1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright 2002-2005, Instant802 Networks, Inc. 4 * Copyright 2005-2006, Devicescape Software, Inc. 5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 7 * Copyright 2013-2014 Intel Mobile Communications GmbH 8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH 9 * Copyright (C) 2018-2023 Intel Corporation 10 */ 11 12 #include <linux/jiffies.h> 13 #include <linux/slab.h> 14 #include <linux/kernel.h> 15 #include <linux/skbuff.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/rcupdate.h> 19 #include <linux/export.h> 20 #include <linux/kcov.h> 21 #include <linux/bitops.h> 22 #include <kunit/visibility.h> 23 #include <net/mac80211.h> 24 #include <net/ieee80211_radiotap.h> 25 #include <asm/unaligned.h> 26 27 #include "ieee80211_i.h" 28 #include "driver-ops.h" 29 #include "led.h" 30 #include "mesh.h" 31 #include "wep.h" 32 #include "wpa.h" 33 #include "tkip.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 /* 38 * monitor mode reception 39 * 40 * This function cleans up the SKB, i.e. it removes all the stuff 41 * only useful for monitoring. 42 */ 43 static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb, 44 unsigned int present_fcs_len, 45 unsigned int rtap_space) 46 { 47 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 48 struct ieee80211_hdr *hdr; 49 unsigned int hdrlen; 50 __le16 fc; 51 52 if (present_fcs_len) 53 __pskb_trim(skb, skb->len - present_fcs_len); 54 pskb_pull(skb, rtap_space); 55 56 /* After pulling radiotap header, clear all flags that indicate 57 * info in skb->data. 58 */ 59 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END | 60 RX_FLAG_RADIOTAP_LSIG | 61 RX_FLAG_RADIOTAP_HE_MU | 62 RX_FLAG_RADIOTAP_HE); 63 64 hdr = (void *)skb->data; 65 fc = hdr->frame_control; 66 67 /* 68 * Remove the HT-Control field (if present) on management 69 * frames after we've sent the frame to monitoring. We 70 * (currently) don't need it, and don't properly parse 71 * frames with it present, due to the assumption of a 72 * fixed management header length. 73 */ 74 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc))) 75 return skb; 76 77 hdrlen = ieee80211_hdrlen(fc); 78 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER); 79 80 if (!pskb_may_pull(skb, hdrlen)) { 81 dev_kfree_skb(skb); 82 return NULL; 83 } 84 85 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data, 86 hdrlen - IEEE80211_HT_CTL_LEN); 87 pskb_pull(skb, IEEE80211_HT_CTL_LEN); 88 89 return skb; 90 } 91 92 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 93 unsigned int rtap_space) 94 { 95 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 96 struct ieee80211_hdr *hdr; 97 98 hdr = (void *)(skb->data + rtap_space); 99 100 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 101 RX_FLAG_FAILED_PLCP_CRC | 102 RX_FLAG_ONLY_MONITOR | 103 RX_FLAG_NO_PSDU)) 104 return true; 105 106 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space)) 107 return true; 108 109 if (ieee80211_is_ctl(hdr->frame_control) && 110 !ieee80211_is_pspoll(hdr->frame_control) && 111 !ieee80211_is_back_req(hdr->frame_control)) 112 return true; 113 114 return false; 115 } 116 117 static int 118 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 119 struct ieee80211_rx_status *status, 120 struct sk_buff *skb) 121 { 122 int len; 123 124 /* always present fields */ 125 len = sizeof(struct ieee80211_radiotap_header) + 8; 126 127 /* allocate extra bitmaps */ 128 if (status->chains) 129 len += 4 * hweight8(status->chains); 130 131 if (ieee80211_have_rx_timestamp(status)) { 132 len = ALIGN(len, 8); 133 len += 8; 134 } 135 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM)) 136 len += 1; 137 138 /* antenna field, if we don't have per-chain info */ 139 if (!status->chains) 140 len += 1; 141 142 /* padding for RX_FLAGS if necessary */ 143 len = ALIGN(len, 2); 144 145 if (status->encoding == RX_ENC_HT) /* HT info */ 146 len += 3; 147 148 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 149 len = ALIGN(len, 4); 150 len += 8; 151 } 152 153 if (status->encoding == RX_ENC_VHT) { 154 len = ALIGN(len, 2); 155 len += 12; 156 } 157 158 if (local->hw.radiotap_timestamp.units_pos >= 0) { 159 len = ALIGN(len, 8); 160 len += 12; 161 } 162 163 if (status->encoding == RX_ENC_HE && 164 status->flag & RX_FLAG_RADIOTAP_HE) { 165 len = ALIGN(len, 2); 166 len += 12; 167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12); 168 } 169 170 if (status->encoding == RX_ENC_HE && 171 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 172 len = ALIGN(len, 2); 173 len += 12; 174 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12); 175 } 176 177 if (status->flag & RX_FLAG_NO_PSDU) 178 len += 1; 179 180 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 181 len = ALIGN(len, 2); 182 len += 4; 183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4); 184 } 185 186 if (status->chains) { 187 /* antenna and antenna signal fields */ 188 len += 2 * hweight8(status->chains); 189 } 190 191 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 192 int tlv_offset = 0; 193 194 /* 195 * The position to look at depends on the existence (or non- 196 * existence) of other elements, so take that into account... 197 */ 198 if (status->flag & RX_FLAG_RADIOTAP_HE) 199 tlv_offset += 200 sizeof(struct ieee80211_radiotap_he); 201 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 202 tlv_offset += 203 sizeof(struct ieee80211_radiotap_he_mu); 204 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 205 tlv_offset += 206 sizeof(struct ieee80211_radiotap_lsig); 207 208 /* ensure 4 byte alignment for TLV */ 209 len = ALIGN(len, 4); 210 211 /* TLVs until the mac header */ 212 len += skb_mac_header(skb) - &skb->data[tlv_offset]; 213 } 214 215 return len; 216 } 217 218 static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 219 int link_id, 220 struct sta_info *sta, 221 struct sk_buff *skb) 222 { 223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 224 225 if (link_id >= 0) { 226 status->link_valid = 1; 227 status->link_id = link_id; 228 } else { 229 status->link_valid = 0; 230 } 231 232 skb_queue_tail(&sdata->skb_queue, skb); 233 wiphy_work_queue(sdata->local->hw.wiphy, &sdata->work); 234 if (sta) 235 sta->deflink.rx_stats.packets++; 236 } 237 238 static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata, 239 int link_id, 240 struct sta_info *sta, 241 struct sk_buff *skb) 242 { 243 skb->protocol = 0; 244 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb); 245 } 246 247 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata, 248 struct sk_buff *skb, 249 int rtap_space) 250 { 251 struct { 252 struct ieee80211_hdr_3addr hdr; 253 u8 category; 254 u8 action_code; 255 } __packed __aligned(2) action; 256 257 if (!sdata) 258 return; 259 260 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1); 261 262 if (skb->len < rtap_space + sizeof(action) + 263 VHT_MUMIMO_GROUPS_DATA_LEN) 264 return; 265 266 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr)) 267 return; 268 269 skb_copy_bits(skb, rtap_space, &action, sizeof(action)); 270 271 if (!ieee80211_is_action(action.hdr.frame_control)) 272 return; 273 274 if (action.category != WLAN_CATEGORY_VHT) 275 return; 276 277 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT) 278 return; 279 280 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr)) 281 return; 282 283 skb = skb_copy(skb, GFP_ATOMIC); 284 if (!skb) 285 return; 286 287 ieee80211_queue_skb_to_iface(sdata, -1, NULL, skb); 288 } 289 290 /* 291 * ieee80211_add_rx_radiotap_header - add radiotap header 292 * 293 * add a radiotap header containing all the fields which the hardware provided. 294 */ 295 static void 296 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 297 struct sk_buff *skb, 298 struct ieee80211_rate *rate, 299 int rtap_len, bool has_fcs) 300 { 301 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 302 struct ieee80211_radiotap_header *rthdr; 303 unsigned char *pos; 304 __le32 *it_present; 305 u32 it_present_val; 306 u16 rx_flags = 0; 307 u16 channel_flags = 0; 308 u32 tlvs_len = 0; 309 int mpdulen, chain; 310 unsigned long chains = status->chains; 311 struct ieee80211_radiotap_he he = {}; 312 struct ieee80211_radiotap_he_mu he_mu = {}; 313 struct ieee80211_radiotap_lsig lsig = {}; 314 315 if (status->flag & RX_FLAG_RADIOTAP_HE) { 316 he = *(struct ieee80211_radiotap_he *)skb->data; 317 skb_pull(skb, sizeof(he)); 318 WARN_ON_ONCE(status->encoding != RX_ENC_HE); 319 } 320 321 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) { 322 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data; 323 skb_pull(skb, sizeof(he_mu)); 324 } 325 326 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 327 lsig = *(struct ieee80211_radiotap_lsig *)skb->data; 328 skb_pull(skb, sizeof(lsig)); 329 } 330 331 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) { 332 /* data is pointer at tlv all other info was pulled off */ 333 tlvs_len = skb_mac_header(skb) - skb->data; 334 } 335 336 mpdulen = skb->len; 337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))) 338 mpdulen += FCS_LEN; 339 340 rthdr = skb_push(skb, rtap_len - tlvs_len); 341 memset(rthdr, 0, rtap_len - tlvs_len); 342 it_present = &rthdr->it_present; 343 344 /* radiotap header, set always present flags */ 345 rthdr->it_len = cpu_to_le16(rtap_len); 346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 347 BIT(IEEE80211_RADIOTAP_CHANNEL) | 348 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 349 350 if (!status->chains) 351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 352 353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 354 it_present_val |= 355 BIT(IEEE80211_RADIOTAP_EXT) | 356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 357 put_unaligned_le32(it_present_val, it_present); 358 it_present++; 359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 361 } 362 363 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 364 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV); 365 366 put_unaligned_le32(it_present_val, it_present); 367 368 /* This references through an offset into it_optional[] rather 369 * than via it_present otherwise later uses of pos will cause 370 * the compiler to think we have walked past the end of the 371 * struct member. 372 */ 373 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional]; 374 375 /* the order of the following fields is important */ 376 377 /* IEEE80211_RADIOTAP_TSFT */ 378 if (ieee80211_have_rx_timestamp(status)) { 379 /* padding */ 380 while ((pos - (u8 *)rthdr) & 7) 381 *pos++ = 0; 382 put_unaligned_le64( 383 ieee80211_calculate_rx_timestamp(local, status, 384 mpdulen, 0), 385 pos); 386 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT)); 387 pos += 8; 388 } 389 390 /* IEEE80211_RADIOTAP_FLAGS */ 391 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) 392 *pos |= IEEE80211_RADIOTAP_F_FCS; 393 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 394 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 395 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE) 396 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 397 pos++; 398 399 /* IEEE80211_RADIOTAP_RATE */ 400 if (!rate || status->encoding != RX_ENC_LEGACY) { 401 /* 402 * Without rate information don't add it. If we have, 403 * MCS information is a separate field in radiotap, 404 * added below. The byte here is needed as padding 405 * for the channel though, so initialise it to 0. 406 */ 407 *pos = 0; 408 } else { 409 int shift = 0; 410 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE)); 411 if (status->bw == RATE_INFO_BW_10) 412 shift = 1; 413 else if (status->bw == RATE_INFO_BW_5) 414 shift = 2; 415 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 416 } 417 pos++; 418 419 /* IEEE80211_RADIOTAP_CHANNEL */ 420 /* TODO: frequency offset in KHz */ 421 put_unaligned_le16(status->freq, pos); 422 pos += 2; 423 if (status->bw == RATE_INFO_BW_10) 424 channel_flags |= IEEE80211_CHAN_HALF; 425 else if (status->bw == RATE_INFO_BW_5) 426 channel_flags |= IEEE80211_CHAN_QUARTER; 427 428 if (status->band == NL80211_BAND_5GHZ || 429 status->band == NL80211_BAND_6GHZ) 430 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 431 else if (status->encoding != RX_ENC_LEGACY) 432 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 433 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 434 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 435 else if (rate) 436 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ; 437 else 438 channel_flags |= IEEE80211_CHAN_2GHZ; 439 put_unaligned_le16(channel_flags, pos); 440 pos += 2; 441 442 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 443 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) && 444 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 445 *pos = status->signal; 446 rthdr->it_present |= 447 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL)); 448 pos++; 449 } 450 451 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 452 453 if (!status->chains) { 454 /* IEEE80211_RADIOTAP_ANTENNA */ 455 *pos = status->antenna; 456 pos++; 457 } 458 459 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 460 461 /* IEEE80211_RADIOTAP_RX_FLAGS */ 462 /* ensure 2 byte alignment for the 2 byte field as required */ 463 if ((pos - (u8 *)rthdr) & 1) 464 *pos++ = 0; 465 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 466 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 467 put_unaligned_le16(rx_flags, pos); 468 pos += 2; 469 470 if (status->encoding == RX_ENC_HT) { 471 unsigned int stbc; 472 473 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS)); 474 *pos = local->hw.radiotap_mcs_details; 475 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 476 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT; 477 if (status->enc_flags & RX_ENC_FLAG_LDPC) 478 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC; 479 pos++; 480 *pos = 0; 481 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 482 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 483 if (status->bw == RATE_INFO_BW_40) 484 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 485 if (status->enc_flags & RX_ENC_FLAG_HT_GF) 486 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 487 if (status->enc_flags & RX_ENC_FLAG_LDPC) 488 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 489 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT; 490 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 491 pos++; 492 *pos++ = status->rate_idx; 493 } 494 495 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 496 u16 flags = 0; 497 498 /* ensure 4 byte alignment */ 499 while ((pos - (u8 *)rthdr) & 3) 500 pos++; 501 rthdr->it_present |= 502 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS)); 503 put_unaligned_le32(status->ampdu_reference, pos); 504 pos += 4; 505 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 506 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 507 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 508 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 509 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 510 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 511 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 512 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 513 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN) 514 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN; 515 if (status->flag & RX_FLAG_AMPDU_EOF_BIT) 516 flags |= IEEE80211_RADIOTAP_AMPDU_EOF; 517 put_unaligned_le16(flags, pos); 518 pos += 2; 519 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 520 *pos++ = status->ampdu_delimiter_crc; 521 else 522 *pos++ = 0; 523 *pos++ = 0; 524 } 525 526 if (status->encoding == RX_ENC_VHT) { 527 u16 known = local->hw.radiotap_vht_details; 528 529 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT)); 530 put_unaligned_le16(known, pos); 531 pos += 2; 532 /* flags */ 533 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI) 534 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 535 /* in VHT, STBC is binary */ 536 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) 537 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 538 if (status->enc_flags & RX_ENC_FLAG_BF) 539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 540 pos++; 541 /* bandwidth */ 542 switch (status->bw) { 543 case RATE_INFO_BW_80: 544 *pos++ = 4; 545 break; 546 case RATE_INFO_BW_160: 547 *pos++ = 11; 548 break; 549 case RATE_INFO_BW_40: 550 *pos++ = 1; 551 break; 552 default: 553 *pos++ = 0; 554 } 555 /* MCS/NSS */ 556 *pos = (status->rate_idx << 4) | status->nss; 557 pos += 4; 558 /* coding field */ 559 if (status->enc_flags & RX_ENC_FLAG_LDPC) 560 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 561 pos++; 562 /* group ID */ 563 pos++; 564 /* partial_aid */ 565 pos += 2; 566 } 567 568 if (local->hw.radiotap_timestamp.units_pos >= 0) { 569 u16 accuracy = 0; 570 u8 flags; 571 u64 ts; 572 573 rthdr->it_present |= 574 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP)); 575 576 /* ensure 8 byte alignment */ 577 while ((pos - (u8 *)rthdr) & 7) 578 pos++; 579 580 if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) { 581 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT; 582 ts = status->mactime; 583 } else { 584 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT; 585 ts = status->device_timestamp; 586 } 587 588 put_unaligned_le64(ts, pos); 589 pos += sizeof(u64); 590 591 if (local->hw.radiotap_timestamp.accuracy >= 0) { 592 accuracy = local->hw.radiotap_timestamp.accuracy; 593 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY; 594 } 595 put_unaligned_le16(accuracy, pos); 596 pos += sizeof(u16); 597 598 *pos++ = local->hw.radiotap_timestamp.units_pos; 599 *pos++ = flags; 600 } 601 602 if (status->encoding == RX_ENC_HE && 603 status->flag & RX_FLAG_RADIOTAP_HE) { 604 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f) 605 606 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) { 607 he.data6 |= HE_PREP(DATA6_NSTS, 608 FIELD_GET(RX_ENC_FLAG_STBC_MASK, 609 status->enc_flags)); 610 he.data3 |= HE_PREP(DATA3_STBC, 1); 611 } else { 612 he.data6 |= HE_PREP(DATA6_NSTS, status->nss); 613 } 614 615 #define CHECK_GI(s) \ 616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \ 617 (int)NL80211_RATE_INFO_HE_GI_##s) 618 619 CHECK_GI(0_8); 620 CHECK_GI(1_6); 621 CHECK_GI(3_2); 622 623 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx); 624 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm); 625 he.data3 |= HE_PREP(DATA3_CODING, 626 !!(status->enc_flags & RX_ENC_FLAG_LDPC)); 627 628 he.data5 |= HE_PREP(DATA5_GI, status->he_gi); 629 630 switch (status->bw) { 631 case RATE_INFO_BW_20: 632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ); 634 break; 635 case RATE_INFO_BW_40: 636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ); 638 break; 639 case RATE_INFO_BW_80: 640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ); 642 break; 643 case RATE_INFO_BW_160: 644 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 645 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ); 646 break; 647 case RATE_INFO_BW_HE_RU: 648 #define CHECK_RU_ALLOC(s) \ 649 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \ 650 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4) 651 652 CHECK_RU_ALLOC(26); 653 CHECK_RU_ALLOC(52); 654 CHECK_RU_ALLOC(106); 655 CHECK_RU_ALLOC(242); 656 CHECK_RU_ALLOC(484); 657 CHECK_RU_ALLOC(996); 658 CHECK_RU_ALLOC(2x996); 659 660 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC, 661 status->he_ru + 4); 662 break; 663 default: 664 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw); 665 } 666 667 /* ensure 2 byte alignment */ 668 while ((pos - (u8 *)rthdr) & 1) 669 pos++; 670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE)); 671 memcpy(pos, &he, sizeof(he)); 672 pos += sizeof(he); 673 } 674 675 if (status->encoding == RX_ENC_HE && 676 status->flag & RX_FLAG_RADIOTAP_HE_MU) { 677 /* ensure 2 byte alignment */ 678 while ((pos - (u8 *)rthdr) & 1) 679 pos++; 680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU)); 681 memcpy(pos, &he_mu, sizeof(he_mu)); 682 pos += sizeof(he_mu); 683 } 684 685 if (status->flag & RX_FLAG_NO_PSDU) { 686 rthdr->it_present |= 687 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU)); 688 *pos++ = status->zero_length_psdu_type; 689 } 690 691 if (status->flag & RX_FLAG_RADIOTAP_LSIG) { 692 /* ensure 2 byte alignment */ 693 while ((pos - (u8 *)rthdr) & 1) 694 pos++; 695 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG)); 696 memcpy(pos, &lsig, sizeof(lsig)); 697 pos += sizeof(lsig); 698 } 699 700 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 701 *pos++ = status->chain_signal[chain]; 702 *pos++ = chain; 703 } 704 } 705 706 static struct sk_buff * 707 ieee80211_make_monitor_skb(struct ieee80211_local *local, 708 struct sk_buff **origskb, 709 struct ieee80211_rate *rate, 710 int rtap_space, bool use_origskb) 711 { 712 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb); 713 int rt_hdrlen, needed_headroom; 714 struct sk_buff *skb; 715 716 /* room for the radiotap header based on driver features */ 717 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb); 718 needed_headroom = rt_hdrlen - rtap_space; 719 720 if (use_origskb) { 721 /* only need to expand headroom if necessary */ 722 skb = *origskb; 723 *origskb = NULL; 724 725 /* 726 * This shouldn't trigger often because most devices have an 727 * RX header they pull before we get here, and that should 728 * be big enough for our radiotap information. We should 729 * probably export the length to drivers so that we can have 730 * them allocate enough headroom to start with. 731 */ 732 if (skb_headroom(skb) < needed_headroom && 733 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 734 dev_kfree_skb(skb); 735 return NULL; 736 } 737 } else { 738 /* 739 * Need to make a copy and possibly remove radiotap header 740 * and FCS from the original. 741 */ 742 skb = skb_copy_expand(*origskb, needed_headroom + NET_SKB_PAD, 743 0, GFP_ATOMIC); 744 745 if (!skb) 746 return NULL; 747 } 748 749 /* prepend radiotap information */ 750 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 751 752 skb_reset_mac_header(skb); 753 skb->ip_summed = CHECKSUM_UNNECESSARY; 754 skb->pkt_type = PACKET_OTHERHOST; 755 skb->protocol = htons(ETH_P_802_2); 756 757 return skb; 758 } 759 760 /* 761 * This function copies a received frame to all monitor interfaces and 762 * returns a cleaned-up SKB that no longer includes the FCS nor the 763 * radiotap header the driver might have added. 764 */ 765 static struct sk_buff * 766 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 767 struct ieee80211_rate *rate) 768 { 769 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 770 struct ieee80211_sub_if_data *sdata; 771 struct sk_buff *monskb = NULL; 772 int present_fcs_len = 0; 773 unsigned int rtap_space = 0; 774 struct ieee80211_sub_if_data *monitor_sdata = 775 rcu_dereference(local->monitor_sdata); 776 bool only_monitor = false; 777 unsigned int min_head_len; 778 779 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END && 780 !skb_mac_header_was_set(origskb))) { 781 /* with this skb no way to know where frame payload starts */ 782 dev_kfree_skb(origskb); 783 return NULL; 784 } 785 786 if (status->flag & RX_FLAG_RADIOTAP_HE) 787 rtap_space += sizeof(struct ieee80211_radiotap_he); 788 789 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) 790 rtap_space += sizeof(struct ieee80211_radiotap_he_mu); 791 792 if (status->flag & RX_FLAG_RADIOTAP_LSIG) 793 rtap_space += sizeof(struct ieee80211_radiotap_lsig); 794 795 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) 796 rtap_space += skb_mac_header(origskb) - &origskb->data[rtap_space]; 797 798 min_head_len = rtap_space; 799 800 /* 801 * First, we may need to make a copy of the skb because 802 * (1) we need to modify it for radiotap (if not present), and 803 * (2) the other RX handlers will modify the skb we got. 804 * 805 * We don't need to, of course, if we aren't going to return 806 * the SKB because it has a bad FCS/PLCP checksum. 807 */ 808 809 if (!(status->flag & RX_FLAG_NO_PSDU)) { 810 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) { 811 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) { 812 /* driver bug */ 813 WARN_ON(1); 814 dev_kfree_skb(origskb); 815 return NULL; 816 } 817 present_fcs_len = FCS_LEN; 818 } 819 820 /* also consider the hdr->frame_control */ 821 min_head_len += 2; 822 } 823 824 /* ensure that the expected data elements are in skb head */ 825 if (!pskb_may_pull(origskb, min_head_len)) { 826 dev_kfree_skb(origskb); 827 return NULL; 828 } 829 830 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space); 831 832 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) { 833 if (only_monitor) { 834 dev_kfree_skb(origskb); 835 return NULL; 836 } 837 838 return ieee80211_clean_skb(origskb, present_fcs_len, 839 rtap_space); 840 } 841 842 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space); 843 844 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) { 845 bool last_monitor = list_is_last(&sdata->u.mntr.list, 846 &local->mon_list); 847 848 if (!monskb) 849 monskb = ieee80211_make_monitor_skb(local, &origskb, 850 rate, rtap_space, 851 only_monitor && 852 last_monitor); 853 854 if (monskb) { 855 struct sk_buff *skb; 856 857 if (last_monitor) { 858 skb = monskb; 859 monskb = NULL; 860 } else { 861 skb = skb_clone(monskb, GFP_ATOMIC); 862 } 863 864 if (skb) { 865 skb->dev = sdata->dev; 866 dev_sw_netstats_rx_add(skb->dev, skb->len); 867 netif_receive_skb(skb); 868 } 869 } 870 871 if (last_monitor) 872 break; 873 } 874 875 /* this happens if last_monitor was erroneously false */ 876 dev_kfree_skb(monskb); 877 878 /* ditto */ 879 if (!origskb) 880 return NULL; 881 882 return ieee80211_clean_skb(origskb, present_fcs_len, rtap_space); 883 } 884 885 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 886 { 887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 889 int tid, seqno_idx, security_idx; 890 891 /* does the frame have a qos control field? */ 892 if (ieee80211_is_data_qos(hdr->frame_control)) { 893 u8 *qc = ieee80211_get_qos_ctl(hdr); 894 /* frame has qos control */ 895 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 896 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 897 status->rx_flags |= IEEE80211_RX_AMSDU; 898 899 seqno_idx = tid; 900 security_idx = tid; 901 } else { 902 /* 903 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 904 * 905 * Sequence numbers for management frames, QoS data 906 * frames with a broadcast/multicast address in the 907 * Address 1 field, and all non-QoS data frames sent 908 * by QoS STAs are assigned using an additional single 909 * modulo-4096 counter, [...] 910 * 911 * We also use that counter for non-QoS STAs. 912 */ 913 seqno_idx = IEEE80211_NUM_TIDS; 914 security_idx = 0; 915 if (ieee80211_is_mgmt(hdr->frame_control)) 916 security_idx = IEEE80211_NUM_TIDS; 917 tid = 0; 918 } 919 920 rx->seqno_idx = seqno_idx; 921 rx->security_idx = security_idx; 922 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 923 * For now, set skb->priority to 0 for other cases. */ 924 rx->skb->priority = (tid > 7) ? 0 : tid; 925 } 926 927 /** 928 * DOC: Packet alignment 929 * 930 * Drivers always need to pass packets that are aligned to two-byte boundaries 931 * to the stack. 932 * 933 * Additionally, they should, if possible, align the payload data in a way that 934 * guarantees that the contained IP header is aligned to a four-byte 935 * boundary. In the case of regular frames, this simply means aligning the 936 * payload to a four-byte boundary (because either the IP header is directly 937 * contained, or IV/RFC1042 headers that have a length divisible by four are 938 * in front of it). If the payload data is not properly aligned and the 939 * architecture doesn't support efficient unaligned operations, mac80211 940 * will align the data. 941 * 942 * With A-MSDU frames, however, the payload data address must yield two modulo 943 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 944 * push the IP header further back to a multiple of four again. Thankfully, the 945 * specs were sane enough this time around to require padding each A-MSDU 946 * subframe to a length that is a multiple of four. 947 * 948 * Padding like Atheros hardware adds which is between the 802.11 header and 949 * the payload is not supported; the driver is required to move the 802.11 950 * header to be directly in front of the payload in that case. 951 */ 952 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 953 { 954 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 955 WARN_ON_ONCE((unsigned long)rx->skb->data & 1); 956 #endif 957 } 958 959 960 /* rx handlers */ 961 962 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 963 { 964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 965 966 if (is_multicast_ether_addr(hdr->addr1)) 967 return 0; 968 969 return ieee80211_is_robust_mgmt_frame(skb); 970 } 971 972 973 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 974 { 975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 976 977 if (!is_multicast_ether_addr(hdr->addr1)) 978 return 0; 979 980 return ieee80211_is_robust_mgmt_frame(skb); 981 } 982 983 984 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 985 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 986 { 987 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 988 struct ieee80211_mmie *mmie; 989 struct ieee80211_mmie_16 *mmie16; 990 991 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 992 return -1; 993 994 if (!ieee80211_is_robust_mgmt_frame(skb) && 995 !ieee80211_is_beacon(hdr->frame_control)) 996 return -1; /* not a robust management frame */ 997 998 mmie = (struct ieee80211_mmie *) 999 (skb->data + skb->len - sizeof(*mmie)); 1000 if (mmie->element_id == WLAN_EID_MMIE && 1001 mmie->length == sizeof(*mmie) - 2) 1002 return le16_to_cpu(mmie->key_id); 1003 1004 mmie16 = (struct ieee80211_mmie_16 *) 1005 (skb->data + skb->len - sizeof(*mmie16)); 1006 if (skb->len >= 24 + sizeof(*mmie16) && 1007 mmie16->element_id == WLAN_EID_MMIE && 1008 mmie16->length == sizeof(*mmie16) - 2) 1009 return le16_to_cpu(mmie16->key_id); 1010 1011 return -1; 1012 } 1013 1014 static int ieee80211_get_keyid(struct sk_buff *skb) 1015 { 1016 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1017 __le16 fc = hdr->frame_control; 1018 int hdrlen = ieee80211_hdrlen(fc); 1019 u8 keyid; 1020 1021 /* WEP, TKIP, CCMP and GCMP */ 1022 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN)) 1023 return -EINVAL; 1024 1025 skb_copy_bits(skb, hdrlen + 3, &keyid, 1); 1026 1027 keyid >>= 6; 1028 1029 return keyid; 1030 } 1031 1032 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 1033 { 1034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1035 char *dev_addr = rx->sdata->vif.addr; 1036 1037 if (ieee80211_is_data(hdr->frame_control)) { 1038 if (is_multicast_ether_addr(hdr->addr1)) { 1039 if (ieee80211_has_tods(hdr->frame_control) || 1040 !ieee80211_has_fromds(hdr->frame_control)) 1041 return RX_DROP_MONITOR; 1042 if (ether_addr_equal(hdr->addr3, dev_addr)) 1043 return RX_DROP_MONITOR; 1044 } else { 1045 if (!ieee80211_has_a4(hdr->frame_control)) 1046 return RX_DROP_MONITOR; 1047 if (ether_addr_equal(hdr->addr4, dev_addr)) 1048 return RX_DROP_MONITOR; 1049 } 1050 } 1051 1052 /* If there is not an established peer link and this is not a peer link 1053 * establisment frame, beacon or probe, drop the frame. 1054 */ 1055 1056 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 1057 struct ieee80211_mgmt *mgmt; 1058 1059 if (!ieee80211_is_mgmt(hdr->frame_control)) 1060 return RX_DROP_MONITOR; 1061 1062 if (ieee80211_is_action(hdr->frame_control)) { 1063 u8 category; 1064 1065 /* make sure category field is present */ 1066 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 1067 return RX_DROP_MONITOR; 1068 1069 mgmt = (struct ieee80211_mgmt *)hdr; 1070 category = mgmt->u.action.category; 1071 if (category != WLAN_CATEGORY_MESH_ACTION && 1072 category != WLAN_CATEGORY_SELF_PROTECTED) 1073 return RX_DROP_MONITOR; 1074 return RX_CONTINUE; 1075 } 1076 1077 if (ieee80211_is_probe_req(hdr->frame_control) || 1078 ieee80211_is_probe_resp(hdr->frame_control) || 1079 ieee80211_is_beacon(hdr->frame_control) || 1080 ieee80211_is_auth(hdr->frame_control)) 1081 return RX_CONTINUE; 1082 1083 return RX_DROP_MONITOR; 1084 } 1085 1086 return RX_CONTINUE; 1087 } 1088 1089 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx, 1090 int index) 1091 { 1092 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index]; 1093 struct sk_buff *tail = skb_peek_tail(frames); 1094 struct ieee80211_rx_status *status; 1095 1096 if (tid_agg_rx->reorder_buf_filtered && 1097 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index)) 1098 return true; 1099 1100 if (!tail) 1101 return false; 1102 1103 status = IEEE80211_SKB_RXCB(tail); 1104 if (status->flag & RX_FLAG_AMSDU_MORE) 1105 return false; 1106 1107 return true; 1108 } 1109 1110 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 1111 struct tid_ampdu_rx *tid_agg_rx, 1112 int index, 1113 struct sk_buff_head *frames) 1114 { 1115 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 1116 struct sk_buff *skb; 1117 struct ieee80211_rx_status *status; 1118 1119 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1120 1121 if (skb_queue_empty(skb_list)) 1122 goto no_frame; 1123 1124 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1125 __skb_queue_purge(skb_list); 1126 goto no_frame; 1127 } 1128 1129 /* release frames from the reorder ring buffer */ 1130 tid_agg_rx->stored_mpdu_num--; 1131 while ((skb = __skb_dequeue(skb_list))) { 1132 status = IEEE80211_SKB_RXCB(skb); 1133 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 1134 __skb_queue_tail(frames, skb); 1135 } 1136 1137 no_frame: 1138 if (tid_agg_rx->reorder_buf_filtered) 1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1141 } 1142 1143 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 1144 struct tid_ampdu_rx *tid_agg_rx, 1145 u16 head_seq_num, 1146 struct sk_buff_head *frames) 1147 { 1148 int index; 1149 1150 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1151 1152 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1155 frames); 1156 } 1157 } 1158 1159 /* 1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 1161 * the skb was added to the buffer longer than this time ago, the earlier 1162 * frames that have not yet been received are assumed to be lost and the skb 1163 * can be released for processing. This may also release other skb's from the 1164 * reorder buffer if there are no additional gaps between the frames. 1165 * 1166 * Callers must hold tid_agg_rx->reorder_lock. 1167 */ 1168 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 1169 1170 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 1171 struct tid_ampdu_rx *tid_agg_rx, 1172 struct sk_buff_head *frames) 1173 { 1174 int index, i, j; 1175 1176 lockdep_assert_held(&tid_agg_rx->reorder_lock); 1177 1178 /* release the buffer until next missing frame */ 1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) && 1181 tid_agg_rx->stored_mpdu_num) { 1182 /* 1183 * No buffers ready to be released, but check whether any 1184 * frames in the reorder buffer have timed out. 1185 */ 1186 int skipped = 1; 1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 1188 j = (j + 1) % tid_agg_rx->buf_size) { 1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) { 1190 skipped++; 1191 continue; 1192 } 1193 if (skipped && 1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 1195 HT_RX_REORDER_BUF_TIMEOUT)) 1196 goto set_release_timer; 1197 1198 /* don't leave incomplete A-MSDUs around */ 1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 1200 i = (i + 1) % tid_agg_rx->buf_size) 1201 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 1202 1203 ht_dbg_ratelimited(sdata, 1204 "release an RX reorder frame due to timeout on earlier frames\n"); 1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 1206 frames); 1207 1208 /* 1209 * Increment the head seq# also for the skipped slots. 1210 */ 1211 tid_agg_rx->head_seq_num = 1212 (tid_agg_rx->head_seq_num + 1213 skipped) & IEEE80211_SN_MASK; 1214 skipped = 0; 1215 } 1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 1218 frames); 1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1220 } 1221 1222 if (tid_agg_rx->stored_mpdu_num) { 1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 1224 1225 for (; j != (index - 1) % tid_agg_rx->buf_size; 1226 j = (j + 1) % tid_agg_rx->buf_size) { 1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, j)) 1228 break; 1229 } 1230 1231 set_release_timer: 1232 1233 if (!tid_agg_rx->removed) 1234 mod_timer(&tid_agg_rx->reorder_timer, 1235 tid_agg_rx->reorder_time[j] + 1 + 1236 HT_RX_REORDER_BUF_TIMEOUT); 1237 } else { 1238 del_timer(&tid_agg_rx->reorder_timer); 1239 } 1240 } 1241 1242 /* 1243 * As this function belongs to the RX path it must be under 1244 * rcu_read_lock protection. It returns false if the frame 1245 * can be processed immediately, true if it was consumed. 1246 */ 1247 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 1248 struct tid_ampdu_rx *tid_agg_rx, 1249 struct sk_buff *skb, 1250 struct sk_buff_head *frames) 1251 { 1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1254 u16 sc = le16_to_cpu(hdr->seq_ctrl); 1255 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 1256 u16 head_seq_num, buf_size; 1257 int index; 1258 bool ret = true; 1259 1260 spin_lock(&tid_agg_rx->reorder_lock); 1261 1262 /* 1263 * Offloaded BA sessions have no known starting sequence number so pick 1264 * one from first Rxed frame for this tid after BA was started. 1265 */ 1266 if (unlikely(tid_agg_rx->auto_seq)) { 1267 tid_agg_rx->auto_seq = false; 1268 tid_agg_rx->ssn = mpdu_seq_num; 1269 tid_agg_rx->head_seq_num = mpdu_seq_num; 1270 } 1271 1272 buf_size = tid_agg_rx->buf_size; 1273 head_seq_num = tid_agg_rx->head_seq_num; 1274 1275 /* 1276 * If the current MPDU's SN is smaller than the SSN, it shouldn't 1277 * be reordered. 1278 */ 1279 if (unlikely(!tid_agg_rx->started)) { 1280 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1281 ret = false; 1282 goto out; 1283 } 1284 tid_agg_rx->started = true; 1285 } 1286 1287 /* frame with out of date sequence number */ 1288 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 1289 dev_kfree_skb(skb); 1290 goto out; 1291 } 1292 1293 /* 1294 * If frame the sequence number exceeds our buffering window 1295 * size release some previous frames to make room for this one. 1296 */ 1297 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 1298 head_seq_num = ieee80211_sn_inc( 1299 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 1300 /* release stored frames up to new head to stack */ 1301 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 1302 head_seq_num, frames); 1303 } 1304 1305 /* Now the new frame is always in the range of the reordering buffer */ 1306 1307 index = mpdu_seq_num % tid_agg_rx->buf_size; 1308 1309 /* check if we already stored this frame */ 1310 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) { 1311 dev_kfree_skb(skb); 1312 goto out; 1313 } 1314 1315 /* 1316 * If the current MPDU is in the right order and nothing else 1317 * is stored we can process it directly, no need to buffer it. 1318 * If it is first but there's something stored, we may be able 1319 * to release frames after this one. 1320 */ 1321 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 1322 tid_agg_rx->stored_mpdu_num == 0) { 1323 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 1324 tid_agg_rx->head_seq_num = 1325 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 1326 ret = false; 1327 goto out; 1328 } 1329 1330 /* put the frame in the reordering buffer */ 1331 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 1332 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1333 tid_agg_rx->reorder_time[index] = jiffies; 1334 tid_agg_rx->stored_mpdu_num++; 1335 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 1336 } 1337 1338 out: 1339 spin_unlock(&tid_agg_rx->reorder_lock); 1340 return ret; 1341 } 1342 1343 /* 1344 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 1345 * true if the MPDU was buffered, false if it should be processed. 1346 */ 1347 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 1348 struct sk_buff_head *frames) 1349 { 1350 struct sk_buff *skb = rx->skb; 1351 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1352 struct sta_info *sta = rx->sta; 1353 struct tid_ampdu_rx *tid_agg_rx; 1354 u16 sc; 1355 u8 tid, ack_policy; 1356 1357 if (!ieee80211_is_data_qos(hdr->frame_control) || 1358 is_multicast_ether_addr(hdr->addr1)) 1359 goto dont_reorder; 1360 1361 /* 1362 * filter the QoS data rx stream according to 1363 * STA/TID and check if this STA/TID is on aggregation 1364 */ 1365 1366 if (!sta) 1367 goto dont_reorder; 1368 1369 ack_policy = *ieee80211_get_qos_ctl(hdr) & 1370 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1371 tid = ieee80211_get_tid(hdr); 1372 1373 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1374 if (!tid_agg_rx) { 1375 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1376 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 1377 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 1378 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 1379 WLAN_BACK_RECIPIENT, 1380 WLAN_REASON_QSTA_REQUIRE_SETUP); 1381 goto dont_reorder; 1382 } 1383 1384 /* qos null data frames are excluded */ 1385 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1386 goto dont_reorder; 1387 1388 /* not part of a BA session */ 1389 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 1390 goto dont_reorder; 1391 1392 /* new, potentially un-ordered, ampdu frame - process it */ 1393 1394 /* reset session timer */ 1395 if (tid_agg_rx->timeout) 1396 tid_agg_rx->last_rx = jiffies; 1397 1398 /* if this mpdu is fragmented - terminate rx aggregation session */ 1399 sc = le16_to_cpu(hdr->seq_ctrl); 1400 if (sc & IEEE80211_SCTL_FRAG) { 1401 ieee80211_queue_skb_to_iface(rx->sdata, rx->link_id, NULL, skb); 1402 return; 1403 } 1404 1405 /* 1406 * No locking needed -- we will only ever process one 1407 * RX packet at a time, and thus own tid_agg_rx. All 1408 * other code manipulating it needs to (and does) make 1409 * sure that we cannot get to it any more before doing 1410 * anything with it. 1411 */ 1412 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1413 frames)) 1414 return; 1415 1416 dont_reorder: 1417 __skb_queue_tail(frames, skb); 1418 } 1419 1420 static ieee80211_rx_result debug_noinline 1421 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1422 { 1423 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1424 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1425 1426 if (status->flag & RX_FLAG_DUP_VALIDATED) 1427 return RX_CONTINUE; 1428 1429 /* 1430 * Drop duplicate 802.11 retransmissions 1431 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1432 */ 1433 1434 if (rx->skb->len < 24) 1435 return RX_CONTINUE; 1436 1437 if (ieee80211_is_ctl(hdr->frame_control) || 1438 ieee80211_is_any_nullfunc(hdr->frame_control) || 1439 is_multicast_ether_addr(hdr->addr1)) 1440 return RX_CONTINUE; 1441 1442 if (!rx->sta) 1443 return RX_CONTINUE; 1444 1445 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1446 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) { 1447 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount); 1448 rx->link_sta->rx_stats.num_duplicates++; 1449 return RX_DROP_U_DUP; 1450 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1451 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1452 } 1453 1454 return RX_CONTINUE; 1455 } 1456 1457 static ieee80211_rx_result debug_noinline 1458 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1459 { 1460 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1461 1462 /* Drop disallowed frame classes based on STA auth/assoc state; 1463 * IEEE 802.11, Chap 5.5. 1464 * 1465 * mac80211 filters only based on association state, i.e. it drops 1466 * Class 3 frames from not associated stations. hostapd sends 1467 * deauth/disassoc frames when needed. In addition, hostapd is 1468 * responsible for filtering on both auth and assoc states. 1469 */ 1470 1471 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1472 return ieee80211_rx_mesh_check(rx); 1473 1474 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1475 ieee80211_is_pspoll(hdr->frame_control)) && 1476 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1477 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1478 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1479 /* 1480 * accept port control frames from the AP even when it's not 1481 * yet marked ASSOC to prevent a race where we don't set the 1482 * assoc bit quickly enough before it sends the first frame 1483 */ 1484 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1485 ieee80211_is_data_present(hdr->frame_control)) { 1486 unsigned int hdrlen; 1487 __be16 ethertype; 1488 1489 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1490 1491 if (rx->skb->len < hdrlen + 8) 1492 return RX_DROP_MONITOR; 1493 1494 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1495 if (ethertype == rx->sdata->control_port_protocol) 1496 return RX_CONTINUE; 1497 } 1498 1499 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1500 cfg80211_rx_spurious_frame(rx->sdata->dev, 1501 hdr->addr2, 1502 GFP_ATOMIC)) 1503 return RX_DROP_U_SPURIOUS; 1504 1505 return RX_DROP_MONITOR; 1506 } 1507 1508 return RX_CONTINUE; 1509 } 1510 1511 1512 static ieee80211_rx_result debug_noinline 1513 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1514 { 1515 struct ieee80211_local *local; 1516 struct ieee80211_hdr *hdr; 1517 struct sk_buff *skb; 1518 1519 local = rx->local; 1520 skb = rx->skb; 1521 hdr = (struct ieee80211_hdr *) skb->data; 1522 1523 if (!local->pspolling) 1524 return RX_CONTINUE; 1525 1526 if (!ieee80211_has_fromds(hdr->frame_control)) 1527 /* this is not from AP */ 1528 return RX_CONTINUE; 1529 1530 if (!ieee80211_is_data(hdr->frame_control)) 1531 return RX_CONTINUE; 1532 1533 if (!ieee80211_has_moredata(hdr->frame_control)) { 1534 /* AP has no more frames buffered for us */ 1535 local->pspolling = false; 1536 return RX_CONTINUE; 1537 } 1538 1539 /* more data bit is set, let's request a new frame from the AP */ 1540 ieee80211_send_pspoll(local, rx->sdata); 1541 1542 return RX_CONTINUE; 1543 } 1544 1545 static void sta_ps_start(struct sta_info *sta) 1546 { 1547 struct ieee80211_sub_if_data *sdata = sta->sdata; 1548 struct ieee80211_local *local = sdata->local; 1549 struct ps_data *ps; 1550 int tid; 1551 1552 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1553 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1554 ps = &sdata->bss->ps; 1555 else 1556 return; 1557 1558 atomic_inc(&ps->num_sta_ps); 1559 set_sta_flag(sta, WLAN_STA_PS_STA); 1560 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 1561 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1562 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1563 sta->sta.addr, sta->sta.aid); 1564 1565 ieee80211_clear_fast_xmit(sta); 1566 1567 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) { 1568 struct ieee80211_txq *txq = sta->sta.txq[tid]; 1569 struct txq_info *txqi = to_txq_info(txq); 1570 1571 spin_lock(&local->active_txq_lock[txq->ac]); 1572 if (!list_empty(&txqi->schedule_order)) 1573 list_del_init(&txqi->schedule_order); 1574 spin_unlock(&local->active_txq_lock[txq->ac]); 1575 1576 if (txq_has_queue(txq)) 1577 set_bit(tid, &sta->txq_buffered_tids); 1578 else 1579 clear_bit(tid, &sta->txq_buffered_tids); 1580 } 1581 } 1582 1583 static void sta_ps_end(struct sta_info *sta) 1584 { 1585 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1586 sta->sta.addr, sta->sta.aid); 1587 1588 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1589 /* 1590 * Clear the flag only if the other one is still set 1591 * so that the TX path won't start TX'ing new frames 1592 * directly ... In the case that the driver flag isn't 1593 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1594 */ 1595 clear_sta_flag(sta, WLAN_STA_PS_STA); 1596 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1597 sta->sta.addr, sta->sta.aid); 1598 return; 1599 } 1600 1601 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1602 clear_sta_flag(sta, WLAN_STA_PS_STA); 1603 ieee80211_sta_ps_deliver_wakeup(sta); 1604 } 1605 1606 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start) 1607 { 1608 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1609 bool in_ps; 1610 1611 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS)); 1612 1613 /* Don't let the same PS state be set twice */ 1614 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA); 1615 if ((start && in_ps) || (!start && !in_ps)) 1616 return -EINVAL; 1617 1618 if (start) 1619 sta_ps_start(sta); 1620 else 1621 sta_ps_end(sta); 1622 1623 return 0; 1624 } 1625 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1626 1627 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta) 1628 { 1629 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1630 1631 if (test_sta_flag(sta, WLAN_STA_SP)) 1632 return; 1633 1634 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1635 ieee80211_sta_ps_deliver_poll_response(sta); 1636 else 1637 set_sta_flag(sta, WLAN_STA_PSPOLL); 1638 } 1639 EXPORT_SYMBOL(ieee80211_sta_pspoll); 1640 1641 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid) 1642 { 1643 struct sta_info *sta = container_of(pubsta, struct sta_info, sta); 1644 int ac = ieee80211_ac_from_tid(tid); 1645 1646 /* 1647 * If this AC is not trigger-enabled do nothing unless the 1648 * driver is calling us after it already checked. 1649 * 1650 * NB: This could/should check a separate bitmap of trigger- 1651 * enabled queues, but for now we only implement uAPSD w/o 1652 * TSPEC changes to the ACs, so they're always the same. 1653 */ 1654 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) && 1655 tid != IEEE80211_NUM_TIDS) 1656 return; 1657 1658 /* if we are in a service period, do nothing */ 1659 if (test_sta_flag(sta, WLAN_STA_SP)) 1660 return; 1661 1662 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER)) 1663 ieee80211_sta_ps_deliver_uapsd(sta); 1664 else 1665 set_sta_flag(sta, WLAN_STA_UAPSD); 1666 } 1667 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger); 1668 1669 static ieee80211_rx_result debug_noinline 1670 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1671 { 1672 struct ieee80211_sub_if_data *sdata = rx->sdata; 1673 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1674 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1675 1676 if (!rx->sta) 1677 return RX_CONTINUE; 1678 1679 if (sdata->vif.type != NL80211_IFTYPE_AP && 1680 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1681 return RX_CONTINUE; 1682 1683 /* 1684 * The device handles station powersave, so don't do anything about 1685 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1686 * it to mac80211 since they're handled.) 1687 */ 1688 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS)) 1689 return RX_CONTINUE; 1690 1691 /* 1692 * Don't do anything if the station isn't already asleep. In 1693 * the uAPSD case, the station will probably be marked asleep, 1694 * in the PS-Poll case the station must be confused ... 1695 */ 1696 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1697 return RX_CONTINUE; 1698 1699 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1700 ieee80211_sta_pspoll(&rx->sta->sta); 1701 1702 /* Free PS Poll skb here instead of returning RX_DROP that would 1703 * count as an dropped frame. */ 1704 dev_kfree_skb(rx->skb); 1705 1706 return RX_QUEUED; 1707 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1708 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1709 ieee80211_has_pm(hdr->frame_control) && 1710 (ieee80211_is_data_qos(hdr->frame_control) || 1711 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1712 u8 tid = ieee80211_get_tid(hdr); 1713 1714 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid); 1715 } 1716 1717 return RX_CONTINUE; 1718 } 1719 1720 static ieee80211_rx_result debug_noinline 1721 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1722 { 1723 struct sta_info *sta = rx->sta; 1724 struct link_sta_info *link_sta = rx->link_sta; 1725 struct sk_buff *skb = rx->skb; 1726 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1727 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1728 int i; 1729 1730 if (!sta || !link_sta) 1731 return RX_CONTINUE; 1732 1733 /* 1734 * Update last_rx only for IBSS packets which are for the current 1735 * BSSID and for station already AUTHORIZED to avoid keeping the 1736 * current IBSS network alive in cases where other STAs start 1737 * using different BSSID. This will also give the station another 1738 * chance to restart the authentication/authorization in case 1739 * something went wrong the first time. 1740 */ 1741 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1742 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1743 NL80211_IFTYPE_ADHOC); 1744 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1745 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1746 link_sta->rx_stats.last_rx = jiffies; 1747 if (ieee80211_is_data_present(hdr->frame_control) && 1748 !is_multicast_ether_addr(hdr->addr1)) 1749 link_sta->rx_stats.last_rate = 1750 sta_stats_encode_rate(status); 1751 } 1752 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1753 link_sta->rx_stats.last_rx = jiffies; 1754 } else if (!ieee80211_is_s1g_beacon(hdr->frame_control) && 1755 !is_multicast_ether_addr(hdr->addr1)) { 1756 /* 1757 * Mesh beacons will update last_rx when if they are found to 1758 * match the current local configuration when processed. 1759 */ 1760 link_sta->rx_stats.last_rx = jiffies; 1761 if (ieee80211_is_data_present(hdr->frame_control)) 1762 link_sta->rx_stats.last_rate = sta_stats_encode_rate(status); 1763 } 1764 1765 link_sta->rx_stats.fragments++; 1766 1767 u64_stats_update_begin(&link_sta->rx_stats.syncp); 1768 link_sta->rx_stats.bytes += rx->skb->len; 1769 u64_stats_update_end(&link_sta->rx_stats.syncp); 1770 1771 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1772 link_sta->rx_stats.last_signal = status->signal; 1773 ewma_signal_add(&link_sta->rx_stats_avg.signal, 1774 -status->signal); 1775 } 1776 1777 if (status->chains) { 1778 link_sta->rx_stats.chains = status->chains; 1779 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1780 int signal = status->chain_signal[i]; 1781 1782 if (!(status->chains & BIT(i))) 1783 continue; 1784 1785 link_sta->rx_stats.chain_signal_last[i] = signal; 1786 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 1787 -signal); 1788 } 1789 } 1790 1791 if (ieee80211_is_s1g_beacon(hdr->frame_control)) 1792 return RX_CONTINUE; 1793 1794 /* 1795 * Change STA power saving mode only at the end of a frame 1796 * exchange sequence, and only for a data or management 1797 * frame as specified in IEEE 802.11-2016 11.2.3.2 1798 */ 1799 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) && 1800 !ieee80211_has_morefrags(hdr->frame_control) && 1801 !is_multicast_ether_addr(hdr->addr1) && 1802 (ieee80211_is_mgmt(hdr->frame_control) || 1803 ieee80211_is_data(hdr->frame_control)) && 1804 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1805 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1806 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) { 1807 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1808 if (!ieee80211_has_pm(hdr->frame_control)) 1809 sta_ps_end(sta); 1810 } else { 1811 if (ieee80211_has_pm(hdr->frame_control)) 1812 sta_ps_start(sta); 1813 } 1814 } 1815 1816 /* mesh power save support */ 1817 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1818 ieee80211_mps_rx_h_sta_process(sta, hdr); 1819 1820 /* 1821 * Drop (qos-)data::nullfunc frames silently, since they 1822 * are used only to control station power saving mode. 1823 */ 1824 if (ieee80211_is_any_nullfunc(hdr->frame_control)) { 1825 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1826 1827 /* 1828 * If we receive a 4-addr nullfunc frame from a STA 1829 * that was not moved to a 4-addr STA vlan yet send 1830 * the event to userspace and for older hostapd drop 1831 * the frame to the monitor interface. 1832 */ 1833 if (ieee80211_has_a4(hdr->frame_control) && 1834 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1835 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1836 !rx->sdata->u.vlan.sta))) { 1837 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1838 cfg80211_rx_unexpected_4addr_frame( 1839 rx->sdata->dev, sta->sta.addr, 1840 GFP_ATOMIC); 1841 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME; 1842 } 1843 /* 1844 * Update counter and free packet here to avoid 1845 * counting this as a dropped packed. 1846 */ 1847 link_sta->rx_stats.packets++; 1848 dev_kfree_skb(rx->skb); 1849 return RX_QUEUED; 1850 } 1851 1852 return RX_CONTINUE; 1853 } /* ieee80211_rx_h_sta_process */ 1854 1855 static struct ieee80211_key * 1856 ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx) 1857 { 1858 struct ieee80211_key *key = NULL; 1859 int idx2; 1860 1861 /* Make sure key gets set if either BIGTK key index is set so that 1862 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected 1863 * Beacon frames and Beacon frames that claim to use another BIGTK key 1864 * index (i.e., a key that we do not have). 1865 */ 1866 1867 if (idx < 0) { 1868 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS; 1869 idx2 = idx + 1; 1870 } else { 1871 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1872 idx2 = idx + 1; 1873 else 1874 idx2 = idx - 1; 1875 } 1876 1877 if (rx->link_sta) 1878 key = rcu_dereference(rx->link_sta->gtk[idx]); 1879 if (!key) 1880 key = rcu_dereference(rx->link->gtk[idx]); 1881 if (!key && rx->link_sta) 1882 key = rcu_dereference(rx->link_sta->gtk[idx2]); 1883 if (!key) 1884 key = rcu_dereference(rx->link->gtk[idx2]); 1885 1886 return key; 1887 } 1888 1889 static ieee80211_rx_result debug_noinline 1890 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1891 { 1892 struct sk_buff *skb = rx->skb; 1893 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1894 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1895 int keyidx; 1896 ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL; 1897 struct ieee80211_key *sta_ptk = NULL; 1898 struct ieee80211_key *ptk_idx = NULL; 1899 int mmie_keyidx = -1; 1900 __le16 fc; 1901 1902 if (ieee80211_is_ext(hdr->frame_control)) 1903 return RX_CONTINUE; 1904 1905 /* 1906 * Key selection 101 1907 * 1908 * There are five types of keys: 1909 * - GTK (group keys) 1910 * - IGTK (group keys for management frames) 1911 * - BIGTK (group keys for Beacon frames) 1912 * - PTK (pairwise keys) 1913 * - STK (station-to-station pairwise keys) 1914 * 1915 * When selecting a key, we have to distinguish between multicast 1916 * (including broadcast) and unicast frames, the latter can only 1917 * use PTKs and STKs while the former always use GTKs, IGTKs, and 1918 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used, 1919 * then unicast frames can also use key indices like GTKs. Hence, if we 1920 * don't have a PTK/STK we check the key index for a WEP key. 1921 * 1922 * Note that in a regular BSS, multicast frames are sent by the 1923 * AP only, associated stations unicast the frame to the AP first 1924 * which then multicasts it on their behalf. 1925 * 1926 * There is also a slight problem in IBSS mode: GTKs are negotiated 1927 * with each station, that is something we don't currently handle. 1928 * The spec seems to expect that one negotiates the same key with 1929 * every station but there's no such requirement; VLANs could be 1930 * possible. 1931 */ 1932 1933 /* start without a key */ 1934 rx->key = NULL; 1935 fc = hdr->frame_control; 1936 1937 if (rx->sta) { 1938 int keyid = rx->sta->ptk_idx; 1939 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1940 1941 if (ieee80211_has_protected(fc) && 1942 !(status->flag & RX_FLAG_IV_STRIPPED)) { 1943 keyid = ieee80211_get_keyid(rx->skb); 1944 1945 if (unlikely(keyid < 0)) 1946 return RX_DROP_U_NO_KEY_ID; 1947 1948 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]); 1949 } 1950 } 1951 1952 if (!ieee80211_has_protected(fc)) 1953 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1954 1955 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1956 rx->key = ptk_idx ? ptk_idx : sta_ptk; 1957 if ((status->flag & RX_FLAG_DECRYPTED) && 1958 (status->flag & RX_FLAG_IV_STRIPPED)) 1959 return RX_CONTINUE; 1960 /* Skip decryption if the frame is not protected. */ 1961 if (!ieee80211_has_protected(fc)) 1962 return RX_CONTINUE; 1963 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) { 1964 /* Broadcast/multicast robust management frame / BIP */ 1965 if ((status->flag & RX_FLAG_DECRYPTED) && 1966 (status->flag & RX_FLAG_IV_STRIPPED)) 1967 return RX_CONTINUE; 1968 1969 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS || 1970 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS + 1971 NUM_DEFAULT_BEACON_KEYS) { 1972 if (rx->sdata->dev) 1973 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1974 skb->data, 1975 skb->len); 1976 return RX_DROP_M_BAD_BCN_KEYIDX; 1977 } 1978 1979 rx->key = ieee80211_rx_get_bigtk(rx, mmie_keyidx); 1980 if (!rx->key) 1981 return RX_CONTINUE; /* Beacon protection not in use */ 1982 } else if (mmie_keyidx >= 0) { 1983 /* Broadcast/multicast robust management frame / BIP */ 1984 if ((status->flag & RX_FLAG_DECRYPTED) && 1985 (status->flag & RX_FLAG_IV_STRIPPED)) 1986 return RX_CONTINUE; 1987 1988 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1989 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1990 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */ 1991 if (rx->link_sta) { 1992 if (ieee80211_is_group_privacy_action(skb) && 1993 test_sta_flag(rx->sta, WLAN_STA_MFP)) 1994 return RX_DROP_MONITOR; 1995 1996 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]); 1997 } 1998 if (!rx->key) 1999 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]); 2000 } else if (!ieee80211_has_protected(fc)) { 2001 /* 2002 * The frame was not protected, so skip decryption. However, we 2003 * need to set rx->key if there is a key that could have been 2004 * used so that the frame may be dropped if encryption would 2005 * have been expected. 2006 */ 2007 struct ieee80211_key *key = NULL; 2008 int i; 2009 2010 if (ieee80211_is_beacon(fc)) { 2011 key = ieee80211_rx_get_bigtk(rx, -1); 2012 } else if (ieee80211_is_mgmt(fc) && 2013 is_multicast_ether_addr(hdr->addr1)) { 2014 key = rcu_dereference(rx->link->default_mgmt_key); 2015 } else { 2016 if (rx->link_sta) { 2017 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2018 key = rcu_dereference(rx->link_sta->gtk[i]); 2019 if (key) 2020 break; 2021 } 2022 } 2023 if (!key) { 2024 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 2025 key = rcu_dereference(rx->link->gtk[i]); 2026 if (key) 2027 break; 2028 } 2029 } 2030 } 2031 if (key) 2032 rx->key = key; 2033 return RX_CONTINUE; 2034 } else { 2035 /* 2036 * The device doesn't give us the IV so we won't be 2037 * able to look up the key. That's ok though, we 2038 * don't need to decrypt the frame, we just won't 2039 * be able to keep statistics accurate. 2040 * Except for key threshold notifications, should 2041 * we somehow allow the driver to tell us which key 2042 * the hardware used if this flag is set? 2043 */ 2044 if ((status->flag & RX_FLAG_DECRYPTED) && 2045 (status->flag & RX_FLAG_IV_STRIPPED)) 2046 return RX_CONTINUE; 2047 2048 keyidx = ieee80211_get_keyid(rx->skb); 2049 2050 if (unlikely(keyidx < 0)) 2051 return RX_DROP_U_NO_KEY_ID; 2052 2053 /* check per-station GTK first, if multicast packet */ 2054 if (is_multicast_ether_addr(hdr->addr1) && rx->link_sta) 2055 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]); 2056 2057 /* if not found, try default key */ 2058 if (!rx->key) { 2059 if (is_multicast_ether_addr(hdr->addr1)) 2060 rx->key = rcu_dereference(rx->link->gtk[keyidx]); 2061 if (!rx->key) 2062 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 2063 2064 /* 2065 * RSNA-protected unicast frames should always be 2066 * sent with pairwise or station-to-station keys, 2067 * but for WEP we allow using a key index as well. 2068 */ 2069 if (rx->key && 2070 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 2071 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 2072 !is_multicast_ether_addr(hdr->addr1)) 2073 rx->key = NULL; 2074 } 2075 } 2076 2077 if (rx->key) { 2078 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 2079 return RX_DROP_MONITOR; 2080 2081 /* TODO: add threshold stuff again */ 2082 } else { 2083 return RX_DROP_MONITOR; 2084 } 2085 2086 switch (rx->key->conf.cipher) { 2087 case WLAN_CIPHER_SUITE_WEP40: 2088 case WLAN_CIPHER_SUITE_WEP104: 2089 result = ieee80211_crypto_wep_decrypt(rx); 2090 break; 2091 case WLAN_CIPHER_SUITE_TKIP: 2092 result = ieee80211_crypto_tkip_decrypt(rx); 2093 break; 2094 case WLAN_CIPHER_SUITE_CCMP: 2095 result = ieee80211_crypto_ccmp_decrypt( 2096 rx, IEEE80211_CCMP_MIC_LEN); 2097 break; 2098 case WLAN_CIPHER_SUITE_CCMP_256: 2099 result = ieee80211_crypto_ccmp_decrypt( 2100 rx, IEEE80211_CCMP_256_MIC_LEN); 2101 break; 2102 case WLAN_CIPHER_SUITE_AES_CMAC: 2103 result = ieee80211_crypto_aes_cmac_decrypt(rx); 2104 break; 2105 case WLAN_CIPHER_SUITE_BIP_CMAC_256: 2106 result = ieee80211_crypto_aes_cmac_256_decrypt(rx); 2107 break; 2108 case WLAN_CIPHER_SUITE_BIP_GMAC_128: 2109 case WLAN_CIPHER_SUITE_BIP_GMAC_256: 2110 result = ieee80211_crypto_aes_gmac_decrypt(rx); 2111 break; 2112 case WLAN_CIPHER_SUITE_GCMP: 2113 case WLAN_CIPHER_SUITE_GCMP_256: 2114 result = ieee80211_crypto_gcmp_decrypt(rx); 2115 break; 2116 default: 2117 result = RX_DROP_U_BAD_CIPHER; 2118 } 2119 2120 /* the hdr variable is invalid after the decrypt handlers */ 2121 2122 /* either the frame has been decrypted or will be dropped */ 2123 status->flag |= RX_FLAG_DECRYPTED; 2124 2125 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) && 2126 rx->sdata->dev)) 2127 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2128 skb->data, skb->len); 2129 2130 return result; 2131 } 2132 2133 void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache) 2134 { 2135 int i; 2136 2137 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2138 skb_queue_head_init(&cache->entries[i].skb_list); 2139 } 2140 2141 void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache) 2142 { 2143 int i; 2144 2145 for (i = 0; i < ARRAY_SIZE(cache->entries); i++) 2146 __skb_queue_purge(&cache->entries[i].skb_list); 2147 } 2148 2149 static inline struct ieee80211_fragment_entry * 2150 ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache, 2151 unsigned int frag, unsigned int seq, int rx_queue, 2152 struct sk_buff **skb) 2153 { 2154 struct ieee80211_fragment_entry *entry; 2155 2156 entry = &cache->entries[cache->next++]; 2157 if (cache->next >= IEEE80211_FRAGMENT_MAX) 2158 cache->next = 0; 2159 2160 __skb_queue_purge(&entry->skb_list); 2161 2162 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 2163 *skb = NULL; 2164 entry->first_frag_time = jiffies; 2165 entry->seq = seq; 2166 entry->rx_queue = rx_queue; 2167 entry->last_frag = frag; 2168 entry->check_sequential_pn = false; 2169 entry->extra_len = 0; 2170 2171 return entry; 2172 } 2173 2174 static inline struct ieee80211_fragment_entry * 2175 ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache, 2176 unsigned int frag, unsigned int seq, 2177 int rx_queue, struct ieee80211_hdr *hdr) 2178 { 2179 struct ieee80211_fragment_entry *entry; 2180 int i, idx; 2181 2182 idx = cache->next; 2183 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 2184 struct ieee80211_hdr *f_hdr; 2185 struct sk_buff *f_skb; 2186 2187 idx--; 2188 if (idx < 0) 2189 idx = IEEE80211_FRAGMENT_MAX - 1; 2190 2191 entry = &cache->entries[idx]; 2192 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 2193 entry->rx_queue != rx_queue || 2194 entry->last_frag + 1 != frag) 2195 continue; 2196 2197 f_skb = __skb_peek(&entry->skb_list); 2198 f_hdr = (struct ieee80211_hdr *) f_skb->data; 2199 2200 /* 2201 * Check ftype and addresses are equal, else check next fragment 2202 */ 2203 if (((hdr->frame_control ^ f_hdr->frame_control) & 2204 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 2205 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 2206 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 2207 continue; 2208 2209 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 2210 __skb_queue_purge(&entry->skb_list); 2211 continue; 2212 } 2213 return entry; 2214 } 2215 2216 return NULL; 2217 } 2218 2219 static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc) 2220 { 2221 return rx->key && 2222 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP || 2223 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 || 2224 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP || 2225 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) && 2226 ieee80211_has_protected(fc); 2227 } 2228 2229 static ieee80211_rx_result debug_noinline 2230 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 2231 { 2232 struct ieee80211_fragment_cache *cache = &rx->sdata->frags; 2233 struct ieee80211_hdr *hdr; 2234 u16 sc; 2235 __le16 fc; 2236 unsigned int frag, seq; 2237 struct ieee80211_fragment_entry *entry; 2238 struct sk_buff *skb; 2239 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2240 2241 hdr = (struct ieee80211_hdr *)rx->skb->data; 2242 fc = hdr->frame_control; 2243 2244 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc)) 2245 return RX_CONTINUE; 2246 2247 sc = le16_to_cpu(hdr->seq_ctrl); 2248 frag = sc & IEEE80211_SCTL_FRAG; 2249 2250 if (rx->sta) 2251 cache = &rx->sta->frags; 2252 2253 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 2254 goto out; 2255 2256 if (is_multicast_ether_addr(hdr->addr1)) 2257 return RX_DROP_MONITOR; 2258 2259 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 2260 2261 if (skb_linearize(rx->skb)) 2262 return RX_DROP_U_OOM; 2263 2264 /* 2265 * skb_linearize() might change the skb->data and 2266 * previously cached variables (in this case, hdr) need to 2267 * be refreshed with the new data. 2268 */ 2269 hdr = (struct ieee80211_hdr *)rx->skb->data; 2270 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 2271 2272 if (frag == 0) { 2273 /* This is the first fragment of a new frame. */ 2274 entry = ieee80211_reassemble_add(cache, frag, seq, 2275 rx->seqno_idx, &(rx->skb)); 2276 if (requires_sequential_pn(rx, fc)) { 2277 int queue = rx->security_idx; 2278 2279 /* Store CCMP/GCMP PN so that we can verify that the 2280 * next fragment has a sequential PN value. 2281 */ 2282 entry->check_sequential_pn = true; 2283 entry->is_protected = true; 2284 entry->key_color = rx->key->color; 2285 memcpy(entry->last_pn, 2286 rx->key->u.ccmp.rx_pn[queue], 2287 IEEE80211_CCMP_PN_LEN); 2288 BUILD_BUG_ON(offsetof(struct ieee80211_key, 2289 u.ccmp.rx_pn) != 2290 offsetof(struct ieee80211_key, 2291 u.gcmp.rx_pn)); 2292 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) != 2293 sizeof(rx->key->u.gcmp.rx_pn[queue])); 2294 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != 2295 IEEE80211_GCMP_PN_LEN); 2296 } else if (rx->key && 2297 (ieee80211_has_protected(fc) || 2298 (status->flag & RX_FLAG_DECRYPTED))) { 2299 entry->is_protected = true; 2300 entry->key_color = rx->key->color; 2301 } 2302 return RX_QUEUED; 2303 } 2304 2305 /* This is a fragment for a frame that should already be pending in 2306 * fragment cache. Add this fragment to the end of the pending entry. 2307 */ 2308 entry = ieee80211_reassemble_find(cache, frag, seq, 2309 rx->seqno_idx, hdr); 2310 if (!entry) { 2311 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2312 return RX_DROP_MONITOR; 2313 } 2314 2315 /* "The receiver shall discard MSDUs and MMPDUs whose constituent 2316 * MPDU PN values are not incrementing in steps of 1." 2317 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP) 2318 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP) 2319 */ 2320 if (entry->check_sequential_pn) { 2321 int i; 2322 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 2323 2324 if (!requires_sequential_pn(rx, fc)) 2325 return RX_DROP_U_NONSEQ_PN; 2326 2327 /* Prevent mixed key and fragment cache attacks */ 2328 if (entry->key_color != rx->key->color) 2329 return RX_DROP_U_BAD_KEY_COLOR; 2330 2331 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 2332 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 2333 pn[i]++; 2334 if (pn[i]) 2335 break; 2336 } 2337 2338 rpn = rx->ccm_gcm.pn; 2339 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 2340 return RX_DROP_U_REPLAY; 2341 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 2342 } else if (entry->is_protected && 2343 (!rx->key || 2344 (!ieee80211_has_protected(fc) && 2345 !(status->flag & RX_FLAG_DECRYPTED)) || 2346 rx->key->color != entry->key_color)) { 2347 /* Drop this as a mixed key or fragment cache attack, even 2348 * if for TKIP Michael MIC should protect us, and WEP is a 2349 * lost cause anyway. 2350 */ 2351 return RX_DROP_U_EXPECT_DEFRAG_PROT; 2352 } else if (entry->is_protected && rx->key && 2353 entry->key_color != rx->key->color && 2354 (status->flag & RX_FLAG_DECRYPTED)) { 2355 return RX_DROP_U_BAD_KEY_COLOR; 2356 } 2357 2358 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 2359 __skb_queue_tail(&entry->skb_list, rx->skb); 2360 entry->last_frag = frag; 2361 entry->extra_len += rx->skb->len; 2362 if (ieee80211_has_morefrags(fc)) { 2363 rx->skb = NULL; 2364 return RX_QUEUED; 2365 } 2366 2367 rx->skb = __skb_dequeue(&entry->skb_list); 2368 if (skb_tailroom(rx->skb) < entry->extra_len) { 2369 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag); 2370 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 2371 GFP_ATOMIC))) { 2372 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 2373 __skb_queue_purge(&entry->skb_list); 2374 return RX_DROP_U_OOM; 2375 } 2376 } 2377 while ((skb = __skb_dequeue(&entry->skb_list))) { 2378 skb_put_data(rx->skb, skb->data, skb->len); 2379 dev_kfree_skb(skb); 2380 } 2381 2382 out: 2383 ieee80211_led_rx(rx->local); 2384 if (rx->sta) 2385 rx->link_sta->rx_stats.packets++; 2386 return RX_CONTINUE; 2387 } 2388 2389 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 2390 { 2391 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 2392 return -EACCES; 2393 2394 return 0; 2395 } 2396 2397 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 2398 { 2399 struct sk_buff *skb = rx->skb; 2400 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2401 2402 /* 2403 * Pass through unencrypted frames if the hardware has 2404 * decrypted them already. 2405 */ 2406 if (status->flag & RX_FLAG_DECRYPTED) 2407 return 0; 2408 2409 /* Drop unencrypted frames if key is set. */ 2410 if (unlikely(!ieee80211_has_protected(fc) && 2411 !ieee80211_is_any_nullfunc(fc) && 2412 ieee80211_is_data(fc) && rx->key)) 2413 return -EACCES; 2414 2415 return 0; 2416 } 2417 2418 VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result 2419 ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 2420 { 2421 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2422 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2423 __le16 fc = mgmt->frame_control; 2424 2425 /* 2426 * Pass through unencrypted frames if the hardware has 2427 * decrypted them already. 2428 */ 2429 if (status->flag & RX_FLAG_DECRYPTED) 2430 return RX_CONTINUE; 2431 2432 /* drop unicast protected dual (that wasn't protected) */ 2433 if (ieee80211_is_action(fc) && 2434 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) 2435 return RX_DROP_U_UNPROT_DUAL; 2436 2437 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 2438 if (unlikely(!ieee80211_has_protected(fc) && 2439 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) { 2440 if (ieee80211_is_deauth(fc) || 2441 ieee80211_is_disassoc(fc)) { 2442 /* 2443 * Permit unprotected deauth/disassoc frames 2444 * during 4-way-HS (key is installed after HS). 2445 */ 2446 if (!rx->key) 2447 return RX_CONTINUE; 2448 2449 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2450 rx->skb->data, 2451 rx->skb->len); 2452 } 2453 return RX_DROP_U_UNPROT_UCAST_MGMT; 2454 } 2455 /* BIP does not use Protected field, so need to check MMIE */ 2456 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 2457 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2458 if (ieee80211_is_deauth(fc) || 2459 ieee80211_is_disassoc(fc)) 2460 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2461 rx->skb->data, 2462 rx->skb->len); 2463 return RX_DROP_U_UNPROT_MCAST_MGMT; 2464 } 2465 if (unlikely(ieee80211_is_beacon(fc) && rx->key && 2466 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 2467 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 2468 rx->skb->data, 2469 rx->skb->len); 2470 return RX_DROP_U_UNPROT_BEACON; 2471 } 2472 /* 2473 * When using MFP, Action frames are not allowed prior to 2474 * having configured keys. 2475 */ 2476 if (unlikely(ieee80211_is_action(fc) && !rx->key && 2477 ieee80211_is_robust_mgmt_frame(rx->skb))) 2478 return RX_DROP_U_UNPROT_ACTION; 2479 2480 /* drop unicast public action frames when using MPF */ 2481 if (is_unicast_ether_addr(mgmt->da) && 2482 ieee80211_is_protected_dual_of_public_action(rx->skb)) 2483 return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION; 2484 } 2485 2486 /* 2487 * Drop robust action frames before assoc regardless of MFP state, 2488 * after assoc we also have decided on MFP or not. 2489 */ 2490 if (ieee80211_is_action(fc) && 2491 ieee80211_is_robust_mgmt_frame(rx->skb) && 2492 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC))) 2493 return RX_DROP_U_UNPROT_ROBUST_ACTION; 2494 2495 return RX_CONTINUE; 2496 } 2497 EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_drop_unencrypted_mgmt); 2498 2499 static ieee80211_rx_result 2500 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 2501 { 2502 struct ieee80211_sub_if_data *sdata = rx->sdata; 2503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2504 bool check_port_control = false; 2505 struct ethhdr *ehdr; 2506 int ret; 2507 2508 *port_control = false; 2509 if (ieee80211_has_a4(hdr->frame_control) && 2510 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 2511 return RX_DROP_U_UNEXPECTED_VLAN_4ADDR; 2512 2513 if (sdata->vif.type == NL80211_IFTYPE_STATION && 2514 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 2515 if (!sdata->u.mgd.use_4addr) 2516 return RX_DROP_U_UNEXPECTED_STA_4ADDR; 2517 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr)) 2518 check_port_control = true; 2519 } 2520 2521 if (is_multicast_ether_addr(hdr->addr1) && 2522 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 2523 return RX_DROP_U_UNEXPECTED_VLAN_MCAST; 2524 2525 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 2526 if (ret < 0) 2527 return RX_DROP_U_INVALID_8023; 2528 2529 ehdr = (struct ethhdr *) rx->skb->data; 2530 if (ehdr->h_proto == rx->sdata->control_port_protocol) 2531 *port_control = true; 2532 else if (check_port_control) 2533 return RX_DROP_U_NOT_PORT_CONTROL; 2534 2535 return RX_CONTINUE; 2536 } 2537 2538 bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata, 2539 const u8 *addr, int *out_link_id) 2540 { 2541 unsigned int link_id; 2542 2543 /* non-MLO, or MLD address replaced by hardware */ 2544 if (ether_addr_equal(sdata->vif.addr, addr)) 2545 return true; 2546 2547 if (!ieee80211_vif_is_mld(&sdata->vif)) 2548 return false; 2549 2550 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) { 2551 struct ieee80211_bss_conf *conf; 2552 2553 conf = rcu_dereference(sdata->vif.link_conf[link_id]); 2554 2555 if (!conf) 2556 continue; 2557 if (ether_addr_equal(conf->addr, addr)) { 2558 if (out_link_id) 2559 *out_link_id = link_id; 2560 return true; 2561 } 2562 } 2563 2564 return false; 2565 } 2566 2567 /* 2568 * requires that rx->skb is a frame with ethernet header 2569 */ 2570 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 2571 { 2572 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 2573 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 2574 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2575 2576 /* 2577 * Allow EAPOL frames to us/the PAE group address regardless of 2578 * whether the frame was encrypted or not, and always disallow 2579 * all other destination addresses for them. 2580 */ 2581 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol)) 2582 return ieee80211_is_our_addr(rx->sdata, ehdr->h_dest, NULL) || 2583 ether_addr_equal(ehdr->h_dest, pae_group_addr); 2584 2585 if (ieee80211_802_1x_port_control(rx) || 2586 ieee80211_drop_unencrypted(rx, fc)) 2587 return false; 2588 2589 return true; 2590 } 2591 2592 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb, 2593 struct ieee80211_rx_data *rx) 2594 { 2595 struct ieee80211_sub_if_data *sdata = rx->sdata; 2596 struct net_device *dev = sdata->dev; 2597 2598 if (unlikely((skb->protocol == sdata->control_port_protocol || 2599 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) && 2600 !sdata->control_port_no_preauth)) && 2601 sdata->control_port_over_nl80211)) { 2602 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2603 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED); 2604 2605 cfg80211_rx_control_port(dev, skb, noencrypt, rx->link_id); 2606 dev_kfree_skb(skb); 2607 } else { 2608 struct ethhdr *ehdr = (void *)skb_mac_header(skb); 2609 2610 memset(skb->cb, 0, sizeof(skb->cb)); 2611 2612 /* 2613 * 802.1X over 802.11 requires that the authenticator address 2614 * be used for EAPOL frames. However, 802.1X allows the use of 2615 * the PAE group address instead. If the interface is part of 2616 * a bridge and we pass the frame with the PAE group address, 2617 * then the bridge will forward it to the network (even if the 2618 * client was not associated yet), which isn't supposed to 2619 * happen. 2620 * To avoid that, rewrite the destination address to our own 2621 * address, so that the authenticator (e.g. hostapd) will see 2622 * the frame, but bridge won't forward it anywhere else. Note 2623 * that due to earlier filtering, the only other address can 2624 * be the PAE group address, unless the hardware allowed them 2625 * through in 802.3 offloaded mode. 2626 */ 2627 if (unlikely(skb->protocol == sdata->control_port_protocol && 2628 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr))) 2629 ether_addr_copy(ehdr->h_dest, sdata->vif.addr); 2630 2631 /* deliver to local stack */ 2632 if (rx->list) 2633 list_add_tail(&skb->list, rx->list); 2634 else 2635 netif_receive_skb(skb); 2636 } 2637 } 2638 2639 /* 2640 * requires that rx->skb is a frame with ethernet header 2641 */ 2642 static void 2643 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2644 { 2645 struct ieee80211_sub_if_data *sdata = rx->sdata; 2646 struct net_device *dev = sdata->dev; 2647 struct sk_buff *skb, *xmit_skb; 2648 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2649 struct sta_info *dsta; 2650 2651 skb = rx->skb; 2652 xmit_skb = NULL; 2653 2654 dev_sw_netstats_rx_add(dev, skb->len); 2655 2656 if (rx->sta) { 2657 /* The seqno index has the same property as needed 2658 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 2659 * for non-QoS-data frames. Here we know it's a data 2660 * frame, so count MSDUs. 2661 */ 2662 u64_stats_update_begin(&rx->link_sta->rx_stats.syncp); 2663 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++; 2664 u64_stats_update_end(&rx->link_sta->rx_stats.syncp); 2665 } 2666 2667 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2668 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2669 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2670 ehdr->h_proto != rx->sdata->control_port_protocol && 2671 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2672 if (is_multicast_ether_addr(ehdr->h_dest) && 2673 ieee80211_vif_get_num_mcast_if(sdata) != 0) { 2674 /* 2675 * send multicast frames both to higher layers in 2676 * local net stack and back to the wireless medium 2677 */ 2678 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2679 if (!xmit_skb) 2680 net_info_ratelimited("%s: failed to clone multicast frame\n", 2681 dev->name); 2682 } else if (!is_multicast_ether_addr(ehdr->h_dest) && 2683 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) { 2684 dsta = sta_info_get(sdata, ehdr->h_dest); 2685 if (dsta) { 2686 /* 2687 * The destination station is associated to 2688 * this AP (in this VLAN), so send the frame 2689 * directly to it and do not pass it to local 2690 * net stack. 2691 */ 2692 xmit_skb = skb; 2693 skb = NULL; 2694 } 2695 } 2696 } 2697 2698 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2699 if (skb) { 2700 /* 'align' will only take the values 0 or 2 here since all 2701 * frames are required to be aligned to 2-byte boundaries 2702 * when being passed to mac80211; the code here works just 2703 * as well if that isn't true, but mac80211 assumes it can 2704 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2705 */ 2706 int align; 2707 2708 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2709 if (align) { 2710 if (WARN_ON(skb_headroom(skb) < 3)) { 2711 dev_kfree_skb(skb); 2712 skb = NULL; 2713 } else { 2714 u8 *data = skb->data; 2715 size_t len = skb_headlen(skb); 2716 skb->data -= align; 2717 memmove(skb->data, data, len); 2718 skb_set_tail_pointer(skb, len); 2719 } 2720 } 2721 } 2722 #endif 2723 2724 if (skb) { 2725 skb->protocol = eth_type_trans(skb, dev); 2726 ieee80211_deliver_skb_to_local_stack(skb, rx); 2727 } 2728 2729 if (xmit_skb) { 2730 /* 2731 * Send to wireless media and increase priority by 256 to 2732 * keep the received priority instead of reclassifying 2733 * the frame (see cfg80211_classify8021d). 2734 */ 2735 xmit_skb->priority += 256; 2736 xmit_skb->protocol = htons(ETH_P_802_3); 2737 skb_reset_network_header(xmit_skb); 2738 skb_reset_mac_header(xmit_skb); 2739 dev_queue_xmit(xmit_skb); 2740 } 2741 } 2742 2743 #ifdef CONFIG_MAC80211_MESH 2744 static bool 2745 ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata, 2746 struct sk_buff *skb, int hdrlen) 2747 { 2748 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2749 struct ieee80211_mesh_fast_tx *entry = NULL; 2750 struct ieee80211s_hdr *mesh_hdr; 2751 struct tid_ampdu_tx *tid_tx; 2752 struct sta_info *sta; 2753 struct ethhdr eth; 2754 u8 tid; 2755 2756 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth)); 2757 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2758 entry = mesh_fast_tx_get(sdata, mesh_hdr->eaddr1); 2759 else if (!(mesh_hdr->flags & MESH_FLAGS_AE)) 2760 entry = mesh_fast_tx_get(sdata, skb->data); 2761 if (!entry) 2762 return false; 2763 2764 sta = rcu_dereference(entry->mpath->next_hop); 2765 if (!sta) 2766 return false; 2767 2768 if (skb_linearize(skb)) 2769 return false; 2770 2771 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; 2772 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); 2773 if (tid_tx) { 2774 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) 2775 return false; 2776 2777 if (tid_tx->timeout) 2778 tid_tx->last_tx = jiffies; 2779 } 2780 2781 ieee80211_aggr_check(sdata, sta, skb); 2782 2783 if (ieee80211_get_8023_tunnel_proto(skb->data + hdrlen, 2784 &skb->protocol)) 2785 hdrlen += ETH_ALEN; 2786 else 2787 skb->protocol = htons(skb->len - hdrlen); 2788 skb_set_network_header(skb, hdrlen + 2); 2789 2790 skb->dev = sdata->dev; 2791 memcpy(ð, skb->data, ETH_HLEN - 2); 2792 skb_pull(skb, 2); 2793 __ieee80211_xmit_fast(sdata, sta, &entry->fast_tx, skb, tid_tx, 2794 eth.h_dest, eth.h_source); 2795 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2796 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2797 2798 return true; 2799 } 2800 #endif 2801 2802 static ieee80211_rx_result 2803 ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, 2804 struct sk_buff *skb) 2805 { 2806 #ifdef CONFIG_MAC80211_MESH 2807 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2808 struct ieee80211_local *local = sdata->local; 2809 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA; 2810 struct ieee80211_hdr hdr = { 2811 .frame_control = cpu_to_le16(fc) 2812 }; 2813 struct ieee80211_hdr *fwd_hdr; 2814 struct ieee80211s_hdr *mesh_hdr; 2815 struct ieee80211_tx_info *info; 2816 struct sk_buff *fwd_skb; 2817 struct ethhdr *eth; 2818 bool multicast; 2819 int tailroom = 0; 2820 int hdrlen, mesh_hdrlen; 2821 u8 *qos; 2822 2823 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2824 return RX_CONTINUE; 2825 2826 if (!pskb_may_pull(skb, sizeof(*eth) + 6)) 2827 return RX_DROP_MONITOR; 2828 2829 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth)); 2830 mesh_hdrlen = ieee80211_get_mesh_hdrlen(mesh_hdr); 2831 2832 if (!pskb_may_pull(skb, sizeof(*eth) + mesh_hdrlen)) 2833 return RX_DROP_MONITOR; 2834 2835 eth = (struct ethhdr *)skb->data; 2836 multicast = is_multicast_ether_addr(eth->h_dest); 2837 2838 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1); 2839 if (!mesh_hdr->ttl) 2840 return RX_DROP_MONITOR; 2841 2842 /* frame is in RMC, don't forward */ 2843 if (is_multicast_ether_addr(eth->h_dest) && 2844 mesh_rmc_check(sdata, eth->h_source, mesh_hdr)) 2845 return RX_DROP_MONITOR; 2846 2847 /* forward packet */ 2848 if (sdata->crypto_tx_tailroom_needed_cnt) 2849 tailroom = IEEE80211_ENCRYPT_TAILROOM; 2850 2851 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2852 struct mesh_path *mppath; 2853 char *proxied_addr; 2854 bool update = false; 2855 2856 if (multicast) 2857 proxied_addr = mesh_hdr->eaddr1; 2858 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6) 2859 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2860 proxied_addr = mesh_hdr->eaddr2; 2861 else 2862 return RX_DROP_MONITOR; 2863 2864 rcu_read_lock(); 2865 mppath = mpp_path_lookup(sdata, proxied_addr); 2866 if (!mppath) { 2867 mpp_path_add(sdata, proxied_addr, eth->h_source); 2868 } else { 2869 spin_lock_bh(&mppath->state_lock); 2870 if (!ether_addr_equal(mppath->mpp, eth->h_source)) { 2871 memcpy(mppath->mpp, eth->h_source, ETH_ALEN); 2872 update = true; 2873 } 2874 mppath->exp_time = jiffies; 2875 spin_unlock_bh(&mppath->state_lock); 2876 } 2877 2878 /* flush fast xmit cache if the address path changed */ 2879 if (update) 2880 mesh_fast_tx_flush_addr(sdata, proxied_addr); 2881 2882 rcu_read_unlock(); 2883 } 2884 2885 /* Frame has reached destination. Don't forward */ 2886 if (ether_addr_equal(sdata->vif.addr, eth->h_dest)) 2887 goto rx_accept; 2888 2889 if (!--mesh_hdr->ttl) { 2890 if (multicast) 2891 goto rx_accept; 2892 2893 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2894 return RX_DROP_MONITOR; 2895 } 2896 2897 if (!ifmsh->mshcfg.dot11MeshForwarding) { 2898 if (is_multicast_ether_addr(eth->h_dest)) 2899 goto rx_accept; 2900 2901 return RX_DROP_MONITOR; 2902 } 2903 2904 skb_set_queue_mapping(skb, ieee802_1d_to_ac[skb->priority]); 2905 2906 if (!multicast && 2907 ieee80211_rx_mesh_fast_forward(sdata, skb, mesh_hdrlen)) 2908 return RX_QUEUED; 2909 2910 ieee80211_fill_mesh_addresses(&hdr, &hdr.frame_control, 2911 eth->h_dest, eth->h_source); 2912 hdrlen = ieee80211_hdrlen(hdr.frame_control); 2913 if (multicast) { 2914 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth); 2915 2916 fwd_skb = skb_copy_expand(skb, local->tx_headroom + extra_head + 2917 IEEE80211_ENCRYPT_HEADROOM, 2918 tailroom, GFP_ATOMIC); 2919 if (!fwd_skb) 2920 goto rx_accept; 2921 } else { 2922 fwd_skb = skb; 2923 skb = NULL; 2924 2925 if (skb_cow_head(fwd_skb, hdrlen - sizeof(struct ethhdr))) 2926 return RX_DROP_U_OOM; 2927 2928 if (skb_linearize(fwd_skb)) 2929 return RX_DROP_U_OOM; 2930 } 2931 2932 fwd_hdr = skb_push(fwd_skb, hdrlen - sizeof(struct ethhdr)); 2933 memcpy(fwd_hdr, &hdr, hdrlen - 2); 2934 qos = ieee80211_get_qos_ctl(fwd_hdr); 2935 qos[0] = qos[1] = 0; 2936 2937 skb_reset_mac_header(fwd_skb); 2938 hdrlen += mesh_hdrlen; 2939 if (ieee80211_get_8023_tunnel_proto(fwd_skb->data + hdrlen, 2940 &fwd_skb->protocol)) 2941 hdrlen += ETH_ALEN; 2942 else 2943 fwd_skb->protocol = htons(fwd_skb->len - hdrlen); 2944 skb_set_network_header(fwd_skb, hdrlen + 2); 2945 2946 info = IEEE80211_SKB_CB(fwd_skb); 2947 memset(info, 0, sizeof(*info)); 2948 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING; 2949 info->control.vif = &sdata->vif; 2950 info->control.jiffies = jiffies; 2951 fwd_skb->dev = sdata->dev; 2952 if (multicast) { 2953 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2954 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2955 /* update power mode indication when forwarding */ 2956 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2957 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2958 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2959 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2960 } else { 2961 /* unable to resolve next hop */ 2962 if (sta) 2963 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2964 hdr.addr3, 0, 2965 WLAN_REASON_MESH_PATH_NOFORWARD, 2966 sta->sta.addr); 2967 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2968 kfree_skb(fwd_skb); 2969 goto rx_accept; 2970 } 2971 2972 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2973 ieee80211_add_pending_skb(local, fwd_skb); 2974 2975 rx_accept: 2976 if (!skb) 2977 return RX_QUEUED; 2978 2979 ieee80211_strip_8023_mesh_hdr(skb); 2980 #endif 2981 2982 return RX_CONTINUE; 2983 } 2984 2985 static ieee80211_rx_result debug_noinline 2986 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset) 2987 { 2988 struct net_device *dev = rx->sdata->dev; 2989 struct sk_buff *skb = rx->skb; 2990 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2991 __le16 fc = hdr->frame_control; 2992 struct sk_buff_head frame_list; 2993 ieee80211_rx_result res; 2994 struct ethhdr ethhdr; 2995 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source; 2996 2997 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 2998 check_da = NULL; 2999 check_sa = NULL; 3000 } else switch (rx->sdata->vif.type) { 3001 case NL80211_IFTYPE_AP: 3002 case NL80211_IFTYPE_AP_VLAN: 3003 check_da = NULL; 3004 break; 3005 case NL80211_IFTYPE_STATION: 3006 if (!rx->sta || 3007 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER)) 3008 check_sa = NULL; 3009 break; 3010 case NL80211_IFTYPE_MESH_POINT: 3011 check_sa = NULL; 3012 check_da = NULL; 3013 break; 3014 default: 3015 break; 3016 } 3017 3018 skb->dev = dev; 3019 __skb_queue_head_init(&frame_list); 3020 3021 if (ieee80211_data_to_8023_exthdr(skb, ðhdr, 3022 rx->sdata->vif.addr, 3023 rx->sdata->vif.type, 3024 data_offset, true)) 3025 return RX_DROP_U_BAD_AMSDU; 3026 3027 if (rx->sta->amsdu_mesh_control < 0) { 3028 s8 valid = -1; 3029 int i; 3030 3031 for (i = 0; i <= 2; i++) { 3032 if (!ieee80211_is_valid_amsdu(skb, i)) 3033 continue; 3034 3035 if (valid >= 0) { 3036 /* ambiguous */ 3037 valid = -1; 3038 break; 3039 } 3040 3041 valid = i; 3042 } 3043 3044 rx->sta->amsdu_mesh_control = valid; 3045 } 3046 3047 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 3048 rx->sdata->vif.type, 3049 rx->local->hw.extra_tx_headroom, 3050 check_da, check_sa, 3051 rx->sta->amsdu_mesh_control); 3052 3053 while (!skb_queue_empty(&frame_list)) { 3054 rx->skb = __skb_dequeue(&frame_list); 3055 3056 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3057 switch (res) { 3058 case RX_QUEUED: 3059 continue; 3060 case RX_CONTINUE: 3061 break; 3062 default: 3063 goto free; 3064 } 3065 3066 if (!ieee80211_frame_allowed(rx, fc)) 3067 goto free; 3068 3069 ieee80211_deliver_skb(rx); 3070 continue; 3071 3072 free: 3073 dev_kfree_skb(rx->skb); 3074 } 3075 3076 return RX_QUEUED; 3077 } 3078 3079 static ieee80211_rx_result debug_noinline 3080 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 3081 { 3082 struct sk_buff *skb = rx->skb; 3083 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3084 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3085 __le16 fc = hdr->frame_control; 3086 3087 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 3088 return RX_CONTINUE; 3089 3090 if (unlikely(!ieee80211_is_data(fc))) 3091 return RX_CONTINUE; 3092 3093 if (unlikely(!ieee80211_is_data_present(fc))) 3094 return RX_DROP_MONITOR; 3095 3096 if (unlikely(ieee80211_has_a4(hdr->frame_control))) { 3097 switch (rx->sdata->vif.type) { 3098 case NL80211_IFTYPE_AP_VLAN: 3099 if (!rx->sdata->u.vlan.sta) 3100 return RX_DROP_U_BAD_4ADDR; 3101 break; 3102 case NL80211_IFTYPE_STATION: 3103 if (!rx->sdata->u.mgd.use_4addr) 3104 return RX_DROP_U_BAD_4ADDR; 3105 break; 3106 case NL80211_IFTYPE_MESH_POINT: 3107 break; 3108 default: 3109 return RX_DROP_U_BAD_4ADDR; 3110 } 3111 } 3112 3113 if (is_multicast_ether_addr(hdr->addr1) || !rx->sta) 3114 return RX_DROP_U_BAD_AMSDU; 3115 3116 if (rx->key) { 3117 /* 3118 * We should not receive A-MSDUs on pre-HT connections, 3119 * and HT connections cannot use old ciphers. Thus drop 3120 * them, as in those cases we couldn't even have SPP 3121 * A-MSDUs or such. 3122 */ 3123 switch (rx->key->conf.cipher) { 3124 case WLAN_CIPHER_SUITE_WEP40: 3125 case WLAN_CIPHER_SUITE_WEP104: 3126 case WLAN_CIPHER_SUITE_TKIP: 3127 return RX_DROP_U_BAD_AMSDU_CIPHER; 3128 default: 3129 break; 3130 } 3131 } 3132 3133 return __ieee80211_rx_h_amsdu(rx, 0); 3134 } 3135 3136 static ieee80211_rx_result debug_noinline 3137 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 3138 { 3139 struct ieee80211_sub_if_data *sdata = rx->sdata; 3140 struct ieee80211_local *local = rx->local; 3141 struct net_device *dev = sdata->dev; 3142 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 3143 __le16 fc = hdr->frame_control; 3144 ieee80211_rx_result res; 3145 bool port_control; 3146 3147 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 3148 return RX_CONTINUE; 3149 3150 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 3151 return RX_DROP_MONITOR; 3152 3153 /* 3154 * Send unexpected-4addr-frame event to hostapd. For older versions, 3155 * also drop the frame to cooked monitor interfaces. 3156 */ 3157 if (ieee80211_has_a4(hdr->frame_control) && 3158 sdata->vif.type == NL80211_IFTYPE_AP) { 3159 if (rx->sta && 3160 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 3161 cfg80211_rx_unexpected_4addr_frame( 3162 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 3163 return RX_DROP_MONITOR; 3164 } 3165 3166 res = __ieee80211_data_to_8023(rx, &port_control); 3167 if (unlikely(res != RX_CONTINUE)) 3168 return res; 3169 3170 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 3171 if (res != RX_CONTINUE) 3172 return res; 3173 3174 if (!ieee80211_frame_allowed(rx, fc)) 3175 return RX_DROP_MONITOR; 3176 3177 /* directly handle TDLS channel switch requests/responses */ 3178 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 3179 cpu_to_be16(ETH_P_TDLS))) { 3180 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 3181 3182 if (pskb_may_pull(rx->skb, 3183 offsetof(struct ieee80211_tdls_data, u)) && 3184 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 3185 tf->category == WLAN_CATEGORY_TDLS && 3186 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 3187 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 3188 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS); 3189 __ieee80211_queue_skb_to_iface(sdata, rx->link_id, 3190 rx->sta, rx->skb); 3191 return RX_QUEUED; 3192 } 3193 } 3194 3195 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 3196 unlikely(port_control) && sdata->bss) { 3197 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 3198 u.ap); 3199 dev = sdata->dev; 3200 rx->sdata = sdata; 3201 } 3202 3203 rx->skb->dev = dev; 3204 3205 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && 3206 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 3207 !is_multicast_ether_addr( 3208 ((struct ethhdr *)rx->skb->data)->h_dest) && 3209 (!local->scanning && 3210 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) 3211 mod_timer(&local->dynamic_ps_timer, jiffies + 3212 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 3213 3214 ieee80211_deliver_skb(rx); 3215 3216 return RX_QUEUED; 3217 } 3218 3219 static ieee80211_rx_result debug_noinline 3220 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 3221 { 3222 struct sk_buff *skb = rx->skb; 3223 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 3224 struct tid_ampdu_rx *tid_agg_rx; 3225 u16 start_seq_num; 3226 u16 tid; 3227 3228 if (likely(!ieee80211_is_ctl(bar->frame_control))) 3229 return RX_CONTINUE; 3230 3231 if (ieee80211_is_back_req(bar->frame_control)) { 3232 struct { 3233 __le16 control, start_seq_num; 3234 } __packed bar_data; 3235 struct ieee80211_event event = { 3236 .type = BAR_RX_EVENT, 3237 }; 3238 3239 if (!rx->sta) 3240 return RX_DROP_MONITOR; 3241 3242 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 3243 &bar_data, sizeof(bar_data))) 3244 return RX_DROP_MONITOR; 3245 3246 tid = le16_to_cpu(bar_data.control) >> 12; 3247 3248 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) && 3249 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg)) 3250 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid, 3251 WLAN_BACK_RECIPIENT, 3252 WLAN_REASON_QSTA_REQUIRE_SETUP); 3253 3254 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 3255 if (!tid_agg_rx) 3256 return RX_DROP_MONITOR; 3257 3258 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 3259 event.u.ba.tid = tid; 3260 event.u.ba.ssn = start_seq_num; 3261 event.u.ba.sta = &rx->sta->sta; 3262 3263 /* reset session timer */ 3264 if (tid_agg_rx->timeout) 3265 mod_timer(&tid_agg_rx->session_timer, 3266 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 3267 3268 spin_lock(&tid_agg_rx->reorder_lock); 3269 /* release stored frames up to start of BAR */ 3270 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 3271 start_seq_num, frames); 3272 spin_unlock(&tid_agg_rx->reorder_lock); 3273 3274 drv_event_callback(rx->local, rx->sdata, &event); 3275 3276 kfree_skb(skb); 3277 return RX_QUEUED; 3278 } 3279 3280 /* 3281 * After this point, we only want management frames, 3282 * so we can drop all remaining control frames to 3283 * cooked monitor interfaces. 3284 */ 3285 return RX_DROP_MONITOR; 3286 } 3287 3288 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 3289 struct ieee80211_mgmt *mgmt, 3290 size_t len) 3291 { 3292 struct ieee80211_local *local = sdata->local; 3293 struct sk_buff *skb; 3294 struct ieee80211_mgmt *resp; 3295 3296 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 3297 /* Not to own unicast address */ 3298 return; 3299 } 3300 3301 if (!ether_addr_equal(mgmt->sa, sdata->deflink.u.mgd.bssid) || 3302 !ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) { 3303 /* Not from the current AP or not associated yet. */ 3304 return; 3305 } 3306 3307 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 3308 /* Too short SA Query request frame */ 3309 return; 3310 } 3311 3312 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 3313 if (skb == NULL) 3314 return; 3315 3316 skb_reserve(skb, local->hw.extra_tx_headroom); 3317 resp = skb_put_zero(skb, 24); 3318 memcpy(resp->da, mgmt->sa, ETH_ALEN); 3319 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 3320 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN); 3321 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 3322 IEEE80211_STYPE_ACTION); 3323 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 3324 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 3325 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 3326 memcpy(resp->u.action.u.sa_query.trans_id, 3327 mgmt->u.action.u.sa_query.trans_id, 3328 WLAN_SA_QUERY_TR_ID_LEN); 3329 3330 ieee80211_tx_skb(sdata, skb); 3331 } 3332 3333 static void 3334 ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx) 3335 { 3336 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3337 const struct element *ie; 3338 size_t baselen; 3339 3340 if (!wiphy_ext_feature_isset(rx->local->hw.wiphy, 3341 NL80211_EXT_FEATURE_BSS_COLOR)) 3342 return; 3343 3344 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION)) 3345 return; 3346 3347 if (rx->sdata->vif.bss_conf.csa_active) 3348 return; 3349 3350 baselen = mgmt->u.beacon.variable - rx->skb->data; 3351 if (baselen > rx->skb->len) 3352 return; 3353 3354 ie = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, 3355 mgmt->u.beacon.variable, 3356 rx->skb->len - baselen); 3357 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) && 3358 ie->datalen >= ieee80211_he_oper_size(ie->data + 1)) { 3359 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf; 3360 const struct ieee80211_he_operation *he_oper; 3361 u8 color; 3362 3363 he_oper = (void *)(ie->data + 1); 3364 if (le32_get_bits(he_oper->he_oper_params, 3365 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED)) 3366 return; 3367 3368 color = le32_get_bits(he_oper->he_oper_params, 3369 IEEE80211_HE_OPERATION_BSS_COLOR_MASK); 3370 if (color == bss_conf->he_bss_color.color) 3371 ieee80211_obss_color_collision_notify(&rx->sdata->vif, 3372 BIT_ULL(color), 3373 GFP_ATOMIC); 3374 } 3375 } 3376 3377 static ieee80211_rx_result debug_noinline 3378 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 3379 { 3380 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3381 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3382 3383 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) 3384 return RX_CONTINUE; 3385 3386 /* 3387 * From here on, look only at management frames. 3388 * Data and control frames are already handled, 3389 * and unknown (reserved) frames are useless. 3390 */ 3391 if (rx->skb->len < 24) 3392 return RX_DROP_MONITOR; 3393 3394 if (!ieee80211_is_mgmt(mgmt->frame_control)) 3395 return RX_DROP_MONITOR; 3396 3397 /* drop too small action frames */ 3398 if (ieee80211_is_action(mgmt->frame_control) && 3399 rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 3400 return RX_DROP_U_RUNT_ACTION; 3401 3402 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 3403 ieee80211_is_beacon(mgmt->frame_control) && 3404 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 3405 int sig = 0; 3406 3407 /* sw bss color collision detection */ 3408 ieee80211_rx_check_bss_color_collision(rx); 3409 3410 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3411 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3412 sig = status->signal; 3413 3414 cfg80211_report_obss_beacon_khz(rx->local->hw.wiphy, 3415 rx->skb->data, rx->skb->len, 3416 ieee80211_rx_status_to_khz(status), 3417 sig); 3418 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 3419 } 3420 3421 return ieee80211_drop_unencrypted_mgmt(rx); 3422 } 3423 3424 static bool 3425 ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx) 3426 { 3427 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data; 3428 struct ieee80211_sub_if_data *sdata = rx->sdata; 3429 3430 /* TWT actions are only supported in AP for the moment */ 3431 if (sdata->vif.type != NL80211_IFTYPE_AP) 3432 return false; 3433 3434 if (!rx->local->ops->add_twt_setup) 3435 return false; 3436 3437 if (!sdata->vif.bss_conf.twt_responder) 3438 return false; 3439 3440 if (!rx->sta) 3441 return false; 3442 3443 switch (mgmt->u.action.u.s1g.action_code) { 3444 case WLAN_S1G_TWT_SETUP: { 3445 struct ieee80211_twt_setup *twt; 3446 3447 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3448 1 + /* action code */ 3449 sizeof(struct ieee80211_twt_setup) + 3450 2 /* TWT req_type agrt */) 3451 break; 3452 3453 twt = (void *)mgmt->u.action.u.s1g.variable; 3454 if (twt->element_id != WLAN_EID_S1G_TWT) 3455 break; 3456 3457 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 3458 4 + /* action code + token + tlv */ 3459 twt->length) 3460 break; 3461 3462 return true; /* queue the frame */ 3463 } 3464 case WLAN_S1G_TWT_TEARDOWN: 3465 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2) 3466 break; 3467 3468 return true; /* queue the frame */ 3469 default: 3470 break; 3471 } 3472 3473 return false; 3474 } 3475 3476 static ieee80211_rx_result debug_noinline 3477 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 3478 { 3479 struct ieee80211_local *local = rx->local; 3480 struct ieee80211_sub_if_data *sdata = rx->sdata; 3481 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3482 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3483 int len = rx->skb->len; 3484 3485 if (!ieee80211_is_action(mgmt->frame_control)) 3486 return RX_CONTINUE; 3487 3488 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 3489 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 3490 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 3491 return RX_DROP_U_ACTION_UNKNOWN_SRC; 3492 3493 switch (mgmt->u.action.category) { 3494 case WLAN_CATEGORY_HT: 3495 /* reject HT action frames from stations not supporting HT */ 3496 if (!rx->link_sta->pub->ht_cap.ht_supported) 3497 goto invalid; 3498 3499 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3500 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3501 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3502 sdata->vif.type != NL80211_IFTYPE_AP && 3503 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3504 break; 3505 3506 /* verify action & smps_control/chanwidth are present */ 3507 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3508 goto invalid; 3509 3510 switch (mgmt->u.action.u.ht_smps.action) { 3511 case WLAN_HT_ACTION_SMPS: { 3512 struct ieee80211_supported_band *sband; 3513 enum ieee80211_smps_mode smps_mode; 3514 struct sta_opmode_info sta_opmode = {}; 3515 3516 if (sdata->vif.type != NL80211_IFTYPE_AP && 3517 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 3518 goto handled; 3519 3520 /* convert to HT capability */ 3521 switch (mgmt->u.action.u.ht_smps.smps_control) { 3522 case WLAN_HT_SMPS_CONTROL_DISABLED: 3523 smps_mode = IEEE80211_SMPS_OFF; 3524 break; 3525 case WLAN_HT_SMPS_CONTROL_STATIC: 3526 smps_mode = IEEE80211_SMPS_STATIC; 3527 break; 3528 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 3529 smps_mode = IEEE80211_SMPS_DYNAMIC; 3530 break; 3531 default: 3532 goto invalid; 3533 } 3534 3535 /* if no change do nothing */ 3536 if (rx->link_sta->pub->smps_mode == smps_mode) 3537 goto handled; 3538 rx->link_sta->pub->smps_mode = smps_mode; 3539 sta_opmode.smps_mode = 3540 ieee80211_smps_mode_to_smps_mode(smps_mode); 3541 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED; 3542 3543 sband = rx->local->hw.wiphy->bands[status->band]; 3544 3545 rate_control_rate_update(local, sband, rx->sta, 0, 3546 IEEE80211_RC_SMPS_CHANGED); 3547 cfg80211_sta_opmode_change_notify(sdata->dev, 3548 rx->sta->addr, 3549 &sta_opmode, 3550 GFP_ATOMIC); 3551 goto handled; 3552 } 3553 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 3554 struct ieee80211_supported_band *sband; 3555 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 3556 enum ieee80211_sta_rx_bandwidth max_bw, new_bw; 3557 struct sta_opmode_info sta_opmode = {}; 3558 3559 /* If it doesn't support 40 MHz it can't change ... */ 3560 if (!(rx->link_sta->pub->ht_cap.cap & 3561 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 3562 goto handled; 3563 3564 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 3565 max_bw = IEEE80211_STA_RX_BW_20; 3566 else 3567 max_bw = ieee80211_sta_cap_rx_bw(rx->link_sta); 3568 3569 /* set cur_max_bandwidth and recalc sta bw */ 3570 rx->link_sta->cur_max_bandwidth = max_bw; 3571 new_bw = ieee80211_sta_cur_vht_bw(rx->link_sta); 3572 3573 if (rx->link_sta->pub->bandwidth == new_bw) 3574 goto handled; 3575 3576 rx->link_sta->pub->bandwidth = new_bw; 3577 sband = rx->local->hw.wiphy->bands[status->band]; 3578 sta_opmode.bw = 3579 ieee80211_sta_rx_bw_to_chan_width(rx->link_sta); 3580 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED; 3581 3582 rate_control_rate_update(local, sband, rx->sta, 0, 3583 IEEE80211_RC_BW_CHANGED); 3584 cfg80211_sta_opmode_change_notify(sdata->dev, 3585 rx->sta->addr, 3586 &sta_opmode, 3587 GFP_ATOMIC); 3588 goto handled; 3589 } 3590 default: 3591 goto invalid; 3592 } 3593 3594 break; 3595 case WLAN_CATEGORY_PUBLIC: 3596 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3597 goto invalid; 3598 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3599 break; 3600 if (!rx->sta) 3601 break; 3602 if (!ether_addr_equal(mgmt->bssid, sdata->deflink.u.mgd.bssid)) 3603 break; 3604 if (mgmt->u.action.u.ext_chan_switch.action_code != 3605 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 3606 break; 3607 if (len < offsetof(struct ieee80211_mgmt, 3608 u.action.u.ext_chan_switch.variable)) 3609 goto invalid; 3610 goto queue; 3611 case WLAN_CATEGORY_VHT: 3612 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3613 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3614 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3615 sdata->vif.type != NL80211_IFTYPE_AP && 3616 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3617 break; 3618 3619 /* verify action code is present */ 3620 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3621 goto invalid; 3622 3623 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 3624 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 3625 /* verify opmode is present */ 3626 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 3627 goto invalid; 3628 goto queue; 3629 } 3630 case WLAN_VHT_ACTION_GROUPID_MGMT: { 3631 if (len < IEEE80211_MIN_ACTION_SIZE + 25) 3632 goto invalid; 3633 goto queue; 3634 } 3635 default: 3636 break; 3637 } 3638 break; 3639 case WLAN_CATEGORY_BACK: 3640 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3641 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 3642 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 3643 sdata->vif.type != NL80211_IFTYPE_AP && 3644 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3645 break; 3646 3647 /* verify action_code is present */ 3648 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3649 break; 3650 3651 switch (mgmt->u.action.u.addba_req.action_code) { 3652 case WLAN_ACTION_ADDBA_REQ: 3653 if (len < (IEEE80211_MIN_ACTION_SIZE + 3654 sizeof(mgmt->u.action.u.addba_req))) 3655 goto invalid; 3656 break; 3657 case WLAN_ACTION_ADDBA_RESP: 3658 if (len < (IEEE80211_MIN_ACTION_SIZE + 3659 sizeof(mgmt->u.action.u.addba_resp))) 3660 goto invalid; 3661 break; 3662 case WLAN_ACTION_DELBA: 3663 if (len < (IEEE80211_MIN_ACTION_SIZE + 3664 sizeof(mgmt->u.action.u.delba))) 3665 goto invalid; 3666 break; 3667 default: 3668 goto invalid; 3669 } 3670 3671 goto queue; 3672 case WLAN_CATEGORY_SPECTRUM_MGMT: 3673 /* verify action_code is present */ 3674 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 3675 break; 3676 3677 switch (mgmt->u.action.u.measurement.action_code) { 3678 case WLAN_ACTION_SPCT_MSR_REQ: 3679 if (status->band != NL80211_BAND_5GHZ) 3680 break; 3681 3682 if (len < (IEEE80211_MIN_ACTION_SIZE + 3683 sizeof(mgmt->u.action.u.measurement))) 3684 break; 3685 3686 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3687 break; 3688 3689 ieee80211_process_measurement_req(sdata, mgmt, len); 3690 goto handled; 3691 case WLAN_ACTION_SPCT_CHL_SWITCH: { 3692 u8 *bssid; 3693 if (len < (IEEE80211_MIN_ACTION_SIZE + 3694 sizeof(mgmt->u.action.u.chan_switch))) 3695 break; 3696 3697 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3698 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3699 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3700 break; 3701 3702 if (sdata->vif.type == NL80211_IFTYPE_STATION) 3703 bssid = sdata->deflink.u.mgd.bssid; 3704 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 3705 bssid = sdata->u.ibss.bssid; 3706 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 3707 bssid = mgmt->sa; 3708 else 3709 break; 3710 3711 if (!ether_addr_equal(mgmt->bssid, bssid)) 3712 break; 3713 3714 goto queue; 3715 } 3716 } 3717 break; 3718 case WLAN_CATEGORY_SELF_PROTECTED: 3719 if (len < (IEEE80211_MIN_ACTION_SIZE + 3720 sizeof(mgmt->u.action.u.self_prot.action_code))) 3721 break; 3722 3723 switch (mgmt->u.action.u.self_prot.action_code) { 3724 case WLAN_SP_MESH_PEERING_OPEN: 3725 case WLAN_SP_MESH_PEERING_CLOSE: 3726 case WLAN_SP_MESH_PEERING_CONFIRM: 3727 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3728 goto invalid; 3729 if (sdata->u.mesh.user_mpm) 3730 /* userspace handles this frame */ 3731 break; 3732 goto queue; 3733 case WLAN_SP_MGK_INFORM: 3734 case WLAN_SP_MGK_ACK: 3735 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3736 goto invalid; 3737 break; 3738 } 3739 break; 3740 case WLAN_CATEGORY_MESH_ACTION: 3741 if (len < (IEEE80211_MIN_ACTION_SIZE + 3742 sizeof(mgmt->u.action.u.mesh_action.action_code))) 3743 break; 3744 3745 if (!ieee80211_vif_is_mesh(&sdata->vif)) 3746 break; 3747 if (mesh_action_is_path_sel(mgmt) && 3748 !mesh_path_sel_is_hwmp(sdata)) 3749 break; 3750 goto queue; 3751 case WLAN_CATEGORY_S1G: 3752 if (len < offsetofend(typeof(*mgmt), 3753 u.action.u.s1g.action_code)) 3754 break; 3755 3756 switch (mgmt->u.action.u.s1g.action_code) { 3757 case WLAN_S1G_TWT_SETUP: 3758 case WLAN_S1G_TWT_TEARDOWN: 3759 if (ieee80211_process_rx_twt_action(rx)) 3760 goto queue; 3761 break; 3762 default: 3763 break; 3764 } 3765 break; 3766 } 3767 3768 return RX_CONTINUE; 3769 3770 invalid: 3771 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 3772 /* will return in the next handlers */ 3773 return RX_CONTINUE; 3774 3775 handled: 3776 if (rx->sta) 3777 rx->link_sta->rx_stats.packets++; 3778 dev_kfree_skb(rx->skb); 3779 return RX_QUEUED; 3780 3781 queue: 3782 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3783 return RX_QUEUED; 3784 } 3785 3786 static ieee80211_rx_result debug_noinline 3787 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 3788 { 3789 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3790 struct cfg80211_rx_info info = { 3791 .freq = ieee80211_rx_status_to_khz(status), 3792 .buf = rx->skb->data, 3793 .len = rx->skb->len, 3794 .link_id = rx->link_id, 3795 .have_link_id = rx->link_id >= 0, 3796 }; 3797 3798 /* skip known-bad action frames and return them in the next handler */ 3799 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 3800 return RX_CONTINUE; 3801 3802 /* 3803 * Getting here means the kernel doesn't know how to handle 3804 * it, but maybe userspace does ... include returned frames 3805 * so userspace can register for those to know whether ones 3806 * it transmitted were processed or returned. 3807 */ 3808 3809 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) && 3810 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) 3811 info.sig_dbm = status->signal; 3812 3813 if (ieee80211_is_timing_measurement(rx->skb) || 3814 ieee80211_is_ftm(rx->skb)) { 3815 info.rx_tstamp = ktime_to_ns(skb_hwtstamps(rx->skb)->hwtstamp); 3816 info.ack_tstamp = ktime_to_ns(status->ack_tx_hwtstamp); 3817 } 3818 3819 if (cfg80211_rx_mgmt_ext(&rx->sdata->wdev, &info)) { 3820 if (rx->sta) 3821 rx->link_sta->rx_stats.packets++; 3822 dev_kfree_skb(rx->skb); 3823 return RX_QUEUED; 3824 } 3825 3826 return RX_CONTINUE; 3827 } 3828 3829 static ieee80211_rx_result debug_noinline 3830 ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx) 3831 { 3832 struct ieee80211_sub_if_data *sdata = rx->sdata; 3833 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3834 int len = rx->skb->len; 3835 3836 if (!ieee80211_is_action(mgmt->frame_control)) 3837 return RX_CONTINUE; 3838 3839 switch (mgmt->u.action.category) { 3840 case WLAN_CATEGORY_SA_QUERY: 3841 if (len < (IEEE80211_MIN_ACTION_SIZE + 3842 sizeof(mgmt->u.action.u.sa_query))) 3843 break; 3844 3845 switch (mgmt->u.action.u.sa_query.action) { 3846 case WLAN_ACTION_SA_QUERY_REQUEST: 3847 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3848 break; 3849 ieee80211_process_sa_query_req(sdata, mgmt, len); 3850 goto handled; 3851 } 3852 break; 3853 } 3854 3855 return RX_CONTINUE; 3856 3857 handled: 3858 if (rx->sta) 3859 rx->link_sta->rx_stats.packets++; 3860 dev_kfree_skb(rx->skb); 3861 return RX_QUEUED; 3862 } 3863 3864 static ieee80211_rx_result debug_noinline 3865 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 3866 { 3867 struct ieee80211_local *local = rx->local; 3868 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 3869 struct sk_buff *nskb; 3870 struct ieee80211_sub_if_data *sdata = rx->sdata; 3871 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 3872 3873 if (!ieee80211_is_action(mgmt->frame_control)) 3874 return RX_CONTINUE; 3875 3876 /* 3877 * For AP mode, hostapd is responsible for handling any action 3878 * frames that we didn't handle, including returning unknown 3879 * ones. For all other modes we will return them to the sender, 3880 * setting the 0x80 bit in the action category, as required by 3881 * 802.11-2012 9.24.4. 3882 * Newer versions of hostapd shall also use the management frame 3883 * registration mechanisms, but older ones still use cooked 3884 * monitor interfaces so push all frames there. 3885 */ 3886 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 3887 (sdata->vif.type == NL80211_IFTYPE_AP || 3888 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 3889 return RX_DROP_MONITOR; 3890 3891 if (is_multicast_ether_addr(mgmt->da)) 3892 return RX_DROP_MONITOR; 3893 3894 /* do not return rejected action frames */ 3895 if (mgmt->u.action.category & 0x80) 3896 return RX_DROP_U_REJECTED_ACTION_RESPONSE; 3897 3898 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 3899 GFP_ATOMIC); 3900 if (nskb) { 3901 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 3902 3903 nmgmt->u.action.category |= 0x80; 3904 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 3905 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 3906 3907 memset(nskb->cb, 0, sizeof(nskb->cb)); 3908 3909 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 3910 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 3911 3912 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 3913 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 3914 IEEE80211_TX_CTL_NO_CCK_RATE; 3915 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) 3916 info->hw_queue = 3917 local->hw.offchannel_tx_hw_queue; 3918 } 3919 3920 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, -1, 3921 status->band); 3922 } 3923 dev_kfree_skb(rx->skb); 3924 return RX_QUEUED; 3925 } 3926 3927 static ieee80211_rx_result debug_noinline 3928 ieee80211_rx_h_ext(struct ieee80211_rx_data *rx) 3929 { 3930 struct ieee80211_sub_if_data *sdata = rx->sdata; 3931 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 3932 3933 if (!ieee80211_is_ext(hdr->frame_control)) 3934 return RX_CONTINUE; 3935 3936 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3937 return RX_DROP_MONITOR; 3938 3939 /* for now only beacons are ext, so queue them */ 3940 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3941 3942 return RX_QUEUED; 3943 } 3944 3945 static ieee80211_rx_result debug_noinline 3946 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 3947 { 3948 struct ieee80211_sub_if_data *sdata = rx->sdata; 3949 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 3950 __le16 stype; 3951 3952 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 3953 3954 if (!ieee80211_vif_is_mesh(&sdata->vif) && 3955 sdata->vif.type != NL80211_IFTYPE_ADHOC && 3956 sdata->vif.type != NL80211_IFTYPE_OCB && 3957 sdata->vif.type != NL80211_IFTYPE_STATION) 3958 return RX_DROP_MONITOR; 3959 3960 switch (stype) { 3961 case cpu_to_le16(IEEE80211_STYPE_AUTH): 3962 case cpu_to_le16(IEEE80211_STYPE_BEACON): 3963 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 3964 /* process for all: mesh, mlme, ibss */ 3965 break; 3966 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 3967 if (is_multicast_ether_addr(mgmt->da) && 3968 !is_broadcast_ether_addr(mgmt->da)) 3969 return RX_DROP_MONITOR; 3970 3971 /* process only for station/IBSS */ 3972 if (sdata->vif.type != NL80211_IFTYPE_STATION && 3973 sdata->vif.type != NL80211_IFTYPE_ADHOC) 3974 return RX_DROP_MONITOR; 3975 break; 3976 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 3977 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 3978 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 3979 if (is_multicast_ether_addr(mgmt->da) && 3980 !is_broadcast_ether_addr(mgmt->da)) 3981 return RX_DROP_MONITOR; 3982 3983 /* process only for station */ 3984 if (sdata->vif.type != NL80211_IFTYPE_STATION) 3985 return RX_DROP_MONITOR; 3986 break; 3987 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 3988 /* process only for ibss and mesh */ 3989 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 3990 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 3991 return RX_DROP_MONITOR; 3992 break; 3993 default: 3994 return RX_DROP_MONITOR; 3995 } 3996 3997 ieee80211_queue_skb_to_iface(sdata, rx->link_id, rx->sta, rx->skb); 3998 3999 return RX_QUEUED; 4000 } 4001 4002 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 4003 struct ieee80211_rate *rate, 4004 ieee80211_rx_result reason) 4005 { 4006 struct ieee80211_sub_if_data *sdata; 4007 struct ieee80211_local *local = rx->local; 4008 struct sk_buff *skb = rx->skb, *skb2; 4009 struct net_device *prev_dev = NULL; 4010 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4011 int needed_headroom; 4012 4013 /* 4014 * If cooked monitor has been processed already, then 4015 * don't do it again. If not, set the flag. 4016 */ 4017 if (rx->flags & IEEE80211_RX_CMNTR) 4018 goto out_free_skb; 4019 rx->flags |= IEEE80211_RX_CMNTR; 4020 4021 /* If there are no cooked monitor interfaces, just free the SKB */ 4022 if (!local->cooked_mntrs) 4023 goto out_free_skb; 4024 4025 /* room for the radiotap header based on driver features */ 4026 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 4027 4028 if (skb_headroom(skb) < needed_headroom && 4029 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 4030 goto out_free_skb; 4031 4032 /* prepend radiotap information */ 4033 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 4034 false); 4035 4036 skb_reset_mac_header(skb); 4037 skb->ip_summed = CHECKSUM_UNNECESSARY; 4038 skb->pkt_type = PACKET_OTHERHOST; 4039 skb->protocol = htons(ETH_P_802_2); 4040 4041 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 4042 if (!ieee80211_sdata_running(sdata)) 4043 continue; 4044 4045 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 4046 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES)) 4047 continue; 4048 4049 if (prev_dev) { 4050 skb2 = skb_clone(skb, GFP_ATOMIC); 4051 if (skb2) { 4052 skb2->dev = prev_dev; 4053 netif_receive_skb(skb2); 4054 } 4055 } 4056 4057 prev_dev = sdata->dev; 4058 dev_sw_netstats_rx_add(sdata->dev, skb->len); 4059 } 4060 4061 if (prev_dev) { 4062 skb->dev = prev_dev; 4063 netif_receive_skb(skb); 4064 return; 4065 } 4066 4067 out_free_skb: 4068 kfree_skb_reason(skb, (__force u32)reason); 4069 } 4070 4071 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 4072 ieee80211_rx_result res) 4073 { 4074 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4075 struct ieee80211_supported_band *sband; 4076 struct ieee80211_rate *rate = NULL; 4077 4078 if (res == RX_QUEUED) { 4079 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 4080 return; 4081 } 4082 4083 if (res != RX_CONTINUE) { 4084 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 4085 if (rx->sta) 4086 rx->link_sta->rx_stats.dropped++; 4087 } 4088 4089 if (u32_get_bits((__force u32)res, SKB_DROP_REASON_SUBSYS_MASK) == 4090 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) { 4091 kfree_skb_reason(rx->skb, (__force u32)res); 4092 return; 4093 } 4094 4095 sband = rx->local->hw.wiphy->bands[status->band]; 4096 if (status->encoding == RX_ENC_LEGACY) 4097 rate = &sband->bitrates[status->rate_idx]; 4098 4099 ieee80211_rx_cooked_monitor(rx, rate, res); 4100 } 4101 4102 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 4103 struct sk_buff_head *frames) 4104 { 4105 ieee80211_rx_result res = RX_DROP_MONITOR; 4106 struct sk_buff *skb; 4107 4108 #define CALL_RXH(rxh) \ 4109 do { \ 4110 res = rxh(rx); \ 4111 if (res != RX_CONTINUE) \ 4112 goto rxh_next; \ 4113 } while (0) 4114 4115 /* Lock here to avoid hitting all of the data used in the RX 4116 * path (e.g. key data, station data, ...) concurrently when 4117 * a frame is released from the reorder buffer due to timeout 4118 * from the timer, potentially concurrently with RX from the 4119 * driver. 4120 */ 4121 spin_lock_bh(&rx->local->rx_path_lock); 4122 4123 while ((skb = __skb_dequeue(frames))) { 4124 /* 4125 * all the other fields are valid across frames 4126 * that belong to an aMPDU since they are on the 4127 * same TID from the same station 4128 */ 4129 rx->skb = skb; 4130 4131 if (WARN_ON_ONCE(!rx->link)) 4132 goto rxh_next; 4133 4134 CALL_RXH(ieee80211_rx_h_check_more_data); 4135 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll); 4136 CALL_RXH(ieee80211_rx_h_sta_process); 4137 CALL_RXH(ieee80211_rx_h_decrypt); 4138 CALL_RXH(ieee80211_rx_h_defragment); 4139 CALL_RXH(ieee80211_rx_h_michael_mic_verify); 4140 /* must be after MMIC verify so header is counted in MPDU mic */ 4141 CALL_RXH(ieee80211_rx_h_amsdu); 4142 CALL_RXH(ieee80211_rx_h_data); 4143 4144 /* special treatment -- needs the queue */ 4145 res = ieee80211_rx_h_ctrl(rx, frames); 4146 if (res != RX_CONTINUE) 4147 goto rxh_next; 4148 4149 CALL_RXH(ieee80211_rx_h_mgmt_check); 4150 CALL_RXH(ieee80211_rx_h_action); 4151 CALL_RXH(ieee80211_rx_h_userspace_mgmt); 4152 CALL_RXH(ieee80211_rx_h_action_post_userspace); 4153 CALL_RXH(ieee80211_rx_h_action_return); 4154 CALL_RXH(ieee80211_rx_h_ext); 4155 CALL_RXH(ieee80211_rx_h_mgmt); 4156 4157 rxh_next: 4158 ieee80211_rx_handlers_result(rx, res); 4159 4160 #undef CALL_RXH 4161 } 4162 4163 spin_unlock_bh(&rx->local->rx_path_lock); 4164 } 4165 4166 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 4167 { 4168 struct sk_buff_head reorder_release; 4169 ieee80211_rx_result res = RX_DROP_MONITOR; 4170 4171 __skb_queue_head_init(&reorder_release); 4172 4173 #define CALL_RXH(rxh) \ 4174 do { \ 4175 res = rxh(rx); \ 4176 if (res != RX_CONTINUE) \ 4177 goto rxh_next; \ 4178 } while (0) 4179 4180 CALL_RXH(ieee80211_rx_h_check_dup); 4181 CALL_RXH(ieee80211_rx_h_check); 4182 4183 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 4184 4185 ieee80211_rx_handlers(rx, &reorder_release); 4186 return; 4187 4188 rxh_next: 4189 ieee80211_rx_handlers_result(rx, res); 4190 4191 #undef CALL_RXH 4192 } 4193 4194 static bool 4195 ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id) 4196 { 4197 return !!(sta->valid_links & BIT(link_id)); 4198 } 4199 4200 static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx, 4201 u8 link_id) 4202 { 4203 rx->link_id = link_id; 4204 rx->link = rcu_dereference(rx->sdata->link[link_id]); 4205 4206 if (!rx->sta) 4207 return rx->link; 4208 4209 if (!ieee80211_rx_is_valid_sta_link_id(&rx->sta->sta, link_id)) 4210 return false; 4211 4212 rx->link_sta = rcu_dereference(rx->sta->link[link_id]); 4213 4214 return rx->link && rx->link_sta; 4215 } 4216 4217 static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx, 4218 struct sta_info *sta, int link_id) 4219 { 4220 rx->link_id = link_id; 4221 rx->sta = sta; 4222 4223 if (sta) { 4224 rx->local = sta->sdata->local; 4225 if (!rx->sdata) 4226 rx->sdata = sta->sdata; 4227 rx->link_sta = &sta->deflink; 4228 } else { 4229 rx->link_sta = NULL; 4230 } 4231 4232 if (link_id < 0) 4233 rx->link = &rx->sdata->deflink; 4234 else if (!ieee80211_rx_data_set_link(rx, link_id)) 4235 return false; 4236 4237 return true; 4238 } 4239 4240 /* 4241 * This function makes calls into the RX path, therefore 4242 * it has to be invoked under RCU read lock. 4243 */ 4244 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 4245 { 4246 struct sk_buff_head frames; 4247 struct ieee80211_rx_data rx = { 4248 /* This is OK -- must be QoS data frame */ 4249 .security_idx = tid, 4250 .seqno_idx = tid, 4251 }; 4252 struct tid_ampdu_rx *tid_agg_rx; 4253 int link_id = -1; 4254 4255 /* FIXME: statistics won't be right with this */ 4256 if (sta->sta.valid_links) 4257 link_id = ffs(sta->sta.valid_links) - 1; 4258 4259 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 4260 return; 4261 4262 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4263 if (!tid_agg_rx) 4264 return; 4265 4266 __skb_queue_head_init(&frames); 4267 4268 spin_lock(&tid_agg_rx->reorder_lock); 4269 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4270 spin_unlock(&tid_agg_rx->reorder_lock); 4271 4272 if (!skb_queue_empty(&frames)) { 4273 struct ieee80211_event event = { 4274 .type = BA_FRAME_TIMEOUT, 4275 .u.ba.tid = tid, 4276 .u.ba.sta = &sta->sta, 4277 }; 4278 drv_event_callback(rx.local, rx.sdata, &event); 4279 } 4280 4281 ieee80211_rx_handlers(&rx, &frames); 4282 } 4283 4284 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid, 4285 u16 ssn, u64 filtered, 4286 u16 received_mpdus) 4287 { 4288 struct ieee80211_local *local; 4289 struct sta_info *sta; 4290 struct tid_ampdu_rx *tid_agg_rx; 4291 struct sk_buff_head frames; 4292 struct ieee80211_rx_data rx = { 4293 /* This is OK -- must be QoS data frame */ 4294 .security_idx = tid, 4295 .seqno_idx = tid, 4296 }; 4297 int i, diff; 4298 4299 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS)) 4300 return; 4301 4302 __skb_queue_head_init(&frames); 4303 4304 sta = container_of(pubsta, struct sta_info, sta); 4305 4306 local = sta->sdata->local; 4307 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64, 4308 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n", 4309 local->hw.max_rx_aggregation_subframes); 4310 4311 if (!ieee80211_rx_data_set_sta(&rx, sta, -1)) 4312 return; 4313 4314 rcu_read_lock(); 4315 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 4316 if (!tid_agg_rx) 4317 goto out; 4318 4319 spin_lock_bh(&tid_agg_rx->reorder_lock); 4320 4321 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) { 4322 int release; 4323 4324 /* release all frames in the reorder buffer */ 4325 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) % 4326 IEEE80211_SN_MODULO; 4327 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, 4328 release, &frames); 4329 /* update ssn to match received ssn */ 4330 tid_agg_rx->head_seq_num = ssn; 4331 } else { 4332 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn, 4333 &frames); 4334 } 4335 4336 /* handle the case that received ssn is behind the mac ssn. 4337 * it can be tid_agg_rx->buf_size behind and still be valid */ 4338 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK; 4339 if (diff >= tid_agg_rx->buf_size) { 4340 tid_agg_rx->reorder_buf_filtered = 0; 4341 goto release; 4342 } 4343 filtered = filtered >> diff; 4344 ssn += diff; 4345 4346 /* update bitmap */ 4347 for (i = 0; i < tid_agg_rx->buf_size; i++) { 4348 int index = (ssn + i) % tid_agg_rx->buf_size; 4349 4350 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index); 4351 if (filtered & BIT_ULL(i)) 4352 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index); 4353 } 4354 4355 /* now process also frames that the filter marking released */ 4356 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 4357 4358 release: 4359 spin_unlock_bh(&tid_agg_rx->reorder_lock); 4360 4361 ieee80211_rx_handlers(&rx, &frames); 4362 4363 out: 4364 rcu_read_unlock(); 4365 } 4366 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames); 4367 4368 /* main receive path */ 4369 4370 static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr) 4371 { 4372 return ether_addr_equal(raddr, addr) || 4373 is_broadcast_ether_addr(raddr); 4374 } 4375 4376 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx) 4377 { 4378 struct ieee80211_sub_if_data *sdata = rx->sdata; 4379 struct sk_buff *skb = rx->skb; 4380 struct ieee80211_hdr *hdr = (void *)skb->data; 4381 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4382 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 4383 bool multicast = is_multicast_ether_addr(hdr->addr1) || 4384 ieee80211_is_s1g_beacon(hdr->frame_control); 4385 4386 switch (sdata->vif.type) { 4387 case NL80211_IFTYPE_STATION: 4388 if (!bssid && !sdata->u.mgd.use_4addr) 4389 return false; 4390 if (ieee80211_is_first_frag(hdr->seq_ctrl) && 4391 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta) 4392 return false; 4393 if (multicast) 4394 return true; 4395 return ieee80211_is_our_addr(sdata, hdr->addr1, &rx->link_id); 4396 case NL80211_IFTYPE_ADHOC: 4397 if (!bssid) 4398 return false; 4399 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 4400 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2) || 4401 !is_valid_ether_addr(hdr->addr2)) 4402 return false; 4403 if (ieee80211_is_beacon(hdr->frame_control)) 4404 return true; 4405 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) 4406 return false; 4407 if (!multicast && 4408 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 4409 return false; 4410 if (!rx->sta) { 4411 int rate_idx; 4412 if (status->encoding != RX_ENC_LEGACY) 4413 rate_idx = 0; /* TODO: HT/VHT rates */ 4414 else 4415 rate_idx = status->rate_idx; 4416 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 4417 BIT(rate_idx)); 4418 } 4419 return true; 4420 case NL80211_IFTYPE_OCB: 4421 if (!bssid) 4422 return false; 4423 if (!ieee80211_is_data_present(hdr->frame_control)) 4424 return false; 4425 if (!is_broadcast_ether_addr(bssid)) 4426 return false; 4427 if (!multicast && 4428 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1)) 4429 return false; 4430 if (!rx->sta) { 4431 int rate_idx; 4432 if (status->encoding != RX_ENC_LEGACY) 4433 rate_idx = 0; /* TODO: HT rates */ 4434 else 4435 rate_idx = status->rate_idx; 4436 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 4437 BIT(rate_idx)); 4438 } 4439 return true; 4440 case NL80211_IFTYPE_MESH_POINT: 4441 if (ether_addr_equal(sdata->vif.addr, hdr->addr2)) 4442 return false; 4443 if (multicast) 4444 return true; 4445 return ether_addr_equal(sdata->vif.addr, hdr->addr1); 4446 case NL80211_IFTYPE_AP_VLAN: 4447 case NL80211_IFTYPE_AP: 4448 if (!bssid) 4449 return ieee80211_is_our_addr(sdata, hdr->addr1, 4450 &rx->link_id); 4451 4452 if (!is_broadcast_ether_addr(bssid) && 4453 !ieee80211_is_our_addr(sdata, bssid, NULL)) { 4454 /* 4455 * Accept public action frames even when the 4456 * BSSID doesn't match, this is used for P2P 4457 * and location updates. Note that mac80211 4458 * itself never looks at these frames. 4459 */ 4460 if (!multicast && 4461 !ieee80211_is_our_addr(sdata, hdr->addr1, 4462 &rx->link_id)) 4463 return false; 4464 if (ieee80211_is_public_action(hdr, skb->len)) 4465 return true; 4466 return ieee80211_is_beacon(hdr->frame_control); 4467 } 4468 4469 if (!ieee80211_has_tods(hdr->frame_control)) { 4470 /* ignore data frames to TDLS-peers */ 4471 if (ieee80211_is_data(hdr->frame_control)) 4472 return false; 4473 /* ignore action frames to TDLS-peers */ 4474 if (ieee80211_is_action(hdr->frame_control) && 4475 !is_broadcast_ether_addr(bssid) && 4476 !ether_addr_equal(bssid, hdr->addr1)) 4477 return false; 4478 } 4479 4480 /* 4481 * 802.11-2016 Table 9-26 says that for data frames, A1 must be 4482 * the BSSID - we've checked that already but may have accepted 4483 * the wildcard (ff:ff:ff:ff:ff:ff). 4484 * 4485 * It also says: 4486 * The BSSID of the Data frame is determined as follows: 4487 * a) If the STA is contained within an AP or is associated 4488 * with an AP, the BSSID is the address currently in use 4489 * by the STA contained in the AP. 4490 * 4491 * So we should not accept data frames with an address that's 4492 * multicast. 4493 * 4494 * Accepting it also opens a security problem because stations 4495 * could encrypt it with the GTK and inject traffic that way. 4496 */ 4497 if (ieee80211_is_data(hdr->frame_control) && multicast) 4498 return false; 4499 4500 return true; 4501 case NL80211_IFTYPE_P2P_DEVICE: 4502 return ieee80211_is_public_action(hdr, skb->len) || 4503 ieee80211_is_probe_req(hdr->frame_control) || 4504 ieee80211_is_probe_resp(hdr->frame_control) || 4505 ieee80211_is_beacon(hdr->frame_control); 4506 case NL80211_IFTYPE_NAN: 4507 /* Currently no frames on NAN interface are allowed */ 4508 return false; 4509 default: 4510 break; 4511 } 4512 4513 WARN_ON_ONCE(1); 4514 return false; 4515 } 4516 4517 void ieee80211_check_fast_rx(struct sta_info *sta) 4518 { 4519 struct ieee80211_sub_if_data *sdata = sta->sdata; 4520 struct ieee80211_local *local = sdata->local; 4521 struct ieee80211_key *key; 4522 struct ieee80211_fast_rx fastrx = { 4523 .dev = sdata->dev, 4524 .vif_type = sdata->vif.type, 4525 .control_port_protocol = sdata->control_port_protocol, 4526 }, *old, *new = NULL; 4527 u32 offload_flags; 4528 bool set_offload = false; 4529 bool assign = false; 4530 bool offload; 4531 4532 /* use sparse to check that we don't return without updating */ 4533 __acquire(check_fast_rx); 4534 4535 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header)); 4536 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN); 4537 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header); 4538 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr); 4539 4540 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS); 4541 4542 /* fast-rx doesn't do reordering */ 4543 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && 4544 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER)) 4545 goto clear; 4546 4547 switch (sdata->vif.type) { 4548 case NL80211_IFTYPE_STATION: 4549 if (sta->sta.tdls) { 4550 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4551 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4552 fastrx.expected_ds_bits = 0; 4553 } else { 4554 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1); 4555 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3); 4556 fastrx.expected_ds_bits = 4557 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4558 } 4559 4560 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) { 4561 fastrx.expected_ds_bits |= 4562 cpu_to_le16(IEEE80211_FCTL_TODS); 4563 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4564 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4565 } 4566 4567 if (!sdata->u.mgd.powersave) 4568 break; 4569 4570 /* software powersave is a huge mess, avoid all of it */ 4571 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK)) 4572 goto clear; 4573 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && 4574 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) 4575 goto clear; 4576 break; 4577 case NL80211_IFTYPE_AP_VLAN: 4578 case NL80211_IFTYPE_AP: 4579 /* parallel-rx requires this, at least with calls to 4580 * ieee80211_sta_ps_transition() 4581 */ 4582 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS)) 4583 goto clear; 4584 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4585 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2); 4586 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS); 4587 4588 fastrx.internal_forward = 4589 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 4590 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || 4591 !sdata->u.vlan.sta); 4592 4593 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 4594 sdata->u.vlan.sta) { 4595 fastrx.expected_ds_bits |= 4596 cpu_to_le16(IEEE80211_FCTL_FROMDS); 4597 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4598 fastrx.internal_forward = 0; 4599 } 4600 4601 break; 4602 case NL80211_IFTYPE_MESH_POINT: 4603 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS | 4604 IEEE80211_FCTL_TODS); 4605 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3); 4606 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4); 4607 break; 4608 default: 4609 goto clear; 4610 } 4611 4612 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) 4613 goto clear; 4614 4615 rcu_read_lock(); 4616 key = rcu_dereference(sta->ptk[sta->ptk_idx]); 4617 if (!key) 4618 key = rcu_dereference(sdata->default_unicast_key); 4619 if (key) { 4620 switch (key->conf.cipher) { 4621 case WLAN_CIPHER_SUITE_TKIP: 4622 /* we don't want to deal with MMIC in fast-rx */ 4623 goto clear_rcu; 4624 case WLAN_CIPHER_SUITE_CCMP: 4625 case WLAN_CIPHER_SUITE_CCMP_256: 4626 case WLAN_CIPHER_SUITE_GCMP: 4627 case WLAN_CIPHER_SUITE_GCMP_256: 4628 break; 4629 default: 4630 /* We also don't want to deal with 4631 * WEP or cipher scheme. 4632 */ 4633 goto clear_rcu; 4634 } 4635 4636 fastrx.key = true; 4637 fastrx.icv_len = key->conf.icv_len; 4638 } 4639 4640 assign = true; 4641 clear_rcu: 4642 rcu_read_unlock(); 4643 clear: 4644 __release(check_fast_rx); 4645 4646 if (assign) 4647 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL); 4648 4649 offload_flags = get_bss_sdata(sdata)->vif.offload_flags; 4650 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED; 4651 4652 if (assign && offload) 4653 set_offload = !test_and_set_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4654 else 4655 set_offload = test_and_clear_sta_flag(sta, WLAN_STA_DECAP_OFFLOAD); 4656 4657 if (set_offload) 4658 drv_sta_set_decap_offload(local, sdata, &sta->sta, assign); 4659 4660 spin_lock_bh(&sta->lock); 4661 old = rcu_dereference_protected(sta->fast_rx, true); 4662 rcu_assign_pointer(sta->fast_rx, new); 4663 spin_unlock_bh(&sta->lock); 4664 4665 if (old) 4666 kfree_rcu(old, rcu_head); 4667 } 4668 4669 void ieee80211_clear_fast_rx(struct sta_info *sta) 4670 { 4671 struct ieee80211_fast_rx *old; 4672 4673 spin_lock_bh(&sta->lock); 4674 old = rcu_dereference_protected(sta->fast_rx, true); 4675 RCU_INIT_POINTER(sta->fast_rx, NULL); 4676 spin_unlock_bh(&sta->lock); 4677 4678 if (old) 4679 kfree_rcu(old, rcu_head); 4680 } 4681 4682 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4683 { 4684 struct ieee80211_local *local = sdata->local; 4685 struct sta_info *sta; 4686 4687 lockdep_assert_wiphy(local->hw.wiphy); 4688 4689 list_for_each_entry(sta, &local->sta_list, list) { 4690 if (sdata != sta->sdata && 4691 (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) 4692 continue; 4693 ieee80211_check_fast_rx(sta); 4694 } 4695 } 4696 4697 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata) 4698 { 4699 struct ieee80211_local *local = sdata->local; 4700 4701 lockdep_assert_wiphy(local->hw.wiphy); 4702 4703 __ieee80211_check_fast_rx_iface(sdata); 4704 } 4705 4706 static void ieee80211_rx_8023(struct ieee80211_rx_data *rx, 4707 struct ieee80211_fast_rx *fast_rx, 4708 int orig_len) 4709 { 4710 struct ieee80211_sta_rx_stats *stats; 4711 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 4712 struct sta_info *sta = rx->sta; 4713 struct link_sta_info *link_sta; 4714 struct sk_buff *skb = rx->skb; 4715 void *sa = skb->data + ETH_ALEN; 4716 void *da = skb->data; 4717 4718 if (rx->link_id >= 0) { 4719 link_sta = rcu_dereference(sta->link[rx->link_id]); 4720 if (WARN_ON_ONCE(!link_sta)) { 4721 dev_kfree_skb(rx->skb); 4722 return; 4723 } 4724 } else { 4725 link_sta = &sta->deflink; 4726 } 4727 4728 stats = &link_sta->rx_stats; 4729 if (fast_rx->uses_rss) 4730 stats = this_cpu_ptr(link_sta->pcpu_rx_stats); 4731 4732 /* statistics part of ieee80211_rx_h_sta_process() */ 4733 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 4734 stats->last_signal = status->signal; 4735 if (!fast_rx->uses_rss) 4736 ewma_signal_add(&link_sta->rx_stats_avg.signal, 4737 -status->signal); 4738 } 4739 4740 if (status->chains) { 4741 int i; 4742 4743 stats->chains = status->chains; 4744 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 4745 int signal = status->chain_signal[i]; 4746 4747 if (!(status->chains & BIT(i))) 4748 continue; 4749 4750 stats->chain_signal_last[i] = signal; 4751 if (!fast_rx->uses_rss) 4752 ewma_signal_add(&link_sta->rx_stats_avg.chain_signal[i], 4753 -signal); 4754 } 4755 } 4756 /* end of statistics */ 4757 4758 stats->last_rx = jiffies; 4759 stats->last_rate = sta_stats_encode_rate(status); 4760 4761 stats->fragments++; 4762 stats->packets++; 4763 4764 skb->dev = fast_rx->dev; 4765 4766 dev_sw_netstats_rx_add(fast_rx->dev, skb->len); 4767 4768 /* The seqno index has the same property as needed 4769 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS 4770 * for non-QoS-data frames. Here we know it's a data 4771 * frame, so count MSDUs. 4772 */ 4773 u64_stats_update_begin(&stats->syncp); 4774 stats->msdu[rx->seqno_idx]++; 4775 stats->bytes += orig_len; 4776 u64_stats_update_end(&stats->syncp); 4777 4778 if (fast_rx->internal_forward) { 4779 struct sk_buff *xmit_skb = NULL; 4780 if (is_multicast_ether_addr(da)) { 4781 xmit_skb = skb_copy(skb, GFP_ATOMIC); 4782 } else if (!ether_addr_equal(da, sa) && 4783 sta_info_get(rx->sdata, da)) { 4784 xmit_skb = skb; 4785 skb = NULL; 4786 } 4787 4788 if (xmit_skb) { 4789 /* 4790 * Send to wireless media and increase priority by 256 4791 * to keep the received priority instead of 4792 * reclassifying the frame (see cfg80211_classify8021d). 4793 */ 4794 xmit_skb->priority += 256; 4795 xmit_skb->protocol = htons(ETH_P_802_3); 4796 skb_reset_network_header(xmit_skb); 4797 skb_reset_mac_header(xmit_skb); 4798 dev_queue_xmit(xmit_skb); 4799 } 4800 4801 if (!skb) 4802 return; 4803 } 4804 4805 /* deliver to local stack */ 4806 skb->protocol = eth_type_trans(skb, fast_rx->dev); 4807 ieee80211_deliver_skb_to_local_stack(skb, rx); 4808 } 4809 4810 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx, 4811 struct ieee80211_fast_rx *fast_rx) 4812 { 4813 struct sk_buff *skb = rx->skb; 4814 struct ieee80211_hdr *hdr = (void *)skb->data; 4815 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 4816 static ieee80211_rx_result res; 4817 int orig_len = skb->len; 4818 int hdrlen = ieee80211_hdrlen(hdr->frame_control); 4819 int snap_offs = hdrlen; 4820 struct { 4821 u8 snap[sizeof(rfc1042_header)]; 4822 __be16 proto; 4823 } *payload __aligned(2); 4824 struct { 4825 u8 da[ETH_ALEN]; 4826 u8 sa[ETH_ALEN]; 4827 } addrs __aligned(2); 4828 struct ieee80211_sta_rx_stats *stats; 4829 4830 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write 4831 * to a common data structure; drivers can implement that per queue 4832 * but we don't have that information in mac80211 4833 */ 4834 if (!(status->flag & RX_FLAG_DUP_VALIDATED)) 4835 return false; 4836 4837 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED) 4838 4839 /* If using encryption, we also need to have: 4840 * - PN_VALIDATED: similar, but the implementation is tricky 4841 * - DECRYPTED: necessary for PN_VALIDATED 4842 */ 4843 if (fast_rx->key && 4844 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS) 4845 return false; 4846 4847 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 4848 return false; 4849 4850 if (unlikely(ieee80211_is_frag(hdr))) 4851 return false; 4852 4853 /* Since our interface address cannot be multicast, this 4854 * implicitly also rejects multicast frames without the 4855 * explicit check. 4856 * 4857 * We shouldn't get any *data* frames not addressed to us 4858 * (AP mode will accept multicast *management* frames), but 4859 * punting here will make it go through the full checks in 4860 * ieee80211_accept_frame(). 4861 */ 4862 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1)) 4863 return false; 4864 4865 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS | 4866 IEEE80211_FCTL_TODS)) != 4867 fast_rx->expected_ds_bits) 4868 return false; 4869 4870 /* assign the key to drop unencrypted frames (later) 4871 * and strip the IV/MIC if necessary 4872 */ 4873 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) { 4874 /* GCMP header length is the same */ 4875 snap_offs += IEEE80211_CCMP_HDR_LEN; 4876 } 4877 4878 if (!ieee80211_vif_is_mesh(&rx->sdata->vif) && 4879 !(status->rx_flags & IEEE80211_RX_AMSDU)) { 4880 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload))) 4881 return false; 4882 4883 payload = (void *)(skb->data + snap_offs); 4884 4885 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr)) 4886 return false; 4887 4888 /* Don't handle these here since they require special code. 4889 * Accept AARP and IPX even though they should come with a 4890 * bridge-tunnel header - but if we get them this way then 4891 * there's little point in discarding them. 4892 */ 4893 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) || 4894 payload->proto == fast_rx->control_port_protocol)) 4895 return false; 4896 } 4897 4898 /* after this point, don't punt to the slowpath! */ 4899 4900 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) && 4901 pskb_trim(skb, skb->len - fast_rx->icv_len)) 4902 goto drop; 4903 4904 if (rx->key && !ieee80211_has_protected(hdr->frame_control)) 4905 goto drop; 4906 4907 if (status->rx_flags & IEEE80211_RX_AMSDU) { 4908 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) != 4909 RX_QUEUED) 4910 goto drop; 4911 4912 return true; 4913 } 4914 4915 /* do the header conversion - first grab the addresses */ 4916 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs); 4917 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs); 4918 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) { 4919 skb_pull(skb, snap_offs - 2); 4920 put_unaligned_be16(skb->len - 2, skb->data); 4921 } else { 4922 skb_postpull_rcsum(skb, skb->data + snap_offs, 4923 sizeof(rfc1042_header) + 2); 4924 4925 /* remove the SNAP but leave the ethertype */ 4926 skb_pull(skb, snap_offs + sizeof(rfc1042_header)); 4927 } 4928 /* push the addresses in front */ 4929 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs)); 4930 4931 res = ieee80211_rx_mesh_data(rx->sdata, rx->sta, rx->skb); 4932 switch (res) { 4933 case RX_QUEUED: 4934 return true; 4935 case RX_CONTINUE: 4936 break; 4937 default: 4938 goto drop; 4939 } 4940 4941 ieee80211_rx_8023(rx, fast_rx, orig_len); 4942 4943 return true; 4944 drop: 4945 dev_kfree_skb(skb); 4946 4947 if (fast_rx->uses_rss) 4948 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats); 4949 else 4950 stats = &rx->link_sta->rx_stats; 4951 4952 stats->dropped++; 4953 return true; 4954 } 4955 4956 /* 4957 * This function returns whether or not the SKB 4958 * was destined for RX processing or not, which, 4959 * if consume is true, is equivalent to whether 4960 * or not the skb was consumed. 4961 */ 4962 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 4963 struct sk_buff *skb, bool consume) 4964 { 4965 struct ieee80211_local *local = rx->local; 4966 struct ieee80211_sub_if_data *sdata = rx->sdata; 4967 struct ieee80211_hdr *hdr = (void *)skb->data; 4968 struct link_sta_info *link_sta = rx->link_sta; 4969 struct ieee80211_link_data *link = rx->link; 4970 4971 rx->skb = skb; 4972 4973 /* See if we can do fast-rx; if we have to copy we already lost, 4974 * so punt in that case. We should never have to deliver a data 4975 * frame to multiple interfaces anyway. 4976 * 4977 * We skip the ieee80211_accept_frame() call and do the necessary 4978 * checking inside ieee80211_invoke_fast_rx(). 4979 */ 4980 if (consume && rx->sta) { 4981 struct ieee80211_fast_rx *fast_rx; 4982 4983 fast_rx = rcu_dereference(rx->sta->fast_rx); 4984 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx)) 4985 return true; 4986 } 4987 4988 if (!ieee80211_accept_frame(rx)) 4989 return false; 4990 4991 if (!consume) { 4992 struct skb_shared_hwtstamps *shwt; 4993 4994 rx->skb = skb_copy(skb, GFP_ATOMIC); 4995 if (!rx->skb) { 4996 if (net_ratelimit()) 4997 wiphy_debug(local->hw.wiphy, 4998 "failed to copy skb for %s\n", 4999 sdata->name); 5000 return true; 5001 } 5002 5003 /* skb_copy() does not copy the hw timestamps, so copy it 5004 * explicitly 5005 */ 5006 shwt = skb_hwtstamps(rx->skb); 5007 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp; 5008 5009 /* Update the hdr pointer to the new skb for translation below */ 5010 hdr = (struct ieee80211_hdr *)rx->skb->data; 5011 } 5012 5013 if (unlikely(rx->sta && rx->sta->sta.mlo) && 5014 is_unicast_ether_addr(hdr->addr1) && 5015 !ieee80211_is_probe_resp(hdr->frame_control) && 5016 !ieee80211_is_beacon(hdr->frame_control)) { 5017 /* translate to MLD addresses */ 5018 if (ether_addr_equal(link->conf->addr, hdr->addr1)) 5019 ether_addr_copy(hdr->addr1, rx->sdata->vif.addr); 5020 if (ether_addr_equal(link_sta->addr, hdr->addr2)) 5021 ether_addr_copy(hdr->addr2, rx->sta->addr); 5022 /* translate A3 only if it's the BSSID */ 5023 if (!ieee80211_has_tods(hdr->frame_control) && 5024 !ieee80211_has_fromds(hdr->frame_control)) { 5025 if (ether_addr_equal(link_sta->addr, hdr->addr3)) 5026 ether_addr_copy(hdr->addr3, rx->sta->addr); 5027 else if (ether_addr_equal(link->conf->addr, hdr->addr3)) 5028 ether_addr_copy(hdr->addr3, rx->sdata->vif.addr); 5029 } 5030 /* not needed for A4 since it can only carry the SA */ 5031 } 5032 5033 ieee80211_invoke_rx_handlers(rx); 5034 return true; 5035 } 5036 5037 static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw, 5038 struct ieee80211_sta *pubsta, 5039 struct sk_buff *skb, 5040 struct list_head *list) 5041 { 5042 struct ieee80211_local *local = hw_to_local(hw); 5043 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5044 struct ieee80211_fast_rx *fast_rx; 5045 struct ieee80211_rx_data rx; 5046 struct sta_info *sta; 5047 int link_id = -1; 5048 5049 memset(&rx, 0, sizeof(rx)); 5050 rx.skb = skb; 5051 rx.local = local; 5052 rx.list = list; 5053 rx.link_id = -1; 5054 5055 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5056 5057 /* drop frame if too short for header */ 5058 if (skb->len < sizeof(struct ethhdr)) 5059 goto drop; 5060 5061 if (!pubsta) 5062 goto drop; 5063 5064 if (status->link_valid) 5065 link_id = status->link_id; 5066 5067 /* 5068 * TODO: Should the frame be dropped if the right link_id is not 5069 * available? Or may be it is fine in the current form to proceed with 5070 * the frame processing because with frame being in 802.3 format, 5071 * link_id is used only for stats purpose and updating the stats on 5072 * the deflink is fine? 5073 */ 5074 sta = container_of(pubsta, struct sta_info, sta); 5075 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5076 goto drop; 5077 5078 fast_rx = rcu_dereference(rx.sta->fast_rx); 5079 if (!fast_rx) 5080 goto drop; 5081 5082 ieee80211_rx_8023(&rx, fast_rx, skb->len); 5083 return; 5084 5085 drop: 5086 dev_kfree_skb(skb); 5087 } 5088 5089 static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx, 5090 struct sk_buff *skb, bool consume) 5091 { 5092 struct link_sta_info *link_sta; 5093 struct ieee80211_hdr *hdr = (void *)skb->data; 5094 struct sta_info *sta; 5095 int link_id = -1; 5096 5097 /* 5098 * Look up link station first, in case there's a 5099 * chance that they might have a link address that 5100 * is identical to the MLD address, that way we'll 5101 * have the link information if needed. 5102 */ 5103 link_sta = link_sta_info_get_bss(rx->sdata, hdr->addr2); 5104 if (link_sta) { 5105 sta = link_sta->sta; 5106 link_id = link_sta->link_id; 5107 } else { 5108 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5109 5110 sta = sta_info_get_bss(rx->sdata, hdr->addr2); 5111 if (status->link_valid) 5112 link_id = status->link_id; 5113 } 5114 5115 if (!ieee80211_rx_data_set_sta(rx, sta, link_id)) 5116 return false; 5117 5118 return ieee80211_prepare_and_rx_handle(rx, skb, consume); 5119 } 5120 5121 /* 5122 * This is the actual Rx frames handler. as it belongs to Rx path it must 5123 * be called with rcu_read_lock protection. 5124 */ 5125 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 5126 struct ieee80211_sta *pubsta, 5127 struct sk_buff *skb, 5128 struct list_head *list) 5129 { 5130 struct ieee80211_local *local = hw_to_local(hw); 5131 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5132 struct ieee80211_sub_if_data *sdata; 5133 struct ieee80211_hdr *hdr; 5134 __le16 fc; 5135 struct ieee80211_rx_data rx; 5136 struct ieee80211_sub_if_data *prev; 5137 struct rhlist_head *tmp; 5138 int err = 0; 5139 5140 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 5141 memset(&rx, 0, sizeof(rx)); 5142 rx.skb = skb; 5143 rx.local = local; 5144 rx.list = list; 5145 rx.link_id = -1; 5146 5147 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 5148 I802_DEBUG_INC(local->dot11ReceivedFragmentCount); 5149 5150 if (ieee80211_is_mgmt(fc)) { 5151 /* drop frame if too short for header */ 5152 if (skb->len < ieee80211_hdrlen(fc)) 5153 err = -ENOBUFS; 5154 else 5155 err = skb_linearize(skb); 5156 } else { 5157 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 5158 } 5159 5160 if (err) { 5161 dev_kfree_skb(skb); 5162 return; 5163 } 5164 5165 hdr = (struct ieee80211_hdr *)skb->data; 5166 ieee80211_parse_qos(&rx); 5167 ieee80211_verify_alignment(&rx); 5168 5169 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 5170 ieee80211_is_beacon(hdr->frame_control) || 5171 ieee80211_is_s1g_beacon(hdr->frame_control))) 5172 ieee80211_scan_rx(local, skb); 5173 5174 if (ieee80211_is_data(fc)) { 5175 struct sta_info *sta, *prev_sta; 5176 int link_id = -1; 5177 5178 if (status->link_valid) 5179 link_id = status->link_id; 5180 5181 if (pubsta) { 5182 sta = container_of(pubsta, struct sta_info, sta); 5183 if (!ieee80211_rx_data_set_sta(&rx, sta, link_id)) 5184 goto out; 5185 5186 /* 5187 * In MLO connection, fetch the link_id using addr2 5188 * when the driver does not pass link_id in status. 5189 * When the address translation is already performed by 5190 * driver/hw, the valid link_id must be passed in 5191 * status. 5192 */ 5193 5194 if (!status->link_valid && pubsta->mlo) { 5195 struct ieee80211_hdr *hdr = (void *)skb->data; 5196 struct link_sta_info *link_sta; 5197 5198 link_sta = link_sta_info_get_bss(rx.sdata, 5199 hdr->addr2); 5200 if (!link_sta) 5201 goto out; 5202 5203 ieee80211_rx_data_set_link(&rx, link_sta->link_id); 5204 } 5205 5206 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5207 return; 5208 goto out; 5209 } 5210 5211 prev_sta = NULL; 5212 5213 for_each_sta_info(local, hdr->addr2, sta, tmp) { 5214 if (!prev_sta) { 5215 prev_sta = sta; 5216 continue; 5217 } 5218 5219 rx.sdata = prev_sta->sdata; 5220 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5221 goto out; 5222 5223 if (!status->link_valid && prev_sta->sta.mlo) 5224 continue; 5225 5226 ieee80211_prepare_and_rx_handle(&rx, skb, false); 5227 5228 prev_sta = sta; 5229 } 5230 5231 if (prev_sta) { 5232 rx.sdata = prev_sta->sdata; 5233 if (!ieee80211_rx_data_set_sta(&rx, prev_sta, link_id)) 5234 goto out; 5235 5236 if (!status->link_valid && prev_sta->sta.mlo) 5237 goto out; 5238 5239 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 5240 return; 5241 goto out; 5242 } 5243 } 5244 5245 prev = NULL; 5246 5247 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 5248 if (!ieee80211_sdata_running(sdata)) 5249 continue; 5250 5251 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 5252 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 5253 continue; 5254 5255 /* 5256 * frame is destined for this interface, but if it's 5257 * not also for the previous one we handle that after 5258 * the loop to avoid copying the SKB once too much 5259 */ 5260 5261 if (!prev) { 5262 prev = sdata; 5263 continue; 5264 } 5265 5266 rx.sdata = prev; 5267 ieee80211_rx_for_interface(&rx, skb, false); 5268 5269 prev = sdata; 5270 } 5271 5272 if (prev) { 5273 rx.sdata = prev; 5274 5275 if (ieee80211_rx_for_interface(&rx, skb, true)) 5276 return; 5277 } 5278 5279 out: 5280 dev_kfree_skb(skb); 5281 } 5282 5283 /* 5284 * This is the receive path handler. It is called by a low level driver when an 5285 * 802.11 MPDU is received from the hardware. 5286 */ 5287 void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5288 struct sk_buff *skb, struct list_head *list) 5289 { 5290 struct ieee80211_local *local = hw_to_local(hw); 5291 struct ieee80211_rate *rate = NULL; 5292 struct ieee80211_supported_band *sband; 5293 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 5294 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5295 5296 WARN_ON_ONCE(softirq_count() == 0); 5297 5298 if (WARN_ON(status->band >= NUM_NL80211_BANDS)) 5299 goto drop; 5300 5301 sband = local->hw.wiphy->bands[status->band]; 5302 if (WARN_ON(!sband)) 5303 goto drop; 5304 5305 /* 5306 * If we're suspending, it is possible although not too likely 5307 * that we'd be receiving frames after having already partially 5308 * quiesced the stack. We can't process such frames then since 5309 * that might, for example, cause stations to be added or other 5310 * driver callbacks be invoked. 5311 */ 5312 if (unlikely(local->quiescing || local->suspended)) 5313 goto drop; 5314 5315 /* We might be during a HW reconfig, prevent Rx for the same reason */ 5316 if (unlikely(local->in_reconfig)) 5317 goto drop; 5318 5319 /* 5320 * The same happens when we're not even started, 5321 * but that's worth a warning. 5322 */ 5323 if (WARN_ON(!local->started)) 5324 goto drop; 5325 5326 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 5327 /* 5328 * Validate the rate, unless a PLCP error means that 5329 * we probably can't have a valid rate here anyway. 5330 */ 5331 5332 switch (status->encoding) { 5333 case RX_ENC_HT: 5334 /* 5335 * rate_idx is MCS index, which can be [0-76] 5336 * as documented on: 5337 * 5338 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n 5339 * 5340 * Anything else would be some sort of driver or 5341 * hardware error. The driver should catch hardware 5342 * errors. 5343 */ 5344 if (WARN(status->rate_idx > 76, 5345 "Rate marked as an HT rate but passed " 5346 "status->rate_idx is not " 5347 "an MCS index [0-76]: %d (0x%02x)\n", 5348 status->rate_idx, 5349 status->rate_idx)) 5350 goto drop; 5351 break; 5352 case RX_ENC_VHT: 5353 if (WARN_ONCE(status->rate_idx > 11 || 5354 !status->nss || 5355 status->nss > 8, 5356 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 5357 status->rate_idx, status->nss)) 5358 goto drop; 5359 break; 5360 case RX_ENC_HE: 5361 if (WARN_ONCE(status->rate_idx > 11 || 5362 !status->nss || 5363 status->nss > 8, 5364 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n", 5365 status->rate_idx, status->nss)) 5366 goto drop; 5367 break; 5368 case RX_ENC_EHT: 5369 if (WARN_ONCE(status->rate_idx > 15 || 5370 !status->nss || 5371 status->nss > 8 || 5372 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2, 5373 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n", 5374 status->rate_idx, status->nss, status->eht.gi)) 5375 goto drop; 5376 break; 5377 default: 5378 WARN_ON_ONCE(1); 5379 fallthrough; 5380 case RX_ENC_LEGACY: 5381 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 5382 goto drop; 5383 rate = &sband->bitrates[status->rate_idx]; 5384 } 5385 } 5386 5387 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED)) 5388 goto drop; 5389 5390 status->rx_flags = 0; 5391 5392 kcov_remote_start_common(skb_get_kcov_handle(skb)); 5393 5394 /* 5395 * Frames with failed FCS/PLCP checksum are not returned, 5396 * all other frames are returned without radiotap header 5397 * if it was previously present. 5398 * Also, frames with less than 16 bytes are dropped. 5399 */ 5400 if (!(status->flag & RX_FLAG_8023)) 5401 skb = ieee80211_rx_monitor(local, skb, rate); 5402 if (skb) { 5403 if ((status->flag & RX_FLAG_8023) || 5404 ieee80211_is_data_present(hdr->frame_control)) 5405 ieee80211_tpt_led_trig_rx(local, skb->len); 5406 5407 if (status->flag & RX_FLAG_8023) 5408 __ieee80211_rx_handle_8023(hw, pubsta, skb, list); 5409 else 5410 __ieee80211_rx_handle_packet(hw, pubsta, skb, list); 5411 } 5412 5413 kcov_remote_stop(); 5414 return; 5415 drop: 5416 kfree_skb(skb); 5417 } 5418 EXPORT_SYMBOL(ieee80211_rx_list); 5419 5420 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta, 5421 struct sk_buff *skb, struct napi_struct *napi) 5422 { 5423 struct sk_buff *tmp; 5424 LIST_HEAD(list); 5425 5426 5427 /* 5428 * key references and virtual interfaces are protected using RCU 5429 * and this requires that we are in a read-side RCU section during 5430 * receive processing 5431 */ 5432 rcu_read_lock(); 5433 ieee80211_rx_list(hw, pubsta, skb, &list); 5434 rcu_read_unlock(); 5435 5436 if (!napi) { 5437 netif_receive_skb_list(&list); 5438 return; 5439 } 5440 5441 list_for_each_entry_safe(skb, tmp, &list, list) { 5442 skb_list_del_init(skb); 5443 napi_gro_receive(napi, skb); 5444 } 5445 } 5446 EXPORT_SYMBOL(ieee80211_rx_napi); 5447 5448 /* This is a version of the rx handler that can be called from hard irq 5449 * context. Post the skb on the queue and schedule the tasklet */ 5450 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 5451 { 5452 struct ieee80211_local *local = hw_to_local(hw); 5453 5454 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 5455 5456 skb->pkt_type = IEEE80211_RX_MSG; 5457 skb_queue_tail(&local->skb_queue, skb); 5458 tasklet_schedule(&local->tasklet); 5459 } 5460 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 5461