1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/kernel.h> 14 #include <linux/skbuff.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/rcupdate.h> 18 #include <net/mac80211.h> 19 #include <net/ieee80211_radiotap.h> 20 21 #include "ieee80211_i.h" 22 #include "led.h" 23 #include "mesh.h" 24 #include "wep.h" 25 #include "wpa.h" 26 #include "tkip.h" 27 #include "wme.h" 28 29 static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 30 struct tid_ampdu_rx *tid_agg_rx, 31 struct sk_buff *skb, 32 u16 mpdu_seq_num, 33 int bar_req); 34 /* 35 * monitor mode reception 36 * 37 * This function cleans up the SKB, i.e. it removes all the stuff 38 * only useful for monitoring. 39 */ 40 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 41 struct sk_buff *skb, 42 int rtap_len) 43 { 44 skb_pull(skb, rtap_len); 45 46 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 47 if (likely(skb->len > FCS_LEN)) 48 skb_trim(skb, skb->len - FCS_LEN); 49 else { 50 /* driver bug */ 51 WARN_ON(1); 52 dev_kfree_skb(skb); 53 skb = NULL; 54 } 55 } 56 57 return skb; 58 } 59 60 static inline int should_drop_frame(struct ieee80211_rx_status *status, 61 struct sk_buff *skb, 62 int present_fcs_len, 63 int radiotap_len) 64 { 65 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 66 67 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 68 return 1; 69 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len)) 70 return 1; 71 if (ieee80211_is_ctl(hdr->frame_control) && 72 !ieee80211_is_pspoll(hdr->frame_control) && 73 !ieee80211_is_back_req(hdr->frame_control)) 74 return 1; 75 return 0; 76 } 77 78 static int 79 ieee80211_rx_radiotap_len(struct ieee80211_local *local, 80 struct ieee80211_rx_status *status) 81 { 82 int len; 83 84 /* always present fields */ 85 len = sizeof(struct ieee80211_radiotap_header) + 9; 86 87 if (status->flag & RX_FLAG_TSFT) 88 len += 8; 89 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB || 90 local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 91 len += 1; 92 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) 93 len += 1; 94 95 if (len & 1) /* padding for RX_FLAGS if necessary */ 96 len++; 97 98 /* make sure radiotap starts at a naturally aligned address */ 99 if (len % 8) 100 len = roundup(len, 8); 101 102 return len; 103 } 104 105 /** 106 * ieee80211_add_rx_radiotap_header - add radiotap header 107 * 108 * add a radiotap header containing all the fields which the hardware provided. 109 */ 110 static void 111 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 112 struct sk_buff *skb, 113 struct ieee80211_rx_status *status, 114 struct ieee80211_rate *rate, 115 int rtap_len) 116 { 117 struct ieee80211_radiotap_header *rthdr; 118 unsigned char *pos; 119 120 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 121 memset(rthdr, 0, rtap_len); 122 123 /* radiotap header, set always present flags */ 124 rthdr->it_present = 125 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 126 (1 << IEEE80211_RADIOTAP_CHANNEL) | 127 (1 << IEEE80211_RADIOTAP_ANTENNA) | 128 (1 << IEEE80211_RADIOTAP_RX_FLAGS)); 129 rthdr->it_len = cpu_to_le16(rtap_len); 130 131 pos = (unsigned char *)(rthdr+1); 132 133 /* the order of the following fields is important */ 134 135 /* IEEE80211_RADIOTAP_TSFT */ 136 if (status->flag & RX_FLAG_TSFT) { 137 *(__le64 *)pos = cpu_to_le64(status->mactime); 138 rthdr->it_present |= 139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 140 pos += 8; 141 } 142 143 /* IEEE80211_RADIOTAP_FLAGS */ 144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 145 *pos |= IEEE80211_RADIOTAP_F_FCS; 146 if (status->flag & RX_FLAG_SHORTPRE) 147 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 148 pos++; 149 150 /* IEEE80211_RADIOTAP_RATE */ 151 if (status->flag & RX_FLAG_HT) { 152 /* 153 * TODO: add following information into radiotap header once 154 * suitable fields are defined for it: 155 * - MCS index (status->rate_idx) 156 * - HT40 (status->flag & RX_FLAG_40MHZ) 157 * - short-GI (status->flag & RX_FLAG_SHORT_GI) 158 */ 159 *pos = 0; 160 } else { 161 rthdr->it_present |= (1 << IEEE80211_RADIOTAP_RATE); 162 *pos = rate->bitrate / 5; 163 } 164 pos++; 165 166 /* IEEE80211_RADIOTAP_CHANNEL */ 167 *(__le16 *)pos = cpu_to_le16(status->freq); 168 pos += 2; 169 if (status->band == IEEE80211_BAND_5GHZ) 170 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM | 171 IEEE80211_CHAN_5GHZ); 172 else if (rate->flags & IEEE80211_RATE_ERP_G) 173 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM | 174 IEEE80211_CHAN_2GHZ); 175 else 176 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_CCK | 177 IEEE80211_CHAN_2GHZ); 178 pos += 2; 179 180 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 181 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) { 182 *pos = status->signal; 183 rthdr->it_present |= 184 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 185 pos++; 186 } 187 188 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */ 189 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) { 190 *pos = status->noise; 191 rthdr->it_present |= 192 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE); 193 pos++; 194 } 195 196 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 197 198 /* IEEE80211_RADIOTAP_ANTENNA */ 199 *pos = status->antenna; 200 pos++; 201 202 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */ 203 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) { 204 *pos = status->signal; 205 rthdr->it_present |= 206 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL); 207 pos++; 208 } 209 210 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 211 212 /* IEEE80211_RADIOTAP_RX_FLAGS */ 213 /* ensure 2 byte alignment for the 2 byte field as required */ 214 if ((pos - (unsigned char *)rthdr) & 1) 215 pos++; 216 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */ 217 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 218 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS); 219 pos += 2; 220 } 221 222 /* 223 * This function copies a received frame to all monitor interfaces and 224 * returns a cleaned-up SKB that no longer includes the FCS nor the 225 * radiotap header the driver might have added. 226 */ 227 static struct sk_buff * 228 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 229 struct ieee80211_rx_status *status, 230 struct ieee80211_rate *rate) 231 { 232 struct ieee80211_sub_if_data *sdata; 233 int needed_headroom = 0; 234 struct sk_buff *skb, *skb2; 235 struct net_device *prev_dev = NULL; 236 int present_fcs_len = 0; 237 int rtap_len = 0; 238 239 /* 240 * First, we may need to make a copy of the skb because 241 * (1) we need to modify it for radiotap (if not present), and 242 * (2) the other RX handlers will modify the skb we got. 243 * 244 * We don't need to, of course, if we aren't going to return 245 * the SKB because it has a bad FCS/PLCP checksum. 246 */ 247 if (status->flag & RX_FLAG_RADIOTAP) 248 rtap_len = ieee80211_get_radiotap_len(origskb->data); 249 else 250 /* room for the radiotap header based on driver features */ 251 needed_headroom = ieee80211_rx_radiotap_len(local, status); 252 253 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 254 present_fcs_len = FCS_LEN; 255 256 if (!local->monitors) { 257 if (should_drop_frame(status, origskb, present_fcs_len, 258 rtap_len)) { 259 dev_kfree_skb(origskb); 260 return NULL; 261 } 262 263 return remove_monitor_info(local, origskb, rtap_len); 264 } 265 266 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) { 267 /* only need to expand headroom if necessary */ 268 skb = origskb; 269 origskb = NULL; 270 271 /* 272 * This shouldn't trigger often because most devices have an 273 * RX header they pull before we get here, and that should 274 * be big enough for our radiotap information. We should 275 * probably export the length to drivers so that we can have 276 * them allocate enough headroom to start with. 277 */ 278 if (skb_headroom(skb) < needed_headroom && 279 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 280 dev_kfree_skb(skb); 281 return NULL; 282 } 283 } else { 284 /* 285 * Need to make a copy and possibly remove radiotap header 286 * and FCS from the original. 287 */ 288 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 289 290 origskb = remove_monitor_info(local, origskb, rtap_len); 291 292 if (!skb) 293 return origskb; 294 } 295 296 /* if necessary, prepend radiotap information */ 297 if (!(status->flag & RX_FLAG_RADIOTAP)) 298 ieee80211_add_rx_radiotap_header(local, skb, status, rate, 299 needed_headroom); 300 301 skb_reset_mac_header(skb); 302 skb->ip_summed = CHECKSUM_UNNECESSARY; 303 skb->pkt_type = PACKET_OTHERHOST; 304 skb->protocol = htons(ETH_P_802_2); 305 306 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 307 if (!netif_running(sdata->dev)) 308 continue; 309 310 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 311 continue; 312 313 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 314 continue; 315 316 if (prev_dev) { 317 skb2 = skb_clone(skb, GFP_ATOMIC); 318 if (skb2) { 319 skb2->dev = prev_dev; 320 netif_rx(skb2); 321 } 322 } 323 324 prev_dev = sdata->dev; 325 sdata->dev->stats.rx_packets++; 326 sdata->dev->stats.rx_bytes += skb->len; 327 } 328 329 if (prev_dev) { 330 skb->dev = prev_dev; 331 netif_rx(skb); 332 } else 333 dev_kfree_skb(skb); 334 335 return origskb; 336 } 337 338 339 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 340 { 341 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 342 int tid; 343 344 /* does the frame have a qos control field? */ 345 if (ieee80211_is_data_qos(hdr->frame_control)) { 346 u8 *qc = ieee80211_get_qos_ctl(hdr); 347 /* frame has qos control */ 348 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 349 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT) 350 rx->flags |= IEEE80211_RX_AMSDU; 351 else 352 rx->flags &= ~IEEE80211_RX_AMSDU; 353 } else { 354 /* 355 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 356 * 357 * Sequence numbers for management frames, QoS data 358 * frames with a broadcast/multicast address in the 359 * Address 1 field, and all non-QoS data frames sent 360 * by QoS STAs are assigned using an additional single 361 * modulo-4096 counter, [...] 362 * 363 * We also use that counter for non-QoS STAs. 364 */ 365 tid = NUM_RX_DATA_QUEUES - 1; 366 } 367 368 rx->queue = tid; 369 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 370 * For now, set skb->priority to 0 for other cases. */ 371 rx->skb->priority = (tid > 7) ? 0 : tid; 372 } 373 374 static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx) 375 { 376 #ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT 377 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 378 int hdrlen; 379 380 if (!ieee80211_is_data_present(hdr->frame_control)) 381 return; 382 383 /* 384 * Drivers are required to align the payload data in a way that 385 * guarantees that the contained IP header is aligned to a four- 386 * byte boundary. In the case of regular frames, this simply means 387 * aligning the payload to a four-byte boundary (because either 388 * the IP header is directly contained, or IV/RFC1042 headers that 389 * have a length divisible by four are in front of it. 390 * 391 * With A-MSDU frames, however, the payload data address must 392 * yield two modulo four because there are 14-byte 802.3 headers 393 * within the A-MSDU frames that push the IP header further back 394 * to a multiple of four again. Thankfully, the specs were sane 395 * enough this time around to require padding each A-MSDU subframe 396 * to a length that is a multiple of four. 397 * 398 * Padding like atheros hardware adds which is inbetween the 802.11 399 * header and the payload is not supported, the driver is required 400 * to move the 802.11 header further back in that case. 401 */ 402 hdrlen = ieee80211_hdrlen(hdr->frame_control); 403 if (rx->flags & IEEE80211_RX_AMSDU) 404 hdrlen += ETH_HLEN; 405 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3); 406 #endif 407 } 408 409 410 /* rx handlers */ 411 412 static ieee80211_rx_result debug_noinline 413 ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx) 414 { 415 struct ieee80211_local *local = rx->local; 416 struct sk_buff *skb = rx->skb; 417 418 if (unlikely(local->hw_scanning)) 419 return ieee80211_scan_rx(rx->sdata, skb, rx->status); 420 421 if (unlikely(local->sw_scanning)) { 422 /* drop all the other packets during a software scan anyway */ 423 if (ieee80211_scan_rx(rx->sdata, skb, rx->status) 424 != RX_QUEUED) 425 dev_kfree_skb(skb); 426 return RX_QUEUED; 427 } 428 429 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) { 430 /* scanning finished during invoking of handlers */ 431 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan); 432 return RX_DROP_UNUSABLE; 433 } 434 435 return RX_CONTINUE; 436 } 437 438 static ieee80211_rx_result 439 ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 440 { 441 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 442 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 443 444 if (ieee80211_is_data(hdr->frame_control)) { 445 if (!ieee80211_has_a4(hdr->frame_control)) 446 return RX_DROP_MONITOR; 447 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0) 448 return RX_DROP_MONITOR; 449 } 450 451 /* If there is not an established peer link and this is not a peer link 452 * establisment frame, beacon or probe, drop the frame. 453 */ 454 455 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) { 456 struct ieee80211_mgmt *mgmt; 457 458 if (!ieee80211_is_mgmt(hdr->frame_control)) 459 return RX_DROP_MONITOR; 460 461 if (ieee80211_is_action(hdr->frame_control)) { 462 mgmt = (struct ieee80211_mgmt *)hdr; 463 if (mgmt->u.action.category != PLINK_CATEGORY) 464 return RX_DROP_MONITOR; 465 return RX_CONTINUE; 466 } 467 468 if (ieee80211_is_probe_req(hdr->frame_control) || 469 ieee80211_is_probe_resp(hdr->frame_control) || 470 ieee80211_is_beacon(hdr->frame_control)) 471 return RX_CONTINUE; 472 473 return RX_DROP_MONITOR; 474 475 } 476 477 #define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l)) 478 479 if (ieee80211_is_data(hdr->frame_control) && 480 is_multicast_ether_addr(hdr->addr1) && 481 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->sdata)) 482 return RX_DROP_MONITOR; 483 #undef msh_h_get 484 485 return RX_CONTINUE; 486 } 487 488 489 static ieee80211_rx_result debug_noinline 490 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 491 { 492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 493 494 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */ 495 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) { 496 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 497 rx->sta->last_seq_ctrl[rx->queue] == 498 hdr->seq_ctrl)) { 499 if (rx->flags & IEEE80211_RX_RA_MATCH) { 500 rx->local->dot11FrameDuplicateCount++; 501 rx->sta->num_duplicates++; 502 } 503 return RX_DROP_MONITOR; 504 } else 505 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl; 506 } 507 508 if (unlikely(rx->skb->len < 16)) { 509 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 510 return RX_DROP_MONITOR; 511 } 512 513 /* Drop disallowed frame classes based on STA auth/assoc state; 514 * IEEE 802.11, Chap 5.5. 515 * 516 * mac80211 filters only based on association state, i.e. it drops 517 * Class 3 frames from not associated stations. hostapd sends 518 * deauth/disassoc frames when needed. In addition, hostapd is 519 * responsible for filtering on both auth and assoc states. 520 */ 521 522 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 523 return ieee80211_rx_mesh_check(rx); 524 525 if (unlikely((ieee80211_is_data(hdr->frame_control) || 526 ieee80211_is_pspoll(hdr->frame_control)) && 527 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 528 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) { 529 if ((!ieee80211_has_fromds(hdr->frame_control) && 530 !ieee80211_has_tods(hdr->frame_control) && 531 ieee80211_is_data(hdr->frame_control)) || 532 !(rx->flags & IEEE80211_RX_RA_MATCH)) { 533 /* Drop IBSS frames and frames for other hosts 534 * silently. */ 535 return RX_DROP_MONITOR; 536 } 537 538 return RX_DROP_MONITOR; 539 } 540 541 return RX_CONTINUE; 542 } 543 544 545 static ieee80211_rx_result debug_noinline 546 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 547 { 548 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 549 int keyidx; 550 int hdrlen; 551 ieee80211_rx_result result = RX_DROP_UNUSABLE; 552 struct ieee80211_key *stakey = NULL; 553 554 /* 555 * Key selection 101 556 * 557 * There are three types of keys: 558 * - GTK (group keys) 559 * - PTK (pairwise keys) 560 * - STK (station-to-station pairwise keys) 561 * 562 * When selecting a key, we have to distinguish between multicast 563 * (including broadcast) and unicast frames, the latter can only 564 * use PTKs and STKs while the former always use GTKs. Unless, of 565 * course, actual WEP keys ("pre-RSNA") are used, then unicast 566 * frames can also use key indizes like GTKs. Hence, if we don't 567 * have a PTK/STK we check the key index for a WEP key. 568 * 569 * Note that in a regular BSS, multicast frames are sent by the 570 * AP only, associated stations unicast the frame to the AP first 571 * which then multicasts it on their behalf. 572 * 573 * There is also a slight problem in IBSS mode: GTKs are negotiated 574 * with each station, that is something we don't currently handle. 575 * The spec seems to expect that one negotiates the same key with 576 * every station but there's no such requirement; VLANs could be 577 * possible. 578 */ 579 580 if (!ieee80211_has_protected(hdr->frame_control)) 581 return RX_CONTINUE; 582 583 /* 584 * No point in finding a key and decrypting if the frame is neither 585 * addressed to us nor a multicast frame. 586 */ 587 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 588 return RX_CONTINUE; 589 590 if (rx->sta) 591 stakey = rcu_dereference(rx->sta->key); 592 593 if (!is_multicast_ether_addr(hdr->addr1) && stakey) { 594 rx->key = stakey; 595 } else { 596 /* 597 * The device doesn't give us the IV so we won't be 598 * able to look up the key. That's ok though, we 599 * don't need to decrypt the frame, we just won't 600 * be able to keep statistics accurate. 601 * Except for key threshold notifications, should 602 * we somehow allow the driver to tell us which key 603 * the hardware used if this flag is set? 604 */ 605 if ((rx->status->flag & RX_FLAG_DECRYPTED) && 606 (rx->status->flag & RX_FLAG_IV_STRIPPED)) 607 return RX_CONTINUE; 608 609 hdrlen = ieee80211_hdrlen(hdr->frame_control); 610 611 if (rx->skb->len < 8 + hdrlen) 612 return RX_DROP_UNUSABLE; /* TODO: count this? */ 613 614 /* 615 * no need to call ieee80211_wep_get_keyidx, 616 * it verifies a bunch of things we've done already 617 */ 618 keyidx = rx->skb->data[hdrlen + 3] >> 6; 619 620 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 621 622 /* 623 * RSNA-protected unicast frames should always be sent with 624 * pairwise or station-to-station keys, but for WEP we allow 625 * using a key index as well. 626 */ 627 if (rx->key && rx->key->conf.alg != ALG_WEP && 628 !is_multicast_ether_addr(hdr->addr1)) 629 rx->key = NULL; 630 } 631 632 if (rx->key) { 633 rx->key->tx_rx_count++; 634 /* TODO: add threshold stuff again */ 635 } else { 636 return RX_DROP_MONITOR; 637 } 638 639 /* Check for weak IVs if possible */ 640 if (rx->sta && rx->key->conf.alg == ALG_WEP && 641 ieee80211_is_data(hdr->frame_control) && 642 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) || 643 !(rx->status->flag & RX_FLAG_DECRYPTED)) && 644 ieee80211_wep_is_weak_iv(rx->skb, rx->key)) 645 rx->sta->wep_weak_iv_count++; 646 647 switch (rx->key->conf.alg) { 648 case ALG_WEP: 649 result = ieee80211_crypto_wep_decrypt(rx); 650 break; 651 case ALG_TKIP: 652 result = ieee80211_crypto_tkip_decrypt(rx); 653 break; 654 case ALG_CCMP: 655 result = ieee80211_crypto_ccmp_decrypt(rx); 656 break; 657 } 658 659 /* either the frame has been decrypted or will be dropped */ 660 rx->status->flag |= RX_FLAG_DECRYPTED; 661 662 return result; 663 } 664 665 static void ap_sta_ps_start(struct sta_info *sta) 666 { 667 struct ieee80211_sub_if_data *sdata = sta->sdata; 668 struct ieee80211_local *local = sdata->local; 669 670 atomic_inc(&sdata->bss->num_sta_ps); 671 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL); 672 if (local->ops->sta_notify) 673 local->ops->sta_notify(local_to_hw(local), &sdata->vif, 674 STA_NOTIFY_SLEEP, &sta->sta); 675 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 676 printk(KERN_DEBUG "%s: STA %pM aid %d enters power save mode\n", 677 sdata->dev->name, sta->sta.addr, sta->sta.aid); 678 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 679 } 680 681 static int ap_sta_ps_end(struct sta_info *sta) 682 { 683 struct ieee80211_sub_if_data *sdata = sta->sdata; 684 struct ieee80211_local *local = sdata->local; 685 struct sk_buff *skb; 686 int sent = 0; 687 688 atomic_dec(&sdata->bss->num_sta_ps); 689 690 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL); 691 if (local->ops->sta_notify) 692 local->ops->sta_notify(local_to_hw(local), &sdata->vif, 693 STA_NOTIFY_AWAKE, &sta->sta); 694 695 if (!skb_queue_empty(&sta->ps_tx_buf)) 696 sta_info_clear_tim_bit(sta); 697 698 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 699 printk(KERN_DEBUG "%s: STA %pM aid %d exits power save mode\n", 700 sdata->dev->name, sta->sta.addr, sta->sta.aid); 701 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 702 703 /* Send all buffered frames to the station */ 704 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) { 705 sent++; 706 skb->requeue = 1; 707 dev_queue_xmit(skb); 708 } 709 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) { 710 local->total_ps_buffered--; 711 sent++; 712 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 713 printk(KERN_DEBUG "%s: STA %pM aid %d send PS frame " 714 "since STA not sleeping anymore\n", sdata->dev->name, 715 sta->sta.addr, sta->sta.aid); 716 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 717 skb->requeue = 1; 718 dev_queue_xmit(skb); 719 } 720 721 return sent; 722 } 723 724 static ieee80211_rx_result debug_noinline 725 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 726 { 727 struct sta_info *sta = rx->sta; 728 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 729 730 if (!sta) 731 return RX_CONTINUE; 732 733 /* Update last_rx only for IBSS packets which are for the current 734 * BSSID to avoid keeping the current IBSS network alive in cases where 735 * other STAs are using different BSSID. */ 736 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 737 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 738 NL80211_IFTYPE_ADHOC); 739 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0) 740 sta->last_rx = jiffies; 741 } else 742 if (!is_multicast_ether_addr(hdr->addr1) || 743 rx->sdata->vif.type == NL80211_IFTYPE_STATION) { 744 /* Update last_rx only for unicast frames in order to prevent 745 * the Probe Request frames (the only broadcast frames from a 746 * STA in infrastructure mode) from keeping a connection alive. 747 * Mesh beacons will update last_rx when if they are found to 748 * match the current local configuration when processed. 749 */ 750 sta->last_rx = jiffies; 751 } 752 753 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 754 return RX_CONTINUE; 755 756 sta->rx_fragments++; 757 sta->rx_bytes += rx->skb->len; 758 sta->last_signal = rx->status->signal; 759 sta->last_qual = rx->status->qual; 760 sta->last_noise = rx->status->noise; 761 762 /* 763 * Change STA power saving mode only at the end of a frame 764 * exchange sequence. 765 */ 766 if (!ieee80211_has_morefrags(hdr->frame_control) && 767 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 768 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 769 if (test_sta_flags(sta, WLAN_STA_PS)) { 770 /* 771 * Ignore doze->wake transitions that are 772 * indicated by non-data frames, the standard 773 * is unclear here, but for example going to 774 * PS mode and then scanning would cause a 775 * doze->wake transition for the probe request, 776 * and that is clearly undesirable. 777 */ 778 if (ieee80211_is_data(hdr->frame_control) && 779 !ieee80211_has_pm(hdr->frame_control)) 780 rx->sent_ps_buffered += ap_sta_ps_end(sta); 781 } else { 782 if (ieee80211_has_pm(hdr->frame_control)) 783 ap_sta_ps_start(sta); 784 } 785 } 786 787 /* Drop data::nullfunc frames silently, since they are used only to 788 * control station power saving mode. */ 789 if (ieee80211_is_nullfunc(hdr->frame_control)) { 790 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 791 /* Update counter and free packet here to avoid counting this 792 * as a dropped packed. */ 793 sta->rx_packets++; 794 dev_kfree_skb(rx->skb); 795 return RX_QUEUED; 796 } 797 798 return RX_CONTINUE; 799 } /* ieee80211_rx_h_sta_process */ 800 801 static inline struct ieee80211_fragment_entry * 802 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 803 unsigned int frag, unsigned int seq, int rx_queue, 804 struct sk_buff **skb) 805 { 806 struct ieee80211_fragment_entry *entry; 807 int idx; 808 809 idx = sdata->fragment_next; 810 entry = &sdata->fragments[sdata->fragment_next++]; 811 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 812 sdata->fragment_next = 0; 813 814 if (!skb_queue_empty(&entry->skb_list)) { 815 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 816 struct ieee80211_hdr *hdr = 817 (struct ieee80211_hdr *) entry->skb_list.next->data; 818 printk(KERN_DEBUG "%s: RX reassembly removed oldest " 819 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d " 820 "addr1=%pM addr2=%pM\n", 821 sdata->dev->name, idx, 822 jiffies - entry->first_frag_time, entry->seq, 823 entry->last_frag, hdr->addr1, hdr->addr2); 824 #endif 825 __skb_queue_purge(&entry->skb_list); 826 } 827 828 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 829 *skb = NULL; 830 entry->first_frag_time = jiffies; 831 entry->seq = seq; 832 entry->rx_queue = rx_queue; 833 entry->last_frag = frag; 834 entry->ccmp = 0; 835 entry->extra_len = 0; 836 837 return entry; 838 } 839 840 static inline struct ieee80211_fragment_entry * 841 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 842 unsigned int frag, unsigned int seq, 843 int rx_queue, struct ieee80211_hdr *hdr) 844 { 845 struct ieee80211_fragment_entry *entry; 846 int i, idx; 847 848 idx = sdata->fragment_next; 849 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 850 struct ieee80211_hdr *f_hdr; 851 852 idx--; 853 if (idx < 0) 854 idx = IEEE80211_FRAGMENT_MAX - 1; 855 856 entry = &sdata->fragments[idx]; 857 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 858 entry->rx_queue != rx_queue || 859 entry->last_frag + 1 != frag) 860 continue; 861 862 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 863 864 /* 865 * Check ftype and addresses are equal, else check next fragment 866 */ 867 if (((hdr->frame_control ^ f_hdr->frame_control) & 868 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 869 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 || 870 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0) 871 continue; 872 873 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 874 __skb_queue_purge(&entry->skb_list); 875 continue; 876 } 877 return entry; 878 } 879 880 return NULL; 881 } 882 883 static ieee80211_rx_result debug_noinline 884 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 885 { 886 struct ieee80211_hdr *hdr; 887 u16 sc; 888 __le16 fc; 889 unsigned int frag, seq; 890 struct ieee80211_fragment_entry *entry; 891 struct sk_buff *skb; 892 893 hdr = (struct ieee80211_hdr *)rx->skb->data; 894 fc = hdr->frame_control; 895 sc = le16_to_cpu(hdr->seq_ctrl); 896 frag = sc & IEEE80211_SCTL_FRAG; 897 898 if (likely((!ieee80211_has_morefrags(fc) && frag == 0) || 899 (rx->skb)->len < 24 || 900 is_multicast_ether_addr(hdr->addr1))) { 901 /* not fragmented */ 902 goto out; 903 } 904 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 905 906 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 907 908 if (frag == 0) { 909 /* This is the first fragment of a new frame. */ 910 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 911 rx->queue, &(rx->skb)); 912 if (rx->key && rx->key->conf.alg == ALG_CCMP && 913 ieee80211_has_protected(fc)) { 914 /* Store CCMP PN so that we can verify that the next 915 * fragment has a sequential PN value. */ 916 entry->ccmp = 1; 917 memcpy(entry->last_pn, 918 rx->key->u.ccmp.rx_pn[rx->queue], 919 CCMP_PN_LEN); 920 } 921 return RX_QUEUED; 922 } 923 924 /* This is a fragment for a frame that should already be pending in 925 * fragment cache. Add this fragment to the end of the pending entry. 926 */ 927 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, rx->queue, hdr); 928 if (!entry) { 929 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 930 return RX_DROP_MONITOR; 931 } 932 933 /* Verify that MPDUs within one MSDU have sequential PN values. 934 * (IEEE 802.11i, 8.3.3.4.5) */ 935 if (entry->ccmp) { 936 int i; 937 u8 pn[CCMP_PN_LEN], *rpn; 938 if (!rx->key || rx->key->conf.alg != ALG_CCMP) 939 return RX_DROP_UNUSABLE; 940 memcpy(pn, entry->last_pn, CCMP_PN_LEN); 941 for (i = CCMP_PN_LEN - 1; i >= 0; i--) { 942 pn[i]++; 943 if (pn[i]) 944 break; 945 } 946 rpn = rx->key->u.ccmp.rx_pn[rx->queue]; 947 if (memcmp(pn, rpn, CCMP_PN_LEN)) 948 return RX_DROP_UNUSABLE; 949 memcpy(entry->last_pn, pn, CCMP_PN_LEN); 950 } 951 952 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 953 __skb_queue_tail(&entry->skb_list, rx->skb); 954 entry->last_frag = frag; 955 entry->extra_len += rx->skb->len; 956 if (ieee80211_has_morefrags(fc)) { 957 rx->skb = NULL; 958 return RX_QUEUED; 959 } 960 961 rx->skb = __skb_dequeue(&entry->skb_list); 962 if (skb_tailroom(rx->skb) < entry->extra_len) { 963 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 964 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 965 GFP_ATOMIC))) { 966 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 967 __skb_queue_purge(&entry->skb_list); 968 return RX_DROP_UNUSABLE; 969 } 970 } 971 while ((skb = __skb_dequeue(&entry->skb_list))) { 972 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 973 dev_kfree_skb(skb); 974 } 975 976 /* Complete frame has been reassembled - process it now */ 977 rx->flags |= IEEE80211_RX_FRAGMENTED; 978 979 out: 980 if (rx->sta) 981 rx->sta->rx_packets++; 982 if (is_multicast_ether_addr(hdr->addr1)) 983 rx->local->dot11MulticastReceivedFrameCount++; 984 else 985 ieee80211_led_rx(rx->local); 986 return RX_CONTINUE; 987 } 988 989 static ieee80211_rx_result debug_noinline 990 ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx) 991 { 992 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 993 struct sk_buff *skb; 994 int no_pending_pkts; 995 __le16 fc = ((struct ieee80211_hdr *)rx->skb->data)->frame_control; 996 997 if (likely(!rx->sta || !ieee80211_is_pspoll(fc) || 998 !(rx->flags & IEEE80211_RX_RA_MATCH))) 999 return RX_CONTINUE; 1000 1001 if ((sdata->vif.type != NL80211_IFTYPE_AP) && 1002 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1003 return RX_DROP_UNUSABLE; 1004 1005 skb = skb_dequeue(&rx->sta->tx_filtered); 1006 if (!skb) { 1007 skb = skb_dequeue(&rx->sta->ps_tx_buf); 1008 if (skb) 1009 rx->local->total_ps_buffered--; 1010 } 1011 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) && 1012 skb_queue_empty(&rx->sta->ps_tx_buf); 1013 1014 if (skb) { 1015 struct ieee80211_hdr *hdr = 1016 (struct ieee80211_hdr *) skb->data; 1017 1018 /* 1019 * Tell TX path to send one frame even though the STA may 1020 * still remain is PS mode after this frame exchange. 1021 */ 1022 set_sta_flags(rx->sta, WLAN_STA_PSPOLL); 1023 1024 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1025 printk(KERN_DEBUG "STA %pM aid %d: PS Poll (entries after %d)\n", 1026 rx->sta->sta.addr, rx->sta->sta.aid, 1027 skb_queue_len(&rx->sta->ps_tx_buf)); 1028 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1029 1030 /* Use MoreData flag to indicate whether there are more 1031 * buffered frames for this STA */ 1032 if (no_pending_pkts) 1033 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA); 1034 else 1035 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1036 1037 dev_queue_xmit(skb); 1038 1039 if (no_pending_pkts) 1040 sta_info_clear_tim_bit(rx->sta); 1041 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 1042 } else if (!rx->sent_ps_buffered) { 1043 /* 1044 * FIXME: This can be the result of a race condition between 1045 * us expiring a frame and the station polling for it. 1046 * Should we send it a null-func frame indicating we 1047 * have nothing buffered for it? 1048 */ 1049 printk(KERN_DEBUG "%s: STA %pM sent PS Poll even " 1050 "though there are no buffered frames for it\n", 1051 rx->dev->name, rx->sta->sta.addr); 1052 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 1053 } 1054 1055 /* Free PS Poll skb here instead of returning RX_DROP that would 1056 * count as an dropped frame. */ 1057 dev_kfree_skb(rx->skb); 1058 1059 return RX_QUEUED; 1060 } 1061 1062 static ieee80211_rx_result debug_noinline 1063 ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx) 1064 { 1065 u8 *data = rx->skb->data; 1066 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data; 1067 1068 if (!ieee80211_is_data_qos(hdr->frame_control)) 1069 return RX_CONTINUE; 1070 1071 /* remove the qos control field, update frame type and meta-data */ 1072 memmove(data + IEEE80211_QOS_CTL_LEN, data, 1073 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN); 1074 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN); 1075 /* change frame type to non QOS */ 1076 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1077 1078 return RX_CONTINUE; 1079 } 1080 1081 static int 1082 ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1083 { 1084 if (unlikely(!rx->sta || 1085 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED))) 1086 return -EACCES; 1087 1088 return 0; 1089 } 1090 1091 static int 1092 ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1093 { 1094 /* 1095 * Pass through unencrypted frames if the hardware has 1096 * decrypted them already. 1097 */ 1098 if (rx->status->flag & RX_FLAG_DECRYPTED) 1099 return 0; 1100 1101 /* Drop unencrypted frames if key is set. */ 1102 if (unlikely(!ieee80211_has_protected(fc) && 1103 !ieee80211_is_nullfunc(fc) && 1104 (rx->key || rx->sdata->drop_unencrypted))) 1105 return -EACCES; 1106 1107 return 0; 1108 } 1109 1110 static int 1111 ieee80211_data_to_8023(struct ieee80211_rx_data *rx) 1112 { 1113 struct net_device *dev = rx->dev; 1114 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data; 1115 u16 hdrlen, ethertype; 1116 u8 *payload; 1117 u8 dst[ETH_ALEN]; 1118 u8 src[ETH_ALEN] __aligned(2); 1119 struct sk_buff *skb = rx->skb; 1120 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1121 1122 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1123 return -1; 1124 1125 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1126 1127 /* convert IEEE 802.11 header + possible LLC headers into Ethernet 1128 * header 1129 * IEEE 802.11 address fields: 1130 * ToDS FromDS Addr1 Addr2 Addr3 Addr4 1131 * 0 0 DA SA BSSID n/a 1132 * 0 1 DA BSSID SA n/a 1133 * 1 0 BSSID SA DA n/a 1134 * 1 1 RA TA DA SA 1135 */ 1136 memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN); 1137 memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN); 1138 1139 switch (hdr->frame_control & 1140 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) { 1141 case __constant_cpu_to_le16(IEEE80211_FCTL_TODS): 1142 if (unlikely(sdata->vif.type != NL80211_IFTYPE_AP && 1143 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)) 1144 return -1; 1145 break; 1146 case __constant_cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS): 1147 if (unlikely(sdata->vif.type != NL80211_IFTYPE_WDS && 1148 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)) 1149 return -1; 1150 if (ieee80211_vif_is_mesh(&sdata->vif)) { 1151 struct ieee80211s_hdr *meshdr = (struct ieee80211s_hdr *) 1152 (skb->data + hdrlen); 1153 hdrlen += ieee80211_get_mesh_hdrlen(meshdr); 1154 if (meshdr->flags & MESH_FLAGS_AE_A5_A6) { 1155 memcpy(dst, meshdr->eaddr1, ETH_ALEN); 1156 memcpy(src, meshdr->eaddr2, ETH_ALEN); 1157 } 1158 } 1159 break; 1160 case __constant_cpu_to_le16(IEEE80211_FCTL_FROMDS): 1161 if (sdata->vif.type != NL80211_IFTYPE_STATION || 1162 (is_multicast_ether_addr(dst) && 1163 !compare_ether_addr(src, dev->dev_addr))) 1164 return -1; 1165 break; 1166 case __constant_cpu_to_le16(0): 1167 if (sdata->vif.type != NL80211_IFTYPE_ADHOC) 1168 return -1; 1169 break; 1170 } 1171 1172 if (unlikely(skb->len - hdrlen < 8)) 1173 return -1; 1174 1175 payload = skb->data + hdrlen; 1176 ethertype = (payload[6] << 8) | payload[7]; 1177 1178 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 1179 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 1180 compare_ether_addr(payload, bridge_tunnel_header) == 0)) { 1181 /* remove RFC1042 or Bridge-Tunnel encapsulation and 1182 * replace EtherType */ 1183 skb_pull(skb, hdrlen + 6); 1184 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN); 1185 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN); 1186 } else { 1187 struct ethhdr *ehdr; 1188 __be16 len; 1189 1190 skb_pull(skb, hdrlen); 1191 len = htons(skb->len); 1192 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr)); 1193 memcpy(ehdr->h_dest, dst, ETH_ALEN); 1194 memcpy(ehdr->h_source, src, ETH_ALEN); 1195 ehdr->h_proto = len; 1196 } 1197 return 0; 1198 } 1199 1200 /* 1201 * requires that rx->skb is a frame with ethernet header 1202 */ 1203 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1204 { 1205 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1206 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1207 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1208 1209 /* 1210 * Allow EAPOL frames to us/the PAE group address regardless 1211 * of whether the frame was encrypted or not. 1212 */ 1213 if (ehdr->h_proto == htons(ETH_P_PAE) && 1214 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 || 1215 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0)) 1216 return true; 1217 1218 if (ieee80211_802_1x_port_control(rx) || 1219 ieee80211_drop_unencrypted(rx, fc)) 1220 return false; 1221 1222 return true; 1223 } 1224 1225 /* 1226 * requires that rx->skb is a frame with ethernet header 1227 */ 1228 static void 1229 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 1230 { 1231 struct net_device *dev = rx->dev; 1232 struct ieee80211_local *local = rx->local; 1233 struct sk_buff *skb, *xmit_skb; 1234 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1235 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1236 struct sta_info *dsta; 1237 1238 skb = rx->skb; 1239 xmit_skb = NULL; 1240 1241 if ((sdata->vif.type == NL80211_IFTYPE_AP || 1242 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1243 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 1244 (rx->flags & IEEE80211_RX_RA_MATCH)) { 1245 if (is_multicast_ether_addr(ehdr->h_dest)) { 1246 /* 1247 * send multicast frames both to higher layers in 1248 * local net stack and back to the wireless medium 1249 */ 1250 xmit_skb = skb_copy(skb, GFP_ATOMIC); 1251 if (!xmit_skb && net_ratelimit()) 1252 printk(KERN_DEBUG "%s: failed to clone " 1253 "multicast frame\n", dev->name); 1254 } else { 1255 dsta = sta_info_get(local, skb->data); 1256 if (dsta && dsta->sdata->dev == dev) { 1257 /* 1258 * The destination station is associated to 1259 * this AP (in this VLAN), so send the frame 1260 * directly to it and do not pass it to local 1261 * net stack. 1262 */ 1263 xmit_skb = skb; 1264 skb = NULL; 1265 } 1266 } 1267 } 1268 1269 if (skb) { 1270 /* deliver to local stack */ 1271 skb->protocol = eth_type_trans(skb, dev); 1272 memset(skb->cb, 0, sizeof(skb->cb)); 1273 netif_rx(skb); 1274 } 1275 1276 if (xmit_skb) { 1277 /* send to wireless media */ 1278 xmit_skb->protocol = htons(ETH_P_802_3); 1279 skb_reset_network_header(xmit_skb); 1280 skb_reset_mac_header(xmit_skb); 1281 dev_queue_xmit(xmit_skb); 1282 } 1283 } 1284 1285 static ieee80211_rx_result debug_noinline 1286 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 1287 { 1288 struct net_device *dev = rx->dev; 1289 struct ieee80211_local *local = rx->local; 1290 u16 ethertype; 1291 u8 *payload; 1292 struct sk_buff *skb = rx->skb, *frame = NULL; 1293 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1294 __le16 fc = hdr->frame_control; 1295 const struct ethhdr *eth; 1296 int remaining, err; 1297 u8 dst[ETH_ALEN]; 1298 u8 src[ETH_ALEN]; 1299 1300 if (unlikely(!ieee80211_is_data(fc))) 1301 return RX_CONTINUE; 1302 1303 if (unlikely(!ieee80211_is_data_present(fc))) 1304 return RX_DROP_MONITOR; 1305 1306 if (!(rx->flags & IEEE80211_RX_AMSDU)) 1307 return RX_CONTINUE; 1308 1309 err = ieee80211_data_to_8023(rx); 1310 if (unlikely(err)) 1311 return RX_DROP_UNUSABLE; 1312 1313 skb->dev = dev; 1314 1315 dev->stats.rx_packets++; 1316 dev->stats.rx_bytes += skb->len; 1317 1318 /* skip the wrapping header */ 1319 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr)); 1320 if (!eth) 1321 return RX_DROP_UNUSABLE; 1322 1323 while (skb != frame) { 1324 u8 padding; 1325 __be16 len = eth->h_proto; 1326 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len); 1327 1328 remaining = skb->len; 1329 memcpy(dst, eth->h_dest, ETH_ALEN); 1330 memcpy(src, eth->h_source, ETH_ALEN); 1331 1332 padding = ((4 - subframe_len) & 0x3); 1333 /* the last MSDU has no padding */ 1334 if (subframe_len > remaining) 1335 return RX_DROP_UNUSABLE; 1336 1337 skb_pull(skb, sizeof(struct ethhdr)); 1338 /* if last subframe reuse skb */ 1339 if (remaining <= subframe_len + padding) 1340 frame = skb; 1341 else { 1342 frame = dev_alloc_skb(local->hw.extra_tx_headroom + 1343 subframe_len); 1344 1345 if (frame == NULL) 1346 return RX_DROP_UNUSABLE; 1347 1348 skb_reserve(frame, local->hw.extra_tx_headroom + 1349 sizeof(struct ethhdr)); 1350 memcpy(skb_put(frame, ntohs(len)), skb->data, 1351 ntohs(len)); 1352 1353 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) + 1354 padding); 1355 if (!eth) { 1356 dev_kfree_skb(frame); 1357 return RX_DROP_UNUSABLE; 1358 } 1359 } 1360 1361 skb_reset_network_header(frame); 1362 frame->dev = dev; 1363 frame->priority = skb->priority; 1364 rx->skb = frame; 1365 1366 payload = frame->data; 1367 ethertype = (payload[6] << 8) | payload[7]; 1368 1369 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 && 1370 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) || 1371 compare_ether_addr(payload, 1372 bridge_tunnel_header) == 0)) { 1373 /* remove RFC1042 or Bridge-Tunnel 1374 * encapsulation and replace EtherType */ 1375 skb_pull(frame, 6); 1376 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 1377 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 1378 } else { 1379 memcpy(skb_push(frame, sizeof(__be16)), 1380 &len, sizeof(__be16)); 1381 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN); 1382 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN); 1383 } 1384 1385 if (!ieee80211_frame_allowed(rx, fc)) { 1386 if (skb == frame) /* last frame */ 1387 return RX_DROP_UNUSABLE; 1388 dev_kfree_skb(frame); 1389 continue; 1390 } 1391 1392 ieee80211_deliver_skb(rx); 1393 } 1394 1395 return RX_QUEUED; 1396 } 1397 1398 #ifdef CONFIG_MAC80211_MESH 1399 static ieee80211_rx_result 1400 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 1401 { 1402 struct ieee80211_hdr *hdr; 1403 struct ieee80211s_hdr *mesh_hdr; 1404 unsigned int hdrlen; 1405 struct sk_buff *skb = rx->skb, *fwd_skb; 1406 1407 hdr = (struct ieee80211_hdr *) skb->data; 1408 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1409 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 1410 1411 if (!ieee80211_is_data(hdr->frame_control)) 1412 return RX_CONTINUE; 1413 1414 if (!mesh_hdr->ttl) 1415 /* illegal frame */ 1416 return RX_DROP_MONITOR; 1417 1418 if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6){ 1419 struct ieee80211_sub_if_data *sdata; 1420 struct mesh_path *mppath; 1421 1422 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1423 rcu_read_lock(); 1424 mppath = mpp_path_lookup(mesh_hdr->eaddr2, sdata); 1425 if (!mppath) { 1426 mpp_path_add(mesh_hdr->eaddr2, hdr->addr4, sdata); 1427 } else { 1428 spin_lock_bh(&mppath->state_lock); 1429 mppath->exp_time = jiffies; 1430 if (compare_ether_addr(mppath->mpp, hdr->addr4) != 0) 1431 memcpy(mppath->mpp, hdr->addr4, ETH_ALEN); 1432 spin_unlock_bh(&mppath->state_lock); 1433 } 1434 rcu_read_unlock(); 1435 } 1436 1437 if (compare_ether_addr(rx->dev->dev_addr, hdr->addr3) == 0) 1438 return RX_CONTINUE; 1439 1440 mesh_hdr->ttl--; 1441 1442 if (rx->flags & IEEE80211_RX_RA_MATCH) { 1443 if (!mesh_hdr->ttl) 1444 IEEE80211_IFSTA_MESH_CTR_INC(&rx->sdata->u.mesh, 1445 dropped_frames_ttl); 1446 else { 1447 struct ieee80211_hdr *fwd_hdr; 1448 fwd_skb = skb_copy(skb, GFP_ATOMIC); 1449 1450 if (!fwd_skb && net_ratelimit()) 1451 printk(KERN_DEBUG "%s: failed to clone mesh frame\n", 1452 rx->dev->name); 1453 1454 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 1455 /* 1456 * Save TA to addr1 to send TA a path error if a 1457 * suitable next hop is not found 1458 */ 1459 memcpy(fwd_hdr->addr1, fwd_hdr->addr2, ETH_ALEN); 1460 memcpy(fwd_hdr->addr2, rx->dev->dev_addr, ETH_ALEN); 1461 fwd_skb->dev = rx->local->mdev; 1462 fwd_skb->iif = rx->dev->ifindex; 1463 dev_queue_xmit(fwd_skb); 1464 } 1465 } 1466 1467 if (is_multicast_ether_addr(hdr->addr3) || 1468 rx->dev->flags & IFF_PROMISC) 1469 return RX_CONTINUE; 1470 else 1471 return RX_DROP_MONITOR; 1472 } 1473 #endif 1474 1475 static ieee80211_rx_result debug_noinline 1476 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 1477 { 1478 struct net_device *dev = rx->dev; 1479 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1480 __le16 fc = hdr->frame_control; 1481 int err; 1482 1483 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 1484 return RX_CONTINUE; 1485 1486 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1487 return RX_DROP_MONITOR; 1488 1489 err = ieee80211_data_to_8023(rx); 1490 if (unlikely(err)) 1491 return RX_DROP_UNUSABLE; 1492 1493 if (!ieee80211_frame_allowed(rx, fc)) 1494 return RX_DROP_MONITOR; 1495 1496 rx->skb->dev = dev; 1497 1498 dev->stats.rx_packets++; 1499 dev->stats.rx_bytes += rx->skb->len; 1500 1501 ieee80211_deliver_skb(rx); 1502 1503 return RX_QUEUED; 1504 } 1505 1506 static ieee80211_rx_result debug_noinline 1507 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx) 1508 { 1509 struct ieee80211_local *local = rx->local; 1510 struct ieee80211_hw *hw = &local->hw; 1511 struct sk_buff *skb = rx->skb; 1512 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 1513 struct tid_ampdu_rx *tid_agg_rx; 1514 u16 start_seq_num; 1515 u16 tid; 1516 1517 if (likely(!ieee80211_is_ctl(bar->frame_control))) 1518 return RX_CONTINUE; 1519 1520 if (ieee80211_is_back_req(bar->frame_control)) { 1521 if (!rx->sta) 1522 return RX_CONTINUE; 1523 tid = le16_to_cpu(bar->control) >> 12; 1524 if (rx->sta->ampdu_mlme.tid_state_rx[tid] 1525 != HT_AGG_STATE_OPERATIONAL) 1526 return RX_CONTINUE; 1527 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid]; 1528 1529 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4; 1530 1531 /* reset session timer */ 1532 if (tid_agg_rx->timeout) { 1533 unsigned long expires = 1534 jiffies + (tid_agg_rx->timeout / 1000) * HZ; 1535 mod_timer(&tid_agg_rx->session_timer, expires); 1536 } 1537 1538 /* manage reordering buffer according to requested */ 1539 /* sequence number */ 1540 rcu_read_lock(); 1541 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL, 1542 start_seq_num, 1); 1543 rcu_read_unlock(); 1544 return RX_DROP_UNUSABLE; 1545 } 1546 1547 return RX_CONTINUE; 1548 } 1549 1550 static ieee80211_rx_result debug_noinline 1551 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 1552 { 1553 struct ieee80211_local *local = rx->local; 1554 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1555 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 1556 int len = rx->skb->len; 1557 1558 if (!ieee80211_is_action(mgmt->frame_control)) 1559 return RX_CONTINUE; 1560 1561 if (!rx->sta) 1562 return RX_DROP_MONITOR; 1563 1564 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1565 return RX_DROP_MONITOR; 1566 1567 /* all categories we currently handle have action_code */ 1568 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 1569 return RX_DROP_MONITOR; 1570 1571 switch (mgmt->u.action.category) { 1572 case WLAN_CATEGORY_BACK: 1573 switch (mgmt->u.action.u.addba_req.action_code) { 1574 case WLAN_ACTION_ADDBA_REQ: 1575 if (len < (IEEE80211_MIN_ACTION_SIZE + 1576 sizeof(mgmt->u.action.u.addba_req))) 1577 return RX_DROP_MONITOR; 1578 ieee80211_process_addba_request(local, rx->sta, mgmt, len); 1579 break; 1580 case WLAN_ACTION_ADDBA_RESP: 1581 if (len < (IEEE80211_MIN_ACTION_SIZE + 1582 sizeof(mgmt->u.action.u.addba_resp))) 1583 return RX_DROP_MONITOR; 1584 ieee80211_process_addba_resp(local, rx->sta, mgmt, len); 1585 break; 1586 case WLAN_ACTION_DELBA: 1587 if (len < (IEEE80211_MIN_ACTION_SIZE + 1588 sizeof(mgmt->u.action.u.delba))) 1589 return RX_DROP_MONITOR; 1590 ieee80211_process_delba(sdata, rx->sta, mgmt, len); 1591 break; 1592 } 1593 break; 1594 case WLAN_CATEGORY_SPECTRUM_MGMT: 1595 if (local->hw.conf.channel->band != IEEE80211_BAND_5GHZ) 1596 return RX_DROP_MONITOR; 1597 switch (mgmt->u.action.u.measurement.action_code) { 1598 case WLAN_ACTION_SPCT_MSR_REQ: 1599 if (len < (IEEE80211_MIN_ACTION_SIZE + 1600 sizeof(mgmt->u.action.u.measurement))) 1601 return RX_DROP_MONITOR; 1602 ieee80211_process_measurement_req(sdata, mgmt, len); 1603 break; 1604 } 1605 break; 1606 default: 1607 return RX_CONTINUE; 1608 } 1609 1610 rx->sta->rx_packets++; 1611 dev_kfree_skb(rx->skb); 1612 return RX_QUEUED; 1613 } 1614 1615 static ieee80211_rx_result debug_noinline 1616 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 1617 { 1618 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev); 1619 1620 if (!(rx->flags & IEEE80211_RX_RA_MATCH)) 1621 return RX_DROP_MONITOR; 1622 1623 if (ieee80211_vif_is_mesh(&sdata->vif)) 1624 return ieee80211_mesh_rx_mgmt(sdata, rx->skb, rx->status); 1625 1626 if (sdata->vif.type != NL80211_IFTYPE_STATION && 1627 sdata->vif.type != NL80211_IFTYPE_ADHOC) 1628 return RX_DROP_MONITOR; 1629 1630 if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME) 1631 return RX_DROP_MONITOR; 1632 1633 ieee80211_sta_rx_mgmt(sdata, rx->skb, rx->status); 1634 return RX_QUEUED; 1635 } 1636 1637 static void ieee80211_rx_michael_mic_report(struct net_device *dev, 1638 struct ieee80211_hdr *hdr, 1639 struct ieee80211_rx_data *rx) 1640 { 1641 int keyidx; 1642 unsigned int hdrlen; 1643 1644 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1645 if (rx->skb->len >= hdrlen + 4) 1646 keyidx = rx->skb->data[hdrlen + 3] >> 6; 1647 else 1648 keyidx = -1; 1649 1650 if (!rx->sta) { 1651 /* 1652 * Some hardware seem to generate incorrect Michael MIC 1653 * reports; ignore them to avoid triggering countermeasures. 1654 */ 1655 goto ignore; 1656 } 1657 1658 if (!ieee80211_has_protected(hdr->frame_control)) 1659 goto ignore; 1660 1661 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && keyidx) { 1662 /* 1663 * APs with pairwise keys should never receive Michael MIC 1664 * errors for non-zero keyidx because these are reserved for 1665 * group keys and only the AP is sending real multicast 1666 * frames in the BSS. 1667 */ 1668 goto ignore; 1669 } 1670 1671 if (!ieee80211_is_data(hdr->frame_control) && 1672 !ieee80211_is_auth(hdr->frame_control)) 1673 goto ignore; 1674 1675 mac80211_ev_michael_mic_failure(rx->sdata, keyidx, hdr); 1676 ignore: 1677 dev_kfree_skb(rx->skb); 1678 rx->skb = NULL; 1679 } 1680 1681 /* TODO: use IEEE80211_RX_FRAGMENTED */ 1682 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx) 1683 { 1684 struct ieee80211_sub_if_data *sdata; 1685 struct ieee80211_local *local = rx->local; 1686 struct ieee80211_rtap_hdr { 1687 struct ieee80211_radiotap_header hdr; 1688 u8 flags; 1689 u8 rate; 1690 __le16 chan_freq; 1691 __le16 chan_flags; 1692 } __attribute__ ((packed)) *rthdr; 1693 struct sk_buff *skb = rx->skb, *skb2; 1694 struct net_device *prev_dev = NULL; 1695 struct ieee80211_rx_status *status = rx->status; 1696 1697 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED) 1698 goto out_free_skb; 1699 1700 if (skb_headroom(skb) < sizeof(*rthdr) && 1701 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) 1702 goto out_free_skb; 1703 1704 rthdr = (void *)skb_push(skb, sizeof(*rthdr)); 1705 memset(rthdr, 0, sizeof(*rthdr)); 1706 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr)); 1707 rthdr->hdr.it_present = 1708 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | 1709 (1 << IEEE80211_RADIOTAP_RATE) | 1710 (1 << IEEE80211_RADIOTAP_CHANNEL)); 1711 1712 rthdr->rate = rx->rate->bitrate / 5; 1713 rthdr->chan_freq = cpu_to_le16(status->freq); 1714 1715 if (status->band == IEEE80211_BAND_5GHZ) 1716 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM | 1717 IEEE80211_CHAN_5GHZ); 1718 else 1719 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN | 1720 IEEE80211_CHAN_2GHZ); 1721 1722 skb_set_mac_header(skb, 0); 1723 skb->ip_summed = CHECKSUM_UNNECESSARY; 1724 skb->pkt_type = PACKET_OTHERHOST; 1725 skb->protocol = htons(ETH_P_802_2); 1726 1727 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 1728 if (!netif_running(sdata->dev)) 1729 continue; 1730 1731 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 1732 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 1733 continue; 1734 1735 if (prev_dev) { 1736 skb2 = skb_clone(skb, GFP_ATOMIC); 1737 if (skb2) { 1738 skb2->dev = prev_dev; 1739 netif_rx(skb2); 1740 } 1741 } 1742 1743 prev_dev = sdata->dev; 1744 sdata->dev->stats.rx_packets++; 1745 sdata->dev->stats.rx_bytes += skb->len; 1746 } 1747 1748 if (prev_dev) { 1749 skb->dev = prev_dev; 1750 netif_rx(skb); 1751 skb = NULL; 1752 } else 1753 goto out_free_skb; 1754 1755 rx->flags |= IEEE80211_RX_CMNTR_REPORTED; 1756 return; 1757 1758 out_free_skb: 1759 dev_kfree_skb(skb); 1760 } 1761 1762 1763 static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata, 1764 struct ieee80211_rx_data *rx, 1765 struct sk_buff *skb) 1766 { 1767 ieee80211_rx_result res = RX_DROP_MONITOR; 1768 1769 rx->skb = skb; 1770 rx->sdata = sdata; 1771 rx->dev = sdata->dev; 1772 1773 #define CALL_RXH(rxh) \ 1774 do { \ 1775 res = rxh(rx); \ 1776 if (res != RX_CONTINUE) \ 1777 goto rxh_done; \ 1778 } while (0); 1779 1780 CALL_RXH(ieee80211_rx_h_passive_scan) 1781 CALL_RXH(ieee80211_rx_h_check) 1782 CALL_RXH(ieee80211_rx_h_decrypt) 1783 CALL_RXH(ieee80211_rx_h_sta_process) 1784 CALL_RXH(ieee80211_rx_h_defragment) 1785 CALL_RXH(ieee80211_rx_h_ps_poll) 1786 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 1787 /* must be after MMIC verify so header is counted in MPDU mic */ 1788 CALL_RXH(ieee80211_rx_h_remove_qos_control) 1789 CALL_RXH(ieee80211_rx_h_amsdu) 1790 #ifdef CONFIG_MAC80211_MESH 1791 if (ieee80211_vif_is_mesh(&sdata->vif)) 1792 CALL_RXH(ieee80211_rx_h_mesh_fwding); 1793 #endif 1794 CALL_RXH(ieee80211_rx_h_data) 1795 CALL_RXH(ieee80211_rx_h_ctrl) 1796 CALL_RXH(ieee80211_rx_h_action) 1797 CALL_RXH(ieee80211_rx_h_mgmt) 1798 1799 #undef CALL_RXH 1800 1801 rxh_done: 1802 switch (res) { 1803 case RX_DROP_MONITOR: 1804 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 1805 if (rx->sta) 1806 rx->sta->rx_dropped++; 1807 /* fall through */ 1808 case RX_CONTINUE: 1809 ieee80211_rx_cooked_monitor(rx); 1810 break; 1811 case RX_DROP_UNUSABLE: 1812 I802_DEBUG_INC(sdata->local->rx_handlers_drop); 1813 if (rx->sta) 1814 rx->sta->rx_dropped++; 1815 dev_kfree_skb(rx->skb); 1816 break; 1817 case RX_QUEUED: 1818 I802_DEBUG_INC(sdata->local->rx_handlers_queued); 1819 break; 1820 } 1821 } 1822 1823 /* main receive path */ 1824 1825 static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata, 1826 u8 *bssid, struct ieee80211_rx_data *rx, 1827 struct ieee80211_hdr *hdr) 1828 { 1829 int multicast = is_multicast_ether_addr(hdr->addr1); 1830 1831 switch (sdata->vif.type) { 1832 case NL80211_IFTYPE_STATION: 1833 if (!bssid) 1834 return 0; 1835 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { 1836 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 1837 return 0; 1838 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1839 } else if (!multicast && 1840 compare_ether_addr(sdata->dev->dev_addr, 1841 hdr->addr1) != 0) { 1842 if (!(sdata->dev->flags & IFF_PROMISC)) 1843 return 0; 1844 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1845 } 1846 break; 1847 case NL80211_IFTYPE_ADHOC: 1848 if (!bssid) 1849 return 0; 1850 if (ieee80211_is_beacon(hdr->frame_control)) { 1851 return 1; 1852 } 1853 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) { 1854 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 1855 return 0; 1856 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1857 } else if (!multicast && 1858 compare_ether_addr(sdata->dev->dev_addr, 1859 hdr->addr1) != 0) { 1860 if (!(sdata->dev->flags & IFF_PROMISC)) 1861 return 0; 1862 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1863 } else if (!rx->sta) { 1864 int rate_idx; 1865 if (rx->status->flag & RX_FLAG_HT) 1866 rate_idx = 0; /* TODO: HT rates */ 1867 else 1868 rate_idx = rx->status->rate_idx; 1869 rx->sta = ieee80211_ibss_add_sta(sdata, bssid, hdr->addr2, 1870 BIT(rate_idx)); 1871 } 1872 break; 1873 case NL80211_IFTYPE_MESH_POINT: 1874 if (!multicast && 1875 compare_ether_addr(sdata->dev->dev_addr, 1876 hdr->addr1) != 0) { 1877 if (!(sdata->dev->flags & IFF_PROMISC)) 1878 return 0; 1879 1880 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1881 } 1882 break; 1883 case NL80211_IFTYPE_AP_VLAN: 1884 case NL80211_IFTYPE_AP: 1885 if (!bssid) { 1886 if (compare_ether_addr(sdata->dev->dev_addr, 1887 hdr->addr1)) 1888 return 0; 1889 } else if (!ieee80211_bssid_match(bssid, 1890 sdata->dev->dev_addr)) { 1891 if (!(rx->flags & IEEE80211_RX_IN_SCAN)) 1892 return 0; 1893 rx->flags &= ~IEEE80211_RX_RA_MATCH; 1894 } 1895 break; 1896 case NL80211_IFTYPE_WDS: 1897 if (bssid || !ieee80211_is_data(hdr->frame_control)) 1898 return 0; 1899 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2)) 1900 return 0; 1901 break; 1902 case NL80211_IFTYPE_MONITOR: 1903 /* take everything */ 1904 break; 1905 case NL80211_IFTYPE_UNSPECIFIED: 1906 case __NL80211_IFTYPE_AFTER_LAST: 1907 /* should never get here */ 1908 WARN_ON(1); 1909 break; 1910 } 1911 1912 return 1; 1913 } 1914 1915 /* 1916 * This is the actual Rx frames handler. as it blongs to Rx path it must 1917 * be called with rcu_read_lock protection. 1918 */ 1919 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 1920 struct sk_buff *skb, 1921 struct ieee80211_rx_status *status, 1922 struct ieee80211_rate *rate) 1923 { 1924 struct ieee80211_local *local = hw_to_local(hw); 1925 struct ieee80211_sub_if_data *sdata; 1926 struct ieee80211_hdr *hdr; 1927 struct ieee80211_rx_data rx; 1928 int prepares; 1929 struct ieee80211_sub_if_data *prev = NULL; 1930 struct sk_buff *skb_new; 1931 u8 *bssid; 1932 1933 hdr = (struct ieee80211_hdr *)skb->data; 1934 memset(&rx, 0, sizeof(rx)); 1935 rx.skb = skb; 1936 rx.local = local; 1937 1938 rx.status = status; 1939 rx.rate = rate; 1940 1941 if (ieee80211_is_data(hdr->frame_control) || ieee80211_is_mgmt(hdr->frame_control)) 1942 local->dot11ReceivedFragmentCount++; 1943 1944 rx.sta = sta_info_get(local, hdr->addr2); 1945 if (rx.sta) { 1946 rx.sdata = rx.sta->sdata; 1947 rx.dev = rx.sta->sdata->dev; 1948 } 1949 1950 if ((status->flag & RX_FLAG_MMIC_ERROR)) { 1951 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx); 1952 return; 1953 } 1954 1955 if (unlikely(local->sw_scanning || local->hw_scanning)) 1956 rx.flags |= IEEE80211_RX_IN_SCAN; 1957 1958 ieee80211_parse_qos(&rx); 1959 ieee80211_verify_ip_alignment(&rx); 1960 1961 skb = rx.skb; 1962 1963 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 1964 if (!netif_running(sdata->dev)) 1965 continue; 1966 1967 if (sdata->vif.type == NL80211_IFTYPE_MONITOR) 1968 continue; 1969 1970 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 1971 rx.flags |= IEEE80211_RX_RA_MATCH; 1972 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr); 1973 1974 if (!prepares) 1975 continue; 1976 1977 /* 1978 * frame is destined for this interface, but if it's not 1979 * also for the previous one we handle that after the 1980 * loop to avoid copying the SKB once too much 1981 */ 1982 1983 if (!prev) { 1984 prev = sdata; 1985 continue; 1986 } 1987 1988 /* 1989 * frame was destined for the previous interface 1990 * so invoke RX handlers for it 1991 */ 1992 1993 skb_new = skb_copy(skb, GFP_ATOMIC); 1994 if (!skb_new) { 1995 if (net_ratelimit()) 1996 printk(KERN_DEBUG "%s: failed to copy " 1997 "multicast frame for %s\n", 1998 wiphy_name(local->hw.wiphy), 1999 prev->dev->name); 2000 continue; 2001 } 2002 ieee80211_invoke_rx_handlers(prev, &rx, skb_new); 2003 prev = sdata; 2004 } 2005 if (prev) 2006 ieee80211_invoke_rx_handlers(prev, &rx, skb); 2007 else 2008 dev_kfree_skb(skb); 2009 } 2010 2011 #define SEQ_MODULO 0x1000 2012 #define SEQ_MASK 0xfff 2013 2014 static inline int seq_less(u16 sq1, u16 sq2) 2015 { 2016 return ((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1); 2017 } 2018 2019 static inline u16 seq_inc(u16 sq) 2020 { 2021 return (sq + 1) & SEQ_MASK; 2022 } 2023 2024 static inline u16 seq_sub(u16 sq1, u16 sq2) 2025 { 2026 return (sq1 - sq2) & SEQ_MASK; 2027 } 2028 2029 2030 /* 2031 * As it function blongs to Rx path it must be called with 2032 * the proper rcu_read_lock protection for its flow. 2033 */ 2034 static u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw, 2035 struct tid_ampdu_rx *tid_agg_rx, 2036 struct sk_buff *skb, 2037 u16 mpdu_seq_num, 2038 int bar_req) 2039 { 2040 struct ieee80211_local *local = hw_to_local(hw); 2041 struct ieee80211_rx_status status; 2042 u16 head_seq_num, buf_size; 2043 int index; 2044 struct ieee80211_supported_band *sband; 2045 struct ieee80211_rate *rate; 2046 2047 buf_size = tid_agg_rx->buf_size; 2048 head_seq_num = tid_agg_rx->head_seq_num; 2049 2050 /* frame with out of date sequence number */ 2051 if (seq_less(mpdu_seq_num, head_seq_num)) { 2052 dev_kfree_skb(skb); 2053 return 1; 2054 } 2055 2056 /* if frame sequence number exceeds our buffering window size or 2057 * block Ack Request arrived - release stored frames */ 2058 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) { 2059 /* new head to the ordering buffer */ 2060 if (bar_req) 2061 head_seq_num = mpdu_seq_num; 2062 else 2063 head_seq_num = 2064 seq_inc(seq_sub(mpdu_seq_num, buf_size)); 2065 /* release stored frames up to new head to stack */ 2066 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) { 2067 index = seq_sub(tid_agg_rx->head_seq_num, 2068 tid_agg_rx->ssn) 2069 % tid_agg_rx->buf_size; 2070 2071 if (tid_agg_rx->reorder_buf[index]) { 2072 /* release the reordered frames to stack */ 2073 memcpy(&status, 2074 tid_agg_rx->reorder_buf[index]->cb, 2075 sizeof(status)); 2076 sband = local->hw.wiphy->bands[status.band]; 2077 if (status.flag & RX_FLAG_HT) { 2078 /* TODO: HT rates */ 2079 rate = sband->bitrates; 2080 } else { 2081 rate = &sband->bitrates 2082 [status.rate_idx]; 2083 } 2084 __ieee80211_rx_handle_packet(hw, 2085 tid_agg_rx->reorder_buf[index], 2086 &status, rate); 2087 tid_agg_rx->stored_mpdu_num--; 2088 tid_agg_rx->reorder_buf[index] = NULL; 2089 } 2090 tid_agg_rx->head_seq_num = 2091 seq_inc(tid_agg_rx->head_seq_num); 2092 } 2093 if (bar_req) 2094 return 1; 2095 } 2096 2097 /* now the new frame is always in the range of the reordering */ 2098 /* buffer window */ 2099 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn) 2100 % tid_agg_rx->buf_size; 2101 /* check if we already stored this frame */ 2102 if (tid_agg_rx->reorder_buf[index]) { 2103 dev_kfree_skb(skb); 2104 return 1; 2105 } 2106 2107 /* if arrived mpdu is in the right order and nothing else stored */ 2108 /* release it immediately */ 2109 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 2110 tid_agg_rx->stored_mpdu_num == 0) { 2111 tid_agg_rx->head_seq_num = 2112 seq_inc(tid_agg_rx->head_seq_num); 2113 return 0; 2114 } 2115 2116 /* put the frame in the reordering buffer */ 2117 tid_agg_rx->reorder_buf[index] = skb; 2118 tid_agg_rx->stored_mpdu_num++; 2119 /* release the buffer until next missing frame */ 2120 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn) 2121 % tid_agg_rx->buf_size; 2122 while (tid_agg_rx->reorder_buf[index]) { 2123 /* release the reordered frame back to stack */ 2124 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb, 2125 sizeof(status)); 2126 sband = local->hw.wiphy->bands[status.band]; 2127 if (status.flag & RX_FLAG_HT) 2128 rate = sband->bitrates; /* TODO: HT rates */ 2129 else 2130 rate = &sband->bitrates[status.rate_idx]; 2131 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index], 2132 &status, rate); 2133 tid_agg_rx->stored_mpdu_num--; 2134 tid_agg_rx->reorder_buf[index] = NULL; 2135 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num); 2136 index = seq_sub(tid_agg_rx->head_seq_num, 2137 tid_agg_rx->ssn) % tid_agg_rx->buf_size; 2138 } 2139 return 1; 2140 } 2141 2142 static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local, 2143 struct sk_buff *skb) 2144 { 2145 struct ieee80211_hw *hw = &local->hw; 2146 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2147 struct sta_info *sta; 2148 struct tid_ampdu_rx *tid_agg_rx; 2149 u16 sc; 2150 u16 mpdu_seq_num; 2151 u8 ret = 0; 2152 int tid; 2153 2154 sta = sta_info_get(local, hdr->addr2); 2155 if (!sta) 2156 return ret; 2157 2158 /* filter the QoS data rx stream according to 2159 * STA/TID and check if this STA/TID is on aggregation */ 2160 if (!ieee80211_is_data_qos(hdr->frame_control)) 2161 goto end_reorder; 2162 2163 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 2164 2165 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL) 2166 goto end_reorder; 2167 2168 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid]; 2169 2170 /* qos null data frames are excluded */ 2171 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 2172 goto end_reorder; 2173 2174 /* new un-ordered ampdu frame - process it */ 2175 2176 /* reset session timer */ 2177 if (tid_agg_rx->timeout) { 2178 unsigned long expires = 2179 jiffies + (tid_agg_rx->timeout / 1000) * HZ; 2180 mod_timer(&tid_agg_rx->session_timer, expires); 2181 } 2182 2183 /* if this mpdu is fragmented - terminate rx aggregation session */ 2184 sc = le16_to_cpu(hdr->seq_ctrl); 2185 if (sc & IEEE80211_SCTL_FRAG) { 2186 ieee80211_sta_stop_rx_ba_session(sta->sdata, sta->sta.addr, 2187 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP); 2188 ret = 1; 2189 goto end_reorder; 2190 } 2191 2192 /* according to mpdu sequence number deal with reordering buffer */ 2193 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 2194 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb, 2195 mpdu_seq_num, 0); 2196 end_reorder: 2197 return ret; 2198 } 2199 2200 /* 2201 * This is the receive path handler. It is called by a low level driver when an 2202 * 802.11 MPDU is received from the hardware. 2203 */ 2204 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb, 2205 struct ieee80211_rx_status *status) 2206 { 2207 struct ieee80211_local *local = hw_to_local(hw); 2208 struct ieee80211_rate *rate = NULL; 2209 struct ieee80211_supported_band *sband; 2210 2211 if (status->band < 0 || 2212 status->band >= IEEE80211_NUM_BANDS) { 2213 WARN_ON(1); 2214 return; 2215 } 2216 2217 sband = local->hw.wiphy->bands[status->band]; 2218 if (!sband) { 2219 WARN_ON(1); 2220 return; 2221 } 2222 2223 if (status->flag & RX_FLAG_HT) { 2224 /* rate_idx is MCS index */ 2225 if (WARN_ON(status->rate_idx < 0 || 2226 status->rate_idx >= 76)) 2227 return; 2228 /* HT rates are not in the table - use the highest legacy rate 2229 * for now since other parts of mac80211 may not yet be fully 2230 * MCS aware. */ 2231 rate = &sband->bitrates[sband->n_bitrates - 1]; 2232 } else { 2233 if (WARN_ON(status->rate_idx < 0 || 2234 status->rate_idx >= sband->n_bitrates)) 2235 return; 2236 rate = &sband->bitrates[status->rate_idx]; 2237 } 2238 2239 /* 2240 * key references and virtual interfaces are protected using RCU 2241 * and this requires that we are in a read-side RCU section during 2242 * receive processing 2243 */ 2244 rcu_read_lock(); 2245 2246 /* 2247 * Frames with failed FCS/PLCP checksum are not returned, 2248 * all other frames are returned without radiotap header 2249 * if it was previously present. 2250 * Also, frames with less than 16 bytes are dropped. 2251 */ 2252 skb = ieee80211_rx_monitor(local, skb, status, rate); 2253 if (!skb) { 2254 rcu_read_unlock(); 2255 return; 2256 } 2257 2258 if (!ieee80211_rx_reorder_ampdu(local, skb)) 2259 __ieee80211_rx_handle_packet(hw, skb, status, rate); 2260 2261 rcu_read_unlock(); 2262 } 2263 EXPORT_SYMBOL(__ieee80211_rx); 2264 2265 /* This is a version of the rx handler that can be called from hard irq 2266 * context. Post the skb on the queue and schedule the tasklet */ 2267 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb, 2268 struct ieee80211_rx_status *status) 2269 { 2270 struct ieee80211_local *local = hw_to_local(hw); 2271 2272 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 2273 2274 skb->dev = local->mdev; 2275 /* copy status into skb->cb for use by tasklet */ 2276 memcpy(skb->cb, status, sizeof(*status)); 2277 skb->pkt_type = IEEE80211_RX_MSG; 2278 skb_queue_tail(&local->skb_queue, skb); 2279 tasklet_schedule(&local->tasklet); 2280 } 2281 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 2282