mgmt->u.action.category & 0x80) 2466 return RX_DROP_UNUSABLE; 2467 2468 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2469 GFP_ATOMIC); 2470 if (nskb) { 2471 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2472 2473 nmgmt->u.action.category |= 0x80; 2474 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2475 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2476 2477 memset(nskb->cb, 0, sizeof(nskb->cb)); 2478 2479 ieee80211_tx_skb(rx->sdata, nskb); 2480 } 2481 dev_kfree_skb(rx->skb); 2482 return RX_QUEUED; 2483 } 2484 2485 static ieee80211_rx_result debug_noinline 2486 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2487 { 2488 struct ieee80211_sub_if_data *sdata = rx->sdata; 2489 ieee80211_rx_result rxs; 2490 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2491 __le16 stype; 2492 2493 rxs = ieee80211_work_rx_mgmt(rx->sdata, rx->skb); 2494 if (rxs != RX_CONTINUE) 2495 return rxs; 2496 2497 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2498 2499 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2500 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2501 sdata->vif.type != NL80211_IFTYPE_STATION) 2502 return RX_DROP_MONITOR; 2503 2504 switch (stype) { 2505 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2506 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2507 /* process for all: mesh, mlme, ibss */ 2508 break; 2509 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2510 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2511 if (is_multicast_ether_addr(mgmt->da) && 2512 !is_broadcast_ether_addr(mgmt->da)) 2513 return RX_DROP_MONITOR; 2514 2515 /* process only for station */ 2516 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2517 return RX_DROP_MONITOR; 2518 break; 2519 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2520 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2521 /* process only for ibss */ 2522 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 2523 return RX_DROP_MONITOR; 2524 break; 2525 default: 2526 return RX_DROP_MONITOR; 2527 } 2528 2529 /* queue up frame and kick off work to process it */ 2530 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2531 skb_queue_tail(&sdata->skb_queue, rx->skb); 2532 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2533 if (rx->sta) 2534 rx->sta->rx_packets++; 2535 2536 return RX_QUEUED; 2537 } 2538 2539 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2540 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2541 struct ieee80211_rate *rate) 2542 { 2543 struct ieee80211_sub_if_data *sdata; 2544 struct ieee80211_local *local = rx->local; 2545 struct ieee80211_rtap_hdr { 2546 struct ieee80211_radiotap_header hdr; 2547 u8 flags; 2548 u8 rate_or_pad; 2549 __le16 chan_freq; 2550 __le16 chan_flags; 2551 } __packed *rthdr; 2552 struct sk_buff *skb = rx->skb, *skb2; 2553 struct net_device *prev_dev = NULL; 2554 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2555 2556 /* 2557 * If cooked monitor has been processed already, then 2558 * don't do it again. If not, set the flag. 2559 */ 2560 if (rx->flags & IEEE80211_RX_CMNTR) 2561 goto out_free_skb; 2562 rx->flags |= IEEE80211_RX_CMNTR; 2563 2564 /* If there are no cooked monitor interfaces, just free the SKB */ 2565 if (!local->cooked_mntrs) 2566 goto out_free_skb; 2567 2568 if (skb_headroom(skb) < sizeof(*rthdr) && 2569 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 2570 goto out_free_skb; 2571 2572 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 2573 memset(rthdr, 0, sizeof(*rthdr)); 2574 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 2575 rthdr->hdr.it_present = 2576 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 2577 (1 << IEEE80211_RADIOTAP_CHANNEL)); 2578 2579 if (rate) { 2580 rthdr->rate_or_pad = rate->bitrate / 5; 2581 rthdr->hdr.it_present |= 2582 cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 2583 } 2584 rthdr->chan_freq = cpu_to_le16(status->freq); 2585 2586 if (status->band == IEEE80211_BAND_5GHZ) 2587 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 2588 IEEE80211_CHAN_5GHZ); 2589 else 2590 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 2591 IEEE80211_CHAN_2GHZ); 2592 2593 skb_set_mac_header(skb, 0); 2594 skb->ip_summed = CHECKSUM_UNNECESSARY; 2595 skb->pkt_type = PACKET_OTHERHOST; 2596 skb->protocol = htons(ETH_P_802_2); 2597 2598 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2599 if (!ieee80211_sdata_running(sdata)) 2600 continue; 2601 2602 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 2603 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 2604 continue; 2605 2606 if (prev_dev) { 2607 skb2 = skb_clone(skb, GFP_ATOMIC); 2608 if (skb2) { 2609 skb2->dev = prev_dev; 2610 netif_receive_skb(skb2); 2611 } 2612 } 2613 2614 prev_dev = sdata->dev; 2615 sdata->dev->stats.rx_packets++; 2616 sdata->dev->stats.rx_bytes += skb->len; 2617 } 2618 2619 if (prev_dev) { 2620 skb->dev = prev_dev; 2621 netif_receive_skb(skb); 2622 return; 2623 } 2624 2625 out_free_skb: 2626 dev_kfree_skb(skb); 2627 } 2628 2629 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 2630 ieee80211_rx_result res) 2631 { 2632 switch (res) { 2633 case RX_DROP_MONITOR: 2634 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2635 if (rx->sta) 2636 rx->sta->rx_dropped++; 2637 /* fall through */ 2638 case RX_CONTINUE: { 2639 struct ieee80211_rate *rate = NULL; 2640 struct ieee80211_supported_band *sband; 2641 struct ieee80211_rx_status *status; 2642 2643 status = IEEE80211_SKB_RXCB((rx->skb)); 2644 2645 sband = rx->local->hw.wiphy->bands[status->band]; 2646 if (!(status->flag & RX_FLAG_HT)) 2647 rate = &sband->bitrates[status->rate_idx]; 2648 2649 ieee80211_rx_cooked_monitor(rx, rate); 2650 break; 2651 } 2652 case RX_DROP_UNUSABLE: 2653 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 2654 if (rx->sta) 2655 rx->sta->rx_dropped++; 2656 dev_kfree_skb(rx->skb); 2657 break; 2658 case RX_QUEUED: 2659 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 2660 break; 2661 } 2662 } 2663 2664 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx) 2665 { 2666 ieee80211_rx_result res = RX_DROP_MONITOR; 2667 struct sk_buff *skb; 2668 2669 #define CALL_RXH(rxh) \ 2670 do { \ 2671 res = rxh(rx); \ 2672 if (res != RX_CONTINUE) \ 2673 goto rxh_next; \ 2674 } while (0); 2675 2676 spin_lock(&rx->local->rx_skb_queue.lock); 2677 if (rx->local->running_rx_handler) 2678 goto unlock; 2679 2680 rx->local->running_rx_handler = true; 2681 2682 while ((skb = __skb_dequeue(&rx->local->rx_skb_queue))) { 2683 spin_unlock(&rx->local->rx_skb_queue.lock); 2684 2685 /* 2686 * all the other fields are valid across frames 2687 * that belong to an aMPDU since they are on the 2688 * same TID from the same station 2689 */ 2690 rx->skb = skb; 2691 2692 CALL_RXH(ieee80211_rx_h_decrypt) 2693 CALL_RXH(ieee80211_rx_h_check_more_data) 2694 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 2695 CALL_RXH(ieee80211_rx_h_sta_process) 2696 CALL_RXH(ieee80211_rx_h_defragment) 2697 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 2698 /* must be after MMIC verify so header is counted in MPDU mic */ 2699 #ifdef CONFIG_MAC80211_MESH 2700 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 2701 CALL_RXH(ieee80211_rx_h_mesh_fwding); 2702 #endif 2703 CALL_RXH(ieee80211_rx_h_amsdu) 2704 CALL_RXH(ieee80211_rx_h_data) 2705 CALL_RXH(ieee80211_rx_h_ctrl); 2706 CALL_RXH(ieee80211_rx_h_mgmt_check) 2707 CALL_RXH(ieee80211_rx_h_action) 2708 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 2709 CALL_RXH(ieee80211_rx_h_action_return) 2710 CALL_RXH(ieee80211_rx_h_mgmt) 2711 2712 rxh_next: 2713 ieee80211_rx_handlers_result(rx, res); 2714 spin_lock(&rx->local->rx_skb_queue.lock); 2715 #undef CALL_RXH 2716 } 2717 2718 rx->local->running_rx_handler = false; 2719 2720 unlock: 2721 spin_unlock(&rx->local->rx_skb_queue.lock); 2722 } 2723 2724 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 2725 { 2726 ieee80211_rx_result res = RX_DROP_MONITOR; 2727 2728 #define CALL_RXH(rxh) \ 2729 do { \ 2730 res = rxh(rx); \ 2731 if (res != RX_CONTINUE) \ 2732 goto rxh_next; \ 2733 } while (0); 2734 2735 CALL_RXH(ieee80211_rx_h_passive_scan) 2736 CALL_RXH(ieee80211_rx_h_check) 2737 2738 ieee80211_rx_reorder_ampdu(rx); 2739 2740 ieee80211_rx_handlers(rx); 2741 return; 2742 2743 rxh_next: 2744 ieee80211_rx_handlers_result(rx, res); 2745 2746 #undef CALL_RXH 2747 } 2748 2749 /* 2750 * This function makes calls into the RX path, therefore 2751 * it has to be invoked under RCU read lock. 2752 */ 2753 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 2754 { 2755 struct ieee80211_rx_data rx = { 2756 .sta = sta, 2757 .sdata = sta->sdata, 2758 .local = sta->local, 2759 /* This is OK -- must be QoS data frame */ 2760 .security_idx = tid, 2761 .seqno_idx = tid, 2762 .flags = 0, 2763 }; 2764 struct tid_ampdu_rx *tid_agg_rx; 2765 2766 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 2767 if (!tid_agg_rx) 2768 return; 2769 2770 spin_lock(&tid_agg_rx->reorder_lock); 2771 ieee80211_sta_reorder_release(&sta->local->hw, tid_agg_rx); 2772 spin_unlock(&tid_agg_rx->reorder_lock); 2773 2774 ieee80211_rx_handlers(&rx); 2775 } 2776 2777 /* main receive path */ 2778 2779 static int prepare_for_handlers(struct ieee80211_rx_data *rx, 2780 struct ieee80211_hdr *hdr) 2781 { 2782 struct ieee80211_sub_if_data *sdata = rx->sdata; 2783 struct sk_buff *skb = rx->skb; 2784 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2785 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 2786 int multicast = is_multicast_ether_addr(hdr->addr1); 2787 2788 switch (sdata->vif.type) { 2789 case NL80211_IFTYPE_STATION: 2790 if (!bssid && !sdata->u.mgd.use_4addr) 2791 return 0; 2792 if (!multicast && 2793 compare_ether_addr(sdata->vif.addr, hdr->addr1) != 0) { 2794 if (!(sdata->dev->flags & IFF_PROMISC) || 2795 sdata->u.mgd.use_4addr) 2796 return 0; 2797 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2798 } 2799 break; 2800 case NL80211_IFTYPE_ADHOC: 2801 if (!bssid) 2802 return 0; 2803 if (ieee80211_is_beacon(hdr->frame_control)) { 2804 return 1; 2805 } 2806 else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 2807 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN)) 2808 return 0; 2809 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2810 } else if (!multicast && 2811 compare_ether_addr(sdata->vif.addr, 2812 hdr->addr1) != 0) { 2813 if (!(sdata->dev->flags & IFF_PROMISC)) 2814 return 0; 2815 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2816 } else if (!rx->sta) { 2817 int rate_idx; 2818 if (status->flag & RX_FLAG_HT) 2819 rate_idx = 0; /* TODO: HT rates */ 2820 else 2821 rate_idx = status->rate_idx; 2822 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 2823 BIT(rate_idx)); 2824 } 2825 break; 2826 case NL80211_IFTYPE_MESH_POINT: 2827 if (!multicast && 2828 compare_ether_addr(sdata->vif.addr, 2829 hdr->addr1) != 0) { 2830 if (!(sdata->dev->flags & IFF_PROMISC)) 2831 return 0; 2832 2833 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2834 } 2835 break; 2836 case NL80211_IFTYPE_AP_VLAN: 2837 case NL80211_IFTYPE_AP: 2838 if (!bssid) { 2839 if (compare_ether_addr(sdata->vif.addr, 2840 hdr->addr1)) 2841 return 0; 2842 } else if (!ieee80211_bssid_match(bssid, 2843 sdata->vif.addr)) { 2844 /* 2845 * Accept public action frames even when the 2846 * BSSID doesn't match, this is used for P2P 2847 * and location updates. Note that mac80211 2848 * itself never looks at these frames. 2849 */ 2850 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2851 ieee80211_is_public_action(hdr, skb->len)) 2852 return 1; 2853 if (!(status->rx_flags & IEEE80211_RX_IN_SCAN) && 2854 !ieee80211_is_beacon(hdr->frame_control)) 2855 return 0; 2856 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 2857 } 2858 break; 2859 case NL80211_IFTYPE_WDS: 2860 if (bssid || !ieee80211_is_data(hdr->frame_control)) 2861 return 0; 2862 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 2863 return 0; 2864 break; 2865 default: 2866 /* should never get here */ 2867 WARN_ON(1); 2868 break; 2869 } 2870 2871 return 1; 2872 } 2873 2874 /* 2875 * This function returns whether or not the SKB 2876 * was destined for RX processing or not, which, 2877 * if consume is true, is equivalent to whether 2878 * or not the skb was consumed. 2879 */ 2880 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 2881 struct sk_buff *skb, bool consume) 2882 { 2883 struct ieee80211_local *local = rx->local; 2884 struct ieee80211_sub_if_data *sdata = rx->sdata; 2885 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2886 struct ieee80211_hdr *hdr = (void *)skb->data; 2887 int prepares; 2888 2889 rx->skb = skb; 2890 status->rx_flags |= IEEE80211_RX_RA_MATCH; 2891 prepares = prepare_for_handlers(rx, hdr); 2892 2893 if (!prepares) 2894 return false; 2895 2896 if (!consume) { 2897 skb = skb_copy(skb, GFP_ATOMIC); 2898 if (!skb) { 2899 if (net_ratelimit()) 2900 wiphy_debug(local->hw.wiphy, 2901 "failed to copy skb for %s\n", 2902 sdata->name); 2903 return true; 2904 } 2905 2906 rx->skb = skb; 2907 } 2908 2909 ieee80211_invoke_rx_handlers(rx); 2910 return true; 2911 } 2912 2913 /* 2914 * This is the actual Rx frames handler. as it blongs to Rx path it must 2915 * be called with rcu_read_lock protection. 2916 */ 2917 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 2918 struct sk_buff *skb) 2919 { 2920 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2921 struct ieee80211_local *local = hw_to_local(hw); 2922 struct ieee80211_sub_if_data *sdata; 2923 struct ieee80211_hdr *hdr; 2924 __le16 fc; 2925 struct ieee80211_rx_data rx; 2926 struct ieee80211_sub_if_data *prev; 2927 struct sta_info *sta, *tmp, *prev_sta; 2928 int err = 0; 2929 2930 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 2931 memset(&rx, 0, sizeof(rx)); 2932 rx.skb = skb; 2933 rx.local = local; 2934 2935 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 2936 local->dot11ReceivedFragmentCount++; 2937 2938 if (unlikely(test_bit(SCAN_HW_SCANNING, &local->scanning) || 2939 test_bit(SCAN_SW_SCANNING, &local->scanning))) 2940 status->rx_flags |= IEEE80211_RX_IN_SCAN; 2941 2942 if (ieee80211_is_mgmt(fc)) 2943 err = skb_linearize(skb); 2944 else 2945 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 2946 2947 if (err) { 2948 dev_kfree_skb(skb); 2949 return; 2950 } 2951 2952 hdr = (struct ieee80211_hdr *)skb->data; 2953 ieee80211_parse_qos(&rx); 2954 ieee80211_verify_alignment(&rx); 2955 2956 if (ieee80211_is_data(fc)) { 2957 prev_sta = NULL; 2958 2959 for_each_sta_info_rx(local, hdr->addr2, sta, tmp) { 2960 if (!prev_sta) { 2961 prev_sta = sta; 2962 continue; 2963 } 2964 2965 rx.sta = prev_sta; 2966 rx.sdata = prev_sta->sdata; 2967 ieee80211_prepare_and_rx_handle(&rx, skb, false); 2968 2969 prev_sta = sta; 2970 } 2971 2972 if (prev_sta) { 2973 rx.sta = prev_sta; 2974 rx.sdata = prev_sta->sdata; 2975 2976 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 2977 return; 2978 goto out; 2979 } 2980 } 2981 2982 prev = NULL; 2983 2984 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 2985 if (!ieee80211_sdata_running(sdata)) 2986 continue; 2987 2988 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 2989 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 2990 continue; 2991 2992 /* 2993 * frame is destined for this interface, but if it's 2994 * not also for the previous one we handle that after 2995 * the loop to avoid copying the SKB once too much 2996 */ 2997 2998 if (!prev) { 2999 prev = sdata; 3000 continue; 3001 } 3002 3003 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 3004 rx.sdata = prev; 3005 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3006 3007 prev = sdata; 3008 } 3009 3010 if (prev) { 3011 rx.sta = sta_info_get_bss_rx(prev, hdr->addr2); 3012 rx.sdata = prev; 3013 3014 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3015 return; 3016 } 3017 3018 out: 3019 dev_kfree_skb(skb); 3020 } 3021 3022 /* 3023 * This is the receive path handler. It is called by a low level driver when an 3024 * 802.11 MPDU is received from the hardware. 3025 */ 3026 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3027 { 3028 struct ieee80211_local *local = hw_to_local(hw); 3029 struct ieee80211_rate *rate = NULL; 3030 struct ieee80211_supported_band *sband; 3031 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3032 3033 WARN_ON_ONCE(softirq_count() == 0); 3034 3035 if (WARN_ON(status->band < 0 || 3036 status->band >= IEEE80211_NUM_BANDS)) 3037 goto drop; 3038 3039 sband = local->hw.wiphy->bands[status->band]; 3040 if (WARN_ON(!sband)) 3041 goto drop; 3042 3043 /* 3044 * If we're suspending, it is possible although not too likely 3045 * that we'd be receiving frames after having already partially 3046 * quiesced the stack. We can't process such frames then since 3047 * that might, for example, cause stations to be added or other 3048 * driver callbacks be invoked. 3049 */ 3050 if (unlikely(local->quiescing || local->suspended)) 3051 goto drop; 3052 3053 /* 3054 * The same happens when we're not even started, 3055 * but that's worth a warning. 3056 */ 3057 if (WARN_ON(!local->started)) 3058 goto drop; 3059 3060 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3061 /* 3062 * Validate the rate, unless a PLCP error means that 3063 * we probably can't have a valid rate here anyway. 3064 */ 3065 3066 if (status->flag & RX_FLAG_HT) { 3067 /* 3068 * rate_idx is MCS index, which can be [0-76] 3069 * as documented on: 3070 * 3071 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3072 * 3073 * Anything else would be some sort of driver or 3074 * hardware error. The driver should catch hardware 3075 * errors. 3076 */ 3077 if (WARN((status->rate_idx < 0 || 3078 status->rate_idx > 76), 3079 "Rate marked as an HT rate but passed " 3080 "status->rate_idx is not " 3081 "an MCS index [0-76]: %d (0x%02x)\n", 3082 status->rate_idx, 3083 status->rate_idx)) 3084 goto drop; 3085 } else { 3086 if (WARN_ON(status->rate_idx < 0 || 3087 status->rate_idx >= sband->n_bitrates)) 3088 goto drop; 3089 rate = &sband->bitrates[status->rate_idx]; 3090 } 3091 } 3092 3093 status->rx_flags = 0; 3094 3095 /* 3096 * key references and virtual interfaces are protected using RCU 3097 * and this requires that we are in a read-side RCU section during 3098 * receive processing 3099 */ 3100 rcu_read_lock(); 3101 3102 /* 3103 * Frames with failed FCS/PLCP checksum are not returned, 3104 * all other frames are returned without radiotap header 3105 * if it was previously present. 3106 * Also, frames with less than 16 bytes are dropped. 3107 */ 3108 skb = ieee80211_rx_monitor(local, skb, rate); 3109 if (!skb) { 3110 rcu_read_unlock(); 3111 return; 3112 } 3113 3114 ieee80211_tpt_led_trig_rx(local, 3115 ((struct ieee80211_hdr *)skb->data)->frame_control, 3116 skb->len); 3117 __ieee80211_rx_handle_packet(hw, skb); 3118 3119 rcu_read_unlock(); 3120 3121 return; 3122 drop: 3123 kfree_skb(skb); 3124 } 3125 EXPORT_SYMBOL(ieee80211_rx); 3126 3127 /* This is a version of the rx handler that can be called from hard irq 3128 * context. Post the skb on the queue and schedule the tasklet */ 3129 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3130 { 3131 struct ieee80211_local *local = hw_to_local(hw); 3132 3133 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3134 3135 skb->pkt_type = IEEE80211_RX_MSG; 3136 skb_queue_tail(&local->skb_queue, skb); 3137 tasklet_schedule(&local->tasklet); 3138 } 3139 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3140